if_sip.c revision 1.98 1 /* $NetBSD: if_sip.c,v 1.98 2005/02/06 03:15:14 kim Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Reduce the Rx interrupt load.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.98 2005/02/06 03:15:14 kim Exp $");
84
85 #include "bpfilter.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114
115 #include <machine/bus.h>
116 #include <machine/intr.h>
117 #include <machine/endian.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/mii_bitbang.h>
122
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126
127 #include <dev/pci/if_sipreg.h>
128
129 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
130 #define SIP_DECL(x) __CONCAT(gsip_,x)
131 #else /* SiS900 and DP83815 */
132 #define SIP_DECL(x) __CONCAT(sip_,x)
133 #endif
134
135 #define SIP_STR(x) __STRING(SIP_DECL(x))
136
137 /*
138 * Transmit descriptor list size. This is arbitrary, but allocate
139 * enough descriptors for 128 pending transmissions, and 8 segments
140 * per packet (64 for DP83820 for jumbo frames).
141 *
142 * This MUST work out to a power of 2.
143 */
144 #ifdef DP83820
145 #define SIP_NTXSEGS 64
146 #define SIP_NTXSEGS_ALLOC 16
147 #else
148 #define SIP_NTXSEGS 16
149 #define SIP_NTXSEGS_ALLOC 8
150 #endif
151
152 #define SIP_TXQUEUELEN 256
153 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
154 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
155 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
156
157 #if defined(DP83820)
158 #define TX_DMAMAP_SIZE ETHER_MAX_LEN_JUMBO
159 #else
160 #define TX_DMAMAP_SIZE MCLBYTES
161 #endif
162
163 /*
164 * Receive descriptor list size. We have one Rx buffer per incoming
165 * packet, so this logic is a little simpler.
166 *
167 * Actually, on the DP83820, we allow the packet to consume more than
168 * one buffer, in order to support jumbo Ethernet frames. In that
169 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
170 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
171 * so we'd better be quick about handling receive interrupts.
172 */
173 #if defined(DP83820)
174 #define SIP_NRXDESC 256
175 #else
176 #define SIP_NRXDESC 128
177 #endif /* DP83820 */
178 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
179 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
180
181 /*
182 * Control structures are DMA'd to the SiS900 chip. We allocate them in
183 * a single clump that maps to a single DMA segment to make several things
184 * easier.
185 */
186 struct sip_control_data {
187 /*
188 * The transmit descriptors.
189 */
190 struct sip_desc scd_txdescs[SIP_NTXDESC];
191
192 /*
193 * The receive descriptors.
194 */
195 struct sip_desc scd_rxdescs[SIP_NRXDESC];
196 };
197
198 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
199 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
200 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
201
202 /*
203 * Software state for transmit jobs.
204 */
205 struct sip_txsoft {
206 struct mbuf *txs_mbuf; /* head of our mbuf chain */
207 bus_dmamap_t txs_dmamap; /* our DMA map */
208 int txs_firstdesc; /* first descriptor in packet */
209 int txs_lastdesc; /* last descriptor in packet */
210 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
211 };
212
213 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
214
215 /*
216 * Software state for receive jobs.
217 */
218 struct sip_rxsoft {
219 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
220 bus_dmamap_t rxs_dmamap; /* our DMA map */
221 };
222
223 /*
224 * Software state per device.
225 */
226 struct sip_softc {
227 struct device sc_dev; /* generic device information */
228 bus_space_tag_t sc_st; /* bus space tag */
229 bus_space_handle_t sc_sh; /* bus space handle */
230 bus_dma_tag_t sc_dmat; /* bus DMA tag */
231 struct ethercom sc_ethercom; /* ethernet common data */
232 void *sc_sdhook; /* shutdown hook */
233
234 const struct sip_product *sc_model; /* which model are we? */
235 int sc_rev; /* chip revision */
236
237 void *sc_ih; /* interrupt cookie */
238
239 struct mii_data sc_mii; /* MII/media information */
240
241 struct callout sc_tick_ch; /* tick callout */
242
243 bus_dmamap_t sc_cddmamap; /* control data DMA map */
244 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
245
246 /*
247 * Software state for transmit and receive descriptors.
248 */
249 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
250 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
251
252 /*
253 * Control data structures.
254 */
255 struct sip_control_data *sc_control_data;
256 #define sc_txdescs sc_control_data->scd_txdescs
257 #define sc_rxdescs sc_control_data->scd_rxdescs
258
259 #ifdef SIP_EVENT_COUNTERS
260 /*
261 * Event counters.
262 */
263 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
264 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
265 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
266 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
267 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
268 struct evcnt sc_ev_rxintr; /* Rx interrupts */
269 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
270 struct evcnt sc_ev_rxpause; /* PAUSE received */
271 #ifdef DP83820
272 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
273 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
274 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
275 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
276 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
277 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
278 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
279 #endif /* DP83820 */
280 #endif /* SIP_EVENT_COUNTERS */
281
282 u_int32_t sc_txcfg; /* prototype TXCFG register */
283 u_int32_t sc_rxcfg; /* prototype RXCFG register */
284 u_int32_t sc_imr; /* prototype IMR register */
285 u_int32_t sc_rfcr; /* prototype RFCR register */
286
287 u_int32_t sc_cfg; /* prototype CFG register */
288
289 #ifdef DP83820
290 u_int32_t sc_gpior; /* prototype GPIOR register */
291 #endif /* DP83820 */
292
293 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
294 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
295
296 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
297
298 int sc_flowflags; /* 802.3x flow control flags */
299 #ifdef DP83820
300 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
301 #else
302 int sc_paused; /* paused indication */
303 #endif
304
305 int sc_txfree; /* number of free Tx descriptors */
306 int sc_txnext; /* next ready Tx descriptor */
307 int sc_txwin; /* Tx descriptors since last intr */
308
309 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
310 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
311
312 short sc_if_flags;
313
314 int sc_rxptr; /* next ready Rx descriptor/descsoft */
315 #if defined(DP83820)
316 int sc_rxdiscard;
317 int sc_rxlen;
318 struct mbuf *sc_rxhead;
319 struct mbuf *sc_rxtail;
320 struct mbuf **sc_rxtailp;
321 #endif /* DP83820 */
322
323 #if NRND > 0
324 rndsource_element_t rnd_source; /* random source */
325 #endif
326 };
327
328 #ifdef DP83820
329 #define SIP_RXCHAIN_RESET(sc) \
330 do { \
331 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
332 *(sc)->sc_rxtailp = NULL; \
333 (sc)->sc_rxlen = 0; \
334 } while (/*CONSTCOND*/0)
335
336 #define SIP_RXCHAIN_LINK(sc, m) \
337 do { \
338 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
339 (sc)->sc_rxtailp = &(m)->m_next; \
340 } while (/*CONSTCOND*/0)
341 #endif /* DP83820 */
342
343 #ifdef SIP_EVENT_COUNTERS
344 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
345 #else
346 #define SIP_EVCNT_INCR(ev) /* nothing */
347 #endif
348
349 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
350 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
351
352 #define SIP_CDTXSYNC(sc, x, n, ops) \
353 do { \
354 int __x, __n; \
355 \
356 __x = (x); \
357 __n = (n); \
358 \
359 /* If it will wrap around, sync to the end of the ring. */ \
360 if ((__x + __n) > SIP_NTXDESC) { \
361 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
362 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
363 (SIP_NTXDESC - __x), (ops)); \
364 __n -= (SIP_NTXDESC - __x); \
365 __x = 0; \
366 } \
367 \
368 /* Now sync whatever is left. */ \
369 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
370 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
371 } while (0)
372
373 #define SIP_CDRXSYNC(sc, x, ops) \
374 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
375 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
376
377 #ifdef DP83820
378 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
379 #define SIP_RXBUF_LEN (MCLBYTES - 8)
380 #else
381 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
382 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */
383 #endif
384 #define SIP_INIT_RXDESC(sc, x) \
385 do { \
386 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
387 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
388 \
389 __sipd->sipd_link = \
390 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
391 __sipd->sipd_bufptr = \
392 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
393 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
394 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \
395 SIP_INIT_RXDESC_EXTSTS \
396 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
397 } while (0)
398
399 #define SIP_CHIP_VERS(sc, v, p, r) \
400 ((sc)->sc_model->sip_vendor == (v) && \
401 (sc)->sc_model->sip_product == (p) && \
402 (sc)->sc_rev == (r))
403
404 #define SIP_CHIP_MODEL(sc, v, p) \
405 ((sc)->sc_model->sip_vendor == (v) && \
406 (sc)->sc_model->sip_product == (p))
407
408 #if !defined(DP83820)
409 #define SIP_SIS900_REV(sc, rev) \
410 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
411 #endif
412
413 #define SIP_TIMEOUT 1000
414
415 static void SIP_DECL(start)(struct ifnet *);
416 static void SIP_DECL(watchdog)(struct ifnet *);
417 static int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
418 static int SIP_DECL(init)(struct ifnet *);
419 static void SIP_DECL(stop)(struct ifnet *, int);
420
421 static void SIP_DECL(shutdown)(void *);
422
423 static void SIP_DECL(reset)(struct sip_softc *);
424 static void SIP_DECL(rxdrain)(struct sip_softc *);
425 static int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
426 static void SIP_DECL(read_eeprom)(struct sip_softc *, int, int,
427 u_int16_t *);
428 static void SIP_DECL(tick)(void *);
429
430 #if !defined(DP83820)
431 static void SIP_DECL(sis900_set_filter)(struct sip_softc *);
432 #endif /* ! DP83820 */
433 static void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
434
435 #if defined(DP83820)
436 static void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
437 const struct pci_attach_args *, u_int8_t *);
438 #else
439 static void SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc);
440 static void SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
441 const struct pci_attach_args *, u_int8_t *);
442 static void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
443 const struct pci_attach_args *, u_int8_t *);
444 #endif /* DP83820 */
445
446 static int SIP_DECL(intr)(void *);
447 static void SIP_DECL(txintr)(struct sip_softc *);
448 static void SIP_DECL(rxintr)(struct sip_softc *);
449
450 #if defined(DP83820)
451 static int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
452 static void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
453 static void SIP_DECL(dp83820_mii_statchg)(struct device *);
454 #else
455 static int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
456 static void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
457 static void SIP_DECL(sis900_mii_statchg)(struct device *);
458
459 static int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
460 static void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
461 static void SIP_DECL(dp83815_mii_statchg)(struct device *);
462 #endif /* DP83820 */
463
464 static int SIP_DECL(mediachange)(struct ifnet *);
465 static void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
466
467 static int SIP_DECL(match)(struct device *, struct cfdata *, void *);
468 static void SIP_DECL(attach)(struct device *, struct device *, void *);
469
470 int SIP_DECL(copy_small) = 0;
471
472 #ifdef DP83820
473 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
474 gsip_match, gsip_attach, NULL, NULL);
475 #else
476 CFATTACH_DECL(sip, sizeof(struct sip_softc),
477 sip_match, sip_attach, NULL, NULL);
478 #endif
479
480 /*
481 * Descriptions of the variants of the SiS900.
482 */
483 struct sip_variant {
484 int (*sipv_mii_readreg)(struct device *, int, int);
485 void (*sipv_mii_writereg)(struct device *, int, int, int);
486 void (*sipv_mii_statchg)(struct device *);
487 void (*sipv_set_filter)(struct sip_softc *);
488 void (*sipv_read_macaddr)(struct sip_softc *,
489 const struct pci_attach_args *, u_int8_t *);
490 };
491
492 static u_int32_t SIP_DECL(mii_bitbang_read)(struct device *);
493 static void SIP_DECL(mii_bitbang_write)(struct device *, u_int32_t);
494
495 static const struct mii_bitbang_ops SIP_DECL(mii_bitbang_ops) = {
496 SIP_DECL(mii_bitbang_read),
497 SIP_DECL(mii_bitbang_write),
498 {
499 EROMAR_MDIO, /* MII_BIT_MDO */
500 EROMAR_MDIO, /* MII_BIT_MDI */
501 EROMAR_MDC, /* MII_BIT_MDC */
502 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
503 0, /* MII_BIT_DIR_PHY_HOST */
504 }
505 };
506
507 #if defined(DP83820)
508 static const struct sip_variant SIP_DECL(variant_dp83820) = {
509 SIP_DECL(dp83820_mii_readreg),
510 SIP_DECL(dp83820_mii_writereg),
511 SIP_DECL(dp83820_mii_statchg),
512 SIP_DECL(dp83815_set_filter),
513 SIP_DECL(dp83820_read_macaddr),
514 };
515 #else
516 static const struct sip_variant SIP_DECL(variant_sis900) = {
517 SIP_DECL(sis900_mii_readreg),
518 SIP_DECL(sis900_mii_writereg),
519 SIP_DECL(sis900_mii_statchg),
520 SIP_DECL(sis900_set_filter),
521 SIP_DECL(sis900_read_macaddr),
522 };
523
524 static const struct sip_variant SIP_DECL(variant_dp83815) = {
525 SIP_DECL(dp83815_mii_readreg),
526 SIP_DECL(dp83815_mii_writereg),
527 SIP_DECL(dp83815_mii_statchg),
528 SIP_DECL(dp83815_set_filter),
529 SIP_DECL(dp83815_read_macaddr),
530 };
531 #endif /* DP83820 */
532
533 /*
534 * Devices supported by this driver.
535 */
536 static const struct sip_product {
537 pci_vendor_id_t sip_vendor;
538 pci_product_id_t sip_product;
539 const char *sip_name;
540 const struct sip_variant *sip_variant;
541 } SIP_DECL(products)[] = {
542 #if defined(DP83820)
543 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
544 "NatSemi DP83820 Gigabit Ethernet",
545 &SIP_DECL(variant_dp83820) },
546 #else
547 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
548 "SiS 900 10/100 Ethernet",
549 &SIP_DECL(variant_sis900) },
550 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
551 "SiS 7016 10/100 Ethernet",
552 &SIP_DECL(variant_sis900) },
553
554 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
555 "NatSemi DP83815 10/100 Ethernet",
556 &SIP_DECL(variant_dp83815) },
557 #endif /* DP83820 */
558
559 { 0, 0,
560 NULL,
561 NULL },
562 };
563
564 static const struct sip_product *
565 SIP_DECL(lookup)(const struct pci_attach_args *pa)
566 {
567 const struct sip_product *sip;
568
569 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
570 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
571 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
572 return (sip);
573 }
574 return (NULL);
575 }
576
577 #ifdef DP83820
578 /*
579 * I really hate stupid hardware vendors. There's a bit in the EEPROM
580 * which indicates if the card can do 64-bit data transfers. Unfortunately,
581 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
582 * which means we try to use 64-bit data transfers on those cards if we
583 * happen to be plugged into a 32-bit slot.
584 *
585 * What we do is use this table of cards known to be 64-bit cards. If
586 * you have a 64-bit card who's subsystem ID is not listed in this table,
587 * send the output of "pcictl dump ..." of the device to me so that your
588 * card will use the 64-bit data path when plugged into a 64-bit slot.
589 *
590 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
591 * June 30, 2002
592 */
593 static int
594 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
595 {
596 static const struct {
597 pci_vendor_id_t c64_vendor;
598 pci_product_id_t c64_product;
599 } card64[] = {
600 /* Asante GigaNIX */
601 { 0x128a, 0x0002 },
602
603 /* Accton EN1407-T, Planex GN-1000TE */
604 { 0x1113, 0x1407 },
605
606 /* Netgear GA-621 */
607 { 0x1385, 0x621a },
608
609 /* SMC EZ Card */
610 { 0x10b8, 0x9462 },
611
612 { 0, 0}
613 };
614 pcireg_t subsys;
615 int i;
616
617 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
618
619 for (i = 0; card64[i].c64_vendor != 0; i++) {
620 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
621 PCI_PRODUCT(subsys) == card64[i].c64_product)
622 return (1);
623 }
624
625 return (0);
626 }
627 #endif /* DP83820 */
628
629 static int
630 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
631 {
632 struct pci_attach_args *pa = aux;
633
634 if (SIP_DECL(lookup)(pa) != NULL)
635 return (1);
636
637 return (0);
638 }
639
640 static void
641 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
642 {
643 struct sip_softc *sc = (struct sip_softc *) self;
644 struct pci_attach_args *pa = aux;
645 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
646 pci_chipset_tag_t pc = pa->pa_pc;
647 pci_intr_handle_t ih;
648 const char *intrstr = NULL;
649 bus_space_tag_t iot, memt;
650 bus_space_handle_t ioh, memh;
651 bus_dma_segment_t seg;
652 int ioh_valid, memh_valid;
653 int i, rseg, error;
654 const struct sip_product *sip;
655 pcireg_t pmode;
656 u_int8_t enaddr[ETHER_ADDR_LEN];
657 int pmreg;
658 #ifdef DP83820
659 pcireg_t memtype;
660 u_int32_t reg;
661 #endif /* DP83820 */
662
663 callout_init(&sc->sc_tick_ch);
664
665 sip = SIP_DECL(lookup)(pa);
666 if (sip == NULL) {
667 printf("\n");
668 panic(SIP_STR(attach) ": impossible");
669 }
670 sc->sc_rev = PCI_REVISION(pa->pa_class);
671
672 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
673
674 sc->sc_model = sip;
675
676 /*
677 * XXX Work-around broken PXE firmware on some boards.
678 *
679 * The DP83815 shares an address decoder with the MEM BAR
680 * and the ROM BAR. Make sure the ROM BAR is disabled,
681 * so that memory mapped access works.
682 */
683 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
684 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
685 ~PCI_MAPREG_ROM_ENABLE);
686
687 /*
688 * Map the device.
689 */
690 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
691 PCI_MAPREG_TYPE_IO, 0,
692 &iot, &ioh, NULL, NULL) == 0);
693 #ifdef DP83820
694 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
695 switch (memtype) {
696 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
697 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
698 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
699 memtype, 0, &memt, &memh, NULL, NULL) == 0);
700 break;
701 default:
702 memh_valid = 0;
703 }
704 #else
705 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
706 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
707 &memt, &memh, NULL, NULL) == 0);
708 #endif /* DP83820 */
709
710 if (memh_valid) {
711 sc->sc_st = memt;
712 sc->sc_sh = memh;
713 } else if (ioh_valid) {
714 sc->sc_st = iot;
715 sc->sc_sh = ioh;
716 } else {
717 printf("%s: unable to map device registers\n",
718 sc->sc_dev.dv_xname);
719 return;
720 }
721
722 sc->sc_dmat = pa->pa_dmat;
723
724 /*
725 * Make sure bus mastering is enabled. Also make sure
726 * Write/Invalidate is enabled if we're allowed to use it.
727 */
728 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
729 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
730 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
731 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
732 pmreg | PCI_COMMAND_MASTER_ENABLE);
733
734 /* Get it out of power save mode if needed. */
735 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
736 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
737 PCI_PMCSR_STATE_MASK;
738 if (pmode == PCI_PMCSR_STATE_D3) {
739 /*
740 * The card has lost all configuration data in
741 * this state, so punt.
742 */
743 printf("%s: unable to wake up from power state D3\n",
744 sc->sc_dev.dv_xname);
745 return;
746 }
747 if (pmode != PCI_PMCSR_STATE_D0) {
748 printf("%s: waking up from power state D%d\n",
749 sc->sc_dev.dv_xname, pmode);
750 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
751 PCI_PMCSR_STATE_D0);
752 }
753 }
754
755 /*
756 * Map and establish our interrupt.
757 */
758 if (pci_intr_map(pa, &ih)) {
759 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
760 return;
761 }
762 intrstr = pci_intr_string(pc, ih);
763 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
764 if (sc->sc_ih == NULL) {
765 printf("%s: unable to establish interrupt",
766 sc->sc_dev.dv_xname);
767 if (intrstr != NULL)
768 printf(" at %s", intrstr);
769 printf("\n");
770 return;
771 }
772 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
773
774 SIMPLEQ_INIT(&sc->sc_txfreeq);
775 SIMPLEQ_INIT(&sc->sc_txdirtyq);
776
777 /*
778 * Allocate the control data structures, and create and load the
779 * DMA map for it.
780 */
781 if ((error = bus_dmamem_alloc(sc->sc_dmat,
782 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
783 0)) != 0) {
784 printf("%s: unable to allocate control data, error = %d\n",
785 sc->sc_dev.dv_xname, error);
786 goto fail_0;
787 }
788
789 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
790 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
791 BUS_DMA_COHERENT)) != 0) {
792 printf("%s: unable to map control data, error = %d\n",
793 sc->sc_dev.dv_xname, error);
794 goto fail_1;
795 }
796
797 if ((error = bus_dmamap_create(sc->sc_dmat,
798 sizeof(struct sip_control_data), 1,
799 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
800 printf("%s: unable to create control data DMA map, "
801 "error = %d\n", sc->sc_dev.dv_xname, error);
802 goto fail_2;
803 }
804
805 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
806 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
807 0)) != 0) {
808 printf("%s: unable to load control data DMA map, error = %d\n",
809 sc->sc_dev.dv_xname, error);
810 goto fail_3;
811 }
812
813 /*
814 * Create the transmit buffer DMA maps.
815 */
816 for (i = 0; i < SIP_TXQUEUELEN; i++) {
817 if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
818 SIP_NTXSEGS, MCLBYTES, 0, 0,
819 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
820 printf("%s: unable to create tx DMA map %d, "
821 "error = %d\n", sc->sc_dev.dv_xname, i, error);
822 goto fail_4;
823 }
824 }
825
826 /*
827 * Create the receive buffer DMA maps.
828 */
829 for (i = 0; i < SIP_NRXDESC; i++) {
830 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
831 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
832 printf("%s: unable to create rx DMA map %d, "
833 "error = %d\n", sc->sc_dev.dv_xname, i, error);
834 goto fail_5;
835 }
836 sc->sc_rxsoft[i].rxs_mbuf = NULL;
837 }
838
839 /*
840 * Reset the chip to a known state.
841 */
842 SIP_DECL(reset)(sc);
843
844 /*
845 * Read the Ethernet address from the EEPROM. This might
846 * also fetch other stuff from the EEPROM and stash it
847 * in the softc.
848 */
849 sc->sc_cfg = 0;
850 #if !defined(DP83820)
851 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
852 SIP_SIS900_REV(sc,SIS_REV_900B))
853 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
854
855 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
856 SIP_SIS900_REV(sc,SIS_REV_960) ||
857 SIP_SIS900_REV(sc,SIS_REV_900B))
858 sc->sc_cfg |= (bus_space_read_4(sc->sc_st, sc->sc_sh,
859 SIP_CFG) & CFG_EDBMASTEN);
860 #endif
861
862 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
863
864 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
865 ether_sprintf(enaddr));
866
867 /*
868 * Initialize the configuration register: aggressive PCI
869 * bus request algorithm, default backoff, default OW timer,
870 * default parity error detection.
871 *
872 * NOTE: "Big endian mode" is useless on the SiS900 and
873 * friends -- it affects packet data, not descriptors.
874 */
875 #ifdef DP83820
876 /*
877 * Cause the chip to load configuration data from the EEPROM.
878 */
879 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
880 for (i = 0; i < 10000; i++) {
881 delay(10);
882 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
883 PTSCR_EELOAD_EN) == 0)
884 break;
885 }
886 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
887 PTSCR_EELOAD_EN) {
888 printf("%s: timeout loading configuration from EEPROM\n",
889 sc->sc_dev.dv_xname);
890 return;
891 }
892
893 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
894
895 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
896 if (reg & CFG_PCI64_DET) {
897 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
898 /*
899 * Check to see if this card is 64-bit. If so, enable 64-bit
900 * data transfers.
901 *
902 * We can't use the DATA64_EN bit in the EEPROM, because
903 * vendors of 32-bit cards fail to clear that bit in many
904 * cases (yet the card still detects that it's in a 64-bit
905 * slot; go figure).
906 */
907 if (SIP_DECL(check_64bit)(pa)) {
908 sc->sc_cfg |= CFG_DATA64_EN;
909 printf(", using 64-bit data transfers");
910 }
911 printf("\n");
912 }
913
914 /*
915 * XXX Need some PCI flags indicating support for
916 * XXX 64-bit addressing.
917 */
918 #if 0
919 if (reg & CFG_M64ADDR)
920 sc->sc_cfg |= CFG_M64ADDR;
921 if (reg & CFG_T64ADDR)
922 sc->sc_cfg |= CFG_T64ADDR;
923 #endif
924
925 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
926 const char *sep = "";
927 printf("%s: using ", sc->sc_dev.dv_xname);
928 if (reg & CFG_EXT_125) {
929 sc->sc_cfg |= CFG_EXT_125;
930 printf("%s125MHz clock", sep);
931 sep = ", ";
932 }
933 if (reg & CFG_TBI_EN) {
934 sc->sc_cfg |= CFG_TBI_EN;
935 printf("%sten-bit interface", sep);
936 sep = ", ";
937 }
938 printf("\n");
939 }
940 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
941 (reg & CFG_MRM_DIS) != 0)
942 sc->sc_cfg |= CFG_MRM_DIS;
943 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
944 (reg & CFG_MWI_DIS) != 0)
945 sc->sc_cfg |= CFG_MWI_DIS;
946
947 /*
948 * Use the extended descriptor format on the DP83820. This
949 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
950 * checksumming.
951 */
952 sc->sc_cfg |= CFG_EXTSTS_EN;
953 #endif /* DP83820 */
954
955 /*
956 * Initialize our media structures and probe the MII.
957 */
958 sc->sc_mii.mii_ifp = ifp;
959 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
960 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
961 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
962 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
963 SIP_DECL(mediastatus));
964
965 /*
966 * XXX We cannot handle flow control on the DP83815.
967 */
968 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
969 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
970 MII_OFFSET_ANY, 0);
971 else
972 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
973 MII_OFFSET_ANY, MIIF_DOPAUSE);
974 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
975 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
976 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
977 } else
978 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
979
980 ifp = &sc->sc_ethercom.ec_if;
981 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
982 ifp->if_softc = sc;
983 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
984 sc->sc_if_flags = ifp->if_flags;
985 ifp->if_ioctl = SIP_DECL(ioctl);
986 ifp->if_start = SIP_DECL(start);
987 ifp->if_watchdog = SIP_DECL(watchdog);
988 ifp->if_init = SIP_DECL(init);
989 ifp->if_stop = SIP_DECL(stop);
990 IFQ_SET_READY(&ifp->if_snd);
991
992 /*
993 * We can support 802.1Q VLAN-sized frames.
994 */
995 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
996
997 #ifdef DP83820
998 /*
999 * And the DP83820 can do VLAN tagging in hardware, and
1000 * support the jumbo Ethernet MTU.
1001 */
1002 sc->sc_ethercom.ec_capabilities |=
1003 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1004
1005 /*
1006 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1007 * in hardware.
1008 */
1009 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
1010 IFCAP_CSUM_UDPv4;
1011 #endif /* DP83820 */
1012
1013 /*
1014 * Attach the interface.
1015 */
1016 if_attach(ifp);
1017 ether_ifattach(ifp, enaddr);
1018 #if NRND > 0
1019 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1020 RND_TYPE_NET, 0);
1021 #endif
1022
1023 /*
1024 * The number of bytes that must be available in
1025 * the Tx FIFO before the bus master can DMA more
1026 * data into the FIFO.
1027 */
1028 sc->sc_tx_fill_thresh = 64 / 32;
1029
1030 /*
1031 * Start at a drain threshold of 512 bytes. We will
1032 * increase it if a DMA underrun occurs.
1033 *
1034 * XXX The minimum value of this variable should be
1035 * tuned. We may be able to improve performance
1036 * by starting with a lower value. That, however,
1037 * may trash the first few outgoing packets if the
1038 * PCI bus is saturated.
1039 */
1040 #ifdef DP83820
1041 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1042 #else
1043 sc->sc_tx_drain_thresh = 1504 / 32;
1044 #endif
1045
1046 /*
1047 * Initialize the Rx FIFO drain threshold.
1048 *
1049 * This is in units of 8 bytes.
1050 *
1051 * We should never set this value lower than 2; 14 bytes are
1052 * required to filter the packet.
1053 */
1054 sc->sc_rx_drain_thresh = 128 / 8;
1055
1056 #ifdef SIP_EVENT_COUNTERS
1057 /*
1058 * Attach event counters.
1059 */
1060 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1061 NULL, sc->sc_dev.dv_xname, "txsstall");
1062 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1063 NULL, sc->sc_dev.dv_xname, "txdstall");
1064 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1065 NULL, sc->sc_dev.dv_xname, "txforceintr");
1066 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1067 NULL, sc->sc_dev.dv_xname, "txdintr");
1068 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1069 NULL, sc->sc_dev.dv_xname, "txiintr");
1070 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1071 NULL, sc->sc_dev.dv_xname, "rxintr");
1072 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1073 NULL, sc->sc_dev.dv_xname, "hiberr");
1074 #ifndef DP83820
1075 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1076 NULL, sc->sc_dev.dv_xname, "rxpause");
1077 #endif /* !DP83820 */
1078 #ifdef DP83820
1079 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1080 NULL, sc->sc_dev.dv_xname, "rxpause");
1081 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1082 NULL, sc->sc_dev.dv_xname, "txpause");
1083 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1084 NULL, sc->sc_dev.dv_xname, "rxipsum");
1085 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1086 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1087 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1088 NULL, sc->sc_dev.dv_xname, "rxudpsum");
1089 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1090 NULL, sc->sc_dev.dv_xname, "txipsum");
1091 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1092 NULL, sc->sc_dev.dv_xname, "txtcpsum");
1093 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1094 NULL, sc->sc_dev.dv_xname, "txudpsum");
1095 #endif /* DP83820 */
1096 #endif /* SIP_EVENT_COUNTERS */
1097
1098 /*
1099 * Make sure the interface is shutdown during reboot.
1100 */
1101 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1102 if (sc->sc_sdhook == NULL)
1103 printf("%s: WARNING: unable to establish shutdown hook\n",
1104 sc->sc_dev.dv_xname);
1105 return;
1106
1107 /*
1108 * Free any resources we've allocated during the failed attach
1109 * attempt. Do this in reverse order and fall through.
1110 */
1111 fail_5:
1112 for (i = 0; i < SIP_NRXDESC; i++) {
1113 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1114 bus_dmamap_destroy(sc->sc_dmat,
1115 sc->sc_rxsoft[i].rxs_dmamap);
1116 }
1117 fail_4:
1118 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1119 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1120 bus_dmamap_destroy(sc->sc_dmat,
1121 sc->sc_txsoft[i].txs_dmamap);
1122 }
1123 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1124 fail_3:
1125 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1126 fail_2:
1127 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1128 sizeof(struct sip_control_data));
1129 fail_1:
1130 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1131 fail_0:
1132 return;
1133 }
1134
1135 /*
1136 * sip_shutdown:
1137 *
1138 * Make sure the interface is stopped at reboot time.
1139 */
1140 static void
1141 SIP_DECL(shutdown)(void *arg)
1142 {
1143 struct sip_softc *sc = arg;
1144
1145 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1146 }
1147
1148 /*
1149 * sip_start: [ifnet interface function]
1150 *
1151 * Start packet transmission on the interface.
1152 */
1153 static void
1154 SIP_DECL(start)(struct ifnet *ifp)
1155 {
1156 struct sip_softc *sc = ifp->if_softc;
1157 struct mbuf *m0;
1158 #ifndef DP83820
1159 struct mbuf *m;
1160 #endif
1161 struct sip_txsoft *txs;
1162 bus_dmamap_t dmamap;
1163 int error, nexttx, lasttx, seg;
1164 int ofree = sc->sc_txfree;
1165 #if 0
1166 int firsttx = sc->sc_txnext;
1167 #endif
1168 #ifdef DP83820
1169 struct m_tag *mtag;
1170 u_int32_t extsts;
1171 #endif
1172
1173 #ifndef DP83820
1174 /*
1175 * If we've been told to pause, don't transmit any more packets.
1176 */
1177 if (sc->sc_paused)
1178 ifp->if_flags |= IFF_OACTIVE;
1179 #endif
1180
1181 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1182 return;
1183
1184 /*
1185 * Loop through the send queue, setting up transmit descriptors
1186 * until we drain the queue, or use up all available transmit
1187 * descriptors.
1188 */
1189 for (;;) {
1190 /* Get a work queue entry. */
1191 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1192 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1193 break;
1194 }
1195
1196 /*
1197 * Grab a packet off the queue.
1198 */
1199 IFQ_POLL(&ifp->if_snd, m0);
1200 if (m0 == NULL)
1201 break;
1202 #ifndef DP83820
1203 m = NULL;
1204 #endif
1205
1206 dmamap = txs->txs_dmamap;
1207
1208 #ifdef DP83820
1209 /*
1210 * Load the DMA map. If this fails, the packet either
1211 * didn't fit in the allotted number of segments, or we
1212 * were short on resources. For the too-many-segments
1213 * case, we simply report an error and drop the packet,
1214 * since we can't sanely copy a jumbo packet to a single
1215 * buffer.
1216 */
1217 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1218 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1219 if (error) {
1220 if (error == EFBIG) {
1221 printf("%s: Tx packet consumes too many "
1222 "DMA segments, dropping...\n",
1223 sc->sc_dev.dv_xname);
1224 IFQ_DEQUEUE(&ifp->if_snd, m0);
1225 m_freem(m0);
1226 continue;
1227 }
1228 /*
1229 * Short on resources, just stop for now.
1230 */
1231 break;
1232 }
1233 #else /* DP83820 */
1234 /*
1235 * Load the DMA map. If this fails, the packet either
1236 * didn't fit in the alloted number of segments, or we
1237 * were short on resources. In this case, we'll copy
1238 * and try again.
1239 */
1240 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1241 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1242 MGETHDR(m, M_DONTWAIT, MT_DATA);
1243 if (m == NULL) {
1244 printf("%s: unable to allocate Tx mbuf\n",
1245 sc->sc_dev.dv_xname);
1246 break;
1247 }
1248 if (m0->m_pkthdr.len > MHLEN) {
1249 MCLGET(m, M_DONTWAIT);
1250 if ((m->m_flags & M_EXT) == 0) {
1251 printf("%s: unable to allocate Tx "
1252 "cluster\n", sc->sc_dev.dv_xname);
1253 m_freem(m);
1254 break;
1255 }
1256 }
1257 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1258 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1259 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1260 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1261 if (error) {
1262 printf("%s: unable to load Tx buffer, "
1263 "error = %d\n", sc->sc_dev.dv_xname, error);
1264 break;
1265 }
1266 }
1267 #endif /* DP83820 */
1268
1269 /*
1270 * Ensure we have enough descriptors free to describe
1271 * the packet. Note, we always reserve one descriptor
1272 * at the end of the ring as a termination point, to
1273 * prevent wrap-around.
1274 */
1275 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1276 /*
1277 * Not enough free descriptors to transmit this
1278 * packet. We haven't committed anything yet,
1279 * so just unload the DMA map, put the packet
1280 * back on the queue, and punt. Notify the upper
1281 * layer that there are not more slots left.
1282 *
1283 * XXX We could allocate an mbuf and copy, but
1284 * XXX is it worth it?
1285 */
1286 ifp->if_flags |= IFF_OACTIVE;
1287 bus_dmamap_unload(sc->sc_dmat, dmamap);
1288 #ifndef DP83820
1289 if (m != NULL)
1290 m_freem(m);
1291 #endif
1292 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1293 break;
1294 }
1295
1296 IFQ_DEQUEUE(&ifp->if_snd, m0);
1297 #ifndef DP83820
1298 if (m != NULL) {
1299 m_freem(m0);
1300 m0 = m;
1301 }
1302 #endif
1303
1304 /*
1305 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1306 */
1307
1308 /* Sync the DMA map. */
1309 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1310 BUS_DMASYNC_PREWRITE);
1311
1312 /*
1313 * Initialize the transmit descriptors.
1314 */
1315 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1316 seg < dmamap->dm_nsegs;
1317 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1318 /*
1319 * If this is the first descriptor we're
1320 * enqueueing, don't set the OWN bit just
1321 * yet. That could cause a race condition.
1322 * We'll do it below.
1323 */
1324 sc->sc_txdescs[nexttx].sipd_bufptr =
1325 htole32(dmamap->dm_segs[seg].ds_addr);
1326 sc->sc_txdescs[nexttx].sipd_cmdsts =
1327 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1328 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1329 #ifdef DP83820
1330 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1331 #endif /* DP83820 */
1332 lasttx = nexttx;
1333 }
1334
1335 /* Clear the MORE bit on the last segment. */
1336 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1337
1338 /*
1339 * If we're in the interrupt delay window, delay the
1340 * interrupt.
1341 */
1342 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1343 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1344 sc->sc_txdescs[lasttx].sipd_cmdsts |=
1345 htole32(CMDSTS_INTR);
1346 sc->sc_txwin = 0;
1347 }
1348
1349 #ifdef DP83820
1350 /*
1351 * If VLANs are enabled and the packet has a VLAN tag, set
1352 * up the descriptor to encapsulate the packet for us.
1353 *
1354 * This apparently has to be on the last descriptor of
1355 * the packet.
1356 */
1357 if (sc->sc_ethercom.ec_nvlans != 0 &&
1358 (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
1359 sc->sc_txdescs[lasttx].sipd_extsts |=
1360 htole32(EXTSTS_VPKT |
1361 (*(u_int *)(mtag + 1) & EXTSTS_VTCI));
1362 }
1363
1364 /*
1365 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1366 * checksumming, set up the descriptor to do this work
1367 * for us.
1368 *
1369 * This apparently has to be on the first descriptor of
1370 * the packet.
1371 *
1372 * Byte-swap constants so the compiler can optimize.
1373 */
1374 extsts = 0;
1375 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1376 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1377 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1378 extsts |= htole32(EXTSTS_IPPKT);
1379 }
1380 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1381 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1382 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1383 extsts |= htole32(EXTSTS_TCPPKT);
1384 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1385 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1386 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1387 extsts |= htole32(EXTSTS_UDPPKT);
1388 }
1389 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1390 #endif /* DP83820 */
1391
1392 /* Sync the descriptors we're using. */
1393 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1394 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1395
1396 /*
1397 * The entire packet is set up. Give the first descrptor
1398 * to the chip now.
1399 */
1400 sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1401 htole32(CMDSTS_OWN);
1402 SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1403 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1404
1405 /*
1406 * Store a pointer to the packet so we can free it later,
1407 * and remember what txdirty will be once the packet is
1408 * done.
1409 */
1410 txs->txs_mbuf = m0;
1411 txs->txs_firstdesc = sc->sc_txnext;
1412 txs->txs_lastdesc = lasttx;
1413
1414 /* Advance the tx pointer. */
1415 sc->sc_txfree -= dmamap->dm_nsegs;
1416 sc->sc_txnext = nexttx;
1417
1418 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1419 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1420
1421 #if NBPFILTER > 0
1422 /*
1423 * Pass the packet to any BPF listeners.
1424 */
1425 if (ifp->if_bpf)
1426 bpf_mtap(ifp->if_bpf, m0);
1427 #endif /* NBPFILTER > 0 */
1428 }
1429
1430 if (txs == NULL || sc->sc_txfree == 0) {
1431 /* No more slots left; notify upper layer. */
1432 ifp->if_flags |= IFF_OACTIVE;
1433 }
1434
1435 if (sc->sc_txfree != ofree) {
1436 /*
1437 * Start the transmit process. Note, the manual says
1438 * that if there are no pending transmissions in the
1439 * chip's internal queue (indicated by TXE being clear),
1440 * then the driver software must set the TXDP to the
1441 * first descriptor to be transmitted. However, if we
1442 * do this, it causes serious performance degredation on
1443 * the DP83820 under load, not setting TXDP doesn't seem
1444 * to adversely affect the SiS 900 or DP83815.
1445 *
1446 * Well, I guess it wouldn't be the first time a manual
1447 * has lied -- and they could be speaking of the NULL-
1448 * terminated descriptor list case, rather than OWN-
1449 * terminated rings.
1450 */
1451 #if 0
1452 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1453 CR_TXE) == 0) {
1454 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1455 SIP_CDTXADDR(sc, firsttx));
1456 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1457 }
1458 #else
1459 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1460 #endif
1461
1462 /* Set a watchdog timer in case the chip flakes out. */
1463 #ifdef DP83820
1464 /* Gigabit autonegotiation takes 5 seconds. */
1465 ifp->if_timer = 10;
1466 #else
1467 ifp->if_timer = 5;
1468 #endif
1469 }
1470 }
1471
1472 /*
1473 * sip_watchdog: [ifnet interface function]
1474 *
1475 * Watchdog timer handler.
1476 */
1477 static void
1478 SIP_DECL(watchdog)(struct ifnet *ifp)
1479 {
1480 struct sip_softc *sc = ifp->if_softc;
1481
1482 /*
1483 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1484 * If we get a timeout, try and sweep up transmit descriptors.
1485 * If we manage to sweep them all up, ignore the lack of
1486 * interrupt.
1487 */
1488 SIP_DECL(txintr)(sc);
1489
1490 if (sc->sc_txfree != SIP_NTXDESC) {
1491 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1492 ifp->if_oerrors++;
1493
1494 /* Reset the interface. */
1495 (void) SIP_DECL(init)(ifp);
1496 } else if (ifp->if_flags & IFF_DEBUG)
1497 printf("%s: recovered from device timeout\n",
1498 sc->sc_dev.dv_xname);
1499
1500 /* Try to get more packets going. */
1501 SIP_DECL(start)(ifp);
1502 }
1503
1504 /*
1505 * sip_ioctl: [ifnet interface function]
1506 *
1507 * Handle control requests from the operator.
1508 */
1509 static int
1510 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1511 {
1512 struct sip_softc *sc = ifp->if_softc;
1513 struct ifreq *ifr = (struct ifreq *)data;
1514 int s, error;
1515
1516 s = splnet();
1517
1518 switch (cmd) {
1519 case SIOCSIFMEDIA:
1520 /* Flow control requires full-duplex mode. */
1521 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1522 (ifr->ifr_media & IFM_FDX) == 0)
1523 ifr->ifr_media &= ~IFM_ETH_FMASK;
1524 #ifdef DP83820
1525 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1526 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1527 /* We can do both TXPAUSE and RXPAUSE. */
1528 ifr->ifr_media |=
1529 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1530 }
1531 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1532 }
1533 #else
1534 /* XXX */
1535 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1536 ifr->ifr_media &= ~IFM_ETH_FMASK;
1537
1538 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1539 if (ifr->ifr_media & IFM_FLOW) {
1540 /*
1541 * Both TXPAUSE and RXPAUSE must be set.
1542 * (SiS900 and DP83815 don't have PAUSE_ASYM
1543 * feature.)
1544 *
1545 * XXX Can SiS900 and DP83815 send PAUSE?
1546 */
1547 ifr->ifr_media |=
1548 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1549 }
1550 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1551 }
1552 #endif
1553 /* FALLTHROUGH */
1554 case SIOCGIFMEDIA:
1555 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1556 break;
1557 case SIOCSIFFLAGS:
1558 /* If the interface is up and running, only modify the receive
1559 * filter when setting promiscuous or debug mode. Otherwise
1560 * fall through to ether_ioctl, which will reset the chip.
1561 */
1562 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
1563 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
1564 == (IFF_UP|IFF_RUNNING))
1565 && ((ifp->if_flags & (~RESETIGN))
1566 == (sc->sc_if_flags & (~RESETIGN)))) {
1567 /* Set up the receive filter. */
1568 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1569 break;
1570 #undef RESETIGN
1571 }
1572 /* FALLTHROUGH */
1573 default:
1574 error = ether_ioctl(ifp, cmd, data);
1575 if (error == ENETRESET) {
1576 /*
1577 * Multicast list has changed; set the hardware filter
1578 * accordingly.
1579 */
1580 if (ifp->if_flags & IFF_RUNNING)
1581 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1582 error = 0;
1583 }
1584 break;
1585 }
1586
1587 /* Try to get more packets going. */
1588 SIP_DECL(start)(ifp);
1589
1590 sc->sc_if_flags = ifp->if_flags;
1591 splx(s);
1592 return (error);
1593 }
1594
1595 /*
1596 * sip_intr:
1597 *
1598 * Interrupt service routine.
1599 */
1600 static int
1601 SIP_DECL(intr)(void *arg)
1602 {
1603 struct sip_softc *sc = arg;
1604 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1605 u_int32_t isr;
1606 int handled = 0;
1607
1608 /* Disable interrupts. */
1609 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1610
1611 for (;;) {
1612 /* Reading clears interrupt. */
1613 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1614 if ((isr & sc->sc_imr) == 0)
1615 break;
1616
1617 #if NRND > 0
1618 if (RND_ENABLED(&sc->rnd_source))
1619 rnd_add_uint32(&sc->rnd_source, isr);
1620 #endif
1621
1622 handled = 1;
1623
1624 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1625 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1626
1627 /* Grab any new packets. */
1628 SIP_DECL(rxintr)(sc);
1629
1630 if (isr & ISR_RXORN) {
1631 printf("%s: receive FIFO overrun\n",
1632 sc->sc_dev.dv_xname);
1633
1634 /* XXX adjust rx_drain_thresh? */
1635 }
1636
1637 if (isr & ISR_RXIDLE) {
1638 printf("%s: receive ring overrun\n",
1639 sc->sc_dev.dv_xname);
1640
1641 /* Get the receive process going again. */
1642 bus_space_write_4(sc->sc_st, sc->sc_sh,
1643 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1644 bus_space_write_4(sc->sc_st, sc->sc_sh,
1645 SIP_CR, CR_RXE);
1646 }
1647 }
1648
1649 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1650 #ifdef SIP_EVENT_COUNTERS
1651 if (isr & ISR_TXDESC)
1652 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1653 else if (isr & ISR_TXIDLE)
1654 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1655 #endif
1656
1657 /* Sweep up transmit descriptors. */
1658 SIP_DECL(txintr)(sc);
1659
1660 if (isr & ISR_TXURN) {
1661 u_int32_t thresh;
1662
1663 printf("%s: transmit FIFO underrun",
1664 sc->sc_dev.dv_xname);
1665
1666 thresh = sc->sc_tx_drain_thresh + 1;
1667 if (thresh <= TXCFG_DRTH &&
1668 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1669 (sc->sc_tx_fill_thresh * 32))) {
1670 printf("; increasing Tx drain "
1671 "threshold to %u bytes\n",
1672 thresh * 32);
1673 sc->sc_tx_drain_thresh = thresh;
1674 (void) SIP_DECL(init)(ifp);
1675 } else {
1676 (void) SIP_DECL(init)(ifp);
1677 printf("\n");
1678 }
1679 }
1680 }
1681
1682 #if !defined(DP83820)
1683 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1684 if (isr & ISR_PAUSE_ST) {
1685 sc->sc_paused = 1;
1686 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1687 ifp->if_flags |= IFF_OACTIVE;
1688 }
1689 if (isr & ISR_PAUSE_END) {
1690 sc->sc_paused = 0;
1691 ifp->if_flags &= ~IFF_OACTIVE;
1692 }
1693 }
1694 #endif /* ! DP83820 */
1695
1696 if (isr & ISR_HIBERR) {
1697 int want_init = 0;
1698
1699 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1700
1701 #define PRINTERR(bit, str) \
1702 do { \
1703 if ((isr & (bit)) != 0) { \
1704 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1705 printf("%s: %s\n", \
1706 sc->sc_dev.dv_xname, str); \
1707 want_init = 1; \
1708 } \
1709 } while (/*CONSTCOND*/0)
1710
1711 PRINTERR(ISR_DPERR, "parity error");
1712 PRINTERR(ISR_SSERR, "system error");
1713 PRINTERR(ISR_RMABT, "master abort");
1714 PRINTERR(ISR_RTABT, "target abort");
1715 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1716 /*
1717 * Ignore:
1718 * Tx reset complete
1719 * Rx reset complete
1720 */
1721 if (want_init)
1722 (void) SIP_DECL(init)(ifp);
1723 #undef PRINTERR
1724 }
1725 }
1726
1727 /* Re-enable interrupts. */
1728 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1729
1730 /* Try to get more packets going. */
1731 SIP_DECL(start)(ifp);
1732
1733 return (handled);
1734 }
1735
1736 /*
1737 * sip_txintr:
1738 *
1739 * Helper; handle transmit interrupts.
1740 */
1741 static void
1742 SIP_DECL(txintr)(struct sip_softc *sc)
1743 {
1744 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1745 struct sip_txsoft *txs;
1746 u_int32_t cmdsts;
1747
1748 #ifndef DP83820
1749 if (sc->sc_paused == 0)
1750 #endif
1751 ifp->if_flags &= ~IFF_OACTIVE;
1752
1753 /*
1754 * Go through our Tx list and free mbufs for those
1755 * frames which have been transmitted.
1756 */
1757 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1758 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1759 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1760
1761 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1762 if (cmdsts & CMDSTS_OWN)
1763 break;
1764
1765 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1766
1767 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1768
1769 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1770 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1771 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1772 m_freem(txs->txs_mbuf);
1773 txs->txs_mbuf = NULL;
1774
1775 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1776
1777 /*
1778 * Check for errors and collisions.
1779 */
1780 if (cmdsts &
1781 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1782 ifp->if_oerrors++;
1783 if (cmdsts & CMDSTS_Tx_EC)
1784 ifp->if_collisions += 16;
1785 if (ifp->if_flags & IFF_DEBUG) {
1786 if (cmdsts & CMDSTS_Tx_ED)
1787 printf("%s: excessive deferral\n",
1788 sc->sc_dev.dv_xname);
1789 if (cmdsts & CMDSTS_Tx_EC)
1790 printf("%s: excessive collisions\n",
1791 sc->sc_dev.dv_xname);
1792 }
1793 } else {
1794 /* Packet was transmitted successfully. */
1795 ifp->if_opackets++;
1796 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1797 }
1798 }
1799
1800 /*
1801 * If there are no more pending transmissions, cancel the watchdog
1802 * timer.
1803 */
1804 if (txs == NULL) {
1805 ifp->if_timer = 0;
1806 sc->sc_txwin = 0;
1807 }
1808 }
1809
1810 #if defined(DP83820)
1811 /*
1812 * sip_rxintr:
1813 *
1814 * Helper; handle receive interrupts.
1815 */
1816 static void
1817 SIP_DECL(rxintr)(struct sip_softc *sc)
1818 {
1819 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1820 struct sip_rxsoft *rxs;
1821 struct mbuf *m;
1822 u_int32_t cmdsts, extsts;
1823 int i, len;
1824
1825 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1826 rxs = &sc->sc_rxsoft[i];
1827
1828 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1829
1830 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1831 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1832 len = CMDSTS_SIZE(cmdsts);
1833
1834 /*
1835 * NOTE: OWN is set if owned by _consumer_. We're the
1836 * consumer of the receive ring, so if the bit is clear,
1837 * we have processed all of the packets.
1838 */
1839 if ((cmdsts & CMDSTS_OWN) == 0) {
1840 /*
1841 * We have processed all of the receive buffers.
1842 */
1843 break;
1844 }
1845
1846 if (__predict_false(sc->sc_rxdiscard)) {
1847 SIP_INIT_RXDESC(sc, i);
1848 if ((cmdsts & CMDSTS_MORE) == 0) {
1849 /* Reset our state. */
1850 sc->sc_rxdiscard = 0;
1851 }
1852 continue;
1853 }
1854
1855 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1856 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1857
1858 m = rxs->rxs_mbuf;
1859
1860 /*
1861 * Add a new receive buffer to the ring.
1862 */
1863 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1864 /*
1865 * Failed, throw away what we've done so
1866 * far, and discard the rest of the packet.
1867 */
1868 ifp->if_ierrors++;
1869 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1870 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1871 SIP_INIT_RXDESC(sc, i);
1872 if (cmdsts & CMDSTS_MORE)
1873 sc->sc_rxdiscard = 1;
1874 if (sc->sc_rxhead != NULL)
1875 m_freem(sc->sc_rxhead);
1876 SIP_RXCHAIN_RESET(sc);
1877 continue;
1878 }
1879
1880 SIP_RXCHAIN_LINK(sc, m);
1881
1882 m->m_len = len;
1883
1884 /*
1885 * If this is not the end of the packet, keep
1886 * looking.
1887 */
1888 if (cmdsts & CMDSTS_MORE) {
1889 sc->sc_rxlen += len;
1890 continue;
1891 }
1892
1893 /*
1894 * Okay, we have the entire packet now. The chip includes
1895 * the FCS, so we need to trim it.
1896 */
1897 m->m_len -= ETHER_CRC_LEN;
1898
1899 *sc->sc_rxtailp = NULL;
1900 m = sc->sc_rxhead;
1901 len = m->m_len + sc->sc_rxlen;
1902
1903 SIP_RXCHAIN_RESET(sc);
1904
1905 /*
1906 * If an error occurred, update stats and drop the packet.
1907 */
1908 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1909 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1910 ifp->if_ierrors++;
1911 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1912 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1913 /* Receive overrun handled elsewhere. */
1914 printf("%s: receive descriptor error\n",
1915 sc->sc_dev.dv_xname);
1916 }
1917 #define PRINTERR(bit, str) \
1918 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
1919 (cmdsts & (bit)) != 0) \
1920 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1921 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1922 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1923 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1924 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1925 #undef PRINTERR
1926 m_freem(m);
1927 continue;
1928 }
1929
1930 /*
1931 * If the packet is small enough to fit in a
1932 * single header mbuf, allocate one and copy
1933 * the data into it. This greatly reduces
1934 * memory consumption when we receive lots
1935 * of small packets.
1936 */
1937 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1938 struct mbuf *nm;
1939 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1940 if (nm == NULL) {
1941 ifp->if_ierrors++;
1942 m_freem(m);
1943 continue;
1944 }
1945 nm->m_data += 2;
1946 nm->m_pkthdr.len = nm->m_len = len;
1947 m_copydata(m, 0, len, mtod(nm, caddr_t));
1948 m_freem(m);
1949 m = nm;
1950 }
1951 #ifndef __NO_STRICT_ALIGNMENT
1952 else {
1953 /*
1954 * The DP83820's receive buffers must be 4-byte
1955 * aligned. But this means that the data after
1956 * the Ethernet header is misaligned. To compensate,
1957 * we have artificially shortened the buffer size
1958 * in the descriptor, and we do an overlapping copy
1959 * of the data two bytes further in (in the first
1960 * buffer of the chain only).
1961 */
1962 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1963 m->m_len);
1964 m->m_data += 2;
1965 }
1966 #endif /* ! __NO_STRICT_ALIGNMENT */
1967
1968 /*
1969 * If VLANs are enabled, VLAN packets have been unwrapped
1970 * for us. Associate the tag with the packet.
1971 */
1972 if (sc->sc_ethercom.ec_nvlans != 0 &&
1973 (extsts & EXTSTS_VPKT) != 0) {
1974 struct m_tag *vtag;
1975
1976 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
1977 M_NOWAIT);
1978 if (vtag == NULL) {
1979 ifp->if_ierrors++;
1980 printf("%s: unable to allocate VLAN tag\n",
1981 sc->sc_dev.dv_xname);
1982 m_freem(m);
1983 continue;
1984 }
1985
1986 *(u_int *)(vtag + 1) = ntohs(extsts & EXTSTS_VTCI);
1987 }
1988
1989 /*
1990 * Set the incoming checksum information for the
1991 * packet.
1992 */
1993 if ((extsts & EXTSTS_IPPKT) != 0) {
1994 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1995 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1996 if (extsts & EXTSTS_Rx_IPERR)
1997 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1998 if (extsts & EXTSTS_TCPPKT) {
1999 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2000 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2001 if (extsts & EXTSTS_Rx_TCPERR)
2002 m->m_pkthdr.csum_flags |=
2003 M_CSUM_TCP_UDP_BAD;
2004 } else if (extsts & EXTSTS_UDPPKT) {
2005 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2006 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2007 if (extsts & EXTSTS_Rx_UDPERR)
2008 m->m_pkthdr.csum_flags |=
2009 M_CSUM_TCP_UDP_BAD;
2010 }
2011 }
2012
2013 ifp->if_ipackets++;
2014 m->m_pkthdr.rcvif = ifp;
2015 m->m_pkthdr.len = len;
2016
2017 #if NBPFILTER > 0
2018 /*
2019 * Pass this up to any BPF listeners, but only
2020 * pass if up the stack if it's for us.
2021 */
2022 if (ifp->if_bpf)
2023 bpf_mtap(ifp->if_bpf, m);
2024 #endif /* NBPFILTER > 0 */
2025
2026 /* Pass it on. */
2027 (*ifp->if_input)(ifp, m);
2028 }
2029
2030 /* Update the receive pointer. */
2031 sc->sc_rxptr = i;
2032 }
2033 #else /* ! DP83820 */
2034 /*
2035 * sip_rxintr:
2036 *
2037 * Helper; handle receive interrupts.
2038 */
2039 static void
2040 SIP_DECL(rxintr)(struct sip_softc *sc)
2041 {
2042 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2043 struct sip_rxsoft *rxs;
2044 struct mbuf *m;
2045 u_int32_t cmdsts;
2046 int i, len;
2047
2048 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
2049 rxs = &sc->sc_rxsoft[i];
2050
2051 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2052
2053 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
2054
2055 /*
2056 * NOTE: OWN is set if owned by _consumer_. We're the
2057 * consumer of the receive ring, so if the bit is clear,
2058 * we have processed all of the packets.
2059 */
2060 if ((cmdsts & CMDSTS_OWN) == 0) {
2061 /*
2062 * We have processed all of the receive buffers.
2063 */
2064 break;
2065 }
2066
2067 /*
2068 * If any collisions were seen on the wire, count one.
2069 */
2070 if (cmdsts & CMDSTS_Rx_COL)
2071 ifp->if_collisions++;
2072
2073 /*
2074 * If an error occurred, update stats, clear the status
2075 * word, and leave the packet buffer in place. It will
2076 * simply be reused the next time the ring comes around.
2077 */
2078 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2079 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2080 ifp->if_ierrors++;
2081 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2082 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2083 /* Receive overrun handled elsewhere. */
2084 printf("%s: receive descriptor error\n",
2085 sc->sc_dev.dv_xname);
2086 }
2087 #define PRINTERR(bit, str) \
2088 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2089 (cmdsts & (bit)) != 0) \
2090 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
2091 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2092 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2093 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2094 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2095 #undef PRINTERR
2096 SIP_INIT_RXDESC(sc, i);
2097 continue;
2098 }
2099
2100 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2101 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2102
2103 /*
2104 * No errors; receive the packet. Note, the SiS 900
2105 * includes the CRC with every packet.
2106 */
2107 len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN;
2108
2109 #ifdef __NO_STRICT_ALIGNMENT
2110 /*
2111 * If the packet is small enough to fit in a
2112 * single header mbuf, allocate one and copy
2113 * the data into it. This greatly reduces
2114 * memory consumption when we receive lots
2115 * of small packets.
2116 *
2117 * Otherwise, we add a new buffer to the receive
2118 * chain. If this fails, we drop the packet and
2119 * recycle the old buffer.
2120 */
2121 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2122 MGETHDR(m, M_DONTWAIT, MT_DATA);
2123 if (m == NULL)
2124 goto dropit;
2125 memcpy(mtod(m, caddr_t),
2126 mtod(rxs->rxs_mbuf, caddr_t), len);
2127 SIP_INIT_RXDESC(sc, i);
2128 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2129 rxs->rxs_dmamap->dm_mapsize,
2130 BUS_DMASYNC_PREREAD);
2131 } else {
2132 m = rxs->rxs_mbuf;
2133 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2134 dropit:
2135 ifp->if_ierrors++;
2136 SIP_INIT_RXDESC(sc, i);
2137 bus_dmamap_sync(sc->sc_dmat,
2138 rxs->rxs_dmamap, 0,
2139 rxs->rxs_dmamap->dm_mapsize,
2140 BUS_DMASYNC_PREREAD);
2141 continue;
2142 }
2143 }
2144 #else
2145 /*
2146 * The SiS 900's receive buffers must be 4-byte aligned.
2147 * But this means that the data after the Ethernet header
2148 * is misaligned. We must allocate a new buffer and
2149 * copy the data, shifted forward 2 bytes.
2150 */
2151 MGETHDR(m, M_DONTWAIT, MT_DATA);
2152 if (m == NULL) {
2153 dropit:
2154 ifp->if_ierrors++;
2155 SIP_INIT_RXDESC(sc, i);
2156 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2157 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2158 continue;
2159 }
2160 if (len > (MHLEN - 2)) {
2161 MCLGET(m, M_DONTWAIT);
2162 if ((m->m_flags & M_EXT) == 0) {
2163 m_freem(m);
2164 goto dropit;
2165 }
2166 }
2167 m->m_data += 2;
2168
2169 /*
2170 * Note that we use clusters for incoming frames, so the
2171 * buffer is virtually contiguous.
2172 */
2173 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2174
2175 /* Allow the receive descriptor to continue using its mbuf. */
2176 SIP_INIT_RXDESC(sc, i);
2177 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2178 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2179 #endif /* __NO_STRICT_ALIGNMENT */
2180
2181 ifp->if_ipackets++;
2182 m->m_pkthdr.rcvif = ifp;
2183 m->m_pkthdr.len = m->m_len = len;
2184
2185 #if NBPFILTER > 0
2186 /*
2187 * Pass this up to any BPF listeners, but only
2188 * pass if up the stack if it's for us.
2189 */
2190 if (ifp->if_bpf)
2191 bpf_mtap(ifp->if_bpf, m);
2192 #endif /* NBPFILTER > 0 */
2193
2194 /* Pass it on. */
2195 (*ifp->if_input)(ifp, m);
2196 }
2197
2198 /* Update the receive pointer. */
2199 sc->sc_rxptr = i;
2200 }
2201 #endif /* DP83820 */
2202
2203 /*
2204 * sip_tick:
2205 *
2206 * One second timer, used to tick the MII.
2207 */
2208 static void
2209 SIP_DECL(tick)(void *arg)
2210 {
2211 struct sip_softc *sc = arg;
2212 int s;
2213
2214 s = splnet();
2215 #ifdef DP83820
2216 #ifdef SIP_EVENT_COUNTERS
2217 /* Read PAUSE related counts from MIB registers. */
2218 sc->sc_ev_rxpause.ev_count +=
2219 bus_space_read_4(sc->sc_st, sc->sc_sh,
2220 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2221 sc->sc_ev_txpause.ev_count +=
2222 bus_space_read_4(sc->sc_st, sc->sc_sh,
2223 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2224 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2225 #endif /* SIP_EVENT_COUNTERS */
2226 #endif /* DP83820 */
2227 mii_tick(&sc->sc_mii);
2228 splx(s);
2229
2230 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2231 }
2232
2233 /*
2234 * sip_reset:
2235 *
2236 * Perform a soft reset on the SiS 900.
2237 */
2238 static void
2239 SIP_DECL(reset)(struct sip_softc *sc)
2240 {
2241 bus_space_tag_t st = sc->sc_st;
2242 bus_space_handle_t sh = sc->sc_sh;
2243 int i;
2244
2245 bus_space_write_4(st, sh, SIP_IER, 0);
2246 bus_space_write_4(st, sh, SIP_IMR, 0);
2247 bus_space_write_4(st, sh, SIP_RFCR, 0);
2248 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2249
2250 for (i = 0; i < SIP_TIMEOUT; i++) {
2251 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2252 break;
2253 delay(2);
2254 }
2255
2256 if (i == SIP_TIMEOUT)
2257 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2258
2259 delay(1000);
2260
2261 #ifdef DP83820
2262 /*
2263 * Set the general purpose I/O bits. Do it here in case we
2264 * need to have GPIO set up to talk to the media interface.
2265 */
2266 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2267 delay(1000);
2268 #endif /* DP83820 */
2269 }
2270
2271 /*
2272 * sip_init: [ ifnet interface function ]
2273 *
2274 * Initialize the interface. Must be called at splnet().
2275 */
2276 static int
2277 SIP_DECL(init)(struct ifnet *ifp)
2278 {
2279 struct sip_softc *sc = ifp->if_softc;
2280 bus_space_tag_t st = sc->sc_st;
2281 bus_space_handle_t sh = sc->sc_sh;
2282 struct sip_txsoft *txs;
2283 struct sip_rxsoft *rxs;
2284 struct sip_desc *sipd;
2285 #if defined(DP83820)
2286 u_int32_t reg;
2287 #endif
2288 int i, error = 0;
2289
2290 /*
2291 * Cancel any pending I/O.
2292 */
2293 SIP_DECL(stop)(ifp, 0);
2294
2295 /*
2296 * Reset the chip to a known state.
2297 */
2298 SIP_DECL(reset)(sc);
2299
2300 #if !defined(DP83820)
2301 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2302 /*
2303 * DP83815 manual, page 78:
2304 * 4.4 Recommended Registers Configuration
2305 * For optimum performance of the DP83815, version noted
2306 * as DP83815CVNG (SRR = 203h), the listed register
2307 * modifications must be followed in sequence...
2308 *
2309 * It's not clear if this should be 302h or 203h because that
2310 * chip name is listed as SRR 302h in the description of the
2311 * SRR register. However, my revision 302h DP83815 on the
2312 * Netgear FA311 purchased in 02/2001 needs these settings
2313 * to avoid tons of errors in AcceptPerfectMatch (non-
2314 * IFF_PROMISC) mode. I do not know if other revisions need
2315 * this set or not. [briggs -- 09 March 2001]
2316 *
2317 * Note that only the low-order 12 bits of 0xe4 are documented
2318 * and that this sets reserved bits in that register.
2319 */
2320 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2321
2322 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2323 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2324 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2325 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2326
2327 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2328 }
2329 #endif /* ! DP83820 */
2330
2331 /*
2332 * Initialize the transmit descriptor ring.
2333 */
2334 for (i = 0; i < SIP_NTXDESC; i++) {
2335 sipd = &sc->sc_txdescs[i];
2336 memset(sipd, 0, sizeof(struct sip_desc));
2337 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2338 }
2339 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2340 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2341 sc->sc_txfree = SIP_NTXDESC;
2342 sc->sc_txnext = 0;
2343 sc->sc_txwin = 0;
2344
2345 /*
2346 * Initialize the transmit job descriptors.
2347 */
2348 SIMPLEQ_INIT(&sc->sc_txfreeq);
2349 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2350 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2351 txs = &sc->sc_txsoft[i];
2352 txs->txs_mbuf = NULL;
2353 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2354 }
2355
2356 /*
2357 * Initialize the receive descriptor and receive job
2358 * descriptor rings.
2359 */
2360 for (i = 0; i < SIP_NRXDESC; i++) {
2361 rxs = &sc->sc_rxsoft[i];
2362 if (rxs->rxs_mbuf == NULL) {
2363 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2364 printf("%s: unable to allocate or map rx "
2365 "buffer %d, error = %d\n",
2366 sc->sc_dev.dv_xname, i, error);
2367 /*
2368 * XXX Should attempt to run with fewer receive
2369 * XXX buffers instead of just failing.
2370 */
2371 SIP_DECL(rxdrain)(sc);
2372 goto out;
2373 }
2374 } else
2375 SIP_INIT_RXDESC(sc, i);
2376 }
2377 sc->sc_rxptr = 0;
2378 #ifdef DP83820
2379 sc->sc_rxdiscard = 0;
2380 SIP_RXCHAIN_RESET(sc);
2381 #endif /* DP83820 */
2382
2383 /*
2384 * Set the configuration register; it's already initialized
2385 * in sip_attach().
2386 */
2387 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2388
2389 /*
2390 * Initialize the prototype TXCFG register.
2391 */
2392 #if defined(DP83820)
2393 sc->sc_txcfg = TXCFG_MXDMA_512;
2394 sc->sc_rxcfg = RXCFG_MXDMA_512;
2395 #else
2396 if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2397 SIP_SIS900_REV(sc, SIS_REV_960) ||
2398 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2399 (sc->sc_cfg & CFG_EDBMASTEN)) {
2400 sc->sc_txcfg = TXCFG_MXDMA_64;
2401 sc->sc_rxcfg = RXCFG_MXDMA_64;
2402 } else {
2403 sc->sc_txcfg = TXCFG_MXDMA_512;
2404 sc->sc_rxcfg = RXCFG_MXDMA_512;
2405 }
2406 #endif /* DP83820 */
2407
2408 sc->sc_txcfg |= TXCFG_ATP |
2409 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2410 sc->sc_tx_drain_thresh;
2411 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2412
2413 /*
2414 * Initialize the receive drain threshold if we have never
2415 * done so.
2416 */
2417 if (sc->sc_rx_drain_thresh == 0) {
2418 /*
2419 * XXX This value should be tuned. This is set to the
2420 * maximum of 248 bytes, and we may be able to improve
2421 * performance by decreasing it (although we should never
2422 * set this value lower than 2; 14 bytes are required to
2423 * filter the packet).
2424 */
2425 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2426 }
2427
2428 /*
2429 * Initialize the prototype RXCFG register.
2430 */
2431 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2432 #ifdef DP83820
2433 /*
2434 * Accept long packets (including FCS) so we can handle
2435 * 802.1q-tagged frames and jumbo frames properly.
2436 */
2437 if (ifp->if_mtu > ETHERMTU ||
2438 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2439 sc->sc_rxcfg |= RXCFG_ALP;
2440
2441 /*
2442 * Checksum offloading is disabled if the user selects an MTU
2443 * larger than 8109. (FreeBSD says 8152, but there is emperical
2444 * evidence that >8109 does not work on some boards, such as the
2445 * Planex GN-1000TE).
2446 */
2447 if (ifp->if_mtu > 8109 &&
2448 (ifp->if_capenable &
2449 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))) {
2450 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2451 "disabled.\n", sc->sc_dev.dv_xname);
2452 ifp->if_capenable &= ~(IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|
2453 IFCAP_CSUM_UDPv4);
2454 ifp->if_csum_flags_tx = 0;
2455 ifp->if_csum_flags_rx = 0;
2456 }
2457 #else
2458 /*
2459 * Accept packets >1518 bytes (including FCS) so we can handle
2460 * 802.1q-tagged frames properly.
2461 */
2462 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2463 sc->sc_rxcfg |= RXCFG_ALP;
2464 #endif
2465 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2466
2467 #ifdef DP83820
2468 /*
2469 * Initialize the VLAN/IP receive control register.
2470 * We enable checksum computation on all incoming
2471 * packets, and do not reject packets w/ bad checksums.
2472 */
2473 reg = 0;
2474 if (ifp->if_capenable &
2475 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2476 reg |= VRCR_IPEN;
2477 if (sc->sc_ethercom.ec_nvlans != 0)
2478 reg |= VRCR_VTDEN|VRCR_VTREN;
2479 bus_space_write_4(st, sh, SIP_VRCR, reg);
2480
2481 /*
2482 * Initialize the VLAN/IP transmit control register.
2483 * We enable outgoing checksum computation on a
2484 * per-packet basis.
2485 */
2486 reg = 0;
2487 if (ifp->if_capenable &
2488 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2489 reg |= VTCR_PPCHK;
2490 if (sc->sc_ethercom.ec_nvlans != 0)
2491 reg |= VTCR_VPPTI;
2492 bus_space_write_4(st, sh, SIP_VTCR, reg);
2493
2494 /*
2495 * If we're using VLANs, initialize the VLAN data register.
2496 * To understand why we bswap the VLAN Ethertype, see section
2497 * 4.2.36 of the DP83820 manual.
2498 */
2499 if (sc->sc_ethercom.ec_nvlans != 0)
2500 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2501 #endif /* DP83820 */
2502
2503 /*
2504 * Give the transmit and receive rings to the chip.
2505 */
2506 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2507 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2508
2509 /*
2510 * Initialize the interrupt mask.
2511 */
2512 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2513 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2514 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2515
2516 /* Set up the receive filter. */
2517 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2518
2519 #ifdef DP83820
2520 /*
2521 * Tune sc_rx_flow_thresh.
2522 * XXX "More than 8KB" is too short for jumbo frames.
2523 * XXX TODO: Threshold value should be user-settable.
2524 */
2525 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2526 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2527 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2528 #endif
2529
2530 /*
2531 * Set the current media. Do this after initializing the prototype
2532 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2533 * control.
2534 */
2535 mii_mediachg(&sc->sc_mii);
2536
2537 #ifdef DP83820
2538 /*
2539 * Set the interrupt hold-off timer to 100us.
2540 */
2541 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2542 #endif
2543
2544 /*
2545 * Enable interrupts.
2546 */
2547 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2548
2549 /*
2550 * Start the transmit and receive processes.
2551 */
2552 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2553
2554 /*
2555 * Start the one second MII clock.
2556 */
2557 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2558
2559 /*
2560 * ...all done!
2561 */
2562 ifp->if_flags |= IFF_RUNNING;
2563 ifp->if_flags &= ~IFF_OACTIVE;
2564 sc->sc_if_flags = ifp->if_flags;
2565
2566 out:
2567 if (error)
2568 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2569 return (error);
2570 }
2571
2572 /*
2573 * sip_drain:
2574 *
2575 * Drain the receive queue.
2576 */
2577 static void
2578 SIP_DECL(rxdrain)(struct sip_softc *sc)
2579 {
2580 struct sip_rxsoft *rxs;
2581 int i;
2582
2583 for (i = 0; i < SIP_NRXDESC; i++) {
2584 rxs = &sc->sc_rxsoft[i];
2585 if (rxs->rxs_mbuf != NULL) {
2586 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2587 m_freem(rxs->rxs_mbuf);
2588 rxs->rxs_mbuf = NULL;
2589 }
2590 }
2591 }
2592
2593 /*
2594 * sip_stop: [ ifnet interface function ]
2595 *
2596 * Stop transmission on the interface.
2597 */
2598 static void
2599 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2600 {
2601 struct sip_softc *sc = ifp->if_softc;
2602 bus_space_tag_t st = sc->sc_st;
2603 bus_space_handle_t sh = sc->sc_sh;
2604 struct sip_txsoft *txs;
2605 u_int32_t cmdsts = 0; /* DEBUG */
2606
2607 /*
2608 * Stop the one second clock.
2609 */
2610 callout_stop(&sc->sc_tick_ch);
2611
2612 /* Down the MII. */
2613 mii_down(&sc->sc_mii);
2614
2615 /*
2616 * Disable interrupts.
2617 */
2618 bus_space_write_4(st, sh, SIP_IER, 0);
2619
2620 /*
2621 * Stop receiver and transmitter.
2622 */
2623 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2624
2625 /*
2626 * Release any queued transmit buffers.
2627 */
2628 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2629 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2630 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2631 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2632 CMDSTS_INTR) == 0)
2633 printf("%s: sip_stop: last descriptor does not "
2634 "have INTR bit set\n", sc->sc_dev.dv_xname);
2635 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2636 #ifdef DIAGNOSTIC
2637 if (txs->txs_mbuf == NULL) {
2638 printf("%s: dirty txsoft with no mbuf chain\n",
2639 sc->sc_dev.dv_xname);
2640 panic("sip_stop");
2641 }
2642 #endif
2643 cmdsts |= /* DEBUG */
2644 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2645 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2646 m_freem(txs->txs_mbuf);
2647 txs->txs_mbuf = NULL;
2648 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2649 }
2650
2651 if (disable)
2652 SIP_DECL(rxdrain)(sc);
2653
2654 /*
2655 * Mark the interface down and cancel the watchdog timer.
2656 */
2657 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2658 ifp->if_timer = 0;
2659
2660 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2661 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2662 printf("%s: sip_stop: no INTR bits set in dirty tx "
2663 "descriptors\n", sc->sc_dev.dv_xname);
2664 }
2665
2666 /*
2667 * sip_read_eeprom:
2668 *
2669 * Read data from the serial EEPROM.
2670 */
2671 static void
2672 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2673 u_int16_t *data)
2674 {
2675 bus_space_tag_t st = sc->sc_st;
2676 bus_space_handle_t sh = sc->sc_sh;
2677 u_int16_t reg;
2678 int i, x;
2679
2680 for (i = 0; i < wordcnt; i++) {
2681 /* Send CHIP SELECT. */
2682 reg = EROMAR_EECS;
2683 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2684
2685 /* Shift in the READ opcode. */
2686 for (x = 3; x > 0; x--) {
2687 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2688 reg |= EROMAR_EEDI;
2689 else
2690 reg &= ~EROMAR_EEDI;
2691 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2692 bus_space_write_4(st, sh, SIP_EROMAR,
2693 reg | EROMAR_EESK);
2694 delay(4);
2695 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2696 delay(4);
2697 }
2698
2699 /* Shift in address. */
2700 for (x = 6; x > 0; x--) {
2701 if ((word + i) & (1 << (x - 1)))
2702 reg |= EROMAR_EEDI;
2703 else
2704 reg &= ~EROMAR_EEDI;
2705 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2706 bus_space_write_4(st, sh, SIP_EROMAR,
2707 reg | EROMAR_EESK);
2708 delay(4);
2709 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2710 delay(4);
2711 }
2712
2713 /* Shift out data. */
2714 reg = EROMAR_EECS;
2715 data[i] = 0;
2716 for (x = 16; x > 0; x--) {
2717 bus_space_write_4(st, sh, SIP_EROMAR,
2718 reg | EROMAR_EESK);
2719 delay(4);
2720 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2721 data[i] |= (1 << (x - 1));
2722 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2723 delay(4);
2724 }
2725
2726 /* Clear CHIP SELECT. */
2727 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2728 delay(4);
2729 }
2730 }
2731
2732 /*
2733 * sip_add_rxbuf:
2734 *
2735 * Add a receive buffer to the indicated descriptor.
2736 */
2737 static int
2738 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2739 {
2740 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2741 struct mbuf *m;
2742 int error;
2743
2744 MGETHDR(m, M_DONTWAIT, MT_DATA);
2745 if (m == NULL)
2746 return (ENOBUFS);
2747
2748 MCLGET(m, M_DONTWAIT);
2749 if ((m->m_flags & M_EXT) == 0) {
2750 m_freem(m);
2751 return (ENOBUFS);
2752 }
2753
2754 #if defined(DP83820)
2755 m->m_len = SIP_RXBUF_LEN;
2756 #endif /* DP83820 */
2757
2758 if (rxs->rxs_mbuf != NULL)
2759 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2760
2761 rxs->rxs_mbuf = m;
2762
2763 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2764 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2765 BUS_DMA_READ|BUS_DMA_NOWAIT);
2766 if (error) {
2767 printf("%s: can't load rx DMA map %d, error = %d\n",
2768 sc->sc_dev.dv_xname, idx, error);
2769 panic("sip_add_rxbuf"); /* XXX */
2770 }
2771
2772 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2773 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2774
2775 SIP_INIT_RXDESC(sc, idx);
2776
2777 return (0);
2778 }
2779
2780 #if !defined(DP83820)
2781 /*
2782 * sip_sis900_set_filter:
2783 *
2784 * Set up the receive filter.
2785 */
2786 static void
2787 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2788 {
2789 bus_space_tag_t st = sc->sc_st;
2790 bus_space_handle_t sh = sc->sc_sh;
2791 struct ethercom *ec = &sc->sc_ethercom;
2792 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2793 struct ether_multi *enm;
2794 u_int8_t *cp;
2795 struct ether_multistep step;
2796 u_int32_t crc, mchash[16];
2797
2798 /*
2799 * Initialize the prototype RFCR.
2800 */
2801 sc->sc_rfcr = RFCR_RFEN;
2802 if (ifp->if_flags & IFF_BROADCAST)
2803 sc->sc_rfcr |= RFCR_AAB;
2804 if (ifp->if_flags & IFF_PROMISC) {
2805 sc->sc_rfcr |= RFCR_AAP;
2806 goto allmulti;
2807 }
2808
2809 /*
2810 * Set up the multicast address filter by passing all multicast
2811 * addresses through a CRC generator, and then using the high-order
2812 * 6 bits as an index into the 128 bit multicast hash table (only
2813 * the lower 16 bits of each 32 bit multicast hash register are
2814 * valid). The high order bits select the register, while the
2815 * rest of the bits select the bit within the register.
2816 */
2817
2818 memset(mchash, 0, sizeof(mchash));
2819
2820 /*
2821 * SiS900 (at least SiS963) requires us to register the address of
2822 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
2823 */
2824 crc = 0x0ed423f9;
2825
2826 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2827 SIP_SIS900_REV(sc, SIS_REV_960) ||
2828 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2829 /* Just want the 8 most significant bits. */
2830 crc >>= 24;
2831 } else {
2832 /* Just want the 7 most significant bits. */
2833 crc >>= 25;
2834 }
2835
2836 /* Set the corresponding bit in the hash table. */
2837 mchash[crc >> 4] |= 1 << (crc & 0xf);
2838
2839 ETHER_FIRST_MULTI(step, ec, enm);
2840 while (enm != NULL) {
2841 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2842 /*
2843 * We must listen to a range of multicast addresses.
2844 * For now, just accept all multicasts, rather than
2845 * trying to set only those filter bits needed to match
2846 * the range. (At this time, the only use of address
2847 * ranges is for IP multicast routing, for which the
2848 * range is big enough to require all bits set.)
2849 */
2850 goto allmulti;
2851 }
2852
2853 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2854
2855 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2856 SIP_SIS900_REV(sc, SIS_REV_960) ||
2857 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2858 /* Just want the 8 most significant bits. */
2859 crc >>= 24;
2860 } else {
2861 /* Just want the 7 most significant bits. */
2862 crc >>= 25;
2863 }
2864
2865 /* Set the corresponding bit in the hash table. */
2866 mchash[crc >> 4] |= 1 << (crc & 0xf);
2867
2868 ETHER_NEXT_MULTI(step, enm);
2869 }
2870
2871 ifp->if_flags &= ~IFF_ALLMULTI;
2872 goto setit;
2873
2874 allmulti:
2875 ifp->if_flags |= IFF_ALLMULTI;
2876 sc->sc_rfcr |= RFCR_AAM;
2877
2878 setit:
2879 #define FILTER_EMIT(addr, data) \
2880 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2881 delay(1); \
2882 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2883 delay(1)
2884
2885 /*
2886 * Disable receive filter, and program the node address.
2887 */
2888 cp = LLADDR(ifp->if_sadl);
2889 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2890 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2891 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2892
2893 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2894 /*
2895 * Program the multicast hash table.
2896 */
2897 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2898 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2899 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2900 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2901 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2902 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2903 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2904 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2905 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2906 SIP_SIS900_REV(sc, SIS_REV_960) ||
2907 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2908 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2909 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2910 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2911 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2912 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2913 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2914 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2915 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2916 }
2917 }
2918 #undef FILTER_EMIT
2919
2920 /*
2921 * Re-enable the receiver filter.
2922 */
2923 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2924 }
2925 #endif /* ! DP83820 */
2926
2927 /*
2928 * sip_dp83815_set_filter:
2929 *
2930 * Set up the receive filter.
2931 */
2932 static void
2933 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2934 {
2935 bus_space_tag_t st = sc->sc_st;
2936 bus_space_handle_t sh = sc->sc_sh;
2937 struct ethercom *ec = &sc->sc_ethercom;
2938 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2939 struct ether_multi *enm;
2940 u_int8_t *cp;
2941 struct ether_multistep step;
2942 u_int32_t crc, hash, slot, bit;
2943 #ifdef DP83820
2944 #define MCHASH_NWORDS 128
2945 #else
2946 #define MCHASH_NWORDS 32
2947 #endif /* DP83820 */
2948 u_int16_t mchash[MCHASH_NWORDS];
2949 int i;
2950
2951 /*
2952 * Initialize the prototype RFCR.
2953 * Enable the receive filter, and accept on
2954 * Perfect (destination address) Match
2955 * If IFF_BROADCAST, also accept all broadcast packets.
2956 * If IFF_PROMISC, accept all unicast packets (and later, set
2957 * IFF_ALLMULTI and accept all multicast, too).
2958 */
2959 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2960 if (ifp->if_flags & IFF_BROADCAST)
2961 sc->sc_rfcr |= RFCR_AAB;
2962 if (ifp->if_flags & IFF_PROMISC) {
2963 sc->sc_rfcr |= RFCR_AAP;
2964 goto allmulti;
2965 }
2966
2967 #ifdef DP83820
2968 /*
2969 * Set up the DP83820 multicast address filter by passing all multicast
2970 * addresses through a CRC generator, and then using the high-order
2971 * 11 bits as an index into the 2048 bit multicast hash table. The
2972 * high-order 7 bits select the slot, while the low-order 4 bits
2973 * select the bit within the slot. Note that only the low 16-bits
2974 * of each filter word are used, and there are 128 filter words.
2975 */
2976 #else
2977 /*
2978 * Set up the DP83815 multicast address filter by passing all multicast
2979 * addresses through a CRC generator, and then using the high-order
2980 * 9 bits as an index into the 512 bit multicast hash table. The
2981 * high-order 5 bits select the slot, while the low-order 4 bits
2982 * select the bit within the slot. Note that only the low 16-bits
2983 * of each filter word are used, and there are 32 filter words.
2984 */
2985 #endif /* DP83820 */
2986
2987 memset(mchash, 0, sizeof(mchash));
2988
2989 ifp->if_flags &= ~IFF_ALLMULTI;
2990 ETHER_FIRST_MULTI(step, ec, enm);
2991 if (enm == NULL)
2992 goto setit;
2993 while (enm != NULL) {
2994 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2995 /*
2996 * We must listen to a range of multicast addresses.
2997 * For now, just accept all multicasts, rather than
2998 * trying to set only those filter bits needed to match
2999 * the range. (At this time, the only use of address
3000 * ranges is for IP multicast routing, for which the
3001 * range is big enough to require all bits set.)
3002 */
3003 goto allmulti;
3004 }
3005
3006 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3007
3008 #ifdef DP83820
3009 /* Just want the 11 most significant bits. */
3010 hash = crc >> 21;
3011 #else
3012 /* Just want the 9 most significant bits. */
3013 hash = crc >> 23;
3014 #endif /* DP83820 */
3015
3016 slot = hash >> 4;
3017 bit = hash & 0xf;
3018
3019 /* Set the corresponding bit in the hash table. */
3020 mchash[slot] |= 1 << bit;
3021
3022 ETHER_NEXT_MULTI(step, enm);
3023 }
3024 sc->sc_rfcr |= RFCR_MHEN;
3025 goto setit;
3026
3027 allmulti:
3028 ifp->if_flags |= IFF_ALLMULTI;
3029 sc->sc_rfcr |= RFCR_AAM;
3030
3031 setit:
3032 #define FILTER_EMIT(addr, data) \
3033 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3034 delay(1); \
3035 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3036 delay(1)
3037
3038 /*
3039 * Disable receive filter, and program the node address.
3040 */
3041 cp = LLADDR(ifp->if_sadl);
3042 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3043 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3044 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3045
3046 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3047 /*
3048 * Program the multicast hash table.
3049 */
3050 for (i = 0; i < MCHASH_NWORDS; i++) {
3051 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
3052 mchash[i]);
3053 }
3054 }
3055 #undef FILTER_EMIT
3056 #undef MCHASH_NWORDS
3057
3058 /*
3059 * Re-enable the receiver filter.
3060 */
3061 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3062 }
3063
3064 #if defined(DP83820)
3065 /*
3066 * sip_dp83820_mii_readreg: [mii interface function]
3067 *
3068 * Read a PHY register on the MII of the DP83820.
3069 */
3070 static int
3071 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
3072 {
3073 struct sip_softc *sc = (void *) self;
3074
3075 if (sc->sc_cfg & CFG_TBI_EN) {
3076 bus_addr_t tbireg;
3077 int rv;
3078
3079 if (phy != 0)
3080 return (0);
3081
3082 switch (reg) {
3083 case MII_BMCR: tbireg = SIP_TBICR; break;
3084 case MII_BMSR: tbireg = SIP_TBISR; break;
3085 case MII_ANAR: tbireg = SIP_TANAR; break;
3086 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3087 case MII_ANER: tbireg = SIP_TANER; break;
3088 case MII_EXTSR:
3089 /*
3090 * Don't even bother reading the TESR register.
3091 * The manual documents that the device has
3092 * 1000baseX full/half capability, but the
3093 * register itself seems read back 0 on some
3094 * boards. Just hard-code the result.
3095 */
3096 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3097
3098 default:
3099 return (0);
3100 }
3101
3102 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3103 if (tbireg == SIP_TBISR) {
3104 /* LINK and ACOMP are switched! */
3105 int val = rv;
3106
3107 rv = 0;
3108 if (val & TBISR_MR_LINK_STATUS)
3109 rv |= BMSR_LINK;
3110 if (val & TBISR_MR_AN_COMPLETE)
3111 rv |= BMSR_ACOMP;
3112
3113 /*
3114 * The manual claims this register reads back 0
3115 * on hard and soft reset. But we want to let
3116 * the gentbi driver know that we support auto-
3117 * negotiation, so hard-code this bit in the
3118 * result.
3119 */
3120 rv |= BMSR_ANEG | BMSR_EXTSTAT;
3121 }
3122
3123 return (rv);
3124 }
3125
3126 return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3127 phy, reg));
3128 }
3129
3130 /*
3131 * sip_dp83820_mii_writereg: [mii interface function]
3132 *
3133 * Write a PHY register on the MII of the DP83820.
3134 */
3135 static void
3136 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
3137 {
3138 struct sip_softc *sc = (void *) self;
3139
3140 if (sc->sc_cfg & CFG_TBI_EN) {
3141 bus_addr_t tbireg;
3142
3143 if (phy != 0)
3144 return;
3145
3146 switch (reg) {
3147 case MII_BMCR: tbireg = SIP_TBICR; break;
3148 case MII_ANAR: tbireg = SIP_TANAR; break;
3149 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3150 default:
3151 return;
3152 }
3153
3154 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3155 return;
3156 }
3157
3158 mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3159 phy, reg, val);
3160 }
3161
3162 /*
3163 * sip_dp83820_mii_statchg: [mii interface function]
3164 *
3165 * Callback from MII layer when media changes.
3166 */
3167 static void
3168 SIP_DECL(dp83820_mii_statchg)(struct device *self)
3169 {
3170 struct sip_softc *sc = (struct sip_softc *) self;
3171 struct mii_data *mii = &sc->sc_mii;
3172 u_int32_t cfg, pcr;
3173
3174 /*
3175 * Get flow control negotiation result.
3176 */
3177 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3178 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3179 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3180 mii->mii_media_active &= ~IFM_ETH_FMASK;
3181 }
3182
3183 /*
3184 * Update TXCFG for full-duplex operation.
3185 */
3186 if ((mii->mii_media_active & IFM_FDX) != 0)
3187 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3188 else
3189 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3190
3191 /*
3192 * Update RXCFG for full-duplex or loopback.
3193 */
3194 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3195 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3196 sc->sc_rxcfg |= RXCFG_ATX;
3197 else
3198 sc->sc_rxcfg &= ~RXCFG_ATX;
3199
3200 /*
3201 * Update CFG for MII/GMII.
3202 */
3203 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3204 cfg = sc->sc_cfg | CFG_MODE_1000;
3205 else
3206 cfg = sc->sc_cfg;
3207
3208 /*
3209 * 802.3x flow control.
3210 */
3211 pcr = 0;
3212 if (sc->sc_flowflags & IFM_FLOW) {
3213 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3214 pcr |= sc->sc_rx_flow_thresh;
3215 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3216 pcr |= PCR_PSEN | PCR_PS_MCAST;
3217 }
3218
3219 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3220 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3221 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3222 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3223 }
3224 #endif /* ! DP83820 */
3225
3226 /*
3227 * sip_mii_bitbang_read: [mii bit-bang interface function]
3228 *
3229 * Read the MII serial port for the MII bit-bang module.
3230 */
3231 static u_int32_t
3232 SIP_DECL(mii_bitbang_read)(struct device *self)
3233 {
3234 struct sip_softc *sc = (void *) self;
3235
3236 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3237 }
3238
3239 /*
3240 * sip_mii_bitbang_write: [mii big-bang interface function]
3241 *
3242 * Write the MII serial port for the MII bit-bang module.
3243 */
3244 static void
3245 SIP_DECL(mii_bitbang_write)(struct device *self, u_int32_t val)
3246 {
3247 struct sip_softc *sc = (void *) self;
3248
3249 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3250 }
3251
3252 #ifndef DP83820
3253 /*
3254 * sip_sis900_mii_readreg: [mii interface function]
3255 *
3256 * Read a PHY register on the MII.
3257 */
3258 static int
3259 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
3260 {
3261 struct sip_softc *sc = (struct sip_softc *) self;
3262 u_int32_t enphy;
3263
3264 /*
3265 * The PHY of recent SiS chipsets is accessed through bitbang
3266 * operations.
3267 */
3268 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3269 return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3270 phy, reg));
3271
3272 #ifndef SIS900_MII_RESTRICT
3273 /*
3274 * The SiS 900 has only an internal PHY on the MII. Only allow
3275 * MII address 0.
3276 */
3277 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3278 return (0);
3279 #endif
3280
3281 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3282 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3283 ENPHY_RWCMD | ENPHY_ACCESS);
3284 do {
3285 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3286 } while (enphy & ENPHY_ACCESS);
3287 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3288 }
3289
3290 /*
3291 * sip_sis900_mii_writereg: [mii interface function]
3292 *
3293 * Write a PHY register on the MII.
3294 */
3295 static void
3296 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
3297 {
3298 struct sip_softc *sc = (struct sip_softc *) self;
3299 u_int32_t enphy;
3300
3301 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3302 mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3303 phy, reg, val);
3304 return;
3305 }
3306
3307 #ifndef SIS900_MII_RESTRICT
3308 /*
3309 * The SiS 900 has only an internal PHY on the MII. Only allow
3310 * MII address 0.
3311 */
3312 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3313 return;
3314 #endif
3315
3316 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3317 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3318 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3319 do {
3320 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3321 } while (enphy & ENPHY_ACCESS);
3322 }
3323
3324 /*
3325 * sip_sis900_mii_statchg: [mii interface function]
3326 *
3327 * Callback from MII layer when media changes.
3328 */
3329 static void
3330 SIP_DECL(sis900_mii_statchg)(struct device *self)
3331 {
3332 struct sip_softc *sc = (struct sip_softc *) self;
3333 struct mii_data *mii = &sc->sc_mii;
3334 u_int32_t flowctl;
3335
3336 /*
3337 * Get flow control negotiation result.
3338 */
3339 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3340 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3341 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3342 mii->mii_media_active &= ~IFM_ETH_FMASK;
3343 }
3344
3345 /*
3346 * Update TXCFG for full-duplex operation.
3347 */
3348 if ((mii->mii_media_active & IFM_FDX) != 0)
3349 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3350 else
3351 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3352
3353 /*
3354 * Update RXCFG for full-duplex or loopback.
3355 */
3356 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3357 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3358 sc->sc_rxcfg |= RXCFG_ATX;
3359 else
3360 sc->sc_rxcfg &= ~RXCFG_ATX;
3361
3362 /*
3363 * Update IMR for use of 802.3x flow control.
3364 */
3365 if (sc->sc_flowflags & IFM_FLOW) {
3366 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3367 flowctl = FLOWCTL_FLOWEN;
3368 } else {
3369 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3370 flowctl = 0;
3371 }
3372
3373 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3374 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3375 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3376 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3377 }
3378
3379 /*
3380 * sip_dp83815_mii_readreg: [mii interface function]
3381 *
3382 * Read a PHY register on the MII.
3383 */
3384 static int
3385 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3386 {
3387 struct sip_softc *sc = (struct sip_softc *) self;
3388 u_int32_t val;
3389
3390 /*
3391 * The DP83815 only has an internal PHY. Only allow
3392 * MII address 0.
3393 */
3394 if (phy != 0)
3395 return (0);
3396
3397 /*
3398 * Apparently, after a reset, the DP83815 can take a while
3399 * to respond. During this recovery period, the BMSR returns
3400 * a value of 0. Catch this -- it's not supposed to happen
3401 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3402 * PHY to come back to life.
3403 *
3404 * This works out because the BMSR is the first register
3405 * read during the PHY probe process.
3406 */
3407 do {
3408 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3409 } while (reg == MII_BMSR && val == 0);
3410
3411 return (val & 0xffff);
3412 }
3413
3414 /*
3415 * sip_dp83815_mii_writereg: [mii interface function]
3416 *
3417 * Write a PHY register to the MII.
3418 */
3419 static void
3420 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3421 {
3422 struct sip_softc *sc = (struct sip_softc *) self;
3423
3424 /*
3425 * The DP83815 only has an internal PHY. Only allow
3426 * MII address 0.
3427 */
3428 if (phy != 0)
3429 return;
3430
3431 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3432 }
3433
3434 /*
3435 * sip_dp83815_mii_statchg: [mii interface function]
3436 *
3437 * Callback from MII layer when media changes.
3438 */
3439 static void
3440 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3441 {
3442 struct sip_softc *sc = (struct sip_softc *) self;
3443
3444 /*
3445 * Update TXCFG for full-duplex operation.
3446 */
3447 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3448 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3449 else
3450 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3451
3452 /*
3453 * Update RXCFG for full-duplex or loopback.
3454 */
3455 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3456 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3457 sc->sc_rxcfg |= RXCFG_ATX;
3458 else
3459 sc->sc_rxcfg &= ~RXCFG_ATX;
3460
3461 /*
3462 * XXX 802.3x flow control.
3463 */
3464
3465 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3466 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3467
3468 /*
3469 * Some DP83815s experience problems when used with short
3470 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3471 * sequence adjusts the DSP's signal attenuation to fix the
3472 * problem.
3473 */
3474 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3475 uint32_t reg;
3476
3477 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3478
3479 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3480 reg &= 0x0fff;
3481 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3482 delay(100);
3483 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3484 reg &= 0x00ff;
3485 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3486 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3487 0x00e8);
3488 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3489 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3490 reg | 0x20);
3491 }
3492
3493 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3494 }
3495 }
3496 #endif /* DP83820 */
3497
3498 #if defined(DP83820)
3499 static void
3500 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3501 const struct pci_attach_args *pa, u_int8_t *enaddr)
3502 {
3503 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3504 u_int8_t cksum, *e, match;
3505 int i;
3506
3507 /*
3508 * EEPROM data format for the DP83820 can be found in
3509 * the DP83820 manual, section 4.2.4.
3510 */
3511
3512 SIP_DECL(read_eeprom)(sc, 0,
3513 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3514
3515 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3516 match = ~(match - 1);
3517
3518 cksum = 0x55;
3519 e = (u_int8_t *) eeprom_data;
3520 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3521 cksum += *e++;
3522
3523 if (cksum != match)
3524 printf("%s: Checksum (%x) mismatch (%x)",
3525 sc->sc_dev.dv_xname, cksum, match);
3526
3527 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3528 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3529 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3530 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3531 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3532 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3533 }
3534 #else /* ! DP83820 */
3535 static void
3536 SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc)
3537 {
3538 int i;
3539
3540 /*
3541 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3542 * a reason, but I don't know it.
3543 */
3544 for (i = 0; i < 10; i++)
3545 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3546 }
3547
3548 static void
3549 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3550 const struct pci_attach_args *pa, u_int8_t *enaddr)
3551 {
3552 u_int16_t myea[ETHER_ADDR_LEN / 2];
3553
3554 switch (sc->sc_rev) {
3555 case SIS_REV_630S:
3556 case SIS_REV_630E:
3557 case SIS_REV_630EA1:
3558 case SIS_REV_630ET:
3559 case SIS_REV_635:
3560 /*
3561 * The MAC address for the on-board Ethernet of
3562 * the SiS 630 chipset is in the NVRAM. Kick
3563 * the chip into re-loading it from NVRAM, and
3564 * read the MAC address out of the filter registers.
3565 */
3566 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3567
3568 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3569 RFCR_RFADDR_NODE0);
3570 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3571 0xffff;
3572
3573 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3574 RFCR_RFADDR_NODE2);
3575 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3576 0xffff;
3577
3578 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3579 RFCR_RFADDR_NODE4);
3580 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3581 0xffff;
3582 break;
3583
3584 case SIS_REV_960:
3585 {
3586 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3587 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3588
3589 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3590 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3591
3592 int waittime, i;
3593
3594 /* Allow to read EEPROM from LAN. It is shared
3595 * between a 1394 controller and the NIC and each
3596 * time we access it, we need to set SIS_EECMD_REQ.
3597 */
3598 SIS_SET_EROMAR(sc, EROMAR_REQ);
3599
3600 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3601 /* Force EEPROM to idle state. */
3602
3603 /*
3604 * XXX-cube This is ugly. I'll look for docs about it.
3605 */
3606 SIS_SET_EROMAR(sc, EROMAR_EECS);
3607 SIP_DECL(sis900_eeprom_delay)(sc);
3608 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3609 SIS_SET_EROMAR(sc, EROMAR_EESK);
3610 SIP_DECL(sis900_eeprom_delay)(sc);
3611 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3612 SIP_DECL(sis900_eeprom_delay)(sc);
3613 }
3614 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3615 SIP_DECL(sis900_eeprom_delay)(sc);
3616 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3617
3618 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3619 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3620 sizeof(myea) / sizeof(myea[0]), myea);
3621 break;
3622 }
3623 DELAY(1);
3624 }
3625
3626 /*
3627 * Set SIS_EECTL_CLK to high, so a other master
3628 * can operate on the i2c bus.
3629 */
3630 SIS_SET_EROMAR(sc, EROMAR_EESK);
3631
3632 /* Refuse EEPROM access by LAN */
3633 SIS_SET_EROMAR(sc, EROMAR_DONE);
3634 } break;
3635
3636 default:
3637 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3638 sizeof(myea) / sizeof(myea[0]), myea);
3639 }
3640
3641 enaddr[0] = myea[0] & 0xff;
3642 enaddr[1] = myea[0] >> 8;
3643 enaddr[2] = myea[1] & 0xff;
3644 enaddr[3] = myea[1] >> 8;
3645 enaddr[4] = myea[2] & 0xff;
3646 enaddr[5] = myea[2] >> 8;
3647 }
3648
3649 /* Table and macro to bit-reverse an octet. */
3650 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3651 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3652
3653 static void
3654 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3655 const struct pci_attach_args *pa, u_int8_t *enaddr)
3656 {
3657 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3658 u_int8_t cksum, *e, match;
3659 int i;
3660
3661 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3662 sizeof(eeprom_data[0]), eeprom_data);
3663
3664 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3665 match = ~(match - 1);
3666
3667 cksum = 0x55;
3668 e = (u_int8_t *) eeprom_data;
3669 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3670 cksum += *e++;
3671 }
3672 if (cksum != match) {
3673 printf("%s: Checksum (%x) mismatch (%x)",
3674 sc->sc_dev.dv_xname, cksum, match);
3675 }
3676
3677 /*
3678 * Unrolled because it makes slightly more sense this way.
3679 * The DP83815 stores the MAC address in bit 0 of word 6
3680 * through bit 15 of word 8.
3681 */
3682 ea = &eeprom_data[6];
3683 enaddr[0] = ((*ea & 0x1) << 7);
3684 ea++;
3685 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3686 enaddr[1] = ((*ea & 0x1FE) >> 1);
3687 enaddr[2] = ((*ea & 0x1) << 7);
3688 ea++;
3689 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3690 enaddr[3] = ((*ea & 0x1FE) >> 1);
3691 enaddr[4] = ((*ea & 0x1) << 7);
3692 ea++;
3693 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3694 enaddr[5] = ((*ea & 0x1FE) >> 1);
3695
3696 /*
3697 * In case that's not weird enough, we also need to reverse
3698 * the bits in each byte. This all actually makes more sense
3699 * if you think about the EEPROM storage as an array of bits
3700 * being shifted into bytes, but that's not how we're looking
3701 * at it here...
3702 */
3703 for (i = 0; i < 6 ;i++)
3704 enaddr[i] = bbr(enaddr[i]);
3705 }
3706 #endif /* DP83820 */
3707
3708 /*
3709 * sip_mediastatus: [ifmedia interface function]
3710 *
3711 * Get the current interface media status.
3712 */
3713 static void
3714 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3715 {
3716 struct sip_softc *sc = ifp->if_softc;
3717
3718 mii_pollstat(&sc->sc_mii);
3719 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3720 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3721 sc->sc_flowflags;
3722 }
3723
3724 /*
3725 * sip_mediachange: [ifmedia interface function]
3726 *
3727 * Set hardware to newly-selected media.
3728 */
3729 static int
3730 SIP_DECL(mediachange)(struct ifnet *ifp)
3731 {
3732 struct sip_softc *sc = ifp->if_softc;
3733
3734 if (ifp->if_flags & IFF_UP)
3735 mii_mediachg(&sc->sc_mii);
3736 return (0);
3737 }
3738