Home | History | Annotate | Line # | Download | only in pci
if_sk.c revision 1.100
      1 /*	$NetBSD: if_sk.c,v 1.100 2019/06/03 15:49:04 msaitoh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
     30 
     31 /*
     32  * Copyright (c) 1997, 1998, 1999, 2000
     33  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *	This product includes software developed by Bill Paul.
     46  * 4. Neither the name of the author nor the names of any co-contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     60  * THE POSSIBILITY OF SUCH DAMAGE.
     61  *
     62  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
     63  */
     64 
     65 /*
     66  * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
     67  *
     68  * Permission to use, copy, modify, and distribute this software for any
     69  * purpose with or without fee is hereby granted, provided that the above
     70  * copyright notice and this permission notice appear in all copies.
     71  *
     72  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     73  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     74  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     75  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     76  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     77  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     78  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     79  */
     80 
     81 /*
     82  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
     83  * the SK-984x series adapters, both single port and dual port.
     84  * References:
     85  *	The XaQti XMAC II datasheet,
     86  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     87  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
     88  *
     89  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
     90  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
     91  * convenience to others until Vitesse corrects this problem:
     92  *
     93  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     94  *
     95  * Written by Bill Paul <wpaul (at) ee.columbia.edu>
     96  * Department of Electrical Engineering
     97  * Columbia University, New York City
     98  */
     99 
    100 /*
    101  * The SysKonnect gigabit ethernet adapters consist of two main
    102  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
    103  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
    104  * components and a PHY while the GEnesis controller provides a PCI
    105  * interface with DMA support. Each card may have between 512K and
    106  * 2MB of SRAM on board depending on the configuration.
    107  *
    108  * The SysKonnect GEnesis controller can have either one or two XMAC
    109  * chips connected to it, allowing single or dual port NIC configurations.
    110  * SysKonnect has the distinction of being the only vendor on the market
    111  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
    112  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
    113  * XMAC registers. This driver takes advantage of these features to allow
    114  * both XMACs to operate as independent interfaces.
    115  */
    116 
    117 #include <sys/cdefs.h>
    118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.100 2019/06/03 15:49:04 msaitoh Exp $");
    119 
    120 #include <sys/param.h>
    121 #include <sys/systm.h>
    122 #include <sys/sockio.h>
    123 #include <sys/mbuf.h>
    124 #include <sys/malloc.h>
    125 #include <sys/mutex.h>
    126 #include <sys/kernel.h>
    127 #include <sys/socket.h>
    128 #include <sys/device.h>
    129 #include <sys/queue.h>
    130 #include <sys/callout.h>
    131 #include <sys/sysctl.h>
    132 #include <sys/endian.h>
    133 
    134 #include <net/if.h>
    135 #include <net/if_dl.h>
    136 #include <net/if_types.h>
    137 
    138 #include <net/if_media.h>
    139 
    140 #include <net/bpf.h>
    141 #include <sys/rndsource.h>
    142 
    143 #include <dev/mii/mii.h>
    144 #include <dev/mii/miivar.h>
    145 #include <dev/mii/brgphyreg.h>
    146 
    147 #include <dev/pci/pcireg.h>
    148 #include <dev/pci/pcivar.h>
    149 #include <dev/pci/pcidevs.h>
    150 
    151 /* #define SK_USEIOSPACE */
    152 
    153 #include <dev/pci/if_skreg.h>
    154 #include <dev/pci/if_skvar.h>
    155 
    156 int skc_probe(device_t, cfdata_t, void *);
    157 void skc_attach(device_t, device_t, void *);
    158 int sk_probe(device_t, cfdata_t, void *);
    159 void sk_attach(device_t, device_t, void *);
    160 int skcprint(void *, const char *);
    161 int sk_intr(void *);
    162 void sk_intr_bcom(struct sk_if_softc *);
    163 void sk_intr_xmac(struct sk_if_softc *);
    164 void sk_intr_yukon(struct sk_if_softc *);
    165 void sk_rxeof(struct sk_if_softc *);
    166 void sk_txeof(struct sk_if_softc *);
    167 int sk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
    168 void sk_start(struct ifnet *);
    169 int sk_ioctl(struct ifnet *, u_long, void *);
    170 int sk_init(struct ifnet *);
    171 void sk_unreset_xmac(struct sk_if_softc *);
    172 void sk_init_xmac(struct sk_if_softc *);
    173 void sk_unreset_yukon(struct sk_if_softc *);
    174 void sk_init_yukon(struct sk_if_softc *);
    175 void sk_stop(struct ifnet *, int);
    176 void sk_watchdog(struct ifnet *);
    177 void sk_shutdown(void *);
    178 int sk_ifmedia_upd(struct ifnet *);
    179 void sk_reset(struct sk_softc *);
    180 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
    181 int sk_alloc_jumbo_mem(struct sk_if_softc *);
    182 void sk_free_jumbo_mem(struct sk_if_softc *);
    183 void *sk_jalloc(struct sk_if_softc *);
    184 void sk_jfree(struct mbuf *, void *, size_t, void *);
    185 int sk_init_rx_ring(struct sk_if_softc *);
    186 int sk_init_tx_ring(struct sk_if_softc *);
    187 uint8_t sk_vpd_readbyte(struct sk_softc *, int);
    188 void sk_vpd_read_res(struct sk_softc *,
    189 					struct vpd_res *, int);
    190 void sk_vpd_read(struct sk_softc *);
    191 
    192 void sk_update_int_mod(struct sk_softc *);
    193 
    194 int sk_xmac_miibus_readreg(device_t, int, int, uint16_t *);
    195 int sk_xmac_miibus_writereg(device_t, int, int, uint16_t);
    196 void sk_xmac_miibus_statchg(struct ifnet *);
    197 
    198 int sk_marv_miibus_readreg(device_t, int, int, uint16_t *);
    199 int sk_marv_miibus_writereg(device_t, int, int, uint16_t);
    200 void sk_marv_miibus_statchg(struct ifnet *);
    201 
    202 uint32_t sk_xmac_hash(void *);
    203 uint32_t sk_yukon_hash(void *);
    204 void sk_setfilt(struct sk_if_softc *, void *, int);
    205 void sk_setmulti(struct sk_if_softc *);
    206 void sk_tick(void *);
    207 
    208 static bool skc_suspend(device_t, const pmf_qual_t *);
    209 static bool skc_resume(device_t, const pmf_qual_t *);
    210 static bool sk_resume(device_t dv, const pmf_qual_t *);
    211 
    212 /* #define SK_DEBUG 2 */
    213 #ifdef SK_DEBUG
    214 #define DPRINTF(x)	if (skdebug) printf x
    215 #define DPRINTFN(n, x)	if (skdebug >= (n)) printf x
    216 int	skdebug = SK_DEBUG;
    217 
    218 void sk_dump_txdesc(struct sk_tx_desc *, int);
    219 void sk_dump_mbuf(struct mbuf *);
    220 void sk_dump_bytes(const char *, int);
    221 #else
    222 #define DPRINTF(x)
    223 #define DPRINTFN(n, x)
    224 #endif
    225 
    226 static int sk_sysctl_handler(SYSCTLFN_PROTO);
    227 static int sk_root_num;
    228 
    229 /* supported device vendors */
    230 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
    231 static const struct sk_product {
    232 	pci_vendor_id_t		sk_vendor;
    233 	pci_product_id_t	sk_product;
    234 } sk_products[] = {
    235 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
    236 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
    237 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
    238 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
    239 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
    240 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
    241 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
    242 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
    243 	{ 0, 0, }
    244 };
    245 
    246 #define SK_LINKSYS_EG1032_SUBID	0x00151737
    247 
    248 static inline uint32_t
    249 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
    250 {
    251 #ifdef SK_USEIOSPACE
    252 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    253 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
    254 #else
    255 	return CSR_READ_4(sc, reg);
    256 #endif
    257 }
    258 
    259 static inline uint16_t
    260 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
    261 {
    262 #ifdef SK_USEIOSPACE
    263 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    264 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
    265 #else
    266 	return CSR_READ_2(sc, reg);
    267 #endif
    268 }
    269 
    270 static inline uint8_t
    271 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
    272 {
    273 #ifdef SK_USEIOSPACE
    274 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    275 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
    276 #else
    277 	return CSR_READ_1(sc, reg);
    278 #endif
    279 }
    280 
    281 static inline void
    282 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
    283 {
    284 #ifdef SK_USEIOSPACE
    285 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    286 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
    287 #else
    288 	CSR_WRITE_4(sc, reg, x);
    289 #endif
    290 }
    291 
    292 static inline void
    293 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
    294 {
    295 #ifdef SK_USEIOSPACE
    296 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    297 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
    298 #else
    299 	CSR_WRITE_2(sc, reg, x);
    300 #endif
    301 }
    302 
    303 static inline void
    304 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
    305 {
    306 #ifdef SK_USEIOSPACE
    307 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    308 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
    309 #else
    310 	CSR_WRITE_1(sc, reg, x);
    311 #endif
    312 }
    313 
    314 /*
    315  * The VPD EEPROM contains Vital Product Data, as suggested in
    316  * the PCI 2.1 specification. The VPD data is separared into areas
    317  * denoted by resource IDs. The SysKonnect VPD contains an ID string
    318  * resource (the name of the adapter), a read-only area resource
    319  * containing various key/data fields and a read/write area which
    320  * can be used to store asset management information or log messages.
    321  * We read the ID string and read-only into buffers attached to
    322  * the controller softc structure for later use. At the moment,
    323  * we only use the ID string during sk_attach().
    324  */
    325 uint8_t
    326 sk_vpd_readbyte(struct sk_softc *sc, int addr)
    327 {
    328 	int			i;
    329 
    330 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
    331 	for (i = 0; i < SK_TIMEOUT; i++) {
    332 		DELAY(1);
    333 		if (sk_win_read_2(sc,
    334 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
    335 			break;
    336 	}
    337 
    338 	if (i == SK_TIMEOUT)
    339 		return 0;
    340 
    341 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
    342 }
    343 
    344 void
    345 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
    346 {
    347 	int			i;
    348 	uint8_t		*ptr;
    349 
    350 	ptr = (uint8_t *)res;
    351 	for (i = 0; i < sizeof(struct vpd_res); i++)
    352 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
    353 }
    354 
    355 void
    356 sk_vpd_read(struct sk_softc *sc)
    357 {
    358 	int			pos = 0, i;
    359 	struct vpd_res		res;
    360 
    361 	if (sc->sk_vpd_prodname != NULL)
    362 		free(sc->sk_vpd_prodname, M_DEVBUF);
    363 	if (sc->sk_vpd_readonly != NULL)
    364 		free(sc->sk_vpd_readonly, M_DEVBUF);
    365 	sc->sk_vpd_prodname = NULL;
    366 	sc->sk_vpd_readonly = NULL;
    367 
    368 	sk_vpd_read_res(sc, &res, pos);
    369 
    370 	if (res.vr_id != VPD_RES_ID) {
    371 		aprint_error_dev(sc->sk_dev,
    372 		    "bad VPD resource id: expected %x got %x\n",
    373 		    VPD_RES_ID, res.vr_id);
    374 		return;
    375 	}
    376 
    377 	pos += sizeof(res);
    378 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    379 	if (sc->sk_vpd_prodname == NULL)
    380 		panic("sk_vpd_read");
    381 	for (i = 0; i < res.vr_len; i++)
    382 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
    383 	sc->sk_vpd_prodname[i] = '\0';
    384 	pos += i;
    385 
    386 	sk_vpd_read_res(sc, &res, pos);
    387 
    388 	if (res.vr_id != VPD_RES_READ) {
    389 		aprint_error_dev(sc->sk_dev,
    390 		    "bad VPD resource id: expected %x got %x\n",
    391 		    VPD_RES_READ, res.vr_id);
    392 		return;
    393 	}
    394 
    395 	pos += sizeof(res);
    396 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    397 	if (sc->sk_vpd_readonly == NULL)
    398 		panic("sk_vpd_read");
    399 	for (i = 0; i < res.vr_len ; i++)
    400 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
    401 }
    402 
    403 int
    404 sk_xmac_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
    405 {
    406 	struct sk_if_softc *sc_if = device_private(dev);
    407 	int i;
    408 
    409 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
    410 
    411 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
    412 		return -1;
    413 
    414 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    415 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
    416 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    417 		for (i = 0; i < SK_TIMEOUT; i++) {
    418 			DELAY(1);
    419 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
    420 			    XM_MMUCMD_PHYDATARDY)
    421 				break;
    422 		}
    423 
    424 		if (i == SK_TIMEOUT) {
    425 			aprint_error_dev(sc_if->sk_dev,
    426 			    "phy failed to come ready\n");
    427 			return ETIMEDOUT;
    428 		}
    429 	}
    430 	DELAY(1);
    431 	*val = SK_XM_READ_2(sc_if, XM_PHY_DATA);
    432 	return 0;
    433 }
    434 
    435 int
    436 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
    437 {
    438 	struct sk_if_softc *sc_if = device_private(dev);
    439 	int i;
    440 
    441 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
    442 
    443 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    444 	for (i = 0; i < SK_TIMEOUT; i++) {
    445 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    446 			break;
    447 	}
    448 
    449 	if (i == SK_TIMEOUT) {
    450 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
    451 		return ETIMEDOUT;
    452 	}
    453 
    454 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
    455 	for (i = 0; i < SK_TIMEOUT; i++) {
    456 		DELAY(1);
    457 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    458 			break;
    459 	}
    460 
    461 	if (i == SK_TIMEOUT) {
    462 		aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
    463 		return ETIMEDOUT;
    464 	}
    465 
    466 	return 0;
    467 }
    468 
    469 void
    470 sk_xmac_miibus_statchg(struct ifnet *ifp)
    471 {
    472 	struct sk_if_softc *sc_if = ifp->if_softc;
    473 	struct mii_data *mii = &sc_if->sk_mii;
    474 
    475 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
    476 
    477 	/*
    478 	 * If this is a GMII PHY, manually set the XMAC's
    479 	 * duplex mode accordingly.
    480 	 */
    481 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    482 		if ((mii->mii_media_active & IFM_FDX) != 0)
    483 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    484 		else
    485 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    486 	}
    487 }
    488 
    489 int
    490 sk_marv_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
    491 {
    492 	struct sk_if_softc *sc_if = device_private(dev);
    493 	uint16_t data;
    494 	int i;
    495 
    496 	if (phy != 0 ||
    497 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
    498 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
    499 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
    500 			     phy, reg));
    501 		return -1;
    502 	}
    503 
    504 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    505 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
    506 
    507 	for (i = 0; i < SK_TIMEOUT; i++) {
    508 		DELAY(1);
    509 		data = SK_YU_READ_2(sc_if, YUKON_SMICR);
    510 		if (data & YU_SMICR_READ_VALID)
    511 			break;
    512 	}
    513 
    514 	if (i == SK_TIMEOUT) {
    515 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
    516 		return ETIMEDOUT;
    517 	}
    518 
    519 	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
    520 		     SK_TIMEOUT));
    521 
    522 	*val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
    523 
    524 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
    525 		     phy, reg, *val));
    526 
    527 	return 0;
    528 }
    529 
    530 int
    531 sk_marv_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
    532 {
    533 	struct sk_if_softc *sc_if = device_private(dev);
    534 	int i;
    535 
    536 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#hx\n",
    537 		     phy, reg, val));
    538 
    539 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
    540 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    541 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
    542 
    543 	for (i = 0; i < SK_TIMEOUT; i++) {
    544 		DELAY(1);
    545 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
    546 			break;
    547 	}
    548 
    549 	if (i == SK_TIMEOUT) {
    550 		printf("%s: phy write timed out\n",
    551 		    device_xname(sc_if->sk_dev));
    552 		return ETIMEDOUT;
    553 	}
    554 
    555 	return 0;
    556 }
    557 
    558 void
    559 sk_marv_miibus_statchg(struct ifnet *ifp)
    560 {
    561 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
    562 		     SK_YU_READ_2(((struct sk_if_softc *)ifp->if_softc),
    563 		     YUKON_GPCR)));
    564 }
    565 
    566 uint32_t
    567 sk_xmac_hash(void *addr)
    568 {
    569 	uint32_t		crc;
    570 
    571 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
    572 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
    573 	DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
    574 	return crc;
    575 }
    576 
    577 uint32_t
    578 sk_yukon_hash(void *addr)
    579 {
    580 	uint32_t		crc;
    581 
    582 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
    583 	crc &= ((1 << SK_HASH_BITS) - 1);
    584 	DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
    585 	return crc;
    586 }
    587 
    588 void
    589 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
    590 {
    591 	char *addr = addrv;
    592 	int base = XM_RXFILT_ENTRY(slot);
    593 
    594 	SK_XM_WRITE_2(sc_if, base, *(uint16_t *)(&addr[0]));
    595 	SK_XM_WRITE_2(sc_if, base + 2, *(uint16_t *)(&addr[2]));
    596 	SK_XM_WRITE_2(sc_if, base + 4, *(uint16_t *)(&addr[4]));
    597 }
    598 
    599 void
    600 sk_setmulti(struct sk_if_softc *sc_if)
    601 {
    602 	struct sk_softc *sc = sc_if->sk_softc;
    603 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
    604 	uint32_t hashes[2] = { 0, 0 };
    605 	int h = 0, i;
    606 	struct ethercom *ec = &sc_if->sk_ethercom;
    607 	struct ether_multi *enm;
    608 	struct ether_multistep step;
    609 	uint8_t dummy[] = { 0, 0, 0, 0, 0, 0 };
    610 
    611 	/* First, zot all the existing filters. */
    612 	switch (sc->sk_type) {
    613 	case SK_GENESIS:
    614 		for (i = 1; i < XM_RXFILT_MAX; i++)
    615 			sk_setfilt(sc_if, (void *)&dummy, i);
    616 
    617 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
    618 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
    619 		break;
    620 	case SK_YUKON:
    621 	case SK_YUKON_LITE:
    622 	case SK_YUKON_LP:
    623 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
    624 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
    625 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
    626 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
    627 		break;
    628 	}
    629 
    630 	/* Now program new ones. */
    631 allmulti:
    632 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    633 		hashes[0] = 0xFFFFFFFF;
    634 		hashes[1] = 0xFFFFFFFF;
    635 	} else {
    636 		i = 1;
    637 		/* First find the tail of the list. */
    638 		ETHER_LOCK(ec);
    639 		ETHER_FIRST_MULTI(step, ec, enm);
    640 		while (enm != NULL) {
    641 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    642 				 ETHER_ADDR_LEN)) {
    643 				ifp->if_flags |= IFF_ALLMULTI;
    644 				ETHER_UNLOCK(ec);
    645 				goto allmulti;
    646 			}
    647 			DPRINTFN(2,("multicast address %s\n",
    648 				ether_sprintf(enm->enm_addrlo)));
    649 			/*
    650 			 * Program the first XM_RXFILT_MAX multicast groups
    651 			 * into the perfect filter. For all others,
    652 			 * use the hash table.
    653 			 */
    654 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
    655 				sk_setfilt(sc_if, enm->enm_addrlo, i);
    656 				i++;
    657 			}
    658 			else {
    659 				switch (sc->sk_type) {
    660 				case SK_GENESIS:
    661 					h = sk_xmac_hash(enm->enm_addrlo);
    662 					break;
    663 				case SK_YUKON:
    664 				case SK_YUKON_LITE:
    665 				case SK_YUKON_LP:
    666 					h = sk_yukon_hash(enm->enm_addrlo);
    667 					break;
    668 				}
    669 				if (h < 32)
    670 					hashes[0] |= (1 << h);
    671 				else
    672 					hashes[1] |= (1 << (h - 32));
    673 			}
    674 
    675 			ETHER_NEXT_MULTI(step, enm);
    676 		}
    677 		ETHER_UNLOCK(ec);
    678 	}
    679 
    680 	switch (sc->sk_type) {
    681 	case SK_GENESIS:
    682 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH |
    683 			       XM_MODE_RX_USE_PERFECT);
    684 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
    685 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
    686 		break;
    687 	case SK_YUKON:
    688 	case SK_YUKON_LITE:
    689 	case SK_YUKON_LP:
    690 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
    691 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
    692 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
    693 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
    694 		break;
    695 	}
    696 }
    697 
    698 int
    699 sk_init_rx_ring(struct sk_if_softc *sc_if)
    700 {
    701 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    702 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    703 	int			i;
    704 
    705 	memset((char *)rd->sk_rx_ring, 0,
    706 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
    707 
    708 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    709 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
    710 		if (i == (SK_RX_RING_CNT - 1)) {
    711 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
    712 			rd->sk_rx_ring[i].sk_next =
    713 				htole32(SK_RX_RING_ADDR(sc_if, 0));
    714 		} else {
    715 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
    716 			rd->sk_rx_ring[i].sk_next =
    717 				htole32(SK_RX_RING_ADDR(sc_if, i+1));
    718 		}
    719 	}
    720 
    721 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    722 		if (sk_newbuf(sc_if, i, NULL,
    723 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
    724 			aprint_error_dev(sc_if->sk_dev,
    725 			    "failed alloc of %dth mbuf\n", i);
    726 			return ENOBUFS;
    727 		}
    728 	}
    729 	sc_if->sk_cdata.sk_rx_prod = 0;
    730 	sc_if->sk_cdata.sk_rx_cons = 0;
    731 
    732 	return 0;
    733 }
    734 
    735 int
    736 sk_init_tx_ring(struct sk_if_softc *sc_if)
    737 {
    738 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    739 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    740 	int			i;
    741 
    742 	memset(sc_if->sk_rdata->sk_tx_ring, 0,
    743 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
    744 
    745 	for (i = 0; i < SK_TX_RING_CNT; i++) {
    746 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
    747 		if (i == (SK_TX_RING_CNT - 1)) {
    748 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
    749 			rd->sk_tx_ring[i].sk_next =
    750 				htole32(SK_TX_RING_ADDR(sc_if, 0));
    751 		} else {
    752 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
    753 			rd->sk_tx_ring[i].sk_next =
    754 				htole32(SK_TX_RING_ADDR(sc_if, i+1));
    755 		}
    756 	}
    757 
    758 	sc_if->sk_cdata.sk_tx_prod = 0;
    759 	sc_if->sk_cdata.sk_tx_cons = 0;
    760 	sc_if->sk_cdata.sk_tx_cnt = 0;
    761 
    762 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
    763 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    764 
    765 	return 0;
    766 }
    767 
    768 int
    769 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
    770 	  bus_dmamap_t dmamap)
    771 {
    772 	struct mbuf		*m_new = NULL;
    773 	struct sk_chain		*c;
    774 	struct sk_rx_desc	*r;
    775 
    776 	if (m == NULL) {
    777 		void *buf = NULL;
    778 
    779 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    780 		if (m_new == NULL) {
    781 			aprint_error_dev(sc_if->sk_dev,
    782 			    "no memory for rx list -- packet dropped!\n");
    783 			return ENOBUFS;
    784 		}
    785 
    786 		/* Allocate the jumbo buffer */
    787 		buf = sk_jalloc(sc_if);
    788 		if (buf == NULL) {
    789 			m_freem(m_new);
    790 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
    791 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
    792 			return ENOBUFS;
    793 		}
    794 
    795 		/* Attach the buffer to the mbuf */
    796 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    797 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
    798 
    799 	} else {
    800 		/*
    801 		 * We're re-using a previously allocated mbuf;
    802 		 * be sure to re-init pointers and lengths to
    803 		 * default values.
    804 		 */
    805 		m_new = m;
    806 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    807 		m_new->m_data = m_new->m_ext.ext_buf;
    808 	}
    809 	m_adj(m_new, ETHER_ALIGN);
    810 
    811 	c = &sc_if->sk_cdata.sk_rx_chain[i];
    812 	r = c->sk_desc;
    813 	c->sk_mbuf = m_new;
    814 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
    815 	    (((vaddr_t)m_new->m_data
    816 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
    817 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
    818 
    819 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
    820 
    821 	return 0;
    822 }
    823 
    824 /*
    825  * Memory management for jumbo frames.
    826  */
    827 
    828 int
    829 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
    830 {
    831 	struct sk_softc		*sc = sc_if->sk_softc;
    832 	char *ptr, *kva;
    833 	bus_dma_segment_t	seg;
    834 	int		i, rseg, state, error;
    835 	struct sk_jpool_entry	*entry;
    836 
    837 	state = error = 0;
    838 
    839 	/* Grab a big chunk o' storage. */
    840 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
    841 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    842 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
    843 		return ENOBUFS;
    844 	}
    845 
    846 	state = 1;
    847 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
    848 			   BUS_DMA_NOWAIT)) {
    849 		aprint_error_dev(sc->sk_dev,
    850 		    "can't map dma buffers (%d bytes)\n",
    851 		    SK_JMEM);
    852 		error = ENOBUFS;
    853 		goto out;
    854 	}
    855 
    856 	state = 2;
    857 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
    858 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
    859 		aprint_error_dev(sc->sk_dev, "can't create dma map\n");
    860 		error = ENOBUFS;
    861 		goto out;
    862 	}
    863 
    864 	state = 3;
    865 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
    866 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
    867 		aprint_error_dev(sc->sk_dev, "can't load dma map\n");
    868 		error = ENOBUFS;
    869 		goto out;
    870 	}
    871 
    872 	state = 4;
    873 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
    874 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
    875 
    876 	LIST_INIT(&sc_if->sk_jfree_listhead);
    877 	LIST_INIT(&sc_if->sk_jinuse_listhead);
    878 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
    879 
    880 	/*
    881 	 * Now divide it up into 9K pieces and save the addresses
    882 	 * in an array.
    883 	 */
    884 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
    885 	for (i = 0; i < SK_JSLOTS; i++) {
    886 		sc_if->sk_cdata.sk_jslots[i] = ptr;
    887 		ptr += SK_JLEN;
    888 		entry = malloc(sizeof(struct sk_jpool_entry),
    889 		    M_DEVBUF, M_NOWAIT);
    890 		if (entry == NULL) {
    891 			aprint_error_dev(sc->sk_dev,
    892 			    "no memory for jumbo buffer queue!\n");
    893 			error = ENOBUFS;
    894 			goto out;
    895 		}
    896 		entry->slot = i;
    897 		if (i)
    898 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
    899 				 entry, jpool_entries);
    900 		else
    901 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
    902 				 entry, jpool_entries);
    903 	}
    904 out:
    905 	if (error != 0) {
    906 		switch (state) {
    907 		case 4:
    908 			bus_dmamap_unload(sc->sc_dmatag,
    909 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    910 			/* FALLTHROUGH */
    911 		case 3:
    912 			bus_dmamap_destroy(sc->sc_dmatag,
    913 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    914 			/* FALLTHROUGH */
    915 		case 2:
    916 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
    917 			/* FALLTHROUGH */
    918 		case 1:
    919 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
    920 			break;
    921 		default:
    922 			break;
    923 		}
    924 	}
    925 
    926 	return error;
    927 }
    928 
    929 /*
    930  * Allocate a jumbo buffer.
    931  */
    932 void *
    933 sk_jalloc(struct sk_if_softc *sc_if)
    934 {
    935 	struct sk_jpool_entry	*entry;
    936 
    937 	mutex_enter(&sc_if->sk_jpool_mtx);
    938 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
    939 
    940 	if (entry == NULL) {
    941 		mutex_exit(&sc_if->sk_jpool_mtx);
    942 		return NULL;
    943 	}
    944 
    945 	LIST_REMOVE(entry, jpool_entries);
    946 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
    947 	mutex_exit(&sc_if->sk_jpool_mtx);
    948 	return sc_if->sk_cdata.sk_jslots[entry->slot];
    949 }
    950 
    951 /*
    952  * Release a jumbo buffer.
    953  */
    954 void
    955 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
    956 {
    957 	struct sk_jpool_entry *entry;
    958 	struct sk_if_softc *sc;
    959 	int i;
    960 
    961 	/* Extract the softc struct pointer. */
    962 	sc = (struct sk_if_softc *)arg;
    963 
    964 	if (sc == NULL)
    965 		panic("sk_jfree: can't find softc pointer!");
    966 
    967 	/* calculate the slot this buffer belongs to */
    968 
    969 	i = ((vaddr_t)buf
    970 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
    971 
    972 	if ((i < 0) || (i >= SK_JSLOTS))
    973 		panic("sk_jfree: asked to free buffer that we don't manage!");
    974 
    975 	mutex_enter(&sc->sk_jpool_mtx);
    976 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
    977 	if (entry == NULL)
    978 		panic("sk_jfree: buffer not in use!");
    979 	entry->slot = i;
    980 	LIST_REMOVE(entry, jpool_entries);
    981 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
    982 	mutex_exit(&sc->sk_jpool_mtx);
    983 
    984 	if (__predict_true(m != NULL))
    985 		pool_cache_put(mb_cache, m);
    986 }
    987 
    988 /*
    989  * Set media options.
    990  */
    991 int
    992 sk_ifmedia_upd(struct ifnet *ifp)
    993 {
    994 	struct sk_if_softc *sc_if = ifp->if_softc;
    995 	int rc;
    996 
    997 	(void) sk_init(ifp);
    998 	if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
    999 		return 0;
   1000 	return rc;
   1001 }
   1002 
   1003 static void
   1004 sk_promisc(struct sk_if_softc *sc_if, int on)
   1005 {
   1006 	struct sk_softc *sc = sc_if->sk_softc;
   1007 	switch (sc->sk_type) {
   1008 	case SK_GENESIS:
   1009 		if (on)
   1010 			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   1011 		else
   1012 			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   1013 		break;
   1014 	case SK_YUKON:
   1015 	case SK_YUKON_LITE:
   1016 	case SK_YUKON_LP:
   1017 		if (on)
   1018 			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
   1019 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1020 		else
   1021 			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
   1022 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1023 		break;
   1024 	default:
   1025 		aprint_error_dev(sc_if->sk_dev, "Can't set promisc for %d\n",
   1026 			sc->sk_type);
   1027 		break;
   1028 	}
   1029 }
   1030 
   1031 int
   1032 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
   1033 {
   1034 	struct sk_if_softc *sc_if = ifp->if_softc;
   1035 	int s, error = 0;
   1036 
   1037 	/* DPRINTFN(2, ("sk_ioctl\n")); */
   1038 
   1039 	s = splnet();
   1040 
   1041 	switch (command) {
   1042 
   1043 	case SIOCSIFFLAGS:
   1044 		DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
   1045 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   1046 			break;
   1047 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
   1048 		case IFF_RUNNING:
   1049 			sk_stop(ifp, 1);
   1050 			break;
   1051 		case IFF_UP:
   1052 			sk_init(ifp);
   1053 			break;
   1054 		case IFF_UP | IFF_RUNNING:
   1055 			if ((ifp->if_flags ^ sc_if->sk_if_flags) == IFF_PROMISC)			{
   1056 				sk_promisc(sc_if, ifp->if_flags & IFF_PROMISC);
   1057 				sk_setmulti(sc_if);
   1058 			} else
   1059 				sk_init(ifp);
   1060 			break;
   1061 		}
   1062 		sc_if->sk_if_flags = ifp->if_flags;
   1063 		error = 0;
   1064 		break;
   1065 
   1066 	default:
   1067 		DPRINTFN(2, ("sk_ioctl ETHER\n"));
   1068 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   1069 			break;
   1070 
   1071 		error = 0;
   1072 
   1073 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   1074 			;
   1075 		else if (ifp->if_flags & IFF_RUNNING) {
   1076 			sk_setmulti(sc_if);
   1077 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
   1078 		}
   1079 		break;
   1080 	}
   1081 
   1082 	splx(s);
   1083 	return error;
   1084 }
   1085 
   1086 void
   1087 sk_update_int_mod(struct sk_softc *sc)
   1088 {
   1089 	uint32_t imtimer_ticks;
   1090 
   1091 	/*
   1092 	 * Configure interrupt moderation. The moderation timer
   1093 	 * defers interrupts specified in the interrupt moderation
   1094 	 * timer mask based on the timeout specified in the interrupt
   1095 	 * moderation timer init register. Each bit in the timer
   1096 	 * register represents one tick, so to specify a timeout in
   1097 	 * microseconds, we have to multiply by the correct number of
   1098 	 * ticks-per-microsecond.
   1099 	 */
   1100 	switch (sc->sk_type) {
   1101 	case SK_GENESIS:
   1102 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   1103 		break;
   1104 	case SK_YUKON_EC:
   1105 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   1106 		break;
   1107 	default:
   1108 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   1109 	}
   1110 	aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
   1111 	    sc->sk_int_mod);
   1112 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
   1113 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF | SK_ISR_TX2_S_EOF |
   1114 	    SK_ISR_RX1_EOF | SK_ISR_RX2_EOF);
   1115 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
   1116 	sc->sk_int_mod_pending = 0;
   1117 }
   1118 
   1119 /*
   1120  * Lookup: Check the PCI vendor and device, and return a pointer to
   1121  * The structure if the IDs match against our list.
   1122  */
   1123 
   1124 static const struct sk_product *
   1125 sk_lookup(const struct pci_attach_args *pa)
   1126 {
   1127 	const struct sk_product *psk;
   1128 
   1129 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
   1130 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
   1131 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
   1132 			return psk;
   1133 	}
   1134 	return NULL;
   1135 }
   1136 
   1137 /*
   1138  * Probe for a SysKonnect GEnesis chip.
   1139  */
   1140 
   1141 int
   1142 skc_probe(device_t parent, cfdata_t match, void *aux)
   1143 {
   1144 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1145 	const struct sk_product *psk;
   1146 	pcireg_t subid;
   1147 
   1148 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
   1149 
   1150 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
   1151 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
   1152 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
   1153 	    subid == SK_LINKSYS_EG1032_SUBID)
   1154 		return 1;
   1155 
   1156 	if ((psk = sk_lookup(pa))) {
   1157 		return 1;
   1158 	}
   1159 	return 0;
   1160 }
   1161 
   1162 /*
   1163  * Force the GEnesis into reset, then bring it out of reset.
   1164  */
   1165 void
   1166 sk_reset(struct sk_softc *sc)
   1167 {
   1168 	DPRINTFN(2, ("sk_reset\n"));
   1169 
   1170 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
   1171 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
   1172 	if (SK_YUKON_FAMILY(sc->sk_type))
   1173 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
   1174 
   1175 	DELAY(1000);
   1176 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
   1177 	DELAY(2);
   1178 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
   1179 	if (SK_YUKON_FAMILY(sc->sk_type))
   1180 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
   1181 
   1182 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
   1183 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
   1184 		     CSR_READ_2(sc, SK_LINK_CTRL)));
   1185 
   1186 	if (sc->sk_type == SK_GENESIS) {
   1187 		/* Configure packet arbiter */
   1188 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
   1189 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1190 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1191 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1192 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1193 	}
   1194 
   1195 	/* Enable RAM interface */
   1196 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
   1197 
   1198 	sk_update_int_mod(sc);
   1199 }
   1200 
   1201 int
   1202 sk_probe(device_t parent, cfdata_t match, void *aux)
   1203 {
   1204 	struct skc_attach_args *sa = aux;
   1205 
   1206 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
   1207 		return 0;
   1208 
   1209 	return 1;
   1210 }
   1211 
   1212 /*
   1213  * Each XMAC chip is attached as a separate logical IP interface.
   1214  * Single port cards will have only one logical interface of course.
   1215  */
   1216 void
   1217 sk_attach(device_t parent, device_t self, void *aux)
   1218 {
   1219 	struct sk_if_softc *sc_if = device_private(self);
   1220 	struct mii_data *mii = &sc_if->sk_mii;
   1221 	struct sk_softc *sc = device_private(parent);
   1222 	struct skc_attach_args *sa = aux;
   1223 	struct sk_txmap_entry	*entry;
   1224 	struct ifnet *ifp;
   1225 	bus_dma_segment_t seg;
   1226 	bus_dmamap_t dmamap;
   1227 	prop_data_t data;
   1228 	void *kva;
   1229 	int i, rseg;
   1230 	int mii_flags = 0;
   1231 
   1232 	aprint_naive("\n");
   1233 
   1234 	sc_if->sk_dev = self;
   1235 	sc_if->sk_port = sa->skc_port;
   1236 	sc_if->sk_softc = sc;
   1237 	sc->sk_if[sa->skc_port] = sc_if;
   1238 
   1239 	if (sa->skc_port == SK_PORT_A)
   1240 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
   1241 	if (sa->skc_port == SK_PORT_B)
   1242 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
   1243 
   1244 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
   1245 
   1246 	/*
   1247 	 * Get station address for this interface. Note that
   1248 	 * dual port cards actually come with three station
   1249 	 * addresses: one for each port, plus an extra. The
   1250 	 * extra one is used by the SysKonnect driver software
   1251 	 * as a 'virtual' station address for when both ports
   1252 	 * are operating in failover mode. Currently we don't
   1253 	 * use this extra address.
   1254 	 */
   1255 	data = prop_dictionary_get(device_properties(self), "mac-address");
   1256 	if (data != NULL) {
   1257 		/*
   1258 		 * Try to get the station address from device properties
   1259 		 * first, in case the ROM is missing.
   1260 		 */
   1261 		KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
   1262 		KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
   1263 		memcpy(sc_if->sk_enaddr, prop_data_data_nocopy(data),
   1264 		    ETHER_ADDR_LEN);
   1265 	} else
   1266 		for (i = 0; i < ETHER_ADDR_LEN; i++)
   1267 			sc_if->sk_enaddr[i] = sk_win_read_1(sc,
   1268 			    SK_MAC0_0 + (sa->skc_port * 8) + i);
   1269 
   1270 	aprint_normal(": Ethernet address %s\n",
   1271 	    ether_sprintf(sc_if->sk_enaddr));
   1272 
   1273 	/*
   1274 	 * Set up RAM buffer addresses. The NIC will have a certain
   1275 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
   1276 	 * need to divide this up a) between the transmitter and
   1277 	 * receiver and b) between the two XMACs, if this is a
   1278 	 * dual port NIC. Our algorithm is to divide up the memory
   1279 	 * evenly so that everyone gets a fair share.
   1280 	 */
   1281 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
   1282 		uint32_t		chunk, val;
   1283 
   1284 		chunk = sc->sk_ramsize / 2;
   1285 		val = sc->sk_rboff / sizeof(uint64_t);
   1286 		sc_if->sk_rx_ramstart = val;
   1287 		val += (chunk / sizeof(uint64_t));
   1288 		sc_if->sk_rx_ramend = val - 1;
   1289 		sc_if->sk_tx_ramstart = val;
   1290 		val += (chunk / sizeof(uint64_t));
   1291 		sc_if->sk_tx_ramend = val - 1;
   1292 	} else {
   1293 		uint32_t		chunk, val;
   1294 
   1295 		chunk = sc->sk_ramsize / 4;
   1296 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
   1297 		    sizeof(uint64_t);
   1298 		sc_if->sk_rx_ramstart = val;
   1299 		val += (chunk / sizeof(uint64_t));
   1300 		sc_if->sk_rx_ramend = val - 1;
   1301 		sc_if->sk_tx_ramstart = val;
   1302 		val += (chunk / sizeof(uint64_t));
   1303 		sc_if->sk_tx_ramend = val - 1;
   1304 	}
   1305 
   1306 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
   1307 		     "		 tx_ramstart=%#x tx_ramend=%#x\n",
   1308 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
   1309 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
   1310 
   1311 	/* Read and save PHY type and set PHY address */
   1312 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
   1313 	switch (sc_if->sk_phytype) {
   1314 	case SK_PHYTYPE_XMAC:
   1315 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
   1316 		break;
   1317 	case SK_PHYTYPE_BCOM:
   1318 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
   1319 		break;
   1320 	case SK_PHYTYPE_MARV_COPPER:
   1321 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
   1322 		break;
   1323 	default:
   1324 		aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
   1325 		    sc_if->sk_phytype);
   1326 		return;
   1327 	}
   1328 
   1329 	/* Allocate the descriptor queues. */
   1330 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
   1331 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1332 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
   1333 		goto fail;
   1334 	}
   1335 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
   1336 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
   1337 		aprint_error_dev(sc_if->sk_dev,
   1338 		    "can't map dma buffers (%lu bytes)\n",
   1339 		    (u_long) sizeof(struct sk_ring_data));
   1340 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1341 		goto fail;
   1342 	}
   1343 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
   1344 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
   1345 	    &sc_if->sk_ring_map)) {
   1346 		aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
   1347 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1348 		    sizeof(struct sk_ring_data));
   1349 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1350 		goto fail;
   1351 	}
   1352 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
   1353 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
   1354 		aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
   1355 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1356 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1357 		    sizeof(struct sk_ring_data));
   1358 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1359 		goto fail;
   1360 	}
   1361 
   1362 	for (i = 0; i < SK_RX_RING_CNT; i++)
   1363 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   1364 
   1365 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
   1366 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   1367 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   1368 
   1369 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
   1370 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
   1371 			aprint_error_dev(sc_if->sk_dev,
   1372 			    "Can't create TX dmamap\n");
   1373 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1374 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1375 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1376 			    sizeof(struct sk_ring_data));
   1377 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1378 			goto fail;
   1379 		}
   1380 
   1381 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
   1382 		if (!entry) {
   1383 			aprint_error_dev(sc_if->sk_dev,
   1384 			    "Can't alloc txmap entry\n");
   1385 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
   1386 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1387 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1388 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1389 			    sizeof(struct sk_ring_data));
   1390 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1391 			goto fail;
   1392 		}
   1393 		entry->dmamap = dmamap;
   1394 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
   1395 	}
   1396 
   1397 	sc_if->sk_rdata = (struct sk_ring_data *)kva;
   1398 	memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
   1399 
   1400 	ifp = &sc_if->sk_ethercom.ec_if;
   1401 	/* Try to allocate memory for jumbo buffers. */
   1402 	if (sk_alloc_jumbo_mem(sc_if)) {
   1403 		aprint_error("%s: jumbo buffer allocation failed\n",
   1404 		    ifp->if_xname);
   1405 		goto fail;
   1406 	}
   1407 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
   1408 		| ETHERCAP_JUMBO_MTU;
   1409 
   1410 	ifp->if_softc = sc_if;
   1411 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1412 	ifp->if_ioctl = sk_ioctl;
   1413 	ifp->if_start = sk_start;
   1414 	ifp->if_stop = sk_stop;
   1415 	ifp->if_init = sk_init;
   1416 	ifp->if_watchdog = sk_watchdog;
   1417 	ifp->if_capabilities = 0;
   1418 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
   1419 	IFQ_SET_READY(&ifp->if_snd);
   1420 	strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
   1421 
   1422 	/*
   1423 	 * Do miibus setup.
   1424 	 */
   1425 	switch (sc->sk_type) {
   1426 	case SK_GENESIS:
   1427 		sk_unreset_xmac(sc_if);
   1428 		break;
   1429 	case SK_YUKON:
   1430 	case SK_YUKON_LITE:
   1431 	case SK_YUKON_LP:
   1432 		sk_unreset_yukon(sc_if);
   1433 		break;
   1434 	default:
   1435 		aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
   1436 			sc->sk_type);
   1437 		goto fail;
   1438 	}
   1439 
   1440 	DPRINTFN(2, ("sk_attach: 1\n"));
   1441 
   1442 	mii->mii_ifp = ifp;
   1443 	switch (sc->sk_type) {
   1444 	case SK_GENESIS:
   1445 		mii->mii_readreg = sk_xmac_miibus_readreg;
   1446 		mii->mii_writereg = sk_xmac_miibus_writereg;
   1447 		mii->mii_statchg = sk_xmac_miibus_statchg;
   1448 		break;
   1449 	case SK_YUKON:
   1450 	case SK_YUKON_LITE:
   1451 	case SK_YUKON_LP:
   1452 		mii->mii_readreg = sk_marv_miibus_readreg;
   1453 		mii->mii_writereg = sk_marv_miibus_writereg;
   1454 		mii->mii_statchg = sk_marv_miibus_statchg;
   1455 		mii_flags = MIIF_DOPAUSE;
   1456 		break;
   1457 	}
   1458 
   1459 	sc_if->sk_ethercom.ec_mii = mii;
   1460 	ifmedia_init(&mii->mii_media, 0, sk_ifmedia_upd, ether_mediastatus);
   1461 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
   1462 	    MII_OFFSET_ANY, mii_flags);
   1463 	if (LIST_EMPTY(&mii->mii_phys)) {
   1464 		aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
   1465 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
   1466 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
   1467 	} else
   1468 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
   1469 
   1470 	callout_init(&sc_if->sk_tick_ch, 0);
   1471 	callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   1472 
   1473 	DPRINTFN(2, ("sk_attach: 1\n"));
   1474 
   1475 	/*
   1476 	 * Call MI attach routines.
   1477 	 */
   1478 	if_attach(ifp);
   1479 	if_deferred_start_init(ifp, NULL);
   1480 
   1481 	ether_ifattach(ifp, sc_if->sk_enaddr);
   1482 
   1483 	if (sc->rnd_attached++ == 0) {
   1484 		rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
   1485 		    RND_TYPE_NET, RND_FLAG_DEFAULT);
   1486 	}
   1487 
   1488 	if (pmf_device_register(self, NULL, sk_resume))
   1489 		pmf_class_network_register(self, ifp);
   1490 	else
   1491 		aprint_error_dev(self, "couldn't establish power handler\n");
   1492 
   1493 	DPRINTFN(2, ("sk_attach: end\n"));
   1494 
   1495 	return;
   1496 
   1497 fail:
   1498 	sc->sk_if[sa->skc_port] = NULL;
   1499 }
   1500 
   1501 int
   1502 skcprint(void *aux, const char *pnp)
   1503 {
   1504 	struct skc_attach_args *sa = aux;
   1505 
   1506 	if (pnp)
   1507 		aprint_normal("sk port %c at %s",
   1508 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
   1509 	else
   1510 		aprint_normal(" port %c",
   1511 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
   1512 	return UNCONF;
   1513 }
   1514 
   1515 /*
   1516  * Attach the interface. Allocate softc structures, do ifmedia
   1517  * setup and ethernet/BPF attach.
   1518  */
   1519 void
   1520 skc_attach(device_t parent, device_t self, void *aux)
   1521 {
   1522 	struct sk_softc *sc = device_private(self);
   1523 	struct pci_attach_args *pa = aux;
   1524 	struct skc_attach_args skca;
   1525 	pci_chipset_tag_t pc = pa->pa_pc;
   1526 #ifndef SK_USEIOSPACE
   1527 	pcireg_t memtype;
   1528 #endif
   1529 	pci_intr_handle_t ih;
   1530 	const char *intrstr = NULL;
   1531 	bus_addr_t iobase;
   1532 	bus_size_t iosize;
   1533 	int rc, sk_nodenum;
   1534 	uint32_t command;
   1535 	const char *revstr;
   1536 	const struct sysctlnode *node;
   1537 	char intrbuf[PCI_INTRSTR_LEN];
   1538 
   1539 	sc->sk_dev = self;
   1540 	aprint_naive("\n");
   1541 
   1542 	DPRINTFN(2, ("begin skc_attach\n"));
   1543 
   1544 	/*
   1545 	 * Handle power management nonsense.
   1546 	 */
   1547 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
   1548 
   1549 	if (command == 0x01) {
   1550 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
   1551 		if (command & SK_PSTATE_MASK) {
   1552 			uint32_t		xiobase, membase, irq;
   1553 
   1554 			/* Save important PCI config data. */
   1555 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
   1556 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
   1557 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
   1558 
   1559 			/* Reset the power state. */
   1560 			aprint_normal_dev(sc->sk_dev,
   1561 			    "chip is in D%d power mode -- setting to D0\n",
   1562 			    command & SK_PSTATE_MASK);
   1563 			command &= 0xFFFFFFFC;
   1564 			pci_conf_write(pc, pa->pa_tag,
   1565 			    SK_PCI_PWRMGMTCTRL, command);
   1566 
   1567 			/* Restore PCI config data. */
   1568 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
   1569 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
   1570 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
   1571 		}
   1572 	}
   1573 
   1574 	/*
   1575 	 * The firmware might have configured the interface to revert the
   1576 	 * byte order in all descriptors. Make that undone.
   1577 	 */
   1578 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_OURREG2);
   1579 	if (command & SK_REG2_REV_DESC)
   1580 		pci_conf_write(pc, pa->pa_tag, SK_PCI_OURREG2,
   1581 		    command & ~SK_REG2_REV_DESC);
   1582 
   1583 	/*
   1584 	 * Map control/status registers.
   1585 	 */
   1586 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1587 	command |= PCI_COMMAND_IO_ENABLE |
   1588 	    PCI_COMMAND_MEM_ENABLE |
   1589 	    PCI_COMMAND_MASTER_ENABLE;
   1590 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1591 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1592 
   1593 #ifdef SK_USEIOSPACE
   1594 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
   1595 		aprint_error(": failed to enable I/O ports!\n");
   1596 		return;
   1597 	}
   1598 	/*
   1599 	 * Map control/status registers.
   1600 	 */
   1601 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
   1602 			&sc->sk_btag, &sc->sk_bhandle,
   1603 			&iobase, &iosize)) {
   1604 		aprint_error(": can't find i/o space\n");
   1605 		return;
   1606 	}
   1607 #else
   1608 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1609 		aprint_error(": failed to enable memory mapping!\n");
   1610 		return;
   1611 	}
   1612 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
   1613 	switch (memtype) {
   1614 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1615 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1616 		if (pci_mapreg_map(pa, SK_PCI_LOMEM,
   1617 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
   1618 				   &iobase, &iosize) == 0)
   1619 			break;
   1620 		/* FALLTHROUGH */
   1621 	default:
   1622 		aprint_error_dev(sc->sk_dev, "can't find mem space\n");
   1623 		return;
   1624 	}
   1625 
   1626 	DPRINTFN(2, ("skc_attach: iobase=%#" PRIxPADDR ", iosize=%zx\n",
   1627 	    iobase, iosize));
   1628 #endif
   1629 	sc->sc_dmatag = pa->pa_dmat;
   1630 
   1631 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
   1632 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
   1633 
   1634 	/* bail out here if chip is not recognized */
   1635 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
   1636 		aprint_error_dev(sc->sk_dev, "unknown chip type\n");
   1637 		goto fail;
   1638 	}
   1639 	if (SK_IS_YUKON2(sc)) {
   1640 		aprint_error_dev(sc->sk_dev,
   1641 		    "Does not support Yukon2--try msk(4).\n");
   1642 		goto fail;
   1643 	}
   1644 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
   1645 
   1646 	/* Allocate interrupt */
   1647 	if (pci_intr_map(pa, &ih)) {
   1648 		aprint_error(": couldn't map interrupt\n");
   1649 		goto fail;
   1650 	}
   1651 
   1652 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
   1653 	sc->sk_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, sk_intr,
   1654 	    sc, device_xname(sc->sk_dev));
   1655 	if (sc->sk_intrhand == NULL) {
   1656 		aprint_error(": couldn't establish interrupt");
   1657 		if (intrstr != NULL)
   1658 			aprint_error(" at %s", intrstr);
   1659 		aprint_error("\n");
   1660 		goto fail;
   1661 	}
   1662 	aprint_normal(": %s\n", intrstr);
   1663 
   1664 	/* Reset the adapter. */
   1665 	sk_reset(sc);
   1666 
   1667 	/* Read and save vital product data from EEPROM. */
   1668 	sk_vpd_read(sc);
   1669 
   1670 	if (sc->sk_type == SK_GENESIS) {
   1671 		uint8_t val = sk_win_read_1(sc, SK_EPROM0);
   1672 		/* Read and save RAM size and RAMbuffer offset */
   1673 		switch (val) {
   1674 		case SK_RAMSIZE_512K_64:
   1675 			sc->sk_ramsize = 0x80000;
   1676 			sc->sk_rboff = SK_RBOFF_0;
   1677 			break;
   1678 		case SK_RAMSIZE_1024K_64:
   1679 			sc->sk_ramsize = 0x100000;
   1680 			sc->sk_rboff = SK_RBOFF_80000;
   1681 			break;
   1682 		case SK_RAMSIZE_1024K_128:
   1683 			sc->sk_ramsize = 0x100000;
   1684 			sc->sk_rboff = SK_RBOFF_0;
   1685 			break;
   1686 		case SK_RAMSIZE_2048K_128:
   1687 			sc->sk_ramsize = 0x200000;
   1688 			sc->sk_rboff = SK_RBOFF_0;
   1689 			break;
   1690 		default:
   1691 			aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
   1692 			       val);
   1693 			goto fail_1;
   1694 			break;
   1695 		}
   1696 
   1697 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
   1698 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
   1699 			     sc->sk_rboff));
   1700 	} else {
   1701 		uint8_t val = sk_win_read_1(sc, SK_EPROM0);
   1702 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
   1703 		sc->sk_rboff = SK_RBOFF_0;
   1704 
   1705 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
   1706 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
   1707 			     sc->sk_rboff));
   1708 	}
   1709 
   1710 	/* Read and save physical media type */
   1711 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
   1712 	case SK_PMD_1000BASESX:
   1713 		sc->sk_pmd = IFM_1000_SX;
   1714 		break;
   1715 	case SK_PMD_1000BASELX:
   1716 		sc->sk_pmd = IFM_1000_LX;
   1717 		break;
   1718 	case SK_PMD_1000BASECX:
   1719 		sc->sk_pmd = IFM_1000_CX;
   1720 		break;
   1721 	case SK_PMD_1000BASETX:
   1722 	case SK_PMD_1000BASETX_ALT:
   1723 		sc->sk_pmd = IFM_1000_T;
   1724 		break;
   1725 	default:
   1726 		aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
   1727 		    sk_win_read_1(sc, SK_PMDTYPE));
   1728 		goto fail_1;
   1729 	}
   1730 
   1731 	/* determine whether to name it with vpd or just make it up */
   1732 	/* Marvell Yukon VPD's can freqently be bogus */
   1733 
   1734 	switch (pa->pa_id) {
   1735 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1736 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
   1737 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
   1738 	case PCI_PRODUCT_3COM_3C940:
   1739 	case PCI_PRODUCT_DLINK_DGE530T:
   1740 	case PCI_PRODUCT_DLINK_DGE560T:
   1741 	case PCI_PRODUCT_DLINK_DGE560T_2:
   1742 	case PCI_PRODUCT_LINKSYS_EG1032:
   1743 	case PCI_PRODUCT_LINKSYS_EG1064:
   1744 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1745 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
   1746 	case PCI_ID_CODE(PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940):
   1747 	case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T):
   1748 	case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T):
   1749 	case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2):
   1750 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032):
   1751 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064):
   1752 		sc->sk_name = sc->sk_vpd_prodname;
   1753 		break;
   1754 	case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET):
   1755 	/* whoops yukon vpd prodname bears no resemblance to reality */
   1756 		switch (sc->sk_type) {
   1757 		case SK_GENESIS:
   1758 			sc->sk_name = sc->sk_vpd_prodname;
   1759 			break;
   1760 		case SK_YUKON:
   1761 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
   1762 			break;
   1763 		case SK_YUKON_LITE:
   1764 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
   1765 			break;
   1766 		case SK_YUKON_LP:
   1767 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
   1768 			break;
   1769 		default:
   1770 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
   1771 		}
   1772 
   1773 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
   1774 
   1775 		if ( sc->sk_type == SK_YUKON ) {
   1776 			uint32_t flashaddr;
   1777 			uint8_t testbyte;
   1778 
   1779 			flashaddr = sk_win_read_4(sc, SK_EP_ADDR);
   1780 
   1781 			/* test Flash-Address Register */
   1782 			sk_win_write_1(sc, SK_EP_ADDR+3, 0xff);
   1783 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
   1784 
   1785 			if (testbyte != 0) {
   1786 				/* this is yukon lite Rev. A0 */
   1787 				sc->sk_type = SK_YUKON_LITE;
   1788 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
   1789 				/* restore Flash-Address Register */
   1790 				sk_win_write_4(sc, SK_EP_ADDR, flashaddr);
   1791 			}
   1792 		}
   1793 		break;
   1794 	case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN):
   1795 		sc->sk_name = sc->sk_vpd_prodname;
   1796 		break;
   1797 	default:
   1798 		sc->sk_name = "Unknown Marvell";
   1799 	}
   1800 
   1801 
   1802 	if ( sc->sk_type == SK_YUKON_LITE ) {
   1803 		switch (sc->sk_rev) {
   1804 		case SK_YUKON_LITE_REV_A0:
   1805 			revstr = "A0";
   1806 			break;
   1807 		case SK_YUKON_LITE_REV_A1:
   1808 			revstr = "A1";
   1809 			break;
   1810 		case SK_YUKON_LITE_REV_A3:
   1811 			revstr = "A3";
   1812 			break;
   1813 		default:
   1814 			revstr = "";
   1815 		}
   1816 	} else {
   1817 		revstr = "";
   1818 	}
   1819 
   1820 	/* Announce the product name. */
   1821 	aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
   1822 			      sc->sk_name, revstr, sc->sk_rev);
   1823 
   1824 	skca.skc_port = SK_PORT_A;
   1825 	(void)config_found(sc->sk_dev, &skca, skcprint);
   1826 
   1827 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
   1828 		skca.skc_port = SK_PORT_B;
   1829 		(void)config_found(sc->sk_dev, &skca, skcprint);
   1830 	}
   1831 
   1832 	/* Turn on the 'driver is loaded' LED. */
   1833 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   1834 
   1835 	/* skc sysctl setup */
   1836 
   1837 	sc->sk_int_mod = SK_IM_DEFAULT;
   1838 	sc->sk_int_mod_pending = 0;
   1839 
   1840 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1841 	    0, CTLTYPE_NODE, device_xname(sc->sk_dev),
   1842 	    SYSCTL_DESCR("skc per-controller controls"),
   1843 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
   1844 	    CTL_EOL)) != 0) {
   1845 		aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
   1846 		goto fail_1;
   1847 	}
   1848 
   1849 	sk_nodenum = node->sysctl_num;
   1850 
   1851 	/* interrupt moderation time in usecs */
   1852 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1853 	    CTLFLAG_READWRITE,
   1854 	    CTLTYPE_INT, "int_mod",
   1855 	    SYSCTL_DESCR("sk interrupt moderation timer"),
   1856 	    sk_sysctl_handler, 0, (void *)sc,
   1857 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
   1858 	    CTL_EOL)) != 0) {
   1859 		aprint_normal_dev(sc->sk_dev,
   1860 		    "couldn't create int_mod sysctl node\n");
   1861 		goto fail_1;
   1862 	}
   1863 
   1864 	if (!pmf_device_register(self, skc_suspend, skc_resume))
   1865 		aprint_error_dev(self, "couldn't establish power handler\n");
   1866 
   1867 	return;
   1868 
   1869 fail_1:
   1870 	pci_intr_disestablish(pc, sc->sk_intrhand);
   1871 fail:
   1872 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
   1873 }
   1874 
   1875 int
   1876 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
   1877 {
   1878 	struct sk_softc		*sc = sc_if->sk_softc;
   1879 	struct sk_tx_desc	*f = NULL;
   1880 	uint32_t		frag, cur, cnt = 0, sk_ctl;
   1881 	int			i;
   1882 	struct sk_txmap_entry	*entry;
   1883 	bus_dmamap_t		txmap;
   1884 
   1885 	DPRINTFN(3, ("sk_encap\n"));
   1886 
   1887 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
   1888 	if (entry == NULL) {
   1889 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
   1890 		return ENOBUFS;
   1891 	}
   1892 	txmap = entry->dmamap;
   1893 
   1894 	cur = frag = *txidx;
   1895 
   1896 #ifdef SK_DEBUG
   1897 	if (skdebug >= 3)
   1898 		sk_dump_mbuf(m_head);
   1899 #endif
   1900 
   1901 	/*
   1902 	 * Start packing the mbufs in this chain into
   1903 	 * the fragment pointers. Stop when we run out
   1904 	 * of fragments or hit the end of the mbuf chain.
   1905 	 */
   1906 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
   1907 	    BUS_DMA_NOWAIT)) {
   1908 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
   1909 		return ENOBUFS;
   1910 	}
   1911 
   1912 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
   1913 
   1914 	/* Sync the DMA map. */
   1915 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
   1916 	    BUS_DMASYNC_PREWRITE);
   1917 
   1918 	for (i = 0; i < txmap->dm_nsegs; i++) {
   1919 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
   1920 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
   1921 			return ENOBUFS;
   1922 		}
   1923 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
   1924 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
   1925 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
   1926 		if (cnt == 0)
   1927 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
   1928 		else
   1929 			sk_ctl |= SK_TXCTL_OWN;
   1930 		f->sk_ctl = htole32(sk_ctl);
   1931 		cur = frag;
   1932 		SK_INC(frag, SK_TX_RING_CNT);
   1933 		cnt++;
   1934 	}
   1935 
   1936 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
   1937 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
   1938 
   1939 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
   1940 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
   1941 		htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
   1942 
   1943 	/* Sync descriptors before handing to chip */
   1944 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
   1945 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1946 
   1947 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
   1948 		htole32(SK_TXCTL_OWN);
   1949 
   1950 	/* Sync first descriptor to hand it off */
   1951 	SK_CDTXSYNC(sc_if, *txidx, 1,
   1952 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1953 
   1954 	sc_if->sk_cdata.sk_tx_cnt += cnt;
   1955 
   1956 #ifdef SK_DEBUG
   1957 	if (skdebug >= 3) {
   1958 		struct sk_tx_desc *desc;
   1959 		uint32_t idx;
   1960 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
   1961 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
   1962 			sk_dump_txdesc(desc, idx);
   1963 		}
   1964 	}
   1965 #endif
   1966 
   1967 	*txidx = frag;
   1968 
   1969 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
   1970 
   1971 	return 0;
   1972 }
   1973 
   1974 void
   1975 sk_start(struct ifnet *ifp)
   1976 {
   1977 	struct sk_if_softc	*sc_if = ifp->if_softc;
   1978 	struct sk_softc		*sc = sc_if->sk_softc;
   1979 	struct mbuf		*m_head = NULL;
   1980 	uint32_t		idx = sc_if->sk_cdata.sk_tx_prod;
   1981 	int			pkts = 0;
   1982 
   1983 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
   1984 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
   1985 
   1986 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
   1987 		IFQ_POLL(&ifp->if_snd, m_head);
   1988 		if (m_head == NULL)
   1989 			break;
   1990 
   1991 		/*
   1992 		 * Pack the data into the transmit ring. If we
   1993 		 * don't have room, set the OACTIVE flag and wait
   1994 		 * for the NIC to drain the ring.
   1995 		 */
   1996 		if (sk_encap(sc_if, m_head, &idx)) {
   1997 			ifp->if_flags |= IFF_OACTIVE;
   1998 			break;
   1999 		}
   2000 
   2001 		/* now we are committed to transmit the packet */
   2002 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   2003 		pkts++;
   2004 
   2005 		/*
   2006 		 * If there's a BPF listener, bounce a copy of this frame
   2007 		 * to him.
   2008 		 */
   2009 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   2010 	}
   2011 	if (pkts == 0)
   2012 		return;
   2013 
   2014 	/* Transmit */
   2015 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
   2016 		sc_if->sk_cdata.sk_tx_prod = idx;
   2017 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   2018 
   2019 		/* Set a timeout in case the chip goes out to lunch. */
   2020 		ifp->if_timer = 5;
   2021 	}
   2022 }
   2023 
   2024 
   2025 void
   2026 sk_watchdog(struct ifnet *ifp)
   2027 {
   2028 	struct sk_if_softc *sc_if = ifp->if_softc;
   2029 
   2030 	/*
   2031 	 * Reclaim first as there is a possibility of losing Tx completion
   2032 	 * interrupts.
   2033 	 */
   2034 	sk_txeof(sc_if);
   2035 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
   2036 		aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
   2037 
   2038 		ifp->if_oerrors++;
   2039 
   2040 		sk_init(ifp);
   2041 	}
   2042 }
   2043 
   2044 void
   2045 sk_shutdown(void *v)
   2046 {
   2047 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
   2048 	struct sk_softc		*sc = sc_if->sk_softc;
   2049 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2050 
   2051 	DPRINTFN(2, ("sk_shutdown\n"));
   2052 	sk_stop(ifp, 1);
   2053 
   2054 	/* Turn off the 'driver is loaded' LED. */
   2055 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   2056 
   2057 	/*
   2058 	 * Reset the GEnesis controller. Doing this should also
   2059 	 * assert the resets on the attached XMAC(s).
   2060 	 */
   2061 	sk_reset(sc);
   2062 }
   2063 
   2064 void
   2065 sk_rxeof(struct sk_if_softc *sc_if)
   2066 {
   2067 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2068 	struct mbuf		*m;
   2069 	struct sk_chain		*cur_rx;
   2070 	struct sk_rx_desc	*cur_desc;
   2071 	int			i, cur, total_len = 0;
   2072 	uint32_t		rxstat, sk_ctl;
   2073 	bus_dmamap_t		dmamap;
   2074 
   2075 	i = sc_if->sk_cdata.sk_rx_prod;
   2076 
   2077 	DPRINTFN(3, ("sk_rxeof %d\n", i));
   2078 
   2079 	for (;;) {
   2080 		cur = i;
   2081 
   2082 		/* Sync the descriptor */
   2083 		SK_CDRXSYNC(sc_if, cur,
   2084 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   2085 
   2086 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
   2087 		if (sk_ctl & SK_RXCTL_OWN) {
   2088 			/* Invalidate the descriptor -- it's not ready yet */
   2089 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
   2090 			sc_if->sk_cdata.sk_rx_prod = i;
   2091 			break;
   2092 		}
   2093 
   2094 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
   2095 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
   2096 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
   2097 
   2098 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
   2099 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2100 
   2101 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
   2102 		m = cur_rx->sk_mbuf;
   2103 		cur_rx->sk_mbuf = NULL;
   2104 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
   2105 
   2106 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
   2107 
   2108 		SK_INC(i, SK_RX_RING_CNT);
   2109 
   2110 		if (rxstat & XM_RXSTAT_ERRFRAME) {
   2111 			ifp->if_ierrors++;
   2112 			sk_newbuf(sc_if, cur, m, dmamap);
   2113 			continue;
   2114 		}
   2115 
   2116 		/*
   2117 		 * Try to allocate a new jumbo buffer. If that
   2118 		 * fails, copy the packet to mbufs and put the
   2119 		 * jumbo buffer back in the ring so it can be
   2120 		 * re-used. If allocating mbufs fails, then we
   2121 		 * have to drop the packet.
   2122 		 */
   2123 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
   2124 			struct mbuf		*m0;
   2125 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
   2126 			    total_len + ETHER_ALIGN, 0, ifp);
   2127 			sk_newbuf(sc_if, cur, m, dmamap);
   2128 			if (m0 == NULL) {
   2129 				aprint_error_dev(sc_if->sk_dev, "no receive "
   2130 				    "buffers available -- packet dropped!\n");
   2131 				ifp->if_ierrors++;
   2132 				continue;
   2133 			}
   2134 			m_adj(m0, ETHER_ALIGN);
   2135 			m = m0;
   2136 		} else {
   2137 			m_set_rcvif(m, ifp);
   2138 			m->m_pkthdr.len = m->m_len = total_len;
   2139 		}
   2140 
   2141 		/* pass it on. */
   2142 		if_percpuq_enqueue(ifp->if_percpuq, m);
   2143 	}
   2144 }
   2145 
   2146 void
   2147 sk_txeof(struct sk_if_softc *sc_if)
   2148 {
   2149 	struct sk_softc		*sc = sc_if->sk_softc;
   2150 	struct sk_tx_desc	*cur_tx;
   2151 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2152 	uint32_t		idx, sk_ctl;
   2153 	struct sk_txmap_entry	*entry;
   2154 
   2155 	DPRINTFN(3, ("sk_txeof\n"));
   2156 
   2157 	/*
   2158 	 * Go through our tx ring and free mbufs for those
   2159 	 * frames that have been sent.
   2160 	 */
   2161 	idx = sc_if->sk_cdata.sk_tx_cons;
   2162 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
   2163 		SK_CDTXSYNC(sc_if, idx, 1,
   2164 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   2165 
   2166 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
   2167 		sk_ctl = le32toh(cur_tx->sk_ctl);
   2168 #ifdef SK_DEBUG
   2169 		if (skdebug >= 3)
   2170 			sk_dump_txdesc(cur_tx, idx);
   2171 #endif
   2172 		if (sk_ctl & SK_TXCTL_OWN) {
   2173 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
   2174 			break;
   2175 		}
   2176 		if (sk_ctl & SK_TXCTL_LASTFRAG)
   2177 			ifp->if_opackets++;
   2178 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
   2179 			entry = sc_if->sk_cdata.sk_tx_map[idx];
   2180 
   2181 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
   2182 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
   2183 
   2184 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
   2185 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2186 
   2187 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
   2188 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
   2189 					  link);
   2190 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
   2191 		}
   2192 		sc_if->sk_cdata.sk_tx_cnt--;
   2193 		SK_INC(idx, SK_TX_RING_CNT);
   2194 	}
   2195 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
   2196 		ifp->if_timer = 0;
   2197 	else /* nudge chip to keep tx ring moving */
   2198 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   2199 
   2200 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
   2201 		ifp->if_flags &= ~IFF_OACTIVE;
   2202 
   2203 	sc_if->sk_cdata.sk_tx_cons = idx;
   2204 }
   2205 
   2206 void
   2207 sk_tick(void *xsc_if)
   2208 {
   2209 	struct sk_if_softc *sc_if = xsc_if;
   2210 	struct mii_data *mii = &sc_if->sk_mii;
   2211 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2212 	int i;
   2213 
   2214 	DPRINTFN(3, ("sk_tick\n"));
   2215 
   2216 	if (!(ifp->if_flags & IFF_UP))
   2217 		return;
   2218 
   2219 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2220 		sk_intr_bcom(sc_if);
   2221 		return;
   2222 	}
   2223 
   2224 	/*
   2225 	 * According to SysKonnect, the correct way to verify that
   2226 	 * the link has come back up is to poll bit 0 of the GPIO
   2227 	 * register three times. This pin has the signal from the
   2228 	 * link sync pin connected to it; if we read the same link
   2229 	 * state 3 times in a row, we know the link is up.
   2230 	 */
   2231 	for (i = 0; i < 3; i++) {
   2232 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
   2233 			break;
   2234 	}
   2235 
   2236 	if (i != 3) {
   2237 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2238 		return;
   2239 	}
   2240 
   2241 	/* Turn the GP0 interrupt back on. */
   2242 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2243 	SK_XM_READ_2(sc_if, XM_ISR);
   2244 	mii_tick(mii);
   2245 	if (ifp->if_link_state != LINK_STATE_UP)
   2246 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2247 	else
   2248 		callout_stop(&sc_if->sk_tick_ch);
   2249 }
   2250 
   2251 void
   2252 sk_intr_bcom(struct sk_if_softc *sc_if)
   2253 {
   2254 	struct mii_data *mii = &sc_if->sk_mii;
   2255 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2256 	uint16_t status;
   2257 
   2258 
   2259 	DPRINTFN(3, ("sk_intr_bcom\n"));
   2260 
   2261 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
   2262 
   2263 	/*
   2264 	 * Read the PHY interrupt register to make sure
   2265 	 * we clear any pending interrupts.
   2266 	 */
   2267 	sk_xmac_miibus_readreg(sc_if->sk_dev,
   2268 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR, &status);
   2269 
   2270 	if (!(ifp->if_flags & IFF_RUNNING)) {
   2271 		sk_init_xmac(sc_if);
   2272 		return;
   2273 	}
   2274 
   2275 	if (status & (BRGPHY_ISR_LNK_CHG | BRGPHY_ISR_AN_PR)) {
   2276 		uint16_t lstat;
   2277 		sk_xmac_miibus_readreg(sc_if->sk_dev,
   2278 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS, &lstat);
   2279 
   2280 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
   2281 			(void)mii_mediachg(mii);
   2282 			/* Turn off the link LED. */
   2283 			SK_IF_WRITE_1(sc_if, 0,
   2284 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2285 			sc_if->sk_link = 0;
   2286 		} else if (status & BRGPHY_ISR_LNK_CHG) {
   2287 			sk_xmac_miibus_writereg(sc_if->sk_dev,
   2288 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
   2289 			mii_tick(mii);
   2290 			sc_if->sk_link = 1;
   2291 			/* Turn on the link LED. */
   2292 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2293 			    SK_LINKLED_ON | SK_LINKLED_LINKSYNC_OFF |
   2294 			    SK_LINKLED_BLINK_OFF);
   2295 			mii_pollstat(mii);
   2296 		} else {
   2297 			mii_tick(mii);
   2298 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2299 		}
   2300 	}
   2301 
   2302 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
   2303 }
   2304 
   2305 void
   2306 sk_intr_xmac(struct sk_if_softc	*sc_if)
   2307 {
   2308 	uint16_t status = SK_XM_READ_2(sc_if, XM_ISR);
   2309 
   2310 	DPRINTFN(3, ("sk_intr_xmac\n"));
   2311 
   2312 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
   2313 		if (status & XM_ISR_GP0_SET) {
   2314 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2315 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2316 		}
   2317 
   2318 		if (status & XM_ISR_AUTONEG_DONE) {
   2319 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2320 		}
   2321 	}
   2322 
   2323 	if (status & XM_IMR_TX_UNDERRUN)
   2324 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
   2325 
   2326 	if (status & XM_IMR_RX_OVERRUN)
   2327 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
   2328 }
   2329 
   2330 void
   2331 sk_intr_yukon(struct sk_if_softc *sc_if)
   2332 {
   2333 #ifdef SK_DEBUG
   2334 	int status;
   2335 
   2336 	status =
   2337 #endif
   2338 		SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2339 
   2340 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
   2341 }
   2342 
   2343 int
   2344 sk_intr(void *xsc)
   2345 {
   2346 	struct sk_softc		*sc = xsc;
   2347 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
   2348 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
   2349 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
   2350 	uint32_t		status;
   2351 	int			claimed = 0;
   2352 
   2353 	if (sc_if0 != NULL)
   2354 		ifp0 = &sc_if0->sk_ethercom.ec_if;
   2355 	if (sc_if1 != NULL)
   2356 		ifp1 = &sc_if1->sk_ethercom.ec_if;
   2357 
   2358 	for (;;) {
   2359 		status = CSR_READ_4(sc, SK_ISSR);
   2360 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
   2361 
   2362 		if (!(status & sc->sk_intrmask))
   2363 			break;
   2364 
   2365 		claimed = 1;
   2366 
   2367 		/* Handle receive interrupts first. */
   2368 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
   2369 			sk_rxeof(sc_if0);
   2370 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
   2371 			    SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
   2372 		}
   2373 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
   2374 			sk_rxeof(sc_if1);
   2375 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
   2376 			    SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
   2377 		}
   2378 
   2379 		/* Then transmit interrupts. */
   2380 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
   2381 			sk_txeof(sc_if0);
   2382 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
   2383 			    SK_TXBMU_CLR_IRQ_EOF);
   2384 		}
   2385 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
   2386 			sk_txeof(sc_if1);
   2387 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
   2388 			    SK_TXBMU_CLR_IRQ_EOF);
   2389 		}
   2390 
   2391 		/* Then MAC interrupts. */
   2392 		if (sc_if0 && (status & SK_ISR_MAC1) &&
   2393 		    (ifp0->if_flags & IFF_RUNNING)) {
   2394 			if (sc->sk_type == SK_GENESIS)
   2395 				sk_intr_xmac(sc_if0);
   2396 			else
   2397 				sk_intr_yukon(sc_if0);
   2398 		}
   2399 
   2400 		if (sc_if1 && (status & SK_ISR_MAC2) &&
   2401 		    (ifp1->if_flags & IFF_RUNNING)) {
   2402 			if (sc->sk_type == SK_GENESIS)
   2403 				sk_intr_xmac(sc_if1);
   2404 			else
   2405 				sk_intr_yukon(sc_if1);
   2406 
   2407 		}
   2408 
   2409 		if (status & SK_ISR_EXTERNAL_REG) {
   2410 			if (sc_if0 != NULL &&
   2411 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
   2412 				sk_intr_bcom(sc_if0);
   2413 
   2414 			if (sc_if1 != NULL &&
   2415 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
   2416 				sk_intr_bcom(sc_if1);
   2417 		}
   2418 	}
   2419 
   2420 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2421 
   2422 	if (ifp0 != NULL)
   2423 		if_schedule_deferred_start(ifp0);
   2424 	if (ifp1 != NULL)
   2425 		if_schedule_deferred_start(ifp1);
   2426 
   2427 	KASSERT(sc->rnd_attached > 0);
   2428 	rnd_add_uint32(&sc->rnd_source, status);
   2429 
   2430 	if (sc->sk_int_mod_pending)
   2431 		sk_update_int_mod(sc);
   2432 
   2433 	return claimed;
   2434 }
   2435 
   2436 void
   2437 sk_unreset_xmac(struct sk_if_softc *sc_if)
   2438 {
   2439 	struct sk_softc		*sc = sc_if->sk_softc;
   2440 	static const struct sk_bcom_hack     bhack[] = {
   2441 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
   2442 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
   2443 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
   2444 	{ 0, 0 } };
   2445 
   2446 	DPRINTFN(1, ("sk_unreset_xmac\n"));
   2447 
   2448 	/* Unreset the XMAC. */
   2449 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
   2450 	DELAY(1000);
   2451 
   2452 	/* Reset the XMAC's internal state. */
   2453 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2454 
   2455 	/* Save the XMAC II revision */
   2456 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
   2457 
   2458 	/*
   2459 	 * Perform additional initialization for external PHYs,
   2460 	 * namely for the 1000baseTX cards that use the XMAC's
   2461 	 * GMII mode.
   2462 	 */
   2463 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2464 		int			i = 0;
   2465 		uint32_t		val;
   2466 		uint16_t		phyval;
   2467 
   2468 		/* Take PHY out of reset. */
   2469 		val = sk_win_read_4(sc, SK_GPIO);
   2470 		if (sc_if->sk_port == SK_PORT_A)
   2471 			val |= SK_GPIO_DIR0 | SK_GPIO_DAT0;
   2472 		else
   2473 			val |= SK_GPIO_DIR2 | SK_GPIO_DAT2;
   2474 		sk_win_write_4(sc, SK_GPIO, val);
   2475 
   2476 		/* Enable GMII mode on the XMAC. */
   2477 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
   2478 
   2479 		sk_xmac_miibus_writereg(sc_if->sk_dev,
   2480 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
   2481 		DELAY(10000);
   2482 		sk_xmac_miibus_writereg(sc_if->sk_dev,
   2483 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
   2484 
   2485 		/*
   2486 		 * Early versions of the BCM5400 apparently have
   2487 		 * a bug that requires them to have their reserved
   2488 		 * registers initialized to some magic values. I don't
   2489 		 * know what the numbers do, I'm just the messenger.
   2490 		 */
   2491 		sk_xmac_miibus_readreg(sc_if->sk_dev,
   2492 		    SK_PHYADDR_BCOM, 0x03, &phyval);
   2493 		if (phyval == 0x6041) {
   2494 			while (bhack[i].reg) {
   2495 				sk_xmac_miibus_writereg(sc_if->sk_dev,
   2496 				    SK_PHYADDR_BCOM, bhack[i].reg,
   2497 				    bhack[i].val);
   2498 				i++;
   2499 			}
   2500 		}
   2501 	}
   2502 }
   2503 
   2504 void
   2505 sk_init_xmac(struct sk_if_softc *sc_if)
   2506 {
   2507 	struct sk_softc		*sc = sc_if->sk_softc;
   2508 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2509 
   2510 	sk_unreset_xmac(sc_if);
   2511 
   2512 	/* Set station address */
   2513 	SK_XM_WRITE_2(sc_if, XM_PAR0,
   2514 		      *(uint16_t *)(&sc_if->sk_enaddr[0]));
   2515 	SK_XM_WRITE_2(sc_if, XM_PAR1,
   2516 		      *(uint16_t *)(&sc_if->sk_enaddr[2]));
   2517 	SK_XM_WRITE_2(sc_if, XM_PAR2,
   2518 		      *(uint16_t *)(&sc_if->sk_enaddr[4]));
   2519 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
   2520 
   2521 	if (ifp->if_flags & IFF_PROMISC)
   2522 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2523 	else
   2524 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2525 
   2526 	if (ifp->if_flags & IFF_BROADCAST)
   2527 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2528 	else
   2529 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2530 
   2531 	/* We don't need the FCS appended to the packet. */
   2532 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
   2533 
   2534 	/* We want short frames padded to 60 bytes. */
   2535 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
   2536 
   2537 	/*
   2538 	 * Enable the reception of all error frames. This is is
   2539 	 * a necessary evil due to the design of the XMAC. The
   2540 	 * XMAC's receive FIFO is only 8K in size, however jumbo
   2541 	 * frames can be up to 9000 bytes in length. When bad
   2542 	 * frame filtering is enabled, the XMAC's RX FIFO operates
   2543 	 * in 'store and forward' mode. For this to work, the
   2544 	 * entire frame has to fit into the FIFO, but that means
   2545 	 * that jumbo frames larger than 8192 bytes will be
   2546 	 * truncated. Disabling all bad frame filtering causes
   2547 	 * the RX FIFO to operate in streaming mode, in which
   2548 	 * case the XMAC will start transfering frames out of the
   2549 	 * RX FIFO as soon as the FIFO threshold is reached.
   2550 	 */
   2551 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES |
   2552 	    XM_MODE_RX_GIANTS | XM_MODE_RX_RUNTS | XM_MODE_RX_CRCERRS |
   2553 	    XM_MODE_RX_INRANGELEN);
   2554 
   2555 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2556 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2557 	else
   2558 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2559 
   2560 	/*
   2561 	 * Bump up the transmit threshold. This helps hold off transmit
   2562 	 * underruns when we're blasting traffic from both ports at once.
   2563 	 */
   2564 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
   2565 
   2566 	/* Set multicast filter */
   2567 	sk_setmulti(sc_if);
   2568 
   2569 	/* Clear and enable interrupts */
   2570 	SK_XM_READ_2(sc_if, XM_ISR);
   2571 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
   2572 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
   2573 	else
   2574 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2575 
   2576 	/* Configure MAC arbiter */
   2577 	switch (sc_if->sk_xmac_rev) {
   2578 	case XM_XMAC_REV_B2:
   2579 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
   2580 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
   2581 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
   2582 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
   2583 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
   2584 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
   2585 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
   2586 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
   2587 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2588 		break;
   2589 	case XM_XMAC_REV_C1:
   2590 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
   2591 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
   2592 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
   2593 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
   2594 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
   2595 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
   2596 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
   2597 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
   2598 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2599 		break;
   2600 	default:
   2601 		break;
   2602 	}
   2603 	sk_win_write_2(sc, SK_MACARB_CTL,
   2604 	    SK_MACARBCTL_UNRESET | SK_MACARBCTL_FASTOE_OFF);
   2605 
   2606 	sc_if->sk_link = 1;
   2607 }
   2608 
   2609 void
   2610 sk_unreset_yukon(struct sk_if_softc *sc_if)
   2611 {
   2612 	uint32_t		/*mac, */phy;
   2613 	struct sk_softc		*sc;
   2614 
   2615 	DPRINTFN(1, ("sk_unreset_yukon: start: sk_csr=%#x\n",
   2616 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
   2617 
   2618 	sc = sc_if->sk_softc;
   2619 	if (sc->sk_type == SK_YUKON_LITE &&
   2620 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
   2621 		/* Take PHY out of reset. */
   2622 		sk_win_write_4(sc, SK_GPIO,
   2623 		    (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9)
   2624 		    & ~SK_GPIO_DAT9);
   2625 	}
   2626 
   2627 	/* GMAC and GPHY Reset */
   2628 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
   2629 
   2630 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
   2631 
   2632 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2633 	DELAY(1000);
   2634 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
   2635 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2636 	DELAY(1000);
   2637 
   2638 
   2639 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
   2640 
   2641 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
   2642 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
   2643 
   2644 	switch (sc_if->sk_softc->sk_pmd) {
   2645 	case IFM_1000_SX:
   2646 	case IFM_1000_LX:
   2647 		phy |= SK_GPHY_FIBER;
   2648 		break;
   2649 
   2650 	case IFM_1000_CX:
   2651 	case IFM_1000_T:
   2652 		phy |= SK_GPHY_COPPER;
   2653 		break;
   2654 	}
   2655 
   2656 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
   2657 
   2658 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
   2659 	DELAY(1000);
   2660 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
   2661 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
   2662 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
   2663 
   2664 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
   2665 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
   2666 }
   2667 
   2668 void
   2669 sk_init_yukon(struct sk_if_softc *sc_if)
   2670 {
   2671 	uint16_t		reg;
   2672 	int			i;
   2673 
   2674 	DPRINTFN(1, ("sk_init_yukon: start\n"));
   2675 	sk_unreset_yukon(sc_if);
   2676 
   2677 	/* unused read of the interrupt source register */
   2678 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
   2679 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2680 
   2681 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
   2682 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
   2683 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2684 
   2685 	/* MIB Counter Clear Mode set */
   2686 	reg |= YU_PAR_MIB_CLR;
   2687 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2688 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
   2689 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2690 
   2691 	/* MIB Counter Clear Mode clear */
   2692 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
   2693 	reg &= ~YU_PAR_MIB_CLR;
   2694 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2695 
   2696 	/* receive control reg */
   2697 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
   2698 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
   2699 		      YU_RCR_CRCR);
   2700 
   2701 	/* transmit parameter register */
   2702 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
   2703 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
   2704 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a));
   2705 
   2706 	/* serial mode register */
   2707 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
   2708 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
   2709 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
   2710 		      YU_SMR_IPG_DATA(0x1e));
   2711 
   2712 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
   2713 	/* Setup Yukon's address */
   2714 	for (i = 0; i < 3; i++) {
   2715 		/* Write Source Address 1 (unicast filter) */
   2716 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
   2717 			      sc_if->sk_enaddr[i * 2] |
   2718 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
   2719 	}
   2720 
   2721 	for (i = 0; i < 3; i++) {
   2722 		reg = sk_win_read_2(sc_if->sk_softc,
   2723 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
   2724 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
   2725 	}
   2726 
   2727 	/* Set multicast filter */
   2728 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
   2729 	sk_setmulti(sc_if);
   2730 
   2731 	/* enable interrupt mask for counter overflows */
   2732 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
   2733 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
   2734 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
   2735 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
   2736 
   2737 	/* Configure RX MAC FIFO */
   2738 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
   2739 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
   2740 
   2741 	/* Configure TX MAC FIFO */
   2742 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
   2743 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
   2744 
   2745 	DPRINTFN(6, ("sk_init_yukon: end\n"));
   2746 }
   2747 
   2748 /*
   2749  * Note that to properly initialize any part of the GEnesis chip,
   2750  * you first have to take it out of reset mode.
   2751  */
   2752 int
   2753 sk_init(struct ifnet *ifp)
   2754 {
   2755 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2756 	struct sk_softc		*sc = sc_if->sk_softc;
   2757 	struct mii_data		*mii = &sc_if->sk_mii;
   2758 	int			rc = 0, s;
   2759 	uint32_t		imr, imtimer_ticks;
   2760 
   2761 	DPRINTFN(1, ("sk_init\n"));
   2762 
   2763 	s = splnet();
   2764 
   2765 	if (ifp->if_flags & IFF_RUNNING) {
   2766 		splx(s);
   2767 		return 0;
   2768 	}
   2769 
   2770 	/* Cancel pending I/O and free all RX/TX buffers. */
   2771 	sk_stop(ifp, 0);
   2772 
   2773 	if (sc->sk_type == SK_GENESIS) {
   2774 		/* Configure LINK_SYNC LED */
   2775 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
   2776 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2777 			      SK_LINKLED_LINKSYNC_ON);
   2778 
   2779 		/* Configure RX LED */
   2780 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
   2781 			      SK_RXLEDCTL_COUNTER_START);
   2782 
   2783 		/* Configure TX LED */
   2784 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
   2785 			      SK_TXLEDCTL_COUNTER_START);
   2786 	}
   2787 
   2788 	/* Configure I2C registers */
   2789 
   2790 	/* Configure XMAC(s) */
   2791 	switch (sc->sk_type) {
   2792 	case SK_GENESIS:
   2793 		sk_init_xmac(sc_if);
   2794 		break;
   2795 	case SK_YUKON:
   2796 	case SK_YUKON_LITE:
   2797 	case SK_YUKON_LP:
   2798 		sk_init_yukon(sc_if);
   2799 		break;
   2800 	}
   2801 	if ((rc = mii_mediachg(mii)) == ENXIO)
   2802 		rc = 0;
   2803 	else if (rc != 0)
   2804 		goto out;
   2805 
   2806 	if (sc->sk_type == SK_GENESIS) {
   2807 		/* Configure MAC FIFOs */
   2808 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
   2809 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
   2810 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
   2811 
   2812 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
   2813 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
   2814 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
   2815 	}
   2816 
   2817 	/* Configure transmit arbiter(s) */
   2818 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
   2819 	    SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON);
   2820 
   2821 	/* Configure RAMbuffers */
   2822 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
   2823 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
   2824 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
   2825 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
   2826 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
   2827 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
   2828 
   2829 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
   2830 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
   2831 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
   2832 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
   2833 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
   2834 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
   2835 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
   2836 
   2837 	/* Configure BMUs */
   2838 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
   2839 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
   2840 	    SK_RX_RING_ADDR(sc_if, 0));
   2841 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
   2842 
   2843 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
   2844 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
   2845 	    SK_TX_RING_ADDR(sc_if, 0));
   2846 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
   2847 
   2848 	/* Init descriptors */
   2849 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
   2850 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
   2851 		    "memory for rx buffers\n");
   2852 		sk_stop(ifp, 0);
   2853 		splx(s);
   2854 		return ENOBUFS;
   2855 	}
   2856 
   2857 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
   2858 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
   2859 		    "memory for tx buffers\n");
   2860 		sk_stop(ifp, 0);
   2861 		splx(s);
   2862 		return ENOBUFS;
   2863 	}
   2864 
   2865 	/* Set interrupt moderation if changed via sysctl. */
   2866 	switch (sc->sk_type) {
   2867 	case SK_GENESIS:
   2868 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   2869 		break;
   2870 	case SK_YUKON_EC:
   2871 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   2872 		break;
   2873 	default:
   2874 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   2875 	}
   2876 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
   2877 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
   2878 		sk_win_write_4(sc, SK_IMTIMERINIT,
   2879 		    SK_IM_USECS(sc->sk_int_mod));
   2880 		aprint_verbose_dev(sc->sk_dev,
   2881 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
   2882 	}
   2883 
   2884 	/* Configure interrupt handling */
   2885 	CSR_READ_4(sc, SK_ISSR);
   2886 	if (sc_if->sk_port == SK_PORT_A)
   2887 		sc->sk_intrmask |= SK_INTRS1;
   2888 	else
   2889 		sc->sk_intrmask |= SK_INTRS2;
   2890 
   2891 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
   2892 
   2893 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2894 
   2895 	/* Start BMUs. */
   2896 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
   2897 
   2898 	if (sc->sk_type == SK_GENESIS) {
   2899 		/* Enable XMACs TX and RX state machines */
   2900 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
   2901 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
   2902 			       XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
   2903 	}
   2904 
   2905 	if (SK_YUKON_FAMILY(sc->sk_type)) {
   2906 		uint16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
   2907 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
   2908 #if 0
   2909 		/* XXX disable 100Mbps and full duplex mode? */
   2910 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
   2911 #endif
   2912 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
   2913 	}
   2914 
   2915 
   2916 	ifp->if_flags |= IFF_RUNNING;
   2917 	ifp->if_flags &= ~IFF_OACTIVE;
   2918 	callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2919 
   2920 out:
   2921 	splx(s);
   2922 	return rc;
   2923 }
   2924 
   2925 void
   2926 sk_stop(struct ifnet *ifp, int disable)
   2927 {
   2928 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2929 	struct sk_softc		*sc = sc_if->sk_softc;
   2930 	int			i;
   2931 
   2932 	DPRINTFN(1, ("sk_stop\n"));
   2933 
   2934 	callout_stop(&sc_if->sk_tick_ch);
   2935 
   2936 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2937 		uint32_t		val;
   2938 
   2939 		/* Put PHY back into reset. */
   2940 		val = sk_win_read_4(sc, SK_GPIO);
   2941 		if (sc_if->sk_port == SK_PORT_A) {
   2942 			val |= SK_GPIO_DIR0;
   2943 			val &= ~SK_GPIO_DAT0;
   2944 		} else {
   2945 			val |= SK_GPIO_DIR2;
   2946 			val &= ~SK_GPIO_DAT2;
   2947 		}
   2948 		sk_win_write_4(sc, SK_GPIO, val);
   2949 	}
   2950 
   2951 	/* Turn off various components of this interface. */
   2952 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2953 	switch (sc->sk_type) {
   2954 	case SK_GENESIS:
   2955 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
   2956 			      SK_TXMACCTL_XMAC_RESET);
   2957 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
   2958 		break;
   2959 	case SK_YUKON:
   2960 	case SK_YUKON_LITE:
   2961 	case SK_YUKON_LP:
   2962 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
   2963 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
   2964 		break;
   2965 	}
   2966 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
   2967 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET |SK_RBCTL_OFF);
   2968 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
   2969 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2970 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
   2971 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2972 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2973 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2974 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
   2975 
   2976 	/* Disable interrupts */
   2977 	if (sc_if->sk_port == SK_PORT_A)
   2978 		sc->sk_intrmask &= ~SK_INTRS1;
   2979 	else
   2980 		sc->sk_intrmask &= ~SK_INTRS2;
   2981 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2982 
   2983 	SK_XM_READ_2(sc_if, XM_ISR);
   2984 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2985 
   2986 	/* Free RX and TX mbufs still in the queues. */
   2987 	for (i = 0; i < SK_RX_RING_CNT; i++) {
   2988 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
   2989 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
   2990 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   2991 		}
   2992 	}
   2993 
   2994 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   2995 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
   2996 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
   2997 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   2998 		}
   2999 	}
   3000 
   3001 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3002 }
   3003 
   3004 /* Power Management Framework */
   3005 
   3006 static bool
   3007 skc_suspend(device_t dv, const pmf_qual_t *qual)
   3008 {
   3009 	struct sk_softc *sc = device_private(dv);
   3010 
   3011 	DPRINTFN(2, ("skc_suspend\n"));
   3012 
   3013 	/* Turn off the driver is loaded LED */
   3014 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   3015 
   3016 	return true;
   3017 }
   3018 
   3019 static bool
   3020 skc_resume(device_t dv, const pmf_qual_t *qual)
   3021 {
   3022 	struct sk_softc *sc = device_private(dv);
   3023 
   3024 	DPRINTFN(2, ("skc_resume\n"));
   3025 
   3026 	sk_reset(sc);
   3027 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   3028 
   3029 	return true;
   3030 }
   3031 
   3032 static bool
   3033 sk_resume(device_t dv, const pmf_qual_t *qual)
   3034 {
   3035 	struct sk_if_softc *sc_if = device_private(dv);
   3036 
   3037 	sk_init_yukon(sc_if);
   3038 	return true;
   3039 }
   3040 
   3041 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
   3042     skc_probe, skc_attach, NULL, NULL);
   3043 
   3044 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
   3045     sk_probe, sk_attach, NULL, NULL);
   3046 
   3047 #ifdef SK_DEBUG
   3048 void
   3049 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
   3050 {
   3051 #define DESC_PRINT(X)					\
   3052 	if (X)						\
   3053 		printf("txdesc[%d]." #X "=%#x\n",	\
   3054 		       idx, X);
   3055 
   3056 	DESC_PRINT(le32toh(desc->sk_ctl));
   3057 	DESC_PRINT(le32toh(desc->sk_next));
   3058 	DESC_PRINT(le32toh(desc->sk_data_lo));
   3059 	DESC_PRINT(le32toh(desc->sk_data_hi));
   3060 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
   3061 	DESC_PRINT(le16toh(desc->sk_rsvd0));
   3062 	DESC_PRINT(le16toh(desc->sk_csum_startval));
   3063 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
   3064 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
   3065 	DESC_PRINT(le16toh(desc->sk_rsvd1));
   3066 #undef PRINT
   3067 }
   3068 
   3069 void
   3070 sk_dump_bytes(const char *data, int len)
   3071 {
   3072 	int c, i, j;
   3073 
   3074 	for (i = 0; i < len; i += 16) {
   3075 		printf("%08x  ", i);
   3076 		c = len - i;
   3077 		if (c > 16) c = 16;
   3078 
   3079 		for (j = 0; j < c; j++) {
   3080 			printf("%02x ", data[i + j] & 0xff);
   3081 			if ((j & 0xf) == 7 && j > 0)
   3082 				printf(" ");
   3083 		}
   3084 
   3085 		for (; j < 16; j++)
   3086 			printf("   ");
   3087 		printf("  ");
   3088 
   3089 		for (j = 0; j < c; j++) {
   3090 			int ch = data[i + j] & 0xff;
   3091 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
   3092 		}
   3093 
   3094 		printf("\n");
   3095 
   3096 		if (c < 16)
   3097 			break;
   3098 	}
   3099 }
   3100 
   3101 void
   3102 sk_dump_mbuf(struct mbuf *m)
   3103 {
   3104 	int count = m->m_pkthdr.len;
   3105 
   3106 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
   3107 
   3108 	while (count > 0 && m) {
   3109 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
   3110 		       m, m->m_data, m->m_len);
   3111 		sk_dump_bytes(mtod(m, char *), m->m_len);
   3112 
   3113 		count -= m->m_len;
   3114 		m = m->m_next;
   3115 	}
   3116 }
   3117 #endif
   3118 
   3119 static int
   3120 sk_sysctl_handler(SYSCTLFN_ARGS)
   3121 {
   3122 	int error, t;
   3123 	struct sysctlnode node;
   3124 	struct sk_softc *sc;
   3125 
   3126 	node = *rnode;
   3127 	sc = node.sysctl_data;
   3128 	t = sc->sk_int_mod;
   3129 	node.sysctl_data = &t;
   3130 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3131 	if (error || newp == NULL)
   3132 		return error;
   3133 
   3134 	if (t < SK_IM_MIN || t > SK_IM_MAX)
   3135 		return EINVAL;
   3136 
   3137 	/* update the softc with sysctl-changed value, and mark
   3138 	   for hardware update */
   3139 	sc->sk_int_mod = t;
   3140 	sc->sk_int_mod_pending = 1;
   3141 	return 0;
   3142 }
   3143 
   3144 /*
   3145  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
   3146  * set up in skc_attach()
   3147  */
   3148 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
   3149 {
   3150 	int rc;
   3151 	const struct sysctlnode *node;
   3152 
   3153 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   3154 	    0, CTLTYPE_NODE, "sk",
   3155 	    SYSCTL_DESCR("sk interface controls"),
   3156 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   3157 		goto err;
   3158 	}
   3159 
   3160 	sk_root_num = node->sysctl_num;
   3161 	return;
   3162 
   3163 err:
   3164 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
   3165 }
   3166