Home | History | Annotate | Line # | Download | only in pci
if_sk.c revision 1.1
      1 /*	$NetBSD: if_sk.c,v 1.1 2003/08/26 21:11:00 jdolecek Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the NetBSD
     18  *	Foundation, Inc. and its contributors.
     19  * 4. Neither the name of The NetBSD Foundation nor the names of its
     20  *    contributors may be used to endorse or promote products derived
     21  *    from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 /*	$OpenBSD: if_sk.c,v 1.33 2003/08/12 05:23:06 nate Exp $	*/
     37 
     38 /*
     39  * Copyright (c) 1997, 1998, 1999, 2000
     40  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by Bill Paul.
     53  * 4. Neither the name of the author nor the names of any co-contributors
     54  *    may be used to endorse or promote products derived from this software
     55  *    without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     61  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     62  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     63  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     64  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     65  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     66  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     67  * THE POSSIBILITY OF SUCH DAMAGE.
     68  *
     69  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
     70  */
     71 
     72 /*
     73  * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
     74  *
     75  * Permission to use, copy, modify, and distribute this software for any
     76  * purpose with or without fee is hereby granted, provided that the above
     77  * copyright notice and this permission notice appear in all copies.
     78  *
     79  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     80  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     81  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     82  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     83  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     84  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     85  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     86  */
     87 
     88 /*
     89  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
     90  * the SK-984x series adapters, both single port and dual port.
     91  * References:
     92  * 	The XaQti XMAC II datasheet,
     93  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     94  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
     95  *
     96  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
     97  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
     98  * convenience to others until Vitesse corrects this problem:
     99  *
    100  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
    101  *
    102  * Written by Bill Paul <wpaul (at) ee.columbia.edu>
    103  * Department of Electrical Engineering
    104  * Columbia University, New York City
    105  */
    106 
    107 /*
    108  * The SysKonnect gigabit ethernet adapters consist of two main
    109  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
    110  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
    111  * components and a PHY while the GEnesis controller provides a PCI
    112  * interface with DMA support. Each card may have between 512K and
    113  * 2MB of SRAM on board depending on the configuration.
    114  *
    115  * The SysKonnect GEnesis controller can have either one or two XMAC
    116  * chips connected to it, allowing single or dual port NIC configurations.
    117  * SysKonnect has the distinction of being the only vendor on the market
    118  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
    119  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
    120  * XMAC registers. This driver takes advantage of these features to allow
    121  * both XMACs to operate as independent interfaces.
    122  */
    123 
    124 #include "bpfilter.h"
    125 
    126 #include <sys/param.h>
    127 #include <sys/systm.h>
    128 #include <sys/sockio.h>
    129 #include <sys/mbuf.h>
    130 #include <sys/malloc.h>
    131 #include <sys/kernel.h>
    132 #include <sys/socket.h>
    133 #include <sys/device.h>
    134 #include <sys/queue.h>
    135 #include <sys/callout.h>
    136 
    137 #include <net/if.h>
    138 #include <net/if_dl.h>
    139 #include <net/if_types.h>
    140 
    141 #ifdef INET
    142 #include <netinet/in.h>
    143 #include <netinet/in_systm.h>
    144 #include <netinet/in_var.h>
    145 #include <netinet/ip.h>
    146 #include <netinet/if_ether.h>
    147 #endif
    148 
    149 #include <net/if_media.h>
    150 
    151 #if NBPFILTER > 0
    152 #include <net/bpf.h>
    153 #endif
    154 
    155 #include <dev/mii/mii.h>
    156 #include <dev/mii/miivar.h>
    157 #include <dev/mii/brgphyreg.h>
    158 
    159 #include <dev/pci/pcireg.h>
    160 #include <dev/pci/pcivar.h>
    161 #include <dev/pci/pcidevs.h>
    162 
    163 #define	SK_VERBOSE
    164 /* #define SK_USEIOSPACE */
    165 
    166 #include <dev/pci/if_skreg.h>
    167 #include <dev/pci/if_skvar.h>
    168 
    169 int skc_probe(struct device *, struct cfdata *, void *);
    170 void skc_attach(struct device *, struct device *self, void *aux);
    171 int sk_probe(struct device *, struct cfdata *, void *);
    172 void sk_attach(struct device *, struct device *self, void *aux);
    173 int skcprint(void *, const char *);
    174 int sk_intr(void *);
    175 void sk_intr_bcom(struct sk_if_softc *);
    176 void sk_intr_xmac(struct sk_if_softc *);
    177 void sk_intr_yukon(struct sk_if_softc *);
    178 void sk_rxeof(struct sk_if_softc *);
    179 void sk_txeof(struct sk_if_softc *);
    180 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
    181 void sk_start(struct ifnet *);
    182 int sk_ioctl(struct ifnet *, u_long, caddr_t);
    183 int sk_init(struct ifnet *);
    184 void sk_init_xmac(struct sk_if_softc *);
    185 void sk_init_yukon(struct sk_if_softc *);
    186 void sk_stop(struct ifnet *, int);
    187 void sk_watchdog(struct ifnet *);
    188 void sk_shutdown(void *);
    189 int sk_ifmedia_upd(struct ifnet *);
    190 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    191 void sk_reset(struct sk_softc *);
    192 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
    193 int sk_init_rx_ring(struct sk_if_softc *);
    194 int sk_init_tx_ring(struct sk_if_softc *);
    195 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
    196 void sk_vpd_read_res(struct sk_softc *,
    197 					struct vpd_res *, int);
    198 void sk_vpd_read(struct sk_softc *);
    199 
    200 int sk_xmac_miibus_readreg(struct device *, int, int);
    201 void sk_xmac_miibus_writereg(struct device *, int, int, int);
    202 void sk_xmac_miibus_statchg(struct device *);
    203 
    204 int sk_marv_miibus_readreg(struct device *, int, int);
    205 void sk_marv_miibus_writereg(struct device *, int, int, int);
    206 void sk_marv_miibus_statchg(struct device *);
    207 
    208 u_int32_t sk_calchash(caddr_t);
    209 void sk_setfilt(struct sk_if_softc *, caddr_t, int);
    210 void sk_setmulti(struct sk_if_softc *);
    211 void sk_tick(void *);
    212 
    213 /* #define SK_DEBUG 2 */
    214 #ifdef SK_DEBUG
    215 #define DPRINTF(x)	if (skdebug) printf x
    216 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
    217 int	skdebug = SK_DEBUG;
    218 
    219 void sk_dump_txdesc(struct sk_tx_desc *, int);
    220 void sk_dump_mbuf(struct mbuf *);
    221 void sk_dump_bytes(const char *, int);
    222 #else
    223 #define DPRINTF(x)
    224 #define DPRINTFN(n,x)
    225 #endif
    226 
    227 #define SK_SETBIT(sc, reg, x)		\
    228 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
    229 
    230 #define SK_CLRBIT(sc, reg, x)		\
    231 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
    232 
    233 #define SK_WIN_SETBIT_4(sc, reg, x)	\
    234 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
    235 
    236 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
    237 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
    238 
    239 #define SK_WIN_SETBIT_2(sc, reg, x)	\
    240 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
    241 
    242 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
    243 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
    244 
    245 /* supported device vendors */
    246 static const struct sk_product {
    247 	pci_vendor_id_t		sk_vendor;
    248 	pci_product_id_t	sk_product;
    249 } sk_products[] = {
    250 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
    251 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
    252 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
    253 	{ 0, 0, }
    254 };
    255 
    256 static inline u_int32_t
    257 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
    258 {
    259 #ifdef SK_USEIOSPACE
    260 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    261 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
    262 #else
    263 	return CSR_READ_4(sc, reg);
    264 #endif
    265 }
    266 
    267 static inline u_int16_t
    268 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
    269 {
    270 #ifdef SK_USEIOSPACE
    271 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    272 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
    273 #else
    274 	return CSR_READ_2(sc, reg);
    275 #endif
    276 }
    277 
    278 static inline u_int8_t
    279 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
    280 {
    281 #ifdef SK_USEIOSPACE
    282 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    283 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
    284 #else
    285 	return CSR_READ_1(sc, reg);
    286 #endif
    287 }
    288 
    289 static inline void
    290 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
    291 {
    292 #ifdef SK_USEIOSPACE
    293 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    294 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
    295 #else
    296 	CSR_WRITE_4(sc, reg, x);
    297 #endif
    298 }
    299 
    300 static inline void
    301 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
    302 {
    303 #ifdef SK_USEIOSPACE
    304 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    305 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
    306 #else
    307 	CSR_WRITE_2(sc, reg, x);
    308 #endif
    309 }
    310 
    311 static inline void
    312 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
    313 {
    314 #ifdef SK_USEIOSPACE
    315 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    316 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
    317 #else
    318 	CSR_WRITE_1(sc, reg, x);
    319 #endif
    320 }
    321 
    322 /*
    323  * The VPD EEPROM contains Vital Product Data, as suggested in
    324  * the PCI 2.1 specification. The VPD data is separared into areas
    325  * denoted by resource IDs. The SysKonnect VPD contains an ID string
    326  * resource (the name of the adapter), a read-only area resource
    327  * containing various key/data fields and a read/write area which
    328  * can be used to store asset management information or log messages.
    329  * We read the ID string and read-only into buffers attached to
    330  * the controller softc structure for later use. At the moment,
    331  * we only use the ID string during sk_attach().
    332  */
    333 u_int8_t
    334 sk_vpd_readbyte(struct sk_softc *sc, int addr)
    335 {
    336 	int			i;
    337 
    338 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
    339 	for (i = 0; i < SK_TIMEOUT; i++) {
    340 		DELAY(1);
    341 		if (sk_win_read_2(sc,
    342 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
    343 			break;
    344 	}
    345 
    346 	if (i == SK_TIMEOUT)
    347 		return(0);
    348 
    349 	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
    350 }
    351 
    352 void
    353 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
    354 {
    355 	int			i;
    356 	u_int8_t		*ptr;
    357 
    358 	ptr = (u_int8_t *)res;
    359 	for (i = 0; i < sizeof(struct vpd_res); i++)
    360 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
    361 }
    362 
    363 void
    364 sk_vpd_read(struct sk_softc *sc)
    365 {
    366 	int			pos = 0, i;
    367 	struct vpd_res		res;
    368 
    369 	if (sc->sk_vpd_prodname != NULL)
    370 		free(sc->sk_vpd_prodname, M_DEVBUF);
    371 	if (sc->sk_vpd_readonly != NULL)
    372 		free(sc->sk_vpd_readonly, M_DEVBUF);
    373 	sc->sk_vpd_prodname = NULL;
    374 	sc->sk_vpd_readonly = NULL;
    375 
    376 	sk_vpd_read_res(sc, &res, pos);
    377 
    378 	if (res.vr_id != VPD_RES_ID) {
    379 		printf("%s: bad VPD resource id: expected %x got %x\n",
    380 		    sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
    381 		return;
    382 	}
    383 
    384 	pos += sizeof(res);
    385 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    386 	if (sc->sk_vpd_prodname == NULL)
    387 		panic("sk_vpd_read");
    388 	for (i = 0; i < res.vr_len; i++)
    389 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
    390 	sc->sk_vpd_prodname[i] = '\0';
    391 	pos += i;
    392 
    393 	sk_vpd_read_res(sc, &res, pos);
    394 
    395 	if (res.vr_id != VPD_RES_READ) {
    396 		printf("%s: bad VPD resource id: expected %x got %x\n",
    397 		    sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
    398 		return;
    399 	}
    400 
    401 	pos += sizeof(res);
    402 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    403 	if (sc->sk_vpd_readonly == NULL)
    404 		panic("sk_vpd_read");
    405 	for (i = 0; i < res.vr_len + 1; i++)
    406 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
    407 }
    408 
    409 int
    410 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
    411 {
    412 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    413 	int i;
    414 
    415 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
    416 
    417 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
    418 		return(0);
    419 
    420 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    421 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
    422 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    423 		for (i = 0; i < SK_TIMEOUT; i++) {
    424 			DELAY(1);
    425 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
    426 			    XM_MMUCMD_PHYDATARDY)
    427 				break;
    428 		}
    429 
    430 		if (i == SK_TIMEOUT) {
    431 			printf("%s: phy failed to come ready\n",
    432 			    sc_if->sk_dev.dv_xname);
    433 			return(0);
    434 		}
    435 	}
    436 	DELAY(1);
    437 	return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
    438 }
    439 
    440 void
    441 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
    442 {
    443 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    444 	int i;
    445 
    446 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
    447 
    448 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    449 	for (i = 0; i < SK_TIMEOUT; i++) {
    450 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    451 			break;
    452 	}
    453 
    454 	if (i == SK_TIMEOUT) {
    455 		printf("%s: phy failed to come ready\n",
    456 		    sc_if->sk_dev.dv_xname);
    457 		return;
    458 	}
    459 
    460 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
    461 	for (i = 0; i < SK_TIMEOUT; i++) {
    462 		DELAY(1);
    463 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    464 			break;
    465 	}
    466 
    467 	if (i == SK_TIMEOUT)
    468 		printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
    469 }
    470 
    471 void
    472 sk_xmac_miibus_statchg(struct device *dev)
    473 {
    474 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    475 	struct mii_data *mii = &sc_if->sk_mii;
    476 
    477 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
    478 
    479 	/*
    480 	 * If this is a GMII PHY, manually set the XMAC's
    481 	 * duplex mode accordingly.
    482 	 */
    483 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    484 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
    485 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    486 		} else {
    487 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    488 		}
    489 	}
    490 }
    491 
    492 int
    493 sk_marv_miibus_readreg(dev, phy, reg)
    494 	struct device *dev;
    495 	int phy, reg;
    496 {
    497 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    498 	u_int16_t val;
    499 	int i;
    500 
    501 	if (phy != 0 ||
    502 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
    503 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
    504 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
    505 			     phy, reg));
    506 		return(0);
    507 	}
    508 
    509         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    510 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
    511 
    512 	for (i = 0; i < SK_TIMEOUT; i++) {
    513 		DELAY(1);
    514 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
    515 		if (val & YU_SMICR_READ_VALID)
    516 			break;
    517 	}
    518 
    519 	if (i == SK_TIMEOUT) {
    520 		printf("%s: phy failed to come ready\n",
    521 		       sc_if->sk_dev.dv_xname);
    522 		return 0;
    523 	}
    524 
    525  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
    526 		     SK_TIMEOUT));
    527 
    528         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
    529 
    530 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
    531 		     phy, reg, val));
    532 
    533 	return val;
    534 }
    535 
    536 void
    537 sk_marv_miibus_writereg(dev, phy, reg, val)
    538 	struct device *dev;
    539 	int phy, reg, val;
    540 {
    541 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    542 	int i;
    543 
    544 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
    545 		     phy, reg, val));
    546 
    547 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
    548 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    549 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
    550 
    551 	for (i = 0; i < SK_TIMEOUT; i++) {
    552 		DELAY(1);
    553 		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
    554 			break;
    555 	}
    556 }
    557 
    558 void
    559 sk_marv_miibus_statchg(dev)
    560 	struct device *dev;
    561 {
    562 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
    563 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
    564 }
    565 
    566 #define SK_BITS		6
    567 #define SK_POLY	0xEDB88320
    568 
    569 u_int32_t
    570 sk_calchash(caddr_t addr)
    571 {
    572 	u_int32_t		crc;
    573 
    574 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
    575         crc = ~crc & ((1<< SK_BITS) - 1);
    576 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    577         return (crc);
    578 }
    579 
    580 void
    581 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
    582 {
    583 	int base = XM_RXFILT_ENTRY(slot);
    584 
    585 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
    586 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
    587 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
    588 }
    589 
    590 void
    591 sk_setmulti(struct sk_if_softc *sc_if)
    592 {
    593 	struct sk_softc *sc = sc_if->sk_softc;
    594 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
    595 	u_int32_t hashes[2] = { 0, 0 };
    596 	int h, i;
    597 	struct ethercom *ec = &sc_if->sk_ethercom;
    598 	struct ether_multi *enm;
    599 	struct ether_multistep step;
    600 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
    601 
    602 	/* First, zot all the existing filters. */
    603 	switch(sc->sk_type) {
    604 	case SK_GENESIS:
    605 		for (i = 1; i < XM_RXFILT_MAX; i++)
    606 			sk_setfilt(sc_if, (caddr_t)&dummy, i);
    607 
    608 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
    609 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
    610 		break;
    611 	case SK_YUKON:
    612 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
    613 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
    614 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
    615 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
    616 		break;
    617 	}
    618 
    619 	/* Now program new ones. */
    620 allmulti:
    621 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    622 		hashes[0] = 0xFFFFFFFF;
    623 		hashes[1] = 0xFFFFFFFF;
    624 	} else {
    625 		i = 1;
    626 		/* First find the tail of the list. */
    627 		ETHER_FIRST_MULTI(step, ec, enm);
    628 		while (enm != NULL) {
    629 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
    630 				 ETHER_ADDR_LEN)) {
    631 				ifp->if_flags |= IFF_ALLMULTI;
    632 				goto allmulti;
    633 			}
    634 			DPRINTFN(2,("multicast address %s\n",
    635 	    			ether_sprintf(enm->enm_addrlo)));
    636 			/*
    637 			 * Program the first XM_RXFILT_MAX multicast groups
    638 			 * into the perfect filter. For all others,
    639 			 * use the hash table.
    640 			 */
    641 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
    642 				sk_setfilt(sc_if, enm->enm_addrlo, i);
    643 				i++;
    644 			}
    645 			else {
    646 				h = sk_calchash(enm->enm_addrlo);
    647 				if (h < 32)
    648 					hashes[0] |= (1 << h);
    649 				else
    650 					hashes[1] |= (1 << (h - 32));
    651 			}
    652 
    653 			ETHER_NEXT_MULTI(step, enm);
    654 		}
    655 	}
    656 
    657 	switch(sc->sk_type) {
    658 	case SK_GENESIS:
    659 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
    660 			       XM_MODE_RX_USE_PERFECT);
    661 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
    662 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
    663 		break;
    664 	case SK_YUKON:
    665 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
    666 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
    667 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
    668 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
    669 		break;
    670 	}
    671 }
    672 
    673 int
    674 sk_init_rx_ring(struct sk_if_softc *sc_if)
    675 {
    676 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    677 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    678 	int			i;
    679 
    680 	bzero((char *)rd->sk_rx_ring,
    681 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
    682 
    683 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    684 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
    685 		if (i == (SK_RX_RING_CNT - 1)) {
    686 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
    687 			rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if, 0);
    688 		} else {
    689 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
    690 			rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if,i+1);
    691 		}
    692 	}
    693 
    694 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    695 		if (sk_newbuf(sc_if, i, NULL, NULL) == ENOBUFS) {
    696 			printf("%s: failed alloc of %dth mbuf\n",
    697 			    sc_if->sk_dev.dv_xname, i);
    698 			return(ENOBUFS);
    699 		}
    700 	}
    701 	sc_if->sk_cdata.sk_rx_prod = 0;
    702 	sc_if->sk_cdata.sk_rx_cons = 0;
    703 
    704 	return(0);
    705 }
    706 
    707 int
    708 sk_init_tx_ring(struct sk_if_softc *sc_if)
    709 {
    710 	struct sk_softc		*sc = sc_if->sk_softc;
    711 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    712 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    713 	bus_dmamap_t		dmamap;
    714 	struct sk_txmap_entry	*entry;
    715 	int			i;
    716 
    717 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
    718 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
    719 
    720 	SLIST_INIT(&sc_if->sk_txmap_listhead);
    721 	for (i = 0; i < SK_TX_RING_CNT; i++) {
    722 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
    723 		if (i == (SK_TX_RING_CNT - 1)) {
    724 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
    725 			rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if, 0);
    726 		} else {
    727 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
    728 			rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if,i+1);
    729 		}
    730 
    731 		if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, SK_NTXSEG,
    732 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap))
    733 			return (ENOBUFS);
    734 
    735 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
    736 		if (!entry) {
    737 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
    738 			return (ENOBUFS);
    739 		}
    740 		entry->dmamap = dmamap;
    741 		SLIST_INSERT_HEAD(&sc_if->sk_txmap_listhead, entry, link);
    742 	}
    743 
    744 	sc_if->sk_cdata.sk_tx_prod = 0;
    745 	sc_if->sk_cdata.sk_tx_cons = 0;
    746 	sc_if->sk_cdata.sk_tx_cnt = 0;
    747 
    748 	return (0);
    749 }
    750 
    751 int
    752 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
    753 	  bus_dmamap_t dmamap)
    754 {
    755 	struct sk_softc		*sc = sc_if->sk_softc;
    756 	struct mbuf		*m_new = NULL;
    757 	struct sk_chain		*c;
    758 	struct sk_rx_desc	*r;
    759 
    760 	if (dmamap == NULL) {
    761 		/* if (m) panic() */
    762 
    763 		if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1, MCLBYTES,
    764 				      0, BUS_DMA_NOWAIT, &dmamap)) {
    765 			printf("%s: can't create recv map\n",
    766 			       sc_if->sk_dev.dv_xname);
    767 			return(ENOMEM);
    768 		}
    769 	} else if (m == NULL)
    770 		bus_dmamap_unload(sc->sc_dmatag, dmamap);
    771 
    772 	sc_if->sk_cdata.sk_rx_map[i] = dmamap;
    773 
    774 	if (m == NULL) {
    775 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    776 		if (m_new == NULL) {
    777 			printf("%s: no memory for rx list -- "
    778 			    "packet dropped!\n", sc_if->sk_dev.dv_xname);
    779 			return(ENOBUFS);
    780 		}
    781 
    782 		/* Allocate the jumbo buffer */
    783 		MCLGET(m_new, M_DONTWAIT);
    784 		if (!(m_new->m_flags & M_EXT)) {
    785 			m_freem(m_new);
    786 			return (ENOBUFS);
    787 		}
    788 
    789 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    790 
    791 		m_adj(m_new, ETHER_ALIGN);
    792 
    793 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m_new,
    794 					 BUS_DMA_NOWAIT))
    795 			return(ENOBUFS);
    796 	} else {
    797 		/*
    798 	 	 * We're re-using a previously allocated mbuf;
    799 		 * be sure to re-init pointers and lengths to
    800 		 * default values.
    801 		 */
    802 		m_new = m;
    803 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    804 		m_adj(m_new, ETHER_ALIGN);
    805 		m_new->m_data = m_new->m_ext.ext_buf;
    806 	}
    807 
    808 	c = &sc_if->sk_cdata.sk_rx_chain[i];
    809 	r = c->sk_desc;
    810 	c->sk_mbuf = m_new;
    811 	r->sk_data_lo = dmamap->dm_segs[0].ds_addr;
    812 	r->sk_ctl = dmamap->dm_segs[0].ds_len | SK_RXSTAT;
    813 
    814 	return(0);
    815 }
    816 
    817 /*
    818  * Set media options.
    819  */
    820 int
    821 sk_ifmedia_upd(struct ifnet *ifp)
    822 {
    823 	struct sk_if_softc *sc_if = ifp->if_softc;
    824 
    825 	(void) sk_init(ifp);
    826 	mii_mediachg(&sc_if->sk_mii);
    827 	return(0);
    828 }
    829 
    830 /*
    831  * Report current media status.
    832  */
    833 void
    834 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
    835 {
    836 	struct sk_if_softc *sc_if = ifp->if_softc;
    837 
    838 	mii_pollstat(&sc_if->sk_mii);
    839 	ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
    840 	ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
    841 }
    842 
    843 int
    844 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
    845 {
    846 	struct sk_if_softc *sc_if = ifp->if_softc;
    847 	struct sk_softc *sc = sc_if->sk_softc;
    848 	struct ifreq *ifr = (struct ifreq *) data;
    849 	/* struct ifaddr *ifa = (struct ifaddr *) data; */
    850 	struct mii_data *mii;
    851 	int s, error = 0;
    852 
    853 	/* DPRINTFN(2, ("sk_ioctl\n")); */
    854 
    855 	s = splnet();
    856 
    857 	switch(command) {
    858 
    859 	case SIOCSIFFLAGS:
    860 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
    861 		if (ifp->if_flags & IFF_UP) {
    862 			if (ifp->if_flags & IFF_RUNNING &&
    863 			    ifp->if_flags & IFF_PROMISC &&
    864 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
    865 				switch(sc->sk_type) {
    866 				case SK_GENESIS:
    867 					SK_XM_SETBIT_4(sc_if, XM_MODE,
    868 					    XM_MODE_RX_PROMISC);
    869 					break;
    870 				case SK_YUKON:
    871 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
    872 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
    873 					break;
    874 				}
    875 				sk_setmulti(sc_if);
    876 			} else if (ifp->if_flags & IFF_RUNNING &&
    877 			    !(ifp->if_flags & IFF_PROMISC) &&
    878 			    sc_if->sk_if_flags & IFF_PROMISC) {
    879 				switch(sc->sk_type) {
    880 				case SK_GENESIS:
    881 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
    882 					    XM_MODE_RX_PROMISC);
    883 					break;
    884 				case SK_YUKON:
    885 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
    886 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
    887 					break;
    888 				}
    889 
    890 				sk_setmulti(sc_if);
    891 			} else
    892 				(void) sk_init(ifp);
    893 		} else {
    894 			if (ifp->if_flags & IFF_RUNNING)
    895 				sk_stop(ifp,0);
    896 		}
    897 		sc_if->sk_if_flags = ifp->if_flags;
    898 		error = 0;
    899 		break;
    900 
    901 	case SIOCGIFMEDIA:
    902 	case SIOCSIFMEDIA:
    903 	        DPRINTFN(2, ("sk_ioctl MEDIA\n"));
    904 		mii = &sc_if->sk_mii;
    905 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
    906 		break;
    907 	default:
    908 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
    909 		error = ether_ioctl(ifp, command, data);
    910 
    911 		if ( error == ENETRESET) {
    912 			sk_setmulti(sc_if);
    913 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
    914 			error = 0;
    915 		} else if ( error ) {
    916 			splx(s);
    917 			return error;
    918 		}
    919 		break;
    920 	}
    921 
    922 	splx(s);
    923 	return(error);
    924 }
    925 
    926 /*
    927  * Lookup: Check the PCI vendor and device, and return a pointer to
    928  * The structure if the IDs match against our list.
    929  */
    930 
    931 static const struct sk_product *
    932 sk_lookup(const struct pci_attach_args *pa)
    933 {
    934 	const struct sk_product *psk;
    935 
    936 	for ( psk = &sk_products[0]; psk->sk_vendor != NULL; psk++ ) {
    937 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
    938 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
    939 			return (psk);
    940 	}
    941 	return (NULL);
    942 }
    943 
    944 /*
    945  * Probe for a SysKonnect GEnesis chip.
    946  */
    947 
    948 int
    949 skc_probe(struct device *parent, struct cfdata *match, void *aux)
    950 {
    951 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    952 	const struct sk_product *psk;
    953 
    954 	if ((psk = sk_lookup(pa))) {
    955 		return(1);
    956 	}
    957 	return(0);
    958 }
    959 
    960 /*
    961  * Force the GEnesis into reset, then bring it out of reset.
    962  */
    963 void sk_reset(struct sk_softc *sc)
    964 {
    965 	DPRINTFN(2, ("sk_reset\n"));
    966 
    967 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
    968 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
    969 	if (sc->sk_type == SK_YUKON)
    970 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
    971 
    972 	DELAY(1000);
    973 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
    974 	DELAY(2);
    975 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
    976 	if (sc->sk_type == SK_YUKON)
    977 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
    978 
    979 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
    980 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
    981 		     CSR_READ_2(sc, SK_LINK_CTRL)));
    982 
    983 	if (sc->sk_type == SK_GENESIS) {
    984 		/* Configure packet arbiter */
    985 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
    986 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
    987 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
    988 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
    989 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
    990 	}
    991 
    992 	/* Enable RAM interface */
    993 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
    994 
    995 	/*
    996          * Configure interrupt moderation. The moderation timer
    997 	 * defers interrupts specified in the interrupt moderation
    998 	 * timer mask based on the timeout specified in the interrupt
    999 	 * moderation timer init register. Each bit in the timer
   1000 	 * register represents 18.825ns, so to specify a timeout in
   1001 	 * microseconds, we have to multiply by 54.
   1002 	 */
   1003         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
   1004         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
   1005 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
   1006         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
   1007 }
   1008 
   1009 int
   1010 sk_probe(struct device *parent, struct cfdata *match, void *aux)
   1011 {
   1012 	struct skc_attach_args *sa = aux;
   1013 
   1014 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
   1015 		return(0);
   1016 
   1017 	return (1);
   1018 }
   1019 
   1020 /*
   1021  * Each XMAC chip is attached as a separate logical IP interface.
   1022  * Single port cards will have only one logical interface of course.
   1023  */
   1024 void
   1025 sk_attach(struct device *parent, struct device *self, void *aux)
   1026 {
   1027 	struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
   1028 	struct sk_softc *sc = (struct sk_softc *)parent;
   1029 	struct skc_attach_args *sa = aux;
   1030 	struct ifnet *ifp;
   1031 	caddr_t kva;
   1032 	bus_dma_segment_t seg;
   1033 	int i, rseg;
   1034 
   1035 	sc_if->sk_port = sa->skc_port;
   1036 	sc_if->sk_softc = sc;
   1037 	sc->sk_if[sa->skc_port] = sc_if;
   1038 
   1039 	if (sa->skc_port == SK_PORT_A)
   1040 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
   1041 	if (sa->skc_port == SK_PORT_B)
   1042 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
   1043 
   1044 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
   1045 
   1046 	/*
   1047 	 * Get station address for this interface. Note that
   1048 	 * dual port cards actually come with three station
   1049 	 * addresses: one for each port, plus an extra. The
   1050 	 * extra one is used by the SysKonnect driver software
   1051 	 * as a 'virtual' station address for when both ports
   1052 	 * are operating in failover mode. Currently we don't
   1053 	 * use this extra address.
   1054 	 */
   1055 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1056 		sc_if->sk_enaddr[i] =
   1057 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
   1058 
   1059 
   1060 	printf(": Ethernet address %s\n",
   1061 	    ether_sprintf(sc_if->sk_enaddr));
   1062 
   1063 	/*
   1064 	 * Set up RAM buffer addresses. The NIC will have a certain
   1065 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
   1066 	 * need to divide this up a) between the transmitter and
   1067  	 * receiver and b) between the two XMACs, if this is a
   1068 	 * dual port NIC. Our algotithm is to divide up the memory
   1069 	 * evenly so that everyone gets a fair share.
   1070 	 */
   1071 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
   1072 		u_int32_t		chunk, val;
   1073 
   1074 		chunk = sc->sk_ramsize / 2;
   1075 		val = sc->sk_rboff / sizeof(u_int64_t);
   1076 		sc_if->sk_rx_ramstart = val;
   1077 		val += (chunk / sizeof(u_int64_t));
   1078 		sc_if->sk_rx_ramend = val - 1;
   1079 		sc_if->sk_tx_ramstart = val;
   1080 		val += (chunk / sizeof(u_int64_t));
   1081 		sc_if->sk_tx_ramend = val - 1;
   1082 	} else {
   1083 		u_int32_t		chunk, val;
   1084 
   1085 		chunk = sc->sk_ramsize / 4;
   1086 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
   1087 		    sizeof(u_int64_t);
   1088 		sc_if->sk_rx_ramstart = val;
   1089 		val += (chunk / sizeof(u_int64_t));
   1090 		sc_if->sk_rx_ramend = val - 1;
   1091 		sc_if->sk_tx_ramstart = val;
   1092 		val += (chunk / sizeof(u_int64_t));
   1093 		sc_if->sk_tx_ramend = val - 1;
   1094 	}
   1095 
   1096 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
   1097 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
   1098 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
   1099 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
   1100 
   1101 	/* Read and save PHY type and set PHY address */
   1102 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
   1103 	switch (sc_if->sk_phytype) {
   1104 	case SK_PHYTYPE_XMAC:
   1105 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
   1106 		break;
   1107 	case SK_PHYTYPE_BCOM:
   1108 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
   1109 		break;
   1110 	case SK_PHYTYPE_MARV_COPPER:
   1111 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
   1112 		break;
   1113 	default:
   1114 		printf("%s: unsupported PHY type: %d\n",
   1115 		    sc->sk_dev.dv_xname, sc_if->sk_phytype);
   1116 		return;
   1117 	}
   1118 
   1119 	/* Allocate the descriptor queues. */
   1120 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
   1121 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1122 		printf("%s: can't alloc rx buffers\n", sc->sk_dev.dv_xname);
   1123 		goto fail;
   1124 	}
   1125 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
   1126 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
   1127 		printf("%s: can't map dma buffers (%d bytes)\n",
   1128 		       sc_if->sk_dev.dv_xname, sizeof(struct sk_ring_data));
   1129 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1130 		goto fail;
   1131 	}
   1132 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
   1133 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
   1134             &sc_if->sk_ring_map)) {
   1135 		printf("%s: can't create dma map\n", sc_if->sk_dev.dv_xname);
   1136 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1137 		    sizeof(struct sk_ring_data));
   1138 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1139 		goto fail;
   1140 	}
   1141 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
   1142 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
   1143 		printf("%s: can't load dma map\n", sc_if->sk_dev.dv_xname);
   1144 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1145 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1146 		    sizeof(struct sk_ring_data));
   1147 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1148 		goto fail;
   1149 	}
   1150         sc_if->sk_rdata = (struct sk_ring_data *)kva;
   1151 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
   1152 
   1153 	ifp = &sc_if->sk_ethercom.ec_if;
   1154 	ifp->if_softc = sc_if;
   1155 	ifp->if_mtu = ETHERMTU;
   1156 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1157 	ifp->if_ioctl = sk_ioctl;
   1158 	ifp->if_start = sk_start;
   1159 	ifp->if_stop = sk_stop;
   1160 	ifp->if_init = sk_init;
   1161 	ifp->if_watchdog = sk_watchdog;
   1162 	ifp->if_baudrate = 1000000000;
   1163 	ifp->if_capabilities |= ETHERCAP_VLAN_MTU;
   1164 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
   1165 	IFQ_SET_READY(&ifp->if_snd);
   1166 	bcopy(sc_if->sk_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
   1167 
   1168 	/*
   1169 	 * Do miibus setup.
   1170 	 */
   1171 	switch (sc->sk_type) {
   1172 	case SK_GENESIS:
   1173 		sk_init_xmac(sc_if);
   1174 		break;
   1175 	case SK_YUKON:
   1176 		sk_init_yukon(sc_if);
   1177 		break;
   1178 	default:
   1179 		panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
   1180 		      sc->sk_type);
   1181 	}
   1182 
   1183  	DPRINTFN(2, ("sk_attach: 1\n"));
   1184 
   1185 	sc_if->sk_mii.mii_ifp = ifp;
   1186 	switch (sc->sk_type) {
   1187 	case SK_GENESIS:
   1188 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
   1189 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
   1190 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
   1191 		break;
   1192 	case SK_YUKON:
   1193 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
   1194 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
   1195 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
   1196 		break;
   1197 	}
   1198 
   1199 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
   1200 	    sk_ifmedia_upd, sk_ifmedia_sts);
   1201 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
   1202 	    MII_OFFSET_ANY, 0);
   1203 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
   1204 		printf("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
   1205 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
   1206 			    0, NULL);
   1207 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
   1208 	}
   1209 	else
   1210 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1211 
   1212 	callout_init(&sc_if->sk_tick_ch);
   1213 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
   1214 
   1215 	DPRINTFN(2, ("sk_attach: 1\n"));
   1216 
   1217 	/*
   1218 	 * Call MI attach routines.
   1219 	 */
   1220 	if_attach(ifp);
   1221 
   1222 	ether_ifattach(ifp, sc_if->sk_enaddr);
   1223 
   1224 #if NRND > 0
   1225         rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
   1226             RND_TYPE_NET, 0);
   1227 #endif
   1228 
   1229 	DPRINTFN(2, ("sk_attach: end\n"));
   1230 
   1231 	return;
   1232 
   1233 fail:
   1234 	sc->sk_if[sa->skc_port] = NULL;
   1235 }
   1236 
   1237 int
   1238 skcprint(void *aux, const char *pnp)
   1239 {
   1240 	struct skc_attach_args *sa = aux;
   1241 
   1242 	if (pnp)
   1243 		printf("sk port %c at %s",
   1244 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
   1245 	else
   1246 		printf(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
   1247 	return (UNCONF);
   1248 }
   1249 
   1250 /*
   1251  * Attach the interface. Allocate softc structures, do ifmedia
   1252  * setup and ethernet/BPF attach.
   1253  */
   1254 void
   1255 skc_attach(struct device *parent, struct device *self, void *aux)
   1256 {
   1257 	struct sk_softc *sc = (struct sk_softc *)self;
   1258 	struct pci_attach_args *pa = aux;
   1259 	struct skc_attach_args skca;
   1260 	pci_chipset_tag_t pc = pa->pa_pc;
   1261 	pcireg_t memtype;
   1262 	pci_intr_handle_t ih;
   1263 	const char *intrstr = NULL;
   1264 	bus_addr_t iobase;
   1265 	bus_size_t iosize;
   1266 	int s;
   1267 	u_int32_t command;
   1268 
   1269 	DPRINTFN(2, ("begin skc_attach\n"));
   1270 
   1271 	s = splnet();
   1272 
   1273 	/*
   1274 	 * Handle power management nonsense.
   1275 	 */
   1276 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
   1277 
   1278 	if (command == 0x01) {
   1279 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
   1280 		if (command & SK_PSTATE_MASK) {
   1281 			u_int32_t		iobase, membase, irq;
   1282 
   1283 			/* Save important PCI config data. */
   1284 			iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
   1285 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
   1286 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
   1287 
   1288 			/* Reset the power state. */
   1289 			printf("%s chip is in D%d power mode "
   1290 			    "-- setting to D0\n", sc->sk_dev.dv_xname,
   1291 			    command & SK_PSTATE_MASK);
   1292 			command &= 0xFFFFFFFC;
   1293 			pci_conf_write(pc, pa->pa_tag,
   1294 			    SK_PCI_PWRMGMTCTRL, command);
   1295 
   1296 			/* Restore PCI config data. */
   1297 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
   1298 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
   1299 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
   1300 		}
   1301 	}
   1302 
   1303 	/*
   1304 	 * Map control/status registers.
   1305 	 */
   1306 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1307 	command |= PCI_COMMAND_IO_ENABLE |
   1308 	    PCI_COMMAND_MEM_ENABLE |
   1309 	    PCI_COMMAND_MASTER_ENABLE;
   1310 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1311 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1312 
   1313 	switch (PCI_PRODUCT(pa->pa_id)) {
   1314 	case PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE:
   1315 		sc->sk_type = SK_GENESIS;
   1316 		break;
   1317 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
   1318 	case PCI_PRODUCT_3COM_3C940:
   1319 		sc->sk_type = SK_YUKON;
   1320 		break;
   1321 	default:
   1322 		printf(": unknown device!\n");
   1323 		goto fail;
   1324 	}
   1325 
   1326 #ifdef SK_USEIOSPACE
   1327 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
   1328 		printf(": failed to enable I/O ports!\n");
   1329 		goto fail;
   1330 	}
   1331 	/*
   1332 	 * Map control/status registers.
   1333 	 */
   1334 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
   1335 			   &iobase, &iosize)) {
   1336 		printf(": can't find i/o space\n");
   1337 		goto fail;
   1338 	}
   1339 #else
   1340 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1341 		printf(": failed to enable memory mapping!\n");
   1342 		goto fail;
   1343 	}
   1344 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
   1345 	switch (memtype) {
   1346         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1347         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1348                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
   1349 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
   1350 				   &iobase, &iosize) == 0)
   1351                         break;
   1352         default:
   1353                 printf("%s: can't find mem space\n",
   1354 		       sc->sk_dev.dv_xname);
   1355                 return;
   1356 	}
   1357 
   1358 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
   1359 #endif
   1360 	sc->sc_dmatag = pa->pa_dmat;
   1361 
   1362 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
   1363 
   1364 	/* Allocate interrupt */
   1365 	if (pci_intr_map(pa, &ih)) {
   1366 		printf(": couldn't map interrupt\n");
   1367 		goto fail;
   1368 	}
   1369 
   1370 	intrstr = pci_intr_string(pc, ih);
   1371 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
   1372 	if (sc->sk_intrhand == NULL) {
   1373 		printf(": couldn't establish interrupt");
   1374 		if (intrstr != NULL)
   1375 			printf(" at %s", intrstr);
   1376 		goto fail;
   1377 	}
   1378 	printf(": %s\n", intrstr);
   1379 
   1380 	/* Reset the adapter. */
   1381 	sk_reset(sc);
   1382 
   1383 	/* Read and save vital product data from EEPROM. */
   1384 	sk_vpd_read(sc);
   1385 
   1386 	if (sc->sk_type == SK_GENESIS) {
   1387 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1388 		/* Read and save RAM size and RAMbuffer offset */
   1389 		switch(val) {
   1390 		case SK_RAMSIZE_512K_64:
   1391 			sc->sk_ramsize = 0x80000;
   1392 			sc->sk_rboff = SK_RBOFF_0;
   1393 			break;
   1394 		case SK_RAMSIZE_1024K_64:
   1395 			sc->sk_ramsize = 0x100000;
   1396 			sc->sk_rboff = SK_RBOFF_80000;
   1397 			break;
   1398 		case SK_RAMSIZE_1024K_128:
   1399 			sc->sk_ramsize = 0x100000;
   1400 			sc->sk_rboff = SK_RBOFF_0;
   1401 			break;
   1402 		case SK_RAMSIZE_2048K_128:
   1403 			sc->sk_ramsize = 0x200000;
   1404 			sc->sk_rboff = SK_RBOFF_0;
   1405 			break;
   1406 		default:
   1407 			printf("%s: unknown ram size: %d\n",
   1408 			       sc->sk_dev.dv_xname, val);
   1409 			goto fail;
   1410 			break;
   1411 		}
   1412 
   1413 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
   1414 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
   1415 			     sc->sk_rboff));
   1416 	} else {
   1417 		sc->sk_ramsize = 0x20000;
   1418 		sc->sk_rboff = SK_RBOFF_0;
   1419 
   1420 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
   1421 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
   1422 			     sc->sk_rboff));
   1423 	}
   1424 
   1425 	/* Read and save physical media type */
   1426 	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
   1427 	case SK_PMD_1000BASESX:
   1428 		sc->sk_pmd = IFM_1000_SX;
   1429 		break;
   1430 	case SK_PMD_1000BASELX:
   1431 		sc->sk_pmd = IFM_1000_LX;
   1432 		break;
   1433 	case SK_PMD_1000BASECX:
   1434 		sc->sk_pmd = IFM_1000_CX;
   1435 		break;
   1436 	case SK_PMD_1000BASETX:
   1437 		sc->sk_pmd = IFM_1000_T;
   1438 		break;
   1439 	default:
   1440 		printf("%s: unknown media type: 0x%x\n",
   1441 		    sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
   1442 		goto fail;
   1443 	}
   1444 
   1445 	/* Announce the product name. */
   1446 	printf("%s: %s\n", sc->sk_dev.dv_xname, sc->sk_vpd_prodname);
   1447 
   1448 	skca.skc_port = SK_PORT_A;
   1449 	(void)config_found(&sc->sk_dev, &skca, skcprint);
   1450 
   1451 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
   1452 		skca.skc_port = SK_PORT_B;
   1453 		(void)config_found(&sc->sk_dev, &skca, skcprint);
   1454 	}
   1455 
   1456 	/* Turn on the 'driver is loaded' LED. */
   1457 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   1458 
   1459 fail:
   1460 	splx(s);
   1461 }
   1462 
   1463 int
   1464 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
   1465 {
   1466 	struct sk_softc		*sc = sc_if->sk_softc;
   1467 	struct sk_tx_desc	*f = NULL;
   1468 	u_int32_t		frag, cur, cnt = 0;
   1469 	int			i;
   1470 	struct sk_txmap_entry	*entry;
   1471 	bus_dmamap_t		txmap;
   1472 
   1473 	DPRINTFN(3, ("sk_encap\n"));
   1474 
   1475 	entry = SLIST_FIRST(&sc_if->sk_txmap_listhead);
   1476 	if (entry == NULL) {
   1477 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
   1478 		return ENOBUFS;
   1479 	}
   1480 	txmap = entry->dmamap;
   1481 
   1482 	cur = frag = *txidx;
   1483 
   1484 #ifdef SK_DEBUG
   1485 	if (skdebug >= 3)
   1486 		sk_dump_mbuf(m_head);
   1487 #endif
   1488 
   1489 	/*
   1490 	 * Start packing the mbufs in this chain into
   1491 	 * the fragment pointers. Stop when we run out
   1492 	 * of fragments or hit the end of the mbuf chain.
   1493 	 */
   1494 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
   1495 	    BUS_DMA_NOWAIT)) {
   1496 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
   1497 		return(ENOBUFS);
   1498 	}
   1499 
   1500 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
   1501 
   1502 	for (i = 0; i < txmap->dm_nsegs; i++) {
   1503 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
   1504 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
   1505 			return(ENOBUFS);
   1506 		}
   1507 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
   1508 		f->sk_data_lo = txmap->dm_segs[i].ds_addr;
   1509 		f->sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
   1510 		if (cnt == 0)
   1511 			f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
   1512 		else
   1513 			f->sk_ctl |= SK_TXCTL_OWN;
   1514 
   1515 		cur = frag;
   1516 		SK_INC(frag, SK_TX_RING_CNT);
   1517 		cnt++;
   1518 	}
   1519 
   1520 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
   1521 	SLIST_REMOVE_HEAD(&sc_if->sk_txmap_listhead, link);
   1522 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
   1523 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
   1524 		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
   1525 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
   1526 	sc_if->sk_cdata.sk_tx_cnt += cnt;
   1527 
   1528 #ifdef SK_DEBUG
   1529 	if (skdebug >= 3) {
   1530 		struct sk_tx_desc *desc;
   1531 		u_int32_t idx;
   1532 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
   1533 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
   1534 			sk_dump_txdesc(desc, idx);
   1535 		}
   1536 	}
   1537 #endif
   1538 
   1539 	*txidx = frag;
   1540 
   1541 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
   1542 
   1543 	return(0);
   1544 }
   1545 
   1546 void
   1547 sk_start(struct ifnet *ifp)
   1548 {
   1549         struct sk_if_softc	*sc_if = ifp->if_softc;
   1550         struct sk_softc		*sc = sc_if->sk_softc;
   1551         struct mbuf		*m_head = NULL;
   1552         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
   1553 	int			pkts = 0;
   1554 
   1555 	DPRINTFN(3, ("sk_start\n"));
   1556 
   1557 	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
   1558 		IFQ_POLL(&ifp->if_snd, m_head);
   1559 		if (m_head == NULL)
   1560 			break;
   1561 
   1562 		/*
   1563 		 * Pack the data into the transmit ring. If we
   1564 		 * don't have room, set the OACTIVE flag and wait
   1565 		 * for the NIC to drain the ring.
   1566 		 */
   1567 		if (sk_encap(sc_if, m_head, &idx)) {
   1568 			ifp->if_flags |= IFF_OACTIVE;
   1569 			break;
   1570 		}
   1571 
   1572 		/* now we are committed to transmit the packet */
   1573 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1574 		pkts++;
   1575 
   1576 		/*
   1577 		 * If there's a BPF listener, bounce a copy of this frame
   1578 		 * to him.
   1579 		 */
   1580 #if NBPFILTER > 0
   1581 		if (ifp->if_bpf)
   1582 			bpf_mtap(ifp->if_bpf, m_head);
   1583 #endif
   1584 	}
   1585 	if (pkts == 0)
   1586 		return;
   1587 
   1588 	/* Transmit */
   1589 	sc_if->sk_cdata.sk_tx_prod = idx;
   1590 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   1591 
   1592 	/* Set a timeout in case the chip goes out to lunch. */
   1593 	ifp->if_timer = 5;
   1594 }
   1595 
   1596 
   1597 void
   1598 sk_watchdog(struct ifnet *ifp)
   1599 {
   1600 	struct sk_if_softc *sc_if = ifp->if_softc;
   1601 
   1602 	printf("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
   1603 	(void) sk_init(ifp);
   1604 }
   1605 
   1606 void
   1607 sk_shutdown(void * v)
   1608 {
   1609 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
   1610 	struct sk_softc		*sc = sc_if->sk_softc;
   1611 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
   1612 
   1613 	DPRINTFN(2, ("sk_shutdown\n"));
   1614 	sk_stop(ifp,1);
   1615 
   1616 	/* Turn off the 'driver is loaded' LED. */
   1617 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   1618 
   1619 	/*
   1620 	 * Reset the GEnesis controller. Doing this should also
   1621 	 * assert the resets on the attached XMAC(s).
   1622 	 */
   1623 	sk_reset(sc);
   1624 }
   1625 
   1626 void
   1627 sk_rxeof(struct sk_if_softc *sc_if)
   1628 {
   1629 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   1630 	struct mbuf		*m;
   1631 	struct sk_chain		*cur_rx;
   1632 	struct sk_rx_desc	*cur_desc;
   1633 	int			i, cur, total_len = 0;
   1634 	u_int32_t		rxstat;
   1635 	bus_dmamap_t		dmamap;
   1636 
   1637 	DPRINTFN(3, ("sk_rxeof\n"));
   1638 
   1639 	i = sc_if->sk_cdata.sk_rx_prod;
   1640 
   1641 	while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) {
   1642 		cur = i;
   1643 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
   1644 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
   1645 
   1646 		rxstat = cur_desc->sk_xmac_rxstat;
   1647 		m = cur_rx->sk_mbuf;
   1648 		cur_rx->sk_mbuf = NULL;
   1649 		total_len = SK_RXBYTES(cur_desc->sk_ctl);
   1650 
   1651 		dmamap = sc_if->sk_cdata.sk_rx_map[cur];
   1652 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
   1653 
   1654 		SK_INC(i, SK_RX_RING_CNT);
   1655 
   1656 		if (rxstat & XM_RXSTAT_ERRFRAME) {
   1657 			ifp->if_ierrors++;
   1658 			sk_newbuf(sc_if, cur, m, dmamap);
   1659 			continue;
   1660 		}
   1661 
   1662 		/*
   1663 		 * Try to allocate a new jumbo buffer. If that
   1664 		 * fails, copy the packet to mbufs and put the
   1665 		 * jumbo buffer back in the ring so it can be
   1666 		 * re-used. If allocating mbufs fails, then we
   1667 		 * have to drop the packet.
   1668 		 */
   1669 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
   1670 			struct mbuf		*m0;
   1671 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
   1672 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
   1673 			sk_newbuf(sc_if, cur, m, dmamap);
   1674 			if (m0 == NULL) {
   1675 				printf("%s: no receive buffers "
   1676 				    "available -- packet dropped!\n",
   1677 				    sc_if->sk_dev.dv_xname);
   1678 				ifp->if_ierrors++;
   1679 				continue;
   1680 			}
   1681 			m_adj(m0, ETHER_ALIGN);
   1682 			m = m0;
   1683 		} else {
   1684 			m->m_pkthdr.rcvif = ifp;
   1685 			m->m_pkthdr.len = m->m_len = total_len;
   1686 		}
   1687 
   1688 		ifp->if_ipackets++;
   1689 
   1690 #if NBPFILTER > 0
   1691 		if (ifp->if_bpf)
   1692 			bpf_mtap(ifp->if_bpf, m);
   1693 #endif
   1694 		/* pass it on. */
   1695 		(*ifp->if_input)(ifp, m);
   1696 	}
   1697 
   1698 	sc_if->sk_cdata.sk_rx_prod = i;
   1699 }
   1700 
   1701 void
   1702 sk_txeof(struct sk_if_softc *sc_if)
   1703 {
   1704 	struct sk_softc		*sc = sc_if->sk_softc;
   1705 	struct sk_tx_desc	*cur_tx = NULL;
   1706 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   1707 	u_int32_t		idx;
   1708 	struct sk_txmap_entry	*entry;
   1709 
   1710 	DPRINTFN(3, ("sk_txeof\n"));
   1711 
   1712 	/*
   1713 	 * Go through our tx ring and free mbufs for those
   1714 	 * frames that have been sent.
   1715 	 */
   1716 	idx = sc_if->sk_cdata.sk_tx_cons;
   1717 	while(idx != sc_if->sk_cdata.sk_tx_prod) {
   1718 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
   1719 #ifdef SK_DEBUG
   1720 		if (skdebug >= 3)
   1721 			sk_dump_txdesc(cur_tx, idx);
   1722 #endif
   1723 		if (cur_tx->sk_ctl & SK_TXCTL_OWN)
   1724 			break;
   1725 		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
   1726 			ifp->if_opackets++;
   1727 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
   1728 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
   1729 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
   1730 
   1731 			entry = sc_if->sk_cdata.sk_tx_map[idx];
   1732 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
   1733 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1734 
   1735 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
   1736 			SLIST_INSERT_HEAD(&sc_if->sk_txmap_listhead, entry,
   1737 					  link);
   1738 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
   1739 		}
   1740 		sc_if->sk_cdata.sk_tx_cnt--;
   1741 		SK_INC(idx, SK_TX_RING_CNT);
   1742 		ifp->if_timer = 0;
   1743 	}
   1744 
   1745 	sc_if->sk_cdata.sk_tx_cons = idx;
   1746 
   1747 	if (cur_tx != NULL)
   1748 		ifp->if_flags &= ~IFF_OACTIVE;
   1749 }
   1750 
   1751 void
   1752 sk_tick(void *xsc_if)
   1753 {
   1754 	struct sk_if_softc *sc_if = xsc_if;
   1755 	struct mii_data *mii = &sc_if->sk_mii;
   1756 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   1757 	int i;
   1758 
   1759 	DPRINTFN(3, ("sk_tick\n"));
   1760 
   1761 	if (!(ifp->if_flags & IFF_UP))
   1762 		return;
   1763 
   1764 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   1765 		sk_intr_bcom(sc_if);
   1766 		return;
   1767 	}
   1768 
   1769 	/*
   1770 	 * According to SysKonnect, the correct way to verify that
   1771 	 * the link has come back up is to poll bit 0 of the GPIO
   1772 	 * register three times. This pin has the signal from the
   1773 	 * link sync pin connected to it; if we read the same link
   1774 	 * state 3 times in a row, we know the link is up.
   1775 	 */
   1776 	for (i = 0; i < 3; i++) {
   1777 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
   1778 			break;
   1779 	}
   1780 
   1781 	if (i != 3) {
   1782 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   1783 		return;
   1784 	}
   1785 
   1786 	/* Turn the GP0 interrupt back on. */
   1787 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   1788 	SK_XM_READ_2(sc_if, XM_ISR);
   1789 	mii_tick(mii);
   1790 	mii_pollstat(mii);
   1791 	callout_stop(&sc_if->sk_tick_ch);
   1792 }
   1793 
   1794 void
   1795 sk_intr_bcom(struct sk_if_softc *sc_if)
   1796 {
   1797 	struct mii_data *mii = &sc_if->sk_mii;
   1798 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   1799 	int status;
   1800 
   1801 
   1802 	DPRINTFN(3, ("sk_intr_bcom\n"));
   1803 
   1804 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   1805 
   1806 	/*
   1807 	 * Read the PHY interrupt register to make sure
   1808 	 * we clear any pending interrupts.
   1809 	 */
   1810 	status = sk_xmac_miibus_readreg((struct device *)sc_if,
   1811 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
   1812 
   1813 	if (!(ifp->if_flags & IFF_RUNNING)) {
   1814 		sk_init_xmac(sc_if);
   1815 		return;
   1816 	}
   1817 
   1818 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
   1819 		int lstat;
   1820 		lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
   1821 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
   1822 
   1823 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
   1824 			mii_mediachg(mii);
   1825 			/* Turn off the link LED. */
   1826 			SK_IF_WRITE_1(sc_if, 0,
   1827 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
   1828 			sc_if->sk_link = 0;
   1829 		} else if (status & BRGPHY_ISR_LNK_CHG) {
   1830 			sk_xmac_miibus_writereg((struct device *)sc_if,
   1831 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
   1832 			mii_tick(mii);
   1833 			sc_if->sk_link = 1;
   1834 			/* Turn on the link LED. */
   1835 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   1836 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
   1837 			    SK_LINKLED_BLINK_OFF);
   1838 			mii_pollstat(mii);
   1839 		} else {
   1840 			mii_tick(mii);
   1841 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
   1842 		}
   1843 	}
   1844 
   1845 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   1846 }
   1847 
   1848 void
   1849 sk_intr_xmac(struct sk_if_softc	*sc_if)
   1850 {
   1851 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
   1852 
   1853 	DPRINTFN(3, ("sk_intr_xmac\n"));
   1854 
   1855 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
   1856 		if (status & XM_ISR_GP0_SET) {
   1857 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   1858 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   1859 		}
   1860 
   1861 		if (status & XM_ISR_AUTONEG_DONE) {
   1862 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   1863 		}
   1864 	}
   1865 
   1866 	if (status & XM_IMR_TX_UNDERRUN)
   1867 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
   1868 
   1869 	if (status & XM_IMR_RX_OVERRUN)
   1870 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
   1871 }
   1872 
   1873 void
   1874 sk_intr_yukon(sc_if)
   1875 	struct sk_if_softc *sc_if;
   1876 {
   1877 	int status;
   1878 
   1879 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   1880 
   1881 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
   1882 }
   1883 
   1884 int
   1885 sk_intr(void *xsc)
   1886 {
   1887 	struct sk_softc		*sc = xsc;
   1888 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
   1889 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
   1890 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
   1891 	u_int32_t		status;
   1892 	int			claimed = 0;
   1893 
   1894 	if (sc_if0 != NULL)
   1895 		ifp0 = &sc_if0->sk_ethercom.ec_if;
   1896 	if (sc_if1 != NULL)
   1897 		ifp1 = &sc_if1->sk_ethercom.ec_if;
   1898 
   1899 	for (;;) {
   1900 		status = CSR_READ_4(sc, SK_ISSR);
   1901 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
   1902 
   1903 		if (!(status & sc->sk_intrmask))
   1904 			break;
   1905 
   1906 		claimed = 1;
   1907 
   1908 		/* Handle receive interrupts first. */
   1909 		if (status & SK_ISR_RX1_EOF) {
   1910 			sk_rxeof(sc_if0);
   1911 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
   1912 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   1913 		}
   1914 		if (status & SK_ISR_RX2_EOF) {
   1915 			sk_rxeof(sc_if1);
   1916 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
   1917 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   1918 		}
   1919 
   1920 		/* Then transmit interrupts. */
   1921 		if (status & SK_ISR_TX1_S_EOF) {
   1922 			sk_txeof(sc_if0);
   1923 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
   1924 			    SK_TXBMU_CLR_IRQ_EOF);
   1925 		}
   1926 		if (status & SK_ISR_TX2_S_EOF) {
   1927 			sk_txeof(sc_if1);
   1928 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
   1929 			    SK_TXBMU_CLR_IRQ_EOF);
   1930 		}
   1931 
   1932 		/* Then MAC interrupts. */
   1933 		if (status & SK_ISR_MAC1 && (ifp0->if_flags & IFF_RUNNING)) {
   1934 			if (sc->sk_type == SK_GENESIS)
   1935 				sk_intr_xmac(sc_if0);
   1936 			else
   1937 				sk_intr_yukon(sc_if0);
   1938 		}
   1939 
   1940 		if (status & SK_ISR_MAC2 && (ifp1->if_flags & IFF_RUNNING)) {
   1941 			if (sc->sk_type == SK_GENESIS)
   1942 				sk_intr_xmac(sc_if1);
   1943 			else
   1944 				sk_intr_yukon(sc_if1);
   1945 
   1946 		}
   1947 
   1948 		if (status & SK_ISR_EXTERNAL_REG) {
   1949 			if (ifp0 != NULL &&
   1950 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
   1951 				sk_intr_bcom(sc_if0);
   1952 
   1953 			if (ifp1 != NULL &&
   1954 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
   1955 				sk_intr_bcom(sc_if1);
   1956 		}
   1957 	}
   1958 
   1959 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   1960 
   1961 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
   1962 		sk_start(ifp0);
   1963 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
   1964 		sk_start(ifp1);
   1965 
   1966 	return (claimed);
   1967 }
   1968 
   1969 void
   1970 sk_init_xmac(struct sk_if_softc	*sc_if)
   1971 {
   1972 	struct sk_softc		*sc = sc_if->sk_softc;
   1973 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   1974 	static const struct sk_bcom_hack     bhack[] = {
   1975 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
   1976 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
   1977 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
   1978 	{ 0, 0 } };
   1979 
   1980 	DPRINTFN(1, ("sk_init_xmac\n"));
   1981 
   1982 	/* Unreset the XMAC. */
   1983 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
   1984 	DELAY(1000);
   1985 
   1986 	/* Reset the XMAC's internal state. */
   1987 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   1988 
   1989 	/* Save the XMAC II revision */
   1990 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
   1991 
   1992 	/*
   1993 	 * Perform additional initialization for external PHYs,
   1994 	 * namely for the 1000baseTX cards that use the XMAC's
   1995 	 * GMII mode.
   1996 	 */
   1997 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   1998 		int			i = 0;
   1999 		u_int32_t		val;
   2000 
   2001 		/* Take PHY out of reset. */
   2002 		val = sk_win_read_4(sc, SK_GPIO);
   2003 		if (sc_if->sk_port == SK_PORT_A)
   2004 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
   2005 		else
   2006 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
   2007 		sk_win_write_4(sc, SK_GPIO, val);
   2008 
   2009 		/* Enable GMII mode on the XMAC. */
   2010 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
   2011 
   2012 		sk_xmac_miibus_writereg((struct device *)sc_if,
   2013 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
   2014 		DELAY(10000);
   2015 		sk_xmac_miibus_writereg((struct device *)sc_if,
   2016 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
   2017 
   2018 		/*
   2019 		 * Early versions of the BCM5400 apparently have
   2020 		 * a bug that requires them to have their reserved
   2021 		 * registers initialized to some magic values. I don't
   2022 		 * know what the numbers do, I'm just the messenger.
   2023 		 */
   2024 		if (sk_xmac_miibus_readreg((struct device *)sc_if,
   2025 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
   2026 			while(bhack[i].reg) {
   2027 				sk_xmac_miibus_writereg((struct device *)sc_if,
   2028 				    SK_PHYADDR_BCOM, bhack[i].reg,
   2029 				    bhack[i].val);
   2030 				i++;
   2031 			}
   2032 		}
   2033 	}
   2034 
   2035 	/* Set station address */
   2036 	SK_XM_WRITE_2(sc_if, XM_PAR0,
   2037 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
   2038 	SK_XM_WRITE_2(sc_if, XM_PAR1,
   2039 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
   2040 	SK_XM_WRITE_2(sc_if, XM_PAR2,
   2041 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
   2042 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
   2043 
   2044 	if (ifp->if_flags & IFF_PROMISC) {
   2045 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2046 	} else {
   2047 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2048 	}
   2049 
   2050 	if (ifp->if_flags & IFF_BROADCAST) {
   2051 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2052 	} else {
   2053 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2054 	}
   2055 
   2056 	/* We don't need the FCS appended to the packet. */
   2057 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
   2058 
   2059 	/* We want short frames padded to 60 bytes. */
   2060 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
   2061 
   2062 	/*
   2063 	 * Enable the reception of all error frames. This is is
   2064 	 * a necessary evil due to the design of the XMAC. The
   2065 	 * XMAC's receive FIFO is only 8K in size, however jumbo
   2066 	 * frames can be up to 9000 bytes in length. When bad
   2067 	 * frame filtering is enabled, the XMAC's RX FIFO operates
   2068 	 * in 'store and forward' mode. For this to work, the
   2069 	 * entire frame has to fit into the FIFO, but that means
   2070 	 * that jumbo frames larger than 8192 bytes will be
   2071 	 * truncated. Disabling all bad frame filtering causes
   2072 	 * the RX FIFO to operate in streaming mode, in which
   2073 	 * case the XMAC will start transfering frames out of the
   2074 	 * RX FIFO as soon as the FIFO threshold is reached.
   2075 	 */
   2076 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
   2077 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
   2078 	    XM_MODE_RX_INRANGELEN);
   2079 
   2080 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2081 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2082 	else
   2083 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2084 
   2085 	/*
   2086 	 * Bump up the transmit threshold. This helps hold off transmit
   2087 	 * underruns when we're blasting traffic from both ports at once.
   2088 	 */
   2089 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
   2090 
   2091 	/* Set multicast filter */
   2092 	sk_setmulti(sc_if);
   2093 
   2094 	/* Clear and enable interrupts */
   2095 	SK_XM_READ_2(sc_if, XM_ISR);
   2096 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
   2097 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
   2098 	else
   2099 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2100 
   2101 	/* Configure MAC arbiter */
   2102 	switch(sc_if->sk_xmac_rev) {
   2103 	case XM_XMAC_REV_B2:
   2104 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
   2105 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
   2106 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
   2107 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
   2108 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
   2109 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
   2110 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
   2111 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
   2112 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2113 		break;
   2114 	case XM_XMAC_REV_C1:
   2115 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
   2116 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
   2117 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
   2118 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
   2119 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
   2120 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
   2121 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
   2122 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
   2123 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2124 		break;
   2125 	default:
   2126 		break;
   2127 	}
   2128 	sk_win_write_2(sc, SK_MACARB_CTL,
   2129 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
   2130 
   2131 	sc_if->sk_link = 1;
   2132 }
   2133 
   2134 void sk_init_yukon(sc_if)
   2135 	struct sk_if_softc	*sc_if;
   2136 {
   2137 	u_int32_t		/*mac, */phy;
   2138 	u_int16_t		reg;
   2139 	int			i;
   2140 
   2141 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
   2142 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
   2143 
   2144 	/* GMAC and GPHY Reset */
   2145 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
   2146 
   2147 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
   2148 
   2149 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2150 	DELAY(1000);
   2151 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
   2152 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2153 	DELAY(1000);
   2154 
   2155 
   2156 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
   2157 
   2158 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
   2159 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
   2160 
   2161 	switch(sc_if->sk_softc->sk_pmd) {
   2162 	case IFM_1000_SX:
   2163 	case IFM_1000_LX:
   2164 		phy |= SK_GPHY_FIBER;
   2165 		break;
   2166 
   2167 	case IFM_1000_CX:
   2168 	case IFM_1000_T:
   2169 		phy |= SK_GPHY_COPPER;
   2170 		break;
   2171 	}
   2172 
   2173 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
   2174 
   2175 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
   2176 	DELAY(1000);
   2177 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
   2178 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
   2179 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
   2180 
   2181 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
   2182 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
   2183 
   2184 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
   2185 
   2186 	/* unused read of the interrupt source register */
   2187 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
   2188 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2189 
   2190 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
   2191 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
   2192 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2193 
   2194 	/* MIB Counter Clear Mode set */
   2195         reg |= YU_PAR_MIB_CLR;
   2196 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2197 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
   2198 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2199 
   2200 	/* MIB Counter Clear Mode clear */
   2201 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
   2202         reg &= ~YU_PAR_MIB_CLR;
   2203 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2204 
   2205 	/* receive control reg */
   2206 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
   2207 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
   2208 		      YU_RCR_CRCR);
   2209 
   2210 	/* transmit parameter register */
   2211 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
   2212 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
   2213 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
   2214 
   2215 	/* serial mode register */
   2216 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
   2217 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
   2218 		      YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e));
   2219 
   2220 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
   2221 	/* Setup Yukon's address */
   2222 	for (i = 0; i < 3; i++) {
   2223 		/* Write Source Address 1 (unicast filter) */
   2224 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
   2225 			      sc_if->sk_enaddr[i * 2] |
   2226 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
   2227 	}
   2228 
   2229 	for (i = 0; i < 3; i++) {
   2230 		reg = sk_win_read_2(sc_if->sk_softc,
   2231 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
   2232 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
   2233 	}
   2234 
   2235 	/* clear all Multicast filter hash registers */
   2236 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
   2237 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
   2238 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
   2239 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
   2240 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
   2241 
   2242 	/* enable interrupt mask for counter overflows */
   2243 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
   2244 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
   2245 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
   2246 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
   2247 
   2248 	/* Configure RX MAC FIFO */
   2249 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
   2250 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
   2251 
   2252 	/* Configure TX MAC FIFO */
   2253 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
   2254 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
   2255 
   2256 	DPRINTFN(6, ("sk_init_yukon: end\n"));
   2257 }
   2258 
   2259 /*
   2260  * Note that to properly initialize any part of the GEnesis chip,
   2261  * you first have to take it out of reset mode.
   2262  */
   2263 int
   2264 sk_init(struct ifnet *ifp)
   2265 {
   2266 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2267 	struct sk_softc		*sc = sc_if->sk_softc;
   2268 	struct mii_data		*mii = &sc_if->sk_mii;
   2269 	int			s;
   2270 
   2271 	DPRINTFN(1, ("sk_init\n"));
   2272 
   2273 	s = splnet();
   2274 
   2275 	/* Cancel pending I/O and free all RX/TX buffers. */
   2276 	sk_stop(ifp,0);
   2277 
   2278 	if (sc->sk_type == SK_GENESIS) {
   2279 		/* Configure LINK_SYNC LED */
   2280 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
   2281 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2282 			      SK_LINKLED_LINKSYNC_ON);
   2283 
   2284 		/* Configure RX LED */
   2285 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
   2286 			      SK_RXLEDCTL_COUNTER_START);
   2287 
   2288 		/* Configure TX LED */
   2289 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
   2290 			      SK_TXLEDCTL_COUNTER_START);
   2291 	}
   2292 
   2293 	/* Configure I2C registers */
   2294 
   2295 	/* Configure XMAC(s) */
   2296 	switch (sc->sk_type) {
   2297 	case SK_GENESIS:
   2298 		sk_init_xmac(sc_if);
   2299 		break;
   2300 	case SK_YUKON:
   2301 		sk_init_yukon(sc_if);
   2302 		break;
   2303 	}
   2304 	mii_mediachg(mii);
   2305 
   2306 	if (sc->sk_type == SK_GENESIS) {
   2307 		/* Configure MAC FIFOs */
   2308 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
   2309 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
   2310 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
   2311 
   2312 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
   2313 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
   2314 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
   2315 	}
   2316 
   2317 	/* Configure transmit arbiter(s) */
   2318 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
   2319 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
   2320 
   2321 	/* Configure RAMbuffers */
   2322 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
   2323 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
   2324 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
   2325 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
   2326 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
   2327 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
   2328 
   2329 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
   2330 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
   2331 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
   2332 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
   2333 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
   2334 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
   2335 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
   2336 
   2337 	/* Configure BMUs */
   2338 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
   2339 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
   2340 	    SK_RX_RING_ADDR(sc_if, 0));
   2341 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
   2342 
   2343 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
   2344 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
   2345             SK_TX_RING_ADDR(sc_if, 0));
   2346 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
   2347 
   2348 	/* Init descriptors */
   2349 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
   2350 		printf("%s: initialization failed: no "
   2351 		    "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
   2352 		sk_stop(ifp,0);
   2353 		splx(s);
   2354 		return(ENOBUFS);
   2355 	}
   2356 
   2357 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
   2358 		printf("%s: initialization failed: no "
   2359 		    "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
   2360 		sk_stop(ifp,0);
   2361 		splx(s);
   2362 		return(ENOBUFS);
   2363 	}
   2364 
   2365 	/* Configure interrupt handling */
   2366 	CSR_READ_4(sc, SK_ISSR);
   2367 	if (sc_if->sk_port == SK_PORT_A)
   2368 		sc->sk_intrmask |= SK_INTRS1;
   2369 	else
   2370 		sc->sk_intrmask |= SK_INTRS2;
   2371 
   2372 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
   2373 
   2374 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2375 
   2376 	/* Start BMUs. */
   2377 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
   2378 
   2379 	if (sc->sk_type == SK_GENESIS) {
   2380 		/* Enable XMACs TX and RX state machines */
   2381 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
   2382 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
   2383 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2384 	}
   2385 
   2386 	if (sc->sk_type == SK_YUKON) {
   2387 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
   2388 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
   2389 		reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
   2390 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
   2391 	}
   2392 
   2393 
   2394 	ifp->if_flags |= IFF_RUNNING;
   2395 	ifp->if_flags &= ~IFF_OACTIVE;
   2396 
   2397 	splx(s);
   2398 	return(0);
   2399 }
   2400 
   2401 void
   2402 sk_stop(struct ifnet *ifp, int disable)
   2403 {
   2404         struct sk_if_softc	*sc_if = ifp->if_softc;
   2405 	struct sk_softc		*sc = sc_if->sk_softc;
   2406 	int			i;
   2407 
   2408 	DPRINTFN(1, ("sk_stop\n"));
   2409 
   2410 	callout_stop(&sc_if->sk_tick_ch);
   2411 
   2412 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2413 		u_int32_t		val;
   2414 
   2415 		/* Put PHY back into reset. */
   2416 		val = sk_win_read_4(sc, SK_GPIO);
   2417 		if (sc_if->sk_port == SK_PORT_A) {
   2418 			val |= SK_GPIO_DIR0;
   2419 			val &= ~SK_GPIO_DAT0;
   2420 		} else {
   2421 			val |= SK_GPIO_DIR2;
   2422 			val &= ~SK_GPIO_DAT2;
   2423 		}
   2424 		sk_win_write_4(sc, SK_GPIO, val);
   2425 	}
   2426 
   2427 	/* Turn off various components of this interface. */
   2428 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2429 	switch (sc->sk_type) {
   2430 	case SK_GENESIS:
   2431 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
   2432 			      SK_TXMACCTL_XMAC_RESET);
   2433 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
   2434 		break;
   2435 	case SK_YUKON:
   2436 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
   2437 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
   2438 		break;
   2439 	}
   2440 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
   2441 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2442 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
   2443 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2444 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
   2445 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2446 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2447 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2448 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
   2449 
   2450 	/* Disable interrupts */
   2451 	if (sc_if->sk_port == SK_PORT_A)
   2452 		sc->sk_intrmask &= ~SK_INTRS1;
   2453 	else
   2454 		sc->sk_intrmask &= ~SK_INTRS2;
   2455 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2456 
   2457 	SK_XM_READ_2(sc_if, XM_ISR);
   2458 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2459 
   2460 	/* Free RX and TX mbufs still in the queues. */
   2461 	if ( disable ) {
   2462 	for (i = 0; i < SK_RX_RING_CNT; i++) {
   2463 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
   2464 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
   2465 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   2466 		}
   2467 	}
   2468 
   2469 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   2470 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
   2471 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
   2472 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   2473 		}
   2474 	}
   2475 	}
   2476 
   2477 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
   2478 }
   2479 
   2480 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
   2481 
   2482 /*
   2483 struct cfdriver skc_cd = {
   2484 	0, "skc", DV_DULL
   2485 };
   2486 */
   2487 
   2488 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
   2489 
   2490 /*
   2491 struct cfdriver sk_cd = {
   2492 	0, "sk", DV_IFNET
   2493 };
   2494 */
   2495 
   2496 #ifdef SK_DEBUG
   2497 void
   2498 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
   2499 {
   2500 #define DESC_PRINT(X)					\
   2501 	if (desc->X)					\
   2502 		printf("txdesc[%d]." #X "=%#x\n",	\
   2503 		       idx, desc->X);
   2504 
   2505 	DESC_PRINT(sk_ctl);
   2506 	DESC_PRINT(sk_next);
   2507 	DESC_PRINT(sk_data_lo);
   2508 	DESC_PRINT(sk_data_hi);
   2509 	DESC_PRINT(sk_xmac_txstat);
   2510 	DESC_PRINT(sk_rsvd0);
   2511 	DESC_PRINT(sk_csum_startval);
   2512 	DESC_PRINT(sk_csum_startpos);
   2513 	DESC_PRINT(sk_csum_writepos);
   2514 	DESC_PRINT(sk_rsvd1);
   2515 #undef PRINT
   2516 }
   2517 
   2518 void
   2519 sk_dump_bytes(const char *data, int len)
   2520 {
   2521 	int c, i, j;
   2522 
   2523 	for (i = 0; i < len; i += 16) {
   2524 		printf("%08x  ", i);
   2525 		c = len - i;
   2526 		if (c > 16) c = 16;
   2527 
   2528 		for (j = 0; j < c; j++) {
   2529 			printf("%02x ", data[i + j] & 0xff);
   2530 			if ((j & 0xf) == 7 && j > 0)
   2531 				printf(" ");
   2532 		}
   2533 
   2534 		for (; j < 16; j++)
   2535 			printf("   ");
   2536 		printf("  ");
   2537 
   2538 		for (j = 0; j < c; j++) {
   2539 			int ch = data[i + j] & 0xff;
   2540 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
   2541 		}
   2542 
   2543 		printf("\n");
   2544 
   2545 		if (c < 16)
   2546 			break;
   2547 	}
   2548 }
   2549 
   2550 void
   2551 sk_dump_mbuf(struct mbuf *m)
   2552 {
   2553 	int count = m->m_pkthdr.len;
   2554 
   2555 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
   2556 
   2557 	while (count > 0 && m) {
   2558 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
   2559 		       m, m->m_data, m->m_len);
   2560 		sk_dump_bytes(mtod(m, char *), m->m_len);
   2561 
   2562 		count -= m->m_len;
   2563 		m = m->m_next;
   2564 	}
   2565 }
   2566 #endif
   2567