Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.9
      1 /*	$NetBSD: if_sip.c,v 1.9 2000/03/23 07:01:39 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 Network Computer, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of Network Computer, Inc. nor the names of its
     16  *    contributors may be used to endorse or promote products derived
     17  *    from this software without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Device driver for the Silicon Integrated Systems SiS 900 and
     34  * SiS 7016 10/100 PCI Ethernet controllers.
     35  *
     36  * Written by Jason R. Thorpe for Network Computer, Inc.
     37  */
     38 
     39 #include "opt_inet.h"
     40 #include "opt_ns.h"
     41 #include "bpfilter.h"
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/callout.h>
     46 #include <sys/mbuf.h>
     47 #include <sys/malloc.h>
     48 #include <sys/kernel.h>
     49 #include <sys/socket.h>
     50 #include <sys/ioctl.h>
     51 #include <sys/errno.h>
     52 #include <sys/device.h>
     53 #include <sys/queue.h>
     54 
     55 #include <vm/vm.h>		/* for PAGE_SIZE */
     56 
     57 #include <net/if.h>
     58 #include <net/if_dl.h>
     59 #include <net/if_media.h>
     60 #include <net/if_ether.h>
     61 
     62 #if NBPFILTER > 0
     63 #include <net/bpf.h>
     64 #endif
     65 
     66 #ifdef INET
     67 #include <netinet/in.h>
     68 #include <netinet/if_inarp.h>
     69 #endif
     70 
     71 #ifdef NS
     72 #include <netns/ns.h>
     73 #include <netns/ns_if.h>
     74 #endif
     75 
     76 #include <machine/bus.h>
     77 #include <machine/intr.h>
     78 
     79 #include <dev/mii/miivar.h>
     80 
     81 #include <dev/pci/pcireg.h>
     82 #include <dev/pci/pcivar.h>
     83 #include <dev/pci/pcidevs.h>
     84 
     85 #include <dev/pci/if_sipreg.h>
     86 
     87 /*
     88  * Devices supported by this driver.
     89  */
     90 const struct sip_product {
     91 	pci_vendor_id_t		sip_vendor;
     92 	pci_product_id_t	sip_product;
     93 	const char		*sip_name;
     94 } sip_products[] = {
     95 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
     96 	  "SiS 900 10/100 Ethernet" },
     97 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
     98 	  "SiS 7016 10/100 Ethernet" },
     99 
    100 	{ 0,			0,
    101 	  NULL },
    102 };
    103 
    104 /*
    105  * Transmit descriptor list size.  This is arbitrary, but allocate
    106  * enough descriptors for 64 pending transmissions, and 16 segments
    107  * per packet.  This MUST work out to a power of 2.
    108  */
    109 #define	SIP_NTXSEGS		16
    110 
    111 #define	SIP_TXQUEUELEN		64
    112 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS)
    113 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
    114 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
    115 
    116 /*
    117  * Receive descriptor list size.  We have one Rx buffer per incoming
    118  * packet, so this logic is a little simpler.
    119  */
    120 #define	SIP_NRXDESC		64
    121 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
    122 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
    123 
    124 /*
    125  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    126  * a single clump that maps to a single DMA segment to make several things
    127  * easier.
    128  */
    129 struct sip_control_data {
    130 	/*
    131 	 * The transmit descriptors.
    132 	 */
    133 	struct sip_desc scd_txdescs[SIP_NTXDESC];
    134 
    135 	/*
    136 	 * The receive descriptors.
    137 	 */
    138 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
    139 };
    140 
    141 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    142 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    143 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    144 
    145 /*
    146  * Software state for transmit jobs.
    147  */
    148 struct sip_txsoft {
    149 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    150 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    151 	int txs_firstdesc;		/* first descriptor in packet */
    152 	int txs_lastdesc;		/* last descriptor in packet */
    153 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    154 };
    155 
    156 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    157 
    158 /*
    159  * Software state for receive jobs.
    160  */
    161 struct sip_rxsoft {
    162 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    163 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    164 };
    165 
    166 /*
    167  * Software state per device.
    168  */
    169 struct sip_softc {
    170 	struct device sc_dev;		/* generic device information */
    171 	bus_space_tag_t sc_st;		/* bus space tag */
    172 	bus_space_handle_t sc_sh;	/* bus space handle */
    173 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    174 	struct ethercom sc_ethercom;	/* ethernet common data */
    175 	void *sc_sdhook;		/* shutdown hook */
    176 	pci_product_id_t sc_model;	/* which model are we? */
    177 
    178 	void *sc_ih;			/* interrupt cookie */
    179 
    180 	struct mii_data sc_mii;		/* MII/media information */
    181 
    182 	struct callout sc_tick_ch;	/* tick callout */
    183 
    184 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    185 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    186 
    187 	/*
    188 	 * Software state for transmit and receive descriptors.
    189 	 */
    190 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    191 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
    192 
    193 	/*
    194 	 * Control data structures.
    195 	 */
    196 	struct sip_control_data *sc_control_data;
    197 #define	sc_txdescs	sc_control_data->scd_txdescs
    198 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    199 
    200 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    201 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    202 	u_int32_t sc_imr;		/* prototype IMR register */
    203 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    204 
    205 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    206 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    207 
    208 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    209 
    210 	int	sc_flags;		/* misc. flags; see below */
    211 
    212 	int	sc_txfree;		/* number of free Tx descriptors */
    213 	int	sc_txnext;		/* next ready Tx descriptor */
    214 
    215 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    216 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    217 
    218 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    219 };
    220 
    221 /* sc_flags */
    222 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
    223 
    224 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    225 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    226 
    227 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
    228 do {									\
    229 	int __x, __n;							\
    230 									\
    231 	__x = (x);							\
    232 	__n = (n);							\
    233 									\
    234 	/* If it will wrap around, sync to the end of the ring. */	\
    235 	if ((__x + __n) > SIP_NTXDESC) {				\
    236 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    237 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
    238 		    (SIP_NTXDESC - __x), (ops));			\
    239 		__n -= (SIP_NTXDESC - __x);				\
    240 		__x = 0;						\
    241 	}								\
    242 									\
    243 	/* Now sync whatever is left. */				\
    244 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    245 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
    246 } while (0)
    247 
    248 #define	SIP_CDRXSYNC(sc, x, ops)					\
    249 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    250 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
    251 
    252 /*
    253  * Note we rely on MCLBYTES being a power of two below.
    254  */
    255 #define	SIP_INIT_RXDESC(sc, x)						\
    256 do {									\
    257 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    258 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
    259 									\
    260 	__sipd->sipd_link = SIP_CDRXADDR((sc), SIP_NEXTRX((x)));	\
    261 	__sipd->sipd_bufptr = __rxs->rxs_dmamap->dm_segs[0].ds_addr;	\
    262 	__sipd->sipd_cmdsts = CMDSTS_INTR |				\
    263 	    ((MCLBYTES - 1) & CMDSTS_SIZE_MASK);			\
    264 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    265 } while (0)
    266 
    267 void	sip_start __P((struct ifnet *));
    268 void	sip_watchdog __P((struct ifnet *));
    269 int	sip_ioctl __P((struct ifnet *, u_long, caddr_t));
    270 
    271 void	sip_shutdown __P((void *));
    272 
    273 void	sip_reset __P((struct sip_softc *));
    274 int	sip_init __P((struct sip_softc *));
    275 void	sip_stop __P((struct sip_softc *, int));
    276 void	sip_rxdrain __P((struct sip_softc *));
    277 int	sip_add_rxbuf __P((struct sip_softc *, int));
    278 void	sip_read_eeprom __P((struct sip_softc *, int, int, u_int16_t *));
    279 void	sip_set_filter __P((struct sip_softc *));
    280 void	sip_tick __P((void *));
    281 
    282 int	sip_intr __P((void *));
    283 void	sip_txintr __P((struct sip_softc *));
    284 void	sip_rxintr __P((struct sip_softc *));
    285 
    286 int	sip_mii_readreg __P((struct device *, int, int));
    287 void	sip_mii_writereg __P((struct device *, int, int, int));
    288 void	sip_mii_statchg __P((struct device *));
    289 
    290 int	sip_mediachange __P((struct ifnet *));
    291 void	sip_mediastatus __P((struct ifnet *, struct ifmediareq *));
    292 
    293 int	sip_match __P((struct device *, struct cfdata *, void *));
    294 void	sip_attach __P((struct device *, struct device *, void *));
    295 
    296 int	sip_copy_small = 0;
    297 
    298 struct cfattach sip_ca = {
    299 	sizeof(struct sip_softc), sip_match, sip_attach,
    300 };
    301 
    302 const struct sip_product *sip_lookup __P((const struct pci_attach_args *));
    303 
    304 const struct sip_product *
    305 sip_lookup(pa)
    306 	const struct pci_attach_args *pa;
    307 {
    308 	const struct sip_product *sip;
    309 
    310 	for (sip = sip_products; sip->sip_name != NULL; sip++) {
    311 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    312 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
    313 			return (sip);
    314 	}
    315 	return (NULL);
    316 }
    317 
    318 int
    319 sip_match(parent, cf, aux)
    320 	struct device *parent;
    321 	struct cfdata *cf;
    322 	void *aux;
    323 {
    324 	struct pci_attach_args *pa = aux;
    325 
    326 	if (sip_lookup(pa) != NULL)
    327 		return (1);
    328 
    329 	return (0);
    330 }
    331 
    332 void
    333 sip_attach(parent, self, aux)
    334 	struct device *parent, *self;
    335 	void *aux;
    336 {
    337 	struct sip_softc *sc = (struct sip_softc *) self;
    338 	struct pci_attach_args *pa = aux;
    339 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    340 	pci_chipset_tag_t pc = pa->pa_pc;
    341 	pci_intr_handle_t ih;
    342 	const char *intrstr = NULL;
    343 	bus_space_tag_t iot, memt;
    344 	bus_space_handle_t ioh, memh;
    345 	bus_dma_segment_t seg;
    346 	int ioh_valid, memh_valid;
    347 	int i, rseg, error;
    348 	const struct sip_product *sip;
    349 	pcireg_t pmode;
    350 	u_int16_t enaddr[ETHER_ADDR_LEN / 2];
    351 
    352 	callout_init(&sc->sc_tick_ch);
    353 
    354 	sip = sip_lookup(pa);
    355 	if (sip == NULL) {
    356 		printf("\n");
    357 		panic("sip_attach: impossible");
    358 	}
    359 
    360 	printf(": %s\n", sip->sip_name);
    361 
    362 	sc->sc_model = PCI_PRODUCT(pa->pa_id);
    363 
    364 	/*
    365 	 * Map the device.
    366 	 */
    367 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
    368 	    PCI_MAPREG_TYPE_IO, 0,
    369 	    &iot, &ioh, NULL, NULL) == 0);
    370 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    371 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    372 	    &memt, &memh, NULL, NULL) == 0);
    373 
    374 	if (memh_valid) {
    375 		sc->sc_st = memt;
    376 		sc->sc_sh = memh;
    377 	} else if (ioh_valid) {
    378 		sc->sc_st = iot;
    379 		sc->sc_sh = ioh;
    380 	} else {
    381 		printf("%s: unable to map device registers\n",
    382 		    sc->sc_dev.dv_xname);
    383 		return;
    384 	}
    385 
    386 	sc->sc_dmat = pa->pa_dmat;
    387 
    388 	/* Enable bus mastering. */
    389 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    390 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    391 	    PCI_COMMAND_MASTER_ENABLE);
    392 
    393 	/* Get it out of power save mode if needed. */
    394 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, 0, 0)) {
    395 		pmode = pci_conf_read(pc, pa->pa_tag, SIP_PCI_CFGPMCSR) & 0x3;
    396 		if (pmode == 3) {
    397 			/*
    398 			 * The card has lost all configuration data in
    399 			 * this state, so punt.
    400 			 */
    401 			printf("%s: unable to wake up from power state D3\n",
    402 			    sc->sc_dev.dv_xname);
    403 			return;
    404 		}
    405 		if (pmode != 0) {
    406 			printf("%s: waking up from power state D%d\n",
    407 			    sc->sc_dev.dv_xname, pmode);
    408 			pci_conf_write(pc, pa->pa_tag, SIP_PCI_CFGPMCSR, 0);
    409 		}
    410 	}
    411 
    412 	/*
    413 	 * Map and establish our interrupt.
    414 	 */
    415 	if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
    416 	    pa->pa_intrline, &ih)) {
    417 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    418 		return;
    419 	}
    420 	intrstr = pci_intr_string(pc, ih);
    421 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sip_intr, sc);
    422 	if (sc->sc_ih == NULL) {
    423 		printf("%s: unable to establish interrupt",
    424 		    sc->sc_dev.dv_xname);
    425 		if (intrstr != NULL)
    426 			printf(" at %s", intrstr);
    427 		printf("\n");
    428 		return;
    429 	}
    430 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    431 
    432 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    433 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    434 
    435 	/*
    436 	 * Allocate the control data structures, and create and load the
    437 	 * DMA map for it.
    438 	 */
    439 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    440 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    441 	    0)) != 0) {
    442 		printf("%s: unable to allocate control data, error = %d\n",
    443 		    sc->sc_dev.dv_xname, error);
    444 		goto fail_0;
    445 	}
    446 
    447 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    448 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
    449 	    BUS_DMA_COHERENT)) != 0) {
    450 		printf("%s: unable to map control data, error = %d\n",
    451 		    sc->sc_dev.dv_xname, error);
    452 		goto fail_1;
    453 	}
    454 
    455 	if ((error = bus_dmamap_create(sc->sc_dmat,
    456 	    sizeof(struct sip_control_data), 1,
    457 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    458 		printf("%s: unable to create control data DMA map, "
    459 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    460 		goto fail_2;
    461 	}
    462 
    463 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    464 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
    465 	    0)) != 0) {
    466 		printf("%s: unable to load control data DMA map, error = %d\n",
    467 		    sc->sc_dev.dv_xname, error);
    468 		goto fail_3;
    469 	}
    470 
    471 	/*
    472 	 * Create the transmit buffer DMA maps.
    473 	 */
    474 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    475 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    476 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
    477 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    478 			printf("%s: unable to create tx DMA map %d, "
    479 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    480 			goto fail_4;
    481 		}
    482 	}
    483 
    484 	/*
    485 	 * Create the receive buffer DMA maps.
    486 	 */
    487 	for (i = 0; i < SIP_NRXDESC; i++) {
    488 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    489 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    490 			printf("%s: unable to create rx DMA map %d, "
    491 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    492 			goto fail_5;
    493 		}
    494 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    495 	}
    496 
    497 	/*
    498 	 * Reset the chip to a known state.
    499 	 */
    500 	sip_reset(sc);
    501 
    502 	/*
    503 	 * Read the Ethernet address from the EEPROM.
    504 	 */
    505 	sip_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
    506 	    sizeof(enaddr) / sizeof(enaddr[0]), enaddr);
    507 
    508 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    509 	    ether_sprintf((u_int8_t *)enaddr));
    510 
    511 	/*
    512 	 * Initialize our media structures and probe the MII.
    513 	 */
    514 	sc->sc_mii.mii_ifp = ifp;
    515 	sc->sc_mii.mii_readreg = sip_mii_readreg;
    516 	sc->sc_mii.mii_writereg = sip_mii_writereg;
    517 	sc->sc_mii.mii_statchg = sip_mii_statchg;
    518 	ifmedia_init(&sc->sc_mii.mii_media, 0, sip_mediachange,
    519 	    sip_mediastatus);
    520 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    521 	    MII_OFFSET_ANY, 0);
    522 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    523 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    524 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    525 	} else
    526 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    527 
    528 	ifp = &sc->sc_ethercom.ec_if;
    529 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    530 	ifp->if_softc = sc;
    531 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    532 	ifp->if_ioctl = sip_ioctl;
    533 	ifp->if_start = sip_start;
    534 	ifp->if_watchdog = sip_watchdog;
    535 
    536 	/*
    537 	 * Attach the interface.
    538 	 */
    539 	if_attach(ifp);
    540 	ether_ifattach(ifp, (u_int8_t *)enaddr);
    541 #if NBPFILTER > 0
    542 	bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
    543 	    sizeof(struct ether_header));
    544 #endif
    545 
    546 	/*
    547 	 * Make sure the interface is shutdown during reboot.
    548 	 */
    549 	sc->sc_sdhook = shutdownhook_establish(sip_shutdown, sc);
    550 	if (sc->sc_sdhook == NULL)
    551 		printf("%s: WARNING: unable to establish shutdown hook\n",
    552 		    sc->sc_dev.dv_xname);
    553 	return;
    554 
    555 	/*
    556 	 * Free any resources we've allocated during the failed attach
    557 	 * attempt.  Do this in reverse order and fall through.
    558 	 */
    559  fail_5:
    560 	for (i = 0; i < SIP_NRXDESC; i++) {
    561 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    562 			bus_dmamap_destroy(sc->sc_dmat,
    563 			    sc->sc_rxsoft[i].rxs_dmamap);
    564 	}
    565  fail_4:
    566 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    567 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    568 			bus_dmamap_destroy(sc->sc_dmat,
    569 			    sc->sc_txsoft[i].txs_dmamap);
    570 	}
    571 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    572  fail_3:
    573 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    574  fail_2:
    575 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    576 	    sizeof(struct sip_control_data));
    577  fail_1:
    578 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    579  fail_0:
    580 	return;
    581 }
    582 
    583 /*
    584  * sip_shutdown:
    585  *
    586  *	Make sure the interface is stopped at reboot time.
    587  */
    588 void
    589 sip_shutdown(arg)
    590 	void *arg;
    591 {
    592 	struct sip_softc *sc = arg;
    593 
    594 	sip_stop(sc, 1);
    595 }
    596 
    597 /*
    598  * sip_start:		[ifnet interface function]
    599  *
    600  *	Start packet transmission on the interface.
    601  */
    602 void
    603 sip_start(ifp)
    604 	struct ifnet *ifp;
    605 {
    606 	struct sip_softc *sc = ifp->if_softc;
    607 	struct mbuf *m0, *m;
    608 	struct sip_txsoft *txs;
    609 	bus_dmamap_t dmamap;
    610 	int error, firsttx, nexttx, lasttx, ofree, seg;
    611 
    612 	/*
    613 	 * If we've been told to pause, don't transmit any more packets.
    614 	 */
    615 	if (sc->sc_flags & SIPF_PAUSED)
    616 		ifp->if_flags |= IFF_OACTIVE;
    617 
    618 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    619 		return;
    620 
    621 	/*
    622 	 * Remember the previous number of free descriptors and
    623 	 * the first descriptor we'll use.
    624 	 */
    625 	ofree = sc->sc_txfree;
    626 	firsttx = sc->sc_txnext;
    627 
    628 	/*
    629 	 * Loop through the send queue, setting up transmit descriptors
    630 	 * until we drain the queue, or use up all available transmit
    631 	 * descriptors.
    632 	 */
    633 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
    634 	       sc->sc_txfree != 0) {
    635 		/*
    636 		 * Grab a packet off the queue.
    637 		 */
    638 		IF_DEQUEUE(&ifp->if_snd, m0);
    639 		if (m0 == NULL)
    640 			break;
    641 
    642 		dmamap = txs->txs_dmamap;
    643 
    644 		/*
    645 		 * Load the DMA map.  If this fails, the packet either
    646 		 * didn't fit in the alloted number of segments, or we
    647 		 * were short on resources.  In this case, we'll copy
    648 		 * and try again.
    649 		 */
    650 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    651 		    BUS_DMA_NOWAIT) != 0) {
    652 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    653 			if (m == NULL) {
    654 				printf("%s: unable to allocate Tx mbuf\n",
    655 				    sc->sc_dev.dv_xname);
    656 				IF_PREPEND(&ifp->if_snd, m0);
    657 				break;
    658 			}
    659 			if (m0->m_pkthdr.len > MHLEN) {
    660 				MCLGET(m, M_DONTWAIT);
    661 				if ((m->m_flags & M_EXT) == 0) {
    662 					printf("%s: unable to allocate Tx "
    663 					    "cluster\n", sc->sc_dev.dv_xname);
    664 					m_freem(m);
    665 					IF_PREPEND(&ifp->if_snd, m0);
    666 					break;
    667 				}
    668 			}
    669 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
    670 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    671 			m_freem(m0);
    672 			m0 = m;
    673 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    674 			    m0, BUS_DMA_NOWAIT);
    675 			if (error) {
    676 				printf("%s: unable to load Tx buffer, "
    677 				    "error = %d\n", sc->sc_dev.dv_xname, error);
    678 				IF_PREPEND(&ifp->if_snd, m0);
    679 				break;
    680 			}
    681 		}
    682 
    683 		/*
    684 		 * Ensure we have enough descriptors free to describe
    685 		 * the packet.
    686 		 */
    687 		if (dmamap->dm_nsegs > sc->sc_txfree) {
    688 			/*
    689 			 * Not enough free descriptors to transmit this
    690 			 * packet.  We haven't committed anything yet,
    691 			 * so just unload the DMA map, put the packet
    692 			 * back on the queue, and punt.  Notify the upper
    693 			 * layer that there are not more slots left.
    694 			 *
    695 			 * XXX We could allocate an mbuf and copy, but
    696 			 * XXX is it worth it?
    697 			 */
    698 			ifp->if_flags |= IFF_OACTIVE;
    699 			bus_dmamap_unload(sc->sc_dmat, dmamap);
    700 			IF_PREPEND(&ifp->if_snd, m0);
    701 			break;
    702 		}
    703 
    704 		/*
    705 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    706 		 */
    707 
    708 		/* Sync the DMA map. */
    709 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    710 		    BUS_DMASYNC_PREWRITE);
    711 
    712 		/*
    713 		 * Initialize the transmit descriptors.
    714 		 */
    715 		for (nexttx = sc->sc_txnext, seg = 0;
    716 		     seg < dmamap->dm_nsegs;
    717 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
    718 			/*
    719 			 * If this is the first descriptor we're
    720 			 * enqueueing, don't set the OWN bit just
    721 			 * yet.  That could cause a race condition.
    722 			 * We'll do it below.
    723 			 */
    724 			sc->sc_txdescs[nexttx].sipd_bufptr =
    725 			    dmamap->dm_segs[seg].ds_addr;
    726 			sc->sc_txdescs[nexttx].sipd_cmdsts =
    727 			    (nexttx == firsttx ? 0 : CMDSTS_OWN) |
    728 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len;
    729 			lasttx = nexttx;
    730 		}
    731 
    732 		/* Clear the MORE bit on the last segment. */
    733 		sc->sc_txdescs[lasttx].sipd_cmdsts &= ~CMDSTS_MORE;
    734 
    735 		/* Sync the descriptors we're using. */
    736 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
    737 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    738 
    739 		/*
    740 		 * Store a pointer to the packet so we can free it later,
    741 		 * and remember what txdirty will be once the packet is
    742 		 * done.
    743 		 */
    744 		txs->txs_mbuf = m0;
    745 		txs->txs_firstdesc = sc->sc_txnext;
    746 		txs->txs_lastdesc = lasttx;
    747 
    748 		/* Advance the tx pointer. */
    749 		sc->sc_txfree -= dmamap->dm_nsegs;
    750 		sc->sc_txnext = nexttx;
    751 
    752 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
    753 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
    754 
    755 #if NBPFILTER > 0
    756 		/*
    757 		 * Pass the packet to any BPF listeners.
    758 		 */
    759 		if (ifp->if_bpf)
    760 			bpf_mtap(ifp->if_bpf, m0);
    761 #endif /* NBPFILTER > 0 */
    762 	}
    763 
    764 	if (txs == NULL || sc->sc_txfree == 0) {
    765 		/* No more slots left; notify upper layer. */
    766 		ifp->if_flags |= IFF_OACTIVE;
    767 	}
    768 
    769 	if (sc->sc_txfree != ofree) {
    770 		/*
    771 		 * Cause a descriptor interrupt to happen on the
    772 		 * last packet we enqueued.
    773 		 */
    774 		sc->sc_txdescs[lasttx].sipd_cmdsts |= CMDSTS_INTR;
    775 		SIP_CDTXSYNC(sc, lasttx, 1,
    776 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    777 
    778 		/*
    779 		 * The entire packet chain is set up.  Give the
    780 		 * first descrptor to the chip now.
    781 		 */
    782 		sc->sc_txdescs[firsttx].sipd_cmdsts |= CMDSTS_OWN;
    783 		SIP_CDTXSYNC(sc, firsttx, 1,
    784 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    785 
    786 		/* Start the transmit process. */
    787 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
    788 		     CR_TXE) == 0) {
    789 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
    790 			    SIP_CDTXADDR(sc, firsttx));
    791 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
    792 		}
    793 
    794 		/* Set a watchdog timer in case the chip flakes out. */
    795 		ifp->if_timer = 5;
    796 	}
    797 }
    798 
    799 /*
    800  * sip_watchdog:	[ifnet interface function]
    801  *
    802  *	Watchdog timer handler.
    803  */
    804 void
    805 sip_watchdog(ifp)
    806 	struct ifnet *ifp;
    807 {
    808 	struct sip_softc *sc = ifp->if_softc;
    809 
    810 	/*
    811 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
    812 	 * If we get a timeout, try and sweep up transmit descriptors.
    813 	 * If we manage to sweep them all up, ignore the lack of
    814 	 * interrupt.
    815 	 */
    816 	sip_txintr(sc);
    817 
    818 	if (sc->sc_txfree != SIP_NTXDESC) {
    819 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
    820 		ifp->if_oerrors++;
    821 
    822 		/* Reset the interface. */
    823 		(void) sip_init(sc);
    824 	} else if (ifp->if_flags & IFF_DEBUG)
    825 		printf("%s: recovered from device timeout\n",
    826 		    sc->sc_dev.dv_xname);
    827 
    828 	/* Try to get more packets going. */
    829 	sip_start(ifp);
    830 }
    831 
    832 /*
    833  * sip_ioctl:		[ifnet interface function]
    834  *
    835  *	Handle control requests from the operator.
    836  */
    837 int
    838 sip_ioctl(ifp, cmd, data)
    839 	struct ifnet *ifp;
    840 	u_long cmd;
    841 	caddr_t data;
    842 {
    843 	struct sip_softc *sc = ifp->if_softc;
    844 	struct ifreq *ifr = (struct ifreq *)data;
    845 	struct ifaddr *ifa = (struct ifaddr *)data;
    846 	int s, error = 0;
    847 
    848 	s = splnet();
    849 
    850 	switch (cmd) {
    851 	case SIOCSIFADDR:
    852 		ifp->if_flags |= IFF_UP;
    853 
    854 		switch (ifa->ifa_addr->sa_family) {
    855 #ifdef INET
    856 		case AF_INET:
    857 			if ((error = sip_init(sc)) != 0)
    858 				break;
    859 			arp_ifinit(ifp, ifa);
    860 			break;
    861 #endif /* INET */
    862 #ifdef NS
    863 		case AF_NS:
    864 		    {
    865 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
    866 
    867 			if (ns_nullhost(*ina))
    868 				ina->x_host = *(union ns_host *)
    869 				    LLADDR(ifp->if_sadl);
    870 			else
    871 				memcpy(LLADDR(ifp->if_sadl),
    872 				    ina->x_host.c_host, ifp->if_addrlen);
    873 			error = sip_init(sc);
    874 			break;
    875 		    }
    876 #endif /* NS */
    877 		default:
    878 			error = sip_init(sc);
    879 			break;
    880 		}
    881 		break;
    882 
    883 	case SIOCSIFMTU:
    884 		if (ifr->ifr_mtu > ETHERMTU)
    885 			error = EINVAL;
    886 		else
    887 			ifp->if_mtu = ifr->ifr_mtu;
    888 		break;
    889 
    890 	case SIOCSIFFLAGS:
    891 		if ((ifp->if_flags & IFF_UP) == 0 &&
    892 		    (ifp->if_flags & IFF_RUNNING) != 0) {
    893 			/*
    894 			 * If interface is marked down and it is running, then
    895 			 * stop it.
    896 			 */
    897 			sip_stop(sc, 1);
    898 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
    899 			   (ifp->if_flags & IFF_RUNNING) == 0) {
    900 			/*
    901 			 * If interfase it marked up and it is stopped, then
    902 			 * start it.
    903 			 */
    904 			error = sip_init(sc);
    905 		} else if ((ifp->if_flags & IFF_UP) != 0) {
    906 			/*
    907 			 * Reset the interface to pick up changes in any other
    908 			 * flags that affect the hardware state.
    909 			 */
    910 			error = sip_init(sc);
    911 		}
    912 		break;
    913 
    914 	case SIOCADDMULTI:
    915 	case SIOCDELMULTI:
    916 		error = (cmd == SIOCADDMULTI) ?
    917 		    ether_addmulti(ifr, &sc->sc_ethercom) :
    918 		    ether_delmulti(ifr, &sc->sc_ethercom);
    919 
    920 		if (error == ENETRESET) {
    921 			/*
    922 			 * Multicast list has changed; set the hardware filter
    923 			 * accordingly.
    924 			 */
    925 			sip_set_filter(sc);
    926 			error = 0;
    927 		}
    928 		break;
    929 
    930 	case SIOCSIFMEDIA:
    931 	case SIOCGIFMEDIA:
    932 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
    933 		break;
    934 
    935 	default:
    936 		error = EINVAL;
    937 		break;
    938 	}
    939 
    940 	/* Try to get more packets going. */
    941 	sip_start(ifp);
    942 
    943 	splx(s);
    944 	return (error);
    945 }
    946 
    947 /*
    948  * sip_intr:
    949  *
    950  *	Interrupt service routine.
    951  */
    952 int
    953 sip_intr(arg)
    954 	void *arg;
    955 {
    956 	struct sip_softc *sc = arg;
    957 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    958 	u_int32_t isr;
    959 	int handled = 0;
    960 
    961 	for (;;) {
    962 		/* Reading clears interrupt. */
    963 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
    964 		if ((isr & sc->sc_imr) == 0)
    965 			break;
    966 
    967 		handled = 1;
    968 
    969 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
    970 			/* Grab any new packets. */
    971 			sip_rxintr(sc);
    972 
    973 			if (isr & ISR_RXORN) {
    974 				printf("%s: receive FIFO overrun\n",
    975 				    sc->sc_dev.dv_xname);
    976 
    977 				/* XXX adjust rx_drain_thresh? */
    978 			}
    979 
    980 			if (isr & ISR_RXIDLE) {
    981 				printf("%s: receive ring overrun\n",
    982 				    sc->sc_dev.dv_xname);
    983 
    984 				/* Get the receive process going again. */
    985 				bus_space_write_4(sc->sc_st, sc->sc_sh,
    986 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
    987 				bus_space_write_4(sc->sc_st, sc->sc_sh,
    988 				    SIP_CR, CR_RXE);
    989 			}
    990 		}
    991 
    992 		if (isr & (ISR_TXURN|ISR_TXDESC)) {
    993 			/* Sweep up transmit descriptors. */
    994 			sip_txintr(sc);
    995 
    996 			if (isr & ISR_TXURN) {
    997 				u_int32_t thresh;
    998 
    999 				printf("%s: transmit FIFO underrun",
   1000 				    sc->sc_dev.dv_xname);
   1001 
   1002 				thresh = sc->sc_tx_drain_thresh + 1;
   1003 				if (thresh <= TXCFG_DRTH &&
   1004 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
   1005 				     (sc->sc_tx_fill_thresh * 32))) {
   1006 					printf("; increasing Tx drain "
   1007 					    "threshold to %u bytes\n",
   1008 					    thresh * 32);
   1009 					sc->sc_tx_drain_thresh = thresh;
   1010 					(void) sip_init(sc);
   1011 				} else {
   1012 					(void) sip_init(sc);
   1013 					printf("\n");
   1014 				}
   1015 			}
   1016 		}
   1017 
   1018 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1019 			if (isr & ISR_PAUSE_ST) {
   1020 				sc->sc_flags |= SIPF_PAUSED;
   1021 				ifp->if_flags |= IFF_OACTIVE;
   1022 			}
   1023 			if (isr & ISR_PAUSE_END) {
   1024 				sc->sc_flags &= ~SIPF_PAUSED;
   1025 				ifp->if_flags &= ~IFF_OACTIVE;
   1026 			}
   1027 		}
   1028 
   1029 		if (isr & ISR_HIBERR) {
   1030 #define	PRINTERR(bit, str)						\
   1031 			if (isr & (bit))				\
   1032 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1033 			PRINTERR(ISR_DPERR, "parity error");
   1034 			PRINTERR(ISR_SSERR, "system error");
   1035 			PRINTERR(ISR_RMABT, "master abort");
   1036 			PRINTERR(ISR_RTABT, "target abort");
   1037 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1038 			(void) sip_init(sc);
   1039 #undef PRINTERR
   1040 		}
   1041 	}
   1042 
   1043 	/* Try to get more packets going. */
   1044 	sip_start(ifp);
   1045 
   1046 	return (handled);
   1047 }
   1048 
   1049 /*
   1050  * sip_txintr:
   1051  *
   1052  *	Helper; handle transmit interrupts.
   1053  */
   1054 void
   1055 sip_txintr(sc)
   1056 	struct sip_softc *sc;
   1057 {
   1058 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1059 	struct sip_txsoft *txs;
   1060 	u_int32_t cmdsts;
   1061 
   1062 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
   1063 		ifp->if_flags &= ~IFF_OACTIVE;
   1064 
   1065 	/*
   1066 	 * Go through our Tx list and free mbufs for those
   1067 	 * frames which have been transmitted.
   1068 	 */
   1069 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1070 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1071 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1072 
   1073 		cmdsts = sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts;
   1074 		if (cmdsts & CMDSTS_OWN)
   1075 			break;
   1076 
   1077 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
   1078 
   1079 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1080 
   1081 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1082 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1083 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1084 		m_freem(txs->txs_mbuf);
   1085 		txs->txs_mbuf = NULL;
   1086 
   1087 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1088 
   1089 		/*
   1090 		 * Check for errors and collisions.
   1091 		 */
   1092 		if (cmdsts &
   1093 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   1094 			if (ifp->if_flags & IFF_DEBUG) {
   1095 				if (CMDSTS_Tx_ED)
   1096 					printf("%s: excessive deferral\n",
   1097 					    sc->sc_dev.dv_xname);
   1098 				if (CMDSTS_Tx_EC) {
   1099 					printf("%s: excessive collisions\n",
   1100 					    sc->sc_dev.dv_xname);
   1101 					ifp->if_collisions += 16;
   1102 				}
   1103 			}
   1104 		} else {
   1105 			/* Packet was transmitted successfully. */
   1106 			ifp->if_opackets++;
   1107 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   1108 		}
   1109 	}
   1110 
   1111 	/*
   1112 	 * If there are no more pending transmissions, cancel the watchdog
   1113 	 * timer.
   1114 	 */
   1115 	if (txs == NULL)
   1116 		ifp->if_timer = 0;
   1117 }
   1118 
   1119 /*
   1120  * sip_rxintr:
   1121  *
   1122  *	Helper; handle receive interrupts.
   1123  */
   1124 void
   1125 sip_rxintr(sc)
   1126 	struct sip_softc *sc;
   1127 {
   1128 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1129 	struct ether_header *eh;
   1130 	struct sip_rxsoft *rxs;
   1131 	struct mbuf *m;
   1132 	u_int32_t cmdsts;
   1133 	int i, len;
   1134 
   1135 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1136 		rxs = &sc->sc_rxsoft[i];
   1137 
   1138 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1139 
   1140 		cmdsts = sc->sc_rxdescs[i].sipd_cmdsts;
   1141 
   1142 		/*
   1143 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1144 		 * consumer of the receive ring, so if the bit is clear,
   1145 		 * we have processed all of the packets.
   1146 		 */
   1147 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1148 			/*
   1149 			 * We have processed all of the receive buffers.
   1150 			 */
   1151 			break;
   1152 		}
   1153 
   1154 		/*
   1155 		 * If any collisions were seen on the wire, count one.
   1156 		 */
   1157 		if (cmdsts & CMDSTS_Rx_COL)
   1158 			ifp->if_collisions++;
   1159 
   1160 		/*
   1161 		 * If an error occurred, update stats, clear the status
   1162 		 * word, and leave the packet buffer in place.  It will
   1163 		 * simply be reused the next time the ring comes around.
   1164 		 */
   1165 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_LONG|CMDSTS_Rx_RUNT|
   1166 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1167 			ifp->if_ierrors++;
   1168 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1169 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1170 				/* Receive overrun handled elsewhere. */
   1171 				printf("%s: receive descriptor error\n",
   1172 				    sc->sc_dev.dv_xname);
   1173 			}
   1174 #define	PRINTERR(bit, str)						\
   1175 			if (cmdsts & (bit))				\
   1176 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1177 			PRINTERR(CMDSTS_Rx_LONG, "packet too long");
   1178 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1179 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1180 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1181 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1182 #undef PRINTERR
   1183 			SIP_INIT_RXDESC(sc, i);
   1184 			continue;
   1185 		}
   1186 
   1187 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1188 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1189 
   1190 		/*
   1191 		 * No errors; receive the packet.  Note, the SiS 900
   1192 		 * includes the CRC with every packet; trim it.
   1193 		 */
   1194 		len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN;
   1195 
   1196 #ifdef __NO_STRICT_ALIGNMENT
   1197 		/*
   1198 		 * If the packet is small enough to fit in a
   1199 		 * single header mbuf, allocate one and copy
   1200 		 * the data into it.  This greatly reduces
   1201 		 * memory consumption when we receive lots
   1202 		 * of small packets.
   1203 		 *
   1204 		 * Otherwise, we add a new buffer to the receive
   1205 		 * chain.  If this fails, we drop the packet and
   1206 		 * recycle the old buffer.
   1207 		 */
   1208 		if (sip_copy_small != 0 && len <= MHLEN) {
   1209 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1210 			if (m == NULL)
   1211 				goto dropit;
   1212 			memcpy(mtod(m, caddr_t),
   1213 			    mtod(rxs->rxs_mbuf, caddr_t), len);
   1214 			SIP_INIT_RXDESC(sc, i);
   1215 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1216 			    rxs->rxs_dmamap->dm_mapsize,
   1217 			    BUS_DMASYNC_PREREAD);
   1218 		} else {
   1219 			m = rxs->rxs_mbuf;
   1220 			if (sip_add_rxbuf(sc, i) != 0) {
   1221  dropit:
   1222 				ifp->if_ierrors++;
   1223 				SIP_INIT_RXDESC(sc, i);
   1224 				bus_dmamap_sync(sc->sc_dmat,
   1225 				    rxs->rxs_dmamap, 0,
   1226 				    rxs->rxs_dmamap->dm_mapsize,
   1227 				    BUS_DMASYNC_PREREAD);
   1228 				continue;
   1229 			}
   1230 		}
   1231 #else
   1232 		/*
   1233 		 * The SiS 900's receive buffers must be 4-byte aligned.
   1234 		 * But this means that the data after the Ethernet header
   1235 		 * is misaligned.  We must allocate a new buffer and
   1236 		 * copy the data, shifted forward 2 bytes.
   1237 		 */
   1238 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1239 		if (m == NULL) {
   1240  dropit:
   1241 			ifp->if_ierrors++;
   1242 			SIP_INIT_RXDESC(sc, i);
   1243 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1244 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1245 			continue;
   1246 		}
   1247 		if (len > (MHLEN - 2)) {
   1248 			MCLGET(m, M_DONTWAIT);
   1249 			if ((m->m_flags & M_EXT) == 0) {
   1250 				m_freem(m);
   1251 				goto dropit;
   1252 			}
   1253 		}
   1254 		m->m_data += 2;
   1255 
   1256 		/*
   1257 		 * Note that we use clusters for incoming frames, so the
   1258 		 * buffer is virtually contiguous.
   1259 		 */
   1260 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
   1261 
   1262 		/* Allow the receive descriptor to continue using its mbuf. */
   1263 		SIP_INIT_RXDESC(sc, i);
   1264 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1265 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1266 #endif /* __NO_STRICT_ALIGNMENT */
   1267 
   1268 		ifp->if_ipackets++;
   1269 		eh = mtod(m, struct ether_header *);
   1270 		m->m_pkthdr.rcvif = ifp;
   1271 		m->m_pkthdr.len = m->m_len = len;
   1272 
   1273 #if NBPFILTER > 0
   1274 		/*
   1275 		 * Pass this up to any BPF listeners, but only
   1276 		 * pass if up the stack if it's for us.
   1277 		 */
   1278 		if (ifp->if_bpf) {
   1279 			bpf_mtap(ifp->if_bpf, m);
   1280 			if ((ifp->if_flags & IFF_PROMISC) != 0 &&
   1281 			    (cmdsts & CMDSTS_Rx_DEST) == CMDSTS_Rx_DEST_REJ) {
   1282 				m_freem(m);
   1283 				continue;
   1284 			}
   1285 		}
   1286 #endif /* NBPFILTER > 0 */
   1287 
   1288 		/* Pass it on. */
   1289 		(*ifp->if_input)(ifp, m);
   1290 	}
   1291 
   1292 	/* Update the receive pointer. */
   1293 	sc->sc_rxptr = i;
   1294 }
   1295 
   1296 /*
   1297  * sip_tick:
   1298  *
   1299  *	One second timer, used to tick the MII.
   1300  */
   1301 void
   1302 sip_tick(arg)
   1303 	void *arg;
   1304 {
   1305 	struct sip_softc *sc = arg;
   1306 	int s;
   1307 
   1308 	s = splnet();
   1309 	mii_tick(&sc->sc_mii);
   1310 	splx(s);
   1311 
   1312 	callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
   1313 }
   1314 
   1315 /*
   1316  * sip_reset:
   1317  *
   1318  *	Perform a soft reset on the SiS 900.
   1319  */
   1320 void
   1321 sip_reset(sc)
   1322 	struct sip_softc *sc;
   1323 {
   1324 	bus_space_tag_t st = sc->sc_st;
   1325 	bus_space_handle_t sh = sc->sc_sh;
   1326 	int i;
   1327 
   1328 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   1329 
   1330 	for (i = 0; i < 1000; i++) {
   1331 		if ((bus_space_read_4(st, sh, SIP_ISR) &
   1332 		     (ISR_TXRCMP|ISR_RXRCMP)) == (ISR_TXRCMP|ISR_RXRCMP))
   1333 			return;
   1334 		delay(2);
   1335 	}
   1336 
   1337 	printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   1338 }
   1339 
   1340 /*
   1341  * sip_init:
   1342  *
   1343  *	Initialize the interface.  Must be called at splnet().
   1344  */
   1345 int
   1346 sip_init(sc)
   1347 	struct sip_softc *sc;
   1348 {
   1349 	bus_space_tag_t st = sc->sc_st;
   1350 	bus_space_handle_t sh = sc->sc_sh;
   1351 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1352 	struct sip_txsoft *txs;
   1353 	struct sip_rxsoft *rxs;
   1354 	struct sip_desc *sipd;
   1355 	u_int32_t cfg;
   1356 	int i, error = 0;
   1357 
   1358 	/*
   1359 	 * Cancel any pending I/O.
   1360 	 */
   1361 	sip_stop(sc, 0);
   1362 
   1363 	/*
   1364 	 * Reset the chip to a known state.
   1365 	 */
   1366 	sip_reset(sc);
   1367 
   1368 	/*
   1369 	 * Initialize the transmit descriptor ring.
   1370 	 */
   1371 	for (i = 0; i < SIP_NTXDESC; i++) {
   1372 		sipd = &sc->sc_txdescs[i];
   1373 		memset(sipd, 0, sizeof(struct sip_desc));
   1374 		sipd->sipd_link = SIP_CDTXADDR(sc, SIP_NEXTTX(i));
   1375 	}
   1376 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
   1377 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1378 	sc->sc_txfree = SIP_NTXDESC;
   1379 	sc->sc_txnext = 0;
   1380 
   1381 	/*
   1382 	 * Initialize the transmit job descriptors.
   1383 	 */
   1384 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1385 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1386 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1387 		txs = &sc->sc_txsoft[i];
   1388 		txs->txs_mbuf = NULL;
   1389 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1390 	}
   1391 
   1392 	/*
   1393 	 * Initialize the receive descriptor and receive job
   1394 	 * descriptor rings.
   1395 	 */
   1396 	for (i = 0; i < SIP_NRXDESC; i++) {
   1397 		rxs = &sc->sc_rxsoft[i];
   1398 		if (rxs->rxs_mbuf == NULL) {
   1399 			if ((error = sip_add_rxbuf(sc, i)) != 0) {
   1400 				printf("%s: unable to allocate or map rx "
   1401 				    "buffer %d, error = %d\n",
   1402 				    sc->sc_dev.dv_xname, i, error);
   1403 				/*
   1404 				 * XXX Should attempt to run with fewer receive
   1405 				 * XXX buffers instead of just failing.
   1406 				 */
   1407 				sip_rxdrain(sc);
   1408 				goto out;
   1409 			}
   1410 		}
   1411 	}
   1412 	sc->sc_rxptr = 0;
   1413 
   1414 	/*
   1415 	 * Initialize the configuration register: aggressive PCI
   1416 	 * bus request algorithm, default backoff, default OW timer,
   1417 	 * default parity error detection.
   1418 	 */
   1419 	cfg = 0;
   1420 #if BYTE_ORDER == BIG_ENDIAN
   1421 	/*
   1422 	 * ...descriptors in big-endian mode.
   1423 	 */
   1424 	cfg |= CFG_BEM;
   1425 #endif
   1426 	bus_space_write_4(st, sh, SIP_CFG, cfg);
   1427 
   1428 	/*
   1429 	 * Initialize the transmit fill and drain thresholds if
   1430 	 * we have never done so.
   1431 	 */
   1432 	if (sc->sc_tx_fill_thresh == 0) {
   1433 		/*
   1434 		 * XXX This value should be tuned.  This is the
   1435 		 * minimum (32 bytes), and we may be able to
   1436 		 * improve performance by increasing it.
   1437 		 */
   1438 		sc->sc_tx_fill_thresh = 1;
   1439 	}
   1440 	if (sc->sc_tx_drain_thresh == 0) {
   1441 		/*
   1442 		 * Start at a drain threshold of 128 bytes.  We will
   1443 		 * increase it if a DMA underrun occurs.
   1444 		 *
   1445 		 * XXX The minimum value of this variable should be
   1446 		 * tuned.  We may be able to improve performance
   1447 		 * by starting with a lower value.  That, however,
   1448 		 * may trash the first few outgoing packets if the
   1449 		 * PCI bus is saturated.
   1450 		 */
   1451 		sc->sc_tx_drain_thresh = 4;
   1452 	}
   1453 
   1454 	/*
   1455 	 * Initialize the prototype TXCFG register.
   1456 	 */
   1457 	sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
   1458 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
   1459 	    sc->sc_tx_drain_thresh;
   1460 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
   1461 
   1462 	/*
   1463 	 * Initialize the receive drain threshold if we have never
   1464 	 * done so.
   1465 	 */
   1466 	if (sc->sc_rx_drain_thresh == 0) {
   1467 		/*
   1468 		 * XXX This value should be tuned.  This is set to the
   1469 		 * maximum of 248 bytes, and we may be able to improve
   1470 		 * performance by decreasing it (although we should never
   1471 		 * set this value lower than 2; 14 bytes are required to
   1472 		 * filter the packet).
   1473 		 */
   1474 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
   1475 	}
   1476 
   1477 	/*
   1478 	 * Initialize the prototype RXCFG register.
   1479 	 */
   1480 	sc->sc_rxcfg = RXCFG_MXDMA_512 |
   1481 	    (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
   1482 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
   1483 
   1484 	/* Set up the receive filter. */
   1485 	sip_set_filter(sc);
   1486 
   1487 	/*
   1488 	 * Give the transmit and receive rings to the chip.
   1489 	 */
   1490 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   1491 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1492 
   1493 	/*
   1494 	 * Initialize the interrupt mask.
   1495 	 */
   1496 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
   1497 	    ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   1498 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   1499 
   1500 	/*
   1501 	 * Set the current media.  Do this after initializing the prototype
   1502 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   1503 	 * control.
   1504 	 */
   1505 	mii_mediachg(&sc->sc_mii);
   1506 
   1507 	/*
   1508 	 * Enable interrupts.
   1509 	 */
   1510 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   1511 
   1512 	/*
   1513 	 * Start the transmit and receive processes.
   1514 	 */
   1515 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   1516 
   1517 	/*
   1518 	 * Start the one second MII clock.
   1519 	 */
   1520 	callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
   1521 
   1522 	/*
   1523 	 * ...all done!
   1524 	 */
   1525 	ifp->if_flags |= IFF_RUNNING;
   1526 	ifp->if_flags &= ~IFF_OACTIVE;
   1527 
   1528  out:
   1529 	if (error)
   1530 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1531 	return (error);
   1532 }
   1533 
   1534 /*
   1535  * sip_drain:
   1536  *
   1537  *	Drain the receive queue.
   1538  */
   1539 void
   1540 sip_rxdrain(sc)
   1541 	struct sip_softc *sc;
   1542 {
   1543 	struct sip_rxsoft *rxs;
   1544 	int i;
   1545 
   1546 	for (i = 0; i < SIP_NRXDESC; i++) {
   1547 		rxs = &sc->sc_rxsoft[i];
   1548 		if (rxs->rxs_mbuf != NULL) {
   1549 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1550 			m_freem(rxs->rxs_mbuf);
   1551 			rxs->rxs_mbuf = NULL;
   1552 		}
   1553 	}
   1554 }
   1555 
   1556 /*
   1557  * sip_stop:
   1558  *
   1559  *	Stop transmission on the interface.
   1560  */
   1561 void
   1562 sip_stop(sc, drain)
   1563 	struct sip_softc *sc;
   1564 {
   1565 	bus_space_tag_t st = sc->sc_st;
   1566 	bus_space_handle_t sh = sc->sc_sh;
   1567 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1568 	struct sip_txsoft *txs;
   1569 	u_int32_t cmdsts = 0;		/* DEBUG */
   1570 
   1571 	/*
   1572 	 * Stop the one second clock.
   1573 	 */
   1574 	callout_stop(&sc->sc_tick_ch);
   1575 
   1576 	/* Down the MII. */
   1577 	mii_down(&sc->sc_mii);
   1578 
   1579 	/*
   1580 	 * Disable interrupts.
   1581 	 */
   1582 	bus_space_write_4(st, sh, SIP_IER, 0);
   1583 
   1584 	/*
   1585 	 * Stop receiver and transmitter.
   1586 	 */
   1587 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   1588 
   1589 	/*
   1590 	 * Release any queued transmit buffers.
   1591 	 */
   1592 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1593 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   1594 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   1595 		    (sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts &
   1596 		     CMDSTS_INTR) == 0)
   1597 			printf("%s: sip_stop: last descriptor does not "
   1598 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
   1599 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
   1600 #ifdef DIAGNOSTIC
   1601 		if (txs->txs_mbuf == NULL) {
   1602 			printf("%s: dirty txsoft with no mbuf chain\n",
   1603 			    sc->sc_dev.dv_xname);
   1604 			panic("sip_stop");
   1605 		}
   1606 #endif
   1607 		cmdsts |=		/* DEBUG */
   1608 		    sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts;
   1609 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1610 		m_freem(txs->txs_mbuf);
   1611 		txs->txs_mbuf = NULL;
   1612 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1613 	}
   1614 
   1615 	if (drain) {
   1616 		/*
   1617 		 * Release the receive buffers.
   1618 		 */
   1619 		sip_rxdrain(sc);
   1620 	}
   1621 
   1622 	/*
   1623 	 * Mark the interface down and cancel the watchdog timer.
   1624 	 */
   1625 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1626 	ifp->if_timer = 0;
   1627 
   1628 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   1629 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
   1630 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   1631 		    "descriptors\n", sc->sc_dev.dv_xname);
   1632 }
   1633 
   1634 /*
   1635  * sip_read_eeprom:
   1636  *
   1637  *	Read data from the serial EEPROM.
   1638  */
   1639 void
   1640 sip_read_eeprom(sc, word, wordcnt, data)
   1641 	struct sip_softc *sc;
   1642 	int word, wordcnt;
   1643 	u_int16_t *data;
   1644 {
   1645 	bus_space_tag_t st = sc->sc_st;
   1646 	bus_space_handle_t sh = sc->sc_sh;
   1647 	u_int16_t reg;
   1648 	int i, x;
   1649 
   1650 	for (i = 0; i < wordcnt; i++) {
   1651 		/* Send CHIP SELECT. */
   1652 		reg = EROMAR_EECS;
   1653 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1654 
   1655 		/* Shift in the READ opcode. */
   1656 		for (x = 3; x > 0; x--) {
   1657 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   1658 				reg |= EROMAR_EEDI;
   1659 			else
   1660 				reg &= ~EROMAR_EEDI;
   1661 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1662 			bus_space_write_4(st, sh, SIP_EROMAR,
   1663 			    reg | EROMAR_EESK);
   1664 			delay(4);
   1665 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1666 			delay(4);
   1667 		}
   1668 
   1669 		/* Shift in address. */
   1670 		for (x = 6; x > 0; x--) {
   1671 			if ((word + i) & (1 << (x - 1)))
   1672 				reg |= EROMAR_EEDI;
   1673 			else
   1674 				reg &= ~EROMAR_EEDI;
   1675 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1676 			bus_space_write_4(st, sh, SIP_EROMAR,
   1677 			    reg | EROMAR_EESK);
   1678 			delay(4);
   1679 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1680 			delay(4);
   1681 		}
   1682 
   1683 		/* Shift out data. */
   1684 		reg = EROMAR_EECS;
   1685 		data[i] = 0;
   1686 		for (x = 16; x > 0; x--) {
   1687 			bus_space_write_4(st, sh, SIP_EROMAR,
   1688 			    reg | EROMAR_EESK);
   1689 			delay(4);
   1690 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   1691 				data[i] |= (1 << (x - 1));
   1692 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1693 		}
   1694 
   1695 		/* Clear CHIP SELECT. */
   1696 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   1697 		delay(4);
   1698 	}
   1699 }
   1700 
   1701 /*
   1702  * sip_add_rxbuf:
   1703  *
   1704  *	Add a receive buffer to the indicated descriptor.
   1705  */
   1706 int
   1707 sip_add_rxbuf(sc, idx)
   1708 	struct sip_softc *sc;
   1709 	int idx;
   1710 {
   1711 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1712 	struct mbuf *m;
   1713 	int error;
   1714 
   1715 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1716 	if (m == NULL)
   1717 		return (ENOBUFS);
   1718 
   1719 	MCLGET(m, M_DONTWAIT);
   1720 	if ((m->m_flags & M_EXT) == 0) {
   1721 		m_freem(m);
   1722 		return (ENOBUFS);
   1723 	}
   1724 
   1725 	if (rxs->rxs_mbuf != NULL)
   1726 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1727 
   1728 	rxs->rxs_mbuf = m;
   1729 
   1730 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   1731 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1732 	if (error) {
   1733 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1734 		    sc->sc_dev.dv_xname, idx, error);
   1735 		panic("sip_add_rxbuf");		/* XXX */
   1736 	}
   1737 
   1738 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1739 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1740 
   1741 	SIP_INIT_RXDESC(sc, idx);
   1742 
   1743 	return (0);
   1744 }
   1745 
   1746 /*
   1747  * sip_set_filter:
   1748  *
   1749  *	Set up the receive filter.
   1750  */
   1751 void
   1752 sip_set_filter(sc)
   1753 	struct sip_softc *sc;
   1754 {
   1755 	bus_space_tag_t st = sc->sc_st;
   1756 	bus_space_handle_t sh = sc->sc_sh;
   1757 	struct ethercom *ec = &sc->sc_ethercom;
   1758 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1759 	struct ether_multi *enm;
   1760 	struct ether_multistep step;
   1761 	u_int8_t *cp;
   1762 	u_int32_t crc, mchash[8];
   1763 	int len;
   1764 	static const u_int32_t crctab[] = {
   1765 		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
   1766 		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
   1767 		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
   1768 		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
   1769 	};
   1770 
   1771 	/*
   1772 	 * Initialize the prototype RFCR.
   1773 	 */
   1774 	sc->sc_rfcr = RFCR_RFEN;
   1775 	if (ifp->if_flags & IFF_BROADCAST)
   1776 		sc->sc_rfcr |= RFCR_AAB;
   1777 	if (ifp->if_flags & IFF_PROMISC) {
   1778 		sc->sc_rfcr |= RFCR_AAP;
   1779 		goto allmulti;
   1780 	}
   1781 
   1782 	/*
   1783 	 * Set up the multicast address filter by passing all multicast
   1784 	 * addresses through a CRC generator, and then using the high-order
   1785 	 * 6 bits as an index into the 128 bit multicast hash table (only
   1786 	 * the lower 16 bits of each 32 bit multicast hash register are
   1787 	 * valid).  The high order bits select the register, while the
   1788 	 * rest of the bits select the bit within the register.
   1789 	 */
   1790 
   1791 	memset(mchash, 0, sizeof(mchash));
   1792 
   1793 	ETHER_FIRST_MULTI(step, ec, enm);
   1794 	while (enm != NULL) {
   1795 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1796 			/*
   1797 			 * We must listen to a range of multicast addresses.
   1798 			 * For now, just accept all multicasts, rather than
   1799 			 * trying to set only those filter bits needed to match
   1800 			 * the range.  (At this time, the only use of address
   1801 			 * ranges is for IP multicast routing, for which the
   1802 			 * range is big enough to require all bits set.)
   1803 			 */
   1804 			goto allmulti;
   1805 		}
   1806 
   1807 		cp = enm->enm_addrlo;
   1808 		crc = 0xffffffff;
   1809 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
   1810 			crc ^= *cp++;
   1811 			crc = (crc >> 4) ^ crctab[crc & 0xf];
   1812 			crc = (crc >> 4) ^ crctab[crc & 0xf];
   1813 		}
   1814 		/* Just want the 7 most significant bits. */
   1815 		crc >>= 25;
   1816 
   1817 		/* Set the corresponding bit in the hash table. */
   1818 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   1819 
   1820 		ETHER_NEXT_MULTI(step, enm);
   1821 	}
   1822 
   1823 	ifp->if_flags &= ~IFF_ALLMULTI;
   1824 	goto setit;
   1825 
   1826  allmulti:
   1827 	ifp->if_flags |= IFF_ALLMULTI;
   1828 	sc->sc_rfcr |= RFCR_AAM;
   1829 
   1830  setit:
   1831 #define	FILTER_EMIT(addr, data)						\
   1832 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   1833 	bus_space_write_4(st, sh, SIP_RFDR, (data))
   1834 
   1835 	/*
   1836 	 * Disable receive filter, and program the node address.
   1837 	 */
   1838 	cp = LLADDR(ifp->if_sadl);
   1839 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   1840 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   1841 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   1842 
   1843 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1844 		/*
   1845 		 * Program the multicast hash table.
   1846 		 */
   1847 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   1848 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   1849 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   1850 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   1851 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   1852 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   1853 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   1854 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   1855 	}
   1856 #undef FILTER_EMIT
   1857 
   1858 	/*
   1859 	 * Re-enable the receiver filter.
   1860 	 */
   1861 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   1862 }
   1863 
   1864 /*
   1865  * sip_mii_readreg:	[mii interface function]
   1866  *
   1867  *	Read a PHY register on the MII.
   1868  */
   1869 int
   1870 sip_mii_readreg(self, phy, reg)
   1871 	struct device *self;
   1872 	int phy, reg;
   1873 {
   1874 	struct sip_softc *sc = (struct sip_softc *) self;
   1875 	u_int32_t enphy;
   1876 
   1877 	/*
   1878 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   1879 	 * MII address 0.
   1880 	 */
   1881 	if (sc->sc_model == PCI_PRODUCT_SIS_900 && phy != 0)
   1882 		return (0);
   1883 
   1884 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   1885 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   1886 	    ENPHY_RWCMD | ENPHY_ACCESS);
   1887 	do {
   1888 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   1889 	} while (enphy & ENPHY_ACCESS);
   1890 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   1891 }
   1892 
   1893 /*
   1894  * sip_mii_writereg:	[mii interface function]
   1895  *
   1896  *	Write a PHY register on the MII.
   1897  */
   1898 void
   1899 sip_mii_writereg(self, phy, reg, val)
   1900 	struct device *self;
   1901 	int phy, reg, val;
   1902 {
   1903 	struct sip_softc *sc = (struct sip_softc *) self;
   1904 	u_int32_t enphy;
   1905 
   1906 	/*
   1907 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   1908 	 * MII address 0.
   1909 	 */
   1910 	if (sc->sc_model == PCI_PRODUCT_SIS_900 && phy != 0)
   1911 		return;
   1912 
   1913 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   1914 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   1915 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   1916 	do {
   1917 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   1918 	} while (enphy & ENPHY_ACCESS);
   1919 }
   1920 
   1921 /*
   1922  * sip_mii_statchg:	[mii interface function]
   1923  *
   1924  *	Callback from MII layer when media changes.
   1925  */
   1926 void
   1927 sip_mii_statchg(self)
   1928 	struct device *self;
   1929 {
   1930 	struct sip_softc *sc = (struct sip_softc *) self;
   1931 	u_int32_t flowctl;
   1932 
   1933 	/*
   1934 	 * Update TXCFG for full-duplex operation.
   1935 	 */
   1936 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   1937 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   1938 	else
   1939 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   1940 
   1941 	/*
   1942 	 * Update RXCFG for full-duplex or loopback.
   1943 	 */
   1944 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   1945 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   1946 		sc->sc_rxcfg |= RXCFG_ATX;
   1947 	else
   1948 		sc->sc_rxcfg &= ~RXCFG_ATX;
   1949 
   1950 	/*
   1951 	 * Update IMR for use of 802.3x flow control.
   1952 	 */
   1953 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
   1954 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   1955 		flowctl = FLOWCTL_FLOWEN;
   1956 	} else {
   1957 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   1958 		flowctl = 0;
   1959 	}
   1960 
   1961 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   1962 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   1963 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   1964 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   1965 }
   1966 
   1967 /*
   1968  * sip_mediastatus:	[ifmedia interface function]
   1969  *
   1970  *	Get the current interface media status.
   1971  */
   1972 void
   1973 sip_mediastatus(ifp, ifmr)
   1974 	struct ifnet *ifp;
   1975 	struct ifmediareq *ifmr;
   1976 {
   1977 	struct sip_softc *sc = ifp->if_softc;
   1978 
   1979 	mii_pollstat(&sc->sc_mii);
   1980 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   1981 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   1982 }
   1983 
   1984 /*
   1985  * sip_mediachange:	[ifmedia interface function]
   1986  *
   1987  *	Set hardware to newly-selected media.
   1988  */
   1989 int
   1990 sip_mediachange(ifp)
   1991 	struct ifnet *ifp;
   1992 {
   1993 	struct sip_softc *sc = ifp->if_softc;
   1994 
   1995 	if (ifp->if_flags & IFF_UP)
   1996 		mii_mediachg(&sc->sc_mii);
   1997 	return (0);
   1998 }
   1999