Home | History | Annotate | Line # | Download | only in pci
if_sk.c revision 1.106
      1 /*	$NetBSD: if_sk.c,v 1.106 2020/07/02 09:07:10 msaitoh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
     30 
     31 /*
     32  * Copyright (c) 1997, 1998, 1999, 2000
     33  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *	This product includes software developed by Bill Paul.
     46  * 4. Neither the name of the author nor the names of any co-contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     60  * THE POSSIBILITY OF SUCH DAMAGE.
     61  *
     62  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
     63  */
     64 
     65 /*
     66  * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
     67  *
     68  * Permission to use, copy, modify, and distribute this software for any
     69  * purpose with or without fee is hereby granted, provided that the above
     70  * copyright notice and this permission notice appear in all copies.
     71  *
     72  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     73  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     74  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     75  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     76  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     77  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     78  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     79  */
     80 
     81 /*
     82  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
     83  * the SK-984x series adapters, both single port and dual port.
     84  * References:
     85  *	The XaQti XMAC II datasheet,
     86  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     87  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
     88  *
     89  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
     90  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
     91  * convenience to others until Vitesse corrects this problem:
     92  *
     93  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     94  *
     95  * Written by Bill Paul <wpaul (at) ee.columbia.edu>
     96  * Department of Electrical Engineering
     97  * Columbia University, New York City
     98  */
     99 
    100 /*
    101  * The SysKonnect gigabit ethernet adapters consist of two main
    102  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
    103  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
    104  * components and a PHY while the GEnesis controller provides a PCI
    105  * interface with DMA support. Each card may have between 512K and
    106  * 2MB of SRAM on board depending on the configuration.
    107  *
    108  * The SysKonnect GEnesis controller can have either one or two XMAC
    109  * chips connected to it, allowing single or dual port NIC configurations.
    110  * SysKonnect has the distinction of being the only vendor on the market
    111  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
    112  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
    113  * XMAC registers. This driver takes advantage of these features to allow
    114  * both XMACs to operate as independent interfaces.
    115  */
    116 
    117 #include <sys/cdefs.h>
    118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.106 2020/07/02 09:07:10 msaitoh Exp $");
    119 
    120 #include <sys/param.h>
    121 #include <sys/systm.h>
    122 #include <sys/sockio.h>
    123 #include <sys/mbuf.h>
    124 #include <sys/malloc.h>
    125 #include <sys/mutex.h>
    126 #include <sys/kernel.h>
    127 #include <sys/socket.h>
    128 #include <sys/device.h>
    129 #include <sys/queue.h>
    130 #include <sys/callout.h>
    131 #include <sys/sysctl.h>
    132 #include <sys/endian.h>
    133 
    134 #include <net/if.h>
    135 #include <net/if_dl.h>
    136 #include <net/if_types.h>
    137 
    138 #include <net/if_media.h>
    139 
    140 #include <net/bpf.h>
    141 #include <sys/rndsource.h>
    142 
    143 #include <dev/mii/mii.h>
    144 #include <dev/mii/miivar.h>
    145 #include <dev/mii/brgphyreg.h>
    146 
    147 #include <dev/pci/pcireg.h>
    148 #include <dev/pci/pcivar.h>
    149 #include <dev/pci/pcidevs.h>
    150 
    151 /* #define SK_USEIOSPACE */
    152 
    153 #include <dev/pci/if_skreg.h>
    154 #include <dev/pci/if_skvar.h>
    155 
    156 static int skc_probe(device_t, cfdata_t, void *);
    157 static void skc_attach(device_t, device_t, void *);
    158 static int sk_probe(device_t, cfdata_t, void *);
    159 static void sk_attach(device_t, device_t, void *);
    160 static int skcprint(void *, const char *);
    161 static int sk_intr(void *);
    162 static void sk_intr_bcom(struct sk_if_softc *);
    163 static void sk_intr_xmac(struct sk_if_softc *);
    164 static void sk_intr_yukon(struct sk_if_softc *);
    165 static void sk_rxeof(struct sk_if_softc *);
    166 static void sk_txeof(struct sk_if_softc *);
    167 static int sk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
    168 static void sk_start(struct ifnet *);
    169 static int sk_ioctl(struct ifnet *, u_long, void *);
    170 static int sk_init(struct ifnet *);
    171 static void sk_unreset_xmac(struct sk_if_softc *);
    172 static void sk_init_xmac(struct sk_if_softc *);
    173 static void sk_unreset_yukon(struct sk_if_softc *);
    174 static void sk_init_yukon(struct sk_if_softc *);
    175 static void sk_stop(struct ifnet *, int);
    176 static void sk_watchdog(struct ifnet *);
    177 static int sk_ifmedia_upd(struct ifnet *);
    178 static void sk_reset(struct sk_softc *);
    179 static int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
    180 static int sk_alloc_jumbo_mem(struct sk_if_softc *);
    181 static void *sk_jalloc(struct sk_if_softc *);
    182 static void sk_jfree(struct mbuf *, void *, size_t, void *);
    183 static int sk_init_rx_ring(struct sk_if_softc *);
    184 static int sk_init_tx_ring(struct sk_if_softc *);
    185 static uint8_t sk_vpd_readbyte(struct sk_softc *, int);
    186 static void sk_vpd_read_res(struct sk_softc *, struct vpd_res *, int);
    187 static void sk_vpd_read(struct sk_softc *);
    188 
    189 static void sk_update_int_mod(struct sk_softc *);
    190 
    191 static int sk_xmac_miibus_readreg(device_t, int, int, uint16_t *);
    192 static int sk_xmac_miibus_writereg(device_t, int, int, uint16_t);
    193 static void sk_xmac_miibus_statchg(struct ifnet *);
    194 
    195 static int sk_marv_miibus_readreg(device_t, int, int, uint16_t *);
    196 static int sk_marv_miibus_writereg(device_t, int, int, uint16_t);
    197 static void sk_marv_miibus_statchg(struct ifnet *);
    198 
    199 static uint32_t sk_xmac_hash(void *);
    200 static uint32_t sk_yukon_hash(void *);
    201 static void sk_setfilt(struct sk_if_softc *, void *, int);
    202 static void sk_setmulti(struct sk_if_softc *);
    203 static void sk_tick(void *);
    204 
    205 static bool skc_suspend(device_t, const pmf_qual_t *);
    206 static bool skc_resume(device_t, const pmf_qual_t *);
    207 static bool sk_resume(device_t dv, const pmf_qual_t *);
    208 
    209 /* #define SK_DEBUG 2 */
    210 #ifdef SK_DEBUG
    211 #define DPRINTF(x)	if (skdebug) printf x
    212 #define DPRINTFN(n, x)	if (skdebug >= (n)) printf x
    213 int	skdebug = SK_DEBUG;
    214 
    215 static void sk_dump_txdesc(struct sk_tx_desc *, int);
    216 static void sk_dump_mbuf(struct mbuf *);
    217 static void sk_dump_bytes(const char *, int);
    218 #else
    219 #define DPRINTF(x)
    220 #define DPRINTFN(n, x)
    221 #endif
    222 
    223 static int sk_sysctl_handler(SYSCTLFN_PROTO);
    224 static int sk_root_num;
    225 
    226 /* supported device vendors */
    227 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
    228 static const struct sk_product {
    229 	pci_vendor_id_t		sk_vendor;
    230 	pci_product_id_t	sk_product;
    231 } sk_products[] = {
    232 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
    233 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
    234 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
    235 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
    236 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
    237 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
    238 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
    239 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
    240 	{ 0, 0, }
    241 };
    242 
    243 #define SK_LINKSYS_EG1032_SUBID	0x00151737
    244 
    245 static inline uint32_t
    246 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
    247 {
    248 #ifdef SK_USEIOSPACE
    249 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    250 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
    251 #else
    252 	return CSR_READ_4(sc, reg);
    253 #endif
    254 }
    255 
    256 static inline uint16_t
    257 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
    258 {
    259 #ifdef SK_USEIOSPACE
    260 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    261 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
    262 #else
    263 	return CSR_READ_2(sc, reg);
    264 #endif
    265 }
    266 
    267 static inline uint8_t
    268 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
    269 {
    270 #ifdef SK_USEIOSPACE
    271 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    272 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
    273 #else
    274 	return CSR_READ_1(sc, reg);
    275 #endif
    276 }
    277 
    278 static inline void
    279 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
    280 {
    281 #ifdef SK_USEIOSPACE
    282 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    283 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
    284 #else
    285 	CSR_WRITE_4(sc, reg, x);
    286 #endif
    287 }
    288 
    289 static inline void
    290 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
    291 {
    292 #ifdef SK_USEIOSPACE
    293 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    294 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
    295 #else
    296 	CSR_WRITE_2(sc, reg, x);
    297 #endif
    298 }
    299 
    300 static inline void
    301 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
    302 {
    303 #ifdef SK_USEIOSPACE
    304 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    305 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
    306 #else
    307 	CSR_WRITE_1(sc, reg, x);
    308 #endif
    309 }
    310 
    311 /*
    312  * The VPD EEPROM contains Vital Product Data, as suggested in
    313  * the PCI 2.1 specification. The VPD data is separared into areas
    314  * denoted by resource IDs. The SysKonnect VPD contains an ID string
    315  * resource (the name of the adapter), a read-only area resource
    316  * containing various key/data fields and a read/write area which
    317  * can be used to store asset management information or log messages.
    318  * We read the ID string and read-only into buffers attached to
    319  * the controller softc structure for later use. At the moment,
    320  * we only use the ID string during sk_attach().
    321  */
    322 static uint8_t
    323 sk_vpd_readbyte(struct sk_softc *sc, int addr)
    324 {
    325 	int			i;
    326 
    327 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
    328 	for (i = 0; i < SK_TIMEOUT; i++) {
    329 		DELAY(1);
    330 		if (sk_win_read_2(sc,
    331 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
    332 			break;
    333 	}
    334 
    335 	if (i == SK_TIMEOUT)
    336 		return 0;
    337 
    338 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
    339 }
    340 
    341 static void
    342 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
    343 {
    344 	int			i;
    345 	uint8_t		*ptr;
    346 
    347 	ptr = (uint8_t *)res;
    348 	for (i = 0; i < sizeof(struct vpd_res); i++)
    349 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
    350 }
    351 
    352 static void
    353 sk_vpd_read(struct sk_softc *sc)
    354 {
    355 	int			pos = 0, i;
    356 	struct vpd_res		res;
    357 
    358 	if (sc->sk_vpd_prodname != NULL)
    359 		free(sc->sk_vpd_prodname, M_DEVBUF);
    360 	if (sc->sk_vpd_readonly != NULL)
    361 		free(sc->sk_vpd_readonly, M_DEVBUF);
    362 	sc->sk_vpd_prodname = NULL;
    363 	sc->sk_vpd_readonly = NULL;
    364 
    365 	sk_vpd_read_res(sc, &res, pos);
    366 
    367 	if (res.vr_id != VPD_RES_ID) {
    368 		aprint_error_dev(sc->sk_dev,
    369 		    "bad VPD resource id: expected %x got %x\n",
    370 		    VPD_RES_ID, res.vr_id);
    371 		return;
    372 	}
    373 
    374 	pos += sizeof(res);
    375 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_WAITOK);
    376 	for (i = 0; i < res.vr_len; i++)
    377 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
    378 	sc->sk_vpd_prodname[i] = '\0';
    379 	pos += i;
    380 
    381 	sk_vpd_read_res(sc, &res, pos);
    382 
    383 	if (res.vr_id != VPD_RES_READ) {
    384 		aprint_error_dev(sc->sk_dev,
    385 		    "bad VPD resource id: expected %x got %x\n",
    386 		    VPD_RES_READ, res.vr_id);
    387 		return;
    388 	}
    389 
    390 	pos += sizeof(res);
    391 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_WAITOK);
    392 	for (i = 0; i < res.vr_len ; i++)
    393 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
    394 }
    395 
    396 static int
    397 sk_xmac_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
    398 {
    399 	struct sk_if_softc *sc_if = device_private(dev);
    400 	int i;
    401 
    402 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
    403 
    404 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
    405 		return -1;
    406 
    407 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    408 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
    409 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    410 		for (i = 0; i < SK_TIMEOUT; i++) {
    411 			DELAY(1);
    412 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
    413 			    XM_MMUCMD_PHYDATARDY)
    414 				break;
    415 		}
    416 
    417 		if (i == SK_TIMEOUT) {
    418 			aprint_error_dev(sc_if->sk_dev,
    419 			    "phy failed to come ready\n");
    420 			return ETIMEDOUT;
    421 		}
    422 	}
    423 	DELAY(1);
    424 	*val = SK_XM_READ_2(sc_if, XM_PHY_DATA);
    425 	return 0;
    426 }
    427 
    428 static int
    429 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
    430 {
    431 	struct sk_if_softc *sc_if = device_private(dev);
    432 	int i;
    433 
    434 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
    435 
    436 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    437 	for (i = 0; i < SK_TIMEOUT; i++) {
    438 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    439 			break;
    440 	}
    441 
    442 	if (i == SK_TIMEOUT) {
    443 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
    444 		return ETIMEDOUT;
    445 	}
    446 
    447 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
    448 	for (i = 0; i < SK_TIMEOUT; i++) {
    449 		DELAY(1);
    450 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    451 			break;
    452 	}
    453 
    454 	if (i == SK_TIMEOUT) {
    455 		aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
    456 		return ETIMEDOUT;
    457 	}
    458 
    459 	return 0;
    460 }
    461 
    462 static void
    463 sk_xmac_miibus_statchg(struct ifnet *ifp)
    464 {
    465 	struct sk_if_softc *sc_if = ifp->if_softc;
    466 	struct mii_data *mii = &sc_if->sk_mii;
    467 
    468 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
    469 
    470 	/*
    471 	 * If this is a GMII PHY, manually set the XMAC's
    472 	 * duplex mode accordingly.
    473 	 */
    474 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    475 		if ((mii->mii_media_active & IFM_FDX) != 0)
    476 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    477 		else
    478 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    479 	}
    480 }
    481 
    482 static int
    483 sk_marv_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
    484 {
    485 	struct sk_if_softc *sc_if = device_private(dev);
    486 	uint16_t data;
    487 	int i;
    488 
    489 	if (phy != 0 ||
    490 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
    491 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
    492 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
    493 			     phy, reg));
    494 		return -1;
    495 	}
    496 
    497 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    498 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
    499 
    500 	for (i = 0; i < SK_TIMEOUT; i++) {
    501 		DELAY(1);
    502 		data = SK_YU_READ_2(sc_if, YUKON_SMICR);
    503 		if (data & YU_SMICR_READ_VALID)
    504 			break;
    505 	}
    506 
    507 	if (i == SK_TIMEOUT) {
    508 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
    509 		return ETIMEDOUT;
    510 	}
    511 
    512 	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
    513 		     SK_TIMEOUT));
    514 
    515 	*val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
    516 
    517 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
    518 		     phy, reg, *val));
    519 
    520 	return 0;
    521 }
    522 
    523 static int
    524 sk_marv_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
    525 {
    526 	struct sk_if_softc *sc_if = device_private(dev);
    527 	int i;
    528 
    529 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#hx\n",
    530 		     phy, reg, val));
    531 
    532 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
    533 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    534 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
    535 
    536 	for (i = 0; i < SK_TIMEOUT; i++) {
    537 		DELAY(1);
    538 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
    539 			break;
    540 	}
    541 
    542 	if (i == SK_TIMEOUT) {
    543 		printf("%s: phy write timed out\n",
    544 		    device_xname(sc_if->sk_dev));
    545 		return ETIMEDOUT;
    546 	}
    547 
    548 	return 0;
    549 }
    550 
    551 static void
    552 sk_marv_miibus_statchg(struct ifnet *ifp)
    553 {
    554 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
    555 		     SK_YU_READ_2(((struct sk_if_softc *)ifp->if_softc),
    556 		     YUKON_GPCR)));
    557 }
    558 
    559 static uint32_t
    560 sk_xmac_hash(void *addr)
    561 {
    562 	uint32_t		crc;
    563 
    564 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
    565 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
    566 	DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
    567 	return crc;
    568 }
    569 
    570 static uint32_t
    571 sk_yukon_hash(void *addr)
    572 {
    573 	uint32_t		crc;
    574 
    575 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
    576 	crc &= ((1 << SK_HASH_BITS) - 1);
    577 	DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
    578 	return crc;
    579 }
    580 
    581 static void
    582 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
    583 {
    584 	char *addr = addrv;
    585 	int base = XM_RXFILT_ENTRY(slot);
    586 
    587 	SK_XM_WRITE_2(sc_if, base, *(uint16_t *)(&addr[0]));
    588 	SK_XM_WRITE_2(sc_if, base + 2, *(uint16_t *)(&addr[2]));
    589 	SK_XM_WRITE_2(sc_if, base + 4, *(uint16_t *)(&addr[4]));
    590 }
    591 
    592 static void
    593 sk_setmulti(struct sk_if_softc *sc_if)
    594 {
    595 	struct sk_softc *sc = sc_if->sk_softc;
    596 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
    597 	uint32_t hashes[2] = { 0, 0 };
    598 	int h = 0, i;
    599 	struct ethercom *ec = &sc_if->sk_ethercom;
    600 	struct ether_multi *enm;
    601 	struct ether_multistep step;
    602 	uint8_t dummy[] = { 0, 0, 0, 0, 0, 0 };
    603 
    604 	/* First, zot all the existing filters. */
    605 	switch (sc->sk_type) {
    606 	case SK_GENESIS:
    607 		for (i = 1; i < XM_RXFILT_MAX; i++)
    608 			sk_setfilt(sc_if, (void *)&dummy, i);
    609 
    610 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
    611 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
    612 		break;
    613 	case SK_YUKON:
    614 	case SK_YUKON_LITE:
    615 	case SK_YUKON_LP:
    616 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
    617 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
    618 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
    619 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
    620 		break;
    621 	}
    622 
    623 	/* Now program new ones. */
    624 allmulti:
    625 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    626 		hashes[0] = 0xFFFFFFFF;
    627 		hashes[1] = 0xFFFFFFFF;
    628 	} else {
    629 		i = 1;
    630 		/* First find the tail of the list. */
    631 		ETHER_LOCK(ec);
    632 		ETHER_FIRST_MULTI(step, ec, enm);
    633 		while (enm != NULL) {
    634 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    635 				 ETHER_ADDR_LEN)) {
    636 				ifp->if_flags |= IFF_ALLMULTI;
    637 				ETHER_UNLOCK(ec);
    638 				goto allmulti;
    639 			}
    640 			DPRINTFN(2,("multicast address %s\n",
    641 				ether_sprintf(enm->enm_addrlo)));
    642 			/*
    643 			 * Program the first XM_RXFILT_MAX multicast groups
    644 			 * into the perfect filter. For all others,
    645 			 * use the hash table.
    646 			 */
    647 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
    648 				sk_setfilt(sc_if, enm->enm_addrlo, i);
    649 				i++;
    650 			}
    651 			else {
    652 				switch (sc->sk_type) {
    653 				case SK_GENESIS:
    654 					h = sk_xmac_hash(enm->enm_addrlo);
    655 					break;
    656 				case SK_YUKON:
    657 				case SK_YUKON_LITE:
    658 				case SK_YUKON_LP:
    659 					h = sk_yukon_hash(enm->enm_addrlo);
    660 					break;
    661 				}
    662 				if (h < 32)
    663 					hashes[0] |= (1 << h);
    664 				else
    665 					hashes[1] |= (1 << (h - 32));
    666 			}
    667 
    668 			ETHER_NEXT_MULTI(step, enm);
    669 		}
    670 		ETHER_UNLOCK(ec);
    671 	}
    672 
    673 	switch (sc->sk_type) {
    674 	case SK_GENESIS:
    675 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH |
    676 			       XM_MODE_RX_USE_PERFECT);
    677 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
    678 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
    679 		break;
    680 	case SK_YUKON:
    681 	case SK_YUKON_LITE:
    682 	case SK_YUKON_LP:
    683 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
    684 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
    685 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
    686 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
    687 		break;
    688 	}
    689 }
    690 
    691 static int
    692 sk_init_rx_ring(struct sk_if_softc *sc_if)
    693 {
    694 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    695 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    696 	int			i;
    697 
    698 	memset((char *)rd->sk_rx_ring, 0,
    699 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
    700 
    701 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    702 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
    703 		if (i == (SK_RX_RING_CNT - 1)) {
    704 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
    705 			rd->sk_rx_ring[i].sk_next =
    706 				htole32(SK_RX_RING_ADDR(sc_if, 0));
    707 		} else {
    708 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
    709 			rd->sk_rx_ring[i].sk_next =
    710 				htole32(SK_RX_RING_ADDR(sc_if, i+1));
    711 		}
    712 	}
    713 
    714 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    715 		if (sk_newbuf(sc_if, i, NULL,
    716 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
    717 			aprint_error_dev(sc_if->sk_dev,
    718 			    "failed alloc of %dth mbuf\n", i);
    719 			return ENOBUFS;
    720 		}
    721 	}
    722 	sc_if->sk_cdata.sk_rx_prod = 0;
    723 	sc_if->sk_cdata.sk_rx_cons = 0;
    724 
    725 	return 0;
    726 }
    727 
    728 static int
    729 sk_init_tx_ring(struct sk_if_softc *sc_if)
    730 {
    731 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    732 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    733 	int			i;
    734 
    735 	memset(sc_if->sk_rdata->sk_tx_ring, 0,
    736 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
    737 
    738 	for (i = 0; i < SK_TX_RING_CNT; i++) {
    739 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
    740 		if (i == (SK_TX_RING_CNT - 1)) {
    741 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
    742 			rd->sk_tx_ring[i].sk_next =
    743 				htole32(SK_TX_RING_ADDR(sc_if, 0));
    744 		} else {
    745 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
    746 			rd->sk_tx_ring[i].sk_next =
    747 				htole32(SK_TX_RING_ADDR(sc_if, i+1));
    748 		}
    749 	}
    750 
    751 	sc_if->sk_cdata.sk_tx_prod = 0;
    752 	sc_if->sk_cdata.sk_tx_cons = 0;
    753 	sc_if->sk_cdata.sk_tx_cnt = 0;
    754 
    755 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
    756 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    757 
    758 	return 0;
    759 }
    760 
    761 static int
    762 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
    763 	  bus_dmamap_t dmamap)
    764 {
    765 	struct mbuf		*m_new = NULL;
    766 	struct sk_chain		*c;
    767 	struct sk_rx_desc	*r;
    768 
    769 	if (m == NULL) {
    770 		void *buf = NULL;
    771 
    772 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    773 		if (m_new == NULL) {
    774 			aprint_error_dev(sc_if->sk_dev,
    775 			    "no memory for rx list -- packet dropped!\n");
    776 			return ENOBUFS;
    777 		}
    778 
    779 		/* Allocate the jumbo buffer */
    780 		buf = sk_jalloc(sc_if);
    781 		if (buf == NULL) {
    782 			m_freem(m_new);
    783 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
    784 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
    785 			return ENOBUFS;
    786 		}
    787 
    788 		/* Attach the buffer to the mbuf */
    789 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    790 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
    791 
    792 	} else {
    793 		/*
    794 		 * We're re-using a previously allocated mbuf;
    795 		 * be sure to re-init pointers and lengths to
    796 		 * default values.
    797 		 */
    798 		m_new = m;
    799 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    800 		m_new->m_data = m_new->m_ext.ext_buf;
    801 	}
    802 	m_adj(m_new, ETHER_ALIGN);
    803 
    804 	c = &sc_if->sk_cdata.sk_rx_chain[i];
    805 	r = c->sk_desc;
    806 	c->sk_mbuf = m_new;
    807 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
    808 	    (((vaddr_t)m_new->m_data
    809 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
    810 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
    811 
    812 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
    813 
    814 	return 0;
    815 }
    816 
    817 /*
    818  * Memory management for jumbo frames.
    819  */
    820 
    821 static int
    822 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
    823 {
    824 	struct sk_softc		*sc = sc_if->sk_softc;
    825 	char *ptr, *kva;
    826 	bus_dma_segment_t	seg;
    827 	int		i, rseg, state, error;
    828 	struct sk_jpool_entry	*entry;
    829 
    830 	state = error = 0;
    831 
    832 	/* Grab a big chunk o' storage. */
    833 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
    834 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    835 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
    836 		return ENOBUFS;
    837 	}
    838 
    839 	state = 1;
    840 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
    841 			   BUS_DMA_NOWAIT)) {
    842 		aprint_error_dev(sc->sk_dev,
    843 		    "can't map dma buffers (%d bytes)\n",
    844 		    SK_JMEM);
    845 		error = ENOBUFS;
    846 		goto out;
    847 	}
    848 
    849 	state = 2;
    850 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
    851 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
    852 		aprint_error_dev(sc->sk_dev, "can't create dma map\n");
    853 		error = ENOBUFS;
    854 		goto out;
    855 	}
    856 
    857 	state = 3;
    858 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
    859 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
    860 		aprint_error_dev(sc->sk_dev, "can't load dma map\n");
    861 		error = ENOBUFS;
    862 		goto out;
    863 	}
    864 
    865 	state = 4;
    866 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
    867 	DPRINTFN(1,("sk_jumbo_buf = %p\n", sc_if->sk_cdata.sk_jumbo_buf));
    868 
    869 	LIST_INIT(&sc_if->sk_jfree_listhead);
    870 	LIST_INIT(&sc_if->sk_jinuse_listhead);
    871 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
    872 
    873 	/*
    874 	 * Now divide it up into 9K pieces and save the addresses
    875 	 * in an array.
    876 	 */
    877 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
    878 	for (i = 0; i < SK_JSLOTS; i++) {
    879 		sc_if->sk_cdata.sk_jslots[i] = ptr;
    880 		ptr += SK_JLEN;
    881 		entry = malloc(sizeof(struct sk_jpool_entry),
    882 		    M_DEVBUF, M_WAITOK);
    883 		entry->slot = i;
    884 		if (i)
    885 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
    886 				 entry, jpool_entries);
    887 		else
    888 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
    889 				 entry, jpool_entries);
    890 	}
    891 out:
    892 	if (error != 0) {
    893 		switch (state) {
    894 		case 4:
    895 			bus_dmamap_unload(sc->sc_dmatag,
    896 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    897 			/* FALLTHROUGH */
    898 		case 3:
    899 			bus_dmamap_destroy(sc->sc_dmatag,
    900 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    901 			/* FALLTHROUGH */
    902 		case 2:
    903 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
    904 			/* FALLTHROUGH */
    905 		case 1:
    906 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
    907 			break;
    908 		default:
    909 			break;
    910 		}
    911 	}
    912 
    913 	return error;
    914 }
    915 
    916 /*
    917  * Allocate a jumbo buffer.
    918  */
    919 static void *
    920 sk_jalloc(struct sk_if_softc *sc_if)
    921 {
    922 	struct sk_jpool_entry	*entry;
    923 
    924 	mutex_enter(&sc_if->sk_jpool_mtx);
    925 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
    926 
    927 	if (entry == NULL) {
    928 		mutex_exit(&sc_if->sk_jpool_mtx);
    929 		return NULL;
    930 	}
    931 
    932 	LIST_REMOVE(entry, jpool_entries);
    933 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
    934 	mutex_exit(&sc_if->sk_jpool_mtx);
    935 	return sc_if->sk_cdata.sk_jslots[entry->slot];
    936 }
    937 
    938 /*
    939  * Release a jumbo buffer.
    940  */
    941 static void
    942 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
    943 {
    944 	struct sk_jpool_entry *entry;
    945 	struct sk_if_softc *sc;
    946 	int i;
    947 
    948 	/* Extract the softc struct pointer. */
    949 	sc = (struct sk_if_softc *)arg;
    950 
    951 	if (sc == NULL)
    952 		panic("sk_jfree: can't find softc pointer!");
    953 
    954 	/* calculate the slot this buffer belongs to */
    955 
    956 	i = ((vaddr_t)buf
    957 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
    958 
    959 	if ((i < 0) || (i >= SK_JSLOTS))
    960 		panic("sk_jfree: asked to free buffer that we don't manage!");
    961 
    962 	mutex_enter(&sc->sk_jpool_mtx);
    963 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
    964 	if (entry == NULL)
    965 		panic("sk_jfree: buffer not in use!");
    966 	entry->slot = i;
    967 	LIST_REMOVE(entry, jpool_entries);
    968 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
    969 	mutex_exit(&sc->sk_jpool_mtx);
    970 
    971 	if (__predict_true(m != NULL))
    972 		pool_cache_put(mb_cache, m);
    973 }
    974 
    975 /*
    976  * Set media options.
    977  */
    978 static int
    979 sk_ifmedia_upd(struct ifnet *ifp)
    980 {
    981 	struct sk_if_softc *sc_if = ifp->if_softc;
    982 	int rc;
    983 
    984 	(void) sk_init(ifp);
    985 	if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
    986 		return 0;
    987 	return rc;
    988 }
    989 
    990 static void
    991 sk_promisc(struct sk_if_softc *sc_if, int on)
    992 {
    993 	struct sk_softc *sc = sc_if->sk_softc;
    994 	switch (sc->sk_type) {
    995 	case SK_GENESIS:
    996 		if (on)
    997 			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
    998 		else
    999 			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   1000 		break;
   1001 	case SK_YUKON:
   1002 	case SK_YUKON_LITE:
   1003 	case SK_YUKON_LP:
   1004 		if (on)
   1005 			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
   1006 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1007 		else
   1008 			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
   1009 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1010 		break;
   1011 	default:
   1012 		aprint_error_dev(sc_if->sk_dev, "Can't set promisc for %d\n",
   1013 			sc->sk_type);
   1014 		break;
   1015 	}
   1016 }
   1017 
   1018 static int
   1019 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
   1020 {
   1021 	struct sk_if_softc *sc_if = ifp->if_softc;
   1022 	int s, error = 0;
   1023 
   1024 	/* DPRINTFN(2, ("sk_ioctl\n")); */
   1025 
   1026 	s = splnet();
   1027 
   1028 	switch (command) {
   1029 
   1030 	case SIOCSIFFLAGS:
   1031 		DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
   1032 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   1033 			break;
   1034 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
   1035 		case IFF_RUNNING:
   1036 			sk_stop(ifp, 1);
   1037 			break;
   1038 		case IFF_UP:
   1039 			sk_init(ifp);
   1040 			break;
   1041 		case IFF_UP | IFF_RUNNING:
   1042 			if ((ifp->if_flags ^ sc_if->sk_if_flags) == IFF_PROMISC)			{
   1043 				sk_promisc(sc_if, ifp->if_flags & IFF_PROMISC);
   1044 				sk_setmulti(sc_if);
   1045 			} else
   1046 				sk_init(ifp);
   1047 			break;
   1048 		}
   1049 		sc_if->sk_if_flags = ifp->if_flags;
   1050 		error = 0;
   1051 		break;
   1052 
   1053 	default:
   1054 		DPRINTFN(2, ("sk_ioctl ETHER\n"));
   1055 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   1056 			break;
   1057 
   1058 		error = 0;
   1059 
   1060 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   1061 			;
   1062 		else if (ifp->if_flags & IFF_RUNNING) {
   1063 			sk_setmulti(sc_if);
   1064 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
   1065 		}
   1066 		break;
   1067 	}
   1068 
   1069 	splx(s);
   1070 	return error;
   1071 }
   1072 
   1073 static void
   1074 sk_update_int_mod(struct sk_softc *sc)
   1075 {
   1076 	uint32_t imtimer_ticks;
   1077 
   1078 	/*
   1079 	 * Configure interrupt moderation. The moderation timer
   1080 	 * defers interrupts specified in the interrupt moderation
   1081 	 * timer mask based on the timeout specified in the interrupt
   1082 	 * moderation timer init register. Each bit in the timer
   1083 	 * register represents one tick, so to specify a timeout in
   1084 	 * microseconds, we have to multiply by the correct number of
   1085 	 * ticks-per-microsecond.
   1086 	 */
   1087 	switch (sc->sk_type) {
   1088 	case SK_GENESIS:
   1089 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   1090 		break;
   1091 	case SK_YUKON_EC:
   1092 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   1093 		break;
   1094 	default:
   1095 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   1096 	}
   1097 	aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
   1098 	    sc->sk_int_mod);
   1099 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
   1100 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF | SK_ISR_TX2_S_EOF |
   1101 	    SK_ISR_RX1_EOF | SK_ISR_RX2_EOF);
   1102 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
   1103 	sc->sk_int_mod_pending = 0;
   1104 }
   1105 
   1106 /*
   1107  * Lookup: Check the PCI vendor and device, and return a pointer to
   1108  * The structure if the IDs match against our list.
   1109  */
   1110 
   1111 static const struct sk_product *
   1112 sk_lookup(const struct pci_attach_args *pa)
   1113 {
   1114 	const struct sk_product *psk;
   1115 
   1116 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
   1117 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
   1118 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
   1119 			return psk;
   1120 	}
   1121 	return NULL;
   1122 }
   1123 
   1124 /*
   1125  * Probe for a SysKonnect GEnesis chip.
   1126  */
   1127 
   1128 static int
   1129 skc_probe(device_t parent, cfdata_t match, void *aux)
   1130 {
   1131 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1132 	const struct sk_product *psk;
   1133 	pcireg_t subid;
   1134 
   1135 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
   1136 
   1137 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
   1138 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
   1139 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
   1140 	    subid == SK_LINKSYS_EG1032_SUBID)
   1141 		return 1;
   1142 
   1143 	if ((psk = sk_lookup(pa))) {
   1144 		return 1;
   1145 	}
   1146 	return 0;
   1147 }
   1148 
   1149 /*
   1150  * Force the GEnesis into reset, then bring it out of reset.
   1151  */
   1152 static void
   1153 sk_reset(struct sk_softc *sc)
   1154 {
   1155 	DPRINTFN(2, ("sk_reset\n"));
   1156 
   1157 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
   1158 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
   1159 	if (SK_YUKON_FAMILY(sc->sk_type))
   1160 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
   1161 
   1162 	DELAY(1000);
   1163 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
   1164 	DELAY(2);
   1165 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
   1166 	if (SK_YUKON_FAMILY(sc->sk_type))
   1167 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
   1168 
   1169 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
   1170 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
   1171 		     CSR_READ_2(sc, SK_LINK_CTRL)));
   1172 
   1173 	if (sc->sk_type == SK_GENESIS) {
   1174 		/* Configure packet arbiter */
   1175 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
   1176 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1177 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1178 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1179 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1180 	}
   1181 
   1182 	/* Enable RAM interface */
   1183 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
   1184 
   1185 	sk_update_int_mod(sc);
   1186 }
   1187 
   1188 static int
   1189 sk_probe(device_t parent, cfdata_t match, void *aux)
   1190 {
   1191 	struct skc_attach_args *sa = aux;
   1192 
   1193 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
   1194 		return 0;
   1195 
   1196 	return 1;
   1197 }
   1198 
   1199 /*
   1200  * Each XMAC chip is attached as a separate logical IP interface.
   1201  * Single port cards will have only one logical interface of course.
   1202  */
   1203 static void
   1204 sk_attach(device_t parent, device_t self, void *aux)
   1205 {
   1206 	struct sk_if_softc *sc_if = device_private(self);
   1207 	struct mii_data *mii = &sc_if->sk_mii;
   1208 	struct sk_softc *sc = device_private(parent);
   1209 	struct skc_attach_args *sa = aux;
   1210 	struct sk_txmap_entry	*entry;
   1211 	struct ifnet *ifp;
   1212 	bus_dma_segment_t seg;
   1213 	bus_dmamap_t dmamap;
   1214 	prop_data_t data;
   1215 	void *kva;
   1216 	int i, rseg;
   1217 	int mii_flags = 0;
   1218 
   1219 	aprint_naive("\n");
   1220 
   1221 	sc_if->sk_dev = self;
   1222 	sc_if->sk_port = sa->skc_port;
   1223 	sc_if->sk_softc = sc;
   1224 	sc->sk_if[sa->skc_port] = sc_if;
   1225 
   1226 	if (sa->skc_port == SK_PORT_A)
   1227 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
   1228 	if (sa->skc_port == SK_PORT_B)
   1229 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
   1230 
   1231 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
   1232 
   1233 	/*
   1234 	 * Get station address for this interface. Note that
   1235 	 * dual port cards actually come with three station
   1236 	 * addresses: one for each port, plus an extra. The
   1237 	 * extra one is used by the SysKonnect driver software
   1238 	 * as a 'virtual' station address for when both ports
   1239 	 * are operating in failover mode. Currently we don't
   1240 	 * use this extra address.
   1241 	 */
   1242 	data = prop_dictionary_get(device_properties(self), "mac-address");
   1243 	if (data != NULL) {
   1244 		/*
   1245 		 * Try to get the station address from device properties
   1246 		 * first, in case the ROM is missing.
   1247 		 */
   1248 		KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
   1249 		KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
   1250 		memcpy(sc_if->sk_enaddr, prop_data_value(data),
   1251 		    ETHER_ADDR_LEN);
   1252 	} else
   1253 		for (i = 0; i < ETHER_ADDR_LEN; i++)
   1254 			sc_if->sk_enaddr[i] = sk_win_read_1(sc,
   1255 			    SK_MAC0_0 + (sa->skc_port * 8) + i);
   1256 
   1257 	aprint_normal(": Ethernet address %s\n",
   1258 	    ether_sprintf(sc_if->sk_enaddr));
   1259 
   1260 	/*
   1261 	 * Set up RAM buffer addresses. The NIC will have a certain
   1262 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
   1263 	 * need to divide this up a) between the transmitter and
   1264 	 * receiver and b) between the two XMACs, if this is a
   1265 	 * dual port NIC. Our algorithm is to divide up the memory
   1266 	 * evenly so that everyone gets a fair share.
   1267 	 */
   1268 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
   1269 		uint32_t		chunk, val;
   1270 
   1271 		chunk = sc->sk_ramsize / 2;
   1272 		val = sc->sk_rboff / sizeof(uint64_t);
   1273 		sc_if->sk_rx_ramstart = val;
   1274 		val += (chunk / sizeof(uint64_t));
   1275 		sc_if->sk_rx_ramend = val - 1;
   1276 		sc_if->sk_tx_ramstart = val;
   1277 		val += (chunk / sizeof(uint64_t));
   1278 		sc_if->sk_tx_ramend = val - 1;
   1279 	} else {
   1280 		uint32_t		chunk, val;
   1281 
   1282 		chunk = sc->sk_ramsize / 4;
   1283 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
   1284 		    sizeof(uint64_t);
   1285 		sc_if->sk_rx_ramstart = val;
   1286 		val += (chunk / sizeof(uint64_t));
   1287 		sc_if->sk_rx_ramend = val - 1;
   1288 		sc_if->sk_tx_ramstart = val;
   1289 		val += (chunk / sizeof(uint64_t));
   1290 		sc_if->sk_tx_ramend = val - 1;
   1291 	}
   1292 
   1293 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
   1294 		     "		 tx_ramstart=%#x tx_ramend=%#x\n",
   1295 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
   1296 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
   1297 
   1298 	/* Read and save PHY type and set PHY address */
   1299 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
   1300 	switch (sc_if->sk_phytype) {
   1301 	case SK_PHYTYPE_XMAC:
   1302 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
   1303 		break;
   1304 	case SK_PHYTYPE_BCOM:
   1305 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
   1306 		break;
   1307 	case SK_PHYTYPE_MARV_COPPER:
   1308 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
   1309 		break;
   1310 	default:
   1311 		aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
   1312 		    sc_if->sk_phytype);
   1313 		return;
   1314 	}
   1315 
   1316 	/* Allocate the descriptor queues. */
   1317 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
   1318 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1319 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
   1320 		goto fail;
   1321 	}
   1322 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
   1323 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
   1324 		aprint_error_dev(sc_if->sk_dev,
   1325 		    "can't map dma buffers (%lu bytes)\n",
   1326 		    (u_long) sizeof(struct sk_ring_data));
   1327 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1328 		goto fail;
   1329 	}
   1330 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
   1331 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
   1332 	    &sc_if->sk_ring_map)) {
   1333 		aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
   1334 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1335 		    sizeof(struct sk_ring_data));
   1336 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1337 		goto fail;
   1338 	}
   1339 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
   1340 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
   1341 		aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
   1342 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1343 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1344 		    sizeof(struct sk_ring_data));
   1345 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1346 		goto fail;
   1347 	}
   1348 
   1349 	for (i = 0; i < SK_RX_RING_CNT; i++)
   1350 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   1351 
   1352 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
   1353 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   1354 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   1355 
   1356 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
   1357 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
   1358 			aprint_error_dev(sc_if->sk_dev,
   1359 			    "Can't create TX dmamap\n");
   1360 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1361 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1362 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1363 			    sizeof(struct sk_ring_data));
   1364 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1365 			goto fail;
   1366 		}
   1367 
   1368 		entry = malloc(sizeof(*entry), M_DEVBUF, M_WAITOK);
   1369 		entry->dmamap = dmamap;
   1370 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
   1371 	}
   1372 
   1373 	sc_if->sk_rdata = (struct sk_ring_data *)kva;
   1374 	memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
   1375 
   1376 	ifp = &sc_if->sk_ethercom.ec_if;
   1377 	/* Try to allocate memory for jumbo buffers. */
   1378 	if (sk_alloc_jumbo_mem(sc_if)) {
   1379 		aprint_error("%s: jumbo buffer allocation failed\n",
   1380 		    ifp->if_xname);
   1381 		goto fail;
   1382 	}
   1383 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
   1384 		| ETHERCAP_JUMBO_MTU;
   1385 
   1386 	ifp->if_softc = sc_if;
   1387 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1388 	ifp->if_ioctl = sk_ioctl;
   1389 	ifp->if_start = sk_start;
   1390 	ifp->if_stop = sk_stop;
   1391 	ifp->if_init = sk_init;
   1392 	ifp->if_watchdog = sk_watchdog;
   1393 	ifp->if_capabilities = 0;
   1394 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
   1395 	IFQ_SET_READY(&ifp->if_snd);
   1396 	strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
   1397 
   1398 	/*
   1399 	 * Do miibus setup.
   1400 	 */
   1401 	switch (sc->sk_type) {
   1402 	case SK_GENESIS:
   1403 		sk_unreset_xmac(sc_if);
   1404 		break;
   1405 	case SK_YUKON:
   1406 	case SK_YUKON_LITE:
   1407 	case SK_YUKON_LP:
   1408 		sk_unreset_yukon(sc_if);
   1409 		break;
   1410 	default:
   1411 		aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
   1412 			sc->sk_type);
   1413 		goto fail;
   1414 	}
   1415 
   1416 	DPRINTFN(2, ("sk_attach: 1\n"));
   1417 
   1418 	mii->mii_ifp = ifp;
   1419 	switch (sc->sk_type) {
   1420 	case SK_GENESIS:
   1421 		mii->mii_readreg = sk_xmac_miibus_readreg;
   1422 		mii->mii_writereg = sk_xmac_miibus_writereg;
   1423 		mii->mii_statchg = sk_xmac_miibus_statchg;
   1424 		break;
   1425 	case SK_YUKON:
   1426 	case SK_YUKON_LITE:
   1427 	case SK_YUKON_LP:
   1428 		mii->mii_readreg = sk_marv_miibus_readreg;
   1429 		mii->mii_writereg = sk_marv_miibus_writereg;
   1430 		mii->mii_statchg = sk_marv_miibus_statchg;
   1431 		mii_flags = MIIF_DOPAUSE;
   1432 		break;
   1433 	}
   1434 
   1435 	sc_if->sk_ethercom.ec_mii = mii;
   1436 	ifmedia_init(&mii->mii_media, 0, sk_ifmedia_upd, ether_mediastatus);
   1437 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
   1438 	    MII_OFFSET_ANY, mii_flags);
   1439 	if (LIST_EMPTY(&mii->mii_phys)) {
   1440 		aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
   1441 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
   1442 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
   1443 	} else
   1444 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
   1445 
   1446 	callout_init(&sc_if->sk_tick_ch, 0);
   1447 	callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   1448 
   1449 	DPRINTFN(2, ("sk_attach: 1\n"));
   1450 
   1451 	/*
   1452 	 * Call MI attach routines.
   1453 	 */
   1454 	if_attach(ifp);
   1455 	if_deferred_start_init(ifp, NULL);
   1456 
   1457 	ether_ifattach(ifp, sc_if->sk_enaddr);
   1458 
   1459 	if (sc->rnd_attached++ == 0) {
   1460 		rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
   1461 		    RND_TYPE_NET, RND_FLAG_DEFAULT);
   1462 	}
   1463 
   1464 	if (pmf_device_register(self, NULL, sk_resume))
   1465 		pmf_class_network_register(self, ifp);
   1466 	else
   1467 		aprint_error_dev(self, "couldn't establish power handler\n");
   1468 
   1469 	DPRINTFN(2, ("sk_attach: end\n"));
   1470 
   1471 	return;
   1472 
   1473 fail:
   1474 	sc->sk_if[sa->skc_port] = NULL;
   1475 }
   1476 
   1477 static int
   1478 skcprint(void *aux, const char *pnp)
   1479 {
   1480 	struct skc_attach_args *sa = aux;
   1481 
   1482 	if (pnp)
   1483 		aprint_normal("sk port %c at %s",
   1484 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
   1485 	else
   1486 		aprint_normal(" port %c",
   1487 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
   1488 	return UNCONF;
   1489 }
   1490 
   1491 /*
   1492  * Attach the interface. Allocate softc structures, do ifmedia
   1493  * setup and ethernet/BPF attach.
   1494  */
   1495 static void
   1496 skc_attach(device_t parent, device_t self, void *aux)
   1497 {
   1498 	struct sk_softc *sc = device_private(self);
   1499 	struct pci_attach_args *pa = aux;
   1500 	struct skc_attach_args skca;
   1501 	pci_chipset_tag_t pc = pa->pa_pc;
   1502 #ifndef SK_USEIOSPACE
   1503 	pcireg_t memtype;
   1504 #endif
   1505 	pci_intr_handle_t ih;
   1506 	const char *intrstr = NULL;
   1507 	bus_addr_t iobase;
   1508 	bus_size_t iosize;
   1509 	int rc, sk_nodenum;
   1510 	uint32_t command;
   1511 	const char *revstr;
   1512 	const struct sysctlnode *node;
   1513 	char intrbuf[PCI_INTRSTR_LEN];
   1514 
   1515 	sc->sk_dev = self;
   1516 	aprint_naive("\n");
   1517 
   1518 	DPRINTFN(2, ("begin skc_attach\n"));
   1519 
   1520 	/*
   1521 	 * Handle power management nonsense.
   1522 	 */
   1523 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
   1524 
   1525 	if (command == 0x01) {
   1526 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
   1527 		if (command & SK_PSTATE_MASK) {
   1528 			uint32_t		xiobase, membase, irq;
   1529 
   1530 			/* Save important PCI config data. */
   1531 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
   1532 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
   1533 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
   1534 
   1535 			/* Reset the power state. */
   1536 			aprint_normal_dev(sc->sk_dev,
   1537 			    "chip is in D%d power mode -- setting to D0\n",
   1538 			    command & SK_PSTATE_MASK);
   1539 			command &= 0xFFFFFFFC;
   1540 			pci_conf_write(pc, pa->pa_tag,
   1541 			    SK_PCI_PWRMGMTCTRL, command);
   1542 
   1543 			/* Restore PCI config data. */
   1544 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
   1545 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
   1546 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
   1547 		}
   1548 	}
   1549 
   1550 	/*
   1551 	 * The firmware might have configured the interface to revert the
   1552 	 * byte order in all descriptors. Make that undone.
   1553 	 */
   1554 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_OURREG2);
   1555 	if (command & SK_REG2_REV_DESC)
   1556 		pci_conf_write(pc, pa->pa_tag, SK_PCI_OURREG2,
   1557 		    command & ~SK_REG2_REV_DESC);
   1558 
   1559 	/*
   1560 	 * Map control/status registers.
   1561 	 */
   1562 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1563 	command |= PCI_COMMAND_IO_ENABLE |
   1564 	    PCI_COMMAND_MEM_ENABLE |
   1565 	    PCI_COMMAND_MASTER_ENABLE;
   1566 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1567 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1568 
   1569 #ifdef SK_USEIOSPACE
   1570 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
   1571 		aprint_error(": failed to enable I/O ports!\n");
   1572 		return;
   1573 	}
   1574 	/*
   1575 	 * Map control/status registers.
   1576 	 */
   1577 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
   1578 			&sc->sk_btag, &sc->sk_bhandle,
   1579 			&iobase, &iosize)) {
   1580 		aprint_error(": can't find i/o space\n");
   1581 		return;
   1582 	}
   1583 #else
   1584 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1585 		aprint_error(": failed to enable memory mapping!\n");
   1586 		return;
   1587 	}
   1588 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
   1589 	switch (memtype) {
   1590 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1591 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1592 		if (pci_mapreg_map(pa, SK_PCI_LOMEM,
   1593 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
   1594 				   &iobase, &iosize) == 0)
   1595 			break;
   1596 		/* FALLTHROUGH */
   1597 	default:
   1598 		aprint_error_dev(sc->sk_dev, "can't find mem space\n");
   1599 		return;
   1600 	}
   1601 
   1602 	DPRINTFN(2, ("skc_attach: iobase=%#" PRIxPADDR ", iosize=%zx\n",
   1603 	    iobase, iosize));
   1604 #endif
   1605 	sc->sc_dmatag = pa->pa_dmat;
   1606 
   1607 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
   1608 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
   1609 
   1610 	/* bail out here if chip is not recognized */
   1611 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
   1612 		aprint_error_dev(sc->sk_dev, "unknown chip type\n");
   1613 		goto fail;
   1614 	}
   1615 	if (SK_IS_YUKON2(sc)) {
   1616 		aprint_error_dev(sc->sk_dev,
   1617 		    "Does not support Yukon2--try msk(4).\n");
   1618 		goto fail;
   1619 	}
   1620 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
   1621 
   1622 	/* Allocate interrupt */
   1623 	if (pci_intr_map(pa, &ih)) {
   1624 		aprint_error(": couldn't map interrupt\n");
   1625 		goto fail;
   1626 	}
   1627 
   1628 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
   1629 	sc->sk_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, sk_intr,
   1630 	    sc, device_xname(sc->sk_dev));
   1631 	if (sc->sk_intrhand == NULL) {
   1632 		aprint_error(": couldn't establish interrupt");
   1633 		if (intrstr != NULL)
   1634 			aprint_error(" at %s", intrstr);
   1635 		aprint_error("\n");
   1636 		goto fail;
   1637 	}
   1638 	aprint_normal(": %s\n", intrstr);
   1639 
   1640 	/* Reset the adapter. */
   1641 	sk_reset(sc);
   1642 
   1643 	/* Read and save vital product data from EEPROM. */
   1644 	sk_vpd_read(sc);
   1645 
   1646 	if (sc->sk_type == SK_GENESIS) {
   1647 		uint8_t val = sk_win_read_1(sc, SK_EPROM0);
   1648 		/* Read and save RAM size and RAMbuffer offset */
   1649 		switch (val) {
   1650 		case SK_RAMSIZE_512K_64:
   1651 			sc->sk_ramsize = 0x80000;
   1652 			sc->sk_rboff = SK_RBOFF_0;
   1653 			break;
   1654 		case SK_RAMSIZE_1024K_64:
   1655 			sc->sk_ramsize = 0x100000;
   1656 			sc->sk_rboff = SK_RBOFF_80000;
   1657 			break;
   1658 		case SK_RAMSIZE_1024K_128:
   1659 			sc->sk_ramsize = 0x100000;
   1660 			sc->sk_rboff = SK_RBOFF_0;
   1661 			break;
   1662 		case SK_RAMSIZE_2048K_128:
   1663 			sc->sk_ramsize = 0x200000;
   1664 			sc->sk_rboff = SK_RBOFF_0;
   1665 			break;
   1666 		default:
   1667 			aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
   1668 			       val);
   1669 			goto fail_1;
   1670 			break;
   1671 		}
   1672 
   1673 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
   1674 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
   1675 			     sc->sk_rboff));
   1676 	} else {
   1677 		uint8_t val = sk_win_read_1(sc, SK_EPROM0);
   1678 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
   1679 		sc->sk_rboff = SK_RBOFF_0;
   1680 
   1681 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
   1682 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
   1683 			     sc->sk_rboff));
   1684 	}
   1685 
   1686 	/* Read and save physical media type */
   1687 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
   1688 	case SK_PMD_1000BASESX:
   1689 		sc->sk_pmd = IFM_1000_SX;
   1690 		break;
   1691 	case SK_PMD_1000BASELX:
   1692 		sc->sk_pmd = IFM_1000_LX;
   1693 		break;
   1694 	case SK_PMD_1000BASECX:
   1695 		sc->sk_pmd = IFM_1000_CX;
   1696 		break;
   1697 	case SK_PMD_1000BASETX:
   1698 	case SK_PMD_1000BASETX_ALT:
   1699 		sc->sk_pmd = IFM_1000_T;
   1700 		break;
   1701 	default:
   1702 		aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
   1703 		    sk_win_read_1(sc, SK_PMDTYPE));
   1704 		goto fail_1;
   1705 	}
   1706 
   1707 	/* determine whether to name it with vpd or just make it up */
   1708 	/* Marvell Yukon VPD's can freqently be bogus */
   1709 
   1710 	switch (pa->pa_id) {
   1711 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1712 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
   1713 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
   1714 	case PCI_PRODUCT_3COM_3C940:
   1715 	case PCI_PRODUCT_DLINK_DGE530T:
   1716 	case PCI_PRODUCT_DLINK_DGE560T:
   1717 	case PCI_PRODUCT_DLINK_DGE560T_2:
   1718 	case PCI_PRODUCT_LINKSYS_EG1032:
   1719 	case PCI_PRODUCT_LINKSYS_EG1064:
   1720 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1721 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
   1722 	case PCI_ID_CODE(PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940):
   1723 	case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T):
   1724 	case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T):
   1725 	case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2):
   1726 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032):
   1727 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064):
   1728 		sc->sk_name = sc->sk_vpd_prodname;
   1729 		break;
   1730 	case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET):
   1731 	/* whoops yukon vpd prodname bears no resemblance to reality */
   1732 		switch (sc->sk_type) {
   1733 		case SK_GENESIS:
   1734 			sc->sk_name = sc->sk_vpd_prodname;
   1735 			break;
   1736 		case SK_YUKON:
   1737 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
   1738 			break;
   1739 		case SK_YUKON_LITE:
   1740 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
   1741 			break;
   1742 		case SK_YUKON_LP:
   1743 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
   1744 			break;
   1745 		default:
   1746 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
   1747 		}
   1748 
   1749 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
   1750 
   1751 		if ( sc->sk_type == SK_YUKON ) {
   1752 			uint32_t flashaddr;
   1753 			uint8_t testbyte;
   1754 
   1755 			flashaddr = sk_win_read_4(sc, SK_EP_ADDR);
   1756 
   1757 			/* test Flash-Address Register */
   1758 			sk_win_write_1(sc, SK_EP_ADDR+3, 0xff);
   1759 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
   1760 
   1761 			if (testbyte != 0) {
   1762 				/* this is yukon lite Rev. A0 */
   1763 				sc->sk_type = SK_YUKON_LITE;
   1764 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
   1765 				/* restore Flash-Address Register */
   1766 				sk_win_write_4(sc, SK_EP_ADDR, flashaddr);
   1767 			}
   1768 		}
   1769 		break;
   1770 	case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN):
   1771 		sc->sk_name = sc->sk_vpd_prodname;
   1772 		break;
   1773 	default:
   1774 		sc->sk_name = "Unknown Marvell";
   1775 	}
   1776 
   1777 
   1778 	if ( sc->sk_type == SK_YUKON_LITE ) {
   1779 		switch (sc->sk_rev) {
   1780 		case SK_YUKON_LITE_REV_A0:
   1781 			revstr = "A0";
   1782 			break;
   1783 		case SK_YUKON_LITE_REV_A1:
   1784 			revstr = "A1";
   1785 			break;
   1786 		case SK_YUKON_LITE_REV_A3:
   1787 			revstr = "A3";
   1788 			break;
   1789 		default:
   1790 			revstr = "";
   1791 		}
   1792 	} else {
   1793 		revstr = "";
   1794 	}
   1795 
   1796 	/* Announce the product name. */
   1797 	aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
   1798 			      sc->sk_name, revstr, sc->sk_rev);
   1799 
   1800 	skca.skc_port = SK_PORT_A;
   1801 	(void)config_found(sc->sk_dev, &skca, skcprint);
   1802 
   1803 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
   1804 		skca.skc_port = SK_PORT_B;
   1805 		(void)config_found(sc->sk_dev, &skca, skcprint);
   1806 	}
   1807 
   1808 	/* Turn on the 'driver is loaded' LED. */
   1809 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   1810 
   1811 	/* skc sysctl setup */
   1812 
   1813 	sc->sk_int_mod = SK_IM_DEFAULT;
   1814 	sc->sk_int_mod_pending = 0;
   1815 
   1816 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1817 	    0, CTLTYPE_NODE, device_xname(sc->sk_dev),
   1818 	    SYSCTL_DESCR("skc per-controller controls"),
   1819 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
   1820 	    CTL_EOL)) != 0) {
   1821 		aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
   1822 		goto fail_1;
   1823 	}
   1824 
   1825 	sk_nodenum = node->sysctl_num;
   1826 
   1827 	/* interrupt moderation time in usecs */
   1828 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1829 	    CTLFLAG_READWRITE,
   1830 	    CTLTYPE_INT, "int_mod",
   1831 	    SYSCTL_DESCR("sk interrupt moderation timer"),
   1832 	    sk_sysctl_handler, 0, (void *)sc,
   1833 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
   1834 	    CTL_EOL)) != 0) {
   1835 		aprint_normal_dev(sc->sk_dev,
   1836 		    "couldn't create int_mod sysctl node\n");
   1837 		goto fail_1;
   1838 	}
   1839 
   1840 	if (!pmf_device_register(self, skc_suspend, skc_resume))
   1841 		aprint_error_dev(self, "couldn't establish power handler\n");
   1842 
   1843 	return;
   1844 
   1845 fail_1:
   1846 	pci_intr_disestablish(pc, sc->sk_intrhand);
   1847 fail:
   1848 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
   1849 }
   1850 
   1851 static int
   1852 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
   1853 {
   1854 	struct sk_softc		*sc = sc_if->sk_softc;
   1855 	struct sk_tx_desc	*f = NULL;
   1856 	uint32_t		frag, cur, cnt = 0, sk_ctl;
   1857 	int			i;
   1858 	struct sk_txmap_entry	*entry;
   1859 	bus_dmamap_t		txmap;
   1860 
   1861 	DPRINTFN(3, ("sk_encap\n"));
   1862 
   1863 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
   1864 	if (entry == NULL) {
   1865 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
   1866 		return ENOBUFS;
   1867 	}
   1868 	txmap = entry->dmamap;
   1869 
   1870 	cur = frag = *txidx;
   1871 
   1872 #ifdef SK_DEBUG
   1873 	if (skdebug >= 3)
   1874 		sk_dump_mbuf(m_head);
   1875 #endif
   1876 
   1877 	/*
   1878 	 * Start packing the mbufs in this chain into
   1879 	 * the fragment pointers. Stop when we run out
   1880 	 * of fragments or hit the end of the mbuf chain.
   1881 	 */
   1882 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
   1883 	    BUS_DMA_NOWAIT)) {
   1884 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
   1885 		return ENOBUFS;
   1886 	}
   1887 
   1888 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
   1889 
   1890 	/* Sync the DMA map. */
   1891 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
   1892 	    BUS_DMASYNC_PREWRITE);
   1893 
   1894 	for (i = 0; i < txmap->dm_nsegs; i++) {
   1895 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
   1896 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
   1897 			return ENOBUFS;
   1898 		}
   1899 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
   1900 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
   1901 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
   1902 		if (cnt == 0)
   1903 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
   1904 		else
   1905 			sk_ctl |= SK_TXCTL_OWN;
   1906 		f->sk_ctl = htole32(sk_ctl);
   1907 		cur = frag;
   1908 		SK_INC(frag, SK_TX_RING_CNT);
   1909 		cnt++;
   1910 	}
   1911 
   1912 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
   1913 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
   1914 
   1915 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
   1916 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
   1917 		htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
   1918 
   1919 	/* Sync descriptors before handing to chip */
   1920 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
   1921 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1922 
   1923 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
   1924 		htole32(SK_TXCTL_OWN);
   1925 
   1926 	/* Sync first descriptor to hand it off */
   1927 	SK_CDTXSYNC(sc_if, *txidx, 1,
   1928 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1929 
   1930 	sc_if->sk_cdata.sk_tx_cnt += cnt;
   1931 
   1932 #ifdef SK_DEBUG
   1933 	if (skdebug >= 3) {
   1934 		struct sk_tx_desc *desc;
   1935 		uint32_t idx;
   1936 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
   1937 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
   1938 			sk_dump_txdesc(desc, idx);
   1939 		}
   1940 	}
   1941 #endif
   1942 
   1943 	*txidx = frag;
   1944 
   1945 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
   1946 
   1947 	return 0;
   1948 }
   1949 
   1950 static void
   1951 sk_start(struct ifnet *ifp)
   1952 {
   1953 	struct sk_if_softc	*sc_if = ifp->if_softc;
   1954 	struct sk_softc		*sc = sc_if->sk_softc;
   1955 	struct mbuf		*m_head = NULL;
   1956 	uint32_t		idx = sc_if->sk_cdata.sk_tx_prod;
   1957 	int			pkts = 0;
   1958 
   1959 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
   1960 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
   1961 
   1962 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
   1963 		IFQ_POLL(&ifp->if_snd, m_head);
   1964 		if (m_head == NULL)
   1965 			break;
   1966 
   1967 		/*
   1968 		 * Pack the data into the transmit ring. If we
   1969 		 * don't have room, set the OACTIVE flag and wait
   1970 		 * for the NIC to drain the ring.
   1971 		 */
   1972 		if (sk_encap(sc_if, m_head, &idx)) {
   1973 			ifp->if_flags |= IFF_OACTIVE;
   1974 			break;
   1975 		}
   1976 
   1977 		/* now we are committed to transmit the packet */
   1978 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1979 		pkts++;
   1980 
   1981 		/*
   1982 		 * If there's a BPF listener, bounce a copy of this frame
   1983 		 * to him.
   1984 		 */
   1985 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   1986 	}
   1987 	if (pkts == 0)
   1988 		return;
   1989 
   1990 	/* Transmit */
   1991 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
   1992 		sc_if->sk_cdata.sk_tx_prod = idx;
   1993 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   1994 
   1995 		/* Set a timeout in case the chip goes out to lunch. */
   1996 		ifp->if_timer = 5;
   1997 	}
   1998 }
   1999 
   2000 
   2001 static void
   2002 sk_watchdog(struct ifnet *ifp)
   2003 {
   2004 	struct sk_if_softc *sc_if = ifp->if_softc;
   2005 
   2006 	/*
   2007 	 * Reclaim first as there is a possibility of losing Tx completion
   2008 	 * interrupts.
   2009 	 */
   2010 	sk_txeof(sc_if);
   2011 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
   2012 		aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
   2013 
   2014 		if_statinc(ifp, if_oerrors);
   2015 
   2016 		sk_init(ifp);
   2017 	}
   2018 }
   2019 
   2020 #if 0 /* XXX XXX XXX UNUSED */
   2021 static void
   2022 sk_shutdown(void *v)
   2023 {
   2024 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
   2025 	struct sk_softc		*sc = sc_if->sk_softc;
   2026 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2027 
   2028 	DPRINTFN(2, ("sk_shutdown\n"));
   2029 	sk_stop(ifp, 1);
   2030 
   2031 	/* Turn off the 'driver is loaded' LED. */
   2032 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   2033 
   2034 	/*
   2035 	 * Reset the GEnesis controller. Doing this should also
   2036 	 * assert the resets on the attached XMAC(s).
   2037 	 */
   2038 	sk_reset(sc);
   2039 }
   2040 #endif
   2041 
   2042 static void
   2043 sk_rxeof(struct sk_if_softc *sc_if)
   2044 {
   2045 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2046 	struct mbuf		*m;
   2047 	struct sk_chain		*cur_rx;
   2048 	struct sk_rx_desc	*cur_desc;
   2049 	int			i, cur, total_len = 0;
   2050 	uint32_t		rxstat, sk_ctl;
   2051 	bus_dmamap_t		dmamap;
   2052 
   2053 	i = sc_if->sk_cdata.sk_rx_prod;
   2054 
   2055 	DPRINTFN(3, ("sk_rxeof %d\n", i));
   2056 
   2057 	for (;;) {
   2058 		cur = i;
   2059 
   2060 		/* Sync the descriptor */
   2061 		SK_CDRXSYNC(sc_if, cur,
   2062 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   2063 
   2064 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
   2065 		if (sk_ctl & SK_RXCTL_OWN) {
   2066 			/* Invalidate the descriptor -- it's not ready yet */
   2067 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
   2068 			sc_if->sk_cdata.sk_rx_prod = i;
   2069 			break;
   2070 		}
   2071 
   2072 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
   2073 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
   2074 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
   2075 
   2076 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
   2077 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2078 
   2079 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
   2080 		m = cur_rx->sk_mbuf;
   2081 		cur_rx->sk_mbuf = NULL;
   2082 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
   2083 
   2084 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
   2085 
   2086 		SK_INC(i, SK_RX_RING_CNT);
   2087 
   2088 		if (rxstat & XM_RXSTAT_ERRFRAME) {
   2089 			if_statinc(ifp, if_ierrors);
   2090 			sk_newbuf(sc_if, cur, m, dmamap);
   2091 			continue;
   2092 		}
   2093 
   2094 		/*
   2095 		 * Try to allocate a new jumbo buffer. If that
   2096 		 * fails, copy the packet to mbufs and put the
   2097 		 * jumbo buffer back in the ring so it can be
   2098 		 * re-used. If allocating mbufs fails, then we
   2099 		 * have to drop the packet.
   2100 		 */
   2101 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
   2102 			struct mbuf		*m0;
   2103 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
   2104 			    total_len + ETHER_ALIGN, 0, ifp);
   2105 			sk_newbuf(sc_if, cur, m, dmamap);
   2106 			if (m0 == NULL) {
   2107 				aprint_error_dev(sc_if->sk_dev, "no receive "
   2108 				    "buffers available -- packet dropped!\n");
   2109 				if_statinc(ifp, if_ierrors);
   2110 				continue;
   2111 			}
   2112 			m_adj(m0, ETHER_ALIGN);
   2113 			m = m0;
   2114 		} else {
   2115 			m_set_rcvif(m, ifp);
   2116 			m->m_pkthdr.len = m->m_len = total_len;
   2117 		}
   2118 
   2119 		/* pass it on. */
   2120 		if_percpuq_enqueue(ifp->if_percpuq, m);
   2121 	}
   2122 }
   2123 
   2124 static void
   2125 sk_txeof(struct sk_if_softc *sc_if)
   2126 {
   2127 	struct sk_softc		*sc = sc_if->sk_softc;
   2128 	struct sk_tx_desc	*cur_tx;
   2129 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2130 	uint32_t		idx, sk_ctl;
   2131 	struct sk_txmap_entry	*entry;
   2132 
   2133 	DPRINTFN(3, ("sk_txeof\n"));
   2134 
   2135 	/*
   2136 	 * Go through our tx ring and free mbufs for those
   2137 	 * frames that have been sent.
   2138 	 */
   2139 	idx = sc_if->sk_cdata.sk_tx_cons;
   2140 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
   2141 		SK_CDTXSYNC(sc_if, idx, 1,
   2142 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   2143 
   2144 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
   2145 		sk_ctl = le32toh(cur_tx->sk_ctl);
   2146 #ifdef SK_DEBUG
   2147 		if (skdebug >= 3)
   2148 			sk_dump_txdesc(cur_tx, idx);
   2149 #endif
   2150 		if (sk_ctl & SK_TXCTL_OWN) {
   2151 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
   2152 			break;
   2153 		}
   2154 		if (sk_ctl & SK_TXCTL_LASTFRAG)
   2155 			if_statinc(ifp, if_opackets);
   2156 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
   2157 			entry = sc_if->sk_cdata.sk_tx_map[idx];
   2158 
   2159 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
   2160 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
   2161 
   2162 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
   2163 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2164 
   2165 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
   2166 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
   2167 					  link);
   2168 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
   2169 		}
   2170 		sc_if->sk_cdata.sk_tx_cnt--;
   2171 		SK_INC(idx, SK_TX_RING_CNT);
   2172 	}
   2173 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
   2174 		ifp->if_timer = 0;
   2175 	else /* nudge chip to keep tx ring moving */
   2176 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   2177 
   2178 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
   2179 		ifp->if_flags &= ~IFF_OACTIVE;
   2180 
   2181 	sc_if->sk_cdata.sk_tx_cons = idx;
   2182 }
   2183 
   2184 static void
   2185 sk_tick(void *xsc_if)
   2186 {
   2187 	struct sk_if_softc *sc_if = xsc_if;
   2188 	struct mii_data *mii = &sc_if->sk_mii;
   2189 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2190 	int i;
   2191 
   2192 	DPRINTFN(3, ("sk_tick\n"));
   2193 
   2194 	if (!(ifp->if_flags & IFF_UP))
   2195 		return;
   2196 
   2197 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2198 		sk_intr_bcom(sc_if);
   2199 		return;
   2200 	}
   2201 
   2202 	/*
   2203 	 * According to SysKonnect, the correct way to verify that
   2204 	 * the link has come back up is to poll bit 0 of the GPIO
   2205 	 * register three times. This pin has the signal from the
   2206 	 * link sync pin connected to it; if we read the same link
   2207 	 * state 3 times in a row, we know the link is up.
   2208 	 */
   2209 	for (i = 0; i < 3; i++) {
   2210 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
   2211 			break;
   2212 	}
   2213 
   2214 	if (i != 3) {
   2215 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2216 		return;
   2217 	}
   2218 
   2219 	/* Turn the GP0 interrupt back on. */
   2220 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2221 	SK_XM_READ_2(sc_if, XM_ISR);
   2222 	mii_tick(mii);
   2223 	if (ifp->if_link_state != LINK_STATE_UP)
   2224 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2225 	else
   2226 		callout_stop(&sc_if->sk_tick_ch);
   2227 }
   2228 
   2229 static void
   2230 sk_intr_bcom(struct sk_if_softc *sc_if)
   2231 {
   2232 	struct mii_data *mii = &sc_if->sk_mii;
   2233 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2234 	uint16_t status;
   2235 
   2236 
   2237 	DPRINTFN(3, ("sk_intr_bcom\n"));
   2238 
   2239 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
   2240 
   2241 	/*
   2242 	 * Read the PHY interrupt register to make sure
   2243 	 * we clear any pending interrupts.
   2244 	 */
   2245 	sk_xmac_miibus_readreg(sc_if->sk_dev,
   2246 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR, &status);
   2247 
   2248 	if (!(ifp->if_flags & IFF_RUNNING)) {
   2249 		sk_init_xmac(sc_if);
   2250 		return;
   2251 	}
   2252 
   2253 	if (status & (BRGPHY_ISR_LNK_CHG | BRGPHY_ISR_AN_PR)) {
   2254 		uint16_t lstat;
   2255 		sk_xmac_miibus_readreg(sc_if->sk_dev,
   2256 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS, &lstat);
   2257 
   2258 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
   2259 			(void)mii_mediachg(mii);
   2260 			/* Turn off the link LED. */
   2261 			SK_IF_WRITE_1(sc_if, 0,
   2262 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2263 			sc_if->sk_link = 0;
   2264 		} else if (status & BRGPHY_ISR_LNK_CHG) {
   2265 			sk_xmac_miibus_writereg(sc_if->sk_dev,
   2266 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
   2267 			mii_tick(mii);
   2268 			sc_if->sk_link = 1;
   2269 			/* Turn on the link LED. */
   2270 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2271 			    SK_LINKLED_ON | SK_LINKLED_LINKSYNC_OFF |
   2272 			    SK_LINKLED_BLINK_OFF);
   2273 			mii_pollstat(mii);
   2274 		} else {
   2275 			mii_tick(mii);
   2276 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2277 		}
   2278 	}
   2279 
   2280 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
   2281 }
   2282 
   2283 static void
   2284 sk_intr_xmac(struct sk_if_softc	*sc_if)
   2285 {
   2286 	uint16_t status = SK_XM_READ_2(sc_if, XM_ISR);
   2287 
   2288 	DPRINTFN(3, ("sk_intr_xmac\n"));
   2289 
   2290 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
   2291 		if (status & XM_ISR_GP0_SET) {
   2292 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2293 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2294 		}
   2295 
   2296 		if (status & XM_ISR_AUTONEG_DONE) {
   2297 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2298 		}
   2299 	}
   2300 
   2301 	if (status & XM_IMR_TX_UNDERRUN)
   2302 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
   2303 
   2304 	if (status & XM_IMR_RX_OVERRUN)
   2305 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
   2306 }
   2307 
   2308 static void
   2309 sk_intr_yukon(struct sk_if_softc *sc_if)
   2310 {
   2311 #ifdef SK_DEBUG
   2312 	int status;
   2313 
   2314 	status =
   2315 #endif
   2316 		SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2317 
   2318 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
   2319 }
   2320 
   2321 static int
   2322 sk_intr(void *xsc)
   2323 {
   2324 	struct sk_softc		*sc = xsc;
   2325 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
   2326 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
   2327 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
   2328 	uint32_t		status;
   2329 	int			claimed = 0;
   2330 
   2331 	if (sc_if0 != NULL)
   2332 		ifp0 = &sc_if0->sk_ethercom.ec_if;
   2333 	if (sc_if1 != NULL)
   2334 		ifp1 = &sc_if1->sk_ethercom.ec_if;
   2335 
   2336 	for (;;) {
   2337 		status = CSR_READ_4(sc, SK_ISSR);
   2338 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
   2339 
   2340 		if (!(status & sc->sk_intrmask))
   2341 			break;
   2342 
   2343 		claimed = 1;
   2344 
   2345 		/* Handle receive interrupts first. */
   2346 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
   2347 			sk_rxeof(sc_if0);
   2348 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
   2349 			    SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
   2350 		}
   2351 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
   2352 			sk_rxeof(sc_if1);
   2353 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
   2354 			    SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
   2355 		}
   2356 
   2357 		/* Then transmit interrupts. */
   2358 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
   2359 			sk_txeof(sc_if0);
   2360 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
   2361 			    SK_TXBMU_CLR_IRQ_EOF);
   2362 		}
   2363 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
   2364 			sk_txeof(sc_if1);
   2365 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
   2366 			    SK_TXBMU_CLR_IRQ_EOF);
   2367 		}
   2368 
   2369 		/* Then MAC interrupts. */
   2370 		if (sc_if0 && (status & SK_ISR_MAC1) &&
   2371 		    (ifp0->if_flags & IFF_RUNNING)) {
   2372 			if (sc->sk_type == SK_GENESIS)
   2373 				sk_intr_xmac(sc_if0);
   2374 			else
   2375 				sk_intr_yukon(sc_if0);
   2376 		}
   2377 
   2378 		if (sc_if1 && (status & SK_ISR_MAC2) &&
   2379 		    (ifp1->if_flags & IFF_RUNNING)) {
   2380 			if (sc->sk_type == SK_GENESIS)
   2381 				sk_intr_xmac(sc_if1);
   2382 			else
   2383 				sk_intr_yukon(sc_if1);
   2384 
   2385 		}
   2386 
   2387 		if (status & SK_ISR_EXTERNAL_REG) {
   2388 			if (sc_if0 != NULL &&
   2389 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
   2390 				sk_intr_bcom(sc_if0);
   2391 
   2392 			if (sc_if1 != NULL &&
   2393 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
   2394 				sk_intr_bcom(sc_if1);
   2395 		}
   2396 	}
   2397 
   2398 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2399 
   2400 	if (ifp0 != NULL)
   2401 		if_schedule_deferred_start(ifp0);
   2402 	if (ifp1 != NULL)
   2403 		if_schedule_deferred_start(ifp1);
   2404 
   2405 	KASSERT(sc->rnd_attached > 0);
   2406 	rnd_add_uint32(&sc->rnd_source, status);
   2407 
   2408 	if (sc->sk_int_mod_pending)
   2409 		sk_update_int_mod(sc);
   2410 
   2411 	return claimed;
   2412 }
   2413 
   2414 static void
   2415 sk_unreset_xmac(struct sk_if_softc *sc_if)
   2416 {
   2417 	struct sk_softc		*sc = sc_if->sk_softc;
   2418 	static const struct sk_bcom_hack     bhack[] = {
   2419 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
   2420 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
   2421 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
   2422 	{ 0, 0 } };
   2423 
   2424 	DPRINTFN(1, ("sk_unreset_xmac\n"));
   2425 
   2426 	/* Unreset the XMAC. */
   2427 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
   2428 	DELAY(1000);
   2429 
   2430 	/* Reset the XMAC's internal state. */
   2431 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2432 
   2433 	/* Save the XMAC II revision */
   2434 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
   2435 
   2436 	/*
   2437 	 * Perform additional initialization for external PHYs,
   2438 	 * namely for the 1000baseTX cards that use the XMAC's
   2439 	 * GMII mode.
   2440 	 */
   2441 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2442 		int			i = 0;
   2443 		uint32_t		val;
   2444 		uint16_t		phyval;
   2445 
   2446 		/* Take PHY out of reset. */
   2447 		val = sk_win_read_4(sc, SK_GPIO);
   2448 		if (sc_if->sk_port == SK_PORT_A)
   2449 			val |= SK_GPIO_DIR0 | SK_GPIO_DAT0;
   2450 		else
   2451 			val |= SK_GPIO_DIR2 | SK_GPIO_DAT2;
   2452 		sk_win_write_4(sc, SK_GPIO, val);
   2453 
   2454 		/* Enable GMII mode on the XMAC. */
   2455 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
   2456 
   2457 		sk_xmac_miibus_writereg(sc_if->sk_dev,
   2458 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
   2459 		DELAY(10000);
   2460 		sk_xmac_miibus_writereg(sc_if->sk_dev,
   2461 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
   2462 
   2463 		/*
   2464 		 * Early versions of the BCM5400 apparently have
   2465 		 * a bug that requires them to have their reserved
   2466 		 * registers initialized to some magic values. I don't
   2467 		 * know what the numbers do, I'm just the messenger.
   2468 		 */
   2469 		sk_xmac_miibus_readreg(sc_if->sk_dev,
   2470 		    SK_PHYADDR_BCOM, 0x03, &phyval);
   2471 		if (phyval == 0x6041) {
   2472 			while (bhack[i].reg) {
   2473 				sk_xmac_miibus_writereg(sc_if->sk_dev,
   2474 				    SK_PHYADDR_BCOM, bhack[i].reg,
   2475 				    bhack[i].val);
   2476 				i++;
   2477 			}
   2478 		}
   2479 	}
   2480 }
   2481 
   2482 static void
   2483 sk_init_xmac(struct sk_if_softc *sc_if)
   2484 {
   2485 	struct sk_softc		*sc = sc_if->sk_softc;
   2486 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2487 
   2488 	sk_unreset_xmac(sc_if);
   2489 
   2490 	/* Set station address */
   2491 	SK_XM_WRITE_2(sc_if, XM_PAR0,
   2492 		      *(uint16_t *)(&sc_if->sk_enaddr[0]));
   2493 	SK_XM_WRITE_2(sc_if, XM_PAR1,
   2494 		      *(uint16_t *)(&sc_if->sk_enaddr[2]));
   2495 	SK_XM_WRITE_2(sc_if, XM_PAR2,
   2496 		      *(uint16_t *)(&sc_if->sk_enaddr[4]));
   2497 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
   2498 
   2499 	if (ifp->if_flags & IFF_PROMISC)
   2500 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2501 	else
   2502 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2503 
   2504 	if (ifp->if_flags & IFF_BROADCAST)
   2505 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2506 	else
   2507 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2508 
   2509 	/* We don't need the FCS appended to the packet. */
   2510 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
   2511 
   2512 	/* We want short frames padded to 60 bytes. */
   2513 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
   2514 
   2515 	/*
   2516 	 * Enable the reception of all error frames. This is
   2517 	 * a necessary evil due to the design of the XMAC. The
   2518 	 * XMAC's receive FIFO is only 8K in size, however jumbo
   2519 	 * frames can be up to 9000 bytes in length. When bad
   2520 	 * frame filtering is enabled, the XMAC's RX FIFO operates
   2521 	 * in 'store and forward' mode. For this to work, the
   2522 	 * entire frame has to fit into the FIFO, but that means
   2523 	 * that jumbo frames larger than 8192 bytes will be
   2524 	 * truncated. Disabling all bad frame filtering causes
   2525 	 * the RX FIFO to operate in streaming mode, in which
   2526 	 * case the XMAC will start transfering frames out of the
   2527 	 * RX FIFO as soon as the FIFO threshold is reached.
   2528 	 */
   2529 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES |
   2530 	    XM_MODE_RX_GIANTS | XM_MODE_RX_RUNTS | XM_MODE_RX_CRCERRS |
   2531 	    XM_MODE_RX_INRANGELEN);
   2532 
   2533 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2534 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2535 	else
   2536 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2537 
   2538 	/*
   2539 	 * Bump up the transmit threshold. This helps hold off transmit
   2540 	 * underruns when we're blasting traffic from both ports at once.
   2541 	 */
   2542 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
   2543 
   2544 	/* Set multicast filter */
   2545 	sk_setmulti(sc_if);
   2546 
   2547 	/* Clear and enable interrupts */
   2548 	SK_XM_READ_2(sc_if, XM_ISR);
   2549 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
   2550 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
   2551 	else
   2552 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2553 
   2554 	/* Configure MAC arbiter */
   2555 	switch (sc_if->sk_xmac_rev) {
   2556 	case XM_XMAC_REV_B2:
   2557 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
   2558 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
   2559 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
   2560 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
   2561 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
   2562 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
   2563 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
   2564 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
   2565 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2566 		break;
   2567 	case XM_XMAC_REV_C1:
   2568 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
   2569 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
   2570 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
   2571 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
   2572 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
   2573 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
   2574 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
   2575 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
   2576 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2577 		break;
   2578 	default:
   2579 		break;
   2580 	}
   2581 	sk_win_write_2(sc, SK_MACARB_CTL,
   2582 	    SK_MACARBCTL_UNRESET | SK_MACARBCTL_FASTOE_OFF);
   2583 
   2584 	sc_if->sk_link = 1;
   2585 }
   2586 
   2587 static void
   2588 sk_unreset_yukon(struct sk_if_softc *sc_if)
   2589 {
   2590 	uint32_t		/*mac, */phy;
   2591 	struct sk_softc		*sc;
   2592 
   2593 	DPRINTFN(1, ("sk_unreset_yukon: start: sk_csr=%#x\n",
   2594 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
   2595 
   2596 	sc = sc_if->sk_softc;
   2597 	if (sc->sk_type == SK_YUKON_LITE &&
   2598 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
   2599 		/* Take PHY out of reset. */
   2600 		sk_win_write_4(sc, SK_GPIO,
   2601 		    (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9)
   2602 		    & ~SK_GPIO_DAT9);
   2603 	}
   2604 
   2605 	/* GMAC and GPHY Reset */
   2606 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
   2607 
   2608 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
   2609 
   2610 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2611 	DELAY(1000);
   2612 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
   2613 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2614 	DELAY(1000);
   2615 
   2616 
   2617 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
   2618 
   2619 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
   2620 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
   2621 
   2622 	switch (sc_if->sk_softc->sk_pmd) {
   2623 	case IFM_1000_SX:
   2624 	case IFM_1000_LX:
   2625 		phy |= SK_GPHY_FIBER;
   2626 		break;
   2627 
   2628 	case IFM_1000_CX:
   2629 	case IFM_1000_T:
   2630 		phy |= SK_GPHY_COPPER;
   2631 		break;
   2632 	}
   2633 
   2634 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
   2635 
   2636 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
   2637 	DELAY(1000);
   2638 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
   2639 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
   2640 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
   2641 
   2642 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
   2643 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
   2644 }
   2645 
   2646 static void
   2647 sk_init_yukon(struct sk_if_softc *sc_if)
   2648 {
   2649 	uint16_t		reg;
   2650 	int			i;
   2651 
   2652 	DPRINTFN(1, ("sk_init_yukon: start\n"));
   2653 	sk_unreset_yukon(sc_if);
   2654 
   2655 	/* unused read of the interrupt source register */
   2656 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
   2657 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2658 
   2659 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
   2660 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
   2661 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2662 
   2663 	/* MIB Counter Clear Mode set */
   2664 	reg |= YU_PAR_MIB_CLR;
   2665 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2666 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
   2667 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2668 
   2669 	/* MIB Counter Clear Mode clear */
   2670 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
   2671 	reg &= ~YU_PAR_MIB_CLR;
   2672 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2673 
   2674 	/* receive control reg */
   2675 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
   2676 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
   2677 		      YU_RCR_CRCR);
   2678 
   2679 	/* transmit parameter register */
   2680 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
   2681 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
   2682 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a));
   2683 
   2684 	/* serial mode register */
   2685 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
   2686 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
   2687 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
   2688 		      YU_SMR_IPG_DATA(0x1e));
   2689 
   2690 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
   2691 	/* Setup Yukon's address */
   2692 	for (i = 0; i < 3; i++) {
   2693 		/* Write Source Address 1 (unicast filter) */
   2694 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
   2695 			      sc_if->sk_enaddr[i * 2] |
   2696 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
   2697 	}
   2698 
   2699 	for (i = 0; i < 3; i++) {
   2700 		reg = sk_win_read_2(sc_if->sk_softc,
   2701 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
   2702 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
   2703 	}
   2704 
   2705 	/* Set multicast filter */
   2706 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
   2707 	sk_setmulti(sc_if);
   2708 
   2709 	/* enable interrupt mask for counter overflows */
   2710 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
   2711 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
   2712 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
   2713 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
   2714 
   2715 	/* Configure RX MAC FIFO */
   2716 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
   2717 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
   2718 
   2719 	/* Configure TX MAC FIFO */
   2720 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
   2721 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
   2722 
   2723 	DPRINTFN(6, ("sk_init_yukon: end\n"));
   2724 }
   2725 
   2726 /*
   2727  * Note that to properly initialize any part of the GEnesis chip,
   2728  * you first have to take it out of reset mode.
   2729  */
   2730 static int
   2731 sk_init(struct ifnet *ifp)
   2732 {
   2733 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2734 	struct sk_softc		*sc = sc_if->sk_softc;
   2735 	struct mii_data		*mii = &sc_if->sk_mii;
   2736 	int			rc = 0, s;
   2737 	uint32_t		imr, imtimer_ticks;
   2738 
   2739 	DPRINTFN(1, ("sk_init\n"));
   2740 
   2741 	s = splnet();
   2742 
   2743 	if (ifp->if_flags & IFF_RUNNING) {
   2744 		splx(s);
   2745 		return 0;
   2746 	}
   2747 
   2748 	/* Cancel pending I/O and free all RX/TX buffers. */
   2749 	sk_stop(ifp, 0);
   2750 
   2751 	if (sc->sk_type == SK_GENESIS) {
   2752 		/* Configure LINK_SYNC LED */
   2753 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
   2754 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2755 			      SK_LINKLED_LINKSYNC_ON);
   2756 
   2757 		/* Configure RX LED */
   2758 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
   2759 			      SK_RXLEDCTL_COUNTER_START);
   2760 
   2761 		/* Configure TX LED */
   2762 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
   2763 			      SK_TXLEDCTL_COUNTER_START);
   2764 	}
   2765 
   2766 	/* Configure I2C registers */
   2767 
   2768 	/* Configure XMAC(s) */
   2769 	switch (sc->sk_type) {
   2770 	case SK_GENESIS:
   2771 		sk_init_xmac(sc_if);
   2772 		break;
   2773 	case SK_YUKON:
   2774 	case SK_YUKON_LITE:
   2775 	case SK_YUKON_LP:
   2776 		sk_init_yukon(sc_if);
   2777 		break;
   2778 	}
   2779 	if ((rc = mii_mediachg(mii)) == ENXIO)
   2780 		rc = 0;
   2781 	else if (rc != 0)
   2782 		goto out;
   2783 
   2784 	if (sc->sk_type == SK_GENESIS) {
   2785 		/* Configure MAC FIFOs */
   2786 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
   2787 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
   2788 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
   2789 
   2790 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
   2791 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
   2792 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
   2793 	}
   2794 
   2795 	/* Configure transmit arbiter(s) */
   2796 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
   2797 	    SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON);
   2798 
   2799 	/* Configure RAMbuffers */
   2800 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
   2801 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
   2802 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
   2803 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
   2804 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
   2805 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
   2806 
   2807 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
   2808 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
   2809 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
   2810 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
   2811 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
   2812 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
   2813 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
   2814 
   2815 	/* Configure BMUs */
   2816 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
   2817 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
   2818 	    SK_RX_RING_ADDR(sc_if, 0));
   2819 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
   2820 
   2821 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
   2822 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
   2823 	    SK_TX_RING_ADDR(sc_if, 0));
   2824 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
   2825 
   2826 	/* Init descriptors */
   2827 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
   2828 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
   2829 		    "memory for rx buffers\n");
   2830 		sk_stop(ifp, 0);
   2831 		splx(s);
   2832 		return ENOBUFS;
   2833 	}
   2834 
   2835 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
   2836 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
   2837 		    "memory for tx buffers\n");
   2838 		sk_stop(ifp, 0);
   2839 		splx(s);
   2840 		return ENOBUFS;
   2841 	}
   2842 
   2843 	/* Set interrupt moderation if changed via sysctl. */
   2844 	switch (sc->sk_type) {
   2845 	case SK_GENESIS:
   2846 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   2847 		break;
   2848 	case SK_YUKON_EC:
   2849 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   2850 		break;
   2851 	default:
   2852 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   2853 	}
   2854 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
   2855 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
   2856 		sk_win_write_4(sc, SK_IMTIMERINIT,
   2857 		    SK_IM_USECS(sc->sk_int_mod));
   2858 		aprint_verbose_dev(sc->sk_dev,
   2859 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
   2860 	}
   2861 
   2862 	/* Configure interrupt handling */
   2863 	CSR_READ_4(sc, SK_ISSR);
   2864 	if (sc_if->sk_port == SK_PORT_A)
   2865 		sc->sk_intrmask |= SK_INTRS1;
   2866 	else
   2867 		sc->sk_intrmask |= SK_INTRS2;
   2868 
   2869 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
   2870 
   2871 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2872 
   2873 	/* Start BMUs. */
   2874 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
   2875 
   2876 	if (sc->sk_type == SK_GENESIS) {
   2877 		/* Enable XMACs TX and RX state machines */
   2878 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
   2879 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
   2880 			       XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
   2881 	}
   2882 
   2883 	if (SK_YUKON_FAMILY(sc->sk_type)) {
   2884 		uint16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
   2885 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
   2886 #if 0
   2887 		/* XXX disable 100Mbps and full duplex mode? */
   2888 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
   2889 #endif
   2890 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
   2891 	}
   2892 
   2893 
   2894 	ifp->if_flags |= IFF_RUNNING;
   2895 	ifp->if_flags &= ~IFF_OACTIVE;
   2896 	callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2897 
   2898 out:
   2899 	splx(s);
   2900 	return rc;
   2901 }
   2902 
   2903 static void
   2904 sk_stop(struct ifnet *ifp, int disable)
   2905 {
   2906 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2907 	struct sk_softc		*sc = sc_if->sk_softc;
   2908 	int			i;
   2909 
   2910 	DPRINTFN(1, ("sk_stop\n"));
   2911 
   2912 	callout_stop(&sc_if->sk_tick_ch);
   2913 
   2914 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2915 		uint32_t		val;
   2916 
   2917 		/* Put PHY back into reset. */
   2918 		val = sk_win_read_4(sc, SK_GPIO);
   2919 		if (sc_if->sk_port == SK_PORT_A) {
   2920 			val |= SK_GPIO_DIR0;
   2921 			val &= ~SK_GPIO_DAT0;
   2922 		} else {
   2923 			val |= SK_GPIO_DIR2;
   2924 			val &= ~SK_GPIO_DAT2;
   2925 		}
   2926 		sk_win_write_4(sc, SK_GPIO, val);
   2927 	}
   2928 
   2929 	/* Turn off various components of this interface. */
   2930 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2931 	switch (sc->sk_type) {
   2932 	case SK_GENESIS:
   2933 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
   2934 			      SK_TXMACCTL_XMAC_RESET);
   2935 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
   2936 		break;
   2937 	case SK_YUKON:
   2938 	case SK_YUKON_LITE:
   2939 	case SK_YUKON_LP:
   2940 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
   2941 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
   2942 		break;
   2943 	}
   2944 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
   2945 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET |SK_RBCTL_OFF);
   2946 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
   2947 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2948 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
   2949 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2950 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2951 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2952 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
   2953 
   2954 	/* Disable interrupts */
   2955 	if (sc_if->sk_port == SK_PORT_A)
   2956 		sc->sk_intrmask &= ~SK_INTRS1;
   2957 	else
   2958 		sc->sk_intrmask &= ~SK_INTRS2;
   2959 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2960 
   2961 	SK_XM_READ_2(sc_if, XM_ISR);
   2962 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2963 
   2964 	/* Free RX and TX mbufs still in the queues. */
   2965 	for (i = 0; i < SK_RX_RING_CNT; i++) {
   2966 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
   2967 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
   2968 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   2969 		}
   2970 	}
   2971 
   2972 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   2973 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
   2974 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
   2975 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   2976 		}
   2977 	}
   2978 
   2979 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2980 }
   2981 
   2982 /* Power Management Framework */
   2983 
   2984 static bool
   2985 skc_suspend(device_t dv, const pmf_qual_t *qual)
   2986 {
   2987 	struct sk_softc *sc = device_private(dv);
   2988 
   2989 	DPRINTFN(2, ("skc_suspend\n"));
   2990 
   2991 	/* Turn off the driver is loaded LED */
   2992 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   2993 
   2994 	return true;
   2995 }
   2996 
   2997 static bool
   2998 skc_resume(device_t dv, const pmf_qual_t *qual)
   2999 {
   3000 	struct sk_softc *sc = device_private(dv);
   3001 
   3002 	DPRINTFN(2, ("skc_resume\n"));
   3003 
   3004 	sk_reset(sc);
   3005 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   3006 
   3007 	return true;
   3008 }
   3009 
   3010 static bool
   3011 sk_resume(device_t dv, const pmf_qual_t *qual)
   3012 {
   3013 	struct sk_if_softc *sc_if = device_private(dv);
   3014 
   3015 	sk_init_yukon(sc_if);
   3016 	return true;
   3017 }
   3018 
   3019 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
   3020     skc_probe, skc_attach, NULL, NULL);
   3021 
   3022 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
   3023     sk_probe, sk_attach, NULL, NULL);
   3024 
   3025 #ifdef SK_DEBUG
   3026 static void
   3027 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
   3028 {
   3029 #define DESC_PRINT(X)					\
   3030 	if (X)						\
   3031 		printf("txdesc[%d]." #X "=%#x\n",	\
   3032 		       idx, X);
   3033 
   3034 	DESC_PRINT(le32toh(desc->sk_ctl));
   3035 	DESC_PRINT(le32toh(desc->sk_next));
   3036 	DESC_PRINT(le32toh(desc->sk_data_lo));
   3037 	DESC_PRINT(le32toh(desc->sk_data_hi));
   3038 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
   3039 	DESC_PRINT(le16toh(desc->sk_rsvd0));
   3040 	DESC_PRINT(le16toh(desc->sk_csum_startval));
   3041 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
   3042 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
   3043 	DESC_PRINT(le16toh(desc->sk_rsvd1));
   3044 #undef PRINT
   3045 }
   3046 
   3047 static void
   3048 sk_dump_bytes(const char *data, int len)
   3049 {
   3050 	int c, i, j;
   3051 
   3052 	for (i = 0; i < len; i += 16) {
   3053 		printf("%08x  ", i);
   3054 		c = len - i;
   3055 		if (c > 16) c = 16;
   3056 
   3057 		for (j = 0; j < c; j++) {
   3058 			printf("%02x ", data[i + j] & 0xff);
   3059 			if ((j & 0xf) == 7 && j > 0)
   3060 				printf(" ");
   3061 		}
   3062 
   3063 		for (; j < 16; j++)
   3064 			printf("   ");
   3065 		printf("  ");
   3066 
   3067 		for (j = 0; j < c; j++) {
   3068 			int ch = data[i + j] & 0xff;
   3069 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
   3070 		}
   3071 
   3072 		printf("\n");
   3073 
   3074 		if (c < 16)
   3075 			break;
   3076 	}
   3077 }
   3078 
   3079 static void
   3080 sk_dump_mbuf(struct mbuf *m)
   3081 {
   3082 	int count = m->m_pkthdr.len;
   3083 
   3084 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
   3085 
   3086 	while (count > 0 && m) {
   3087 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
   3088 		       m, m->m_data, m->m_len);
   3089 		sk_dump_bytes(mtod(m, char *), m->m_len);
   3090 
   3091 		count -= m->m_len;
   3092 		m = m->m_next;
   3093 	}
   3094 }
   3095 #endif
   3096 
   3097 static int
   3098 sk_sysctl_handler(SYSCTLFN_ARGS)
   3099 {
   3100 	int error, t;
   3101 	struct sysctlnode node;
   3102 	struct sk_softc *sc;
   3103 
   3104 	node = *rnode;
   3105 	sc = node.sysctl_data;
   3106 	t = sc->sk_int_mod;
   3107 	node.sysctl_data = &t;
   3108 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3109 	if (error || newp == NULL)
   3110 		return error;
   3111 
   3112 	if (t < SK_IM_MIN || t > SK_IM_MAX)
   3113 		return EINVAL;
   3114 
   3115 	/* update the softc with sysctl-changed value, and mark
   3116 	   for hardware update */
   3117 	sc->sk_int_mod = t;
   3118 	sc->sk_int_mod_pending = 1;
   3119 	return 0;
   3120 }
   3121 
   3122 /*
   3123  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
   3124  * set up in skc_attach()
   3125  */
   3126 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
   3127 {
   3128 	int rc;
   3129 	const struct sysctlnode *node;
   3130 
   3131 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   3132 	    0, CTLTYPE_NODE, "sk",
   3133 	    SYSCTL_DESCR("sk interface controls"),
   3134 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   3135 		goto err;
   3136 	}
   3137 
   3138 	sk_root_num = node->sysctl_num;
   3139 	return;
   3140 
   3141 err:
   3142 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
   3143 }
   3144