if_sk.c revision 1.100 1 /* $NetBSD: if_sk.c,v 1.100 2019/06/03 15:49:04 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
30
31 /*
32 * Copyright (c) 1997, 1998, 1999, 2000
33 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by Bill Paul.
46 * 4. Neither the name of the author nor the names of any co-contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60 * THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63 */
64
65 /*
66 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
67 *
68 * Permission to use, copy, modify, and distribute this software for any
69 * purpose with or without fee is hereby granted, provided that the above
70 * copyright notice and this permission notice appear in all copies.
71 *
72 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79 */
80
81 /*
82 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83 * the SK-984x series adapters, both single port and dual port.
84 * References:
85 * The XaQti XMAC II datasheet,
86 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87 * The SysKonnect GEnesis manual, http://www.syskonnect.com
88 *
89 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91 * convenience to others until Vitesse corrects this problem:
92 *
93 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 *
95 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
96 * Department of Electrical Engineering
97 * Columbia University, New York City
98 */
99
100 /*
101 * The SysKonnect gigabit ethernet adapters consist of two main
102 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104 * components and a PHY while the GEnesis controller provides a PCI
105 * interface with DMA support. Each card may have between 512K and
106 * 2MB of SRAM on board depending on the configuration.
107 *
108 * The SysKonnect GEnesis controller can have either one or two XMAC
109 * chips connected to it, allowing single or dual port NIC configurations.
110 * SysKonnect has the distinction of being the only vendor on the market
111 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113 * XMAC registers. This driver takes advantage of these features to allow
114 * both XMACs to operate as independent interfaces.
115 */
116
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.100 2019/06/03 15:49:04 msaitoh Exp $");
119
120 #include <sys/param.h>
121 #include <sys/systm.h>
122 #include <sys/sockio.h>
123 #include <sys/mbuf.h>
124 #include <sys/malloc.h>
125 #include <sys/mutex.h>
126 #include <sys/kernel.h>
127 #include <sys/socket.h>
128 #include <sys/device.h>
129 #include <sys/queue.h>
130 #include <sys/callout.h>
131 #include <sys/sysctl.h>
132 #include <sys/endian.h>
133
134 #include <net/if.h>
135 #include <net/if_dl.h>
136 #include <net/if_types.h>
137
138 #include <net/if_media.h>
139
140 #include <net/bpf.h>
141 #include <sys/rndsource.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145 #include <dev/mii/brgphyreg.h>
146
147 #include <dev/pci/pcireg.h>
148 #include <dev/pci/pcivar.h>
149 #include <dev/pci/pcidevs.h>
150
151 /* #define SK_USEIOSPACE */
152
153 #include <dev/pci/if_skreg.h>
154 #include <dev/pci/if_skvar.h>
155
156 int skc_probe(device_t, cfdata_t, void *);
157 void skc_attach(device_t, device_t, void *);
158 int sk_probe(device_t, cfdata_t, void *);
159 void sk_attach(device_t, device_t, void *);
160 int skcprint(void *, const char *);
161 int sk_intr(void *);
162 void sk_intr_bcom(struct sk_if_softc *);
163 void sk_intr_xmac(struct sk_if_softc *);
164 void sk_intr_yukon(struct sk_if_softc *);
165 void sk_rxeof(struct sk_if_softc *);
166 void sk_txeof(struct sk_if_softc *);
167 int sk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
168 void sk_start(struct ifnet *);
169 int sk_ioctl(struct ifnet *, u_long, void *);
170 int sk_init(struct ifnet *);
171 void sk_unreset_xmac(struct sk_if_softc *);
172 void sk_init_xmac(struct sk_if_softc *);
173 void sk_unreset_yukon(struct sk_if_softc *);
174 void sk_init_yukon(struct sk_if_softc *);
175 void sk_stop(struct ifnet *, int);
176 void sk_watchdog(struct ifnet *);
177 void sk_shutdown(void *);
178 int sk_ifmedia_upd(struct ifnet *);
179 void sk_reset(struct sk_softc *);
180 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
181 int sk_alloc_jumbo_mem(struct sk_if_softc *);
182 void sk_free_jumbo_mem(struct sk_if_softc *);
183 void *sk_jalloc(struct sk_if_softc *);
184 void sk_jfree(struct mbuf *, void *, size_t, void *);
185 int sk_init_rx_ring(struct sk_if_softc *);
186 int sk_init_tx_ring(struct sk_if_softc *);
187 uint8_t sk_vpd_readbyte(struct sk_softc *, int);
188 void sk_vpd_read_res(struct sk_softc *,
189 struct vpd_res *, int);
190 void sk_vpd_read(struct sk_softc *);
191
192 void sk_update_int_mod(struct sk_softc *);
193
194 int sk_xmac_miibus_readreg(device_t, int, int, uint16_t *);
195 int sk_xmac_miibus_writereg(device_t, int, int, uint16_t);
196 void sk_xmac_miibus_statchg(struct ifnet *);
197
198 int sk_marv_miibus_readreg(device_t, int, int, uint16_t *);
199 int sk_marv_miibus_writereg(device_t, int, int, uint16_t);
200 void sk_marv_miibus_statchg(struct ifnet *);
201
202 uint32_t sk_xmac_hash(void *);
203 uint32_t sk_yukon_hash(void *);
204 void sk_setfilt(struct sk_if_softc *, void *, int);
205 void sk_setmulti(struct sk_if_softc *);
206 void sk_tick(void *);
207
208 static bool skc_suspend(device_t, const pmf_qual_t *);
209 static bool skc_resume(device_t, const pmf_qual_t *);
210 static bool sk_resume(device_t dv, const pmf_qual_t *);
211
212 /* #define SK_DEBUG 2 */
213 #ifdef SK_DEBUG
214 #define DPRINTF(x) if (skdebug) printf x
215 #define DPRINTFN(n, x) if (skdebug >= (n)) printf x
216 int skdebug = SK_DEBUG;
217
218 void sk_dump_txdesc(struct sk_tx_desc *, int);
219 void sk_dump_mbuf(struct mbuf *);
220 void sk_dump_bytes(const char *, int);
221 #else
222 #define DPRINTF(x)
223 #define DPRINTFN(n, x)
224 #endif
225
226 static int sk_sysctl_handler(SYSCTLFN_PROTO);
227 static int sk_root_num;
228
229 /* supported device vendors */
230 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
231 static const struct sk_product {
232 pci_vendor_id_t sk_vendor;
233 pci_product_id_t sk_product;
234 } sk_products[] = {
235 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
236 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
237 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
238 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
239 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
240 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
241 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
242 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
243 { 0, 0, }
244 };
245
246 #define SK_LINKSYS_EG1032_SUBID 0x00151737
247
248 static inline uint32_t
249 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
250 {
251 #ifdef SK_USEIOSPACE
252 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
253 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
254 #else
255 return CSR_READ_4(sc, reg);
256 #endif
257 }
258
259 static inline uint16_t
260 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
261 {
262 #ifdef SK_USEIOSPACE
263 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
264 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
265 #else
266 return CSR_READ_2(sc, reg);
267 #endif
268 }
269
270 static inline uint8_t
271 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
272 {
273 #ifdef SK_USEIOSPACE
274 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
275 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
276 #else
277 return CSR_READ_1(sc, reg);
278 #endif
279 }
280
281 static inline void
282 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
283 {
284 #ifdef SK_USEIOSPACE
285 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
286 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
287 #else
288 CSR_WRITE_4(sc, reg, x);
289 #endif
290 }
291
292 static inline void
293 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
294 {
295 #ifdef SK_USEIOSPACE
296 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
297 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
298 #else
299 CSR_WRITE_2(sc, reg, x);
300 #endif
301 }
302
303 static inline void
304 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
305 {
306 #ifdef SK_USEIOSPACE
307 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
308 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
309 #else
310 CSR_WRITE_1(sc, reg, x);
311 #endif
312 }
313
314 /*
315 * The VPD EEPROM contains Vital Product Data, as suggested in
316 * the PCI 2.1 specification. The VPD data is separared into areas
317 * denoted by resource IDs. The SysKonnect VPD contains an ID string
318 * resource (the name of the adapter), a read-only area resource
319 * containing various key/data fields and a read/write area which
320 * can be used to store asset management information or log messages.
321 * We read the ID string and read-only into buffers attached to
322 * the controller softc structure for later use. At the moment,
323 * we only use the ID string during sk_attach().
324 */
325 uint8_t
326 sk_vpd_readbyte(struct sk_softc *sc, int addr)
327 {
328 int i;
329
330 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
331 for (i = 0; i < SK_TIMEOUT; i++) {
332 DELAY(1);
333 if (sk_win_read_2(sc,
334 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
335 break;
336 }
337
338 if (i == SK_TIMEOUT)
339 return 0;
340
341 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
342 }
343
344 void
345 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
346 {
347 int i;
348 uint8_t *ptr;
349
350 ptr = (uint8_t *)res;
351 for (i = 0; i < sizeof(struct vpd_res); i++)
352 ptr[i] = sk_vpd_readbyte(sc, i + addr);
353 }
354
355 void
356 sk_vpd_read(struct sk_softc *sc)
357 {
358 int pos = 0, i;
359 struct vpd_res res;
360
361 if (sc->sk_vpd_prodname != NULL)
362 free(sc->sk_vpd_prodname, M_DEVBUF);
363 if (sc->sk_vpd_readonly != NULL)
364 free(sc->sk_vpd_readonly, M_DEVBUF);
365 sc->sk_vpd_prodname = NULL;
366 sc->sk_vpd_readonly = NULL;
367
368 sk_vpd_read_res(sc, &res, pos);
369
370 if (res.vr_id != VPD_RES_ID) {
371 aprint_error_dev(sc->sk_dev,
372 "bad VPD resource id: expected %x got %x\n",
373 VPD_RES_ID, res.vr_id);
374 return;
375 }
376
377 pos += sizeof(res);
378 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
379 if (sc->sk_vpd_prodname == NULL)
380 panic("sk_vpd_read");
381 for (i = 0; i < res.vr_len; i++)
382 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
383 sc->sk_vpd_prodname[i] = '\0';
384 pos += i;
385
386 sk_vpd_read_res(sc, &res, pos);
387
388 if (res.vr_id != VPD_RES_READ) {
389 aprint_error_dev(sc->sk_dev,
390 "bad VPD resource id: expected %x got %x\n",
391 VPD_RES_READ, res.vr_id);
392 return;
393 }
394
395 pos += sizeof(res);
396 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
397 if (sc->sk_vpd_readonly == NULL)
398 panic("sk_vpd_read");
399 for (i = 0; i < res.vr_len ; i++)
400 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
401 }
402
403 int
404 sk_xmac_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
405 {
406 struct sk_if_softc *sc_if = device_private(dev);
407 int i;
408
409 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
410
411 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
412 return -1;
413
414 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
415 SK_XM_READ_2(sc_if, XM_PHY_DATA);
416 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
417 for (i = 0; i < SK_TIMEOUT; i++) {
418 DELAY(1);
419 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
420 XM_MMUCMD_PHYDATARDY)
421 break;
422 }
423
424 if (i == SK_TIMEOUT) {
425 aprint_error_dev(sc_if->sk_dev,
426 "phy failed to come ready\n");
427 return ETIMEDOUT;
428 }
429 }
430 DELAY(1);
431 *val = SK_XM_READ_2(sc_if, XM_PHY_DATA);
432 return 0;
433 }
434
435 int
436 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
437 {
438 struct sk_if_softc *sc_if = device_private(dev);
439 int i;
440
441 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
442
443 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
444 for (i = 0; i < SK_TIMEOUT; i++) {
445 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
446 break;
447 }
448
449 if (i == SK_TIMEOUT) {
450 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
451 return ETIMEDOUT;
452 }
453
454 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
455 for (i = 0; i < SK_TIMEOUT; i++) {
456 DELAY(1);
457 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
458 break;
459 }
460
461 if (i == SK_TIMEOUT) {
462 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
463 return ETIMEDOUT;
464 }
465
466 return 0;
467 }
468
469 void
470 sk_xmac_miibus_statchg(struct ifnet *ifp)
471 {
472 struct sk_if_softc *sc_if = ifp->if_softc;
473 struct mii_data *mii = &sc_if->sk_mii;
474
475 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
476
477 /*
478 * If this is a GMII PHY, manually set the XMAC's
479 * duplex mode accordingly.
480 */
481 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
482 if ((mii->mii_media_active & IFM_FDX) != 0)
483 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
484 else
485 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
486 }
487 }
488
489 int
490 sk_marv_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
491 {
492 struct sk_if_softc *sc_if = device_private(dev);
493 uint16_t data;
494 int i;
495
496 if (phy != 0 ||
497 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
498 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
499 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
500 phy, reg));
501 return -1;
502 }
503
504 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
505 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
506
507 for (i = 0; i < SK_TIMEOUT; i++) {
508 DELAY(1);
509 data = SK_YU_READ_2(sc_if, YUKON_SMICR);
510 if (data & YU_SMICR_READ_VALID)
511 break;
512 }
513
514 if (i == SK_TIMEOUT) {
515 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
516 return ETIMEDOUT;
517 }
518
519 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
520 SK_TIMEOUT));
521
522 *val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
523
524 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
525 phy, reg, *val));
526
527 return 0;
528 }
529
530 int
531 sk_marv_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
532 {
533 struct sk_if_softc *sc_if = device_private(dev);
534 int i;
535
536 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#hx\n",
537 phy, reg, val));
538
539 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
540 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
541 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
542
543 for (i = 0; i < SK_TIMEOUT; i++) {
544 DELAY(1);
545 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
546 break;
547 }
548
549 if (i == SK_TIMEOUT) {
550 printf("%s: phy write timed out\n",
551 device_xname(sc_if->sk_dev));
552 return ETIMEDOUT;
553 }
554
555 return 0;
556 }
557
558 void
559 sk_marv_miibus_statchg(struct ifnet *ifp)
560 {
561 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
562 SK_YU_READ_2(((struct sk_if_softc *)ifp->if_softc),
563 YUKON_GPCR)));
564 }
565
566 uint32_t
567 sk_xmac_hash(void *addr)
568 {
569 uint32_t crc;
570
571 crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
572 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
573 DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
574 return crc;
575 }
576
577 uint32_t
578 sk_yukon_hash(void *addr)
579 {
580 uint32_t crc;
581
582 crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
583 crc &= ((1 << SK_HASH_BITS) - 1);
584 DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
585 return crc;
586 }
587
588 void
589 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
590 {
591 char *addr = addrv;
592 int base = XM_RXFILT_ENTRY(slot);
593
594 SK_XM_WRITE_2(sc_if, base, *(uint16_t *)(&addr[0]));
595 SK_XM_WRITE_2(sc_if, base + 2, *(uint16_t *)(&addr[2]));
596 SK_XM_WRITE_2(sc_if, base + 4, *(uint16_t *)(&addr[4]));
597 }
598
599 void
600 sk_setmulti(struct sk_if_softc *sc_if)
601 {
602 struct sk_softc *sc = sc_if->sk_softc;
603 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
604 uint32_t hashes[2] = { 0, 0 };
605 int h = 0, i;
606 struct ethercom *ec = &sc_if->sk_ethercom;
607 struct ether_multi *enm;
608 struct ether_multistep step;
609 uint8_t dummy[] = { 0, 0, 0, 0, 0, 0 };
610
611 /* First, zot all the existing filters. */
612 switch (sc->sk_type) {
613 case SK_GENESIS:
614 for (i = 1; i < XM_RXFILT_MAX; i++)
615 sk_setfilt(sc_if, (void *)&dummy, i);
616
617 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
618 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
619 break;
620 case SK_YUKON:
621 case SK_YUKON_LITE:
622 case SK_YUKON_LP:
623 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
624 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
625 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
626 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
627 break;
628 }
629
630 /* Now program new ones. */
631 allmulti:
632 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
633 hashes[0] = 0xFFFFFFFF;
634 hashes[1] = 0xFFFFFFFF;
635 } else {
636 i = 1;
637 /* First find the tail of the list. */
638 ETHER_LOCK(ec);
639 ETHER_FIRST_MULTI(step, ec, enm);
640 while (enm != NULL) {
641 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
642 ETHER_ADDR_LEN)) {
643 ifp->if_flags |= IFF_ALLMULTI;
644 ETHER_UNLOCK(ec);
645 goto allmulti;
646 }
647 DPRINTFN(2,("multicast address %s\n",
648 ether_sprintf(enm->enm_addrlo)));
649 /*
650 * Program the first XM_RXFILT_MAX multicast groups
651 * into the perfect filter. For all others,
652 * use the hash table.
653 */
654 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
655 sk_setfilt(sc_if, enm->enm_addrlo, i);
656 i++;
657 }
658 else {
659 switch (sc->sk_type) {
660 case SK_GENESIS:
661 h = sk_xmac_hash(enm->enm_addrlo);
662 break;
663 case SK_YUKON:
664 case SK_YUKON_LITE:
665 case SK_YUKON_LP:
666 h = sk_yukon_hash(enm->enm_addrlo);
667 break;
668 }
669 if (h < 32)
670 hashes[0] |= (1 << h);
671 else
672 hashes[1] |= (1 << (h - 32));
673 }
674
675 ETHER_NEXT_MULTI(step, enm);
676 }
677 ETHER_UNLOCK(ec);
678 }
679
680 switch (sc->sk_type) {
681 case SK_GENESIS:
682 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH |
683 XM_MODE_RX_USE_PERFECT);
684 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
685 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
686 break;
687 case SK_YUKON:
688 case SK_YUKON_LITE:
689 case SK_YUKON_LP:
690 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
691 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
692 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
693 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
694 break;
695 }
696 }
697
698 int
699 sk_init_rx_ring(struct sk_if_softc *sc_if)
700 {
701 struct sk_chain_data *cd = &sc_if->sk_cdata;
702 struct sk_ring_data *rd = sc_if->sk_rdata;
703 int i;
704
705 memset((char *)rd->sk_rx_ring, 0,
706 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
707
708 for (i = 0; i < SK_RX_RING_CNT; i++) {
709 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
710 if (i == (SK_RX_RING_CNT - 1)) {
711 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
712 rd->sk_rx_ring[i].sk_next =
713 htole32(SK_RX_RING_ADDR(sc_if, 0));
714 } else {
715 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
716 rd->sk_rx_ring[i].sk_next =
717 htole32(SK_RX_RING_ADDR(sc_if, i+1));
718 }
719 }
720
721 for (i = 0; i < SK_RX_RING_CNT; i++) {
722 if (sk_newbuf(sc_if, i, NULL,
723 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
724 aprint_error_dev(sc_if->sk_dev,
725 "failed alloc of %dth mbuf\n", i);
726 return ENOBUFS;
727 }
728 }
729 sc_if->sk_cdata.sk_rx_prod = 0;
730 sc_if->sk_cdata.sk_rx_cons = 0;
731
732 return 0;
733 }
734
735 int
736 sk_init_tx_ring(struct sk_if_softc *sc_if)
737 {
738 struct sk_chain_data *cd = &sc_if->sk_cdata;
739 struct sk_ring_data *rd = sc_if->sk_rdata;
740 int i;
741
742 memset(sc_if->sk_rdata->sk_tx_ring, 0,
743 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
744
745 for (i = 0; i < SK_TX_RING_CNT; i++) {
746 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
747 if (i == (SK_TX_RING_CNT - 1)) {
748 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
749 rd->sk_tx_ring[i].sk_next =
750 htole32(SK_TX_RING_ADDR(sc_if, 0));
751 } else {
752 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
753 rd->sk_tx_ring[i].sk_next =
754 htole32(SK_TX_RING_ADDR(sc_if, i+1));
755 }
756 }
757
758 sc_if->sk_cdata.sk_tx_prod = 0;
759 sc_if->sk_cdata.sk_tx_cons = 0;
760 sc_if->sk_cdata.sk_tx_cnt = 0;
761
762 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
763 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
764
765 return 0;
766 }
767
768 int
769 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
770 bus_dmamap_t dmamap)
771 {
772 struct mbuf *m_new = NULL;
773 struct sk_chain *c;
774 struct sk_rx_desc *r;
775
776 if (m == NULL) {
777 void *buf = NULL;
778
779 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
780 if (m_new == NULL) {
781 aprint_error_dev(sc_if->sk_dev,
782 "no memory for rx list -- packet dropped!\n");
783 return ENOBUFS;
784 }
785
786 /* Allocate the jumbo buffer */
787 buf = sk_jalloc(sc_if);
788 if (buf == NULL) {
789 m_freem(m_new);
790 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
791 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
792 return ENOBUFS;
793 }
794
795 /* Attach the buffer to the mbuf */
796 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
797 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
798
799 } else {
800 /*
801 * We're re-using a previously allocated mbuf;
802 * be sure to re-init pointers and lengths to
803 * default values.
804 */
805 m_new = m;
806 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
807 m_new->m_data = m_new->m_ext.ext_buf;
808 }
809 m_adj(m_new, ETHER_ALIGN);
810
811 c = &sc_if->sk_cdata.sk_rx_chain[i];
812 r = c->sk_desc;
813 c->sk_mbuf = m_new;
814 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
815 (((vaddr_t)m_new->m_data
816 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
817 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
818
819 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
820
821 return 0;
822 }
823
824 /*
825 * Memory management for jumbo frames.
826 */
827
828 int
829 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
830 {
831 struct sk_softc *sc = sc_if->sk_softc;
832 char *ptr, *kva;
833 bus_dma_segment_t seg;
834 int i, rseg, state, error;
835 struct sk_jpool_entry *entry;
836
837 state = error = 0;
838
839 /* Grab a big chunk o' storage. */
840 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
841 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
842 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
843 return ENOBUFS;
844 }
845
846 state = 1;
847 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
848 BUS_DMA_NOWAIT)) {
849 aprint_error_dev(sc->sk_dev,
850 "can't map dma buffers (%d bytes)\n",
851 SK_JMEM);
852 error = ENOBUFS;
853 goto out;
854 }
855
856 state = 2;
857 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
858 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
859 aprint_error_dev(sc->sk_dev, "can't create dma map\n");
860 error = ENOBUFS;
861 goto out;
862 }
863
864 state = 3;
865 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
866 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
867 aprint_error_dev(sc->sk_dev, "can't load dma map\n");
868 error = ENOBUFS;
869 goto out;
870 }
871
872 state = 4;
873 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
874 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
875
876 LIST_INIT(&sc_if->sk_jfree_listhead);
877 LIST_INIT(&sc_if->sk_jinuse_listhead);
878 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
879
880 /*
881 * Now divide it up into 9K pieces and save the addresses
882 * in an array.
883 */
884 ptr = sc_if->sk_cdata.sk_jumbo_buf;
885 for (i = 0; i < SK_JSLOTS; i++) {
886 sc_if->sk_cdata.sk_jslots[i] = ptr;
887 ptr += SK_JLEN;
888 entry = malloc(sizeof(struct sk_jpool_entry),
889 M_DEVBUF, M_NOWAIT);
890 if (entry == NULL) {
891 aprint_error_dev(sc->sk_dev,
892 "no memory for jumbo buffer queue!\n");
893 error = ENOBUFS;
894 goto out;
895 }
896 entry->slot = i;
897 if (i)
898 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
899 entry, jpool_entries);
900 else
901 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
902 entry, jpool_entries);
903 }
904 out:
905 if (error != 0) {
906 switch (state) {
907 case 4:
908 bus_dmamap_unload(sc->sc_dmatag,
909 sc_if->sk_cdata.sk_rx_jumbo_map);
910 /* FALLTHROUGH */
911 case 3:
912 bus_dmamap_destroy(sc->sc_dmatag,
913 sc_if->sk_cdata.sk_rx_jumbo_map);
914 /* FALLTHROUGH */
915 case 2:
916 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
917 /* FALLTHROUGH */
918 case 1:
919 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
920 break;
921 default:
922 break;
923 }
924 }
925
926 return error;
927 }
928
929 /*
930 * Allocate a jumbo buffer.
931 */
932 void *
933 sk_jalloc(struct sk_if_softc *sc_if)
934 {
935 struct sk_jpool_entry *entry;
936
937 mutex_enter(&sc_if->sk_jpool_mtx);
938 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
939
940 if (entry == NULL) {
941 mutex_exit(&sc_if->sk_jpool_mtx);
942 return NULL;
943 }
944
945 LIST_REMOVE(entry, jpool_entries);
946 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
947 mutex_exit(&sc_if->sk_jpool_mtx);
948 return sc_if->sk_cdata.sk_jslots[entry->slot];
949 }
950
951 /*
952 * Release a jumbo buffer.
953 */
954 void
955 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
956 {
957 struct sk_jpool_entry *entry;
958 struct sk_if_softc *sc;
959 int i;
960
961 /* Extract the softc struct pointer. */
962 sc = (struct sk_if_softc *)arg;
963
964 if (sc == NULL)
965 panic("sk_jfree: can't find softc pointer!");
966
967 /* calculate the slot this buffer belongs to */
968
969 i = ((vaddr_t)buf
970 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
971
972 if ((i < 0) || (i >= SK_JSLOTS))
973 panic("sk_jfree: asked to free buffer that we don't manage!");
974
975 mutex_enter(&sc->sk_jpool_mtx);
976 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
977 if (entry == NULL)
978 panic("sk_jfree: buffer not in use!");
979 entry->slot = i;
980 LIST_REMOVE(entry, jpool_entries);
981 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
982 mutex_exit(&sc->sk_jpool_mtx);
983
984 if (__predict_true(m != NULL))
985 pool_cache_put(mb_cache, m);
986 }
987
988 /*
989 * Set media options.
990 */
991 int
992 sk_ifmedia_upd(struct ifnet *ifp)
993 {
994 struct sk_if_softc *sc_if = ifp->if_softc;
995 int rc;
996
997 (void) sk_init(ifp);
998 if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
999 return 0;
1000 return rc;
1001 }
1002
1003 static void
1004 sk_promisc(struct sk_if_softc *sc_if, int on)
1005 {
1006 struct sk_softc *sc = sc_if->sk_softc;
1007 switch (sc->sk_type) {
1008 case SK_GENESIS:
1009 if (on)
1010 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1011 else
1012 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1013 break;
1014 case SK_YUKON:
1015 case SK_YUKON_LITE:
1016 case SK_YUKON_LP:
1017 if (on)
1018 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1019 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1020 else
1021 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1022 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1023 break;
1024 default:
1025 aprint_error_dev(sc_if->sk_dev, "Can't set promisc for %d\n",
1026 sc->sk_type);
1027 break;
1028 }
1029 }
1030
1031 int
1032 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
1033 {
1034 struct sk_if_softc *sc_if = ifp->if_softc;
1035 int s, error = 0;
1036
1037 /* DPRINTFN(2, ("sk_ioctl\n")); */
1038
1039 s = splnet();
1040
1041 switch (command) {
1042
1043 case SIOCSIFFLAGS:
1044 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1045 if ((error = ifioctl_common(ifp, command, data)) != 0)
1046 break;
1047 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1048 case IFF_RUNNING:
1049 sk_stop(ifp, 1);
1050 break;
1051 case IFF_UP:
1052 sk_init(ifp);
1053 break;
1054 case IFF_UP | IFF_RUNNING:
1055 if ((ifp->if_flags ^ sc_if->sk_if_flags) == IFF_PROMISC) {
1056 sk_promisc(sc_if, ifp->if_flags & IFF_PROMISC);
1057 sk_setmulti(sc_if);
1058 } else
1059 sk_init(ifp);
1060 break;
1061 }
1062 sc_if->sk_if_flags = ifp->if_flags;
1063 error = 0;
1064 break;
1065
1066 default:
1067 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1068 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1069 break;
1070
1071 error = 0;
1072
1073 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1074 ;
1075 else if (ifp->if_flags & IFF_RUNNING) {
1076 sk_setmulti(sc_if);
1077 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1078 }
1079 break;
1080 }
1081
1082 splx(s);
1083 return error;
1084 }
1085
1086 void
1087 sk_update_int_mod(struct sk_softc *sc)
1088 {
1089 uint32_t imtimer_ticks;
1090
1091 /*
1092 * Configure interrupt moderation. The moderation timer
1093 * defers interrupts specified in the interrupt moderation
1094 * timer mask based on the timeout specified in the interrupt
1095 * moderation timer init register. Each bit in the timer
1096 * register represents one tick, so to specify a timeout in
1097 * microseconds, we have to multiply by the correct number of
1098 * ticks-per-microsecond.
1099 */
1100 switch (sc->sk_type) {
1101 case SK_GENESIS:
1102 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1103 break;
1104 case SK_YUKON_EC:
1105 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1106 break;
1107 default:
1108 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1109 }
1110 aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
1111 sc->sk_int_mod);
1112 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1113 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF | SK_ISR_TX2_S_EOF |
1114 SK_ISR_RX1_EOF | SK_ISR_RX2_EOF);
1115 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1116 sc->sk_int_mod_pending = 0;
1117 }
1118
1119 /*
1120 * Lookup: Check the PCI vendor and device, and return a pointer to
1121 * The structure if the IDs match against our list.
1122 */
1123
1124 static const struct sk_product *
1125 sk_lookup(const struct pci_attach_args *pa)
1126 {
1127 const struct sk_product *psk;
1128
1129 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1130 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1131 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1132 return psk;
1133 }
1134 return NULL;
1135 }
1136
1137 /*
1138 * Probe for a SysKonnect GEnesis chip.
1139 */
1140
1141 int
1142 skc_probe(device_t parent, cfdata_t match, void *aux)
1143 {
1144 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1145 const struct sk_product *psk;
1146 pcireg_t subid;
1147
1148 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1149
1150 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1151 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1152 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1153 subid == SK_LINKSYS_EG1032_SUBID)
1154 return 1;
1155
1156 if ((psk = sk_lookup(pa))) {
1157 return 1;
1158 }
1159 return 0;
1160 }
1161
1162 /*
1163 * Force the GEnesis into reset, then bring it out of reset.
1164 */
1165 void
1166 sk_reset(struct sk_softc *sc)
1167 {
1168 DPRINTFN(2, ("sk_reset\n"));
1169
1170 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1171 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1172 if (SK_YUKON_FAMILY(sc->sk_type))
1173 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1174
1175 DELAY(1000);
1176 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1177 DELAY(2);
1178 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1179 if (SK_YUKON_FAMILY(sc->sk_type))
1180 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1181
1182 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1183 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1184 CSR_READ_2(sc, SK_LINK_CTRL)));
1185
1186 if (sc->sk_type == SK_GENESIS) {
1187 /* Configure packet arbiter */
1188 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1189 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1190 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1191 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1192 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1193 }
1194
1195 /* Enable RAM interface */
1196 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1197
1198 sk_update_int_mod(sc);
1199 }
1200
1201 int
1202 sk_probe(device_t parent, cfdata_t match, void *aux)
1203 {
1204 struct skc_attach_args *sa = aux;
1205
1206 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1207 return 0;
1208
1209 return 1;
1210 }
1211
1212 /*
1213 * Each XMAC chip is attached as a separate logical IP interface.
1214 * Single port cards will have only one logical interface of course.
1215 */
1216 void
1217 sk_attach(device_t parent, device_t self, void *aux)
1218 {
1219 struct sk_if_softc *sc_if = device_private(self);
1220 struct mii_data *mii = &sc_if->sk_mii;
1221 struct sk_softc *sc = device_private(parent);
1222 struct skc_attach_args *sa = aux;
1223 struct sk_txmap_entry *entry;
1224 struct ifnet *ifp;
1225 bus_dma_segment_t seg;
1226 bus_dmamap_t dmamap;
1227 prop_data_t data;
1228 void *kva;
1229 int i, rseg;
1230 int mii_flags = 0;
1231
1232 aprint_naive("\n");
1233
1234 sc_if->sk_dev = self;
1235 sc_if->sk_port = sa->skc_port;
1236 sc_if->sk_softc = sc;
1237 sc->sk_if[sa->skc_port] = sc_if;
1238
1239 if (sa->skc_port == SK_PORT_A)
1240 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1241 if (sa->skc_port == SK_PORT_B)
1242 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1243
1244 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1245
1246 /*
1247 * Get station address for this interface. Note that
1248 * dual port cards actually come with three station
1249 * addresses: one for each port, plus an extra. The
1250 * extra one is used by the SysKonnect driver software
1251 * as a 'virtual' station address for when both ports
1252 * are operating in failover mode. Currently we don't
1253 * use this extra address.
1254 */
1255 data = prop_dictionary_get(device_properties(self), "mac-address");
1256 if (data != NULL) {
1257 /*
1258 * Try to get the station address from device properties
1259 * first, in case the ROM is missing.
1260 */
1261 KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
1262 KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
1263 memcpy(sc_if->sk_enaddr, prop_data_data_nocopy(data),
1264 ETHER_ADDR_LEN);
1265 } else
1266 for (i = 0; i < ETHER_ADDR_LEN; i++)
1267 sc_if->sk_enaddr[i] = sk_win_read_1(sc,
1268 SK_MAC0_0 + (sa->skc_port * 8) + i);
1269
1270 aprint_normal(": Ethernet address %s\n",
1271 ether_sprintf(sc_if->sk_enaddr));
1272
1273 /*
1274 * Set up RAM buffer addresses. The NIC will have a certain
1275 * amount of SRAM on it, somewhere between 512K and 2MB. We
1276 * need to divide this up a) between the transmitter and
1277 * receiver and b) between the two XMACs, if this is a
1278 * dual port NIC. Our algorithm is to divide up the memory
1279 * evenly so that everyone gets a fair share.
1280 */
1281 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1282 uint32_t chunk, val;
1283
1284 chunk = sc->sk_ramsize / 2;
1285 val = sc->sk_rboff / sizeof(uint64_t);
1286 sc_if->sk_rx_ramstart = val;
1287 val += (chunk / sizeof(uint64_t));
1288 sc_if->sk_rx_ramend = val - 1;
1289 sc_if->sk_tx_ramstart = val;
1290 val += (chunk / sizeof(uint64_t));
1291 sc_if->sk_tx_ramend = val - 1;
1292 } else {
1293 uint32_t chunk, val;
1294
1295 chunk = sc->sk_ramsize / 4;
1296 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1297 sizeof(uint64_t);
1298 sc_if->sk_rx_ramstart = val;
1299 val += (chunk / sizeof(uint64_t));
1300 sc_if->sk_rx_ramend = val - 1;
1301 sc_if->sk_tx_ramstart = val;
1302 val += (chunk / sizeof(uint64_t));
1303 sc_if->sk_tx_ramend = val - 1;
1304 }
1305
1306 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1307 " tx_ramstart=%#x tx_ramend=%#x\n",
1308 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1309 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1310
1311 /* Read and save PHY type and set PHY address */
1312 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1313 switch (sc_if->sk_phytype) {
1314 case SK_PHYTYPE_XMAC:
1315 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1316 break;
1317 case SK_PHYTYPE_BCOM:
1318 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1319 break;
1320 case SK_PHYTYPE_MARV_COPPER:
1321 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1322 break;
1323 default:
1324 aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
1325 sc_if->sk_phytype);
1326 return;
1327 }
1328
1329 /* Allocate the descriptor queues. */
1330 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1331 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1332 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
1333 goto fail;
1334 }
1335 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1336 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1337 aprint_error_dev(sc_if->sk_dev,
1338 "can't map dma buffers (%lu bytes)\n",
1339 (u_long) sizeof(struct sk_ring_data));
1340 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1341 goto fail;
1342 }
1343 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1344 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1345 &sc_if->sk_ring_map)) {
1346 aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
1347 bus_dmamem_unmap(sc->sc_dmatag, kva,
1348 sizeof(struct sk_ring_data));
1349 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1350 goto fail;
1351 }
1352 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1353 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1354 aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
1355 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1356 bus_dmamem_unmap(sc->sc_dmatag, kva,
1357 sizeof(struct sk_ring_data));
1358 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1359 goto fail;
1360 }
1361
1362 for (i = 0; i < SK_RX_RING_CNT; i++)
1363 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1364
1365 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1366 for (i = 0; i < SK_TX_RING_CNT; i++) {
1367 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1368
1369 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1370 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1371 aprint_error_dev(sc_if->sk_dev,
1372 "Can't create TX dmamap\n");
1373 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1374 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1375 bus_dmamem_unmap(sc->sc_dmatag, kva,
1376 sizeof(struct sk_ring_data));
1377 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1378 goto fail;
1379 }
1380
1381 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1382 if (!entry) {
1383 aprint_error_dev(sc_if->sk_dev,
1384 "Can't alloc txmap entry\n");
1385 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1386 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1387 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1388 bus_dmamem_unmap(sc->sc_dmatag, kva,
1389 sizeof(struct sk_ring_data));
1390 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1391 goto fail;
1392 }
1393 entry->dmamap = dmamap;
1394 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1395 }
1396
1397 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1398 memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
1399
1400 ifp = &sc_if->sk_ethercom.ec_if;
1401 /* Try to allocate memory for jumbo buffers. */
1402 if (sk_alloc_jumbo_mem(sc_if)) {
1403 aprint_error("%s: jumbo buffer allocation failed\n",
1404 ifp->if_xname);
1405 goto fail;
1406 }
1407 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1408 | ETHERCAP_JUMBO_MTU;
1409
1410 ifp->if_softc = sc_if;
1411 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1412 ifp->if_ioctl = sk_ioctl;
1413 ifp->if_start = sk_start;
1414 ifp->if_stop = sk_stop;
1415 ifp->if_init = sk_init;
1416 ifp->if_watchdog = sk_watchdog;
1417 ifp->if_capabilities = 0;
1418 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1419 IFQ_SET_READY(&ifp->if_snd);
1420 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1421
1422 /*
1423 * Do miibus setup.
1424 */
1425 switch (sc->sk_type) {
1426 case SK_GENESIS:
1427 sk_unreset_xmac(sc_if);
1428 break;
1429 case SK_YUKON:
1430 case SK_YUKON_LITE:
1431 case SK_YUKON_LP:
1432 sk_unreset_yukon(sc_if);
1433 break;
1434 default:
1435 aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
1436 sc->sk_type);
1437 goto fail;
1438 }
1439
1440 DPRINTFN(2, ("sk_attach: 1\n"));
1441
1442 mii->mii_ifp = ifp;
1443 switch (sc->sk_type) {
1444 case SK_GENESIS:
1445 mii->mii_readreg = sk_xmac_miibus_readreg;
1446 mii->mii_writereg = sk_xmac_miibus_writereg;
1447 mii->mii_statchg = sk_xmac_miibus_statchg;
1448 break;
1449 case SK_YUKON:
1450 case SK_YUKON_LITE:
1451 case SK_YUKON_LP:
1452 mii->mii_readreg = sk_marv_miibus_readreg;
1453 mii->mii_writereg = sk_marv_miibus_writereg;
1454 mii->mii_statchg = sk_marv_miibus_statchg;
1455 mii_flags = MIIF_DOPAUSE;
1456 break;
1457 }
1458
1459 sc_if->sk_ethercom.ec_mii = mii;
1460 ifmedia_init(&mii->mii_media, 0, sk_ifmedia_upd, ether_mediastatus);
1461 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
1462 MII_OFFSET_ANY, mii_flags);
1463 if (LIST_EMPTY(&mii->mii_phys)) {
1464 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1465 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
1466 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
1467 } else
1468 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1469
1470 callout_init(&sc_if->sk_tick_ch, 0);
1471 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1472
1473 DPRINTFN(2, ("sk_attach: 1\n"));
1474
1475 /*
1476 * Call MI attach routines.
1477 */
1478 if_attach(ifp);
1479 if_deferred_start_init(ifp, NULL);
1480
1481 ether_ifattach(ifp, sc_if->sk_enaddr);
1482
1483 if (sc->rnd_attached++ == 0) {
1484 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1485 RND_TYPE_NET, RND_FLAG_DEFAULT);
1486 }
1487
1488 if (pmf_device_register(self, NULL, sk_resume))
1489 pmf_class_network_register(self, ifp);
1490 else
1491 aprint_error_dev(self, "couldn't establish power handler\n");
1492
1493 DPRINTFN(2, ("sk_attach: end\n"));
1494
1495 return;
1496
1497 fail:
1498 sc->sk_if[sa->skc_port] = NULL;
1499 }
1500
1501 int
1502 skcprint(void *aux, const char *pnp)
1503 {
1504 struct skc_attach_args *sa = aux;
1505
1506 if (pnp)
1507 aprint_normal("sk port %c at %s",
1508 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1509 else
1510 aprint_normal(" port %c",
1511 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1512 return UNCONF;
1513 }
1514
1515 /*
1516 * Attach the interface. Allocate softc structures, do ifmedia
1517 * setup and ethernet/BPF attach.
1518 */
1519 void
1520 skc_attach(device_t parent, device_t self, void *aux)
1521 {
1522 struct sk_softc *sc = device_private(self);
1523 struct pci_attach_args *pa = aux;
1524 struct skc_attach_args skca;
1525 pci_chipset_tag_t pc = pa->pa_pc;
1526 #ifndef SK_USEIOSPACE
1527 pcireg_t memtype;
1528 #endif
1529 pci_intr_handle_t ih;
1530 const char *intrstr = NULL;
1531 bus_addr_t iobase;
1532 bus_size_t iosize;
1533 int rc, sk_nodenum;
1534 uint32_t command;
1535 const char *revstr;
1536 const struct sysctlnode *node;
1537 char intrbuf[PCI_INTRSTR_LEN];
1538
1539 sc->sk_dev = self;
1540 aprint_naive("\n");
1541
1542 DPRINTFN(2, ("begin skc_attach\n"));
1543
1544 /*
1545 * Handle power management nonsense.
1546 */
1547 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1548
1549 if (command == 0x01) {
1550 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1551 if (command & SK_PSTATE_MASK) {
1552 uint32_t xiobase, membase, irq;
1553
1554 /* Save important PCI config data. */
1555 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1556 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1557 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1558
1559 /* Reset the power state. */
1560 aprint_normal_dev(sc->sk_dev,
1561 "chip is in D%d power mode -- setting to D0\n",
1562 command & SK_PSTATE_MASK);
1563 command &= 0xFFFFFFFC;
1564 pci_conf_write(pc, pa->pa_tag,
1565 SK_PCI_PWRMGMTCTRL, command);
1566
1567 /* Restore PCI config data. */
1568 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1569 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1570 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1571 }
1572 }
1573
1574 /*
1575 * The firmware might have configured the interface to revert the
1576 * byte order in all descriptors. Make that undone.
1577 */
1578 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_OURREG2);
1579 if (command & SK_REG2_REV_DESC)
1580 pci_conf_write(pc, pa->pa_tag, SK_PCI_OURREG2,
1581 command & ~SK_REG2_REV_DESC);
1582
1583 /*
1584 * Map control/status registers.
1585 */
1586 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1587 command |= PCI_COMMAND_IO_ENABLE |
1588 PCI_COMMAND_MEM_ENABLE |
1589 PCI_COMMAND_MASTER_ENABLE;
1590 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1591 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1592
1593 #ifdef SK_USEIOSPACE
1594 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1595 aprint_error(": failed to enable I/O ports!\n");
1596 return;
1597 }
1598 /*
1599 * Map control/status registers.
1600 */
1601 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1602 &sc->sk_btag, &sc->sk_bhandle,
1603 &iobase, &iosize)) {
1604 aprint_error(": can't find i/o space\n");
1605 return;
1606 }
1607 #else
1608 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1609 aprint_error(": failed to enable memory mapping!\n");
1610 return;
1611 }
1612 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1613 switch (memtype) {
1614 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1615 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1616 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1617 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1618 &iobase, &iosize) == 0)
1619 break;
1620 /* FALLTHROUGH */
1621 default:
1622 aprint_error_dev(sc->sk_dev, "can't find mem space\n");
1623 return;
1624 }
1625
1626 DPRINTFN(2, ("skc_attach: iobase=%#" PRIxPADDR ", iosize=%zx\n",
1627 iobase, iosize));
1628 #endif
1629 sc->sc_dmatag = pa->pa_dmat;
1630
1631 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1632 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1633
1634 /* bail out here if chip is not recognized */
1635 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1636 aprint_error_dev(sc->sk_dev, "unknown chip type\n");
1637 goto fail;
1638 }
1639 if (SK_IS_YUKON2(sc)) {
1640 aprint_error_dev(sc->sk_dev,
1641 "Does not support Yukon2--try msk(4).\n");
1642 goto fail;
1643 }
1644 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1645
1646 /* Allocate interrupt */
1647 if (pci_intr_map(pa, &ih)) {
1648 aprint_error(": couldn't map interrupt\n");
1649 goto fail;
1650 }
1651
1652 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1653 sc->sk_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, sk_intr,
1654 sc, device_xname(sc->sk_dev));
1655 if (sc->sk_intrhand == NULL) {
1656 aprint_error(": couldn't establish interrupt");
1657 if (intrstr != NULL)
1658 aprint_error(" at %s", intrstr);
1659 aprint_error("\n");
1660 goto fail;
1661 }
1662 aprint_normal(": %s\n", intrstr);
1663
1664 /* Reset the adapter. */
1665 sk_reset(sc);
1666
1667 /* Read and save vital product data from EEPROM. */
1668 sk_vpd_read(sc);
1669
1670 if (sc->sk_type == SK_GENESIS) {
1671 uint8_t val = sk_win_read_1(sc, SK_EPROM0);
1672 /* Read and save RAM size and RAMbuffer offset */
1673 switch (val) {
1674 case SK_RAMSIZE_512K_64:
1675 sc->sk_ramsize = 0x80000;
1676 sc->sk_rboff = SK_RBOFF_0;
1677 break;
1678 case SK_RAMSIZE_1024K_64:
1679 sc->sk_ramsize = 0x100000;
1680 sc->sk_rboff = SK_RBOFF_80000;
1681 break;
1682 case SK_RAMSIZE_1024K_128:
1683 sc->sk_ramsize = 0x100000;
1684 sc->sk_rboff = SK_RBOFF_0;
1685 break;
1686 case SK_RAMSIZE_2048K_128:
1687 sc->sk_ramsize = 0x200000;
1688 sc->sk_rboff = SK_RBOFF_0;
1689 break;
1690 default:
1691 aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
1692 val);
1693 goto fail_1;
1694 break;
1695 }
1696
1697 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1698 sc->sk_ramsize, sc->sk_ramsize / 1024,
1699 sc->sk_rboff));
1700 } else {
1701 uint8_t val = sk_win_read_1(sc, SK_EPROM0);
1702 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1703 sc->sk_rboff = SK_RBOFF_0;
1704
1705 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1706 sc->sk_ramsize / 1024, sc->sk_ramsize,
1707 sc->sk_rboff));
1708 }
1709
1710 /* Read and save physical media type */
1711 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1712 case SK_PMD_1000BASESX:
1713 sc->sk_pmd = IFM_1000_SX;
1714 break;
1715 case SK_PMD_1000BASELX:
1716 sc->sk_pmd = IFM_1000_LX;
1717 break;
1718 case SK_PMD_1000BASECX:
1719 sc->sk_pmd = IFM_1000_CX;
1720 break;
1721 case SK_PMD_1000BASETX:
1722 case SK_PMD_1000BASETX_ALT:
1723 sc->sk_pmd = IFM_1000_T;
1724 break;
1725 default:
1726 aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
1727 sk_win_read_1(sc, SK_PMDTYPE));
1728 goto fail_1;
1729 }
1730
1731 /* determine whether to name it with vpd or just make it up */
1732 /* Marvell Yukon VPD's can freqently be bogus */
1733
1734 switch (pa->pa_id) {
1735 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1736 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1737 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1738 case PCI_PRODUCT_3COM_3C940:
1739 case PCI_PRODUCT_DLINK_DGE530T:
1740 case PCI_PRODUCT_DLINK_DGE560T:
1741 case PCI_PRODUCT_DLINK_DGE560T_2:
1742 case PCI_PRODUCT_LINKSYS_EG1032:
1743 case PCI_PRODUCT_LINKSYS_EG1064:
1744 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1745 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1746 case PCI_ID_CODE(PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940):
1747 case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T):
1748 case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T):
1749 case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2):
1750 case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032):
1751 case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064):
1752 sc->sk_name = sc->sk_vpd_prodname;
1753 break;
1754 case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET):
1755 /* whoops yukon vpd prodname bears no resemblance to reality */
1756 switch (sc->sk_type) {
1757 case SK_GENESIS:
1758 sc->sk_name = sc->sk_vpd_prodname;
1759 break;
1760 case SK_YUKON:
1761 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1762 break;
1763 case SK_YUKON_LITE:
1764 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1765 break;
1766 case SK_YUKON_LP:
1767 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1768 break;
1769 default:
1770 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1771 }
1772
1773 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1774
1775 if ( sc->sk_type == SK_YUKON ) {
1776 uint32_t flashaddr;
1777 uint8_t testbyte;
1778
1779 flashaddr = sk_win_read_4(sc, SK_EP_ADDR);
1780
1781 /* test Flash-Address Register */
1782 sk_win_write_1(sc, SK_EP_ADDR+3, 0xff);
1783 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1784
1785 if (testbyte != 0) {
1786 /* this is yukon lite Rev. A0 */
1787 sc->sk_type = SK_YUKON_LITE;
1788 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1789 /* restore Flash-Address Register */
1790 sk_win_write_4(sc, SK_EP_ADDR, flashaddr);
1791 }
1792 }
1793 break;
1794 case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN):
1795 sc->sk_name = sc->sk_vpd_prodname;
1796 break;
1797 default:
1798 sc->sk_name = "Unknown Marvell";
1799 }
1800
1801
1802 if ( sc->sk_type == SK_YUKON_LITE ) {
1803 switch (sc->sk_rev) {
1804 case SK_YUKON_LITE_REV_A0:
1805 revstr = "A0";
1806 break;
1807 case SK_YUKON_LITE_REV_A1:
1808 revstr = "A1";
1809 break;
1810 case SK_YUKON_LITE_REV_A3:
1811 revstr = "A3";
1812 break;
1813 default:
1814 revstr = "";
1815 }
1816 } else {
1817 revstr = "";
1818 }
1819
1820 /* Announce the product name. */
1821 aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
1822 sc->sk_name, revstr, sc->sk_rev);
1823
1824 skca.skc_port = SK_PORT_A;
1825 (void)config_found(sc->sk_dev, &skca, skcprint);
1826
1827 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1828 skca.skc_port = SK_PORT_B;
1829 (void)config_found(sc->sk_dev, &skca, skcprint);
1830 }
1831
1832 /* Turn on the 'driver is loaded' LED. */
1833 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1834
1835 /* skc sysctl setup */
1836
1837 sc->sk_int_mod = SK_IM_DEFAULT;
1838 sc->sk_int_mod_pending = 0;
1839
1840 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1841 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1842 SYSCTL_DESCR("skc per-controller controls"),
1843 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1844 CTL_EOL)) != 0) {
1845 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1846 goto fail_1;
1847 }
1848
1849 sk_nodenum = node->sysctl_num;
1850
1851 /* interrupt moderation time in usecs */
1852 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1853 CTLFLAG_READWRITE,
1854 CTLTYPE_INT, "int_mod",
1855 SYSCTL_DESCR("sk interrupt moderation timer"),
1856 sk_sysctl_handler, 0, (void *)sc,
1857 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1858 CTL_EOL)) != 0) {
1859 aprint_normal_dev(sc->sk_dev,
1860 "couldn't create int_mod sysctl node\n");
1861 goto fail_1;
1862 }
1863
1864 if (!pmf_device_register(self, skc_suspend, skc_resume))
1865 aprint_error_dev(self, "couldn't establish power handler\n");
1866
1867 return;
1868
1869 fail_1:
1870 pci_intr_disestablish(pc, sc->sk_intrhand);
1871 fail:
1872 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1873 }
1874
1875 int
1876 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1877 {
1878 struct sk_softc *sc = sc_if->sk_softc;
1879 struct sk_tx_desc *f = NULL;
1880 uint32_t frag, cur, cnt = 0, sk_ctl;
1881 int i;
1882 struct sk_txmap_entry *entry;
1883 bus_dmamap_t txmap;
1884
1885 DPRINTFN(3, ("sk_encap\n"));
1886
1887 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1888 if (entry == NULL) {
1889 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1890 return ENOBUFS;
1891 }
1892 txmap = entry->dmamap;
1893
1894 cur = frag = *txidx;
1895
1896 #ifdef SK_DEBUG
1897 if (skdebug >= 3)
1898 sk_dump_mbuf(m_head);
1899 #endif
1900
1901 /*
1902 * Start packing the mbufs in this chain into
1903 * the fragment pointers. Stop when we run out
1904 * of fragments or hit the end of the mbuf chain.
1905 */
1906 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1907 BUS_DMA_NOWAIT)) {
1908 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1909 return ENOBUFS;
1910 }
1911
1912 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1913
1914 /* Sync the DMA map. */
1915 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1916 BUS_DMASYNC_PREWRITE);
1917
1918 for (i = 0; i < txmap->dm_nsegs; i++) {
1919 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1920 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1921 return ENOBUFS;
1922 }
1923 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1924 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1925 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1926 if (cnt == 0)
1927 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1928 else
1929 sk_ctl |= SK_TXCTL_OWN;
1930 f->sk_ctl = htole32(sk_ctl);
1931 cur = frag;
1932 SK_INC(frag, SK_TX_RING_CNT);
1933 cnt++;
1934 }
1935
1936 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1937 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1938
1939 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1940 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1941 htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
1942
1943 /* Sync descriptors before handing to chip */
1944 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1945 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1946
1947 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1948 htole32(SK_TXCTL_OWN);
1949
1950 /* Sync first descriptor to hand it off */
1951 SK_CDTXSYNC(sc_if, *txidx, 1,
1952 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1953
1954 sc_if->sk_cdata.sk_tx_cnt += cnt;
1955
1956 #ifdef SK_DEBUG
1957 if (skdebug >= 3) {
1958 struct sk_tx_desc *desc;
1959 uint32_t idx;
1960 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1961 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1962 sk_dump_txdesc(desc, idx);
1963 }
1964 }
1965 #endif
1966
1967 *txidx = frag;
1968
1969 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1970
1971 return 0;
1972 }
1973
1974 void
1975 sk_start(struct ifnet *ifp)
1976 {
1977 struct sk_if_softc *sc_if = ifp->if_softc;
1978 struct sk_softc *sc = sc_if->sk_softc;
1979 struct mbuf *m_head = NULL;
1980 uint32_t idx = sc_if->sk_cdata.sk_tx_prod;
1981 int pkts = 0;
1982
1983 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1984 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1985
1986 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1987 IFQ_POLL(&ifp->if_snd, m_head);
1988 if (m_head == NULL)
1989 break;
1990
1991 /*
1992 * Pack the data into the transmit ring. If we
1993 * don't have room, set the OACTIVE flag and wait
1994 * for the NIC to drain the ring.
1995 */
1996 if (sk_encap(sc_if, m_head, &idx)) {
1997 ifp->if_flags |= IFF_OACTIVE;
1998 break;
1999 }
2000
2001 /* now we are committed to transmit the packet */
2002 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2003 pkts++;
2004
2005 /*
2006 * If there's a BPF listener, bounce a copy of this frame
2007 * to him.
2008 */
2009 bpf_mtap(ifp, m_head, BPF_D_OUT);
2010 }
2011 if (pkts == 0)
2012 return;
2013
2014 /* Transmit */
2015 if (idx != sc_if->sk_cdata.sk_tx_prod) {
2016 sc_if->sk_cdata.sk_tx_prod = idx;
2017 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2018
2019 /* Set a timeout in case the chip goes out to lunch. */
2020 ifp->if_timer = 5;
2021 }
2022 }
2023
2024
2025 void
2026 sk_watchdog(struct ifnet *ifp)
2027 {
2028 struct sk_if_softc *sc_if = ifp->if_softc;
2029
2030 /*
2031 * Reclaim first as there is a possibility of losing Tx completion
2032 * interrupts.
2033 */
2034 sk_txeof(sc_if);
2035 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2036 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
2037
2038 ifp->if_oerrors++;
2039
2040 sk_init(ifp);
2041 }
2042 }
2043
2044 void
2045 sk_shutdown(void *v)
2046 {
2047 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
2048 struct sk_softc *sc = sc_if->sk_softc;
2049 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2050
2051 DPRINTFN(2, ("sk_shutdown\n"));
2052 sk_stop(ifp, 1);
2053
2054 /* Turn off the 'driver is loaded' LED. */
2055 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2056
2057 /*
2058 * Reset the GEnesis controller. Doing this should also
2059 * assert the resets on the attached XMAC(s).
2060 */
2061 sk_reset(sc);
2062 }
2063
2064 void
2065 sk_rxeof(struct sk_if_softc *sc_if)
2066 {
2067 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2068 struct mbuf *m;
2069 struct sk_chain *cur_rx;
2070 struct sk_rx_desc *cur_desc;
2071 int i, cur, total_len = 0;
2072 uint32_t rxstat, sk_ctl;
2073 bus_dmamap_t dmamap;
2074
2075 i = sc_if->sk_cdata.sk_rx_prod;
2076
2077 DPRINTFN(3, ("sk_rxeof %d\n", i));
2078
2079 for (;;) {
2080 cur = i;
2081
2082 /* Sync the descriptor */
2083 SK_CDRXSYNC(sc_if, cur,
2084 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2085
2086 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2087 if (sk_ctl & SK_RXCTL_OWN) {
2088 /* Invalidate the descriptor -- it's not ready yet */
2089 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2090 sc_if->sk_cdata.sk_rx_prod = i;
2091 break;
2092 }
2093
2094 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2095 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2096 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2097
2098 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2099 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2100
2101 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2102 m = cur_rx->sk_mbuf;
2103 cur_rx->sk_mbuf = NULL;
2104 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2105
2106 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2107
2108 SK_INC(i, SK_RX_RING_CNT);
2109
2110 if (rxstat & XM_RXSTAT_ERRFRAME) {
2111 ifp->if_ierrors++;
2112 sk_newbuf(sc_if, cur, m, dmamap);
2113 continue;
2114 }
2115
2116 /*
2117 * Try to allocate a new jumbo buffer. If that
2118 * fails, copy the packet to mbufs and put the
2119 * jumbo buffer back in the ring so it can be
2120 * re-used. If allocating mbufs fails, then we
2121 * have to drop the packet.
2122 */
2123 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2124 struct mbuf *m0;
2125 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2126 total_len + ETHER_ALIGN, 0, ifp);
2127 sk_newbuf(sc_if, cur, m, dmamap);
2128 if (m0 == NULL) {
2129 aprint_error_dev(sc_if->sk_dev, "no receive "
2130 "buffers available -- packet dropped!\n");
2131 ifp->if_ierrors++;
2132 continue;
2133 }
2134 m_adj(m0, ETHER_ALIGN);
2135 m = m0;
2136 } else {
2137 m_set_rcvif(m, ifp);
2138 m->m_pkthdr.len = m->m_len = total_len;
2139 }
2140
2141 /* pass it on. */
2142 if_percpuq_enqueue(ifp->if_percpuq, m);
2143 }
2144 }
2145
2146 void
2147 sk_txeof(struct sk_if_softc *sc_if)
2148 {
2149 struct sk_softc *sc = sc_if->sk_softc;
2150 struct sk_tx_desc *cur_tx;
2151 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2152 uint32_t idx, sk_ctl;
2153 struct sk_txmap_entry *entry;
2154
2155 DPRINTFN(3, ("sk_txeof\n"));
2156
2157 /*
2158 * Go through our tx ring and free mbufs for those
2159 * frames that have been sent.
2160 */
2161 idx = sc_if->sk_cdata.sk_tx_cons;
2162 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2163 SK_CDTXSYNC(sc_if, idx, 1,
2164 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2165
2166 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2167 sk_ctl = le32toh(cur_tx->sk_ctl);
2168 #ifdef SK_DEBUG
2169 if (skdebug >= 3)
2170 sk_dump_txdesc(cur_tx, idx);
2171 #endif
2172 if (sk_ctl & SK_TXCTL_OWN) {
2173 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2174 break;
2175 }
2176 if (sk_ctl & SK_TXCTL_LASTFRAG)
2177 ifp->if_opackets++;
2178 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2179 entry = sc_if->sk_cdata.sk_tx_map[idx];
2180
2181 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2182 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2183
2184 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2185 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2186
2187 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2188 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2189 link);
2190 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2191 }
2192 sc_if->sk_cdata.sk_tx_cnt--;
2193 SK_INC(idx, SK_TX_RING_CNT);
2194 }
2195 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2196 ifp->if_timer = 0;
2197 else /* nudge chip to keep tx ring moving */
2198 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2199
2200 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2201 ifp->if_flags &= ~IFF_OACTIVE;
2202
2203 sc_if->sk_cdata.sk_tx_cons = idx;
2204 }
2205
2206 void
2207 sk_tick(void *xsc_if)
2208 {
2209 struct sk_if_softc *sc_if = xsc_if;
2210 struct mii_data *mii = &sc_if->sk_mii;
2211 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2212 int i;
2213
2214 DPRINTFN(3, ("sk_tick\n"));
2215
2216 if (!(ifp->if_flags & IFF_UP))
2217 return;
2218
2219 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2220 sk_intr_bcom(sc_if);
2221 return;
2222 }
2223
2224 /*
2225 * According to SysKonnect, the correct way to verify that
2226 * the link has come back up is to poll bit 0 of the GPIO
2227 * register three times. This pin has the signal from the
2228 * link sync pin connected to it; if we read the same link
2229 * state 3 times in a row, we know the link is up.
2230 */
2231 for (i = 0; i < 3; i++) {
2232 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2233 break;
2234 }
2235
2236 if (i != 3) {
2237 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2238 return;
2239 }
2240
2241 /* Turn the GP0 interrupt back on. */
2242 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2243 SK_XM_READ_2(sc_if, XM_ISR);
2244 mii_tick(mii);
2245 if (ifp->if_link_state != LINK_STATE_UP)
2246 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2247 else
2248 callout_stop(&sc_if->sk_tick_ch);
2249 }
2250
2251 void
2252 sk_intr_bcom(struct sk_if_softc *sc_if)
2253 {
2254 struct mii_data *mii = &sc_if->sk_mii;
2255 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2256 uint16_t status;
2257
2258
2259 DPRINTFN(3, ("sk_intr_bcom\n"));
2260
2261 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2262
2263 /*
2264 * Read the PHY interrupt register to make sure
2265 * we clear any pending interrupts.
2266 */
2267 sk_xmac_miibus_readreg(sc_if->sk_dev,
2268 SK_PHYADDR_BCOM, BRGPHY_MII_ISR, &status);
2269
2270 if (!(ifp->if_flags & IFF_RUNNING)) {
2271 sk_init_xmac(sc_if);
2272 return;
2273 }
2274
2275 if (status & (BRGPHY_ISR_LNK_CHG | BRGPHY_ISR_AN_PR)) {
2276 uint16_t lstat;
2277 sk_xmac_miibus_readreg(sc_if->sk_dev,
2278 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS, &lstat);
2279
2280 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2281 (void)mii_mediachg(mii);
2282 /* Turn off the link LED. */
2283 SK_IF_WRITE_1(sc_if, 0,
2284 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2285 sc_if->sk_link = 0;
2286 } else if (status & BRGPHY_ISR_LNK_CHG) {
2287 sk_xmac_miibus_writereg(sc_if->sk_dev,
2288 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2289 mii_tick(mii);
2290 sc_if->sk_link = 1;
2291 /* Turn on the link LED. */
2292 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2293 SK_LINKLED_ON | SK_LINKLED_LINKSYNC_OFF |
2294 SK_LINKLED_BLINK_OFF);
2295 mii_pollstat(mii);
2296 } else {
2297 mii_tick(mii);
2298 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2299 }
2300 }
2301
2302 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2303 }
2304
2305 void
2306 sk_intr_xmac(struct sk_if_softc *sc_if)
2307 {
2308 uint16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2309
2310 DPRINTFN(3, ("sk_intr_xmac\n"));
2311
2312 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2313 if (status & XM_ISR_GP0_SET) {
2314 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2315 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2316 }
2317
2318 if (status & XM_ISR_AUTONEG_DONE) {
2319 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2320 }
2321 }
2322
2323 if (status & XM_IMR_TX_UNDERRUN)
2324 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2325
2326 if (status & XM_IMR_RX_OVERRUN)
2327 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2328 }
2329
2330 void
2331 sk_intr_yukon(struct sk_if_softc *sc_if)
2332 {
2333 #ifdef SK_DEBUG
2334 int status;
2335
2336 status =
2337 #endif
2338 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2339
2340 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2341 }
2342
2343 int
2344 sk_intr(void *xsc)
2345 {
2346 struct sk_softc *sc = xsc;
2347 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2348 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2349 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2350 uint32_t status;
2351 int claimed = 0;
2352
2353 if (sc_if0 != NULL)
2354 ifp0 = &sc_if0->sk_ethercom.ec_if;
2355 if (sc_if1 != NULL)
2356 ifp1 = &sc_if1->sk_ethercom.ec_if;
2357
2358 for (;;) {
2359 status = CSR_READ_4(sc, SK_ISSR);
2360 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2361
2362 if (!(status & sc->sk_intrmask))
2363 break;
2364
2365 claimed = 1;
2366
2367 /* Handle receive interrupts first. */
2368 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2369 sk_rxeof(sc_if0);
2370 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2371 SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
2372 }
2373 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2374 sk_rxeof(sc_if1);
2375 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2376 SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
2377 }
2378
2379 /* Then transmit interrupts. */
2380 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2381 sk_txeof(sc_if0);
2382 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2383 SK_TXBMU_CLR_IRQ_EOF);
2384 }
2385 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2386 sk_txeof(sc_if1);
2387 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2388 SK_TXBMU_CLR_IRQ_EOF);
2389 }
2390
2391 /* Then MAC interrupts. */
2392 if (sc_if0 && (status & SK_ISR_MAC1) &&
2393 (ifp0->if_flags & IFF_RUNNING)) {
2394 if (sc->sk_type == SK_GENESIS)
2395 sk_intr_xmac(sc_if0);
2396 else
2397 sk_intr_yukon(sc_if0);
2398 }
2399
2400 if (sc_if1 && (status & SK_ISR_MAC2) &&
2401 (ifp1->if_flags & IFF_RUNNING)) {
2402 if (sc->sk_type == SK_GENESIS)
2403 sk_intr_xmac(sc_if1);
2404 else
2405 sk_intr_yukon(sc_if1);
2406
2407 }
2408
2409 if (status & SK_ISR_EXTERNAL_REG) {
2410 if (sc_if0 != NULL &&
2411 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2412 sk_intr_bcom(sc_if0);
2413
2414 if (sc_if1 != NULL &&
2415 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2416 sk_intr_bcom(sc_if1);
2417 }
2418 }
2419
2420 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2421
2422 if (ifp0 != NULL)
2423 if_schedule_deferred_start(ifp0);
2424 if (ifp1 != NULL)
2425 if_schedule_deferred_start(ifp1);
2426
2427 KASSERT(sc->rnd_attached > 0);
2428 rnd_add_uint32(&sc->rnd_source, status);
2429
2430 if (sc->sk_int_mod_pending)
2431 sk_update_int_mod(sc);
2432
2433 return claimed;
2434 }
2435
2436 void
2437 sk_unreset_xmac(struct sk_if_softc *sc_if)
2438 {
2439 struct sk_softc *sc = sc_if->sk_softc;
2440 static const struct sk_bcom_hack bhack[] = {
2441 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2442 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2443 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2444 { 0, 0 } };
2445
2446 DPRINTFN(1, ("sk_unreset_xmac\n"));
2447
2448 /* Unreset the XMAC. */
2449 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2450 DELAY(1000);
2451
2452 /* Reset the XMAC's internal state. */
2453 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2454
2455 /* Save the XMAC II revision */
2456 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2457
2458 /*
2459 * Perform additional initialization for external PHYs,
2460 * namely for the 1000baseTX cards that use the XMAC's
2461 * GMII mode.
2462 */
2463 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2464 int i = 0;
2465 uint32_t val;
2466 uint16_t phyval;
2467
2468 /* Take PHY out of reset. */
2469 val = sk_win_read_4(sc, SK_GPIO);
2470 if (sc_if->sk_port == SK_PORT_A)
2471 val |= SK_GPIO_DIR0 | SK_GPIO_DAT0;
2472 else
2473 val |= SK_GPIO_DIR2 | SK_GPIO_DAT2;
2474 sk_win_write_4(sc, SK_GPIO, val);
2475
2476 /* Enable GMII mode on the XMAC. */
2477 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2478
2479 sk_xmac_miibus_writereg(sc_if->sk_dev,
2480 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2481 DELAY(10000);
2482 sk_xmac_miibus_writereg(sc_if->sk_dev,
2483 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2484
2485 /*
2486 * Early versions of the BCM5400 apparently have
2487 * a bug that requires them to have their reserved
2488 * registers initialized to some magic values. I don't
2489 * know what the numbers do, I'm just the messenger.
2490 */
2491 sk_xmac_miibus_readreg(sc_if->sk_dev,
2492 SK_PHYADDR_BCOM, 0x03, &phyval);
2493 if (phyval == 0x6041) {
2494 while (bhack[i].reg) {
2495 sk_xmac_miibus_writereg(sc_if->sk_dev,
2496 SK_PHYADDR_BCOM, bhack[i].reg,
2497 bhack[i].val);
2498 i++;
2499 }
2500 }
2501 }
2502 }
2503
2504 void
2505 sk_init_xmac(struct sk_if_softc *sc_if)
2506 {
2507 struct sk_softc *sc = sc_if->sk_softc;
2508 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2509
2510 sk_unreset_xmac(sc_if);
2511
2512 /* Set station address */
2513 SK_XM_WRITE_2(sc_if, XM_PAR0,
2514 *(uint16_t *)(&sc_if->sk_enaddr[0]));
2515 SK_XM_WRITE_2(sc_if, XM_PAR1,
2516 *(uint16_t *)(&sc_if->sk_enaddr[2]));
2517 SK_XM_WRITE_2(sc_if, XM_PAR2,
2518 *(uint16_t *)(&sc_if->sk_enaddr[4]));
2519 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2520
2521 if (ifp->if_flags & IFF_PROMISC)
2522 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2523 else
2524 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2525
2526 if (ifp->if_flags & IFF_BROADCAST)
2527 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2528 else
2529 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2530
2531 /* We don't need the FCS appended to the packet. */
2532 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2533
2534 /* We want short frames padded to 60 bytes. */
2535 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2536
2537 /*
2538 * Enable the reception of all error frames. This is is
2539 * a necessary evil due to the design of the XMAC. The
2540 * XMAC's receive FIFO is only 8K in size, however jumbo
2541 * frames can be up to 9000 bytes in length. When bad
2542 * frame filtering is enabled, the XMAC's RX FIFO operates
2543 * in 'store and forward' mode. For this to work, the
2544 * entire frame has to fit into the FIFO, but that means
2545 * that jumbo frames larger than 8192 bytes will be
2546 * truncated. Disabling all bad frame filtering causes
2547 * the RX FIFO to operate in streaming mode, in which
2548 * case the XMAC will start transfering frames out of the
2549 * RX FIFO as soon as the FIFO threshold is reached.
2550 */
2551 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES |
2552 XM_MODE_RX_GIANTS | XM_MODE_RX_RUNTS | XM_MODE_RX_CRCERRS |
2553 XM_MODE_RX_INRANGELEN);
2554
2555 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2556 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2557 else
2558 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2559
2560 /*
2561 * Bump up the transmit threshold. This helps hold off transmit
2562 * underruns when we're blasting traffic from both ports at once.
2563 */
2564 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2565
2566 /* Set multicast filter */
2567 sk_setmulti(sc_if);
2568
2569 /* Clear and enable interrupts */
2570 SK_XM_READ_2(sc_if, XM_ISR);
2571 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2572 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2573 else
2574 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2575
2576 /* Configure MAC arbiter */
2577 switch (sc_if->sk_xmac_rev) {
2578 case XM_XMAC_REV_B2:
2579 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2580 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2581 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2582 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2583 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2584 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2585 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2586 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2587 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2588 break;
2589 case XM_XMAC_REV_C1:
2590 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2591 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2592 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2593 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2594 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2595 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2596 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2597 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2598 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2599 break;
2600 default:
2601 break;
2602 }
2603 sk_win_write_2(sc, SK_MACARB_CTL,
2604 SK_MACARBCTL_UNRESET | SK_MACARBCTL_FASTOE_OFF);
2605
2606 sc_if->sk_link = 1;
2607 }
2608
2609 void
2610 sk_unreset_yukon(struct sk_if_softc *sc_if)
2611 {
2612 uint32_t /*mac, */phy;
2613 struct sk_softc *sc;
2614
2615 DPRINTFN(1, ("sk_unreset_yukon: start: sk_csr=%#x\n",
2616 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2617
2618 sc = sc_if->sk_softc;
2619 if (sc->sk_type == SK_YUKON_LITE &&
2620 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2621 /* Take PHY out of reset. */
2622 sk_win_write_4(sc, SK_GPIO,
2623 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9)
2624 & ~SK_GPIO_DAT9);
2625 }
2626
2627 /* GMAC and GPHY Reset */
2628 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2629
2630 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2631
2632 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2633 DELAY(1000);
2634 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2635 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2636 DELAY(1000);
2637
2638
2639 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2640
2641 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2642 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2643
2644 switch (sc_if->sk_softc->sk_pmd) {
2645 case IFM_1000_SX:
2646 case IFM_1000_LX:
2647 phy |= SK_GPHY_FIBER;
2648 break;
2649
2650 case IFM_1000_CX:
2651 case IFM_1000_T:
2652 phy |= SK_GPHY_COPPER;
2653 break;
2654 }
2655
2656 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2657
2658 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2659 DELAY(1000);
2660 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2661 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2662 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2663
2664 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2665 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2666 }
2667
2668 void
2669 sk_init_yukon(struct sk_if_softc *sc_if)
2670 {
2671 uint16_t reg;
2672 int i;
2673
2674 DPRINTFN(1, ("sk_init_yukon: start\n"));
2675 sk_unreset_yukon(sc_if);
2676
2677 /* unused read of the interrupt source register */
2678 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2679 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2680
2681 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2682 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2683 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2684
2685 /* MIB Counter Clear Mode set */
2686 reg |= YU_PAR_MIB_CLR;
2687 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2688 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2689 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2690
2691 /* MIB Counter Clear Mode clear */
2692 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2693 reg &= ~YU_PAR_MIB_CLR;
2694 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2695
2696 /* receive control reg */
2697 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2698 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2699 YU_RCR_CRCR);
2700
2701 /* transmit parameter register */
2702 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2703 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2704 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a));
2705
2706 /* serial mode register */
2707 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2708 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2709 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2710 YU_SMR_IPG_DATA(0x1e));
2711
2712 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2713 /* Setup Yukon's address */
2714 for (i = 0; i < 3; i++) {
2715 /* Write Source Address 1 (unicast filter) */
2716 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2717 sc_if->sk_enaddr[i * 2] |
2718 sc_if->sk_enaddr[i * 2 + 1] << 8);
2719 }
2720
2721 for (i = 0; i < 3; i++) {
2722 reg = sk_win_read_2(sc_if->sk_softc,
2723 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2724 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2725 }
2726
2727 /* Set multicast filter */
2728 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2729 sk_setmulti(sc_if);
2730
2731 /* enable interrupt mask for counter overflows */
2732 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2733 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2734 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2735 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2736
2737 /* Configure RX MAC FIFO */
2738 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2739 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2740
2741 /* Configure TX MAC FIFO */
2742 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2743 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2744
2745 DPRINTFN(6, ("sk_init_yukon: end\n"));
2746 }
2747
2748 /*
2749 * Note that to properly initialize any part of the GEnesis chip,
2750 * you first have to take it out of reset mode.
2751 */
2752 int
2753 sk_init(struct ifnet *ifp)
2754 {
2755 struct sk_if_softc *sc_if = ifp->if_softc;
2756 struct sk_softc *sc = sc_if->sk_softc;
2757 struct mii_data *mii = &sc_if->sk_mii;
2758 int rc = 0, s;
2759 uint32_t imr, imtimer_ticks;
2760
2761 DPRINTFN(1, ("sk_init\n"));
2762
2763 s = splnet();
2764
2765 if (ifp->if_flags & IFF_RUNNING) {
2766 splx(s);
2767 return 0;
2768 }
2769
2770 /* Cancel pending I/O and free all RX/TX buffers. */
2771 sk_stop(ifp, 0);
2772
2773 if (sc->sk_type == SK_GENESIS) {
2774 /* Configure LINK_SYNC LED */
2775 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2776 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2777 SK_LINKLED_LINKSYNC_ON);
2778
2779 /* Configure RX LED */
2780 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2781 SK_RXLEDCTL_COUNTER_START);
2782
2783 /* Configure TX LED */
2784 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2785 SK_TXLEDCTL_COUNTER_START);
2786 }
2787
2788 /* Configure I2C registers */
2789
2790 /* Configure XMAC(s) */
2791 switch (sc->sk_type) {
2792 case SK_GENESIS:
2793 sk_init_xmac(sc_if);
2794 break;
2795 case SK_YUKON:
2796 case SK_YUKON_LITE:
2797 case SK_YUKON_LP:
2798 sk_init_yukon(sc_if);
2799 break;
2800 }
2801 if ((rc = mii_mediachg(mii)) == ENXIO)
2802 rc = 0;
2803 else if (rc != 0)
2804 goto out;
2805
2806 if (sc->sk_type == SK_GENESIS) {
2807 /* Configure MAC FIFOs */
2808 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2809 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2810 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2811
2812 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2813 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2814 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2815 }
2816
2817 /* Configure transmit arbiter(s) */
2818 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2819 SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON);
2820
2821 /* Configure RAMbuffers */
2822 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2823 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2824 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2825 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2826 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2827 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2828
2829 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2830 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2831 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2832 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2833 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2834 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2835 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2836
2837 /* Configure BMUs */
2838 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2839 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2840 SK_RX_RING_ADDR(sc_if, 0));
2841 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2842
2843 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2844 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2845 SK_TX_RING_ADDR(sc_if, 0));
2846 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2847
2848 /* Init descriptors */
2849 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2850 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2851 "memory for rx buffers\n");
2852 sk_stop(ifp, 0);
2853 splx(s);
2854 return ENOBUFS;
2855 }
2856
2857 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2858 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2859 "memory for tx buffers\n");
2860 sk_stop(ifp, 0);
2861 splx(s);
2862 return ENOBUFS;
2863 }
2864
2865 /* Set interrupt moderation if changed via sysctl. */
2866 switch (sc->sk_type) {
2867 case SK_GENESIS:
2868 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2869 break;
2870 case SK_YUKON_EC:
2871 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2872 break;
2873 default:
2874 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2875 }
2876 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2877 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2878 sk_win_write_4(sc, SK_IMTIMERINIT,
2879 SK_IM_USECS(sc->sk_int_mod));
2880 aprint_verbose_dev(sc->sk_dev,
2881 "interrupt moderation is %d us\n", sc->sk_int_mod);
2882 }
2883
2884 /* Configure interrupt handling */
2885 CSR_READ_4(sc, SK_ISSR);
2886 if (sc_if->sk_port == SK_PORT_A)
2887 sc->sk_intrmask |= SK_INTRS1;
2888 else
2889 sc->sk_intrmask |= SK_INTRS2;
2890
2891 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2892
2893 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2894
2895 /* Start BMUs. */
2896 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2897
2898 if (sc->sk_type == SK_GENESIS) {
2899 /* Enable XMACs TX and RX state machines */
2900 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2901 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2902 XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2903 }
2904
2905 if (SK_YUKON_FAMILY(sc->sk_type)) {
2906 uint16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2907 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2908 #if 0
2909 /* XXX disable 100Mbps and full duplex mode? */
2910 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2911 #endif
2912 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2913 }
2914
2915
2916 ifp->if_flags |= IFF_RUNNING;
2917 ifp->if_flags &= ~IFF_OACTIVE;
2918 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2919
2920 out:
2921 splx(s);
2922 return rc;
2923 }
2924
2925 void
2926 sk_stop(struct ifnet *ifp, int disable)
2927 {
2928 struct sk_if_softc *sc_if = ifp->if_softc;
2929 struct sk_softc *sc = sc_if->sk_softc;
2930 int i;
2931
2932 DPRINTFN(1, ("sk_stop\n"));
2933
2934 callout_stop(&sc_if->sk_tick_ch);
2935
2936 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2937 uint32_t val;
2938
2939 /* Put PHY back into reset. */
2940 val = sk_win_read_4(sc, SK_GPIO);
2941 if (sc_if->sk_port == SK_PORT_A) {
2942 val |= SK_GPIO_DIR0;
2943 val &= ~SK_GPIO_DAT0;
2944 } else {
2945 val |= SK_GPIO_DIR2;
2946 val &= ~SK_GPIO_DAT2;
2947 }
2948 sk_win_write_4(sc, SK_GPIO, val);
2949 }
2950
2951 /* Turn off various components of this interface. */
2952 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2953 switch (sc->sk_type) {
2954 case SK_GENESIS:
2955 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2956 SK_TXMACCTL_XMAC_RESET);
2957 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2958 break;
2959 case SK_YUKON:
2960 case SK_YUKON_LITE:
2961 case SK_YUKON_LP:
2962 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2963 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2964 break;
2965 }
2966 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2967 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET |SK_RBCTL_OFF);
2968 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2969 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2970 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2971 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2972 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2973 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2974 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2975
2976 /* Disable interrupts */
2977 if (sc_if->sk_port == SK_PORT_A)
2978 sc->sk_intrmask &= ~SK_INTRS1;
2979 else
2980 sc->sk_intrmask &= ~SK_INTRS2;
2981 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2982
2983 SK_XM_READ_2(sc_if, XM_ISR);
2984 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2985
2986 /* Free RX and TX mbufs still in the queues. */
2987 for (i = 0; i < SK_RX_RING_CNT; i++) {
2988 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2989 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2990 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2991 }
2992 }
2993
2994 for (i = 0; i < SK_TX_RING_CNT; i++) {
2995 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2996 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2997 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2998 }
2999 }
3000
3001 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3002 }
3003
3004 /* Power Management Framework */
3005
3006 static bool
3007 skc_suspend(device_t dv, const pmf_qual_t *qual)
3008 {
3009 struct sk_softc *sc = device_private(dv);
3010
3011 DPRINTFN(2, ("skc_suspend\n"));
3012
3013 /* Turn off the driver is loaded LED */
3014 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
3015
3016 return true;
3017 }
3018
3019 static bool
3020 skc_resume(device_t dv, const pmf_qual_t *qual)
3021 {
3022 struct sk_softc *sc = device_private(dv);
3023
3024 DPRINTFN(2, ("skc_resume\n"));
3025
3026 sk_reset(sc);
3027 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
3028
3029 return true;
3030 }
3031
3032 static bool
3033 sk_resume(device_t dv, const pmf_qual_t *qual)
3034 {
3035 struct sk_if_softc *sc_if = device_private(dv);
3036
3037 sk_init_yukon(sc_if);
3038 return true;
3039 }
3040
3041 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
3042 skc_probe, skc_attach, NULL, NULL);
3043
3044 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
3045 sk_probe, sk_attach, NULL, NULL);
3046
3047 #ifdef SK_DEBUG
3048 void
3049 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
3050 {
3051 #define DESC_PRINT(X) \
3052 if (X) \
3053 printf("txdesc[%d]." #X "=%#x\n", \
3054 idx, X);
3055
3056 DESC_PRINT(le32toh(desc->sk_ctl));
3057 DESC_PRINT(le32toh(desc->sk_next));
3058 DESC_PRINT(le32toh(desc->sk_data_lo));
3059 DESC_PRINT(le32toh(desc->sk_data_hi));
3060 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
3061 DESC_PRINT(le16toh(desc->sk_rsvd0));
3062 DESC_PRINT(le16toh(desc->sk_csum_startval));
3063 DESC_PRINT(le16toh(desc->sk_csum_startpos));
3064 DESC_PRINT(le16toh(desc->sk_csum_writepos));
3065 DESC_PRINT(le16toh(desc->sk_rsvd1));
3066 #undef PRINT
3067 }
3068
3069 void
3070 sk_dump_bytes(const char *data, int len)
3071 {
3072 int c, i, j;
3073
3074 for (i = 0; i < len; i += 16) {
3075 printf("%08x ", i);
3076 c = len - i;
3077 if (c > 16) c = 16;
3078
3079 for (j = 0; j < c; j++) {
3080 printf("%02x ", data[i + j] & 0xff);
3081 if ((j & 0xf) == 7 && j > 0)
3082 printf(" ");
3083 }
3084
3085 for (; j < 16; j++)
3086 printf(" ");
3087 printf(" ");
3088
3089 for (j = 0; j < c; j++) {
3090 int ch = data[i + j] & 0xff;
3091 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
3092 }
3093
3094 printf("\n");
3095
3096 if (c < 16)
3097 break;
3098 }
3099 }
3100
3101 void
3102 sk_dump_mbuf(struct mbuf *m)
3103 {
3104 int count = m->m_pkthdr.len;
3105
3106 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3107
3108 while (count > 0 && m) {
3109 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3110 m, m->m_data, m->m_len);
3111 sk_dump_bytes(mtod(m, char *), m->m_len);
3112
3113 count -= m->m_len;
3114 m = m->m_next;
3115 }
3116 }
3117 #endif
3118
3119 static int
3120 sk_sysctl_handler(SYSCTLFN_ARGS)
3121 {
3122 int error, t;
3123 struct sysctlnode node;
3124 struct sk_softc *sc;
3125
3126 node = *rnode;
3127 sc = node.sysctl_data;
3128 t = sc->sk_int_mod;
3129 node.sysctl_data = &t;
3130 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3131 if (error || newp == NULL)
3132 return error;
3133
3134 if (t < SK_IM_MIN || t > SK_IM_MAX)
3135 return EINVAL;
3136
3137 /* update the softc with sysctl-changed value, and mark
3138 for hardware update */
3139 sc->sk_int_mod = t;
3140 sc->sk_int_mod_pending = 1;
3141 return 0;
3142 }
3143
3144 /*
3145 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3146 * set up in skc_attach()
3147 */
3148 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3149 {
3150 int rc;
3151 const struct sysctlnode *node;
3152
3153 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3154 0, CTLTYPE_NODE, "sk",
3155 SYSCTL_DESCR("sk interface controls"),
3156 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3157 goto err;
3158 }
3159
3160 sk_root_num = node->sysctl_num;
3161 return;
3162
3163 err:
3164 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3165 }
3166