if_sk.c revision 1.101 1 /* $NetBSD: if_sk.c,v 1.101 2019/11/10 21:16:36 chs Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
30
31 /*
32 * Copyright (c) 1997, 1998, 1999, 2000
33 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by Bill Paul.
46 * 4. Neither the name of the author nor the names of any co-contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60 * THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63 */
64
65 /*
66 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
67 *
68 * Permission to use, copy, modify, and distribute this software for any
69 * purpose with or without fee is hereby granted, provided that the above
70 * copyright notice and this permission notice appear in all copies.
71 *
72 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79 */
80
81 /*
82 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83 * the SK-984x series adapters, both single port and dual port.
84 * References:
85 * The XaQti XMAC II datasheet,
86 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87 * The SysKonnect GEnesis manual, http://www.syskonnect.com
88 *
89 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91 * convenience to others until Vitesse corrects this problem:
92 *
93 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 *
95 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
96 * Department of Electrical Engineering
97 * Columbia University, New York City
98 */
99
100 /*
101 * The SysKonnect gigabit ethernet adapters consist of two main
102 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104 * components and a PHY while the GEnesis controller provides a PCI
105 * interface with DMA support. Each card may have between 512K and
106 * 2MB of SRAM on board depending on the configuration.
107 *
108 * The SysKonnect GEnesis controller can have either one or two XMAC
109 * chips connected to it, allowing single or dual port NIC configurations.
110 * SysKonnect has the distinction of being the only vendor on the market
111 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113 * XMAC registers. This driver takes advantage of these features to allow
114 * both XMACs to operate as independent interfaces.
115 */
116
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.101 2019/11/10 21:16:36 chs Exp $");
119
120 #include <sys/param.h>
121 #include <sys/systm.h>
122 #include <sys/sockio.h>
123 #include <sys/mbuf.h>
124 #include <sys/malloc.h>
125 #include <sys/mutex.h>
126 #include <sys/kernel.h>
127 #include <sys/socket.h>
128 #include <sys/device.h>
129 #include <sys/queue.h>
130 #include <sys/callout.h>
131 #include <sys/sysctl.h>
132 #include <sys/endian.h>
133
134 #include <net/if.h>
135 #include <net/if_dl.h>
136 #include <net/if_types.h>
137
138 #include <net/if_media.h>
139
140 #include <net/bpf.h>
141 #include <sys/rndsource.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145 #include <dev/mii/brgphyreg.h>
146
147 #include <dev/pci/pcireg.h>
148 #include <dev/pci/pcivar.h>
149 #include <dev/pci/pcidevs.h>
150
151 /* #define SK_USEIOSPACE */
152
153 #include <dev/pci/if_skreg.h>
154 #include <dev/pci/if_skvar.h>
155
156 int skc_probe(device_t, cfdata_t, void *);
157 void skc_attach(device_t, device_t, void *);
158 int sk_probe(device_t, cfdata_t, void *);
159 void sk_attach(device_t, device_t, void *);
160 int skcprint(void *, const char *);
161 int sk_intr(void *);
162 void sk_intr_bcom(struct sk_if_softc *);
163 void sk_intr_xmac(struct sk_if_softc *);
164 void sk_intr_yukon(struct sk_if_softc *);
165 void sk_rxeof(struct sk_if_softc *);
166 void sk_txeof(struct sk_if_softc *);
167 int sk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
168 void sk_start(struct ifnet *);
169 int sk_ioctl(struct ifnet *, u_long, void *);
170 int sk_init(struct ifnet *);
171 void sk_unreset_xmac(struct sk_if_softc *);
172 void sk_init_xmac(struct sk_if_softc *);
173 void sk_unreset_yukon(struct sk_if_softc *);
174 void sk_init_yukon(struct sk_if_softc *);
175 void sk_stop(struct ifnet *, int);
176 void sk_watchdog(struct ifnet *);
177 void sk_shutdown(void *);
178 int sk_ifmedia_upd(struct ifnet *);
179 void sk_reset(struct sk_softc *);
180 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
181 int sk_alloc_jumbo_mem(struct sk_if_softc *);
182 void sk_free_jumbo_mem(struct sk_if_softc *);
183 void *sk_jalloc(struct sk_if_softc *);
184 void sk_jfree(struct mbuf *, void *, size_t, void *);
185 int sk_init_rx_ring(struct sk_if_softc *);
186 int sk_init_tx_ring(struct sk_if_softc *);
187 uint8_t sk_vpd_readbyte(struct sk_softc *, int);
188 void sk_vpd_read_res(struct sk_softc *,
189 struct vpd_res *, int);
190 void sk_vpd_read(struct sk_softc *);
191
192 void sk_update_int_mod(struct sk_softc *);
193
194 int sk_xmac_miibus_readreg(device_t, int, int, uint16_t *);
195 int sk_xmac_miibus_writereg(device_t, int, int, uint16_t);
196 void sk_xmac_miibus_statchg(struct ifnet *);
197
198 int sk_marv_miibus_readreg(device_t, int, int, uint16_t *);
199 int sk_marv_miibus_writereg(device_t, int, int, uint16_t);
200 void sk_marv_miibus_statchg(struct ifnet *);
201
202 uint32_t sk_xmac_hash(void *);
203 uint32_t sk_yukon_hash(void *);
204 void sk_setfilt(struct sk_if_softc *, void *, int);
205 void sk_setmulti(struct sk_if_softc *);
206 void sk_tick(void *);
207
208 static bool skc_suspend(device_t, const pmf_qual_t *);
209 static bool skc_resume(device_t, const pmf_qual_t *);
210 static bool sk_resume(device_t dv, const pmf_qual_t *);
211
212 /* #define SK_DEBUG 2 */
213 #ifdef SK_DEBUG
214 #define DPRINTF(x) if (skdebug) printf x
215 #define DPRINTFN(n, x) if (skdebug >= (n)) printf x
216 int skdebug = SK_DEBUG;
217
218 void sk_dump_txdesc(struct sk_tx_desc *, int);
219 void sk_dump_mbuf(struct mbuf *);
220 void sk_dump_bytes(const char *, int);
221 #else
222 #define DPRINTF(x)
223 #define DPRINTFN(n, x)
224 #endif
225
226 static int sk_sysctl_handler(SYSCTLFN_PROTO);
227 static int sk_root_num;
228
229 /* supported device vendors */
230 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
231 static const struct sk_product {
232 pci_vendor_id_t sk_vendor;
233 pci_product_id_t sk_product;
234 } sk_products[] = {
235 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
236 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
237 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
238 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
239 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
240 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
241 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
242 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
243 { 0, 0, }
244 };
245
246 #define SK_LINKSYS_EG1032_SUBID 0x00151737
247
248 static inline uint32_t
249 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
250 {
251 #ifdef SK_USEIOSPACE
252 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
253 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
254 #else
255 return CSR_READ_4(sc, reg);
256 #endif
257 }
258
259 static inline uint16_t
260 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
261 {
262 #ifdef SK_USEIOSPACE
263 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
264 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
265 #else
266 return CSR_READ_2(sc, reg);
267 #endif
268 }
269
270 static inline uint8_t
271 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
272 {
273 #ifdef SK_USEIOSPACE
274 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
275 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
276 #else
277 return CSR_READ_1(sc, reg);
278 #endif
279 }
280
281 static inline void
282 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
283 {
284 #ifdef SK_USEIOSPACE
285 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
286 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
287 #else
288 CSR_WRITE_4(sc, reg, x);
289 #endif
290 }
291
292 static inline void
293 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
294 {
295 #ifdef SK_USEIOSPACE
296 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
297 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
298 #else
299 CSR_WRITE_2(sc, reg, x);
300 #endif
301 }
302
303 static inline void
304 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
305 {
306 #ifdef SK_USEIOSPACE
307 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
308 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
309 #else
310 CSR_WRITE_1(sc, reg, x);
311 #endif
312 }
313
314 /*
315 * The VPD EEPROM contains Vital Product Data, as suggested in
316 * the PCI 2.1 specification. The VPD data is separared into areas
317 * denoted by resource IDs. The SysKonnect VPD contains an ID string
318 * resource (the name of the adapter), a read-only area resource
319 * containing various key/data fields and a read/write area which
320 * can be used to store asset management information or log messages.
321 * We read the ID string and read-only into buffers attached to
322 * the controller softc structure for later use. At the moment,
323 * we only use the ID string during sk_attach().
324 */
325 uint8_t
326 sk_vpd_readbyte(struct sk_softc *sc, int addr)
327 {
328 int i;
329
330 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
331 for (i = 0; i < SK_TIMEOUT; i++) {
332 DELAY(1);
333 if (sk_win_read_2(sc,
334 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
335 break;
336 }
337
338 if (i == SK_TIMEOUT)
339 return 0;
340
341 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
342 }
343
344 void
345 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
346 {
347 int i;
348 uint8_t *ptr;
349
350 ptr = (uint8_t *)res;
351 for (i = 0; i < sizeof(struct vpd_res); i++)
352 ptr[i] = sk_vpd_readbyte(sc, i + addr);
353 }
354
355 void
356 sk_vpd_read(struct sk_softc *sc)
357 {
358 int pos = 0, i;
359 struct vpd_res res;
360
361 if (sc->sk_vpd_prodname != NULL)
362 free(sc->sk_vpd_prodname, M_DEVBUF);
363 if (sc->sk_vpd_readonly != NULL)
364 free(sc->sk_vpd_readonly, M_DEVBUF);
365 sc->sk_vpd_prodname = NULL;
366 sc->sk_vpd_readonly = NULL;
367
368 sk_vpd_read_res(sc, &res, pos);
369
370 if (res.vr_id != VPD_RES_ID) {
371 aprint_error_dev(sc->sk_dev,
372 "bad VPD resource id: expected %x got %x\n",
373 VPD_RES_ID, res.vr_id);
374 return;
375 }
376
377 pos += sizeof(res);
378 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_WAITOK);
379 for (i = 0; i < res.vr_len; i++)
380 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
381 sc->sk_vpd_prodname[i] = '\0';
382 pos += i;
383
384 sk_vpd_read_res(sc, &res, pos);
385
386 if (res.vr_id != VPD_RES_READ) {
387 aprint_error_dev(sc->sk_dev,
388 "bad VPD resource id: expected %x got %x\n",
389 VPD_RES_READ, res.vr_id);
390 return;
391 }
392
393 pos += sizeof(res);
394 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_WAITOK);
395 for (i = 0; i < res.vr_len ; i++)
396 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
397 }
398
399 int
400 sk_xmac_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
401 {
402 struct sk_if_softc *sc_if = device_private(dev);
403 int i;
404
405 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
406
407 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
408 return -1;
409
410 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
411 SK_XM_READ_2(sc_if, XM_PHY_DATA);
412 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
413 for (i = 0; i < SK_TIMEOUT; i++) {
414 DELAY(1);
415 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
416 XM_MMUCMD_PHYDATARDY)
417 break;
418 }
419
420 if (i == SK_TIMEOUT) {
421 aprint_error_dev(sc_if->sk_dev,
422 "phy failed to come ready\n");
423 return ETIMEDOUT;
424 }
425 }
426 DELAY(1);
427 *val = SK_XM_READ_2(sc_if, XM_PHY_DATA);
428 return 0;
429 }
430
431 int
432 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
433 {
434 struct sk_if_softc *sc_if = device_private(dev);
435 int i;
436
437 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
438
439 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
440 for (i = 0; i < SK_TIMEOUT; i++) {
441 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
442 break;
443 }
444
445 if (i == SK_TIMEOUT) {
446 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
447 return ETIMEDOUT;
448 }
449
450 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
451 for (i = 0; i < SK_TIMEOUT; i++) {
452 DELAY(1);
453 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
454 break;
455 }
456
457 if (i == SK_TIMEOUT) {
458 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
459 return ETIMEDOUT;
460 }
461
462 return 0;
463 }
464
465 void
466 sk_xmac_miibus_statchg(struct ifnet *ifp)
467 {
468 struct sk_if_softc *sc_if = ifp->if_softc;
469 struct mii_data *mii = &sc_if->sk_mii;
470
471 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
472
473 /*
474 * If this is a GMII PHY, manually set the XMAC's
475 * duplex mode accordingly.
476 */
477 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
478 if ((mii->mii_media_active & IFM_FDX) != 0)
479 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
480 else
481 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
482 }
483 }
484
485 int
486 sk_marv_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
487 {
488 struct sk_if_softc *sc_if = device_private(dev);
489 uint16_t data;
490 int i;
491
492 if (phy != 0 ||
493 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
494 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
495 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
496 phy, reg));
497 return -1;
498 }
499
500 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
501 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
502
503 for (i = 0; i < SK_TIMEOUT; i++) {
504 DELAY(1);
505 data = SK_YU_READ_2(sc_if, YUKON_SMICR);
506 if (data & YU_SMICR_READ_VALID)
507 break;
508 }
509
510 if (i == SK_TIMEOUT) {
511 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
512 return ETIMEDOUT;
513 }
514
515 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
516 SK_TIMEOUT));
517
518 *val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
519
520 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
521 phy, reg, *val));
522
523 return 0;
524 }
525
526 int
527 sk_marv_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
528 {
529 struct sk_if_softc *sc_if = device_private(dev);
530 int i;
531
532 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#hx\n",
533 phy, reg, val));
534
535 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
536 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
537 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
538
539 for (i = 0; i < SK_TIMEOUT; i++) {
540 DELAY(1);
541 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
542 break;
543 }
544
545 if (i == SK_TIMEOUT) {
546 printf("%s: phy write timed out\n",
547 device_xname(sc_if->sk_dev));
548 return ETIMEDOUT;
549 }
550
551 return 0;
552 }
553
554 void
555 sk_marv_miibus_statchg(struct ifnet *ifp)
556 {
557 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
558 SK_YU_READ_2(((struct sk_if_softc *)ifp->if_softc),
559 YUKON_GPCR)));
560 }
561
562 uint32_t
563 sk_xmac_hash(void *addr)
564 {
565 uint32_t crc;
566
567 crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
568 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
569 DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
570 return crc;
571 }
572
573 uint32_t
574 sk_yukon_hash(void *addr)
575 {
576 uint32_t crc;
577
578 crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
579 crc &= ((1 << SK_HASH_BITS) - 1);
580 DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
581 return crc;
582 }
583
584 void
585 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
586 {
587 char *addr = addrv;
588 int base = XM_RXFILT_ENTRY(slot);
589
590 SK_XM_WRITE_2(sc_if, base, *(uint16_t *)(&addr[0]));
591 SK_XM_WRITE_2(sc_if, base + 2, *(uint16_t *)(&addr[2]));
592 SK_XM_WRITE_2(sc_if, base + 4, *(uint16_t *)(&addr[4]));
593 }
594
595 void
596 sk_setmulti(struct sk_if_softc *sc_if)
597 {
598 struct sk_softc *sc = sc_if->sk_softc;
599 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
600 uint32_t hashes[2] = { 0, 0 };
601 int h = 0, i;
602 struct ethercom *ec = &sc_if->sk_ethercom;
603 struct ether_multi *enm;
604 struct ether_multistep step;
605 uint8_t dummy[] = { 0, 0, 0, 0, 0, 0 };
606
607 /* First, zot all the existing filters. */
608 switch (sc->sk_type) {
609 case SK_GENESIS:
610 for (i = 1; i < XM_RXFILT_MAX; i++)
611 sk_setfilt(sc_if, (void *)&dummy, i);
612
613 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
614 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
615 break;
616 case SK_YUKON:
617 case SK_YUKON_LITE:
618 case SK_YUKON_LP:
619 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
620 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
621 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
622 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
623 break;
624 }
625
626 /* Now program new ones. */
627 allmulti:
628 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
629 hashes[0] = 0xFFFFFFFF;
630 hashes[1] = 0xFFFFFFFF;
631 } else {
632 i = 1;
633 /* First find the tail of the list. */
634 ETHER_LOCK(ec);
635 ETHER_FIRST_MULTI(step, ec, enm);
636 while (enm != NULL) {
637 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
638 ETHER_ADDR_LEN)) {
639 ifp->if_flags |= IFF_ALLMULTI;
640 ETHER_UNLOCK(ec);
641 goto allmulti;
642 }
643 DPRINTFN(2,("multicast address %s\n",
644 ether_sprintf(enm->enm_addrlo)));
645 /*
646 * Program the first XM_RXFILT_MAX multicast groups
647 * into the perfect filter. For all others,
648 * use the hash table.
649 */
650 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
651 sk_setfilt(sc_if, enm->enm_addrlo, i);
652 i++;
653 }
654 else {
655 switch (sc->sk_type) {
656 case SK_GENESIS:
657 h = sk_xmac_hash(enm->enm_addrlo);
658 break;
659 case SK_YUKON:
660 case SK_YUKON_LITE:
661 case SK_YUKON_LP:
662 h = sk_yukon_hash(enm->enm_addrlo);
663 break;
664 }
665 if (h < 32)
666 hashes[0] |= (1 << h);
667 else
668 hashes[1] |= (1 << (h - 32));
669 }
670
671 ETHER_NEXT_MULTI(step, enm);
672 }
673 ETHER_UNLOCK(ec);
674 }
675
676 switch (sc->sk_type) {
677 case SK_GENESIS:
678 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH |
679 XM_MODE_RX_USE_PERFECT);
680 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
681 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
682 break;
683 case SK_YUKON:
684 case SK_YUKON_LITE:
685 case SK_YUKON_LP:
686 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
687 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
688 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
689 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
690 break;
691 }
692 }
693
694 int
695 sk_init_rx_ring(struct sk_if_softc *sc_if)
696 {
697 struct sk_chain_data *cd = &sc_if->sk_cdata;
698 struct sk_ring_data *rd = sc_if->sk_rdata;
699 int i;
700
701 memset((char *)rd->sk_rx_ring, 0,
702 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
703
704 for (i = 0; i < SK_RX_RING_CNT; i++) {
705 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
706 if (i == (SK_RX_RING_CNT - 1)) {
707 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
708 rd->sk_rx_ring[i].sk_next =
709 htole32(SK_RX_RING_ADDR(sc_if, 0));
710 } else {
711 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
712 rd->sk_rx_ring[i].sk_next =
713 htole32(SK_RX_RING_ADDR(sc_if, i+1));
714 }
715 }
716
717 for (i = 0; i < SK_RX_RING_CNT; i++) {
718 if (sk_newbuf(sc_if, i, NULL,
719 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
720 aprint_error_dev(sc_if->sk_dev,
721 "failed alloc of %dth mbuf\n", i);
722 return ENOBUFS;
723 }
724 }
725 sc_if->sk_cdata.sk_rx_prod = 0;
726 sc_if->sk_cdata.sk_rx_cons = 0;
727
728 return 0;
729 }
730
731 int
732 sk_init_tx_ring(struct sk_if_softc *sc_if)
733 {
734 struct sk_chain_data *cd = &sc_if->sk_cdata;
735 struct sk_ring_data *rd = sc_if->sk_rdata;
736 int i;
737
738 memset(sc_if->sk_rdata->sk_tx_ring, 0,
739 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
740
741 for (i = 0; i < SK_TX_RING_CNT; i++) {
742 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
743 if (i == (SK_TX_RING_CNT - 1)) {
744 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
745 rd->sk_tx_ring[i].sk_next =
746 htole32(SK_TX_RING_ADDR(sc_if, 0));
747 } else {
748 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
749 rd->sk_tx_ring[i].sk_next =
750 htole32(SK_TX_RING_ADDR(sc_if, i+1));
751 }
752 }
753
754 sc_if->sk_cdata.sk_tx_prod = 0;
755 sc_if->sk_cdata.sk_tx_cons = 0;
756 sc_if->sk_cdata.sk_tx_cnt = 0;
757
758 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
759 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
760
761 return 0;
762 }
763
764 int
765 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
766 bus_dmamap_t dmamap)
767 {
768 struct mbuf *m_new = NULL;
769 struct sk_chain *c;
770 struct sk_rx_desc *r;
771
772 if (m == NULL) {
773 void *buf = NULL;
774
775 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
776 if (m_new == NULL) {
777 aprint_error_dev(sc_if->sk_dev,
778 "no memory for rx list -- packet dropped!\n");
779 return ENOBUFS;
780 }
781
782 /* Allocate the jumbo buffer */
783 buf = sk_jalloc(sc_if);
784 if (buf == NULL) {
785 m_freem(m_new);
786 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
787 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
788 return ENOBUFS;
789 }
790
791 /* Attach the buffer to the mbuf */
792 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
793 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
794
795 } else {
796 /*
797 * We're re-using a previously allocated mbuf;
798 * be sure to re-init pointers and lengths to
799 * default values.
800 */
801 m_new = m;
802 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
803 m_new->m_data = m_new->m_ext.ext_buf;
804 }
805 m_adj(m_new, ETHER_ALIGN);
806
807 c = &sc_if->sk_cdata.sk_rx_chain[i];
808 r = c->sk_desc;
809 c->sk_mbuf = m_new;
810 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
811 (((vaddr_t)m_new->m_data
812 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
813 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
814
815 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
816
817 return 0;
818 }
819
820 /*
821 * Memory management for jumbo frames.
822 */
823
824 int
825 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
826 {
827 struct sk_softc *sc = sc_if->sk_softc;
828 char *ptr, *kva;
829 bus_dma_segment_t seg;
830 int i, rseg, state, error;
831 struct sk_jpool_entry *entry;
832
833 state = error = 0;
834
835 /* Grab a big chunk o' storage. */
836 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
837 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
838 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
839 return ENOBUFS;
840 }
841
842 state = 1;
843 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
844 BUS_DMA_NOWAIT)) {
845 aprint_error_dev(sc->sk_dev,
846 "can't map dma buffers (%d bytes)\n",
847 SK_JMEM);
848 error = ENOBUFS;
849 goto out;
850 }
851
852 state = 2;
853 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
854 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
855 aprint_error_dev(sc->sk_dev, "can't create dma map\n");
856 error = ENOBUFS;
857 goto out;
858 }
859
860 state = 3;
861 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
862 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
863 aprint_error_dev(sc->sk_dev, "can't load dma map\n");
864 error = ENOBUFS;
865 goto out;
866 }
867
868 state = 4;
869 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
870 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
871
872 LIST_INIT(&sc_if->sk_jfree_listhead);
873 LIST_INIT(&sc_if->sk_jinuse_listhead);
874 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
875
876 /*
877 * Now divide it up into 9K pieces and save the addresses
878 * in an array.
879 */
880 ptr = sc_if->sk_cdata.sk_jumbo_buf;
881 for (i = 0; i < SK_JSLOTS; i++) {
882 sc_if->sk_cdata.sk_jslots[i] = ptr;
883 ptr += SK_JLEN;
884 entry = malloc(sizeof(struct sk_jpool_entry),
885 M_DEVBUF, M_WAITOK);
886 entry->slot = i;
887 if (i)
888 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
889 entry, jpool_entries);
890 else
891 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
892 entry, jpool_entries);
893 }
894 out:
895 if (error != 0) {
896 switch (state) {
897 case 4:
898 bus_dmamap_unload(sc->sc_dmatag,
899 sc_if->sk_cdata.sk_rx_jumbo_map);
900 /* FALLTHROUGH */
901 case 3:
902 bus_dmamap_destroy(sc->sc_dmatag,
903 sc_if->sk_cdata.sk_rx_jumbo_map);
904 /* FALLTHROUGH */
905 case 2:
906 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
907 /* FALLTHROUGH */
908 case 1:
909 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
910 break;
911 default:
912 break;
913 }
914 }
915
916 return error;
917 }
918
919 /*
920 * Allocate a jumbo buffer.
921 */
922 void *
923 sk_jalloc(struct sk_if_softc *sc_if)
924 {
925 struct sk_jpool_entry *entry;
926
927 mutex_enter(&sc_if->sk_jpool_mtx);
928 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
929
930 if (entry == NULL) {
931 mutex_exit(&sc_if->sk_jpool_mtx);
932 return NULL;
933 }
934
935 LIST_REMOVE(entry, jpool_entries);
936 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
937 mutex_exit(&sc_if->sk_jpool_mtx);
938 return sc_if->sk_cdata.sk_jslots[entry->slot];
939 }
940
941 /*
942 * Release a jumbo buffer.
943 */
944 void
945 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
946 {
947 struct sk_jpool_entry *entry;
948 struct sk_if_softc *sc;
949 int i;
950
951 /* Extract the softc struct pointer. */
952 sc = (struct sk_if_softc *)arg;
953
954 if (sc == NULL)
955 panic("sk_jfree: can't find softc pointer!");
956
957 /* calculate the slot this buffer belongs to */
958
959 i = ((vaddr_t)buf
960 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
961
962 if ((i < 0) || (i >= SK_JSLOTS))
963 panic("sk_jfree: asked to free buffer that we don't manage!");
964
965 mutex_enter(&sc->sk_jpool_mtx);
966 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
967 if (entry == NULL)
968 panic("sk_jfree: buffer not in use!");
969 entry->slot = i;
970 LIST_REMOVE(entry, jpool_entries);
971 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
972 mutex_exit(&sc->sk_jpool_mtx);
973
974 if (__predict_true(m != NULL))
975 pool_cache_put(mb_cache, m);
976 }
977
978 /*
979 * Set media options.
980 */
981 int
982 sk_ifmedia_upd(struct ifnet *ifp)
983 {
984 struct sk_if_softc *sc_if = ifp->if_softc;
985 int rc;
986
987 (void) sk_init(ifp);
988 if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
989 return 0;
990 return rc;
991 }
992
993 static void
994 sk_promisc(struct sk_if_softc *sc_if, int on)
995 {
996 struct sk_softc *sc = sc_if->sk_softc;
997 switch (sc->sk_type) {
998 case SK_GENESIS:
999 if (on)
1000 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1001 else
1002 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1003 break;
1004 case SK_YUKON:
1005 case SK_YUKON_LITE:
1006 case SK_YUKON_LP:
1007 if (on)
1008 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1009 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1010 else
1011 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1012 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1013 break;
1014 default:
1015 aprint_error_dev(sc_if->sk_dev, "Can't set promisc for %d\n",
1016 sc->sk_type);
1017 break;
1018 }
1019 }
1020
1021 int
1022 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
1023 {
1024 struct sk_if_softc *sc_if = ifp->if_softc;
1025 int s, error = 0;
1026
1027 /* DPRINTFN(2, ("sk_ioctl\n")); */
1028
1029 s = splnet();
1030
1031 switch (command) {
1032
1033 case SIOCSIFFLAGS:
1034 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1035 if ((error = ifioctl_common(ifp, command, data)) != 0)
1036 break;
1037 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1038 case IFF_RUNNING:
1039 sk_stop(ifp, 1);
1040 break;
1041 case IFF_UP:
1042 sk_init(ifp);
1043 break;
1044 case IFF_UP | IFF_RUNNING:
1045 if ((ifp->if_flags ^ sc_if->sk_if_flags) == IFF_PROMISC) {
1046 sk_promisc(sc_if, ifp->if_flags & IFF_PROMISC);
1047 sk_setmulti(sc_if);
1048 } else
1049 sk_init(ifp);
1050 break;
1051 }
1052 sc_if->sk_if_flags = ifp->if_flags;
1053 error = 0;
1054 break;
1055
1056 default:
1057 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1058 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1059 break;
1060
1061 error = 0;
1062
1063 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1064 ;
1065 else if (ifp->if_flags & IFF_RUNNING) {
1066 sk_setmulti(sc_if);
1067 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1068 }
1069 break;
1070 }
1071
1072 splx(s);
1073 return error;
1074 }
1075
1076 void
1077 sk_update_int_mod(struct sk_softc *sc)
1078 {
1079 uint32_t imtimer_ticks;
1080
1081 /*
1082 * Configure interrupt moderation. The moderation timer
1083 * defers interrupts specified in the interrupt moderation
1084 * timer mask based on the timeout specified in the interrupt
1085 * moderation timer init register. Each bit in the timer
1086 * register represents one tick, so to specify a timeout in
1087 * microseconds, we have to multiply by the correct number of
1088 * ticks-per-microsecond.
1089 */
1090 switch (sc->sk_type) {
1091 case SK_GENESIS:
1092 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1093 break;
1094 case SK_YUKON_EC:
1095 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1096 break;
1097 default:
1098 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1099 }
1100 aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
1101 sc->sk_int_mod);
1102 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1103 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF | SK_ISR_TX2_S_EOF |
1104 SK_ISR_RX1_EOF | SK_ISR_RX2_EOF);
1105 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1106 sc->sk_int_mod_pending = 0;
1107 }
1108
1109 /*
1110 * Lookup: Check the PCI vendor and device, and return a pointer to
1111 * The structure if the IDs match against our list.
1112 */
1113
1114 static const struct sk_product *
1115 sk_lookup(const struct pci_attach_args *pa)
1116 {
1117 const struct sk_product *psk;
1118
1119 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1120 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1121 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1122 return psk;
1123 }
1124 return NULL;
1125 }
1126
1127 /*
1128 * Probe for a SysKonnect GEnesis chip.
1129 */
1130
1131 int
1132 skc_probe(device_t parent, cfdata_t match, void *aux)
1133 {
1134 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1135 const struct sk_product *psk;
1136 pcireg_t subid;
1137
1138 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1139
1140 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1141 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1142 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1143 subid == SK_LINKSYS_EG1032_SUBID)
1144 return 1;
1145
1146 if ((psk = sk_lookup(pa))) {
1147 return 1;
1148 }
1149 return 0;
1150 }
1151
1152 /*
1153 * Force the GEnesis into reset, then bring it out of reset.
1154 */
1155 void
1156 sk_reset(struct sk_softc *sc)
1157 {
1158 DPRINTFN(2, ("sk_reset\n"));
1159
1160 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1161 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1162 if (SK_YUKON_FAMILY(sc->sk_type))
1163 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1164
1165 DELAY(1000);
1166 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1167 DELAY(2);
1168 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1169 if (SK_YUKON_FAMILY(sc->sk_type))
1170 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1171
1172 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1173 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1174 CSR_READ_2(sc, SK_LINK_CTRL)));
1175
1176 if (sc->sk_type == SK_GENESIS) {
1177 /* Configure packet arbiter */
1178 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1179 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1180 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1181 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1182 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1183 }
1184
1185 /* Enable RAM interface */
1186 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1187
1188 sk_update_int_mod(sc);
1189 }
1190
1191 int
1192 sk_probe(device_t parent, cfdata_t match, void *aux)
1193 {
1194 struct skc_attach_args *sa = aux;
1195
1196 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1197 return 0;
1198
1199 return 1;
1200 }
1201
1202 /*
1203 * Each XMAC chip is attached as a separate logical IP interface.
1204 * Single port cards will have only one logical interface of course.
1205 */
1206 void
1207 sk_attach(device_t parent, device_t self, void *aux)
1208 {
1209 struct sk_if_softc *sc_if = device_private(self);
1210 struct mii_data *mii = &sc_if->sk_mii;
1211 struct sk_softc *sc = device_private(parent);
1212 struct skc_attach_args *sa = aux;
1213 struct sk_txmap_entry *entry;
1214 struct ifnet *ifp;
1215 bus_dma_segment_t seg;
1216 bus_dmamap_t dmamap;
1217 prop_data_t data;
1218 void *kva;
1219 int i, rseg;
1220 int mii_flags = 0;
1221
1222 aprint_naive("\n");
1223
1224 sc_if->sk_dev = self;
1225 sc_if->sk_port = sa->skc_port;
1226 sc_if->sk_softc = sc;
1227 sc->sk_if[sa->skc_port] = sc_if;
1228
1229 if (sa->skc_port == SK_PORT_A)
1230 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1231 if (sa->skc_port == SK_PORT_B)
1232 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1233
1234 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1235
1236 /*
1237 * Get station address for this interface. Note that
1238 * dual port cards actually come with three station
1239 * addresses: one for each port, plus an extra. The
1240 * extra one is used by the SysKonnect driver software
1241 * as a 'virtual' station address for when both ports
1242 * are operating in failover mode. Currently we don't
1243 * use this extra address.
1244 */
1245 data = prop_dictionary_get(device_properties(self), "mac-address");
1246 if (data != NULL) {
1247 /*
1248 * Try to get the station address from device properties
1249 * first, in case the ROM is missing.
1250 */
1251 KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
1252 KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
1253 memcpy(sc_if->sk_enaddr, prop_data_data_nocopy(data),
1254 ETHER_ADDR_LEN);
1255 } else
1256 for (i = 0; i < ETHER_ADDR_LEN; i++)
1257 sc_if->sk_enaddr[i] = sk_win_read_1(sc,
1258 SK_MAC0_0 + (sa->skc_port * 8) + i);
1259
1260 aprint_normal(": Ethernet address %s\n",
1261 ether_sprintf(sc_if->sk_enaddr));
1262
1263 /*
1264 * Set up RAM buffer addresses. The NIC will have a certain
1265 * amount of SRAM on it, somewhere between 512K and 2MB. We
1266 * need to divide this up a) between the transmitter and
1267 * receiver and b) between the two XMACs, if this is a
1268 * dual port NIC. Our algorithm is to divide up the memory
1269 * evenly so that everyone gets a fair share.
1270 */
1271 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1272 uint32_t chunk, val;
1273
1274 chunk = sc->sk_ramsize / 2;
1275 val = sc->sk_rboff / sizeof(uint64_t);
1276 sc_if->sk_rx_ramstart = val;
1277 val += (chunk / sizeof(uint64_t));
1278 sc_if->sk_rx_ramend = val - 1;
1279 sc_if->sk_tx_ramstart = val;
1280 val += (chunk / sizeof(uint64_t));
1281 sc_if->sk_tx_ramend = val - 1;
1282 } else {
1283 uint32_t chunk, val;
1284
1285 chunk = sc->sk_ramsize / 4;
1286 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1287 sizeof(uint64_t);
1288 sc_if->sk_rx_ramstart = val;
1289 val += (chunk / sizeof(uint64_t));
1290 sc_if->sk_rx_ramend = val - 1;
1291 sc_if->sk_tx_ramstart = val;
1292 val += (chunk / sizeof(uint64_t));
1293 sc_if->sk_tx_ramend = val - 1;
1294 }
1295
1296 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1297 " tx_ramstart=%#x tx_ramend=%#x\n",
1298 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1299 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1300
1301 /* Read and save PHY type and set PHY address */
1302 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1303 switch (sc_if->sk_phytype) {
1304 case SK_PHYTYPE_XMAC:
1305 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1306 break;
1307 case SK_PHYTYPE_BCOM:
1308 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1309 break;
1310 case SK_PHYTYPE_MARV_COPPER:
1311 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1312 break;
1313 default:
1314 aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
1315 sc_if->sk_phytype);
1316 return;
1317 }
1318
1319 /* Allocate the descriptor queues. */
1320 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1321 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1322 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
1323 goto fail;
1324 }
1325 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1326 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1327 aprint_error_dev(sc_if->sk_dev,
1328 "can't map dma buffers (%lu bytes)\n",
1329 (u_long) sizeof(struct sk_ring_data));
1330 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1331 goto fail;
1332 }
1333 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1334 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1335 &sc_if->sk_ring_map)) {
1336 aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
1337 bus_dmamem_unmap(sc->sc_dmatag, kva,
1338 sizeof(struct sk_ring_data));
1339 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1340 goto fail;
1341 }
1342 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1343 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1344 aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
1345 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1346 bus_dmamem_unmap(sc->sc_dmatag, kva,
1347 sizeof(struct sk_ring_data));
1348 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1349 goto fail;
1350 }
1351
1352 for (i = 0; i < SK_RX_RING_CNT; i++)
1353 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1354
1355 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1356 for (i = 0; i < SK_TX_RING_CNT; i++) {
1357 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1358
1359 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1360 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1361 aprint_error_dev(sc_if->sk_dev,
1362 "Can't create TX dmamap\n");
1363 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1364 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1365 bus_dmamem_unmap(sc->sc_dmatag, kva,
1366 sizeof(struct sk_ring_data));
1367 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1368 goto fail;
1369 }
1370
1371 entry = malloc(sizeof(*entry), M_DEVBUF, M_WAITOK);
1372 entry->dmamap = dmamap;
1373 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1374 }
1375
1376 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1377 memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
1378
1379 ifp = &sc_if->sk_ethercom.ec_if;
1380 /* Try to allocate memory for jumbo buffers. */
1381 if (sk_alloc_jumbo_mem(sc_if)) {
1382 aprint_error("%s: jumbo buffer allocation failed\n",
1383 ifp->if_xname);
1384 goto fail;
1385 }
1386 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1387 | ETHERCAP_JUMBO_MTU;
1388
1389 ifp->if_softc = sc_if;
1390 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1391 ifp->if_ioctl = sk_ioctl;
1392 ifp->if_start = sk_start;
1393 ifp->if_stop = sk_stop;
1394 ifp->if_init = sk_init;
1395 ifp->if_watchdog = sk_watchdog;
1396 ifp->if_capabilities = 0;
1397 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1398 IFQ_SET_READY(&ifp->if_snd);
1399 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1400
1401 /*
1402 * Do miibus setup.
1403 */
1404 switch (sc->sk_type) {
1405 case SK_GENESIS:
1406 sk_unreset_xmac(sc_if);
1407 break;
1408 case SK_YUKON:
1409 case SK_YUKON_LITE:
1410 case SK_YUKON_LP:
1411 sk_unreset_yukon(sc_if);
1412 break;
1413 default:
1414 aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
1415 sc->sk_type);
1416 goto fail;
1417 }
1418
1419 DPRINTFN(2, ("sk_attach: 1\n"));
1420
1421 mii->mii_ifp = ifp;
1422 switch (sc->sk_type) {
1423 case SK_GENESIS:
1424 mii->mii_readreg = sk_xmac_miibus_readreg;
1425 mii->mii_writereg = sk_xmac_miibus_writereg;
1426 mii->mii_statchg = sk_xmac_miibus_statchg;
1427 break;
1428 case SK_YUKON:
1429 case SK_YUKON_LITE:
1430 case SK_YUKON_LP:
1431 mii->mii_readreg = sk_marv_miibus_readreg;
1432 mii->mii_writereg = sk_marv_miibus_writereg;
1433 mii->mii_statchg = sk_marv_miibus_statchg;
1434 mii_flags = MIIF_DOPAUSE;
1435 break;
1436 }
1437
1438 sc_if->sk_ethercom.ec_mii = mii;
1439 ifmedia_init(&mii->mii_media, 0, sk_ifmedia_upd, ether_mediastatus);
1440 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
1441 MII_OFFSET_ANY, mii_flags);
1442 if (LIST_EMPTY(&mii->mii_phys)) {
1443 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1444 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
1445 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
1446 } else
1447 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1448
1449 callout_init(&sc_if->sk_tick_ch, 0);
1450 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1451
1452 DPRINTFN(2, ("sk_attach: 1\n"));
1453
1454 /*
1455 * Call MI attach routines.
1456 */
1457 if_attach(ifp);
1458 if_deferred_start_init(ifp, NULL);
1459
1460 ether_ifattach(ifp, sc_if->sk_enaddr);
1461
1462 if (sc->rnd_attached++ == 0) {
1463 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1464 RND_TYPE_NET, RND_FLAG_DEFAULT);
1465 }
1466
1467 if (pmf_device_register(self, NULL, sk_resume))
1468 pmf_class_network_register(self, ifp);
1469 else
1470 aprint_error_dev(self, "couldn't establish power handler\n");
1471
1472 DPRINTFN(2, ("sk_attach: end\n"));
1473
1474 return;
1475
1476 fail:
1477 sc->sk_if[sa->skc_port] = NULL;
1478 }
1479
1480 int
1481 skcprint(void *aux, const char *pnp)
1482 {
1483 struct skc_attach_args *sa = aux;
1484
1485 if (pnp)
1486 aprint_normal("sk port %c at %s",
1487 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1488 else
1489 aprint_normal(" port %c",
1490 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1491 return UNCONF;
1492 }
1493
1494 /*
1495 * Attach the interface. Allocate softc structures, do ifmedia
1496 * setup and ethernet/BPF attach.
1497 */
1498 void
1499 skc_attach(device_t parent, device_t self, void *aux)
1500 {
1501 struct sk_softc *sc = device_private(self);
1502 struct pci_attach_args *pa = aux;
1503 struct skc_attach_args skca;
1504 pci_chipset_tag_t pc = pa->pa_pc;
1505 #ifndef SK_USEIOSPACE
1506 pcireg_t memtype;
1507 #endif
1508 pci_intr_handle_t ih;
1509 const char *intrstr = NULL;
1510 bus_addr_t iobase;
1511 bus_size_t iosize;
1512 int rc, sk_nodenum;
1513 uint32_t command;
1514 const char *revstr;
1515 const struct sysctlnode *node;
1516 char intrbuf[PCI_INTRSTR_LEN];
1517
1518 sc->sk_dev = self;
1519 aprint_naive("\n");
1520
1521 DPRINTFN(2, ("begin skc_attach\n"));
1522
1523 /*
1524 * Handle power management nonsense.
1525 */
1526 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1527
1528 if (command == 0x01) {
1529 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1530 if (command & SK_PSTATE_MASK) {
1531 uint32_t xiobase, membase, irq;
1532
1533 /* Save important PCI config data. */
1534 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1535 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1536 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1537
1538 /* Reset the power state. */
1539 aprint_normal_dev(sc->sk_dev,
1540 "chip is in D%d power mode -- setting to D0\n",
1541 command & SK_PSTATE_MASK);
1542 command &= 0xFFFFFFFC;
1543 pci_conf_write(pc, pa->pa_tag,
1544 SK_PCI_PWRMGMTCTRL, command);
1545
1546 /* Restore PCI config data. */
1547 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1548 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1549 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1550 }
1551 }
1552
1553 /*
1554 * The firmware might have configured the interface to revert the
1555 * byte order in all descriptors. Make that undone.
1556 */
1557 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_OURREG2);
1558 if (command & SK_REG2_REV_DESC)
1559 pci_conf_write(pc, pa->pa_tag, SK_PCI_OURREG2,
1560 command & ~SK_REG2_REV_DESC);
1561
1562 /*
1563 * Map control/status registers.
1564 */
1565 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1566 command |= PCI_COMMAND_IO_ENABLE |
1567 PCI_COMMAND_MEM_ENABLE |
1568 PCI_COMMAND_MASTER_ENABLE;
1569 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1570 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1571
1572 #ifdef SK_USEIOSPACE
1573 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1574 aprint_error(": failed to enable I/O ports!\n");
1575 return;
1576 }
1577 /*
1578 * Map control/status registers.
1579 */
1580 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1581 &sc->sk_btag, &sc->sk_bhandle,
1582 &iobase, &iosize)) {
1583 aprint_error(": can't find i/o space\n");
1584 return;
1585 }
1586 #else
1587 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1588 aprint_error(": failed to enable memory mapping!\n");
1589 return;
1590 }
1591 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1592 switch (memtype) {
1593 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1594 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1595 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1596 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1597 &iobase, &iosize) == 0)
1598 break;
1599 /* FALLTHROUGH */
1600 default:
1601 aprint_error_dev(sc->sk_dev, "can't find mem space\n");
1602 return;
1603 }
1604
1605 DPRINTFN(2, ("skc_attach: iobase=%#" PRIxPADDR ", iosize=%zx\n",
1606 iobase, iosize));
1607 #endif
1608 sc->sc_dmatag = pa->pa_dmat;
1609
1610 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1611 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1612
1613 /* bail out here if chip is not recognized */
1614 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1615 aprint_error_dev(sc->sk_dev, "unknown chip type\n");
1616 goto fail;
1617 }
1618 if (SK_IS_YUKON2(sc)) {
1619 aprint_error_dev(sc->sk_dev,
1620 "Does not support Yukon2--try msk(4).\n");
1621 goto fail;
1622 }
1623 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1624
1625 /* Allocate interrupt */
1626 if (pci_intr_map(pa, &ih)) {
1627 aprint_error(": couldn't map interrupt\n");
1628 goto fail;
1629 }
1630
1631 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1632 sc->sk_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, sk_intr,
1633 sc, device_xname(sc->sk_dev));
1634 if (sc->sk_intrhand == NULL) {
1635 aprint_error(": couldn't establish interrupt");
1636 if (intrstr != NULL)
1637 aprint_error(" at %s", intrstr);
1638 aprint_error("\n");
1639 goto fail;
1640 }
1641 aprint_normal(": %s\n", intrstr);
1642
1643 /* Reset the adapter. */
1644 sk_reset(sc);
1645
1646 /* Read and save vital product data from EEPROM. */
1647 sk_vpd_read(sc);
1648
1649 if (sc->sk_type == SK_GENESIS) {
1650 uint8_t val = sk_win_read_1(sc, SK_EPROM0);
1651 /* Read and save RAM size and RAMbuffer offset */
1652 switch (val) {
1653 case SK_RAMSIZE_512K_64:
1654 sc->sk_ramsize = 0x80000;
1655 sc->sk_rboff = SK_RBOFF_0;
1656 break;
1657 case SK_RAMSIZE_1024K_64:
1658 sc->sk_ramsize = 0x100000;
1659 sc->sk_rboff = SK_RBOFF_80000;
1660 break;
1661 case SK_RAMSIZE_1024K_128:
1662 sc->sk_ramsize = 0x100000;
1663 sc->sk_rboff = SK_RBOFF_0;
1664 break;
1665 case SK_RAMSIZE_2048K_128:
1666 sc->sk_ramsize = 0x200000;
1667 sc->sk_rboff = SK_RBOFF_0;
1668 break;
1669 default:
1670 aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
1671 val);
1672 goto fail_1;
1673 break;
1674 }
1675
1676 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1677 sc->sk_ramsize, sc->sk_ramsize / 1024,
1678 sc->sk_rboff));
1679 } else {
1680 uint8_t val = sk_win_read_1(sc, SK_EPROM0);
1681 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1682 sc->sk_rboff = SK_RBOFF_0;
1683
1684 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1685 sc->sk_ramsize / 1024, sc->sk_ramsize,
1686 sc->sk_rboff));
1687 }
1688
1689 /* Read and save physical media type */
1690 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1691 case SK_PMD_1000BASESX:
1692 sc->sk_pmd = IFM_1000_SX;
1693 break;
1694 case SK_PMD_1000BASELX:
1695 sc->sk_pmd = IFM_1000_LX;
1696 break;
1697 case SK_PMD_1000BASECX:
1698 sc->sk_pmd = IFM_1000_CX;
1699 break;
1700 case SK_PMD_1000BASETX:
1701 case SK_PMD_1000BASETX_ALT:
1702 sc->sk_pmd = IFM_1000_T;
1703 break;
1704 default:
1705 aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
1706 sk_win_read_1(sc, SK_PMDTYPE));
1707 goto fail_1;
1708 }
1709
1710 /* determine whether to name it with vpd or just make it up */
1711 /* Marvell Yukon VPD's can freqently be bogus */
1712
1713 switch (pa->pa_id) {
1714 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1715 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1716 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1717 case PCI_PRODUCT_3COM_3C940:
1718 case PCI_PRODUCT_DLINK_DGE530T:
1719 case PCI_PRODUCT_DLINK_DGE560T:
1720 case PCI_PRODUCT_DLINK_DGE560T_2:
1721 case PCI_PRODUCT_LINKSYS_EG1032:
1722 case PCI_PRODUCT_LINKSYS_EG1064:
1723 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1724 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1725 case PCI_ID_CODE(PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940):
1726 case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T):
1727 case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T):
1728 case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2):
1729 case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032):
1730 case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064):
1731 sc->sk_name = sc->sk_vpd_prodname;
1732 break;
1733 case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET):
1734 /* whoops yukon vpd prodname bears no resemblance to reality */
1735 switch (sc->sk_type) {
1736 case SK_GENESIS:
1737 sc->sk_name = sc->sk_vpd_prodname;
1738 break;
1739 case SK_YUKON:
1740 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1741 break;
1742 case SK_YUKON_LITE:
1743 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1744 break;
1745 case SK_YUKON_LP:
1746 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1747 break;
1748 default:
1749 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1750 }
1751
1752 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1753
1754 if ( sc->sk_type == SK_YUKON ) {
1755 uint32_t flashaddr;
1756 uint8_t testbyte;
1757
1758 flashaddr = sk_win_read_4(sc, SK_EP_ADDR);
1759
1760 /* test Flash-Address Register */
1761 sk_win_write_1(sc, SK_EP_ADDR+3, 0xff);
1762 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1763
1764 if (testbyte != 0) {
1765 /* this is yukon lite Rev. A0 */
1766 sc->sk_type = SK_YUKON_LITE;
1767 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1768 /* restore Flash-Address Register */
1769 sk_win_write_4(sc, SK_EP_ADDR, flashaddr);
1770 }
1771 }
1772 break;
1773 case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN):
1774 sc->sk_name = sc->sk_vpd_prodname;
1775 break;
1776 default:
1777 sc->sk_name = "Unknown Marvell";
1778 }
1779
1780
1781 if ( sc->sk_type == SK_YUKON_LITE ) {
1782 switch (sc->sk_rev) {
1783 case SK_YUKON_LITE_REV_A0:
1784 revstr = "A0";
1785 break;
1786 case SK_YUKON_LITE_REV_A1:
1787 revstr = "A1";
1788 break;
1789 case SK_YUKON_LITE_REV_A3:
1790 revstr = "A3";
1791 break;
1792 default:
1793 revstr = "";
1794 }
1795 } else {
1796 revstr = "";
1797 }
1798
1799 /* Announce the product name. */
1800 aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
1801 sc->sk_name, revstr, sc->sk_rev);
1802
1803 skca.skc_port = SK_PORT_A;
1804 (void)config_found(sc->sk_dev, &skca, skcprint);
1805
1806 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1807 skca.skc_port = SK_PORT_B;
1808 (void)config_found(sc->sk_dev, &skca, skcprint);
1809 }
1810
1811 /* Turn on the 'driver is loaded' LED. */
1812 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1813
1814 /* skc sysctl setup */
1815
1816 sc->sk_int_mod = SK_IM_DEFAULT;
1817 sc->sk_int_mod_pending = 0;
1818
1819 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1820 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1821 SYSCTL_DESCR("skc per-controller controls"),
1822 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1823 CTL_EOL)) != 0) {
1824 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1825 goto fail_1;
1826 }
1827
1828 sk_nodenum = node->sysctl_num;
1829
1830 /* interrupt moderation time in usecs */
1831 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1832 CTLFLAG_READWRITE,
1833 CTLTYPE_INT, "int_mod",
1834 SYSCTL_DESCR("sk interrupt moderation timer"),
1835 sk_sysctl_handler, 0, (void *)sc,
1836 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1837 CTL_EOL)) != 0) {
1838 aprint_normal_dev(sc->sk_dev,
1839 "couldn't create int_mod sysctl node\n");
1840 goto fail_1;
1841 }
1842
1843 if (!pmf_device_register(self, skc_suspend, skc_resume))
1844 aprint_error_dev(self, "couldn't establish power handler\n");
1845
1846 return;
1847
1848 fail_1:
1849 pci_intr_disestablish(pc, sc->sk_intrhand);
1850 fail:
1851 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1852 }
1853
1854 int
1855 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1856 {
1857 struct sk_softc *sc = sc_if->sk_softc;
1858 struct sk_tx_desc *f = NULL;
1859 uint32_t frag, cur, cnt = 0, sk_ctl;
1860 int i;
1861 struct sk_txmap_entry *entry;
1862 bus_dmamap_t txmap;
1863
1864 DPRINTFN(3, ("sk_encap\n"));
1865
1866 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1867 if (entry == NULL) {
1868 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1869 return ENOBUFS;
1870 }
1871 txmap = entry->dmamap;
1872
1873 cur = frag = *txidx;
1874
1875 #ifdef SK_DEBUG
1876 if (skdebug >= 3)
1877 sk_dump_mbuf(m_head);
1878 #endif
1879
1880 /*
1881 * Start packing the mbufs in this chain into
1882 * the fragment pointers. Stop when we run out
1883 * of fragments or hit the end of the mbuf chain.
1884 */
1885 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1886 BUS_DMA_NOWAIT)) {
1887 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1888 return ENOBUFS;
1889 }
1890
1891 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1892
1893 /* Sync the DMA map. */
1894 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1895 BUS_DMASYNC_PREWRITE);
1896
1897 for (i = 0; i < txmap->dm_nsegs; i++) {
1898 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1899 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1900 return ENOBUFS;
1901 }
1902 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1903 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1904 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1905 if (cnt == 0)
1906 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1907 else
1908 sk_ctl |= SK_TXCTL_OWN;
1909 f->sk_ctl = htole32(sk_ctl);
1910 cur = frag;
1911 SK_INC(frag, SK_TX_RING_CNT);
1912 cnt++;
1913 }
1914
1915 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1916 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1917
1918 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1919 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1920 htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
1921
1922 /* Sync descriptors before handing to chip */
1923 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1924 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1925
1926 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1927 htole32(SK_TXCTL_OWN);
1928
1929 /* Sync first descriptor to hand it off */
1930 SK_CDTXSYNC(sc_if, *txidx, 1,
1931 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1932
1933 sc_if->sk_cdata.sk_tx_cnt += cnt;
1934
1935 #ifdef SK_DEBUG
1936 if (skdebug >= 3) {
1937 struct sk_tx_desc *desc;
1938 uint32_t idx;
1939 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1940 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1941 sk_dump_txdesc(desc, idx);
1942 }
1943 }
1944 #endif
1945
1946 *txidx = frag;
1947
1948 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1949
1950 return 0;
1951 }
1952
1953 void
1954 sk_start(struct ifnet *ifp)
1955 {
1956 struct sk_if_softc *sc_if = ifp->if_softc;
1957 struct sk_softc *sc = sc_if->sk_softc;
1958 struct mbuf *m_head = NULL;
1959 uint32_t idx = sc_if->sk_cdata.sk_tx_prod;
1960 int pkts = 0;
1961
1962 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1963 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1964
1965 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1966 IFQ_POLL(&ifp->if_snd, m_head);
1967 if (m_head == NULL)
1968 break;
1969
1970 /*
1971 * Pack the data into the transmit ring. If we
1972 * don't have room, set the OACTIVE flag and wait
1973 * for the NIC to drain the ring.
1974 */
1975 if (sk_encap(sc_if, m_head, &idx)) {
1976 ifp->if_flags |= IFF_OACTIVE;
1977 break;
1978 }
1979
1980 /* now we are committed to transmit the packet */
1981 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1982 pkts++;
1983
1984 /*
1985 * If there's a BPF listener, bounce a copy of this frame
1986 * to him.
1987 */
1988 bpf_mtap(ifp, m_head, BPF_D_OUT);
1989 }
1990 if (pkts == 0)
1991 return;
1992
1993 /* Transmit */
1994 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1995 sc_if->sk_cdata.sk_tx_prod = idx;
1996 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1997
1998 /* Set a timeout in case the chip goes out to lunch. */
1999 ifp->if_timer = 5;
2000 }
2001 }
2002
2003
2004 void
2005 sk_watchdog(struct ifnet *ifp)
2006 {
2007 struct sk_if_softc *sc_if = ifp->if_softc;
2008
2009 /*
2010 * Reclaim first as there is a possibility of losing Tx completion
2011 * interrupts.
2012 */
2013 sk_txeof(sc_if);
2014 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2015 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
2016
2017 ifp->if_oerrors++;
2018
2019 sk_init(ifp);
2020 }
2021 }
2022
2023 void
2024 sk_shutdown(void *v)
2025 {
2026 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
2027 struct sk_softc *sc = sc_if->sk_softc;
2028 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2029
2030 DPRINTFN(2, ("sk_shutdown\n"));
2031 sk_stop(ifp, 1);
2032
2033 /* Turn off the 'driver is loaded' LED. */
2034 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2035
2036 /*
2037 * Reset the GEnesis controller. Doing this should also
2038 * assert the resets on the attached XMAC(s).
2039 */
2040 sk_reset(sc);
2041 }
2042
2043 void
2044 sk_rxeof(struct sk_if_softc *sc_if)
2045 {
2046 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2047 struct mbuf *m;
2048 struct sk_chain *cur_rx;
2049 struct sk_rx_desc *cur_desc;
2050 int i, cur, total_len = 0;
2051 uint32_t rxstat, sk_ctl;
2052 bus_dmamap_t dmamap;
2053
2054 i = sc_if->sk_cdata.sk_rx_prod;
2055
2056 DPRINTFN(3, ("sk_rxeof %d\n", i));
2057
2058 for (;;) {
2059 cur = i;
2060
2061 /* Sync the descriptor */
2062 SK_CDRXSYNC(sc_if, cur,
2063 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2064
2065 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2066 if (sk_ctl & SK_RXCTL_OWN) {
2067 /* Invalidate the descriptor -- it's not ready yet */
2068 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2069 sc_if->sk_cdata.sk_rx_prod = i;
2070 break;
2071 }
2072
2073 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2074 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2075 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2076
2077 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2078 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2079
2080 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2081 m = cur_rx->sk_mbuf;
2082 cur_rx->sk_mbuf = NULL;
2083 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2084
2085 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2086
2087 SK_INC(i, SK_RX_RING_CNT);
2088
2089 if (rxstat & XM_RXSTAT_ERRFRAME) {
2090 ifp->if_ierrors++;
2091 sk_newbuf(sc_if, cur, m, dmamap);
2092 continue;
2093 }
2094
2095 /*
2096 * Try to allocate a new jumbo buffer. If that
2097 * fails, copy the packet to mbufs and put the
2098 * jumbo buffer back in the ring so it can be
2099 * re-used. If allocating mbufs fails, then we
2100 * have to drop the packet.
2101 */
2102 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2103 struct mbuf *m0;
2104 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2105 total_len + ETHER_ALIGN, 0, ifp);
2106 sk_newbuf(sc_if, cur, m, dmamap);
2107 if (m0 == NULL) {
2108 aprint_error_dev(sc_if->sk_dev, "no receive "
2109 "buffers available -- packet dropped!\n");
2110 ifp->if_ierrors++;
2111 continue;
2112 }
2113 m_adj(m0, ETHER_ALIGN);
2114 m = m0;
2115 } else {
2116 m_set_rcvif(m, ifp);
2117 m->m_pkthdr.len = m->m_len = total_len;
2118 }
2119
2120 /* pass it on. */
2121 if_percpuq_enqueue(ifp->if_percpuq, m);
2122 }
2123 }
2124
2125 void
2126 sk_txeof(struct sk_if_softc *sc_if)
2127 {
2128 struct sk_softc *sc = sc_if->sk_softc;
2129 struct sk_tx_desc *cur_tx;
2130 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2131 uint32_t idx, sk_ctl;
2132 struct sk_txmap_entry *entry;
2133
2134 DPRINTFN(3, ("sk_txeof\n"));
2135
2136 /*
2137 * Go through our tx ring and free mbufs for those
2138 * frames that have been sent.
2139 */
2140 idx = sc_if->sk_cdata.sk_tx_cons;
2141 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2142 SK_CDTXSYNC(sc_if, idx, 1,
2143 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2144
2145 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2146 sk_ctl = le32toh(cur_tx->sk_ctl);
2147 #ifdef SK_DEBUG
2148 if (skdebug >= 3)
2149 sk_dump_txdesc(cur_tx, idx);
2150 #endif
2151 if (sk_ctl & SK_TXCTL_OWN) {
2152 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2153 break;
2154 }
2155 if (sk_ctl & SK_TXCTL_LASTFRAG)
2156 ifp->if_opackets++;
2157 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2158 entry = sc_if->sk_cdata.sk_tx_map[idx];
2159
2160 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2161 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2162
2163 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2164 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2165
2166 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2167 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2168 link);
2169 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2170 }
2171 sc_if->sk_cdata.sk_tx_cnt--;
2172 SK_INC(idx, SK_TX_RING_CNT);
2173 }
2174 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2175 ifp->if_timer = 0;
2176 else /* nudge chip to keep tx ring moving */
2177 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2178
2179 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2180 ifp->if_flags &= ~IFF_OACTIVE;
2181
2182 sc_if->sk_cdata.sk_tx_cons = idx;
2183 }
2184
2185 void
2186 sk_tick(void *xsc_if)
2187 {
2188 struct sk_if_softc *sc_if = xsc_if;
2189 struct mii_data *mii = &sc_if->sk_mii;
2190 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2191 int i;
2192
2193 DPRINTFN(3, ("sk_tick\n"));
2194
2195 if (!(ifp->if_flags & IFF_UP))
2196 return;
2197
2198 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2199 sk_intr_bcom(sc_if);
2200 return;
2201 }
2202
2203 /*
2204 * According to SysKonnect, the correct way to verify that
2205 * the link has come back up is to poll bit 0 of the GPIO
2206 * register three times. This pin has the signal from the
2207 * link sync pin connected to it; if we read the same link
2208 * state 3 times in a row, we know the link is up.
2209 */
2210 for (i = 0; i < 3; i++) {
2211 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2212 break;
2213 }
2214
2215 if (i != 3) {
2216 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2217 return;
2218 }
2219
2220 /* Turn the GP0 interrupt back on. */
2221 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2222 SK_XM_READ_2(sc_if, XM_ISR);
2223 mii_tick(mii);
2224 if (ifp->if_link_state != LINK_STATE_UP)
2225 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2226 else
2227 callout_stop(&sc_if->sk_tick_ch);
2228 }
2229
2230 void
2231 sk_intr_bcom(struct sk_if_softc *sc_if)
2232 {
2233 struct mii_data *mii = &sc_if->sk_mii;
2234 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2235 uint16_t status;
2236
2237
2238 DPRINTFN(3, ("sk_intr_bcom\n"));
2239
2240 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2241
2242 /*
2243 * Read the PHY interrupt register to make sure
2244 * we clear any pending interrupts.
2245 */
2246 sk_xmac_miibus_readreg(sc_if->sk_dev,
2247 SK_PHYADDR_BCOM, BRGPHY_MII_ISR, &status);
2248
2249 if (!(ifp->if_flags & IFF_RUNNING)) {
2250 sk_init_xmac(sc_if);
2251 return;
2252 }
2253
2254 if (status & (BRGPHY_ISR_LNK_CHG | BRGPHY_ISR_AN_PR)) {
2255 uint16_t lstat;
2256 sk_xmac_miibus_readreg(sc_if->sk_dev,
2257 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS, &lstat);
2258
2259 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2260 (void)mii_mediachg(mii);
2261 /* Turn off the link LED. */
2262 SK_IF_WRITE_1(sc_if, 0,
2263 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2264 sc_if->sk_link = 0;
2265 } else if (status & BRGPHY_ISR_LNK_CHG) {
2266 sk_xmac_miibus_writereg(sc_if->sk_dev,
2267 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2268 mii_tick(mii);
2269 sc_if->sk_link = 1;
2270 /* Turn on the link LED. */
2271 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2272 SK_LINKLED_ON | SK_LINKLED_LINKSYNC_OFF |
2273 SK_LINKLED_BLINK_OFF);
2274 mii_pollstat(mii);
2275 } else {
2276 mii_tick(mii);
2277 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2278 }
2279 }
2280
2281 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2282 }
2283
2284 void
2285 sk_intr_xmac(struct sk_if_softc *sc_if)
2286 {
2287 uint16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2288
2289 DPRINTFN(3, ("sk_intr_xmac\n"));
2290
2291 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2292 if (status & XM_ISR_GP0_SET) {
2293 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2294 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2295 }
2296
2297 if (status & XM_ISR_AUTONEG_DONE) {
2298 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2299 }
2300 }
2301
2302 if (status & XM_IMR_TX_UNDERRUN)
2303 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2304
2305 if (status & XM_IMR_RX_OVERRUN)
2306 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2307 }
2308
2309 void
2310 sk_intr_yukon(struct sk_if_softc *sc_if)
2311 {
2312 #ifdef SK_DEBUG
2313 int status;
2314
2315 status =
2316 #endif
2317 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2318
2319 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2320 }
2321
2322 int
2323 sk_intr(void *xsc)
2324 {
2325 struct sk_softc *sc = xsc;
2326 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2327 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2328 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2329 uint32_t status;
2330 int claimed = 0;
2331
2332 if (sc_if0 != NULL)
2333 ifp0 = &sc_if0->sk_ethercom.ec_if;
2334 if (sc_if1 != NULL)
2335 ifp1 = &sc_if1->sk_ethercom.ec_if;
2336
2337 for (;;) {
2338 status = CSR_READ_4(sc, SK_ISSR);
2339 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2340
2341 if (!(status & sc->sk_intrmask))
2342 break;
2343
2344 claimed = 1;
2345
2346 /* Handle receive interrupts first. */
2347 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2348 sk_rxeof(sc_if0);
2349 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2350 SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
2351 }
2352 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2353 sk_rxeof(sc_if1);
2354 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2355 SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
2356 }
2357
2358 /* Then transmit interrupts. */
2359 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2360 sk_txeof(sc_if0);
2361 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2362 SK_TXBMU_CLR_IRQ_EOF);
2363 }
2364 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2365 sk_txeof(sc_if1);
2366 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2367 SK_TXBMU_CLR_IRQ_EOF);
2368 }
2369
2370 /* Then MAC interrupts. */
2371 if (sc_if0 && (status & SK_ISR_MAC1) &&
2372 (ifp0->if_flags & IFF_RUNNING)) {
2373 if (sc->sk_type == SK_GENESIS)
2374 sk_intr_xmac(sc_if0);
2375 else
2376 sk_intr_yukon(sc_if0);
2377 }
2378
2379 if (sc_if1 && (status & SK_ISR_MAC2) &&
2380 (ifp1->if_flags & IFF_RUNNING)) {
2381 if (sc->sk_type == SK_GENESIS)
2382 sk_intr_xmac(sc_if1);
2383 else
2384 sk_intr_yukon(sc_if1);
2385
2386 }
2387
2388 if (status & SK_ISR_EXTERNAL_REG) {
2389 if (sc_if0 != NULL &&
2390 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2391 sk_intr_bcom(sc_if0);
2392
2393 if (sc_if1 != NULL &&
2394 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2395 sk_intr_bcom(sc_if1);
2396 }
2397 }
2398
2399 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2400
2401 if (ifp0 != NULL)
2402 if_schedule_deferred_start(ifp0);
2403 if (ifp1 != NULL)
2404 if_schedule_deferred_start(ifp1);
2405
2406 KASSERT(sc->rnd_attached > 0);
2407 rnd_add_uint32(&sc->rnd_source, status);
2408
2409 if (sc->sk_int_mod_pending)
2410 sk_update_int_mod(sc);
2411
2412 return claimed;
2413 }
2414
2415 void
2416 sk_unreset_xmac(struct sk_if_softc *sc_if)
2417 {
2418 struct sk_softc *sc = sc_if->sk_softc;
2419 static const struct sk_bcom_hack bhack[] = {
2420 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2421 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2422 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2423 { 0, 0 } };
2424
2425 DPRINTFN(1, ("sk_unreset_xmac\n"));
2426
2427 /* Unreset the XMAC. */
2428 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2429 DELAY(1000);
2430
2431 /* Reset the XMAC's internal state. */
2432 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2433
2434 /* Save the XMAC II revision */
2435 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2436
2437 /*
2438 * Perform additional initialization for external PHYs,
2439 * namely for the 1000baseTX cards that use the XMAC's
2440 * GMII mode.
2441 */
2442 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2443 int i = 0;
2444 uint32_t val;
2445 uint16_t phyval;
2446
2447 /* Take PHY out of reset. */
2448 val = sk_win_read_4(sc, SK_GPIO);
2449 if (sc_if->sk_port == SK_PORT_A)
2450 val |= SK_GPIO_DIR0 | SK_GPIO_DAT0;
2451 else
2452 val |= SK_GPIO_DIR2 | SK_GPIO_DAT2;
2453 sk_win_write_4(sc, SK_GPIO, val);
2454
2455 /* Enable GMII mode on the XMAC. */
2456 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2457
2458 sk_xmac_miibus_writereg(sc_if->sk_dev,
2459 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2460 DELAY(10000);
2461 sk_xmac_miibus_writereg(sc_if->sk_dev,
2462 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2463
2464 /*
2465 * Early versions of the BCM5400 apparently have
2466 * a bug that requires them to have their reserved
2467 * registers initialized to some magic values. I don't
2468 * know what the numbers do, I'm just the messenger.
2469 */
2470 sk_xmac_miibus_readreg(sc_if->sk_dev,
2471 SK_PHYADDR_BCOM, 0x03, &phyval);
2472 if (phyval == 0x6041) {
2473 while (bhack[i].reg) {
2474 sk_xmac_miibus_writereg(sc_if->sk_dev,
2475 SK_PHYADDR_BCOM, bhack[i].reg,
2476 bhack[i].val);
2477 i++;
2478 }
2479 }
2480 }
2481 }
2482
2483 void
2484 sk_init_xmac(struct sk_if_softc *sc_if)
2485 {
2486 struct sk_softc *sc = sc_if->sk_softc;
2487 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2488
2489 sk_unreset_xmac(sc_if);
2490
2491 /* Set station address */
2492 SK_XM_WRITE_2(sc_if, XM_PAR0,
2493 *(uint16_t *)(&sc_if->sk_enaddr[0]));
2494 SK_XM_WRITE_2(sc_if, XM_PAR1,
2495 *(uint16_t *)(&sc_if->sk_enaddr[2]));
2496 SK_XM_WRITE_2(sc_if, XM_PAR2,
2497 *(uint16_t *)(&sc_if->sk_enaddr[4]));
2498 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2499
2500 if (ifp->if_flags & IFF_PROMISC)
2501 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2502 else
2503 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2504
2505 if (ifp->if_flags & IFF_BROADCAST)
2506 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2507 else
2508 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2509
2510 /* We don't need the FCS appended to the packet. */
2511 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2512
2513 /* We want short frames padded to 60 bytes. */
2514 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2515
2516 /*
2517 * Enable the reception of all error frames. This is is
2518 * a necessary evil due to the design of the XMAC. The
2519 * XMAC's receive FIFO is only 8K in size, however jumbo
2520 * frames can be up to 9000 bytes in length. When bad
2521 * frame filtering is enabled, the XMAC's RX FIFO operates
2522 * in 'store and forward' mode. For this to work, the
2523 * entire frame has to fit into the FIFO, but that means
2524 * that jumbo frames larger than 8192 bytes will be
2525 * truncated. Disabling all bad frame filtering causes
2526 * the RX FIFO to operate in streaming mode, in which
2527 * case the XMAC will start transfering frames out of the
2528 * RX FIFO as soon as the FIFO threshold is reached.
2529 */
2530 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES |
2531 XM_MODE_RX_GIANTS | XM_MODE_RX_RUNTS | XM_MODE_RX_CRCERRS |
2532 XM_MODE_RX_INRANGELEN);
2533
2534 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2535 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2536 else
2537 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2538
2539 /*
2540 * Bump up the transmit threshold. This helps hold off transmit
2541 * underruns when we're blasting traffic from both ports at once.
2542 */
2543 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2544
2545 /* Set multicast filter */
2546 sk_setmulti(sc_if);
2547
2548 /* Clear and enable interrupts */
2549 SK_XM_READ_2(sc_if, XM_ISR);
2550 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2551 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2552 else
2553 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2554
2555 /* Configure MAC arbiter */
2556 switch (sc_if->sk_xmac_rev) {
2557 case XM_XMAC_REV_B2:
2558 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2559 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2560 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2561 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2562 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2563 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2564 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2565 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2566 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2567 break;
2568 case XM_XMAC_REV_C1:
2569 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2570 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2571 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2572 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2573 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2574 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2575 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2576 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2577 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2578 break;
2579 default:
2580 break;
2581 }
2582 sk_win_write_2(sc, SK_MACARB_CTL,
2583 SK_MACARBCTL_UNRESET | SK_MACARBCTL_FASTOE_OFF);
2584
2585 sc_if->sk_link = 1;
2586 }
2587
2588 void
2589 sk_unreset_yukon(struct sk_if_softc *sc_if)
2590 {
2591 uint32_t /*mac, */phy;
2592 struct sk_softc *sc;
2593
2594 DPRINTFN(1, ("sk_unreset_yukon: start: sk_csr=%#x\n",
2595 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2596
2597 sc = sc_if->sk_softc;
2598 if (sc->sk_type == SK_YUKON_LITE &&
2599 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2600 /* Take PHY out of reset. */
2601 sk_win_write_4(sc, SK_GPIO,
2602 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9)
2603 & ~SK_GPIO_DAT9);
2604 }
2605
2606 /* GMAC and GPHY Reset */
2607 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2608
2609 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2610
2611 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2612 DELAY(1000);
2613 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2614 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2615 DELAY(1000);
2616
2617
2618 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2619
2620 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2621 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2622
2623 switch (sc_if->sk_softc->sk_pmd) {
2624 case IFM_1000_SX:
2625 case IFM_1000_LX:
2626 phy |= SK_GPHY_FIBER;
2627 break;
2628
2629 case IFM_1000_CX:
2630 case IFM_1000_T:
2631 phy |= SK_GPHY_COPPER;
2632 break;
2633 }
2634
2635 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2636
2637 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2638 DELAY(1000);
2639 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2640 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2641 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2642
2643 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2644 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2645 }
2646
2647 void
2648 sk_init_yukon(struct sk_if_softc *sc_if)
2649 {
2650 uint16_t reg;
2651 int i;
2652
2653 DPRINTFN(1, ("sk_init_yukon: start\n"));
2654 sk_unreset_yukon(sc_if);
2655
2656 /* unused read of the interrupt source register */
2657 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2658 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2659
2660 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2661 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2662 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2663
2664 /* MIB Counter Clear Mode set */
2665 reg |= YU_PAR_MIB_CLR;
2666 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2667 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2668 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2669
2670 /* MIB Counter Clear Mode clear */
2671 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2672 reg &= ~YU_PAR_MIB_CLR;
2673 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2674
2675 /* receive control reg */
2676 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2677 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2678 YU_RCR_CRCR);
2679
2680 /* transmit parameter register */
2681 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2682 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2683 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a));
2684
2685 /* serial mode register */
2686 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2687 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2688 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2689 YU_SMR_IPG_DATA(0x1e));
2690
2691 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2692 /* Setup Yukon's address */
2693 for (i = 0; i < 3; i++) {
2694 /* Write Source Address 1 (unicast filter) */
2695 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2696 sc_if->sk_enaddr[i * 2] |
2697 sc_if->sk_enaddr[i * 2 + 1] << 8);
2698 }
2699
2700 for (i = 0; i < 3; i++) {
2701 reg = sk_win_read_2(sc_if->sk_softc,
2702 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2703 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2704 }
2705
2706 /* Set multicast filter */
2707 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2708 sk_setmulti(sc_if);
2709
2710 /* enable interrupt mask for counter overflows */
2711 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2712 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2713 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2714 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2715
2716 /* Configure RX MAC FIFO */
2717 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2718 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2719
2720 /* Configure TX MAC FIFO */
2721 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2722 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2723
2724 DPRINTFN(6, ("sk_init_yukon: end\n"));
2725 }
2726
2727 /*
2728 * Note that to properly initialize any part of the GEnesis chip,
2729 * you first have to take it out of reset mode.
2730 */
2731 int
2732 sk_init(struct ifnet *ifp)
2733 {
2734 struct sk_if_softc *sc_if = ifp->if_softc;
2735 struct sk_softc *sc = sc_if->sk_softc;
2736 struct mii_data *mii = &sc_if->sk_mii;
2737 int rc = 0, s;
2738 uint32_t imr, imtimer_ticks;
2739
2740 DPRINTFN(1, ("sk_init\n"));
2741
2742 s = splnet();
2743
2744 if (ifp->if_flags & IFF_RUNNING) {
2745 splx(s);
2746 return 0;
2747 }
2748
2749 /* Cancel pending I/O and free all RX/TX buffers. */
2750 sk_stop(ifp, 0);
2751
2752 if (sc->sk_type == SK_GENESIS) {
2753 /* Configure LINK_SYNC LED */
2754 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2755 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2756 SK_LINKLED_LINKSYNC_ON);
2757
2758 /* Configure RX LED */
2759 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2760 SK_RXLEDCTL_COUNTER_START);
2761
2762 /* Configure TX LED */
2763 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2764 SK_TXLEDCTL_COUNTER_START);
2765 }
2766
2767 /* Configure I2C registers */
2768
2769 /* Configure XMAC(s) */
2770 switch (sc->sk_type) {
2771 case SK_GENESIS:
2772 sk_init_xmac(sc_if);
2773 break;
2774 case SK_YUKON:
2775 case SK_YUKON_LITE:
2776 case SK_YUKON_LP:
2777 sk_init_yukon(sc_if);
2778 break;
2779 }
2780 if ((rc = mii_mediachg(mii)) == ENXIO)
2781 rc = 0;
2782 else if (rc != 0)
2783 goto out;
2784
2785 if (sc->sk_type == SK_GENESIS) {
2786 /* Configure MAC FIFOs */
2787 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2788 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2789 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2790
2791 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2792 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2793 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2794 }
2795
2796 /* Configure transmit arbiter(s) */
2797 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2798 SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON);
2799
2800 /* Configure RAMbuffers */
2801 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2802 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2803 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2804 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2805 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2806 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2807
2808 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2809 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2810 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2811 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2812 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2813 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2814 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2815
2816 /* Configure BMUs */
2817 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2818 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2819 SK_RX_RING_ADDR(sc_if, 0));
2820 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2821
2822 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2823 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2824 SK_TX_RING_ADDR(sc_if, 0));
2825 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2826
2827 /* Init descriptors */
2828 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2829 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2830 "memory for rx buffers\n");
2831 sk_stop(ifp, 0);
2832 splx(s);
2833 return ENOBUFS;
2834 }
2835
2836 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2837 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2838 "memory for tx buffers\n");
2839 sk_stop(ifp, 0);
2840 splx(s);
2841 return ENOBUFS;
2842 }
2843
2844 /* Set interrupt moderation if changed via sysctl. */
2845 switch (sc->sk_type) {
2846 case SK_GENESIS:
2847 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2848 break;
2849 case SK_YUKON_EC:
2850 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2851 break;
2852 default:
2853 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2854 }
2855 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2856 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2857 sk_win_write_4(sc, SK_IMTIMERINIT,
2858 SK_IM_USECS(sc->sk_int_mod));
2859 aprint_verbose_dev(sc->sk_dev,
2860 "interrupt moderation is %d us\n", sc->sk_int_mod);
2861 }
2862
2863 /* Configure interrupt handling */
2864 CSR_READ_4(sc, SK_ISSR);
2865 if (sc_if->sk_port == SK_PORT_A)
2866 sc->sk_intrmask |= SK_INTRS1;
2867 else
2868 sc->sk_intrmask |= SK_INTRS2;
2869
2870 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2871
2872 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2873
2874 /* Start BMUs. */
2875 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2876
2877 if (sc->sk_type == SK_GENESIS) {
2878 /* Enable XMACs TX and RX state machines */
2879 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2880 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2881 XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2882 }
2883
2884 if (SK_YUKON_FAMILY(sc->sk_type)) {
2885 uint16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2886 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2887 #if 0
2888 /* XXX disable 100Mbps and full duplex mode? */
2889 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2890 #endif
2891 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2892 }
2893
2894
2895 ifp->if_flags |= IFF_RUNNING;
2896 ifp->if_flags &= ~IFF_OACTIVE;
2897 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2898
2899 out:
2900 splx(s);
2901 return rc;
2902 }
2903
2904 void
2905 sk_stop(struct ifnet *ifp, int disable)
2906 {
2907 struct sk_if_softc *sc_if = ifp->if_softc;
2908 struct sk_softc *sc = sc_if->sk_softc;
2909 int i;
2910
2911 DPRINTFN(1, ("sk_stop\n"));
2912
2913 callout_stop(&sc_if->sk_tick_ch);
2914
2915 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2916 uint32_t val;
2917
2918 /* Put PHY back into reset. */
2919 val = sk_win_read_4(sc, SK_GPIO);
2920 if (sc_if->sk_port == SK_PORT_A) {
2921 val |= SK_GPIO_DIR0;
2922 val &= ~SK_GPIO_DAT0;
2923 } else {
2924 val |= SK_GPIO_DIR2;
2925 val &= ~SK_GPIO_DAT2;
2926 }
2927 sk_win_write_4(sc, SK_GPIO, val);
2928 }
2929
2930 /* Turn off various components of this interface. */
2931 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2932 switch (sc->sk_type) {
2933 case SK_GENESIS:
2934 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2935 SK_TXMACCTL_XMAC_RESET);
2936 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2937 break;
2938 case SK_YUKON:
2939 case SK_YUKON_LITE:
2940 case SK_YUKON_LP:
2941 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2942 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2943 break;
2944 }
2945 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2946 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET |SK_RBCTL_OFF);
2947 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2948 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2949 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2950 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2951 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2952 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2953 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2954
2955 /* Disable interrupts */
2956 if (sc_if->sk_port == SK_PORT_A)
2957 sc->sk_intrmask &= ~SK_INTRS1;
2958 else
2959 sc->sk_intrmask &= ~SK_INTRS2;
2960 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2961
2962 SK_XM_READ_2(sc_if, XM_ISR);
2963 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2964
2965 /* Free RX and TX mbufs still in the queues. */
2966 for (i = 0; i < SK_RX_RING_CNT; i++) {
2967 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2968 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2969 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2970 }
2971 }
2972
2973 for (i = 0; i < SK_TX_RING_CNT; i++) {
2974 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2975 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2976 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2977 }
2978 }
2979
2980 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2981 }
2982
2983 /* Power Management Framework */
2984
2985 static bool
2986 skc_suspend(device_t dv, const pmf_qual_t *qual)
2987 {
2988 struct sk_softc *sc = device_private(dv);
2989
2990 DPRINTFN(2, ("skc_suspend\n"));
2991
2992 /* Turn off the driver is loaded LED */
2993 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2994
2995 return true;
2996 }
2997
2998 static bool
2999 skc_resume(device_t dv, const pmf_qual_t *qual)
3000 {
3001 struct sk_softc *sc = device_private(dv);
3002
3003 DPRINTFN(2, ("skc_resume\n"));
3004
3005 sk_reset(sc);
3006 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
3007
3008 return true;
3009 }
3010
3011 static bool
3012 sk_resume(device_t dv, const pmf_qual_t *qual)
3013 {
3014 struct sk_if_softc *sc_if = device_private(dv);
3015
3016 sk_init_yukon(sc_if);
3017 return true;
3018 }
3019
3020 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
3021 skc_probe, skc_attach, NULL, NULL);
3022
3023 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
3024 sk_probe, sk_attach, NULL, NULL);
3025
3026 #ifdef SK_DEBUG
3027 void
3028 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
3029 {
3030 #define DESC_PRINT(X) \
3031 if (X) \
3032 printf("txdesc[%d]." #X "=%#x\n", \
3033 idx, X);
3034
3035 DESC_PRINT(le32toh(desc->sk_ctl));
3036 DESC_PRINT(le32toh(desc->sk_next));
3037 DESC_PRINT(le32toh(desc->sk_data_lo));
3038 DESC_PRINT(le32toh(desc->sk_data_hi));
3039 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
3040 DESC_PRINT(le16toh(desc->sk_rsvd0));
3041 DESC_PRINT(le16toh(desc->sk_csum_startval));
3042 DESC_PRINT(le16toh(desc->sk_csum_startpos));
3043 DESC_PRINT(le16toh(desc->sk_csum_writepos));
3044 DESC_PRINT(le16toh(desc->sk_rsvd1));
3045 #undef PRINT
3046 }
3047
3048 void
3049 sk_dump_bytes(const char *data, int len)
3050 {
3051 int c, i, j;
3052
3053 for (i = 0; i < len; i += 16) {
3054 printf("%08x ", i);
3055 c = len - i;
3056 if (c > 16) c = 16;
3057
3058 for (j = 0; j < c; j++) {
3059 printf("%02x ", data[i + j] & 0xff);
3060 if ((j & 0xf) == 7 && j > 0)
3061 printf(" ");
3062 }
3063
3064 for (; j < 16; j++)
3065 printf(" ");
3066 printf(" ");
3067
3068 for (j = 0; j < c; j++) {
3069 int ch = data[i + j] & 0xff;
3070 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
3071 }
3072
3073 printf("\n");
3074
3075 if (c < 16)
3076 break;
3077 }
3078 }
3079
3080 void
3081 sk_dump_mbuf(struct mbuf *m)
3082 {
3083 int count = m->m_pkthdr.len;
3084
3085 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3086
3087 while (count > 0 && m) {
3088 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3089 m, m->m_data, m->m_len);
3090 sk_dump_bytes(mtod(m, char *), m->m_len);
3091
3092 count -= m->m_len;
3093 m = m->m_next;
3094 }
3095 }
3096 #endif
3097
3098 static int
3099 sk_sysctl_handler(SYSCTLFN_ARGS)
3100 {
3101 int error, t;
3102 struct sysctlnode node;
3103 struct sk_softc *sc;
3104
3105 node = *rnode;
3106 sc = node.sysctl_data;
3107 t = sc->sk_int_mod;
3108 node.sysctl_data = &t;
3109 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3110 if (error || newp == NULL)
3111 return error;
3112
3113 if (t < SK_IM_MIN || t > SK_IM_MAX)
3114 return EINVAL;
3115
3116 /* update the softc with sysctl-changed value, and mark
3117 for hardware update */
3118 sc->sk_int_mod = t;
3119 sc->sk_int_mod_pending = 1;
3120 return 0;
3121 }
3122
3123 /*
3124 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3125 * set up in skc_attach()
3126 */
3127 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3128 {
3129 int rc;
3130 const struct sysctlnode *node;
3131
3132 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3133 0, CTLTYPE_NODE, "sk",
3134 SYSCTL_DESCR("sk interface controls"),
3135 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3136 goto err;
3137 }
3138
3139 sk_root_num = node->sysctl_num;
3140 return;
3141
3142 err:
3143 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3144 }
3145