if_sip.c revision 1.96 1 /* $NetBSD: if_sip.c,v 1.96 2004/10/30 18:09:22 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Reduce the Rx interrupt load.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.96 2004/10/30 18:09:22 thorpej Exp $");
84
85 #include "bpfilter.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114
115 #include <machine/bus.h>
116 #include <machine/intr.h>
117 #include <machine/endian.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/mii_bitbang.h>
122
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126
127 #include <dev/pci/if_sipreg.h>
128
129 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
130 #define SIP_DECL(x) __CONCAT(gsip_,x)
131 #else /* SiS900 and DP83815 */
132 #define SIP_DECL(x) __CONCAT(sip_,x)
133 #endif
134
135 #define SIP_STR(x) __STRING(SIP_DECL(x))
136
137 /*
138 * Transmit descriptor list size. This is arbitrary, but allocate
139 * enough descriptors for 128 pending transmissions, and 8 segments
140 * per packet (64 for DP83820 for jumbo frames).
141 *
142 * This MUST work out to a power of 2.
143 */
144 #ifdef DP83820
145 #define SIP_NTXSEGS 64
146 #define SIP_NTXSEGS_ALLOC 16
147 #else
148 #define SIP_NTXSEGS 16
149 #define SIP_NTXSEGS_ALLOC 8
150 #endif
151
152 #define SIP_TXQUEUELEN 256
153 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
154 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
155 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
156
157 #if defined(DP83820)
158 #define TX_DMAMAP_SIZE ETHER_MAX_LEN_JUMBO
159 #else
160 #define TX_DMAMAP_SIZE MCLBYTES
161 #endif
162
163 /*
164 * Receive descriptor list size. We have one Rx buffer per incoming
165 * packet, so this logic is a little simpler.
166 *
167 * Actually, on the DP83820, we allow the packet to consume more than
168 * one buffer, in order to support jumbo Ethernet frames. In that
169 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
170 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
171 * so we'd better be quick about handling receive interrupts.
172 */
173 #if defined(DP83820)
174 #define SIP_NRXDESC 256
175 #else
176 #define SIP_NRXDESC 128
177 #endif /* DP83820 */
178 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
179 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
180
181 /*
182 * Control structures are DMA'd to the SiS900 chip. We allocate them in
183 * a single clump that maps to a single DMA segment to make several things
184 * easier.
185 */
186 struct sip_control_data {
187 /*
188 * The transmit descriptors.
189 */
190 struct sip_desc scd_txdescs[SIP_NTXDESC];
191
192 /*
193 * The receive descriptors.
194 */
195 struct sip_desc scd_rxdescs[SIP_NRXDESC];
196 };
197
198 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
199 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
200 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
201
202 /*
203 * Software state for transmit jobs.
204 */
205 struct sip_txsoft {
206 struct mbuf *txs_mbuf; /* head of our mbuf chain */
207 bus_dmamap_t txs_dmamap; /* our DMA map */
208 int txs_firstdesc; /* first descriptor in packet */
209 int txs_lastdesc; /* last descriptor in packet */
210 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
211 };
212
213 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
214
215 /*
216 * Software state for receive jobs.
217 */
218 struct sip_rxsoft {
219 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
220 bus_dmamap_t rxs_dmamap; /* our DMA map */
221 };
222
223 /*
224 * Software state per device.
225 */
226 struct sip_softc {
227 struct device sc_dev; /* generic device information */
228 bus_space_tag_t sc_st; /* bus space tag */
229 bus_space_handle_t sc_sh; /* bus space handle */
230 bus_dma_tag_t sc_dmat; /* bus DMA tag */
231 struct ethercom sc_ethercom; /* ethernet common data */
232 void *sc_sdhook; /* shutdown hook */
233
234 const struct sip_product *sc_model; /* which model are we? */
235 int sc_rev; /* chip revision */
236
237 void *sc_ih; /* interrupt cookie */
238
239 struct mii_data sc_mii; /* MII/media information */
240
241 struct callout sc_tick_ch; /* tick callout */
242
243 bus_dmamap_t sc_cddmamap; /* control data DMA map */
244 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
245
246 /*
247 * Software state for transmit and receive descriptors.
248 */
249 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
250 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
251
252 /*
253 * Control data structures.
254 */
255 struct sip_control_data *sc_control_data;
256 #define sc_txdescs sc_control_data->scd_txdescs
257 #define sc_rxdescs sc_control_data->scd_rxdescs
258
259 #ifdef SIP_EVENT_COUNTERS
260 /*
261 * Event counters.
262 */
263 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
264 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
265 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
266 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
267 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
268 struct evcnt sc_ev_rxintr; /* Rx interrupts */
269 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
270 struct evcnt sc_ev_rxpause; /* PAUSE received */
271 #ifdef DP83820
272 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
273 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
274 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
275 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
276 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
277 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
278 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
279 #endif /* DP83820 */
280 #endif /* SIP_EVENT_COUNTERS */
281
282 u_int32_t sc_txcfg; /* prototype TXCFG register */
283 u_int32_t sc_rxcfg; /* prototype RXCFG register */
284 u_int32_t sc_imr; /* prototype IMR register */
285 u_int32_t sc_rfcr; /* prototype RFCR register */
286
287 u_int32_t sc_cfg; /* prototype CFG register */
288
289 #ifdef DP83820
290 u_int32_t sc_gpior; /* prototype GPIOR register */
291 #endif /* DP83820 */
292
293 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
294 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
295
296 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
297
298 int sc_flowflags; /* 802.3x flow control flags */
299 #ifdef DP83820
300 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
301 #else
302 int sc_paused; /* paused indication */
303 #endif
304
305 int sc_txfree; /* number of free Tx descriptors */
306 int sc_txnext; /* next ready Tx descriptor */
307 int sc_txwin; /* Tx descriptors since last intr */
308
309 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
310 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
311
312 int sc_rxptr; /* next ready Rx descriptor/descsoft */
313 #if defined(DP83820)
314 int sc_rxdiscard;
315 int sc_rxlen;
316 struct mbuf *sc_rxhead;
317 struct mbuf *sc_rxtail;
318 struct mbuf **sc_rxtailp;
319 #endif /* DP83820 */
320
321 #if NRND > 0
322 rndsource_element_t rnd_source; /* random source */
323 #endif
324 };
325
326 #ifdef DP83820
327 #define SIP_RXCHAIN_RESET(sc) \
328 do { \
329 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
330 *(sc)->sc_rxtailp = NULL; \
331 (sc)->sc_rxlen = 0; \
332 } while (/*CONSTCOND*/0)
333
334 #define SIP_RXCHAIN_LINK(sc, m) \
335 do { \
336 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
337 (sc)->sc_rxtailp = &(m)->m_next; \
338 } while (/*CONSTCOND*/0)
339 #endif /* DP83820 */
340
341 #ifdef SIP_EVENT_COUNTERS
342 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
343 #else
344 #define SIP_EVCNT_INCR(ev) /* nothing */
345 #endif
346
347 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
348 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
349
350 #define SIP_CDTXSYNC(sc, x, n, ops) \
351 do { \
352 int __x, __n; \
353 \
354 __x = (x); \
355 __n = (n); \
356 \
357 /* If it will wrap around, sync to the end of the ring. */ \
358 if ((__x + __n) > SIP_NTXDESC) { \
359 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
360 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
361 (SIP_NTXDESC - __x), (ops)); \
362 __n -= (SIP_NTXDESC - __x); \
363 __x = 0; \
364 } \
365 \
366 /* Now sync whatever is left. */ \
367 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
368 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
369 } while (0)
370
371 #define SIP_CDRXSYNC(sc, x, ops) \
372 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
373 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
374
375 #ifdef DP83820
376 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
377 #define SIP_RXBUF_LEN (MCLBYTES - 8)
378 #else
379 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
380 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */
381 #endif
382 #define SIP_INIT_RXDESC(sc, x) \
383 do { \
384 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
385 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
386 \
387 __sipd->sipd_link = \
388 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
389 __sipd->sipd_bufptr = \
390 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
391 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
392 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \
393 SIP_INIT_RXDESC_EXTSTS \
394 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
395 } while (0)
396
397 #define SIP_CHIP_VERS(sc, v, p, r) \
398 ((sc)->sc_model->sip_vendor == (v) && \
399 (sc)->sc_model->sip_product == (p) && \
400 (sc)->sc_rev == (r))
401
402 #define SIP_CHIP_MODEL(sc, v, p) \
403 ((sc)->sc_model->sip_vendor == (v) && \
404 (sc)->sc_model->sip_product == (p))
405
406 #if !defined(DP83820)
407 #define SIP_SIS900_REV(sc, rev) \
408 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
409 #endif
410
411 #define SIP_TIMEOUT 1000
412
413 static void SIP_DECL(start)(struct ifnet *);
414 static void SIP_DECL(watchdog)(struct ifnet *);
415 static int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
416 static int SIP_DECL(init)(struct ifnet *);
417 static void SIP_DECL(stop)(struct ifnet *, int);
418
419 static void SIP_DECL(shutdown)(void *);
420
421 static void SIP_DECL(reset)(struct sip_softc *);
422 static void SIP_DECL(rxdrain)(struct sip_softc *);
423 static int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
424 static void SIP_DECL(read_eeprom)(struct sip_softc *, int, int,
425 u_int16_t *);
426 static void SIP_DECL(tick)(void *);
427
428 #if !defined(DP83820)
429 static void SIP_DECL(sis900_set_filter)(struct sip_softc *);
430 #endif /* ! DP83820 */
431 static void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
432
433 #if defined(DP83820)
434 static void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
435 const struct pci_attach_args *, u_int8_t *);
436 #else
437 static void SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc);
438 static void SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
439 const struct pci_attach_args *, u_int8_t *);
440 static void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
441 const struct pci_attach_args *, u_int8_t *);
442 #endif /* DP83820 */
443
444 static int SIP_DECL(intr)(void *);
445 static void SIP_DECL(txintr)(struct sip_softc *);
446 static void SIP_DECL(rxintr)(struct sip_softc *);
447
448 #if defined(DP83820)
449 static int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
450 static void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
451 static void SIP_DECL(dp83820_mii_statchg)(struct device *);
452 #else
453 static int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
454 static void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
455 static void SIP_DECL(sis900_mii_statchg)(struct device *);
456
457 static int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
458 static void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
459 static void SIP_DECL(dp83815_mii_statchg)(struct device *);
460 #endif /* DP83820 */
461
462 static int SIP_DECL(mediachange)(struct ifnet *);
463 static void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
464
465 static int SIP_DECL(match)(struct device *, struct cfdata *, void *);
466 static void SIP_DECL(attach)(struct device *, struct device *, void *);
467
468 int SIP_DECL(copy_small) = 0;
469
470 #ifdef DP83820
471 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
472 gsip_match, gsip_attach, NULL, NULL);
473 #else
474 CFATTACH_DECL(sip, sizeof(struct sip_softc),
475 sip_match, sip_attach, NULL, NULL);
476 #endif
477
478 /*
479 * Descriptions of the variants of the SiS900.
480 */
481 struct sip_variant {
482 int (*sipv_mii_readreg)(struct device *, int, int);
483 void (*sipv_mii_writereg)(struct device *, int, int, int);
484 void (*sipv_mii_statchg)(struct device *);
485 void (*sipv_set_filter)(struct sip_softc *);
486 void (*sipv_read_macaddr)(struct sip_softc *,
487 const struct pci_attach_args *, u_int8_t *);
488 };
489
490 static u_int32_t SIP_DECL(mii_bitbang_read)(struct device *);
491 static void SIP_DECL(mii_bitbang_write)(struct device *, u_int32_t);
492
493 static const struct mii_bitbang_ops SIP_DECL(mii_bitbang_ops) = {
494 SIP_DECL(mii_bitbang_read),
495 SIP_DECL(mii_bitbang_write),
496 {
497 EROMAR_MDIO, /* MII_BIT_MDO */
498 EROMAR_MDIO, /* MII_BIT_MDI */
499 EROMAR_MDC, /* MII_BIT_MDC */
500 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
501 0, /* MII_BIT_DIR_PHY_HOST */
502 }
503 };
504
505 #if defined(DP83820)
506 static const struct sip_variant SIP_DECL(variant_dp83820) = {
507 SIP_DECL(dp83820_mii_readreg),
508 SIP_DECL(dp83820_mii_writereg),
509 SIP_DECL(dp83820_mii_statchg),
510 SIP_DECL(dp83815_set_filter),
511 SIP_DECL(dp83820_read_macaddr),
512 };
513 #else
514 static const struct sip_variant SIP_DECL(variant_sis900) = {
515 SIP_DECL(sis900_mii_readreg),
516 SIP_DECL(sis900_mii_writereg),
517 SIP_DECL(sis900_mii_statchg),
518 SIP_DECL(sis900_set_filter),
519 SIP_DECL(sis900_read_macaddr),
520 };
521
522 static const struct sip_variant SIP_DECL(variant_dp83815) = {
523 SIP_DECL(dp83815_mii_readreg),
524 SIP_DECL(dp83815_mii_writereg),
525 SIP_DECL(dp83815_mii_statchg),
526 SIP_DECL(dp83815_set_filter),
527 SIP_DECL(dp83815_read_macaddr),
528 };
529 #endif /* DP83820 */
530
531 /*
532 * Devices supported by this driver.
533 */
534 static const struct sip_product {
535 pci_vendor_id_t sip_vendor;
536 pci_product_id_t sip_product;
537 const char *sip_name;
538 const struct sip_variant *sip_variant;
539 } SIP_DECL(products)[] = {
540 #if defined(DP83820)
541 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
542 "NatSemi DP83820 Gigabit Ethernet",
543 &SIP_DECL(variant_dp83820) },
544 #else
545 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
546 "SiS 900 10/100 Ethernet",
547 &SIP_DECL(variant_sis900) },
548 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
549 "SiS 7016 10/100 Ethernet",
550 &SIP_DECL(variant_sis900) },
551
552 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
553 "NatSemi DP83815 10/100 Ethernet",
554 &SIP_DECL(variant_dp83815) },
555 #endif /* DP83820 */
556
557 { 0, 0,
558 NULL,
559 NULL },
560 };
561
562 static const struct sip_product *
563 SIP_DECL(lookup)(const struct pci_attach_args *pa)
564 {
565 const struct sip_product *sip;
566
567 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
568 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
569 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
570 return (sip);
571 }
572 return (NULL);
573 }
574
575 #ifdef DP83820
576 /*
577 * I really hate stupid hardware vendors. There's a bit in the EEPROM
578 * which indicates if the card can do 64-bit data transfers. Unfortunately,
579 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
580 * which means we try to use 64-bit data transfers on those cards if we
581 * happen to be plugged into a 32-bit slot.
582 *
583 * What we do is use this table of cards known to be 64-bit cards. If
584 * you have a 64-bit card who's subsystem ID is not listed in this table,
585 * send the output of "pcictl dump ..." of the device to me so that your
586 * card will use the 64-bit data path when plugged into a 64-bit slot.
587 *
588 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
589 * June 30, 2002
590 */
591 static int
592 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
593 {
594 static const struct {
595 pci_vendor_id_t c64_vendor;
596 pci_product_id_t c64_product;
597 } card64[] = {
598 /* Asante GigaNIX */
599 { 0x128a, 0x0002 },
600
601 /* Accton EN1407-T, Planex GN-1000TE */
602 { 0x1113, 0x1407 },
603
604 /* Netgear GA-621 */
605 { 0x1385, 0x621a },
606
607 /* SMC EZ Card */
608 { 0x10b8, 0x9462 },
609
610 { 0, 0}
611 };
612 pcireg_t subsys;
613 int i;
614
615 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
616
617 for (i = 0; card64[i].c64_vendor != 0; i++) {
618 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
619 PCI_PRODUCT(subsys) == card64[i].c64_product)
620 return (1);
621 }
622
623 return (0);
624 }
625 #endif /* DP83820 */
626
627 static int
628 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
629 {
630 struct pci_attach_args *pa = aux;
631
632 if (SIP_DECL(lookup)(pa) != NULL)
633 return (1);
634
635 return (0);
636 }
637
638 static void
639 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
640 {
641 struct sip_softc *sc = (struct sip_softc *) self;
642 struct pci_attach_args *pa = aux;
643 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
644 pci_chipset_tag_t pc = pa->pa_pc;
645 pci_intr_handle_t ih;
646 const char *intrstr = NULL;
647 bus_space_tag_t iot, memt;
648 bus_space_handle_t ioh, memh;
649 bus_dma_segment_t seg;
650 int ioh_valid, memh_valid;
651 int i, rseg, error;
652 const struct sip_product *sip;
653 pcireg_t pmode;
654 u_int8_t enaddr[ETHER_ADDR_LEN];
655 int pmreg;
656 #ifdef DP83820
657 pcireg_t memtype;
658 u_int32_t reg;
659 #endif /* DP83820 */
660
661 callout_init(&sc->sc_tick_ch);
662
663 sip = SIP_DECL(lookup)(pa);
664 if (sip == NULL) {
665 printf("\n");
666 panic(SIP_STR(attach) ": impossible");
667 }
668 sc->sc_rev = PCI_REVISION(pa->pa_class);
669
670 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
671
672 sc->sc_model = sip;
673
674 /*
675 * XXX Work-around broken PXE firmware on some boards.
676 *
677 * The DP83815 shares an address decoder with the MEM BAR
678 * and the ROM BAR. Make sure the ROM BAR is disabled,
679 * so that memory mapped access works.
680 */
681 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
682 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
683 ~PCI_MAPREG_ROM_ENABLE);
684
685 /*
686 * Map the device.
687 */
688 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
689 PCI_MAPREG_TYPE_IO, 0,
690 &iot, &ioh, NULL, NULL) == 0);
691 #ifdef DP83820
692 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
693 switch (memtype) {
694 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
695 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
696 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
697 memtype, 0, &memt, &memh, NULL, NULL) == 0);
698 break;
699 default:
700 memh_valid = 0;
701 }
702 #else
703 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
704 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
705 &memt, &memh, NULL, NULL) == 0);
706 #endif /* DP83820 */
707
708 if (memh_valid) {
709 sc->sc_st = memt;
710 sc->sc_sh = memh;
711 } else if (ioh_valid) {
712 sc->sc_st = iot;
713 sc->sc_sh = ioh;
714 } else {
715 printf("%s: unable to map device registers\n",
716 sc->sc_dev.dv_xname);
717 return;
718 }
719
720 sc->sc_dmat = pa->pa_dmat;
721
722 /*
723 * Make sure bus mastering is enabled. Also make sure
724 * Write/Invalidate is enabled if we're allowed to use it.
725 */
726 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
727 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
728 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
729 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
730 pmreg | PCI_COMMAND_MASTER_ENABLE);
731
732 /* Get it out of power save mode if needed. */
733 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
734 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
735 PCI_PMCSR_STATE_MASK;
736 if (pmode == PCI_PMCSR_STATE_D3) {
737 /*
738 * The card has lost all configuration data in
739 * this state, so punt.
740 */
741 printf("%s: unable to wake up from power state D3\n",
742 sc->sc_dev.dv_xname);
743 return;
744 }
745 if (pmode != PCI_PMCSR_STATE_D0) {
746 printf("%s: waking up from power state D%d\n",
747 sc->sc_dev.dv_xname, pmode);
748 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
749 PCI_PMCSR_STATE_D0);
750 }
751 }
752
753 /*
754 * Map and establish our interrupt.
755 */
756 if (pci_intr_map(pa, &ih)) {
757 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
758 return;
759 }
760 intrstr = pci_intr_string(pc, ih);
761 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
762 if (sc->sc_ih == NULL) {
763 printf("%s: unable to establish interrupt",
764 sc->sc_dev.dv_xname);
765 if (intrstr != NULL)
766 printf(" at %s", intrstr);
767 printf("\n");
768 return;
769 }
770 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
771
772 SIMPLEQ_INIT(&sc->sc_txfreeq);
773 SIMPLEQ_INIT(&sc->sc_txdirtyq);
774
775 /*
776 * Allocate the control data structures, and create and load the
777 * DMA map for it.
778 */
779 if ((error = bus_dmamem_alloc(sc->sc_dmat,
780 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
781 0)) != 0) {
782 printf("%s: unable to allocate control data, error = %d\n",
783 sc->sc_dev.dv_xname, error);
784 goto fail_0;
785 }
786
787 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
788 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
789 BUS_DMA_COHERENT)) != 0) {
790 printf("%s: unable to map control data, error = %d\n",
791 sc->sc_dev.dv_xname, error);
792 goto fail_1;
793 }
794
795 if ((error = bus_dmamap_create(sc->sc_dmat,
796 sizeof(struct sip_control_data), 1,
797 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
798 printf("%s: unable to create control data DMA map, "
799 "error = %d\n", sc->sc_dev.dv_xname, error);
800 goto fail_2;
801 }
802
803 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
804 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
805 0)) != 0) {
806 printf("%s: unable to load control data DMA map, error = %d\n",
807 sc->sc_dev.dv_xname, error);
808 goto fail_3;
809 }
810
811 /*
812 * Create the transmit buffer DMA maps.
813 */
814 for (i = 0; i < SIP_TXQUEUELEN; i++) {
815 if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
816 SIP_NTXSEGS, MCLBYTES, 0, 0,
817 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
818 printf("%s: unable to create tx DMA map %d, "
819 "error = %d\n", sc->sc_dev.dv_xname, i, error);
820 goto fail_4;
821 }
822 }
823
824 /*
825 * Create the receive buffer DMA maps.
826 */
827 for (i = 0; i < SIP_NRXDESC; i++) {
828 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
829 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
830 printf("%s: unable to create rx DMA map %d, "
831 "error = %d\n", sc->sc_dev.dv_xname, i, error);
832 goto fail_5;
833 }
834 sc->sc_rxsoft[i].rxs_mbuf = NULL;
835 }
836
837 /*
838 * Reset the chip to a known state.
839 */
840 SIP_DECL(reset)(sc);
841
842 /*
843 * Read the Ethernet address from the EEPROM. This might
844 * also fetch other stuff from the EEPROM and stash it
845 * in the softc.
846 */
847 sc->sc_cfg = 0;
848 #if !defined(DP83820)
849 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
850 SIP_SIS900_REV(sc,SIS_REV_900B))
851 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
852
853 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
854 SIP_SIS900_REV(sc,SIS_REV_960) ||
855 SIP_SIS900_REV(sc,SIS_REV_900B))
856 sc->sc_cfg |= (bus_space_read_4(sc->sc_st, sc->sc_sh,
857 SIP_CFG) & CFG_EDBMASTEN);
858 #endif
859
860 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
861
862 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
863 ether_sprintf(enaddr));
864
865 /*
866 * Initialize the configuration register: aggressive PCI
867 * bus request algorithm, default backoff, default OW timer,
868 * default parity error detection.
869 *
870 * NOTE: "Big endian mode" is useless on the SiS900 and
871 * friends -- it affects packet data, not descriptors.
872 */
873 #ifdef DP83820
874 /*
875 * Cause the chip to load configuration data from the EEPROM.
876 */
877 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
878 for (i = 0; i < 10000; i++) {
879 delay(10);
880 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
881 PTSCR_EELOAD_EN) == 0)
882 break;
883 }
884 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
885 PTSCR_EELOAD_EN) {
886 printf("%s: timeout loading configuration from EEPROM\n",
887 sc->sc_dev.dv_xname);
888 return;
889 }
890
891 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
892
893 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
894 if (reg & CFG_PCI64_DET) {
895 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
896 /*
897 * Check to see if this card is 64-bit. If so, enable 64-bit
898 * data transfers.
899 *
900 * We can't use the DATA64_EN bit in the EEPROM, because
901 * vendors of 32-bit cards fail to clear that bit in many
902 * cases (yet the card still detects that it's in a 64-bit
903 * slot; go figure).
904 */
905 if (SIP_DECL(check_64bit)(pa)) {
906 sc->sc_cfg |= CFG_DATA64_EN;
907 printf(", using 64-bit data transfers");
908 }
909 printf("\n");
910 }
911
912 /*
913 * XXX Need some PCI flags indicating support for
914 * XXX 64-bit addressing.
915 */
916 #if 0
917 if (reg & CFG_M64ADDR)
918 sc->sc_cfg |= CFG_M64ADDR;
919 if (reg & CFG_T64ADDR)
920 sc->sc_cfg |= CFG_T64ADDR;
921 #endif
922
923 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
924 const char *sep = "";
925 printf("%s: using ", sc->sc_dev.dv_xname);
926 if (reg & CFG_EXT_125) {
927 sc->sc_cfg |= CFG_EXT_125;
928 printf("%s125MHz clock", sep);
929 sep = ", ";
930 }
931 if (reg & CFG_TBI_EN) {
932 sc->sc_cfg |= CFG_TBI_EN;
933 printf("%sten-bit interface", sep);
934 sep = ", ";
935 }
936 printf("\n");
937 }
938 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
939 (reg & CFG_MRM_DIS) != 0)
940 sc->sc_cfg |= CFG_MRM_DIS;
941 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
942 (reg & CFG_MWI_DIS) != 0)
943 sc->sc_cfg |= CFG_MWI_DIS;
944
945 /*
946 * Use the extended descriptor format on the DP83820. This
947 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
948 * checksumming.
949 */
950 sc->sc_cfg |= CFG_EXTSTS_EN;
951 #endif /* DP83820 */
952
953 /*
954 * Initialize our media structures and probe the MII.
955 */
956 sc->sc_mii.mii_ifp = ifp;
957 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
958 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
959 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
960 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
961 SIP_DECL(mediastatus));
962
963 /*
964 * XXX We cannot handle flow control on the DP83815.
965 */
966 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
967 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
968 MII_OFFSET_ANY, 0);
969 else
970 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
971 MII_OFFSET_ANY, MIIF_DOPAUSE);
972 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
973 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
974 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
975 } else
976 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
977
978 ifp = &sc->sc_ethercom.ec_if;
979 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
980 ifp->if_softc = sc;
981 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
982 ifp->if_ioctl = SIP_DECL(ioctl);
983 ifp->if_start = SIP_DECL(start);
984 ifp->if_watchdog = SIP_DECL(watchdog);
985 ifp->if_init = SIP_DECL(init);
986 ifp->if_stop = SIP_DECL(stop);
987 IFQ_SET_READY(&ifp->if_snd);
988
989 /*
990 * We can support 802.1Q VLAN-sized frames.
991 */
992 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
993
994 #ifdef DP83820
995 /*
996 * And the DP83820 can do VLAN tagging in hardware, and
997 * support the jumbo Ethernet MTU.
998 */
999 sc->sc_ethercom.ec_capabilities |=
1000 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1001
1002 /*
1003 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1004 * in hardware.
1005 */
1006 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
1007 IFCAP_CSUM_UDPv4;
1008 #endif /* DP83820 */
1009
1010 /*
1011 * Attach the interface.
1012 */
1013 if_attach(ifp);
1014 ether_ifattach(ifp, enaddr);
1015 #if NRND > 0
1016 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1017 RND_TYPE_NET, 0);
1018 #endif
1019
1020 /*
1021 * The number of bytes that must be available in
1022 * the Tx FIFO before the bus master can DMA more
1023 * data into the FIFO.
1024 */
1025 sc->sc_tx_fill_thresh = 64 / 32;
1026
1027 /*
1028 * Start at a drain threshold of 512 bytes. We will
1029 * increase it if a DMA underrun occurs.
1030 *
1031 * XXX The minimum value of this variable should be
1032 * tuned. We may be able to improve performance
1033 * by starting with a lower value. That, however,
1034 * may trash the first few outgoing packets if the
1035 * PCI bus is saturated.
1036 */
1037 #ifdef DP83820
1038 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1039 #else
1040 sc->sc_tx_drain_thresh = 1504 / 32;
1041 #endif
1042
1043 /*
1044 * Initialize the Rx FIFO drain threshold.
1045 *
1046 * This is in units of 8 bytes.
1047 *
1048 * We should never set this value lower than 2; 14 bytes are
1049 * required to filter the packet.
1050 */
1051 sc->sc_rx_drain_thresh = 128 / 8;
1052
1053 #ifdef SIP_EVENT_COUNTERS
1054 /*
1055 * Attach event counters.
1056 */
1057 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1058 NULL, sc->sc_dev.dv_xname, "txsstall");
1059 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1060 NULL, sc->sc_dev.dv_xname, "txdstall");
1061 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1062 NULL, sc->sc_dev.dv_xname, "txforceintr");
1063 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1064 NULL, sc->sc_dev.dv_xname, "txdintr");
1065 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1066 NULL, sc->sc_dev.dv_xname, "txiintr");
1067 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1068 NULL, sc->sc_dev.dv_xname, "rxintr");
1069 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1070 NULL, sc->sc_dev.dv_xname, "hiberr");
1071 #ifndef DP83820
1072 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1073 NULL, sc->sc_dev.dv_xname, "rxpause");
1074 #endif /* !DP83820 */
1075 #ifdef DP83820
1076 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1077 NULL, sc->sc_dev.dv_xname, "rxpause");
1078 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1079 NULL, sc->sc_dev.dv_xname, "txpause");
1080 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1081 NULL, sc->sc_dev.dv_xname, "rxipsum");
1082 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1083 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1084 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1085 NULL, sc->sc_dev.dv_xname, "rxudpsum");
1086 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1087 NULL, sc->sc_dev.dv_xname, "txipsum");
1088 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1089 NULL, sc->sc_dev.dv_xname, "txtcpsum");
1090 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1091 NULL, sc->sc_dev.dv_xname, "txudpsum");
1092 #endif /* DP83820 */
1093 #endif /* SIP_EVENT_COUNTERS */
1094
1095 /*
1096 * Make sure the interface is shutdown during reboot.
1097 */
1098 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1099 if (sc->sc_sdhook == NULL)
1100 printf("%s: WARNING: unable to establish shutdown hook\n",
1101 sc->sc_dev.dv_xname);
1102 return;
1103
1104 /*
1105 * Free any resources we've allocated during the failed attach
1106 * attempt. Do this in reverse order and fall through.
1107 */
1108 fail_5:
1109 for (i = 0; i < SIP_NRXDESC; i++) {
1110 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1111 bus_dmamap_destroy(sc->sc_dmat,
1112 sc->sc_rxsoft[i].rxs_dmamap);
1113 }
1114 fail_4:
1115 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1116 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1117 bus_dmamap_destroy(sc->sc_dmat,
1118 sc->sc_txsoft[i].txs_dmamap);
1119 }
1120 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1121 fail_3:
1122 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1123 fail_2:
1124 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1125 sizeof(struct sip_control_data));
1126 fail_1:
1127 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1128 fail_0:
1129 return;
1130 }
1131
1132 /*
1133 * sip_shutdown:
1134 *
1135 * Make sure the interface is stopped at reboot time.
1136 */
1137 static void
1138 SIP_DECL(shutdown)(void *arg)
1139 {
1140 struct sip_softc *sc = arg;
1141
1142 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1143 }
1144
1145 /*
1146 * sip_start: [ifnet interface function]
1147 *
1148 * Start packet transmission on the interface.
1149 */
1150 static void
1151 SIP_DECL(start)(struct ifnet *ifp)
1152 {
1153 struct sip_softc *sc = ifp->if_softc;
1154 struct mbuf *m0;
1155 #ifndef DP83820
1156 struct mbuf *m;
1157 #endif
1158 struct sip_txsoft *txs;
1159 bus_dmamap_t dmamap;
1160 int error, nexttx, lasttx, seg;
1161 int ofree = sc->sc_txfree;
1162 #if 0
1163 int firsttx = sc->sc_txnext;
1164 #endif
1165 #ifdef DP83820
1166 struct m_tag *mtag;
1167 u_int32_t extsts;
1168 #endif
1169
1170 #ifndef DP83820
1171 /*
1172 * If we've been told to pause, don't transmit any more packets.
1173 */
1174 if (sc->sc_paused)
1175 ifp->if_flags |= IFF_OACTIVE;
1176 #endif
1177
1178 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1179 return;
1180
1181 /*
1182 * Loop through the send queue, setting up transmit descriptors
1183 * until we drain the queue, or use up all available transmit
1184 * descriptors.
1185 */
1186 for (;;) {
1187 /* Get a work queue entry. */
1188 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1189 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1190 break;
1191 }
1192
1193 /*
1194 * Grab a packet off the queue.
1195 */
1196 IFQ_POLL(&ifp->if_snd, m0);
1197 if (m0 == NULL)
1198 break;
1199 #ifndef DP83820
1200 m = NULL;
1201 #endif
1202
1203 dmamap = txs->txs_dmamap;
1204
1205 #ifdef DP83820
1206 /*
1207 * Load the DMA map. If this fails, the packet either
1208 * didn't fit in the allotted number of segments, or we
1209 * were short on resources. For the too-many-segments
1210 * case, we simply report an error and drop the packet,
1211 * since we can't sanely copy a jumbo packet to a single
1212 * buffer.
1213 */
1214 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1215 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1216 if (error) {
1217 if (error == EFBIG) {
1218 printf("%s: Tx packet consumes too many "
1219 "DMA segments, dropping...\n",
1220 sc->sc_dev.dv_xname);
1221 IFQ_DEQUEUE(&ifp->if_snd, m0);
1222 m_freem(m0);
1223 continue;
1224 }
1225 /*
1226 * Short on resources, just stop for now.
1227 */
1228 break;
1229 }
1230 #else /* DP83820 */
1231 /*
1232 * Load the DMA map. If this fails, the packet either
1233 * didn't fit in the alloted number of segments, or we
1234 * were short on resources. In this case, we'll copy
1235 * and try again.
1236 */
1237 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1238 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1239 MGETHDR(m, M_DONTWAIT, MT_DATA);
1240 if (m == NULL) {
1241 printf("%s: unable to allocate Tx mbuf\n",
1242 sc->sc_dev.dv_xname);
1243 break;
1244 }
1245 if (m0->m_pkthdr.len > MHLEN) {
1246 MCLGET(m, M_DONTWAIT);
1247 if ((m->m_flags & M_EXT) == 0) {
1248 printf("%s: unable to allocate Tx "
1249 "cluster\n", sc->sc_dev.dv_xname);
1250 m_freem(m);
1251 break;
1252 }
1253 }
1254 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1255 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1256 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1257 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1258 if (error) {
1259 printf("%s: unable to load Tx buffer, "
1260 "error = %d\n", sc->sc_dev.dv_xname, error);
1261 break;
1262 }
1263 }
1264 #endif /* DP83820 */
1265
1266 /*
1267 * Ensure we have enough descriptors free to describe
1268 * the packet. Note, we always reserve one descriptor
1269 * at the end of the ring as a termination point, to
1270 * prevent wrap-around.
1271 */
1272 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1273 /*
1274 * Not enough free descriptors to transmit this
1275 * packet. We haven't committed anything yet,
1276 * so just unload the DMA map, put the packet
1277 * back on the queue, and punt. Notify the upper
1278 * layer that there are not more slots left.
1279 *
1280 * XXX We could allocate an mbuf and copy, but
1281 * XXX is it worth it?
1282 */
1283 ifp->if_flags |= IFF_OACTIVE;
1284 bus_dmamap_unload(sc->sc_dmat, dmamap);
1285 #ifndef DP83820
1286 if (m != NULL)
1287 m_freem(m);
1288 #endif
1289 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1290 break;
1291 }
1292
1293 IFQ_DEQUEUE(&ifp->if_snd, m0);
1294 #ifndef DP83820
1295 if (m != NULL) {
1296 m_freem(m0);
1297 m0 = m;
1298 }
1299 #endif
1300
1301 /*
1302 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1303 */
1304
1305 /* Sync the DMA map. */
1306 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1307 BUS_DMASYNC_PREWRITE);
1308
1309 /*
1310 * Initialize the transmit descriptors.
1311 */
1312 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1313 seg < dmamap->dm_nsegs;
1314 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1315 /*
1316 * If this is the first descriptor we're
1317 * enqueueing, don't set the OWN bit just
1318 * yet. That could cause a race condition.
1319 * We'll do it below.
1320 */
1321 sc->sc_txdescs[nexttx].sipd_bufptr =
1322 htole32(dmamap->dm_segs[seg].ds_addr);
1323 sc->sc_txdescs[nexttx].sipd_cmdsts =
1324 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1325 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1326 #ifdef DP83820
1327 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1328 #endif /* DP83820 */
1329 lasttx = nexttx;
1330 }
1331
1332 /* Clear the MORE bit on the last segment. */
1333 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1334
1335 /*
1336 * If we're in the interrupt delay window, delay the
1337 * interrupt.
1338 */
1339 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1340 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1341 sc->sc_txdescs[lasttx].sipd_cmdsts |=
1342 htole32(CMDSTS_INTR);
1343 sc->sc_txwin = 0;
1344 }
1345
1346 #ifdef DP83820
1347 /*
1348 * If VLANs are enabled and the packet has a VLAN tag, set
1349 * up the descriptor to encapsulate the packet for us.
1350 *
1351 * This apparently has to be on the last descriptor of
1352 * the packet.
1353 */
1354 if (sc->sc_ethercom.ec_nvlans != 0 &&
1355 (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
1356 sc->sc_txdescs[lasttx].sipd_extsts |=
1357 htole32(EXTSTS_VPKT |
1358 (*(u_int *)(mtag + 1) & EXTSTS_VTCI));
1359 }
1360
1361 /*
1362 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1363 * checksumming, set up the descriptor to do this work
1364 * for us.
1365 *
1366 * This apparently has to be on the first descriptor of
1367 * the packet.
1368 *
1369 * Byte-swap constants so the compiler can optimize.
1370 */
1371 extsts = 0;
1372 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1373 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1374 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1375 extsts |= htole32(EXTSTS_IPPKT);
1376 }
1377 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1378 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1379 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1380 extsts |= htole32(EXTSTS_TCPPKT);
1381 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1382 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1383 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1384 extsts |= htole32(EXTSTS_UDPPKT);
1385 }
1386 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1387 #endif /* DP83820 */
1388
1389 /* Sync the descriptors we're using. */
1390 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1391 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1392
1393 /*
1394 * The entire packet is set up. Give the first descrptor
1395 * to the chip now.
1396 */
1397 sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1398 htole32(CMDSTS_OWN);
1399 SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1400 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1401
1402 /*
1403 * Store a pointer to the packet so we can free it later,
1404 * and remember what txdirty will be once the packet is
1405 * done.
1406 */
1407 txs->txs_mbuf = m0;
1408 txs->txs_firstdesc = sc->sc_txnext;
1409 txs->txs_lastdesc = lasttx;
1410
1411 /* Advance the tx pointer. */
1412 sc->sc_txfree -= dmamap->dm_nsegs;
1413 sc->sc_txnext = nexttx;
1414
1415 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1416 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1417
1418 #if NBPFILTER > 0
1419 /*
1420 * Pass the packet to any BPF listeners.
1421 */
1422 if (ifp->if_bpf)
1423 bpf_mtap(ifp->if_bpf, m0);
1424 #endif /* NBPFILTER > 0 */
1425 }
1426
1427 if (txs == NULL || sc->sc_txfree == 0) {
1428 /* No more slots left; notify upper layer. */
1429 ifp->if_flags |= IFF_OACTIVE;
1430 }
1431
1432 if (sc->sc_txfree != ofree) {
1433 /*
1434 * Start the transmit process. Note, the manual says
1435 * that if there are no pending transmissions in the
1436 * chip's internal queue (indicated by TXE being clear),
1437 * then the driver software must set the TXDP to the
1438 * first descriptor to be transmitted. However, if we
1439 * do this, it causes serious performance degredation on
1440 * the DP83820 under load, not setting TXDP doesn't seem
1441 * to adversely affect the SiS 900 or DP83815.
1442 *
1443 * Well, I guess it wouldn't be the first time a manual
1444 * has lied -- and they could be speaking of the NULL-
1445 * terminated descriptor list case, rather than OWN-
1446 * terminated rings.
1447 */
1448 #if 0
1449 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1450 CR_TXE) == 0) {
1451 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1452 SIP_CDTXADDR(sc, firsttx));
1453 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1454 }
1455 #else
1456 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1457 #endif
1458
1459 /* Set a watchdog timer in case the chip flakes out. */
1460 #ifdef DP83820
1461 /* Gigabit autonegotiation takes 5 seconds. */
1462 ifp->if_timer = 10;
1463 #else
1464 ifp->if_timer = 5;
1465 #endif
1466 }
1467 }
1468
1469 /*
1470 * sip_watchdog: [ifnet interface function]
1471 *
1472 * Watchdog timer handler.
1473 */
1474 static void
1475 SIP_DECL(watchdog)(struct ifnet *ifp)
1476 {
1477 struct sip_softc *sc = ifp->if_softc;
1478
1479 /*
1480 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1481 * If we get a timeout, try and sweep up transmit descriptors.
1482 * If we manage to sweep them all up, ignore the lack of
1483 * interrupt.
1484 */
1485 SIP_DECL(txintr)(sc);
1486
1487 if (sc->sc_txfree != SIP_NTXDESC) {
1488 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1489 ifp->if_oerrors++;
1490
1491 /* Reset the interface. */
1492 (void) SIP_DECL(init)(ifp);
1493 } else if (ifp->if_flags & IFF_DEBUG)
1494 printf("%s: recovered from device timeout\n",
1495 sc->sc_dev.dv_xname);
1496
1497 /* Try to get more packets going. */
1498 SIP_DECL(start)(ifp);
1499 }
1500
1501 /*
1502 * sip_ioctl: [ifnet interface function]
1503 *
1504 * Handle control requests from the operator.
1505 */
1506 static int
1507 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1508 {
1509 struct sip_softc *sc = ifp->if_softc;
1510 struct ifreq *ifr = (struct ifreq *)data;
1511 int s, error;
1512
1513 s = splnet();
1514
1515 switch (cmd) {
1516 case SIOCSIFMEDIA:
1517 /* Flow control requires full-duplex mode. */
1518 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1519 (ifr->ifr_media & IFM_FDX) == 0)
1520 ifr->ifr_media &= ~IFM_ETH_FMASK;
1521 #ifdef DP83820
1522 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1523 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1524 /* We can do both TXPAUSE and RXPAUSE. */
1525 ifr->ifr_media |=
1526 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1527 }
1528 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1529 }
1530 #else
1531 /* XXX */
1532 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1533 ifr->ifr_media &= ~IFM_ETH_FMASK;
1534
1535 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1536 if (ifr->ifr_media & IFM_FLOW) {
1537 /*
1538 * Both TXPAUSE and RXPAUSE must be set.
1539 * (SiS900 and DP83815 don't have PAUSE_ASYM
1540 * feature.)
1541 *
1542 * XXX Can SiS900 and DP83815 send PAUSE?
1543 */
1544 ifr->ifr_media |=
1545 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1546 }
1547 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1548 }
1549 #endif
1550 /* FALLTHROUGH */
1551 case SIOCGIFMEDIA:
1552 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1553 break;
1554
1555 default:
1556 error = ether_ioctl(ifp, cmd, data);
1557 if (error == ENETRESET) {
1558 /*
1559 * Multicast list has changed; set the hardware filter
1560 * accordingly.
1561 */
1562 if (ifp->if_flags & IFF_RUNNING)
1563 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1564 error = 0;
1565 }
1566 break;
1567 }
1568
1569 /* Try to get more packets going. */
1570 SIP_DECL(start)(ifp);
1571
1572 splx(s);
1573 return (error);
1574 }
1575
1576 /*
1577 * sip_intr:
1578 *
1579 * Interrupt service routine.
1580 */
1581 static int
1582 SIP_DECL(intr)(void *arg)
1583 {
1584 struct sip_softc *sc = arg;
1585 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1586 u_int32_t isr;
1587 int handled = 0;
1588
1589 /* Disable interrupts. */
1590 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1591
1592 for (;;) {
1593 /* Reading clears interrupt. */
1594 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1595 if ((isr & sc->sc_imr) == 0)
1596 break;
1597
1598 #if NRND > 0
1599 if (RND_ENABLED(&sc->rnd_source))
1600 rnd_add_uint32(&sc->rnd_source, isr);
1601 #endif
1602
1603 handled = 1;
1604
1605 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1606 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1607
1608 /* Grab any new packets. */
1609 SIP_DECL(rxintr)(sc);
1610
1611 if (isr & ISR_RXORN) {
1612 printf("%s: receive FIFO overrun\n",
1613 sc->sc_dev.dv_xname);
1614
1615 /* XXX adjust rx_drain_thresh? */
1616 }
1617
1618 if (isr & ISR_RXIDLE) {
1619 printf("%s: receive ring overrun\n",
1620 sc->sc_dev.dv_xname);
1621
1622 /* Get the receive process going again. */
1623 bus_space_write_4(sc->sc_st, sc->sc_sh,
1624 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1625 bus_space_write_4(sc->sc_st, sc->sc_sh,
1626 SIP_CR, CR_RXE);
1627 }
1628 }
1629
1630 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1631 #ifdef SIP_EVENT_COUNTERS
1632 if (isr & ISR_TXDESC)
1633 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1634 else if (isr & ISR_TXIDLE)
1635 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1636 #endif
1637
1638 /* Sweep up transmit descriptors. */
1639 SIP_DECL(txintr)(sc);
1640
1641 if (isr & ISR_TXURN) {
1642 u_int32_t thresh;
1643
1644 printf("%s: transmit FIFO underrun",
1645 sc->sc_dev.dv_xname);
1646
1647 thresh = sc->sc_tx_drain_thresh + 1;
1648 if (thresh <= TXCFG_DRTH &&
1649 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1650 (sc->sc_tx_fill_thresh * 32))) {
1651 printf("; increasing Tx drain "
1652 "threshold to %u bytes\n",
1653 thresh * 32);
1654 sc->sc_tx_drain_thresh = thresh;
1655 (void) SIP_DECL(init)(ifp);
1656 } else {
1657 (void) SIP_DECL(init)(ifp);
1658 printf("\n");
1659 }
1660 }
1661 }
1662
1663 #if !defined(DP83820)
1664 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1665 if (isr & ISR_PAUSE_ST) {
1666 sc->sc_paused = 1;
1667 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1668 ifp->if_flags |= IFF_OACTIVE;
1669 }
1670 if (isr & ISR_PAUSE_END) {
1671 sc->sc_paused = 0;
1672 ifp->if_flags &= ~IFF_OACTIVE;
1673 }
1674 }
1675 #endif /* ! DP83820 */
1676
1677 if (isr & ISR_HIBERR) {
1678 int want_init = 0;
1679
1680 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1681
1682 #define PRINTERR(bit, str) \
1683 do { \
1684 if ((isr & (bit)) != 0) { \
1685 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1686 printf("%s: %s\n", \
1687 sc->sc_dev.dv_xname, str); \
1688 want_init = 1; \
1689 } \
1690 } while (/*CONSTCOND*/0)
1691
1692 PRINTERR(ISR_DPERR, "parity error");
1693 PRINTERR(ISR_SSERR, "system error");
1694 PRINTERR(ISR_RMABT, "master abort");
1695 PRINTERR(ISR_RTABT, "target abort");
1696 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1697 /*
1698 * Ignore:
1699 * Tx reset complete
1700 * Rx reset complete
1701 */
1702 if (want_init)
1703 (void) SIP_DECL(init)(ifp);
1704 #undef PRINTERR
1705 }
1706 }
1707
1708 /* Re-enable interrupts. */
1709 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1710
1711 /* Try to get more packets going. */
1712 SIP_DECL(start)(ifp);
1713
1714 return (handled);
1715 }
1716
1717 /*
1718 * sip_txintr:
1719 *
1720 * Helper; handle transmit interrupts.
1721 */
1722 static void
1723 SIP_DECL(txintr)(struct sip_softc *sc)
1724 {
1725 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1726 struct sip_txsoft *txs;
1727 u_int32_t cmdsts;
1728
1729 #ifndef DP83820
1730 if (sc->sc_paused == 0)
1731 #endif
1732 ifp->if_flags &= ~IFF_OACTIVE;
1733
1734 /*
1735 * Go through our Tx list and free mbufs for those
1736 * frames which have been transmitted.
1737 */
1738 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1739 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1740 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1741
1742 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1743 if (cmdsts & CMDSTS_OWN)
1744 break;
1745
1746 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1747
1748 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1749
1750 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1751 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1752 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1753 m_freem(txs->txs_mbuf);
1754 txs->txs_mbuf = NULL;
1755
1756 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1757
1758 /*
1759 * Check for errors and collisions.
1760 */
1761 if (cmdsts &
1762 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1763 ifp->if_oerrors++;
1764 if (cmdsts & CMDSTS_Tx_EC)
1765 ifp->if_collisions += 16;
1766 if (ifp->if_flags & IFF_DEBUG) {
1767 if (cmdsts & CMDSTS_Tx_ED)
1768 printf("%s: excessive deferral\n",
1769 sc->sc_dev.dv_xname);
1770 if (cmdsts & CMDSTS_Tx_EC)
1771 printf("%s: excessive collisions\n",
1772 sc->sc_dev.dv_xname);
1773 }
1774 } else {
1775 /* Packet was transmitted successfully. */
1776 ifp->if_opackets++;
1777 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1778 }
1779 }
1780
1781 /*
1782 * If there are no more pending transmissions, cancel the watchdog
1783 * timer.
1784 */
1785 if (txs == NULL) {
1786 ifp->if_timer = 0;
1787 sc->sc_txwin = 0;
1788 }
1789 }
1790
1791 #if defined(DP83820)
1792 /*
1793 * sip_rxintr:
1794 *
1795 * Helper; handle receive interrupts.
1796 */
1797 static void
1798 SIP_DECL(rxintr)(struct sip_softc *sc)
1799 {
1800 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1801 struct sip_rxsoft *rxs;
1802 struct mbuf *m, *tailm;
1803 u_int32_t cmdsts, extsts;
1804 int i, len, frame_len;
1805
1806 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1807 rxs = &sc->sc_rxsoft[i];
1808
1809 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1810
1811 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1812 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1813
1814 /*
1815 * NOTE: OWN is set if owned by _consumer_. We're the
1816 * consumer of the receive ring, so if the bit is clear,
1817 * we have processed all of the packets.
1818 */
1819 if ((cmdsts & CMDSTS_OWN) == 0) {
1820 /*
1821 * We have processed all of the receive buffers.
1822 */
1823 break;
1824 }
1825
1826 if (__predict_false(sc->sc_rxdiscard)) {
1827 SIP_INIT_RXDESC(sc, i);
1828 if ((cmdsts & CMDSTS_MORE) == 0) {
1829 /* Reset our state. */
1830 sc->sc_rxdiscard = 0;
1831 }
1832 continue;
1833 }
1834
1835 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1836 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1837
1838 m = rxs->rxs_mbuf;
1839
1840 /*
1841 * Add a new receive buffer to the ring.
1842 */
1843 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1844 /*
1845 * Failed, throw away what we've done so
1846 * far, and discard the rest of the packet.
1847 */
1848 ifp->if_ierrors++;
1849 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1850 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1851 SIP_INIT_RXDESC(sc, i);
1852 if (cmdsts & CMDSTS_MORE)
1853 sc->sc_rxdiscard = 1;
1854 if (sc->sc_rxhead != NULL)
1855 m_freem(sc->sc_rxhead);
1856 SIP_RXCHAIN_RESET(sc);
1857 continue;
1858 }
1859
1860 SIP_RXCHAIN_LINK(sc, m);
1861
1862 /*
1863 * If this is not the end of the packet, keep
1864 * looking.
1865 */
1866 if (cmdsts & CMDSTS_MORE) {
1867 sc->sc_rxlen += m->m_len;
1868 continue;
1869 }
1870
1871 /*
1872 * Okay, we have the entire packet now...
1873 */
1874 *sc->sc_rxtailp = NULL;
1875 m = sc->sc_rxhead;
1876 tailm = sc->sc_rxtail;
1877 frame_len = sc->sc_rxlen;
1878
1879 SIP_RXCHAIN_RESET(sc);
1880
1881 /*
1882 * If an error occurred, update stats and drop the packet.
1883 */
1884 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1885 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1886 ifp->if_ierrors++;
1887 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1888 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1889 /* Receive overrun handled elsewhere. */
1890 printf("%s: receive descriptor error\n",
1891 sc->sc_dev.dv_xname);
1892 }
1893 #define PRINTERR(bit, str) \
1894 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
1895 (cmdsts & (bit)) != 0) \
1896 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1897 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1898 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1899 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1900 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1901 #undef PRINTERR
1902 m_freem(m);
1903 continue;
1904 }
1905
1906 /*
1907 * No errors.
1908 *
1909 * Note, the DP83820 includes the CRC with
1910 * every packet.
1911 */
1912 len = CMDSTS_SIZE(cmdsts);
1913 frame_len += len;
1914 tailm->m_len = len;
1915
1916 /*
1917 * If the packet is small enough to fit in a
1918 * single header mbuf, allocate one and copy
1919 * the data into it. This greatly reduces
1920 * memory consumption when we receive lots
1921 * of small packets.
1922 */
1923 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1924 struct mbuf *nm;
1925 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1926 if (nm == NULL) {
1927 ifp->if_ierrors++;
1928 m_freem(m);
1929 continue;
1930 }
1931 nm->m_data += 2;
1932 nm->m_pkthdr.len = nm->m_len = len;
1933 m_copydata(m, 0, len, mtod(nm, caddr_t));
1934 m_freem(m);
1935 m = nm;
1936 }
1937 #ifndef __NO_STRICT_ALIGNMENT
1938 else {
1939 /*
1940 * The DP83820's receive buffers must be 4-byte
1941 * aligned. But this means that the data after
1942 * the Ethernet header is misaligned. To compensate,
1943 * we have artificially shortened the buffer size
1944 * in the descriptor, and we do an overlapping copy
1945 * of the data two bytes further in (in the first
1946 * buffer of the chain only).
1947 */
1948 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1949 m->m_len);
1950 m->m_data += 2;
1951 }
1952 #endif /* ! __NO_STRICT_ALIGNMENT */
1953
1954 /*
1955 * If VLANs are enabled, VLAN packets have been unwrapped
1956 * for us. Associate the tag with the packet.
1957 */
1958 if (sc->sc_ethercom.ec_nvlans != 0 &&
1959 (extsts & EXTSTS_VPKT) != 0) {
1960 struct m_tag *vtag;
1961
1962 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
1963 M_NOWAIT);
1964 if (vtag == NULL) {
1965 ifp->if_ierrors++;
1966 printf("%s: unable to allocate VLAN tag\n",
1967 sc->sc_dev.dv_xname);
1968 m_freem(m);
1969 continue;
1970 }
1971
1972 *(u_int *)(vtag + 1) = ntohs(extsts & EXTSTS_VTCI);
1973 }
1974
1975 /*
1976 * Set the incoming checksum information for the
1977 * packet.
1978 */
1979 if ((extsts & EXTSTS_IPPKT) != 0) {
1980 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1981 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1982 if (extsts & EXTSTS_Rx_IPERR)
1983 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1984 if (extsts & EXTSTS_TCPPKT) {
1985 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1986 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1987 if (extsts & EXTSTS_Rx_TCPERR)
1988 m->m_pkthdr.csum_flags |=
1989 M_CSUM_TCP_UDP_BAD;
1990 } else if (extsts & EXTSTS_UDPPKT) {
1991 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1992 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1993 if (extsts & EXTSTS_Rx_UDPERR)
1994 m->m_pkthdr.csum_flags |=
1995 M_CSUM_TCP_UDP_BAD;
1996 }
1997 }
1998
1999 ifp->if_ipackets++;
2000 m->m_flags |= M_HASFCS;
2001 m->m_pkthdr.rcvif = ifp;
2002 m->m_pkthdr.len = frame_len;
2003
2004 #if NBPFILTER > 0
2005 /*
2006 * Pass this up to any BPF listeners, but only
2007 * pass if up the stack if it's for us.
2008 */
2009 if (ifp->if_bpf)
2010 bpf_mtap(ifp->if_bpf, m);
2011 #endif /* NBPFILTER > 0 */
2012
2013 /* Pass it on. */
2014 (*ifp->if_input)(ifp, m);
2015 }
2016
2017 /* Update the receive pointer. */
2018 sc->sc_rxptr = i;
2019 }
2020 #else /* ! DP83820 */
2021 /*
2022 * sip_rxintr:
2023 *
2024 * Helper; handle receive interrupts.
2025 */
2026 static void
2027 SIP_DECL(rxintr)(struct sip_softc *sc)
2028 {
2029 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2030 struct sip_rxsoft *rxs;
2031 struct mbuf *m;
2032 u_int32_t cmdsts;
2033 int i, len;
2034
2035 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
2036 rxs = &sc->sc_rxsoft[i];
2037
2038 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2039
2040 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
2041
2042 /*
2043 * NOTE: OWN is set if owned by _consumer_. We're the
2044 * consumer of the receive ring, so if the bit is clear,
2045 * we have processed all of the packets.
2046 */
2047 if ((cmdsts & CMDSTS_OWN) == 0) {
2048 /*
2049 * We have processed all of the receive buffers.
2050 */
2051 break;
2052 }
2053
2054 /*
2055 * If any collisions were seen on the wire, count one.
2056 */
2057 if (cmdsts & CMDSTS_Rx_COL)
2058 ifp->if_collisions++;
2059
2060 /*
2061 * If an error occurred, update stats, clear the status
2062 * word, and leave the packet buffer in place. It will
2063 * simply be reused the next time the ring comes around.
2064 */
2065 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2066 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2067 ifp->if_ierrors++;
2068 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2069 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2070 /* Receive overrun handled elsewhere. */
2071 printf("%s: receive descriptor error\n",
2072 sc->sc_dev.dv_xname);
2073 }
2074 #define PRINTERR(bit, str) \
2075 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2076 (cmdsts & (bit)) != 0) \
2077 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
2078 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2079 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2080 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2081 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2082 #undef PRINTERR
2083 SIP_INIT_RXDESC(sc, i);
2084 continue;
2085 }
2086
2087 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2088 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2089
2090 /*
2091 * No errors; receive the packet. Note, the SiS 900
2092 * includes the CRC with every packet.
2093 */
2094 len = CMDSTS_SIZE(cmdsts);
2095
2096 #ifdef __NO_STRICT_ALIGNMENT
2097 /*
2098 * If the packet is small enough to fit in a
2099 * single header mbuf, allocate one and copy
2100 * the data into it. This greatly reduces
2101 * memory consumption when we receive lots
2102 * of small packets.
2103 *
2104 * Otherwise, we add a new buffer to the receive
2105 * chain. If this fails, we drop the packet and
2106 * recycle the old buffer.
2107 */
2108 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2109 MGETHDR(m, M_DONTWAIT, MT_DATA);
2110 if (m == NULL)
2111 goto dropit;
2112 memcpy(mtod(m, caddr_t),
2113 mtod(rxs->rxs_mbuf, caddr_t), len);
2114 SIP_INIT_RXDESC(sc, i);
2115 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2116 rxs->rxs_dmamap->dm_mapsize,
2117 BUS_DMASYNC_PREREAD);
2118 } else {
2119 m = rxs->rxs_mbuf;
2120 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2121 dropit:
2122 ifp->if_ierrors++;
2123 SIP_INIT_RXDESC(sc, i);
2124 bus_dmamap_sync(sc->sc_dmat,
2125 rxs->rxs_dmamap, 0,
2126 rxs->rxs_dmamap->dm_mapsize,
2127 BUS_DMASYNC_PREREAD);
2128 continue;
2129 }
2130 }
2131 #else
2132 /*
2133 * The SiS 900's receive buffers must be 4-byte aligned.
2134 * But this means that the data after the Ethernet header
2135 * is misaligned. We must allocate a new buffer and
2136 * copy the data, shifted forward 2 bytes.
2137 */
2138 MGETHDR(m, M_DONTWAIT, MT_DATA);
2139 if (m == NULL) {
2140 dropit:
2141 ifp->if_ierrors++;
2142 SIP_INIT_RXDESC(sc, i);
2143 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2144 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2145 continue;
2146 }
2147 if (len > (MHLEN - 2)) {
2148 MCLGET(m, M_DONTWAIT);
2149 if ((m->m_flags & M_EXT) == 0) {
2150 m_freem(m);
2151 goto dropit;
2152 }
2153 }
2154 m->m_data += 2;
2155
2156 /*
2157 * Note that we use clusters for incoming frames, so the
2158 * buffer is virtually contiguous.
2159 */
2160 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2161
2162 /* Allow the receive descriptor to continue using its mbuf. */
2163 SIP_INIT_RXDESC(sc, i);
2164 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2165 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2166 #endif /* __NO_STRICT_ALIGNMENT */
2167
2168 ifp->if_ipackets++;
2169 m->m_flags |= M_HASFCS;
2170 m->m_pkthdr.rcvif = ifp;
2171 m->m_pkthdr.len = m->m_len = len;
2172
2173 #if NBPFILTER > 0
2174 /*
2175 * Pass this up to any BPF listeners, but only
2176 * pass if up the stack if it's for us.
2177 */
2178 if (ifp->if_bpf)
2179 bpf_mtap(ifp->if_bpf, m);
2180 #endif /* NBPFILTER > 0 */
2181
2182 /* Pass it on. */
2183 (*ifp->if_input)(ifp, m);
2184 }
2185
2186 /* Update the receive pointer. */
2187 sc->sc_rxptr = i;
2188 }
2189 #endif /* DP83820 */
2190
2191 /*
2192 * sip_tick:
2193 *
2194 * One second timer, used to tick the MII.
2195 */
2196 static void
2197 SIP_DECL(tick)(void *arg)
2198 {
2199 struct sip_softc *sc = arg;
2200 int s;
2201
2202 s = splnet();
2203 #ifdef DP83820
2204 #ifdef SIP_EVENT_COUNTERS
2205 /* Read PAUSE related counts from MIB registers. */
2206 sc->sc_ev_rxpause.ev_count +=
2207 bus_space_read_4(sc->sc_st, sc->sc_sh,
2208 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2209 sc->sc_ev_txpause.ev_count +=
2210 bus_space_read_4(sc->sc_st, sc->sc_sh,
2211 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2212 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2213 #endif /* SIP_EVENT_COUNTERS */
2214 #endif /* DP83820 */
2215 mii_tick(&sc->sc_mii);
2216 splx(s);
2217
2218 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2219 }
2220
2221 /*
2222 * sip_reset:
2223 *
2224 * Perform a soft reset on the SiS 900.
2225 */
2226 static void
2227 SIP_DECL(reset)(struct sip_softc *sc)
2228 {
2229 bus_space_tag_t st = sc->sc_st;
2230 bus_space_handle_t sh = sc->sc_sh;
2231 int i;
2232
2233 bus_space_write_4(st, sh, SIP_IER, 0);
2234 bus_space_write_4(st, sh, SIP_IMR, 0);
2235 bus_space_write_4(st, sh, SIP_RFCR, 0);
2236 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2237
2238 for (i = 0; i < SIP_TIMEOUT; i++) {
2239 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2240 break;
2241 delay(2);
2242 }
2243
2244 if (i == SIP_TIMEOUT)
2245 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2246
2247 delay(1000);
2248
2249 #ifdef DP83820
2250 /*
2251 * Set the general purpose I/O bits. Do it here in case we
2252 * need to have GPIO set up to talk to the media interface.
2253 */
2254 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2255 delay(1000);
2256 #endif /* DP83820 */
2257 }
2258
2259 /*
2260 * sip_init: [ ifnet interface function ]
2261 *
2262 * Initialize the interface. Must be called at splnet().
2263 */
2264 static int
2265 SIP_DECL(init)(struct ifnet *ifp)
2266 {
2267 struct sip_softc *sc = ifp->if_softc;
2268 bus_space_tag_t st = sc->sc_st;
2269 bus_space_handle_t sh = sc->sc_sh;
2270 struct sip_txsoft *txs;
2271 struct sip_rxsoft *rxs;
2272 struct sip_desc *sipd;
2273 #if defined(DP83820)
2274 u_int32_t reg;
2275 #endif
2276 int i, error = 0;
2277
2278 /*
2279 * Cancel any pending I/O.
2280 */
2281 SIP_DECL(stop)(ifp, 0);
2282
2283 /*
2284 * Reset the chip to a known state.
2285 */
2286 SIP_DECL(reset)(sc);
2287
2288 #if !defined(DP83820)
2289 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2290 /*
2291 * DP83815 manual, page 78:
2292 * 4.4 Recommended Registers Configuration
2293 * For optimum performance of the DP83815, version noted
2294 * as DP83815CVNG (SRR = 203h), the listed register
2295 * modifications must be followed in sequence...
2296 *
2297 * It's not clear if this should be 302h or 203h because that
2298 * chip name is listed as SRR 302h in the description of the
2299 * SRR register. However, my revision 302h DP83815 on the
2300 * Netgear FA311 purchased in 02/2001 needs these settings
2301 * to avoid tons of errors in AcceptPerfectMatch (non-
2302 * IFF_PROMISC) mode. I do not know if other revisions need
2303 * this set or not. [briggs -- 09 March 2001]
2304 *
2305 * Note that only the low-order 12 bits of 0xe4 are documented
2306 * and that this sets reserved bits in that register.
2307 */
2308 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2309
2310 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2311 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2312 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2313 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2314
2315 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2316 }
2317 #endif /* ! DP83820 */
2318
2319 /*
2320 * Initialize the transmit descriptor ring.
2321 */
2322 for (i = 0; i < SIP_NTXDESC; i++) {
2323 sipd = &sc->sc_txdescs[i];
2324 memset(sipd, 0, sizeof(struct sip_desc));
2325 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2326 }
2327 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2328 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2329 sc->sc_txfree = SIP_NTXDESC;
2330 sc->sc_txnext = 0;
2331 sc->sc_txwin = 0;
2332
2333 /*
2334 * Initialize the transmit job descriptors.
2335 */
2336 SIMPLEQ_INIT(&sc->sc_txfreeq);
2337 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2338 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2339 txs = &sc->sc_txsoft[i];
2340 txs->txs_mbuf = NULL;
2341 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2342 }
2343
2344 /*
2345 * Initialize the receive descriptor and receive job
2346 * descriptor rings.
2347 */
2348 for (i = 0; i < SIP_NRXDESC; i++) {
2349 rxs = &sc->sc_rxsoft[i];
2350 if (rxs->rxs_mbuf == NULL) {
2351 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2352 printf("%s: unable to allocate or map rx "
2353 "buffer %d, error = %d\n",
2354 sc->sc_dev.dv_xname, i, error);
2355 /*
2356 * XXX Should attempt to run with fewer receive
2357 * XXX buffers instead of just failing.
2358 */
2359 SIP_DECL(rxdrain)(sc);
2360 goto out;
2361 }
2362 } else
2363 SIP_INIT_RXDESC(sc, i);
2364 }
2365 sc->sc_rxptr = 0;
2366 #ifdef DP83820
2367 sc->sc_rxdiscard = 0;
2368 SIP_RXCHAIN_RESET(sc);
2369 #endif /* DP83820 */
2370
2371 /*
2372 * Set the configuration register; it's already initialized
2373 * in sip_attach().
2374 */
2375 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2376
2377 /*
2378 * Initialize the prototype TXCFG register.
2379 */
2380 #if defined(DP83820)
2381 sc->sc_txcfg = TXCFG_MXDMA_512;
2382 sc->sc_rxcfg = RXCFG_MXDMA_512;
2383 #else
2384 if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2385 SIP_SIS900_REV(sc, SIS_REV_960) ||
2386 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2387 (sc->sc_cfg & CFG_EDBMASTEN)) {
2388 sc->sc_txcfg = TXCFG_MXDMA_64;
2389 sc->sc_rxcfg = RXCFG_MXDMA_64;
2390 } else {
2391 sc->sc_txcfg = TXCFG_MXDMA_512;
2392 sc->sc_rxcfg = RXCFG_MXDMA_512;
2393 }
2394 #endif /* DP83820 */
2395
2396 sc->sc_txcfg |= TXCFG_ATP |
2397 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2398 sc->sc_tx_drain_thresh;
2399 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2400
2401 /*
2402 * Initialize the receive drain threshold if we have never
2403 * done so.
2404 */
2405 if (sc->sc_rx_drain_thresh == 0) {
2406 /*
2407 * XXX This value should be tuned. This is set to the
2408 * maximum of 248 bytes, and we may be able to improve
2409 * performance by decreasing it (although we should never
2410 * set this value lower than 2; 14 bytes are required to
2411 * filter the packet).
2412 */
2413 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2414 }
2415
2416 /*
2417 * Initialize the prototype RXCFG register.
2418 */
2419 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2420 #ifdef DP83820
2421 /*
2422 * Accept long packets (including FCS) so we can handle
2423 * 802.1q-tagged frames and jumbo frames properly.
2424 */
2425 if (ifp->if_mtu > ETHERMTU ||
2426 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2427 sc->sc_rxcfg |= RXCFG_ALP;
2428
2429 /*
2430 * Checksum offloading is disabled if the user selects an MTU
2431 * larger than 8109. (FreeBSD says 8152, but there is emperical
2432 * evidence that >8109 does not work on some boards, such as the
2433 * Planex GN-1000TE).
2434 */
2435 if (ifp->if_mtu > 8109 &&
2436 (ifp->if_capenable &
2437 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))) {
2438 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2439 "disabled.\n", sc->sc_dev.dv_xname);
2440 ifp->if_capenable &= ~(IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|
2441 IFCAP_CSUM_UDPv4);
2442 ifp->if_csum_flags_tx = 0;
2443 ifp->if_csum_flags_rx = 0;
2444 }
2445 #else
2446 /*
2447 * Accept packets >1518 bytes (including FCS) so we can handle
2448 * 802.1q-tagged frames properly.
2449 */
2450 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2451 sc->sc_rxcfg |= RXCFG_ALP;
2452 #endif
2453 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2454
2455 #ifdef DP83820
2456 /*
2457 * Initialize the VLAN/IP receive control register.
2458 * We enable checksum computation on all incoming
2459 * packets, and do not reject packets w/ bad checksums.
2460 */
2461 reg = 0;
2462 if (ifp->if_capenable &
2463 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2464 reg |= VRCR_IPEN;
2465 if (sc->sc_ethercom.ec_nvlans != 0)
2466 reg |= VRCR_VTDEN|VRCR_VTREN;
2467 bus_space_write_4(st, sh, SIP_VRCR, reg);
2468
2469 /*
2470 * Initialize the VLAN/IP transmit control register.
2471 * We enable outgoing checksum computation on a
2472 * per-packet basis.
2473 */
2474 reg = 0;
2475 if (ifp->if_capenable &
2476 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2477 reg |= VTCR_PPCHK;
2478 if (sc->sc_ethercom.ec_nvlans != 0)
2479 reg |= VTCR_VPPTI;
2480 bus_space_write_4(st, sh, SIP_VTCR, reg);
2481
2482 /*
2483 * If we're using VLANs, initialize the VLAN data register.
2484 * To understand why we bswap the VLAN Ethertype, see section
2485 * 4.2.36 of the DP83820 manual.
2486 */
2487 if (sc->sc_ethercom.ec_nvlans != 0)
2488 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2489 #endif /* DP83820 */
2490
2491 /*
2492 * Give the transmit and receive rings to the chip.
2493 */
2494 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2495 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2496
2497 /*
2498 * Initialize the interrupt mask.
2499 */
2500 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2501 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2502 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2503
2504 /* Set up the receive filter. */
2505 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2506
2507 #ifdef DP83820
2508 /*
2509 * Tune sc_rx_flow_thresh.
2510 * XXX "More than 8KB" is too short for jumbo frames.
2511 * XXX TODO: Threshold value should be user-settable.
2512 */
2513 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2514 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2515 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2516 #endif
2517
2518 /*
2519 * Set the current media. Do this after initializing the prototype
2520 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2521 * control.
2522 */
2523 mii_mediachg(&sc->sc_mii);
2524
2525 #ifdef DP83820
2526 /*
2527 * Set the interrupt hold-off timer to 100us.
2528 */
2529 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2530 #endif
2531
2532 /*
2533 * Enable interrupts.
2534 */
2535 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2536
2537 /*
2538 * Start the transmit and receive processes.
2539 */
2540 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2541
2542 /*
2543 * Start the one second MII clock.
2544 */
2545 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2546
2547 /*
2548 * ...all done!
2549 */
2550 ifp->if_flags |= IFF_RUNNING;
2551 ifp->if_flags &= ~IFF_OACTIVE;
2552
2553 out:
2554 if (error)
2555 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2556 return (error);
2557 }
2558
2559 /*
2560 * sip_drain:
2561 *
2562 * Drain the receive queue.
2563 */
2564 static void
2565 SIP_DECL(rxdrain)(struct sip_softc *sc)
2566 {
2567 struct sip_rxsoft *rxs;
2568 int i;
2569
2570 for (i = 0; i < SIP_NRXDESC; i++) {
2571 rxs = &sc->sc_rxsoft[i];
2572 if (rxs->rxs_mbuf != NULL) {
2573 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2574 m_freem(rxs->rxs_mbuf);
2575 rxs->rxs_mbuf = NULL;
2576 }
2577 }
2578 }
2579
2580 /*
2581 * sip_stop: [ ifnet interface function ]
2582 *
2583 * Stop transmission on the interface.
2584 */
2585 static void
2586 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2587 {
2588 struct sip_softc *sc = ifp->if_softc;
2589 bus_space_tag_t st = sc->sc_st;
2590 bus_space_handle_t sh = sc->sc_sh;
2591 struct sip_txsoft *txs;
2592 u_int32_t cmdsts = 0; /* DEBUG */
2593
2594 /*
2595 * Stop the one second clock.
2596 */
2597 callout_stop(&sc->sc_tick_ch);
2598
2599 /* Down the MII. */
2600 mii_down(&sc->sc_mii);
2601
2602 /*
2603 * Disable interrupts.
2604 */
2605 bus_space_write_4(st, sh, SIP_IER, 0);
2606
2607 /*
2608 * Stop receiver and transmitter.
2609 */
2610 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2611
2612 /*
2613 * Release any queued transmit buffers.
2614 */
2615 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2616 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2617 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2618 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2619 CMDSTS_INTR) == 0)
2620 printf("%s: sip_stop: last descriptor does not "
2621 "have INTR bit set\n", sc->sc_dev.dv_xname);
2622 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2623 #ifdef DIAGNOSTIC
2624 if (txs->txs_mbuf == NULL) {
2625 printf("%s: dirty txsoft with no mbuf chain\n",
2626 sc->sc_dev.dv_xname);
2627 panic("sip_stop");
2628 }
2629 #endif
2630 cmdsts |= /* DEBUG */
2631 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2632 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2633 m_freem(txs->txs_mbuf);
2634 txs->txs_mbuf = NULL;
2635 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2636 }
2637
2638 if (disable)
2639 SIP_DECL(rxdrain)(sc);
2640
2641 /*
2642 * Mark the interface down and cancel the watchdog timer.
2643 */
2644 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2645 ifp->if_timer = 0;
2646
2647 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2648 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2649 printf("%s: sip_stop: no INTR bits set in dirty tx "
2650 "descriptors\n", sc->sc_dev.dv_xname);
2651 }
2652
2653 /*
2654 * sip_read_eeprom:
2655 *
2656 * Read data from the serial EEPROM.
2657 */
2658 static void
2659 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2660 u_int16_t *data)
2661 {
2662 bus_space_tag_t st = sc->sc_st;
2663 bus_space_handle_t sh = sc->sc_sh;
2664 u_int16_t reg;
2665 int i, x;
2666
2667 for (i = 0; i < wordcnt; i++) {
2668 /* Send CHIP SELECT. */
2669 reg = EROMAR_EECS;
2670 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2671
2672 /* Shift in the READ opcode. */
2673 for (x = 3; x > 0; x--) {
2674 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2675 reg |= EROMAR_EEDI;
2676 else
2677 reg &= ~EROMAR_EEDI;
2678 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2679 bus_space_write_4(st, sh, SIP_EROMAR,
2680 reg | EROMAR_EESK);
2681 delay(4);
2682 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2683 delay(4);
2684 }
2685
2686 /* Shift in address. */
2687 for (x = 6; x > 0; x--) {
2688 if ((word + i) & (1 << (x - 1)))
2689 reg |= EROMAR_EEDI;
2690 else
2691 reg &= ~EROMAR_EEDI;
2692 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2693 bus_space_write_4(st, sh, SIP_EROMAR,
2694 reg | EROMAR_EESK);
2695 delay(4);
2696 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2697 delay(4);
2698 }
2699
2700 /* Shift out data. */
2701 reg = EROMAR_EECS;
2702 data[i] = 0;
2703 for (x = 16; x > 0; x--) {
2704 bus_space_write_4(st, sh, SIP_EROMAR,
2705 reg | EROMAR_EESK);
2706 delay(4);
2707 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2708 data[i] |= (1 << (x - 1));
2709 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2710 delay(4);
2711 }
2712
2713 /* Clear CHIP SELECT. */
2714 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2715 delay(4);
2716 }
2717 }
2718
2719 /*
2720 * sip_add_rxbuf:
2721 *
2722 * Add a receive buffer to the indicated descriptor.
2723 */
2724 static int
2725 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2726 {
2727 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2728 struct mbuf *m;
2729 int error;
2730
2731 MGETHDR(m, M_DONTWAIT, MT_DATA);
2732 if (m == NULL)
2733 return (ENOBUFS);
2734
2735 MCLGET(m, M_DONTWAIT);
2736 if ((m->m_flags & M_EXT) == 0) {
2737 m_freem(m);
2738 return (ENOBUFS);
2739 }
2740
2741 #if defined(DP83820)
2742 m->m_len = SIP_RXBUF_LEN;
2743 #endif /* DP83820 */
2744
2745 if (rxs->rxs_mbuf != NULL)
2746 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2747
2748 rxs->rxs_mbuf = m;
2749
2750 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2751 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2752 BUS_DMA_READ|BUS_DMA_NOWAIT);
2753 if (error) {
2754 printf("%s: can't load rx DMA map %d, error = %d\n",
2755 sc->sc_dev.dv_xname, idx, error);
2756 panic("sip_add_rxbuf"); /* XXX */
2757 }
2758
2759 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2760 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2761
2762 SIP_INIT_RXDESC(sc, idx);
2763
2764 return (0);
2765 }
2766
2767 #if !defined(DP83820)
2768 /*
2769 * sip_sis900_set_filter:
2770 *
2771 * Set up the receive filter.
2772 */
2773 static void
2774 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2775 {
2776 bus_space_tag_t st = sc->sc_st;
2777 bus_space_handle_t sh = sc->sc_sh;
2778 struct ethercom *ec = &sc->sc_ethercom;
2779 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2780 struct ether_multi *enm;
2781 u_int8_t *cp;
2782 struct ether_multistep step;
2783 u_int32_t crc, mchash[16];
2784
2785 /*
2786 * Initialize the prototype RFCR.
2787 */
2788 sc->sc_rfcr = RFCR_RFEN;
2789 if (ifp->if_flags & IFF_BROADCAST)
2790 sc->sc_rfcr |= RFCR_AAB;
2791 if (ifp->if_flags & IFF_PROMISC) {
2792 sc->sc_rfcr |= RFCR_AAP;
2793 goto allmulti;
2794 }
2795
2796 /*
2797 * Set up the multicast address filter by passing all multicast
2798 * addresses through a CRC generator, and then using the high-order
2799 * 6 bits as an index into the 128 bit multicast hash table (only
2800 * the lower 16 bits of each 32 bit multicast hash register are
2801 * valid). The high order bits select the register, while the
2802 * rest of the bits select the bit within the register.
2803 */
2804
2805 memset(mchash, 0, sizeof(mchash));
2806
2807 /*
2808 * SiS900 (at least SiS963) requires us to register the address of
2809 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
2810 */
2811 crc = 0x0ed423f9;
2812
2813 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2814 SIP_SIS900_REV(sc, SIS_REV_960) ||
2815 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2816 /* Just want the 8 most significant bits. */
2817 crc >>= 24;
2818 } else {
2819 /* Just want the 7 most significant bits. */
2820 crc >>= 25;
2821 }
2822
2823 /* Set the corresponding bit in the hash table. */
2824 mchash[crc >> 4] |= 1 << (crc & 0xf);
2825
2826 ETHER_FIRST_MULTI(step, ec, enm);
2827 while (enm != NULL) {
2828 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2829 /*
2830 * We must listen to a range of multicast addresses.
2831 * For now, just accept all multicasts, rather than
2832 * trying to set only those filter bits needed to match
2833 * the range. (At this time, the only use of address
2834 * ranges is for IP multicast routing, for which the
2835 * range is big enough to require all bits set.)
2836 */
2837 goto allmulti;
2838 }
2839
2840 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2841
2842 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2843 SIP_SIS900_REV(sc, SIS_REV_960) ||
2844 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2845 /* Just want the 8 most significant bits. */
2846 crc >>= 24;
2847 } else {
2848 /* Just want the 7 most significant bits. */
2849 crc >>= 25;
2850 }
2851
2852 /* Set the corresponding bit in the hash table. */
2853 mchash[crc >> 4] |= 1 << (crc & 0xf);
2854
2855 ETHER_NEXT_MULTI(step, enm);
2856 }
2857
2858 ifp->if_flags &= ~IFF_ALLMULTI;
2859 goto setit;
2860
2861 allmulti:
2862 ifp->if_flags |= IFF_ALLMULTI;
2863 sc->sc_rfcr |= RFCR_AAM;
2864
2865 setit:
2866 #define FILTER_EMIT(addr, data) \
2867 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2868 delay(1); \
2869 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2870 delay(1)
2871
2872 /*
2873 * Disable receive filter, and program the node address.
2874 */
2875 cp = LLADDR(ifp->if_sadl);
2876 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2877 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2878 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2879
2880 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2881 /*
2882 * Program the multicast hash table.
2883 */
2884 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2885 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2886 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2887 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2888 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2889 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2890 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2891 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2892 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2893 SIP_SIS900_REV(sc, SIS_REV_960) ||
2894 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2895 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2896 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2897 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2898 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2899 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2900 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2901 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2902 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2903 }
2904 }
2905 #undef FILTER_EMIT
2906
2907 /*
2908 * Re-enable the receiver filter.
2909 */
2910 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2911 }
2912 #endif /* ! DP83820 */
2913
2914 /*
2915 * sip_dp83815_set_filter:
2916 *
2917 * Set up the receive filter.
2918 */
2919 static void
2920 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2921 {
2922 bus_space_tag_t st = sc->sc_st;
2923 bus_space_handle_t sh = sc->sc_sh;
2924 struct ethercom *ec = &sc->sc_ethercom;
2925 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2926 struct ether_multi *enm;
2927 u_int8_t *cp;
2928 struct ether_multistep step;
2929 u_int32_t crc, hash, slot, bit;
2930 #ifdef DP83820
2931 #define MCHASH_NWORDS 128
2932 #else
2933 #define MCHASH_NWORDS 32
2934 #endif /* DP83820 */
2935 u_int16_t mchash[MCHASH_NWORDS];
2936 int i;
2937
2938 /*
2939 * Initialize the prototype RFCR.
2940 * Enable the receive filter, and accept on
2941 * Perfect (destination address) Match
2942 * If IFF_BROADCAST, also accept all broadcast packets.
2943 * If IFF_PROMISC, accept all unicast packets (and later, set
2944 * IFF_ALLMULTI and accept all multicast, too).
2945 */
2946 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2947 if (ifp->if_flags & IFF_BROADCAST)
2948 sc->sc_rfcr |= RFCR_AAB;
2949 if (ifp->if_flags & IFF_PROMISC) {
2950 sc->sc_rfcr |= RFCR_AAP;
2951 goto allmulti;
2952 }
2953
2954 #ifdef DP83820
2955 /*
2956 * Set up the DP83820 multicast address filter by passing all multicast
2957 * addresses through a CRC generator, and then using the high-order
2958 * 11 bits as an index into the 2048 bit multicast hash table. The
2959 * high-order 7 bits select the slot, while the low-order 4 bits
2960 * select the bit within the slot. Note that only the low 16-bits
2961 * of each filter word are used, and there are 128 filter words.
2962 */
2963 #else
2964 /*
2965 * Set up the DP83815 multicast address filter by passing all multicast
2966 * addresses through a CRC generator, and then using the high-order
2967 * 9 bits as an index into the 512 bit multicast hash table. The
2968 * high-order 5 bits select the slot, while the low-order 4 bits
2969 * select the bit within the slot. Note that only the low 16-bits
2970 * of each filter word are used, and there are 32 filter words.
2971 */
2972 #endif /* DP83820 */
2973
2974 memset(mchash, 0, sizeof(mchash));
2975
2976 ifp->if_flags &= ~IFF_ALLMULTI;
2977 ETHER_FIRST_MULTI(step, ec, enm);
2978 if (enm == NULL)
2979 goto setit;
2980 while (enm != NULL) {
2981 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2982 /*
2983 * We must listen to a range of multicast addresses.
2984 * For now, just accept all multicasts, rather than
2985 * trying to set only those filter bits needed to match
2986 * the range. (At this time, the only use of address
2987 * ranges is for IP multicast routing, for which the
2988 * range is big enough to require all bits set.)
2989 */
2990 goto allmulti;
2991 }
2992
2993 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2994
2995 #ifdef DP83820
2996 /* Just want the 11 most significant bits. */
2997 hash = crc >> 21;
2998 #else
2999 /* Just want the 9 most significant bits. */
3000 hash = crc >> 23;
3001 #endif /* DP83820 */
3002
3003 slot = hash >> 4;
3004 bit = hash & 0xf;
3005
3006 /* Set the corresponding bit in the hash table. */
3007 mchash[slot] |= 1 << bit;
3008
3009 ETHER_NEXT_MULTI(step, enm);
3010 }
3011 sc->sc_rfcr |= RFCR_MHEN;
3012 goto setit;
3013
3014 allmulti:
3015 ifp->if_flags |= IFF_ALLMULTI;
3016 sc->sc_rfcr |= RFCR_AAM;
3017
3018 setit:
3019 #define FILTER_EMIT(addr, data) \
3020 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3021 delay(1); \
3022 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3023 delay(1)
3024
3025 /*
3026 * Disable receive filter, and program the node address.
3027 */
3028 cp = LLADDR(ifp->if_sadl);
3029 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3030 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3031 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3032
3033 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3034 /*
3035 * Program the multicast hash table.
3036 */
3037 for (i = 0; i < MCHASH_NWORDS; i++) {
3038 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
3039 mchash[i]);
3040 }
3041 }
3042 #undef FILTER_EMIT
3043 #undef MCHASH_NWORDS
3044
3045 /*
3046 * Re-enable the receiver filter.
3047 */
3048 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3049 }
3050
3051 #if defined(DP83820)
3052 /*
3053 * sip_dp83820_mii_readreg: [mii interface function]
3054 *
3055 * Read a PHY register on the MII of the DP83820.
3056 */
3057 static int
3058 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
3059 {
3060 struct sip_softc *sc = (void *) self;
3061
3062 if (sc->sc_cfg & CFG_TBI_EN) {
3063 bus_addr_t tbireg;
3064 int rv;
3065
3066 if (phy != 0)
3067 return (0);
3068
3069 switch (reg) {
3070 case MII_BMCR: tbireg = SIP_TBICR; break;
3071 case MII_BMSR: tbireg = SIP_TBISR; break;
3072 case MII_ANAR: tbireg = SIP_TANAR; break;
3073 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3074 case MII_ANER: tbireg = SIP_TANER; break;
3075 case MII_EXTSR:
3076 /*
3077 * Don't even bother reading the TESR register.
3078 * The manual documents that the device has
3079 * 1000baseX full/half capability, but the
3080 * register itself seems read back 0 on some
3081 * boards. Just hard-code the result.
3082 */
3083 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3084
3085 default:
3086 return (0);
3087 }
3088
3089 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3090 if (tbireg == SIP_TBISR) {
3091 /* LINK and ACOMP are switched! */
3092 int val = rv;
3093
3094 rv = 0;
3095 if (val & TBISR_MR_LINK_STATUS)
3096 rv |= BMSR_LINK;
3097 if (val & TBISR_MR_AN_COMPLETE)
3098 rv |= BMSR_ACOMP;
3099
3100 /*
3101 * The manual claims this register reads back 0
3102 * on hard and soft reset. But we want to let
3103 * the gentbi driver know that we support auto-
3104 * negotiation, so hard-code this bit in the
3105 * result.
3106 */
3107 rv |= BMSR_ANEG | BMSR_EXTSTAT;
3108 }
3109
3110 return (rv);
3111 }
3112
3113 return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3114 phy, reg));
3115 }
3116
3117 /*
3118 * sip_dp83820_mii_writereg: [mii interface function]
3119 *
3120 * Write a PHY register on the MII of the DP83820.
3121 */
3122 static void
3123 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
3124 {
3125 struct sip_softc *sc = (void *) self;
3126
3127 if (sc->sc_cfg & CFG_TBI_EN) {
3128 bus_addr_t tbireg;
3129
3130 if (phy != 0)
3131 return;
3132
3133 switch (reg) {
3134 case MII_BMCR: tbireg = SIP_TBICR; break;
3135 case MII_ANAR: tbireg = SIP_TANAR; break;
3136 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3137 default:
3138 return;
3139 }
3140
3141 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3142 return;
3143 }
3144
3145 mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3146 phy, reg, val);
3147 }
3148
3149 /*
3150 * sip_dp83820_mii_statchg: [mii interface function]
3151 *
3152 * Callback from MII layer when media changes.
3153 */
3154 static void
3155 SIP_DECL(dp83820_mii_statchg)(struct device *self)
3156 {
3157 struct sip_softc *sc = (struct sip_softc *) self;
3158 struct mii_data *mii = &sc->sc_mii;
3159 u_int32_t cfg, pcr;
3160
3161 /*
3162 * Get flow control negotiation result.
3163 */
3164 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3165 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3166 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3167 mii->mii_media_active &= ~IFM_ETH_FMASK;
3168 }
3169
3170 /*
3171 * Update TXCFG for full-duplex operation.
3172 */
3173 if ((mii->mii_media_active & IFM_FDX) != 0)
3174 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3175 else
3176 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3177
3178 /*
3179 * Update RXCFG for full-duplex or loopback.
3180 */
3181 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3182 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3183 sc->sc_rxcfg |= RXCFG_ATX;
3184 else
3185 sc->sc_rxcfg &= ~RXCFG_ATX;
3186
3187 /*
3188 * Update CFG for MII/GMII.
3189 */
3190 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3191 cfg = sc->sc_cfg | CFG_MODE_1000;
3192 else
3193 cfg = sc->sc_cfg;
3194
3195 /*
3196 * 802.3x flow control.
3197 */
3198 pcr = 0;
3199 if (sc->sc_flowflags & IFM_FLOW) {
3200 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3201 pcr |= sc->sc_rx_flow_thresh;
3202 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3203 pcr |= PCR_PSEN | PCR_PS_MCAST;
3204 }
3205
3206 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3207 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3208 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3209 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3210 }
3211 #endif /* ! DP83820 */
3212
3213 /*
3214 * sip_mii_bitbang_read: [mii bit-bang interface function]
3215 *
3216 * Read the MII serial port for the MII bit-bang module.
3217 */
3218 static u_int32_t
3219 SIP_DECL(mii_bitbang_read)(struct device *self)
3220 {
3221 struct sip_softc *sc = (void *) self;
3222
3223 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3224 }
3225
3226 /*
3227 * sip_mii_bitbang_write: [mii big-bang interface function]
3228 *
3229 * Write the MII serial port for the MII bit-bang module.
3230 */
3231 static void
3232 SIP_DECL(mii_bitbang_write)(struct device *self, u_int32_t val)
3233 {
3234 struct sip_softc *sc = (void *) self;
3235
3236 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3237 }
3238
3239 #ifndef DP83820
3240 /*
3241 * sip_sis900_mii_readreg: [mii interface function]
3242 *
3243 * Read a PHY register on the MII.
3244 */
3245 static int
3246 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
3247 {
3248 struct sip_softc *sc = (struct sip_softc *) self;
3249 u_int32_t enphy;
3250
3251 /*
3252 * The PHY of recent SiS chipsets is accessed through bitbang
3253 * operations.
3254 */
3255 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3256 return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3257 phy, reg));
3258
3259 #ifndef SIS900_MII_RESTRICT
3260 /*
3261 * The SiS 900 has only an internal PHY on the MII. Only allow
3262 * MII address 0.
3263 */
3264 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3265 return (0);
3266 #endif
3267
3268 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3269 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3270 ENPHY_RWCMD | ENPHY_ACCESS);
3271 do {
3272 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3273 } while (enphy & ENPHY_ACCESS);
3274 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3275 }
3276
3277 /*
3278 * sip_sis900_mii_writereg: [mii interface function]
3279 *
3280 * Write a PHY register on the MII.
3281 */
3282 static void
3283 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
3284 {
3285 struct sip_softc *sc = (struct sip_softc *) self;
3286 u_int32_t enphy;
3287
3288 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3289 mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3290 phy, reg, val);
3291 return;
3292 }
3293
3294 #ifndef SIS900_MII_RESTRICT
3295 /*
3296 * The SiS 900 has only an internal PHY on the MII. Only allow
3297 * MII address 0.
3298 */
3299 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3300 return;
3301 #endif
3302
3303 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3304 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3305 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3306 do {
3307 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3308 } while (enphy & ENPHY_ACCESS);
3309 }
3310
3311 /*
3312 * sip_sis900_mii_statchg: [mii interface function]
3313 *
3314 * Callback from MII layer when media changes.
3315 */
3316 static void
3317 SIP_DECL(sis900_mii_statchg)(struct device *self)
3318 {
3319 struct sip_softc *sc = (struct sip_softc *) self;
3320 struct mii_data *mii = &sc->sc_mii;
3321 u_int32_t flowctl;
3322
3323 /*
3324 * Get flow control negotiation result.
3325 */
3326 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3327 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3328 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3329 mii->mii_media_active &= ~IFM_ETH_FMASK;
3330 }
3331
3332 /*
3333 * Update TXCFG for full-duplex operation.
3334 */
3335 if ((mii->mii_media_active & IFM_FDX) != 0)
3336 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3337 else
3338 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3339
3340 /*
3341 * Update RXCFG for full-duplex or loopback.
3342 */
3343 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3344 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3345 sc->sc_rxcfg |= RXCFG_ATX;
3346 else
3347 sc->sc_rxcfg &= ~RXCFG_ATX;
3348
3349 /*
3350 * Update IMR for use of 802.3x flow control.
3351 */
3352 if (sc->sc_flowflags & IFM_FLOW) {
3353 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3354 flowctl = FLOWCTL_FLOWEN;
3355 } else {
3356 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3357 flowctl = 0;
3358 }
3359
3360 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3361 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3362 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3363 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3364 }
3365
3366 /*
3367 * sip_dp83815_mii_readreg: [mii interface function]
3368 *
3369 * Read a PHY register on the MII.
3370 */
3371 static int
3372 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3373 {
3374 struct sip_softc *sc = (struct sip_softc *) self;
3375 u_int32_t val;
3376
3377 /*
3378 * The DP83815 only has an internal PHY. Only allow
3379 * MII address 0.
3380 */
3381 if (phy != 0)
3382 return (0);
3383
3384 /*
3385 * Apparently, after a reset, the DP83815 can take a while
3386 * to respond. During this recovery period, the BMSR returns
3387 * a value of 0. Catch this -- it's not supposed to happen
3388 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3389 * PHY to come back to life.
3390 *
3391 * This works out because the BMSR is the first register
3392 * read during the PHY probe process.
3393 */
3394 do {
3395 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3396 } while (reg == MII_BMSR && val == 0);
3397
3398 return (val & 0xffff);
3399 }
3400
3401 /*
3402 * sip_dp83815_mii_writereg: [mii interface function]
3403 *
3404 * Write a PHY register to the MII.
3405 */
3406 static void
3407 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3408 {
3409 struct sip_softc *sc = (struct sip_softc *) self;
3410
3411 /*
3412 * The DP83815 only has an internal PHY. Only allow
3413 * MII address 0.
3414 */
3415 if (phy != 0)
3416 return;
3417
3418 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3419 }
3420
3421 /*
3422 * sip_dp83815_mii_statchg: [mii interface function]
3423 *
3424 * Callback from MII layer when media changes.
3425 */
3426 static void
3427 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3428 {
3429 struct sip_softc *sc = (struct sip_softc *) self;
3430
3431 /*
3432 * Update TXCFG for full-duplex operation.
3433 */
3434 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3435 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3436 else
3437 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3438
3439 /*
3440 * Update RXCFG for full-duplex or loopback.
3441 */
3442 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3443 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3444 sc->sc_rxcfg |= RXCFG_ATX;
3445 else
3446 sc->sc_rxcfg &= ~RXCFG_ATX;
3447
3448 /*
3449 * XXX 802.3x flow control.
3450 */
3451
3452 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3453 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3454
3455 /*
3456 * Some DP83815s experience problems when used with short
3457 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3458 * sequence adjusts the DSP's signal attenuation to fix the
3459 * problem.
3460 */
3461 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3462 uint32_t reg;
3463
3464 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3465
3466 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3467 reg &= 0x0fff;
3468 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3469 delay(100);
3470 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3471 reg &= 0x00ff;
3472 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3473 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3474 0x00e8);
3475 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3476 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3477 reg | 0x20);
3478 }
3479
3480 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3481 }
3482 }
3483 #endif /* DP83820 */
3484
3485 #if defined(DP83820)
3486 static void
3487 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3488 const struct pci_attach_args *pa, u_int8_t *enaddr)
3489 {
3490 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3491 u_int8_t cksum, *e, match;
3492 int i;
3493
3494 /*
3495 * EEPROM data format for the DP83820 can be found in
3496 * the DP83820 manual, section 4.2.4.
3497 */
3498
3499 SIP_DECL(read_eeprom)(sc, 0,
3500 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3501
3502 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3503 match = ~(match - 1);
3504
3505 cksum = 0x55;
3506 e = (u_int8_t *) eeprom_data;
3507 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3508 cksum += *e++;
3509
3510 if (cksum != match)
3511 printf("%s: Checksum (%x) mismatch (%x)",
3512 sc->sc_dev.dv_xname, cksum, match);
3513
3514 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3515 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3516 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3517 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3518 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3519 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3520 }
3521 #else /* ! DP83820 */
3522 static void
3523 SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc)
3524 {
3525 int i;
3526
3527 /*
3528 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3529 * a reason, but I don't know it.
3530 */
3531 for (i = 0; i < 10; i++)
3532 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3533 }
3534
3535 static void
3536 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3537 const struct pci_attach_args *pa, u_int8_t *enaddr)
3538 {
3539 u_int16_t myea[ETHER_ADDR_LEN / 2];
3540
3541 switch (sc->sc_rev) {
3542 case SIS_REV_630S:
3543 case SIS_REV_630E:
3544 case SIS_REV_630EA1:
3545 case SIS_REV_630ET:
3546 case SIS_REV_635:
3547 /*
3548 * The MAC address for the on-board Ethernet of
3549 * the SiS 630 chipset is in the NVRAM. Kick
3550 * the chip into re-loading it from NVRAM, and
3551 * read the MAC address out of the filter registers.
3552 */
3553 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3554
3555 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3556 RFCR_RFADDR_NODE0);
3557 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3558 0xffff;
3559
3560 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3561 RFCR_RFADDR_NODE2);
3562 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3563 0xffff;
3564
3565 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3566 RFCR_RFADDR_NODE4);
3567 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3568 0xffff;
3569 break;
3570
3571 case SIS_REV_960:
3572 {
3573 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3574 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3575
3576 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3577 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3578
3579 int waittime, i;
3580
3581 /* Allow to read EEPROM from LAN. It is shared
3582 * between a 1394 controller and the NIC and each
3583 * time we access it, we need to set SIS_EECMD_REQ.
3584 */
3585 SIS_SET_EROMAR(sc, EROMAR_REQ);
3586
3587 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3588 /* Force EEPROM to idle state. */
3589
3590 /*
3591 * XXX-cube This is ugly. I'll look for docs about it.
3592 */
3593 SIS_SET_EROMAR(sc, EROMAR_EECS);
3594 SIP_DECL(sis900_eeprom_delay)(sc);
3595 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3596 SIS_SET_EROMAR(sc, EROMAR_EESK);
3597 SIP_DECL(sis900_eeprom_delay)(sc);
3598 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3599 SIP_DECL(sis900_eeprom_delay)(sc);
3600 }
3601 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3602 SIP_DECL(sis900_eeprom_delay)(sc);
3603 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3604
3605 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3606 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3607 sizeof(myea) / sizeof(myea[0]), myea);
3608 break;
3609 }
3610 DELAY(1);
3611 }
3612
3613 /*
3614 * Set SIS_EECTL_CLK to high, so a other master
3615 * can operate on the i2c bus.
3616 */
3617 SIS_SET_EROMAR(sc, EROMAR_EESK);
3618
3619 /* Refuse EEPROM access by LAN */
3620 SIS_SET_EROMAR(sc, EROMAR_DONE);
3621 } break;
3622
3623 default:
3624 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3625 sizeof(myea) / sizeof(myea[0]), myea);
3626 }
3627
3628 enaddr[0] = myea[0] & 0xff;
3629 enaddr[1] = myea[0] >> 8;
3630 enaddr[2] = myea[1] & 0xff;
3631 enaddr[3] = myea[1] >> 8;
3632 enaddr[4] = myea[2] & 0xff;
3633 enaddr[5] = myea[2] >> 8;
3634 }
3635
3636 /* Table and macro to bit-reverse an octet. */
3637 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3638 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3639
3640 static void
3641 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3642 const struct pci_attach_args *pa, u_int8_t *enaddr)
3643 {
3644 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3645 u_int8_t cksum, *e, match;
3646 int i;
3647
3648 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3649 sizeof(eeprom_data[0]), eeprom_data);
3650
3651 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3652 match = ~(match - 1);
3653
3654 cksum = 0x55;
3655 e = (u_int8_t *) eeprom_data;
3656 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3657 cksum += *e++;
3658 }
3659 if (cksum != match) {
3660 printf("%s: Checksum (%x) mismatch (%x)",
3661 sc->sc_dev.dv_xname, cksum, match);
3662 }
3663
3664 /*
3665 * Unrolled because it makes slightly more sense this way.
3666 * The DP83815 stores the MAC address in bit 0 of word 6
3667 * through bit 15 of word 8.
3668 */
3669 ea = &eeprom_data[6];
3670 enaddr[0] = ((*ea & 0x1) << 7);
3671 ea++;
3672 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3673 enaddr[1] = ((*ea & 0x1FE) >> 1);
3674 enaddr[2] = ((*ea & 0x1) << 7);
3675 ea++;
3676 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3677 enaddr[3] = ((*ea & 0x1FE) >> 1);
3678 enaddr[4] = ((*ea & 0x1) << 7);
3679 ea++;
3680 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3681 enaddr[5] = ((*ea & 0x1FE) >> 1);
3682
3683 /*
3684 * In case that's not weird enough, we also need to reverse
3685 * the bits in each byte. This all actually makes more sense
3686 * if you think about the EEPROM storage as an array of bits
3687 * being shifted into bytes, but that's not how we're looking
3688 * at it here...
3689 */
3690 for (i = 0; i < 6 ;i++)
3691 enaddr[i] = bbr(enaddr[i]);
3692 }
3693 #endif /* DP83820 */
3694
3695 /*
3696 * sip_mediastatus: [ifmedia interface function]
3697 *
3698 * Get the current interface media status.
3699 */
3700 static void
3701 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3702 {
3703 struct sip_softc *sc = ifp->if_softc;
3704
3705 mii_pollstat(&sc->sc_mii);
3706 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3707 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3708 sc->sc_flowflags;
3709 }
3710
3711 /*
3712 * sip_mediachange: [ifmedia interface function]
3713 *
3714 * Set hardware to newly-selected media.
3715 */
3716 static int
3717 SIP_DECL(mediachange)(struct ifnet *ifp)
3718 {
3719 struct sip_softc *sc = ifp->if_softc;
3720
3721 if (ifp->if_flags & IFF_UP)
3722 mii_mediachg(&sc->sc_mii);
3723 return (0);
3724 }
3725