if_sip.c revision 1.96.6.2 1 /* $NetBSD: if_sip.c,v 1.96.6.2 2005/03/19 08:35:11 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Reduce the Rx interrupt load.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.96.6.2 2005/03/19 08:35:11 yamt Exp $");
84
85 #include "bpfilter.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114
115 #include <machine/bus.h>
116 #include <machine/intr.h>
117 #include <machine/endian.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/mii_bitbang.h>
122
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126
127 #include <dev/pci/if_sipreg.h>
128
129 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
130 #define SIP_DECL(x) __CONCAT(gsip_,x)
131 #else /* SiS900 and DP83815 */
132 #define SIP_DECL(x) __CONCAT(sip_,x)
133 #endif
134
135 #define SIP_STR(x) __STRING(SIP_DECL(x))
136
137 /*
138 * Transmit descriptor list size. This is arbitrary, but allocate
139 * enough descriptors for 128 pending transmissions, and 8 segments
140 * per packet (64 for DP83820 for jumbo frames).
141 *
142 * This MUST work out to a power of 2.
143 */
144 #ifdef DP83820
145 #define SIP_NTXSEGS 64
146 #define SIP_NTXSEGS_ALLOC 16
147 #else
148 #define SIP_NTXSEGS 16
149 #define SIP_NTXSEGS_ALLOC 8
150 #endif
151
152 #define SIP_TXQUEUELEN 256
153 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
154 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
155 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
156
157 #if defined(DP83820)
158 #define TX_DMAMAP_SIZE ETHER_MAX_LEN_JUMBO
159 #else
160 #define TX_DMAMAP_SIZE MCLBYTES
161 #endif
162
163 /*
164 * Receive descriptor list size. We have one Rx buffer per incoming
165 * packet, so this logic is a little simpler.
166 *
167 * Actually, on the DP83820, we allow the packet to consume more than
168 * one buffer, in order to support jumbo Ethernet frames. In that
169 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
170 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
171 * so we'd better be quick about handling receive interrupts.
172 */
173 #if defined(DP83820)
174 #define SIP_NRXDESC 256
175 #else
176 #define SIP_NRXDESC 128
177 #endif /* DP83820 */
178 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
179 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
180
181 /*
182 * Control structures are DMA'd to the SiS900 chip. We allocate them in
183 * a single clump that maps to a single DMA segment to make several things
184 * easier.
185 */
186 struct sip_control_data {
187 /*
188 * The transmit descriptors.
189 */
190 struct sip_desc scd_txdescs[SIP_NTXDESC];
191
192 /*
193 * The receive descriptors.
194 */
195 struct sip_desc scd_rxdescs[SIP_NRXDESC];
196 };
197
198 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
199 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
200 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
201
202 /*
203 * Software state for transmit jobs.
204 */
205 struct sip_txsoft {
206 struct mbuf *txs_mbuf; /* head of our mbuf chain */
207 bus_dmamap_t txs_dmamap; /* our DMA map */
208 int txs_firstdesc; /* first descriptor in packet */
209 int txs_lastdesc; /* last descriptor in packet */
210 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
211 };
212
213 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
214
215 /*
216 * Software state for receive jobs.
217 */
218 struct sip_rxsoft {
219 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
220 bus_dmamap_t rxs_dmamap; /* our DMA map */
221 };
222
223 /*
224 * Software state per device.
225 */
226 struct sip_softc {
227 struct device sc_dev; /* generic device information */
228 bus_space_tag_t sc_st; /* bus space tag */
229 bus_space_handle_t sc_sh; /* bus space handle */
230 bus_dma_tag_t sc_dmat; /* bus DMA tag */
231 struct ethercom sc_ethercom; /* ethernet common data */
232 void *sc_sdhook; /* shutdown hook */
233
234 const struct sip_product *sc_model; /* which model are we? */
235 int sc_rev; /* chip revision */
236
237 void *sc_ih; /* interrupt cookie */
238
239 struct mii_data sc_mii; /* MII/media information */
240
241 struct callout sc_tick_ch; /* tick callout */
242
243 bus_dmamap_t sc_cddmamap; /* control data DMA map */
244 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
245
246 /*
247 * Software state for transmit and receive descriptors.
248 */
249 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
250 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
251
252 /*
253 * Control data structures.
254 */
255 struct sip_control_data *sc_control_data;
256 #define sc_txdescs sc_control_data->scd_txdescs
257 #define sc_rxdescs sc_control_data->scd_rxdescs
258
259 #ifdef SIP_EVENT_COUNTERS
260 /*
261 * Event counters.
262 */
263 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
264 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
265 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
266 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
267 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
268 struct evcnt sc_ev_rxintr; /* Rx interrupts */
269 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
270 struct evcnt sc_ev_rxpause; /* PAUSE received */
271 #ifdef DP83820
272 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
273 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
274 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
275 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
276 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
277 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
278 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
279 #endif /* DP83820 */
280 #endif /* SIP_EVENT_COUNTERS */
281
282 u_int32_t sc_txcfg; /* prototype TXCFG register */
283 u_int32_t sc_rxcfg; /* prototype RXCFG register */
284 u_int32_t sc_imr; /* prototype IMR register */
285 u_int32_t sc_rfcr; /* prototype RFCR register */
286
287 u_int32_t sc_cfg; /* prototype CFG register */
288
289 #ifdef DP83820
290 u_int32_t sc_gpior; /* prototype GPIOR register */
291 #endif /* DP83820 */
292
293 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
294 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
295
296 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
297
298 int sc_flowflags; /* 802.3x flow control flags */
299 #ifdef DP83820
300 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
301 #else
302 int sc_paused; /* paused indication */
303 #endif
304
305 int sc_txfree; /* number of free Tx descriptors */
306 int sc_txnext; /* next ready Tx descriptor */
307 int sc_txwin; /* Tx descriptors since last intr */
308
309 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
310 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
311
312 short sc_if_flags;
313
314 int sc_rxptr; /* next ready Rx descriptor/descsoft */
315 #if defined(DP83820)
316 int sc_rxdiscard;
317 int sc_rxlen;
318 struct mbuf *sc_rxhead;
319 struct mbuf *sc_rxtail;
320 struct mbuf **sc_rxtailp;
321 #endif /* DP83820 */
322
323 #if NRND > 0
324 rndsource_element_t rnd_source; /* random source */
325 #endif
326 };
327
328 #ifdef DP83820
329 #define SIP_RXCHAIN_RESET(sc) \
330 do { \
331 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
332 *(sc)->sc_rxtailp = NULL; \
333 (sc)->sc_rxlen = 0; \
334 } while (/*CONSTCOND*/0)
335
336 #define SIP_RXCHAIN_LINK(sc, m) \
337 do { \
338 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
339 (sc)->sc_rxtailp = &(m)->m_next; \
340 } while (/*CONSTCOND*/0)
341 #endif /* DP83820 */
342
343 #ifdef SIP_EVENT_COUNTERS
344 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
345 #else
346 #define SIP_EVCNT_INCR(ev) /* nothing */
347 #endif
348
349 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
350 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
351
352 #define SIP_CDTXSYNC(sc, x, n, ops) \
353 do { \
354 int __x, __n; \
355 \
356 __x = (x); \
357 __n = (n); \
358 \
359 /* If it will wrap around, sync to the end of the ring. */ \
360 if ((__x + __n) > SIP_NTXDESC) { \
361 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
362 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
363 (SIP_NTXDESC - __x), (ops)); \
364 __n -= (SIP_NTXDESC - __x); \
365 __x = 0; \
366 } \
367 \
368 /* Now sync whatever is left. */ \
369 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
370 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
371 } while (0)
372
373 #define SIP_CDRXSYNC(sc, x, ops) \
374 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
375 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
376
377 #ifdef DP83820
378 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
379 #define SIP_RXBUF_LEN (MCLBYTES - 8)
380 #else
381 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
382 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */
383 #endif
384 #define SIP_INIT_RXDESC(sc, x) \
385 do { \
386 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
387 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
388 \
389 __sipd->sipd_link = \
390 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
391 __sipd->sipd_bufptr = \
392 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
393 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
394 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \
395 SIP_INIT_RXDESC_EXTSTS \
396 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
397 } while (0)
398
399 #define SIP_CHIP_VERS(sc, v, p, r) \
400 ((sc)->sc_model->sip_vendor == (v) && \
401 (sc)->sc_model->sip_product == (p) && \
402 (sc)->sc_rev == (r))
403
404 #define SIP_CHIP_MODEL(sc, v, p) \
405 ((sc)->sc_model->sip_vendor == (v) && \
406 (sc)->sc_model->sip_product == (p))
407
408 #if !defined(DP83820)
409 #define SIP_SIS900_REV(sc, rev) \
410 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
411 #endif
412
413 #define SIP_TIMEOUT 1000
414
415 static void SIP_DECL(start)(struct ifnet *);
416 static void SIP_DECL(watchdog)(struct ifnet *);
417 static int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
418 static int SIP_DECL(init)(struct ifnet *);
419 static void SIP_DECL(stop)(struct ifnet *, int);
420
421 static void SIP_DECL(shutdown)(void *);
422
423 static void SIP_DECL(reset)(struct sip_softc *);
424 static void SIP_DECL(rxdrain)(struct sip_softc *);
425 static int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
426 static void SIP_DECL(read_eeprom)(struct sip_softc *, int, int,
427 u_int16_t *);
428 static void SIP_DECL(tick)(void *);
429
430 #if !defined(DP83820)
431 static void SIP_DECL(sis900_set_filter)(struct sip_softc *);
432 #endif /* ! DP83820 */
433 static void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
434
435 #if defined(DP83820)
436 static void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
437 const struct pci_attach_args *, u_int8_t *);
438 #else
439 static void SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc);
440 static void SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
441 const struct pci_attach_args *, u_int8_t *);
442 static void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
443 const struct pci_attach_args *, u_int8_t *);
444 #endif /* DP83820 */
445
446 static int SIP_DECL(intr)(void *);
447 static void SIP_DECL(txintr)(struct sip_softc *);
448 static void SIP_DECL(rxintr)(struct sip_softc *);
449
450 #if defined(DP83820)
451 static int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
452 static void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
453 static void SIP_DECL(dp83820_mii_statchg)(struct device *);
454 #else
455 static int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
456 static void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
457 static void SIP_DECL(sis900_mii_statchg)(struct device *);
458
459 static int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
460 static void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
461 static void SIP_DECL(dp83815_mii_statchg)(struct device *);
462 #endif /* DP83820 */
463
464 static int SIP_DECL(mediachange)(struct ifnet *);
465 static void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
466
467 static int SIP_DECL(match)(struct device *, struct cfdata *, void *);
468 static void SIP_DECL(attach)(struct device *, struct device *, void *);
469
470 int SIP_DECL(copy_small) = 0;
471
472 #ifdef DP83820
473 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
474 gsip_match, gsip_attach, NULL, NULL);
475 #else
476 CFATTACH_DECL(sip, sizeof(struct sip_softc),
477 sip_match, sip_attach, NULL, NULL);
478 #endif
479
480 /*
481 * Descriptions of the variants of the SiS900.
482 */
483 struct sip_variant {
484 int (*sipv_mii_readreg)(struct device *, int, int);
485 void (*sipv_mii_writereg)(struct device *, int, int, int);
486 void (*sipv_mii_statchg)(struct device *);
487 void (*sipv_set_filter)(struct sip_softc *);
488 void (*sipv_read_macaddr)(struct sip_softc *,
489 const struct pci_attach_args *, u_int8_t *);
490 };
491
492 static u_int32_t SIP_DECL(mii_bitbang_read)(struct device *);
493 static void SIP_DECL(mii_bitbang_write)(struct device *, u_int32_t);
494
495 static const struct mii_bitbang_ops SIP_DECL(mii_bitbang_ops) = {
496 SIP_DECL(mii_bitbang_read),
497 SIP_DECL(mii_bitbang_write),
498 {
499 EROMAR_MDIO, /* MII_BIT_MDO */
500 EROMAR_MDIO, /* MII_BIT_MDI */
501 EROMAR_MDC, /* MII_BIT_MDC */
502 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
503 0, /* MII_BIT_DIR_PHY_HOST */
504 }
505 };
506
507 #if defined(DP83820)
508 static const struct sip_variant SIP_DECL(variant_dp83820) = {
509 SIP_DECL(dp83820_mii_readreg),
510 SIP_DECL(dp83820_mii_writereg),
511 SIP_DECL(dp83820_mii_statchg),
512 SIP_DECL(dp83815_set_filter),
513 SIP_DECL(dp83820_read_macaddr),
514 };
515 #else
516 static const struct sip_variant SIP_DECL(variant_sis900) = {
517 SIP_DECL(sis900_mii_readreg),
518 SIP_DECL(sis900_mii_writereg),
519 SIP_DECL(sis900_mii_statchg),
520 SIP_DECL(sis900_set_filter),
521 SIP_DECL(sis900_read_macaddr),
522 };
523
524 static const struct sip_variant SIP_DECL(variant_dp83815) = {
525 SIP_DECL(dp83815_mii_readreg),
526 SIP_DECL(dp83815_mii_writereg),
527 SIP_DECL(dp83815_mii_statchg),
528 SIP_DECL(dp83815_set_filter),
529 SIP_DECL(dp83815_read_macaddr),
530 };
531 #endif /* DP83820 */
532
533 /*
534 * Devices supported by this driver.
535 */
536 static const struct sip_product {
537 pci_vendor_id_t sip_vendor;
538 pci_product_id_t sip_product;
539 const char *sip_name;
540 const struct sip_variant *sip_variant;
541 } SIP_DECL(products)[] = {
542 #if defined(DP83820)
543 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
544 "NatSemi DP83820 Gigabit Ethernet",
545 &SIP_DECL(variant_dp83820) },
546 #else
547 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
548 "SiS 900 10/100 Ethernet",
549 &SIP_DECL(variant_sis900) },
550 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
551 "SiS 7016 10/100 Ethernet",
552 &SIP_DECL(variant_sis900) },
553
554 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
555 "NatSemi DP83815 10/100 Ethernet",
556 &SIP_DECL(variant_dp83815) },
557 #endif /* DP83820 */
558
559 { 0, 0,
560 NULL,
561 NULL },
562 };
563
564 static const struct sip_product *
565 SIP_DECL(lookup)(const struct pci_attach_args *pa)
566 {
567 const struct sip_product *sip;
568
569 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
570 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
571 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
572 return (sip);
573 }
574 return (NULL);
575 }
576
577 #ifdef DP83820
578 /*
579 * I really hate stupid hardware vendors. There's a bit in the EEPROM
580 * which indicates if the card can do 64-bit data transfers. Unfortunately,
581 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
582 * which means we try to use 64-bit data transfers on those cards if we
583 * happen to be plugged into a 32-bit slot.
584 *
585 * What we do is use this table of cards known to be 64-bit cards. If
586 * you have a 64-bit card who's subsystem ID is not listed in this table,
587 * send the output of "pcictl dump ..." of the device to me so that your
588 * card will use the 64-bit data path when plugged into a 64-bit slot.
589 *
590 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
591 * June 30, 2002
592 */
593 static int
594 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
595 {
596 static const struct {
597 pci_vendor_id_t c64_vendor;
598 pci_product_id_t c64_product;
599 } card64[] = {
600 /* Asante GigaNIX */
601 { 0x128a, 0x0002 },
602
603 /* Accton EN1407-T, Planex GN-1000TE */
604 { 0x1113, 0x1407 },
605
606 /* Netgear GA-621 */
607 { 0x1385, 0x621a },
608
609 /* SMC EZ Card */
610 { 0x10b8, 0x9462 },
611
612 { 0, 0}
613 };
614 pcireg_t subsys;
615 int i;
616
617 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
618
619 for (i = 0; card64[i].c64_vendor != 0; i++) {
620 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
621 PCI_PRODUCT(subsys) == card64[i].c64_product)
622 return (1);
623 }
624
625 return (0);
626 }
627 #endif /* DP83820 */
628
629 static int
630 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
631 {
632 struct pci_attach_args *pa = aux;
633
634 if (SIP_DECL(lookup)(pa) != NULL)
635 return (1);
636
637 return (0);
638 }
639
640 static void
641 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
642 {
643 struct sip_softc *sc = (struct sip_softc *) self;
644 struct pci_attach_args *pa = aux;
645 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
646 pci_chipset_tag_t pc = pa->pa_pc;
647 pci_intr_handle_t ih;
648 const char *intrstr = NULL;
649 bus_space_tag_t iot, memt;
650 bus_space_handle_t ioh, memh;
651 bus_dma_segment_t seg;
652 int ioh_valid, memh_valid;
653 int i, rseg, error;
654 const struct sip_product *sip;
655 pcireg_t pmode;
656 u_int8_t enaddr[ETHER_ADDR_LEN];
657 int pmreg;
658 #ifdef DP83820
659 pcireg_t memtype;
660 u_int32_t reg;
661 #endif /* DP83820 */
662
663 callout_init(&sc->sc_tick_ch);
664
665 sip = SIP_DECL(lookup)(pa);
666 if (sip == NULL) {
667 printf("\n");
668 panic(SIP_STR(attach) ": impossible");
669 }
670 sc->sc_rev = PCI_REVISION(pa->pa_class);
671
672 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
673
674 sc->sc_model = sip;
675
676 /*
677 * XXX Work-around broken PXE firmware on some boards.
678 *
679 * The DP83815 shares an address decoder with the MEM BAR
680 * and the ROM BAR. Make sure the ROM BAR is disabled,
681 * so that memory mapped access works.
682 */
683 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
684 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
685 ~PCI_MAPREG_ROM_ENABLE);
686
687 /*
688 * Map the device.
689 */
690 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
691 PCI_MAPREG_TYPE_IO, 0,
692 &iot, &ioh, NULL, NULL) == 0);
693 #ifdef DP83820
694 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
695 switch (memtype) {
696 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
697 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
698 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
699 memtype, 0, &memt, &memh, NULL, NULL) == 0);
700 break;
701 default:
702 memh_valid = 0;
703 }
704 #else
705 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
706 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
707 &memt, &memh, NULL, NULL) == 0);
708 #endif /* DP83820 */
709
710 if (memh_valid) {
711 sc->sc_st = memt;
712 sc->sc_sh = memh;
713 } else if (ioh_valid) {
714 sc->sc_st = iot;
715 sc->sc_sh = ioh;
716 } else {
717 printf("%s: unable to map device registers\n",
718 sc->sc_dev.dv_xname);
719 return;
720 }
721
722 sc->sc_dmat = pa->pa_dmat;
723
724 /*
725 * Make sure bus mastering is enabled. Also make sure
726 * Write/Invalidate is enabled if we're allowed to use it.
727 */
728 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
729 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
730 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
731 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
732 pmreg | PCI_COMMAND_MASTER_ENABLE);
733
734 /* Get it out of power save mode if needed. */
735 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
736 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
737 PCI_PMCSR_STATE_MASK;
738 if (pmode == PCI_PMCSR_STATE_D3) {
739 /*
740 * The card has lost all configuration data in
741 * this state, so punt.
742 */
743 printf("%s: unable to wake up from power state D3\n",
744 sc->sc_dev.dv_xname);
745 return;
746 }
747 if (pmode != PCI_PMCSR_STATE_D0) {
748 printf("%s: waking up from power state D%d\n",
749 sc->sc_dev.dv_xname, pmode);
750 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
751 PCI_PMCSR_STATE_D0);
752 }
753 }
754
755 /*
756 * Map and establish our interrupt.
757 */
758 if (pci_intr_map(pa, &ih)) {
759 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
760 return;
761 }
762 intrstr = pci_intr_string(pc, ih);
763 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
764 if (sc->sc_ih == NULL) {
765 printf("%s: unable to establish interrupt",
766 sc->sc_dev.dv_xname);
767 if (intrstr != NULL)
768 printf(" at %s", intrstr);
769 printf("\n");
770 return;
771 }
772 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
773
774 SIMPLEQ_INIT(&sc->sc_txfreeq);
775 SIMPLEQ_INIT(&sc->sc_txdirtyq);
776
777 /*
778 * Allocate the control data structures, and create and load the
779 * DMA map for it.
780 */
781 if ((error = bus_dmamem_alloc(sc->sc_dmat,
782 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
783 0)) != 0) {
784 printf("%s: unable to allocate control data, error = %d\n",
785 sc->sc_dev.dv_xname, error);
786 goto fail_0;
787 }
788
789 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
790 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
791 BUS_DMA_COHERENT)) != 0) {
792 printf("%s: unable to map control data, error = %d\n",
793 sc->sc_dev.dv_xname, error);
794 goto fail_1;
795 }
796
797 if ((error = bus_dmamap_create(sc->sc_dmat,
798 sizeof(struct sip_control_data), 1,
799 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
800 printf("%s: unable to create control data DMA map, "
801 "error = %d\n", sc->sc_dev.dv_xname, error);
802 goto fail_2;
803 }
804
805 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
806 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
807 0)) != 0) {
808 printf("%s: unable to load control data DMA map, error = %d\n",
809 sc->sc_dev.dv_xname, error);
810 goto fail_3;
811 }
812
813 /*
814 * Create the transmit buffer DMA maps.
815 */
816 for (i = 0; i < SIP_TXQUEUELEN; i++) {
817 if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
818 SIP_NTXSEGS, MCLBYTES, 0, 0,
819 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
820 printf("%s: unable to create tx DMA map %d, "
821 "error = %d\n", sc->sc_dev.dv_xname, i, error);
822 goto fail_4;
823 }
824 }
825
826 /*
827 * Create the receive buffer DMA maps.
828 */
829 for (i = 0; i < SIP_NRXDESC; i++) {
830 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
831 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
832 printf("%s: unable to create rx DMA map %d, "
833 "error = %d\n", sc->sc_dev.dv_xname, i, error);
834 goto fail_5;
835 }
836 sc->sc_rxsoft[i].rxs_mbuf = NULL;
837 }
838
839 /*
840 * Reset the chip to a known state.
841 */
842 SIP_DECL(reset)(sc);
843
844 /*
845 * Read the Ethernet address from the EEPROM. This might
846 * also fetch other stuff from the EEPROM and stash it
847 * in the softc.
848 */
849 sc->sc_cfg = 0;
850 #if !defined(DP83820)
851 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
852 SIP_SIS900_REV(sc,SIS_REV_900B))
853 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
854
855 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
856 SIP_SIS900_REV(sc,SIS_REV_960) ||
857 SIP_SIS900_REV(sc,SIS_REV_900B))
858 sc->sc_cfg |= (bus_space_read_4(sc->sc_st, sc->sc_sh,
859 SIP_CFG) & CFG_EDBMASTEN);
860 #endif
861
862 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
863
864 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
865 ether_sprintf(enaddr));
866
867 /*
868 * Initialize the configuration register: aggressive PCI
869 * bus request algorithm, default backoff, default OW timer,
870 * default parity error detection.
871 *
872 * NOTE: "Big endian mode" is useless on the SiS900 and
873 * friends -- it affects packet data, not descriptors.
874 */
875 #ifdef DP83820
876 /*
877 * Cause the chip to load configuration data from the EEPROM.
878 */
879 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
880 for (i = 0; i < 10000; i++) {
881 delay(10);
882 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
883 PTSCR_EELOAD_EN) == 0)
884 break;
885 }
886 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
887 PTSCR_EELOAD_EN) {
888 printf("%s: timeout loading configuration from EEPROM\n",
889 sc->sc_dev.dv_xname);
890 return;
891 }
892
893 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
894
895 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
896 if (reg & CFG_PCI64_DET) {
897 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
898 /*
899 * Check to see if this card is 64-bit. If so, enable 64-bit
900 * data transfers.
901 *
902 * We can't use the DATA64_EN bit in the EEPROM, because
903 * vendors of 32-bit cards fail to clear that bit in many
904 * cases (yet the card still detects that it's in a 64-bit
905 * slot; go figure).
906 */
907 if (SIP_DECL(check_64bit)(pa)) {
908 sc->sc_cfg |= CFG_DATA64_EN;
909 printf(", using 64-bit data transfers");
910 }
911 printf("\n");
912 }
913
914 /*
915 * XXX Need some PCI flags indicating support for
916 * XXX 64-bit addressing.
917 */
918 #if 0
919 if (reg & CFG_M64ADDR)
920 sc->sc_cfg |= CFG_M64ADDR;
921 if (reg & CFG_T64ADDR)
922 sc->sc_cfg |= CFG_T64ADDR;
923 #endif
924
925 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
926 const char *sep = "";
927 printf("%s: using ", sc->sc_dev.dv_xname);
928 if (reg & CFG_EXT_125) {
929 sc->sc_cfg |= CFG_EXT_125;
930 printf("%s125MHz clock", sep);
931 sep = ", ";
932 }
933 if (reg & CFG_TBI_EN) {
934 sc->sc_cfg |= CFG_TBI_EN;
935 printf("%sten-bit interface", sep);
936 sep = ", ";
937 }
938 printf("\n");
939 }
940 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
941 (reg & CFG_MRM_DIS) != 0)
942 sc->sc_cfg |= CFG_MRM_DIS;
943 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
944 (reg & CFG_MWI_DIS) != 0)
945 sc->sc_cfg |= CFG_MWI_DIS;
946
947 /*
948 * Use the extended descriptor format on the DP83820. This
949 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
950 * checksumming.
951 */
952 sc->sc_cfg |= CFG_EXTSTS_EN;
953 #endif /* DP83820 */
954
955 /*
956 * Initialize our media structures and probe the MII.
957 */
958 sc->sc_mii.mii_ifp = ifp;
959 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
960 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
961 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
962 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
963 SIP_DECL(mediastatus));
964
965 /*
966 * XXX We cannot handle flow control on the DP83815.
967 */
968 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
969 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
970 MII_OFFSET_ANY, 0);
971 else
972 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
973 MII_OFFSET_ANY, MIIF_DOPAUSE);
974 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
975 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
976 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
977 } else
978 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
979
980 ifp = &sc->sc_ethercom.ec_if;
981 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
982 ifp->if_softc = sc;
983 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
984 sc->sc_if_flags = ifp->if_flags;
985 ifp->if_ioctl = SIP_DECL(ioctl);
986 ifp->if_start = SIP_DECL(start);
987 ifp->if_watchdog = SIP_DECL(watchdog);
988 ifp->if_init = SIP_DECL(init);
989 ifp->if_stop = SIP_DECL(stop);
990 IFQ_SET_READY(&ifp->if_snd);
991
992 /*
993 * We can support 802.1Q VLAN-sized frames.
994 */
995 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
996
997 #ifdef DP83820
998 /*
999 * And the DP83820 can do VLAN tagging in hardware, and
1000 * support the jumbo Ethernet MTU.
1001 */
1002 sc->sc_ethercom.ec_capabilities |=
1003 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1004
1005 /*
1006 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1007 * in hardware.
1008 */
1009 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
1010 IFCAP_CSUM_UDPv4;
1011 #endif /* DP83820 */
1012
1013 /*
1014 * Attach the interface.
1015 */
1016 if_attach(ifp);
1017 ether_ifattach(ifp, enaddr);
1018 #if NRND > 0
1019 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1020 RND_TYPE_NET, 0);
1021 #endif
1022
1023 /*
1024 * The number of bytes that must be available in
1025 * the Tx FIFO before the bus master can DMA more
1026 * data into the FIFO.
1027 */
1028 sc->sc_tx_fill_thresh = 64 / 32;
1029
1030 /*
1031 * Start at a drain threshold of 512 bytes. We will
1032 * increase it if a DMA underrun occurs.
1033 *
1034 * XXX The minimum value of this variable should be
1035 * tuned. We may be able to improve performance
1036 * by starting with a lower value. That, however,
1037 * may trash the first few outgoing packets if the
1038 * PCI bus is saturated.
1039 */
1040 #ifdef DP83820
1041 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1042 #else
1043 sc->sc_tx_drain_thresh = 1504 / 32;
1044 #endif
1045
1046 /*
1047 * Initialize the Rx FIFO drain threshold.
1048 *
1049 * This is in units of 8 bytes.
1050 *
1051 * We should never set this value lower than 2; 14 bytes are
1052 * required to filter the packet.
1053 */
1054 sc->sc_rx_drain_thresh = 128 / 8;
1055
1056 #ifdef SIP_EVENT_COUNTERS
1057 /*
1058 * Attach event counters.
1059 */
1060 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1061 NULL, sc->sc_dev.dv_xname, "txsstall");
1062 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1063 NULL, sc->sc_dev.dv_xname, "txdstall");
1064 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1065 NULL, sc->sc_dev.dv_xname, "txforceintr");
1066 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1067 NULL, sc->sc_dev.dv_xname, "txdintr");
1068 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1069 NULL, sc->sc_dev.dv_xname, "txiintr");
1070 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1071 NULL, sc->sc_dev.dv_xname, "rxintr");
1072 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1073 NULL, sc->sc_dev.dv_xname, "hiberr");
1074 #ifndef DP83820
1075 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1076 NULL, sc->sc_dev.dv_xname, "rxpause");
1077 #endif /* !DP83820 */
1078 #ifdef DP83820
1079 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1080 NULL, sc->sc_dev.dv_xname, "rxpause");
1081 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1082 NULL, sc->sc_dev.dv_xname, "txpause");
1083 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1084 NULL, sc->sc_dev.dv_xname, "rxipsum");
1085 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1086 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1087 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1088 NULL, sc->sc_dev.dv_xname, "rxudpsum");
1089 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1090 NULL, sc->sc_dev.dv_xname, "txipsum");
1091 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1092 NULL, sc->sc_dev.dv_xname, "txtcpsum");
1093 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1094 NULL, sc->sc_dev.dv_xname, "txudpsum");
1095 #endif /* DP83820 */
1096 #endif /* SIP_EVENT_COUNTERS */
1097
1098 /*
1099 * Make sure the interface is shutdown during reboot.
1100 */
1101 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1102 if (sc->sc_sdhook == NULL)
1103 printf("%s: WARNING: unable to establish shutdown hook\n",
1104 sc->sc_dev.dv_xname);
1105 return;
1106
1107 /*
1108 * Free any resources we've allocated during the failed attach
1109 * attempt. Do this in reverse order and fall through.
1110 */
1111 fail_5:
1112 for (i = 0; i < SIP_NRXDESC; i++) {
1113 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1114 bus_dmamap_destroy(sc->sc_dmat,
1115 sc->sc_rxsoft[i].rxs_dmamap);
1116 }
1117 fail_4:
1118 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1119 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1120 bus_dmamap_destroy(sc->sc_dmat,
1121 sc->sc_txsoft[i].txs_dmamap);
1122 }
1123 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1124 fail_3:
1125 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1126 fail_2:
1127 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1128 sizeof(struct sip_control_data));
1129 fail_1:
1130 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1131 fail_0:
1132 return;
1133 }
1134
1135 /*
1136 * sip_shutdown:
1137 *
1138 * Make sure the interface is stopped at reboot time.
1139 */
1140 static void
1141 SIP_DECL(shutdown)(void *arg)
1142 {
1143 struct sip_softc *sc = arg;
1144
1145 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1146 }
1147
1148 /*
1149 * sip_start: [ifnet interface function]
1150 *
1151 * Start packet transmission on the interface.
1152 */
1153 static void
1154 SIP_DECL(start)(struct ifnet *ifp)
1155 {
1156 struct sip_softc *sc = ifp->if_softc;
1157 struct mbuf *m0;
1158 #ifndef DP83820
1159 struct mbuf *m;
1160 #endif
1161 struct sip_txsoft *txs;
1162 bus_dmamap_t dmamap;
1163 int error, nexttx, lasttx, seg;
1164 int ofree = sc->sc_txfree;
1165 #if 0
1166 int firsttx = sc->sc_txnext;
1167 #endif
1168 #ifdef DP83820
1169 struct m_tag *mtag;
1170 u_int32_t extsts;
1171 #endif
1172
1173 #ifndef DP83820
1174 /*
1175 * If we've been told to pause, don't transmit any more packets.
1176 */
1177 if (sc->sc_paused)
1178 ifp->if_flags |= IFF_OACTIVE;
1179 #endif
1180
1181 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1182 return;
1183
1184 /*
1185 * Loop through the send queue, setting up transmit descriptors
1186 * until we drain the queue, or use up all available transmit
1187 * descriptors.
1188 */
1189 for (;;) {
1190 /* Get a work queue entry. */
1191 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1192 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1193 break;
1194 }
1195
1196 /*
1197 * Grab a packet off the queue.
1198 */
1199 IFQ_POLL(&ifp->if_snd, m0);
1200 if (m0 == NULL)
1201 break;
1202 #ifndef DP83820
1203 m = NULL;
1204 #endif
1205
1206 dmamap = txs->txs_dmamap;
1207
1208 #ifdef DP83820
1209 /*
1210 * Load the DMA map. If this fails, the packet either
1211 * didn't fit in the allotted number of segments, or we
1212 * were short on resources. For the too-many-segments
1213 * case, we simply report an error and drop the packet,
1214 * since we can't sanely copy a jumbo packet to a single
1215 * buffer.
1216 */
1217 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1218 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1219 if (error) {
1220 if (error == EFBIG) {
1221 printf("%s: Tx packet consumes too many "
1222 "DMA segments, dropping...\n",
1223 sc->sc_dev.dv_xname);
1224 IFQ_DEQUEUE(&ifp->if_snd, m0);
1225 m_freem(m0);
1226 continue;
1227 }
1228 /*
1229 * Short on resources, just stop for now.
1230 */
1231 break;
1232 }
1233 #else /* DP83820 */
1234 /*
1235 * Load the DMA map. If this fails, the packet either
1236 * didn't fit in the alloted number of segments, or we
1237 * were short on resources. In this case, we'll copy
1238 * and try again.
1239 */
1240 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1241 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1242 MGETHDR(m, M_DONTWAIT, MT_DATA);
1243 if (m == NULL) {
1244 printf("%s: unable to allocate Tx mbuf\n",
1245 sc->sc_dev.dv_xname);
1246 break;
1247 }
1248 if (m0->m_pkthdr.len > MHLEN) {
1249 MCLGET(m, M_DONTWAIT);
1250 if ((m->m_flags & M_EXT) == 0) {
1251 printf("%s: unable to allocate Tx "
1252 "cluster\n", sc->sc_dev.dv_xname);
1253 m_freem(m);
1254 break;
1255 }
1256 }
1257 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1258 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1259 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1260 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1261 if (error) {
1262 printf("%s: unable to load Tx buffer, "
1263 "error = %d\n", sc->sc_dev.dv_xname, error);
1264 break;
1265 }
1266 }
1267 #endif /* DP83820 */
1268
1269 /*
1270 * Ensure we have enough descriptors free to describe
1271 * the packet. Note, we always reserve one descriptor
1272 * at the end of the ring as a termination point, to
1273 * prevent wrap-around.
1274 */
1275 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1276 /*
1277 * Not enough free descriptors to transmit this
1278 * packet. We haven't committed anything yet,
1279 * so just unload the DMA map, put the packet
1280 * back on the queue, and punt. Notify the upper
1281 * layer that there are not more slots left.
1282 *
1283 * XXX We could allocate an mbuf and copy, but
1284 * XXX is it worth it?
1285 */
1286 ifp->if_flags |= IFF_OACTIVE;
1287 bus_dmamap_unload(sc->sc_dmat, dmamap);
1288 #ifndef DP83820
1289 if (m != NULL)
1290 m_freem(m);
1291 #endif
1292 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1293 break;
1294 }
1295
1296 IFQ_DEQUEUE(&ifp->if_snd, m0);
1297 #ifndef DP83820
1298 if (m != NULL) {
1299 m_freem(m0);
1300 m0 = m;
1301 }
1302 #endif
1303
1304 /*
1305 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1306 */
1307
1308 /* Sync the DMA map. */
1309 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1310 BUS_DMASYNC_PREWRITE);
1311
1312 /*
1313 * Initialize the transmit descriptors.
1314 */
1315 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1316 seg < dmamap->dm_nsegs;
1317 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1318 /*
1319 * If this is the first descriptor we're
1320 * enqueueing, don't set the OWN bit just
1321 * yet. That could cause a race condition.
1322 * We'll do it below.
1323 */
1324 sc->sc_txdescs[nexttx].sipd_bufptr =
1325 htole32(dmamap->dm_segs[seg].ds_addr);
1326 sc->sc_txdescs[nexttx].sipd_cmdsts =
1327 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1328 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1329 #ifdef DP83820
1330 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1331 #endif /* DP83820 */
1332 lasttx = nexttx;
1333 }
1334
1335 /* Clear the MORE bit on the last segment. */
1336 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1337
1338 /*
1339 * If we're in the interrupt delay window, delay the
1340 * interrupt.
1341 */
1342 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1343 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1344 sc->sc_txdescs[lasttx].sipd_cmdsts |=
1345 htole32(CMDSTS_INTR);
1346 sc->sc_txwin = 0;
1347 }
1348
1349 #ifdef DP83820
1350 /*
1351 * If VLANs are enabled and the packet has a VLAN tag, set
1352 * up the descriptor to encapsulate the packet for us.
1353 *
1354 * This apparently has to be on the last descriptor of
1355 * the packet.
1356 */
1357 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1358 sc->sc_txdescs[lasttx].sipd_extsts |=
1359 htole32(EXTSTS_VPKT |
1360 (VLAN_TAG_VALUE(mtag) & EXTSTS_VTCI));
1361 }
1362
1363 /*
1364 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1365 * checksumming, set up the descriptor to do this work
1366 * for us.
1367 *
1368 * This apparently has to be on the first descriptor of
1369 * the packet.
1370 *
1371 * Byte-swap constants so the compiler can optimize.
1372 */
1373 extsts = 0;
1374 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1375 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1376 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1377 extsts |= htole32(EXTSTS_IPPKT);
1378 }
1379 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1380 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1381 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1382 extsts |= htole32(EXTSTS_TCPPKT);
1383 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1384 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1385 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1386 extsts |= htole32(EXTSTS_UDPPKT);
1387 }
1388 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1389 #endif /* DP83820 */
1390
1391 /* Sync the descriptors we're using. */
1392 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1393 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1394
1395 /*
1396 * The entire packet is set up. Give the first descrptor
1397 * to the chip now.
1398 */
1399 sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1400 htole32(CMDSTS_OWN);
1401 SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1402 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1403
1404 /*
1405 * Store a pointer to the packet so we can free it later,
1406 * and remember what txdirty will be once the packet is
1407 * done.
1408 */
1409 txs->txs_mbuf = m0;
1410 txs->txs_firstdesc = sc->sc_txnext;
1411 txs->txs_lastdesc = lasttx;
1412
1413 /* Advance the tx pointer. */
1414 sc->sc_txfree -= dmamap->dm_nsegs;
1415 sc->sc_txnext = nexttx;
1416
1417 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1418 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1419
1420 #if NBPFILTER > 0
1421 /*
1422 * Pass the packet to any BPF listeners.
1423 */
1424 if (ifp->if_bpf)
1425 bpf_mtap(ifp->if_bpf, m0);
1426 #endif /* NBPFILTER > 0 */
1427 }
1428
1429 if (txs == NULL || sc->sc_txfree == 0) {
1430 /* No more slots left; notify upper layer. */
1431 ifp->if_flags |= IFF_OACTIVE;
1432 }
1433
1434 if (sc->sc_txfree != ofree) {
1435 /*
1436 * Start the transmit process. Note, the manual says
1437 * that if there are no pending transmissions in the
1438 * chip's internal queue (indicated by TXE being clear),
1439 * then the driver software must set the TXDP to the
1440 * first descriptor to be transmitted. However, if we
1441 * do this, it causes serious performance degredation on
1442 * the DP83820 under load, not setting TXDP doesn't seem
1443 * to adversely affect the SiS 900 or DP83815.
1444 *
1445 * Well, I guess it wouldn't be the first time a manual
1446 * has lied -- and they could be speaking of the NULL-
1447 * terminated descriptor list case, rather than OWN-
1448 * terminated rings.
1449 */
1450 #if 0
1451 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1452 CR_TXE) == 0) {
1453 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1454 SIP_CDTXADDR(sc, firsttx));
1455 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1456 }
1457 #else
1458 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1459 #endif
1460
1461 /* Set a watchdog timer in case the chip flakes out. */
1462 #ifdef DP83820
1463 /* Gigabit autonegotiation takes 5 seconds. */
1464 ifp->if_timer = 10;
1465 #else
1466 ifp->if_timer = 5;
1467 #endif
1468 }
1469 }
1470
1471 /*
1472 * sip_watchdog: [ifnet interface function]
1473 *
1474 * Watchdog timer handler.
1475 */
1476 static void
1477 SIP_DECL(watchdog)(struct ifnet *ifp)
1478 {
1479 struct sip_softc *sc = ifp->if_softc;
1480
1481 /*
1482 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1483 * If we get a timeout, try and sweep up transmit descriptors.
1484 * If we manage to sweep them all up, ignore the lack of
1485 * interrupt.
1486 */
1487 SIP_DECL(txintr)(sc);
1488
1489 if (sc->sc_txfree != SIP_NTXDESC) {
1490 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1491 ifp->if_oerrors++;
1492
1493 /* Reset the interface. */
1494 (void) SIP_DECL(init)(ifp);
1495 } else if (ifp->if_flags & IFF_DEBUG)
1496 printf("%s: recovered from device timeout\n",
1497 sc->sc_dev.dv_xname);
1498
1499 /* Try to get more packets going. */
1500 SIP_DECL(start)(ifp);
1501 }
1502
1503 /*
1504 * sip_ioctl: [ifnet interface function]
1505 *
1506 * Handle control requests from the operator.
1507 */
1508 static int
1509 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1510 {
1511 struct sip_softc *sc = ifp->if_softc;
1512 struct ifreq *ifr = (struct ifreq *)data;
1513 int s, error;
1514
1515 s = splnet();
1516
1517 switch (cmd) {
1518 case SIOCSIFMEDIA:
1519 /* Flow control requires full-duplex mode. */
1520 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1521 (ifr->ifr_media & IFM_FDX) == 0)
1522 ifr->ifr_media &= ~IFM_ETH_FMASK;
1523 #ifdef DP83820
1524 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1525 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1526 /* We can do both TXPAUSE and RXPAUSE. */
1527 ifr->ifr_media |=
1528 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1529 }
1530 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1531 }
1532 #else
1533 /* XXX */
1534 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1535 ifr->ifr_media &= ~IFM_ETH_FMASK;
1536
1537 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1538 if (ifr->ifr_media & IFM_FLOW) {
1539 /*
1540 * Both TXPAUSE and RXPAUSE must be set.
1541 * (SiS900 and DP83815 don't have PAUSE_ASYM
1542 * feature.)
1543 *
1544 * XXX Can SiS900 and DP83815 send PAUSE?
1545 */
1546 ifr->ifr_media |=
1547 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1548 }
1549 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1550 }
1551 #endif
1552 /* FALLTHROUGH */
1553 case SIOCGIFMEDIA:
1554 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1555 break;
1556 case SIOCSIFFLAGS:
1557 /* If the interface is up and running, only modify the receive
1558 * filter when setting promiscuous or debug mode. Otherwise
1559 * fall through to ether_ioctl, which will reset the chip.
1560 */
1561 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
1562 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
1563 == (IFF_UP|IFF_RUNNING))
1564 && ((ifp->if_flags & (~RESETIGN))
1565 == (sc->sc_if_flags & (~RESETIGN)))) {
1566 /* Set up the receive filter. */
1567 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1568 error = 0;
1569 break;
1570 #undef RESETIGN
1571 }
1572 /* FALLTHROUGH */
1573 default:
1574 error = ether_ioctl(ifp, cmd, data);
1575 if (error == ENETRESET) {
1576 /*
1577 * Multicast list has changed; set the hardware filter
1578 * accordingly.
1579 */
1580 if (ifp->if_flags & IFF_RUNNING)
1581 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1582 error = 0;
1583 }
1584 break;
1585 }
1586
1587 /* Try to get more packets going. */
1588 SIP_DECL(start)(ifp);
1589
1590 sc->sc_if_flags = ifp->if_flags;
1591 splx(s);
1592 return (error);
1593 }
1594
1595 /*
1596 * sip_intr:
1597 *
1598 * Interrupt service routine.
1599 */
1600 static int
1601 SIP_DECL(intr)(void *arg)
1602 {
1603 struct sip_softc *sc = arg;
1604 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1605 u_int32_t isr;
1606 int handled = 0;
1607
1608 /* Disable interrupts. */
1609 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1610
1611 for (;;) {
1612 /* Reading clears interrupt. */
1613 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1614 if ((isr & sc->sc_imr) == 0)
1615 break;
1616
1617 #if NRND > 0
1618 if (RND_ENABLED(&sc->rnd_source))
1619 rnd_add_uint32(&sc->rnd_source, isr);
1620 #endif
1621
1622 handled = 1;
1623
1624 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1625 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1626
1627 /* Grab any new packets. */
1628 SIP_DECL(rxintr)(sc);
1629
1630 if (isr & ISR_RXORN) {
1631 printf("%s: receive FIFO overrun\n",
1632 sc->sc_dev.dv_xname);
1633
1634 /* XXX adjust rx_drain_thresh? */
1635 }
1636
1637 if (isr & ISR_RXIDLE) {
1638 printf("%s: receive ring overrun\n",
1639 sc->sc_dev.dv_xname);
1640
1641 /* Get the receive process going again. */
1642 bus_space_write_4(sc->sc_st, sc->sc_sh,
1643 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1644 bus_space_write_4(sc->sc_st, sc->sc_sh,
1645 SIP_CR, CR_RXE);
1646 }
1647 }
1648
1649 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1650 #ifdef SIP_EVENT_COUNTERS
1651 if (isr & ISR_TXDESC)
1652 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1653 else if (isr & ISR_TXIDLE)
1654 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1655 #endif
1656
1657 /* Sweep up transmit descriptors. */
1658 SIP_DECL(txintr)(sc);
1659
1660 if (isr & ISR_TXURN) {
1661 u_int32_t thresh;
1662
1663 printf("%s: transmit FIFO underrun",
1664 sc->sc_dev.dv_xname);
1665
1666 thresh = sc->sc_tx_drain_thresh + 1;
1667 if (thresh <= TXCFG_DRTH &&
1668 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1669 (sc->sc_tx_fill_thresh * 32))) {
1670 printf("; increasing Tx drain "
1671 "threshold to %u bytes\n",
1672 thresh * 32);
1673 sc->sc_tx_drain_thresh = thresh;
1674 (void) SIP_DECL(init)(ifp);
1675 } else {
1676 (void) SIP_DECL(init)(ifp);
1677 printf("\n");
1678 }
1679 }
1680 }
1681
1682 #if !defined(DP83820)
1683 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1684 if (isr & ISR_PAUSE_ST) {
1685 sc->sc_paused = 1;
1686 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1687 ifp->if_flags |= IFF_OACTIVE;
1688 }
1689 if (isr & ISR_PAUSE_END) {
1690 sc->sc_paused = 0;
1691 ifp->if_flags &= ~IFF_OACTIVE;
1692 }
1693 }
1694 #endif /* ! DP83820 */
1695
1696 if (isr & ISR_HIBERR) {
1697 int want_init = 0;
1698
1699 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1700
1701 #define PRINTERR(bit, str) \
1702 do { \
1703 if ((isr & (bit)) != 0) { \
1704 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1705 printf("%s: %s\n", \
1706 sc->sc_dev.dv_xname, str); \
1707 want_init = 1; \
1708 } \
1709 } while (/*CONSTCOND*/0)
1710
1711 PRINTERR(ISR_DPERR, "parity error");
1712 PRINTERR(ISR_SSERR, "system error");
1713 PRINTERR(ISR_RMABT, "master abort");
1714 PRINTERR(ISR_RTABT, "target abort");
1715 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1716 /*
1717 * Ignore:
1718 * Tx reset complete
1719 * Rx reset complete
1720 */
1721 if (want_init)
1722 (void) SIP_DECL(init)(ifp);
1723 #undef PRINTERR
1724 }
1725 }
1726
1727 /* Re-enable interrupts. */
1728 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1729
1730 /* Try to get more packets going. */
1731 SIP_DECL(start)(ifp);
1732
1733 return (handled);
1734 }
1735
1736 /*
1737 * sip_txintr:
1738 *
1739 * Helper; handle transmit interrupts.
1740 */
1741 static void
1742 SIP_DECL(txintr)(struct sip_softc *sc)
1743 {
1744 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1745 struct sip_txsoft *txs;
1746 u_int32_t cmdsts;
1747
1748 #ifndef DP83820
1749 if (sc->sc_paused == 0)
1750 #endif
1751 ifp->if_flags &= ~IFF_OACTIVE;
1752
1753 /*
1754 * Go through our Tx list and free mbufs for those
1755 * frames which have been transmitted.
1756 */
1757 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1758 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1759 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1760
1761 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1762 if (cmdsts & CMDSTS_OWN)
1763 break;
1764
1765 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1766
1767 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1768
1769 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1770 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1771 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1772 m_freem(txs->txs_mbuf);
1773 txs->txs_mbuf = NULL;
1774
1775 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1776
1777 /*
1778 * Check for errors and collisions.
1779 */
1780 if (cmdsts &
1781 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1782 ifp->if_oerrors++;
1783 if (cmdsts & CMDSTS_Tx_EC)
1784 ifp->if_collisions += 16;
1785 if (ifp->if_flags & IFF_DEBUG) {
1786 if (cmdsts & CMDSTS_Tx_ED)
1787 printf("%s: excessive deferral\n",
1788 sc->sc_dev.dv_xname);
1789 if (cmdsts & CMDSTS_Tx_EC)
1790 printf("%s: excessive collisions\n",
1791 sc->sc_dev.dv_xname);
1792 }
1793 } else {
1794 /* Packet was transmitted successfully. */
1795 ifp->if_opackets++;
1796 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1797 }
1798 }
1799
1800 /*
1801 * If there are no more pending transmissions, cancel the watchdog
1802 * timer.
1803 */
1804 if (txs == NULL) {
1805 ifp->if_timer = 0;
1806 sc->sc_txwin = 0;
1807 }
1808 }
1809
1810 #if defined(DP83820)
1811 /*
1812 * sip_rxintr:
1813 *
1814 * Helper; handle receive interrupts.
1815 */
1816 static void
1817 SIP_DECL(rxintr)(struct sip_softc *sc)
1818 {
1819 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1820 struct sip_rxsoft *rxs;
1821 struct mbuf *m;
1822 u_int32_t cmdsts, extsts;
1823 int i, len;
1824
1825 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1826 rxs = &sc->sc_rxsoft[i];
1827
1828 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1829
1830 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1831 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1832 len = CMDSTS_SIZE(cmdsts);
1833
1834 /*
1835 * NOTE: OWN is set if owned by _consumer_. We're the
1836 * consumer of the receive ring, so if the bit is clear,
1837 * we have processed all of the packets.
1838 */
1839 if ((cmdsts & CMDSTS_OWN) == 0) {
1840 /*
1841 * We have processed all of the receive buffers.
1842 */
1843 break;
1844 }
1845
1846 if (__predict_false(sc->sc_rxdiscard)) {
1847 SIP_INIT_RXDESC(sc, i);
1848 if ((cmdsts & CMDSTS_MORE) == 0) {
1849 /* Reset our state. */
1850 sc->sc_rxdiscard = 0;
1851 }
1852 continue;
1853 }
1854
1855 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1856 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1857
1858 m = rxs->rxs_mbuf;
1859
1860 /*
1861 * Add a new receive buffer to the ring.
1862 */
1863 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1864 /*
1865 * Failed, throw away what we've done so
1866 * far, and discard the rest of the packet.
1867 */
1868 ifp->if_ierrors++;
1869 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1870 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1871 SIP_INIT_RXDESC(sc, i);
1872 if (cmdsts & CMDSTS_MORE)
1873 sc->sc_rxdiscard = 1;
1874 if (sc->sc_rxhead != NULL)
1875 m_freem(sc->sc_rxhead);
1876 SIP_RXCHAIN_RESET(sc);
1877 continue;
1878 }
1879
1880 SIP_RXCHAIN_LINK(sc, m);
1881
1882 m->m_len = len;
1883
1884 /*
1885 * If this is not the end of the packet, keep
1886 * looking.
1887 */
1888 if (cmdsts & CMDSTS_MORE) {
1889 sc->sc_rxlen += len;
1890 continue;
1891 }
1892
1893 /*
1894 * Okay, we have the entire packet now. The chip includes
1895 * the FCS, so we need to trim it.
1896 */
1897 m->m_len -= ETHER_CRC_LEN;
1898
1899 *sc->sc_rxtailp = NULL;
1900 m = sc->sc_rxhead;
1901 len = m->m_len + sc->sc_rxlen;
1902
1903 SIP_RXCHAIN_RESET(sc);
1904
1905 /*
1906 * If an error occurred, update stats and drop the packet.
1907 */
1908 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1909 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1910 ifp->if_ierrors++;
1911 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1912 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1913 /* Receive overrun handled elsewhere. */
1914 printf("%s: receive descriptor error\n",
1915 sc->sc_dev.dv_xname);
1916 }
1917 #define PRINTERR(bit, str) \
1918 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
1919 (cmdsts & (bit)) != 0) \
1920 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1921 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1922 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1923 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1924 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1925 #undef PRINTERR
1926 m_freem(m);
1927 continue;
1928 }
1929
1930 /*
1931 * If the packet is small enough to fit in a
1932 * single header mbuf, allocate one and copy
1933 * the data into it. This greatly reduces
1934 * memory consumption when we receive lots
1935 * of small packets.
1936 */
1937 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1938 struct mbuf *nm;
1939 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1940 if (nm == NULL) {
1941 ifp->if_ierrors++;
1942 m_freem(m);
1943 continue;
1944 }
1945 nm->m_data += 2;
1946 nm->m_pkthdr.len = nm->m_len = len;
1947 m_copydata(m, 0, len, mtod(nm, caddr_t));
1948 m_freem(m);
1949 m = nm;
1950 }
1951 #ifndef __NO_STRICT_ALIGNMENT
1952 else {
1953 /*
1954 * The DP83820's receive buffers must be 4-byte
1955 * aligned. But this means that the data after
1956 * the Ethernet header is misaligned. To compensate,
1957 * we have artificially shortened the buffer size
1958 * in the descriptor, and we do an overlapping copy
1959 * of the data two bytes further in (in the first
1960 * buffer of the chain only).
1961 */
1962 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1963 m->m_len);
1964 m->m_data += 2;
1965 }
1966 #endif /* ! __NO_STRICT_ALIGNMENT */
1967
1968 /*
1969 * If VLANs are enabled, VLAN packets have been unwrapped
1970 * for us. Associate the tag with the packet.
1971 */
1972 if ((extsts & EXTSTS_VPKT) != 0) {
1973 VLAN_INPUT_TAG(ifp, m, ntohs(extsts & EXTSTS_VTCI),
1974 continue);
1975 }
1976
1977 /*
1978 * Set the incoming checksum information for the
1979 * packet.
1980 */
1981 if ((extsts & EXTSTS_IPPKT) != 0) {
1982 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1983 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1984 if (extsts & EXTSTS_Rx_IPERR)
1985 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1986 if (extsts & EXTSTS_TCPPKT) {
1987 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1988 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1989 if (extsts & EXTSTS_Rx_TCPERR)
1990 m->m_pkthdr.csum_flags |=
1991 M_CSUM_TCP_UDP_BAD;
1992 } else if (extsts & EXTSTS_UDPPKT) {
1993 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1994 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1995 if (extsts & EXTSTS_Rx_UDPERR)
1996 m->m_pkthdr.csum_flags |=
1997 M_CSUM_TCP_UDP_BAD;
1998 }
1999 }
2000
2001 ifp->if_ipackets++;
2002 m->m_pkthdr.rcvif = ifp;
2003 m->m_pkthdr.len = len;
2004
2005 #if NBPFILTER > 0
2006 /*
2007 * Pass this up to any BPF listeners, but only
2008 * pass if up the stack if it's for us.
2009 */
2010 if (ifp->if_bpf)
2011 bpf_mtap(ifp->if_bpf, m);
2012 #endif /* NBPFILTER > 0 */
2013
2014 /* Pass it on. */
2015 (*ifp->if_input)(ifp, m);
2016 }
2017
2018 /* Update the receive pointer. */
2019 sc->sc_rxptr = i;
2020 }
2021 #else /* ! DP83820 */
2022 /*
2023 * sip_rxintr:
2024 *
2025 * Helper; handle receive interrupts.
2026 */
2027 static void
2028 SIP_DECL(rxintr)(struct sip_softc *sc)
2029 {
2030 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2031 struct sip_rxsoft *rxs;
2032 struct mbuf *m;
2033 u_int32_t cmdsts;
2034 int i, len;
2035
2036 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
2037 rxs = &sc->sc_rxsoft[i];
2038
2039 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2040
2041 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
2042
2043 /*
2044 * NOTE: OWN is set if owned by _consumer_. We're the
2045 * consumer of the receive ring, so if the bit is clear,
2046 * we have processed all of the packets.
2047 */
2048 if ((cmdsts & CMDSTS_OWN) == 0) {
2049 /*
2050 * We have processed all of the receive buffers.
2051 */
2052 break;
2053 }
2054
2055 /*
2056 * If any collisions were seen on the wire, count one.
2057 */
2058 if (cmdsts & CMDSTS_Rx_COL)
2059 ifp->if_collisions++;
2060
2061 /*
2062 * If an error occurred, update stats, clear the status
2063 * word, and leave the packet buffer in place. It will
2064 * simply be reused the next time the ring comes around.
2065 */
2066 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2067 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2068 ifp->if_ierrors++;
2069 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2070 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2071 /* Receive overrun handled elsewhere. */
2072 printf("%s: receive descriptor error\n",
2073 sc->sc_dev.dv_xname);
2074 }
2075 #define PRINTERR(bit, str) \
2076 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2077 (cmdsts & (bit)) != 0) \
2078 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
2079 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2080 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2081 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2082 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2083 #undef PRINTERR
2084 SIP_INIT_RXDESC(sc, i);
2085 continue;
2086 }
2087
2088 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2089 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2090
2091 /*
2092 * No errors; receive the packet. Note, the SiS 900
2093 * includes the CRC with every packet.
2094 */
2095 len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN;
2096
2097 #ifdef __NO_STRICT_ALIGNMENT
2098 /*
2099 * If the packet is small enough to fit in a
2100 * single header mbuf, allocate one and copy
2101 * the data into it. This greatly reduces
2102 * memory consumption when we receive lots
2103 * of small packets.
2104 *
2105 * Otherwise, we add a new buffer to the receive
2106 * chain. If this fails, we drop the packet and
2107 * recycle the old buffer.
2108 */
2109 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2110 MGETHDR(m, M_DONTWAIT, MT_DATA);
2111 if (m == NULL)
2112 goto dropit;
2113 memcpy(mtod(m, caddr_t),
2114 mtod(rxs->rxs_mbuf, caddr_t), len);
2115 SIP_INIT_RXDESC(sc, i);
2116 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2117 rxs->rxs_dmamap->dm_mapsize,
2118 BUS_DMASYNC_PREREAD);
2119 } else {
2120 m = rxs->rxs_mbuf;
2121 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2122 dropit:
2123 ifp->if_ierrors++;
2124 SIP_INIT_RXDESC(sc, i);
2125 bus_dmamap_sync(sc->sc_dmat,
2126 rxs->rxs_dmamap, 0,
2127 rxs->rxs_dmamap->dm_mapsize,
2128 BUS_DMASYNC_PREREAD);
2129 continue;
2130 }
2131 }
2132 #else
2133 /*
2134 * The SiS 900's receive buffers must be 4-byte aligned.
2135 * But this means that the data after the Ethernet header
2136 * is misaligned. We must allocate a new buffer and
2137 * copy the data, shifted forward 2 bytes.
2138 */
2139 MGETHDR(m, M_DONTWAIT, MT_DATA);
2140 if (m == NULL) {
2141 dropit:
2142 ifp->if_ierrors++;
2143 SIP_INIT_RXDESC(sc, i);
2144 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2145 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2146 continue;
2147 }
2148 if (len > (MHLEN - 2)) {
2149 MCLGET(m, M_DONTWAIT);
2150 if ((m->m_flags & M_EXT) == 0) {
2151 m_freem(m);
2152 goto dropit;
2153 }
2154 }
2155 m->m_data += 2;
2156
2157 /*
2158 * Note that we use clusters for incoming frames, so the
2159 * buffer is virtually contiguous.
2160 */
2161 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2162
2163 /* Allow the receive descriptor to continue using its mbuf. */
2164 SIP_INIT_RXDESC(sc, i);
2165 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2166 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2167 #endif /* __NO_STRICT_ALIGNMENT */
2168
2169 ifp->if_ipackets++;
2170 m->m_pkthdr.rcvif = ifp;
2171 m->m_pkthdr.len = m->m_len = len;
2172
2173 #if NBPFILTER > 0
2174 /*
2175 * Pass this up to any BPF listeners, but only
2176 * pass if up the stack if it's for us.
2177 */
2178 if (ifp->if_bpf)
2179 bpf_mtap(ifp->if_bpf, m);
2180 #endif /* NBPFILTER > 0 */
2181
2182 /* Pass it on. */
2183 (*ifp->if_input)(ifp, m);
2184 }
2185
2186 /* Update the receive pointer. */
2187 sc->sc_rxptr = i;
2188 }
2189 #endif /* DP83820 */
2190
2191 /*
2192 * sip_tick:
2193 *
2194 * One second timer, used to tick the MII.
2195 */
2196 static void
2197 SIP_DECL(tick)(void *arg)
2198 {
2199 struct sip_softc *sc = arg;
2200 int s;
2201
2202 s = splnet();
2203 #ifdef DP83820
2204 #ifdef SIP_EVENT_COUNTERS
2205 /* Read PAUSE related counts from MIB registers. */
2206 sc->sc_ev_rxpause.ev_count +=
2207 bus_space_read_4(sc->sc_st, sc->sc_sh,
2208 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2209 sc->sc_ev_txpause.ev_count +=
2210 bus_space_read_4(sc->sc_st, sc->sc_sh,
2211 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2212 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2213 #endif /* SIP_EVENT_COUNTERS */
2214 #endif /* DP83820 */
2215 mii_tick(&sc->sc_mii);
2216 splx(s);
2217
2218 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2219 }
2220
2221 /*
2222 * sip_reset:
2223 *
2224 * Perform a soft reset on the SiS 900.
2225 */
2226 static void
2227 SIP_DECL(reset)(struct sip_softc *sc)
2228 {
2229 bus_space_tag_t st = sc->sc_st;
2230 bus_space_handle_t sh = sc->sc_sh;
2231 int i;
2232
2233 bus_space_write_4(st, sh, SIP_IER, 0);
2234 bus_space_write_4(st, sh, SIP_IMR, 0);
2235 bus_space_write_4(st, sh, SIP_RFCR, 0);
2236 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2237
2238 for (i = 0; i < SIP_TIMEOUT; i++) {
2239 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2240 break;
2241 delay(2);
2242 }
2243
2244 if (i == SIP_TIMEOUT)
2245 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2246
2247 delay(1000);
2248
2249 #ifdef DP83820
2250 /*
2251 * Set the general purpose I/O bits. Do it here in case we
2252 * need to have GPIO set up to talk to the media interface.
2253 */
2254 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2255 delay(1000);
2256 #endif /* DP83820 */
2257 }
2258
2259 /*
2260 * sip_init: [ ifnet interface function ]
2261 *
2262 * Initialize the interface. Must be called at splnet().
2263 */
2264 static int
2265 SIP_DECL(init)(struct ifnet *ifp)
2266 {
2267 struct sip_softc *sc = ifp->if_softc;
2268 bus_space_tag_t st = sc->sc_st;
2269 bus_space_handle_t sh = sc->sc_sh;
2270 struct sip_txsoft *txs;
2271 struct sip_rxsoft *rxs;
2272 struct sip_desc *sipd;
2273 #if defined(DP83820)
2274 u_int32_t reg;
2275 #endif
2276 int i, error = 0;
2277
2278 /*
2279 * Cancel any pending I/O.
2280 */
2281 SIP_DECL(stop)(ifp, 0);
2282
2283 /*
2284 * Reset the chip to a known state.
2285 */
2286 SIP_DECL(reset)(sc);
2287
2288 #if !defined(DP83820)
2289 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2290 /*
2291 * DP83815 manual, page 78:
2292 * 4.4 Recommended Registers Configuration
2293 * For optimum performance of the DP83815, version noted
2294 * as DP83815CVNG (SRR = 203h), the listed register
2295 * modifications must be followed in sequence...
2296 *
2297 * It's not clear if this should be 302h or 203h because that
2298 * chip name is listed as SRR 302h in the description of the
2299 * SRR register. However, my revision 302h DP83815 on the
2300 * Netgear FA311 purchased in 02/2001 needs these settings
2301 * to avoid tons of errors in AcceptPerfectMatch (non-
2302 * IFF_PROMISC) mode. I do not know if other revisions need
2303 * this set or not. [briggs -- 09 March 2001]
2304 *
2305 * Note that only the low-order 12 bits of 0xe4 are documented
2306 * and that this sets reserved bits in that register.
2307 */
2308 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2309
2310 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2311 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2312 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2313 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2314
2315 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2316 }
2317 #endif /* ! DP83820 */
2318
2319 /*
2320 * Initialize the transmit descriptor ring.
2321 */
2322 for (i = 0; i < SIP_NTXDESC; i++) {
2323 sipd = &sc->sc_txdescs[i];
2324 memset(sipd, 0, sizeof(struct sip_desc));
2325 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2326 }
2327 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2328 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2329 sc->sc_txfree = SIP_NTXDESC;
2330 sc->sc_txnext = 0;
2331 sc->sc_txwin = 0;
2332
2333 /*
2334 * Initialize the transmit job descriptors.
2335 */
2336 SIMPLEQ_INIT(&sc->sc_txfreeq);
2337 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2338 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2339 txs = &sc->sc_txsoft[i];
2340 txs->txs_mbuf = NULL;
2341 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2342 }
2343
2344 /*
2345 * Initialize the receive descriptor and receive job
2346 * descriptor rings.
2347 */
2348 for (i = 0; i < SIP_NRXDESC; i++) {
2349 rxs = &sc->sc_rxsoft[i];
2350 if (rxs->rxs_mbuf == NULL) {
2351 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2352 printf("%s: unable to allocate or map rx "
2353 "buffer %d, error = %d\n",
2354 sc->sc_dev.dv_xname, i, error);
2355 /*
2356 * XXX Should attempt to run with fewer receive
2357 * XXX buffers instead of just failing.
2358 */
2359 SIP_DECL(rxdrain)(sc);
2360 goto out;
2361 }
2362 } else
2363 SIP_INIT_RXDESC(sc, i);
2364 }
2365 sc->sc_rxptr = 0;
2366 #ifdef DP83820
2367 sc->sc_rxdiscard = 0;
2368 SIP_RXCHAIN_RESET(sc);
2369 #endif /* DP83820 */
2370
2371 /*
2372 * Set the configuration register; it's already initialized
2373 * in sip_attach().
2374 */
2375 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2376
2377 /*
2378 * Initialize the prototype TXCFG register.
2379 */
2380 #if defined(DP83820)
2381 sc->sc_txcfg = TXCFG_MXDMA_512;
2382 sc->sc_rxcfg = RXCFG_MXDMA_512;
2383 #else
2384 if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2385 SIP_SIS900_REV(sc, SIS_REV_960) ||
2386 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2387 (sc->sc_cfg & CFG_EDBMASTEN)) {
2388 sc->sc_txcfg = TXCFG_MXDMA_64;
2389 sc->sc_rxcfg = RXCFG_MXDMA_64;
2390 } else {
2391 sc->sc_txcfg = TXCFG_MXDMA_512;
2392 sc->sc_rxcfg = RXCFG_MXDMA_512;
2393 }
2394 #endif /* DP83820 */
2395
2396 sc->sc_txcfg |= TXCFG_ATP |
2397 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2398 sc->sc_tx_drain_thresh;
2399 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2400
2401 /*
2402 * Initialize the receive drain threshold if we have never
2403 * done so.
2404 */
2405 if (sc->sc_rx_drain_thresh == 0) {
2406 /*
2407 * XXX This value should be tuned. This is set to the
2408 * maximum of 248 bytes, and we may be able to improve
2409 * performance by decreasing it (although we should never
2410 * set this value lower than 2; 14 bytes are required to
2411 * filter the packet).
2412 */
2413 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2414 }
2415
2416 /*
2417 * Initialize the prototype RXCFG register.
2418 */
2419 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2420 #ifdef DP83820
2421 /*
2422 * Accept long packets (including FCS) so we can handle
2423 * 802.1q-tagged frames and jumbo frames properly.
2424 */
2425 if (ifp->if_mtu > ETHERMTU ||
2426 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2427 sc->sc_rxcfg |= RXCFG_ALP;
2428
2429 /*
2430 * Checksum offloading is disabled if the user selects an MTU
2431 * larger than 8109. (FreeBSD says 8152, but there is emperical
2432 * evidence that >8109 does not work on some boards, such as the
2433 * Planex GN-1000TE).
2434 */
2435 if (ifp->if_mtu > 8109 &&
2436 (ifp->if_capenable &
2437 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))) {
2438 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2439 "disabled.\n", sc->sc_dev.dv_xname);
2440 ifp->if_capenable &= ~(IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|
2441 IFCAP_CSUM_UDPv4);
2442 ifp->if_csum_flags_tx = 0;
2443 ifp->if_csum_flags_rx = 0;
2444 }
2445 #else
2446 /*
2447 * Accept packets >1518 bytes (including FCS) so we can handle
2448 * 802.1q-tagged frames properly.
2449 */
2450 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2451 sc->sc_rxcfg |= RXCFG_ALP;
2452 #endif
2453 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2454
2455 #ifdef DP83820
2456 /*
2457 * Initialize the VLAN/IP receive control register.
2458 * We enable checksum computation on all incoming
2459 * packets, and do not reject packets w/ bad checksums.
2460 */
2461 reg = 0;
2462 if (ifp->if_capenable &
2463 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2464 reg |= VRCR_IPEN;
2465 if (VLAN_ATTACHED(&sc->sc_ethercom))
2466 reg |= VRCR_VTDEN|VRCR_VTREN;
2467 bus_space_write_4(st, sh, SIP_VRCR, reg);
2468
2469 /*
2470 * Initialize the VLAN/IP transmit control register.
2471 * We enable outgoing checksum computation on a
2472 * per-packet basis.
2473 */
2474 reg = 0;
2475 if (ifp->if_capenable &
2476 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2477 reg |= VTCR_PPCHK;
2478 if (VLAN_ATTACHED(&sc->sc_ethercom))
2479 reg |= VTCR_VPPTI;
2480 bus_space_write_4(st, sh, SIP_VTCR, reg);
2481
2482 /*
2483 * If we're using VLANs, initialize the VLAN data register.
2484 * To understand why we bswap the VLAN Ethertype, see section
2485 * 4.2.36 of the DP83820 manual.
2486 */
2487 if (VLAN_ATTACHED(&sc->sc_ethercom))
2488 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2489 #endif /* DP83820 */
2490
2491 /*
2492 * Give the transmit and receive rings to the chip.
2493 */
2494 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2495 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2496
2497 /*
2498 * Initialize the interrupt mask.
2499 */
2500 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2501 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2502 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2503
2504 /* Set up the receive filter. */
2505 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2506
2507 #ifdef DP83820
2508 /*
2509 * Tune sc_rx_flow_thresh.
2510 * XXX "More than 8KB" is too short for jumbo frames.
2511 * XXX TODO: Threshold value should be user-settable.
2512 */
2513 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2514 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2515 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2516 #endif
2517
2518 /*
2519 * Set the current media. Do this after initializing the prototype
2520 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2521 * control.
2522 */
2523 mii_mediachg(&sc->sc_mii);
2524
2525 #ifdef DP83820
2526 /*
2527 * Set the interrupt hold-off timer to 100us.
2528 */
2529 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2530 #endif
2531
2532 /*
2533 * Enable interrupts.
2534 */
2535 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2536
2537 /*
2538 * Start the transmit and receive processes.
2539 */
2540 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2541
2542 /*
2543 * Start the one second MII clock.
2544 */
2545 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2546
2547 /*
2548 * ...all done!
2549 */
2550 ifp->if_flags |= IFF_RUNNING;
2551 ifp->if_flags &= ~IFF_OACTIVE;
2552 sc->sc_if_flags = ifp->if_flags;
2553
2554 out:
2555 if (error)
2556 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2557 return (error);
2558 }
2559
2560 /*
2561 * sip_drain:
2562 *
2563 * Drain the receive queue.
2564 */
2565 static void
2566 SIP_DECL(rxdrain)(struct sip_softc *sc)
2567 {
2568 struct sip_rxsoft *rxs;
2569 int i;
2570
2571 for (i = 0; i < SIP_NRXDESC; i++) {
2572 rxs = &sc->sc_rxsoft[i];
2573 if (rxs->rxs_mbuf != NULL) {
2574 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2575 m_freem(rxs->rxs_mbuf);
2576 rxs->rxs_mbuf = NULL;
2577 }
2578 }
2579 }
2580
2581 /*
2582 * sip_stop: [ ifnet interface function ]
2583 *
2584 * Stop transmission on the interface.
2585 */
2586 static void
2587 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2588 {
2589 struct sip_softc *sc = ifp->if_softc;
2590 bus_space_tag_t st = sc->sc_st;
2591 bus_space_handle_t sh = sc->sc_sh;
2592 struct sip_txsoft *txs;
2593 u_int32_t cmdsts = 0; /* DEBUG */
2594
2595 /*
2596 * Stop the one second clock.
2597 */
2598 callout_stop(&sc->sc_tick_ch);
2599
2600 /* Down the MII. */
2601 mii_down(&sc->sc_mii);
2602
2603 /*
2604 * Disable interrupts.
2605 */
2606 bus_space_write_4(st, sh, SIP_IER, 0);
2607
2608 /*
2609 * Stop receiver and transmitter.
2610 */
2611 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2612
2613 /*
2614 * Release any queued transmit buffers.
2615 */
2616 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2617 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2618 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2619 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2620 CMDSTS_INTR) == 0)
2621 printf("%s: sip_stop: last descriptor does not "
2622 "have INTR bit set\n", sc->sc_dev.dv_xname);
2623 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2624 #ifdef DIAGNOSTIC
2625 if (txs->txs_mbuf == NULL) {
2626 printf("%s: dirty txsoft with no mbuf chain\n",
2627 sc->sc_dev.dv_xname);
2628 panic("sip_stop");
2629 }
2630 #endif
2631 cmdsts |= /* DEBUG */
2632 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2633 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2634 m_freem(txs->txs_mbuf);
2635 txs->txs_mbuf = NULL;
2636 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2637 }
2638
2639 if (disable)
2640 SIP_DECL(rxdrain)(sc);
2641
2642 /*
2643 * Mark the interface down and cancel the watchdog timer.
2644 */
2645 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2646 ifp->if_timer = 0;
2647
2648 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2649 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2650 printf("%s: sip_stop: no INTR bits set in dirty tx "
2651 "descriptors\n", sc->sc_dev.dv_xname);
2652 }
2653
2654 /*
2655 * sip_read_eeprom:
2656 *
2657 * Read data from the serial EEPROM.
2658 */
2659 static void
2660 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2661 u_int16_t *data)
2662 {
2663 bus_space_tag_t st = sc->sc_st;
2664 bus_space_handle_t sh = sc->sc_sh;
2665 u_int16_t reg;
2666 int i, x;
2667
2668 for (i = 0; i < wordcnt; i++) {
2669 /* Send CHIP SELECT. */
2670 reg = EROMAR_EECS;
2671 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2672
2673 /* Shift in the READ opcode. */
2674 for (x = 3; x > 0; x--) {
2675 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2676 reg |= EROMAR_EEDI;
2677 else
2678 reg &= ~EROMAR_EEDI;
2679 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2680 bus_space_write_4(st, sh, SIP_EROMAR,
2681 reg | EROMAR_EESK);
2682 delay(4);
2683 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2684 delay(4);
2685 }
2686
2687 /* Shift in address. */
2688 for (x = 6; x > 0; x--) {
2689 if ((word + i) & (1 << (x - 1)))
2690 reg |= EROMAR_EEDI;
2691 else
2692 reg &= ~EROMAR_EEDI;
2693 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2694 bus_space_write_4(st, sh, SIP_EROMAR,
2695 reg | EROMAR_EESK);
2696 delay(4);
2697 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2698 delay(4);
2699 }
2700
2701 /* Shift out data. */
2702 reg = EROMAR_EECS;
2703 data[i] = 0;
2704 for (x = 16; x > 0; x--) {
2705 bus_space_write_4(st, sh, SIP_EROMAR,
2706 reg | EROMAR_EESK);
2707 delay(4);
2708 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2709 data[i] |= (1 << (x - 1));
2710 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2711 delay(4);
2712 }
2713
2714 /* Clear CHIP SELECT. */
2715 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2716 delay(4);
2717 }
2718 }
2719
2720 /*
2721 * sip_add_rxbuf:
2722 *
2723 * Add a receive buffer to the indicated descriptor.
2724 */
2725 static int
2726 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2727 {
2728 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2729 struct mbuf *m;
2730 int error;
2731
2732 MGETHDR(m, M_DONTWAIT, MT_DATA);
2733 if (m == NULL)
2734 return (ENOBUFS);
2735
2736 MCLGET(m, M_DONTWAIT);
2737 if ((m->m_flags & M_EXT) == 0) {
2738 m_freem(m);
2739 return (ENOBUFS);
2740 }
2741
2742 #if defined(DP83820)
2743 m->m_len = SIP_RXBUF_LEN;
2744 #endif /* DP83820 */
2745
2746 if (rxs->rxs_mbuf != NULL)
2747 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2748
2749 rxs->rxs_mbuf = m;
2750
2751 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2752 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2753 BUS_DMA_READ|BUS_DMA_NOWAIT);
2754 if (error) {
2755 printf("%s: can't load rx DMA map %d, error = %d\n",
2756 sc->sc_dev.dv_xname, idx, error);
2757 panic("sip_add_rxbuf"); /* XXX */
2758 }
2759
2760 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2761 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2762
2763 SIP_INIT_RXDESC(sc, idx);
2764
2765 return (0);
2766 }
2767
2768 #if !defined(DP83820)
2769 /*
2770 * sip_sis900_set_filter:
2771 *
2772 * Set up the receive filter.
2773 */
2774 static void
2775 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2776 {
2777 bus_space_tag_t st = sc->sc_st;
2778 bus_space_handle_t sh = sc->sc_sh;
2779 struct ethercom *ec = &sc->sc_ethercom;
2780 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2781 struct ether_multi *enm;
2782 u_int8_t *cp;
2783 struct ether_multistep step;
2784 u_int32_t crc, mchash[16];
2785
2786 /*
2787 * Initialize the prototype RFCR.
2788 */
2789 sc->sc_rfcr = RFCR_RFEN;
2790 if (ifp->if_flags & IFF_BROADCAST)
2791 sc->sc_rfcr |= RFCR_AAB;
2792 if (ifp->if_flags & IFF_PROMISC) {
2793 sc->sc_rfcr |= RFCR_AAP;
2794 goto allmulti;
2795 }
2796
2797 /*
2798 * Set up the multicast address filter by passing all multicast
2799 * addresses through a CRC generator, and then using the high-order
2800 * 6 bits as an index into the 128 bit multicast hash table (only
2801 * the lower 16 bits of each 32 bit multicast hash register are
2802 * valid). The high order bits select the register, while the
2803 * rest of the bits select the bit within the register.
2804 */
2805
2806 memset(mchash, 0, sizeof(mchash));
2807
2808 /*
2809 * SiS900 (at least SiS963) requires us to register the address of
2810 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
2811 */
2812 crc = 0x0ed423f9;
2813
2814 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2815 SIP_SIS900_REV(sc, SIS_REV_960) ||
2816 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2817 /* Just want the 8 most significant bits. */
2818 crc >>= 24;
2819 } else {
2820 /* Just want the 7 most significant bits. */
2821 crc >>= 25;
2822 }
2823
2824 /* Set the corresponding bit in the hash table. */
2825 mchash[crc >> 4] |= 1 << (crc & 0xf);
2826
2827 ETHER_FIRST_MULTI(step, ec, enm);
2828 while (enm != NULL) {
2829 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2830 /*
2831 * We must listen to a range of multicast addresses.
2832 * For now, just accept all multicasts, rather than
2833 * trying to set only those filter bits needed to match
2834 * the range. (At this time, the only use of address
2835 * ranges is for IP multicast routing, for which the
2836 * range is big enough to require all bits set.)
2837 */
2838 goto allmulti;
2839 }
2840
2841 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2842
2843 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2844 SIP_SIS900_REV(sc, SIS_REV_960) ||
2845 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2846 /* Just want the 8 most significant bits. */
2847 crc >>= 24;
2848 } else {
2849 /* Just want the 7 most significant bits. */
2850 crc >>= 25;
2851 }
2852
2853 /* Set the corresponding bit in the hash table. */
2854 mchash[crc >> 4] |= 1 << (crc & 0xf);
2855
2856 ETHER_NEXT_MULTI(step, enm);
2857 }
2858
2859 ifp->if_flags &= ~IFF_ALLMULTI;
2860 goto setit;
2861
2862 allmulti:
2863 ifp->if_flags |= IFF_ALLMULTI;
2864 sc->sc_rfcr |= RFCR_AAM;
2865
2866 setit:
2867 #define FILTER_EMIT(addr, data) \
2868 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2869 delay(1); \
2870 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2871 delay(1)
2872
2873 /*
2874 * Disable receive filter, and program the node address.
2875 */
2876 cp = LLADDR(ifp->if_sadl);
2877 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2878 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2879 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2880
2881 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2882 /*
2883 * Program the multicast hash table.
2884 */
2885 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2886 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2887 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2888 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2889 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2890 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2891 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2892 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2893 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2894 SIP_SIS900_REV(sc, SIS_REV_960) ||
2895 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2896 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2897 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2898 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2899 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2900 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2901 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2902 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2903 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2904 }
2905 }
2906 #undef FILTER_EMIT
2907
2908 /*
2909 * Re-enable the receiver filter.
2910 */
2911 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2912 }
2913 #endif /* ! DP83820 */
2914
2915 /*
2916 * sip_dp83815_set_filter:
2917 *
2918 * Set up the receive filter.
2919 */
2920 static void
2921 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2922 {
2923 bus_space_tag_t st = sc->sc_st;
2924 bus_space_handle_t sh = sc->sc_sh;
2925 struct ethercom *ec = &sc->sc_ethercom;
2926 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2927 struct ether_multi *enm;
2928 u_int8_t *cp;
2929 struct ether_multistep step;
2930 u_int32_t crc, hash, slot, bit;
2931 #ifdef DP83820
2932 #define MCHASH_NWORDS 128
2933 #else
2934 #define MCHASH_NWORDS 32
2935 #endif /* DP83820 */
2936 u_int16_t mchash[MCHASH_NWORDS];
2937 int i;
2938
2939 /*
2940 * Initialize the prototype RFCR.
2941 * Enable the receive filter, and accept on
2942 * Perfect (destination address) Match
2943 * If IFF_BROADCAST, also accept all broadcast packets.
2944 * If IFF_PROMISC, accept all unicast packets (and later, set
2945 * IFF_ALLMULTI and accept all multicast, too).
2946 */
2947 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2948 if (ifp->if_flags & IFF_BROADCAST)
2949 sc->sc_rfcr |= RFCR_AAB;
2950 if (ifp->if_flags & IFF_PROMISC) {
2951 sc->sc_rfcr |= RFCR_AAP;
2952 goto allmulti;
2953 }
2954
2955 #ifdef DP83820
2956 /*
2957 * Set up the DP83820 multicast address filter by passing all multicast
2958 * addresses through a CRC generator, and then using the high-order
2959 * 11 bits as an index into the 2048 bit multicast hash table. The
2960 * high-order 7 bits select the slot, while the low-order 4 bits
2961 * select the bit within the slot. Note that only the low 16-bits
2962 * of each filter word are used, and there are 128 filter words.
2963 */
2964 #else
2965 /*
2966 * Set up the DP83815 multicast address filter by passing all multicast
2967 * addresses through a CRC generator, and then using the high-order
2968 * 9 bits as an index into the 512 bit multicast hash table. The
2969 * high-order 5 bits select the slot, while the low-order 4 bits
2970 * select the bit within the slot. Note that only the low 16-bits
2971 * of each filter word are used, and there are 32 filter words.
2972 */
2973 #endif /* DP83820 */
2974
2975 memset(mchash, 0, sizeof(mchash));
2976
2977 ifp->if_flags &= ~IFF_ALLMULTI;
2978 ETHER_FIRST_MULTI(step, ec, enm);
2979 if (enm == NULL)
2980 goto setit;
2981 while (enm != NULL) {
2982 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2983 /*
2984 * We must listen to a range of multicast addresses.
2985 * For now, just accept all multicasts, rather than
2986 * trying to set only those filter bits needed to match
2987 * the range. (At this time, the only use of address
2988 * ranges is for IP multicast routing, for which the
2989 * range is big enough to require all bits set.)
2990 */
2991 goto allmulti;
2992 }
2993
2994 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2995
2996 #ifdef DP83820
2997 /* Just want the 11 most significant bits. */
2998 hash = crc >> 21;
2999 #else
3000 /* Just want the 9 most significant bits. */
3001 hash = crc >> 23;
3002 #endif /* DP83820 */
3003
3004 slot = hash >> 4;
3005 bit = hash & 0xf;
3006
3007 /* Set the corresponding bit in the hash table. */
3008 mchash[slot] |= 1 << bit;
3009
3010 ETHER_NEXT_MULTI(step, enm);
3011 }
3012 sc->sc_rfcr |= RFCR_MHEN;
3013 goto setit;
3014
3015 allmulti:
3016 ifp->if_flags |= IFF_ALLMULTI;
3017 sc->sc_rfcr |= RFCR_AAM;
3018
3019 setit:
3020 #define FILTER_EMIT(addr, data) \
3021 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3022 delay(1); \
3023 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3024 delay(1)
3025
3026 /*
3027 * Disable receive filter, and program the node address.
3028 */
3029 cp = LLADDR(ifp->if_sadl);
3030 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3031 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3032 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3033
3034 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3035 /*
3036 * Program the multicast hash table.
3037 */
3038 for (i = 0; i < MCHASH_NWORDS; i++) {
3039 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
3040 mchash[i]);
3041 }
3042 }
3043 #undef FILTER_EMIT
3044 #undef MCHASH_NWORDS
3045
3046 /*
3047 * Re-enable the receiver filter.
3048 */
3049 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3050 }
3051
3052 #if defined(DP83820)
3053 /*
3054 * sip_dp83820_mii_readreg: [mii interface function]
3055 *
3056 * Read a PHY register on the MII of the DP83820.
3057 */
3058 static int
3059 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
3060 {
3061 struct sip_softc *sc = (void *) self;
3062
3063 if (sc->sc_cfg & CFG_TBI_EN) {
3064 bus_addr_t tbireg;
3065 int rv;
3066
3067 if (phy != 0)
3068 return (0);
3069
3070 switch (reg) {
3071 case MII_BMCR: tbireg = SIP_TBICR; break;
3072 case MII_BMSR: tbireg = SIP_TBISR; break;
3073 case MII_ANAR: tbireg = SIP_TANAR; break;
3074 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3075 case MII_ANER: tbireg = SIP_TANER; break;
3076 case MII_EXTSR:
3077 /*
3078 * Don't even bother reading the TESR register.
3079 * The manual documents that the device has
3080 * 1000baseX full/half capability, but the
3081 * register itself seems read back 0 on some
3082 * boards. Just hard-code the result.
3083 */
3084 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3085
3086 default:
3087 return (0);
3088 }
3089
3090 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3091 if (tbireg == SIP_TBISR) {
3092 /* LINK and ACOMP are switched! */
3093 int val = rv;
3094
3095 rv = 0;
3096 if (val & TBISR_MR_LINK_STATUS)
3097 rv |= BMSR_LINK;
3098 if (val & TBISR_MR_AN_COMPLETE)
3099 rv |= BMSR_ACOMP;
3100
3101 /*
3102 * The manual claims this register reads back 0
3103 * on hard and soft reset. But we want to let
3104 * the gentbi driver know that we support auto-
3105 * negotiation, so hard-code this bit in the
3106 * result.
3107 */
3108 rv |= BMSR_ANEG | BMSR_EXTSTAT;
3109 }
3110
3111 return (rv);
3112 }
3113
3114 return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3115 phy, reg));
3116 }
3117
3118 /*
3119 * sip_dp83820_mii_writereg: [mii interface function]
3120 *
3121 * Write a PHY register on the MII of the DP83820.
3122 */
3123 static void
3124 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
3125 {
3126 struct sip_softc *sc = (void *) self;
3127
3128 if (sc->sc_cfg & CFG_TBI_EN) {
3129 bus_addr_t tbireg;
3130
3131 if (phy != 0)
3132 return;
3133
3134 switch (reg) {
3135 case MII_BMCR: tbireg = SIP_TBICR; break;
3136 case MII_ANAR: tbireg = SIP_TANAR; break;
3137 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3138 default:
3139 return;
3140 }
3141
3142 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3143 return;
3144 }
3145
3146 mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3147 phy, reg, val);
3148 }
3149
3150 /*
3151 * sip_dp83820_mii_statchg: [mii interface function]
3152 *
3153 * Callback from MII layer when media changes.
3154 */
3155 static void
3156 SIP_DECL(dp83820_mii_statchg)(struct device *self)
3157 {
3158 struct sip_softc *sc = (struct sip_softc *) self;
3159 struct mii_data *mii = &sc->sc_mii;
3160 u_int32_t cfg, pcr;
3161
3162 /*
3163 * Get flow control negotiation result.
3164 */
3165 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3166 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3167 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3168 mii->mii_media_active &= ~IFM_ETH_FMASK;
3169 }
3170
3171 /*
3172 * Update TXCFG for full-duplex operation.
3173 */
3174 if ((mii->mii_media_active & IFM_FDX) != 0)
3175 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3176 else
3177 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3178
3179 /*
3180 * Update RXCFG for full-duplex or loopback.
3181 */
3182 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3183 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3184 sc->sc_rxcfg |= RXCFG_ATX;
3185 else
3186 sc->sc_rxcfg &= ~RXCFG_ATX;
3187
3188 /*
3189 * Update CFG for MII/GMII.
3190 */
3191 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3192 cfg = sc->sc_cfg | CFG_MODE_1000;
3193 else
3194 cfg = sc->sc_cfg;
3195
3196 /*
3197 * 802.3x flow control.
3198 */
3199 pcr = 0;
3200 if (sc->sc_flowflags & IFM_FLOW) {
3201 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3202 pcr |= sc->sc_rx_flow_thresh;
3203 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3204 pcr |= PCR_PSEN | PCR_PS_MCAST;
3205 }
3206
3207 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3208 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3209 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3210 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3211 }
3212 #endif /* ! DP83820 */
3213
3214 /*
3215 * sip_mii_bitbang_read: [mii bit-bang interface function]
3216 *
3217 * Read the MII serial port for the MII bit-bang module.
3218 */
3219 static u_int32_t
3220 SIP_DECL(mii_bitbang_read)(struct device *self)
3221 {
3222 struct sip_softc *sc = (void *) self;
3223
3224 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3225 }
3226
3227 /*
3228 * sip_mii_bitbang_write: [mii big-bang interface function]
3229 *
3230 * Write the MII serial port for the MII bit-bang module.
3231 */
3232 static void
3233 SIP_DECL(mii_bitbang_write)(struct device *self, u_int32_t val)
3234 {
3235 struct sip_softc *sc = (void *) self;
3236
3237 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3238 }
3239
3240 #ifndef DP83820
3241 /*
3242 * sip_sis900_mii_readreg: [mii interface function]
3243 *
3244 * Read a PHY register on the MII.
3245 */
3246 static int
3247 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
3248 {
3249 struct sip_softc *sc = (struct sip_softc *) self;
3250 u_int32_t enphy;
3251
3252 /*
3253 * The PHY of recent SiS chipsets is accessed through bitbang
3254 * operations.
3255 */
3256 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3257 return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3258 phy, reg));
3259
3260 #ifndef SIS900_MII_RESTRICT
3261 /*
3262 * The SiS 900 has only an internal PHY on the MII. Only allow
3263 * MII address 0.
3264 */
3265 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3266 return (0);
3267 #endif
3268
3269 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3270 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3271 ENPHY_RWCMD | ENPHY_ACCESS);
3272 do {
3273 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3274 } while (enphy & ENPHY_ACCESS);
3275 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3276 }
3277
3278 /*
3279 * sip_sis900_mii_writereg: [mii interface function]
3280 *
3281 * Write a PHY register on the MII.
3282 */
3283 static void
3284 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
3285 {
3286 struct sip_softc *sc = (struct sip_softc *) self;
3287 u_int32_t enphy;
3288
3289 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3290 mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3291 phy, reg, val);
3292 return;
3293 }
3294
3295 #ifndef SIS900_MII_RESTRICT
3296 /*
3297 * The SiS 900 has only an internal PHY on the MII. Only allow
3298 * MII address 0.
3299 */
3300 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3301 return;
3302 #endif
3303
3304 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3305 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3306 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3307 do {
3308 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3309 } while (enphy & ENPHY_ACCESS);
3310 }
3311
3312 /*
3313 * sip_sis900_mii_statchg: [mii interface function]
3314 *
3315 * Callback from MII layer when media changes.
3316 */
3317 static void
3318 SIP_DECL(sis900_mii_statchg)(struct device *self)
3319 {
3320 struct sip_softc *sc = (struct sip_softc *) self;
3321 struct mii_data *mii = &sc->sc_mii;
3322 u_int32_t flowctl;
3323
3324 /*
3325 * Get flow control negotiation result.
3326 */
3327 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3328 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3329 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3330 mii->mii_media_active &= ~IFM_ETH_FMASK;
3331 }
3332
3333 /*
3334 * Update TXCFG for full-duplex operation.
3335 */
3336 if ((mii->mii_media_active & IFM_FDX) != 0)
3337 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3338 else
3339 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3340
3341 /*
3342 * Update RXCFG for full-duplex or loopback.
3343 */
3344 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3345 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3346 sc->sc_rxcfg |= RXCFG_ATX;
3347 else
3348 sc->sc_rxcfg &= ~RXCFG_ATX;
3349
3350 /*
3351 * Update IMR for use of 802.3x flow control.
3352 */
3353 if (sc->sc_flowflags & IFM_FLOW) {
3354 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3355 flowctl = FLOWCTL_FLOWEN;
3356 } else {
3357 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3358 flowctl = 0;
3359 }
3360
3361 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3362 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3363 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3364 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3365 }
3366
3367 /*
3368 * sip_dp83815_mii_readreg: [mii interface function]
3369 *
3370 * Read a PHY register on the MII.
3371 */
3372 static int
3373 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3374 {
3375 struct sip_softc *sc = (struct sip_softc *) self;
3376 u_int32_t val;
3377
3378 /*
3379 * The DP83815 only has an internal PHY. Only allow
3380 * MII address 0.
3381 */
3382 if (phy != 0)
3383 return (0);
3384
3385 /*
3386 * Apparently, after a reset, the DP83815 can take a while
3387 * to respond. During this recovery period, the BMSR returns
3388 * a value of 0. Catch this -- it's not supposed to happen
3389 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3390 * PHY to come back to life.
3391 *
3392 * This works out because the BMSR is the first register
3393 * read during the PHY probe process.
3394 */
3395 do {
3396 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3397 } while (reg == MII_BMSR && val == 0);
3398
3399 return (val & 0xffff);
3400 }
3401
3402 /*
3403 * sip_dp83815_mii_writereg: [mii interface function]
3404 *
3405 * Write a PHY register to the MII.
3406 */
3407 static void
3408 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3409 {
3410 struct sip_softc *sc = (struct sip_softc *) self;
3411
3412 /*
3413 * The DP83815 only has an internal PHY. Only allow
3414 * MII address 0.
3415 */
3416 if (phy != 0)
3417 return;
3418
3419 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3420 }
3421
3422 /*
3423 * sip_dp83815_mii_statchg: [mii interface function]
3424 *
3425 * Callback from MII layer when media changes.
3426 */
3427 static void
3428 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3429 {
3430 struct sip_softc *sc = (struct sip_softc *) self;
3431
3432 /*
3433 * Update TXCFG for full-duplex operation.
3434 */
3435 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3436 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3437 else
3438 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3439
3440 /*
3441 * Update RXCFG for full-duplex or loopback.
3442 */
3443 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3444 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3445 sc->sc_rxcfg |= RXCFG_ATX;
3446 else
3447 sc->sc_rxcfg &= ~RXCFG_ATX;
3448
3449 /*
3450 * XXX 802.3x flow control.
3451 */
3452
3453 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3454 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3455
3456 /*
3457 * Some DP83815s experience problems when used with short
3458 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3459 * sequence adjusts the DSP's signal attenuation to fix the
3460 * problem.
3461 */
3462 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3463 uint32_t reg;
3464
3465 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3466
3467 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3468 reg &= 0x0fff;
3469 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3470 delay(100);
3471 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3472 reg &= 0x00ff;
3473 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3474 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3475 0x00e8);
3476 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3477 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3478 reg | 0x20);
3479 }
3480
3481 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3482 }
3483 }
3484 #endif /* DP83820 */
3485
3486 #if defined(DP83820)
3487 static void
3488 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3489 const struct pci_attach_args *pa, u_int8_t *enaddr)
3490 {
3491 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3492 u_int8_t cksum, *e, match;
3493 int i;
3494
3495 /*
3496 * EEPROM data format for the DP83820 can be found in
3497 * the DP83820 manual, section 4.2.4.
3498 */
3499
3500 SIP_DECL(read_eeprom)(sc, 0,
3501 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3502
3503 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3504 match = ~(match - 1);
3505
3506 cksum = 0x55;
3507 e = (u_int8_t *) eeprom_data;
3508 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3509 cksum += *e++;
3510
3511 if (cksum != match)
3512 printf("%s: Checksum (%x) mismatch (%x)",
3513 sc->sc_dev.dv_xname, cksum, match);
3514
3515 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3516 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3517 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3518 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3519 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3520 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3521 }
3522 #else /* ! DP83820 */
3523 static void
3524 SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc)
3525 {
3526 int i;
3527
3528 /*
3529 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3530 * a reason, but I don't know it.
3531 */
3532 for (i = 0; i < 10; i++)
3533 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3534 }
3535
3536 static void
3537 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3538 const struct pci_attach_args *pa, u_int8_t *enaddr)
3539 {
3540 u_int16_t myea[ETHER_ADDR_LEN / 2];
3541
3542 switch (sc->sc_rev) {
3543 case SIS_REV_630S:
3544 case SIS_REV_630E:
3545 case SIS_REV_630EA1:
3546 case SIS_REV_630ET:
3547 case SIS_REV_635:
3548 /*
3549 * The MAC address for the on-board Ethernet of
3550 * the SiS 630 chipset is in the NVRAM. Kick
3551 * the chip into re-loading it from NVRAM, and
3552 * read the MAC address out of the filter registers.
3553 */
3554 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3555
3556 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3557 RFCR_RFADDR_NODE0);
3558 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3559 0xffff;
3560
3561 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3562 RFCR_RFADDR_NODE2);
3563 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3564 0xffff;
3565
3566 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3567 RFCR_RFADDR_NODE4);
3568 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3569 0xffff;
3570 break;
3571
3572 case SIS_REV_960:
3573 {
3574 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3575 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3576
3577 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3578 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3579
3580 int waittime, i;
3581
3582 /* Allow to read EEPROM from LAN. It is shared
3583 * between a 1394 controller and the NIC and each
3584 * time we access it, we need to set SIS_EECMD_REQ.
3585 */
3586 SIS_SET_EROMAR(sc, EROMAR_REQ);
3587
3588 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3589 /* Force EEPROM to idle state. */
3590
3591 /*
3592 * XXX-cube This is ugly. I'll look for docs about it.
3593 */
3594 SIS_SET_EROMAR(sc, EROMAR_EECS);
3595 SIP_DECL(sis900_eeprom_delay)(sc);
3596 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3597 SIS_SET_EROMAR(sc, EROMAR_EESK);
3598 SIP_DECL(sis900_eeprom_delay)(sc);
3599 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3600 SIP_DECL(sis900_eeprom_delay)(sc);
3601 }
3602 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3603 SIP_DECL(sis900_eeprom_delay)(sc);
3604 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3605
3606 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3607 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3608 sizeof(myea) / sizeof(myea[0]), myea);
3609 break;
3610 }
3611 DELAY(1);
3612 }
3613
3614 /*
3615 * Set SIS_EECTL_CLK to high, so a other master
3616 * can operate on the i2c bus.
3617 */
3618 SIS_SET_EROMAR(sc, EROMAR_EESK);
3619
3620 /* Refuse EEPROM access by LAN */
3621 SIS_SET_EROMAR(sc, EROMAR_DONE);
3622 } break;
3623
3624 default:
3625 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3626 sizeof(myea) / sizeof(myea[0]), myea);
3627 }
3628
3629 enaddr[0] = myea[0] & 0xff;
3630 enaddr[1] = myea[0] >> 8;
3631 enaddr[2] = myea[1] & 0xff;
3632 enaddr[3] = myea[1] >> 8;
3633 enaddr[4] = myea[2] & 0xff;
3634 enaddr[5] = myea[2] >> 8;
3635 }
3636
3637 /* Table and macro to bit-reverse an octet. */
3638 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3639 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3640
3641 static void
3642 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3643 const struct pci_attach_args *pa, u_int8_t *enaddr)
3644 {
3645 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3646 u_int8_t cksum, *e, match;
3647 int i;
3648
3649 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3650 sizeof(eeprom_data[0]), eeprom_data);
3651
3652 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3653 match = ~(match - 1);
3654
3655 cksum = 0x55;
3656 e = (u_int8_t *) eeprom_data;
3657 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3658 cksum += *e++;
3659 }
3660 if (cksum != match) {
3661 printf("%s: Checksum (%x) mismatch (%x)",
3662 sc->sc_dev.dv_xname, cksum, match);
3663 }
3664
3665 /*
3666 * Unrolled because it makes slightly more sense this way.
3667 * The DP83815 stores the MAC address in bit 0 of word 6
3668 * through bit 15 of word 8.
3669 */
3670 ea = &eeprom_data[6];
3671 enaddr[0] = ((*ea & 0x1) << 7);
3672 ea++;
3673 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3674 enaddr[1] = ((*ea & 0x1FE) >> 1);
3675 enaddr[2] = ((*ea & 0x1) << 7);
3676 ea++;
3677 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3678 enaddr[3] = ((*ea & 0x1FE) >> 1);
3679 enaddr[4] = ((*ea & 0x1) << 7);
3680 ea++;
3681 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3682 enaddr[5] = ((*ea & 0x1FE) >> 1);
3683
3684 /*
3685 * In case that's not weird enough, we also need to reverse
3686 * the bits in each byte. This all actually makes more sense
3687 * if you think about the EEPROM storage as an array of bits
3688 * being shifted into bytes, but that's not how we're looking
3689 * at it here...
3690 */
3691 for (i = 0; i < 6 ;i++)
3692 enaddr[i] = bbr(enaddr[i]);
3693 }
3694 #endif /* DP83820 */
3695
3696 /*
3697 * sip_mediastatus: [ifmedia interface function]
3698 *
3699 * Get the current interface media status.
3700 */
3701 static void
3702 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3703 {
3704 struct sip_softc *sc = ifp->if_softc;
3705
3706 mii_pollstat(&sc->sc_mii);
3707 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3708 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3709 sc->sc_flowflags;
3710 }
3711
3712 /*
3713 * sip_mediachange: [ifmedia interface function]
3714 *
3715 * Set hardware to newly-selected media.
3716 */
3717 static int
3718 SIP_DECL(mediachange)(struct ifnet *ifp)
3719 {
3720 struct sip_softc *sc = ifp->if_softc;
3721
3722 if (ifp->if_flags & IFF_UP)
3723 mii_mediachg(&sc->sc_mii);
3724 return (0);
3725 }
3726