if_sk.c revision 1.106 1 /* $NetBSD: if_sk.c,v 1.106 2020/07/02 09:07:10 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
30
31 /*
32 * Copyright (c) 1997, 1998, 1999, 2000
33 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by Bill Paul.
46 * 4. Neither the name of the author nor the names of any co-contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60 * THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63 */
64
65 /*
66 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
67 *
68 * Permission to use, copy, modify, and distribute this software for any
69 * purpose with or without fee is hereby granted, provided that the above
70 * copyright notice and this permission notice appear in all copies.
71 *
72 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79 */
80
81 /*
82 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83 * the SK-984x series adapters, both single port and dual port.
84 * References:
85 * The XaQti XMAC II datasheet,
86 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87 * The SysKonnect GEnesis manual, http://www.syskonnect.com
88 *
89 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91 * convenience to others until Vitesse corrects this problem:
92 *
93 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 *
95 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
96 * Department of Electrical Engineering
97 * Columbia University, New York City
98 */
99
100 /*
101 * The SysKonnect gigabit ethernet adapters consist of two main
102 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104 * components and a PHY while the GEnesis controller provides a PCI
105 * interface with DMA support. Each card may have between 512K and
106 * 2MB of SRAM on board depending on the configuration.
107 *
108 * The SysKonnect GEnesis controller can have either one or two XMAC
109 * chips connected to it, allowing single or dual port NIC configurations.
110 * SysKonnect has the distinction of being the only vendor on the market
111 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113 * XMAC registers. This driver takes advantage of these features to allow
114 * both XMACs to operate as independent interfaces.
115 */
116
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.106 2020/07/02 09:07:10 msaitoh Exp $");
119
120 #include <sys/param.h>
121 #include <sys/systm.h>
122 #include <sys/sockio.h>
123 #include <sys/mbuf.h>
124 #include <sys/malloc.h>
125 #include <sys/mutex.h>
126 #include <sys/kernel.h>
127 #include <sys/socket.h>
128 #include <sys/device.h>
129 #include <sys/queue.h>
130 #include <sys/callout.h>
131 #include <sys/sysctl.h>
132 #include <sys/endian.h>
133
134 #include <net/if.h>
135 #include <net/if_dl.h>
136 #include <net/if_types.h>
137
138 #include <net/if_media.h>
139
140 #include <net/bpf.h>
141 #include <sys/rndsource.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145 #include <dev/mii/brgphyreg.h>
146
147 #include <dev/pci/pcireg.h>
148 #include <dev/pci/pcivar.h>
149 #include <dev/pci/pcidevs.h>
150
151 /* #define SK_USEIOSPACE */
152
153 #include <dev/pci/if_skreg.h>
154 #include <dev/pci/if_skvar.h>
155
156 static int skc_probe(device_t, cfdata_t, void *);
157 static void skc_attach(device_t, device_t, void *);
158 static int sk_probe(device_t, cfdata_t, void *);
159 static void sk_attach(device_t, device_t, void *);
160 static int skcprint(void *, const char *);
161 static int sk_intr(void *);
162 static void sk_intr_bcom(struct sk_if_softc *);
163 static void sk_intr_xmac(struct sk_if_softc *);
164 static void sk_intr_yukon(struct sk_if_softc *);
165 static void sk_rxeof(struct sk_if_softc *);
166 static void sk_txeof(struct sk_if_softc *);
167 static int sk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
168 static void sk_start(struct ifnet *);
169 static int sk_ioctl(struct ifnet *, u_long, void *);
170 static int sk_init(struct ifnet *);
171 static void sk_unreset_xmac(struct sk_if_softc *);
172 static void sk_init_xmac(struct sk_if_softc *);
173 static void sk_unreset_yukon(struct sk_if_softc *);
174 static void sk_init_yukon(struct sk_if_softc *);
175 static void sk_stop(struct ifnet *, int);
176 static void sk_watchdog(struct ifnet *);
177 static int sk_ifmedia_upd(struct ifnet *);
178 static void sk_reset(struct sk_softc *);
179 static int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
180 static int sk_alloc_jumbo_mem(struct sk_if_softc *);
181 static void *sk_jalloc(struct sk_if_softc *);
182 static void sk_jfree(struct mbuf *, void *, size_t, void *);
183 static int sk_init_rx_ring(struct sk_if_softc *);
184 static int sk_init_tx_ring(struct sk_if_softc *);
185 static uint8_t sk_vpd_readbyte(struct sk_softc *, int);
186 static void sk_vpd_read_res(struct sk_softc *, struct vpd_res *, int);
187 static void sk_vpd_read(struct sk_softc *);
188
189 static void sk_update_int_mod(struct sk_softc *);
190
191 static int sk_xmac_miibus_readreg(device_t, int, int, uint16_t *);
192 static int sk_xmac_miibus_writereg(device_t, int, int, uint16_t);
193 static void sk_xmac_miibus_statchg(struct ifnet *);
194
195 static int sk_marv_miibus_readreg(device_t, int, int, uint16_t *);
196 static int sk_marv_miibus_writereg(device_t, int, int, uint16_t);
197 static void sk_marv_miibus_statchg(struct ifnet *);
198
199 static uint32_t sk_xmac_hash(void *);
200 static uint32_t sk_yukon_hash(void *);
201 static void sk_setfilt(struct sk_if_softc *, void *, int);
202 static void sk_setmulti(struct sk_if_softc *);
203 static void sk_tick(void *);
204
205 static bool skc_suspend(device_t, const pmf_qual_t *);
206 static bool skc_resume(device_t, const pmf_qual_t *);
207 static bool sk_resume(device_t dv, const pmf_qual_t *);
208
209 /* #define SK_DEBUG 2 */
210 #ifdef SK_DEBUG
211 #define DPRINTF(x) if (skdebug) printf x
212 #define DPRINTFN(n, x) if (skdebug >= (n)) printf x
213 int skdebug = SK_DEBUG;
214
215 static void sk_dump_txdesc(struct sk_tx_desc *, int);
216 static void sk_dump_mbuf(struct mbuf *);
217 static void sk_dump_bytes(const char *, int);
218 #else
219 #define DPRINTF(x)
220 #define DPRINTFN(n, x)
221 #endif
222
223 static int sk_sysctl_handler(SYSCTLFN_PROTO);
224 static int sk_root_num;
225
226 /* supported device vendors */
227 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
228 static const struct sk_product {
229 pci_vendor_id_t sk_vendor;
230 pci_product_id_t sk_product;
231 } sk_products[] = {
232 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
233 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
234 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
235 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
236 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
237 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
238 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
239 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
240 { 0, 0, }
241 };
242
243 #define SK_LINKSYS_EG1032_SUBID 0x00151737
244
245 static inline uint32_t
246 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
247 {
248 #ifdef SK_USEIOSPACE
249 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
250 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
251 #else
252 return CSR_READ_4(sc, reg);
253 #endif
254 }
255
256 static inline uint16_t
257 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
258 {
259 #ifdef SK_USEIOSPACE
260 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
261 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
262 #else
263 return CSR_READ_2(sc, reg);
264 #endif
265 }
266
267 static inline uint8_t
268 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
269 {
270 #ifdef SK_USEIOSPACE
271 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
272 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
273 #else
274 return CSR_READ_1(sc, reg);
275 #endif
276 }
277
278 static inline void
279 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
280 {
281 #ifdef SK_USEIOSPACE
282 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
283 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
284 #else
285 CSR_WRITE_4(sc, reg, x);
286 #endif
287 }
288
289 static inline void
290 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
291 {
292 #ifdef SK_USEIOSPACE
293 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
294 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
295 #else
296 CSR_WRITE_2(sc, reg, x);
297 #endif
298 }
299
300 static inline void
301 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
302 {
303 #ifdef SK_USEIOSPACE
304 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
305 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
306 #else
307 CSR_WRITE_1(sc, reg, x);
308 #endif
309 }
310
311 /*
312 * The VPD EEPROM contains Vital Product Data, as suggested in
313 * the PCI 2.1 specification. The VPD data is separared into areas
314 * denoted by resource IDs. The SysKonnect VPD contains an ID string
315 * resource (the name of the adapter), a read-only area resource
316 * containing various key/data fields and a read/write area which
317 * can be used to store asset management information or log messages.
318 * We read the ID string and read-only into buffers attached to
319 * the controller softc structure for later use. At the moment,
320 * we only use the ID string during sk_attach().
321 */
322 static uint8_t
323 sk_vpd_readbyte(struct sk_softc *sc, int addr)
324 {
325 int i;
326
327 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
328 for (i = 0; i < SK_TIMEOUT; i++) {
329 DELAY(1);
330 if (sk_win_read_2(sc,
331 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
332 break;
333 }
334
335 if (i == SK_TIMEOUT)
336 return 0;
337
338 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
339 }
340
341 static void
342 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
343 {
344 int i;
345 uint8_t *ptr;
346
347 ptr = (uint8_t *)res;
348 for (i = 0; i < sizeof(struct vpd_res); i++)
349 ptr[i] = sk_vpd_readbyte(sc, i + addr);
350 }
351
352 static void
353 sk_vpd_read(struct sk_softc *sc)
354 {
355 int pos = 0, i;
356 struct vpd_res res;
357
358 if (sc->sk_vpd_prodname != NULL)
359 free(sc->sk_vpd_prodname, M_DEVBUF);
360 if (sc->sk_vpd_readonly != NULL)
361 free(sc->sk_vpd_readonly, M_DEVBUF);
362 sc->sk_vpd_prodname = NULL;
363 sc->sk_vpd_readonly = NULL;
364
365 sk_vpd_read_res(sc, &res, pos);
366
367 if (res.vr_id != VPD_RES_ID) {
368 aprint_error_dev(sc->sk_dev,
369 "bad VPD resource id: expected %x got %x\n",
370 VPD_RES_ID, res.vr_id);
371 return;
372 }
373
374 pos += sizeof(res);
375 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_WAITOK);
376 for (i = 0; i < res.vr_len; i++)
377 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
378 sc->sk_vpd_prodname[i] = '\0';
379 pos += i;
380
381 sk_vpd_read_res(sc, &res, pos);
382
383 if (res.vr_id != VPD_RES_READ) {
384 aprint_error_dev(sc->sk_dev,
385 "bad VPD resource id: expected %x got %x\n",
386 VPD_RES_READ, res.vr_id);
387 return;
388 }
389
390 pos += sizeof(res);
391 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_WAITOK);
392 for (i = 0; i < res.vr_len ; i++)
393 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
394 }
395
396 static int
397 sk_xmac_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
398 {
399 struct sk_if_softc *sc_if = device_private(dev);
400 int i;
401
402 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
403
404 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
405 return -1;
406
407 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
408 SK_XM_READ_2(sc_if, XM_PHY_DATA);
409 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
410 for (i = 0; i < SK_TIMEOUT; i++) {
411 DELAY(1);
412 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
413 XM_MMUCMD_PHYDATARDY)
414 break;
415 }
416
417 if (i == SK_TIMEOUT) {
418 aprint_error_dev(sc_if->sk_dev,
419 "phy failed to come ready\n");
420 return ETIMEDOUT;
421 }
422 }
423 DELAY(1);
424 *val = SK_XM_READ_2(sc_if, XM_PHY_DATA);
425 return 0;
426 }
427
428 static int
429 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
430 {
431 struct sk_if_softc *sc_if = device_private(dev);
432 int i;
433
434 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
435
436 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
437 for (i = 0; i < SK_TIMEOUT; i++) {
438 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
439 break;
440 }
441
442 if (i == SK_TIMEOUT) {
443 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
444 return ETIMEDOUT;
445 }
446
447 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
448 for (i = 0; i < SK_TIMEOUT; i++) {
449 DELAY(1);
450 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
451 break;
452 }
453
454 if (i == SK_TIMEOUT) {
455 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
456 return ETIMEDOUT;
457 }
458
459 return 0;
460 }
461
462 static void
463 sk_xmac_miibus_statchg(struct ifnet *ifp)
464 {
465 struct sk_if_softc *sc_if = ifp->if_softc;
466 struct mii_data *mii = &sc_if->sk_mii;
467
468 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
469
470 /*
471 * If this is a GMII PHY, manually set the XMAC's
472 * duplex mode accordingly.
473 */
474 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
475 if ((mii->mii_media_active & IFM_FDX) != 0)
476 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
477 else
478 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
479 }
480 }
481
482 static int
483 sk_marv_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
484 {
485 struct sk_if_softc *sc_if = device_private(dev);
486 uint16_t data;
487 int i;
488
489 if (phy != 0 ||
490 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
491 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
492 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
493 phy, reg));
494 return -1;
495 }
496
497 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
498 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
499
500 for (i = 0; i < SK_TIMEOUT; i++) {
501 DELAY(1);
502 data = SK_YU_READ_2(sc_if, YUKON_SMICR);
503 if (data & YU_SMICR_READ_VALID)
504 break;
505 }
506
507 if (i == SK_TIMEOUT) {
508 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
509 return ETIMEDOUT;
510 }
511
512 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
513 SK_TIMEOUT));
514
515 *val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
516
517 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
518 phy, reg, *val));
519
520 return 0;
521 }
522
523 static int
524 sk_marv_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
525 {
526 struct sk_if_softc *sc_if = device_private(dev);
527 int i;
528
529 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#hx\n",
530 phy, reg, val));
531
532 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
533 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
534 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
535
536 for (i = 0; i < SK_TIMEOUT; i++) {
537 DELAY(1);
538 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
539 break;
540 }
541
542 if (i == SK_TIMEOUT) {
543 printf("%s: phy write timed out\n",
544 device_xname(sc_if->sk_dev));
545 return ETIMEDOUT;
546 }
547
548 return 0;
549 }
550
551 static void
552 sk_marv_miibus_statchg(struct ifnet *ifp)
553 {
554 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
555 SK_YU_READ_2(((struct sk_if_softc *)ifp->if_softc),
556 YUKON_GPCR)));
557 }
558
559 static uint32_t
560 sk_xmac_hash(void *addr)
561 {
562 uint32_t crc;
563
564 crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
565 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
566 DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
567 return crc;
568 }
569
570 static uint32_t
571 sk_yukon_hash(void *addr)
572 {
573 uint32_t crc;
574
575 crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
576 crc &= ((1 << SK_HASH_BITS) - 1);
577 DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
578 return crc;
579 }
580
581 static void
582 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
583 {
584 char *addr = addrv;
585 int base = XM_RXFILT_ENTRY(slot);
586
587 SK_XM_WRITE_2(sc_if, base, *(uint16_t *)(&addr[0]));
588 SK_XM_WRITE_2(sc_if, base + 2, *(uint16_t *)(&addr[2]));
589 SK_XM_WRITE_2(sc_if, base + 4, *(uint16_t *)(&addr[4]));
590 }
591
592 static void
593 sk_setmulti(struct sk_if_softc *sc_if)
594 {
595 struct sk_softc *sc = sc_if->sk_softc;
596 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
597 uint32_t hashes[2] = { 0, 0 };
598 int h = 0, i;
599 struct ethercom *ec = &sc_if->sk_ethercom;
600 struct ether_multi *enm;
601 struct ether_multistep step;
602 uint8_t dummy[] = { 0, 0, 0, 0, 0, 0 };
603
604 /* First, zot all the existing filters. */
605 switch (sc->sk_type) {
606 case SK_GENESIS:
607 for (i = 1; i < XM_RXFILT_MAX; i++)
608 sk_setfilt(sc_if, (void *)&dummy, i);
609
610 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
611 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
612 break;
613 case SK_YUKON:
614 case SK_YUKON_LITE:
615 case SK_YUKON_LP:
616 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
617 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
618 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
619 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
620 break;
621 }
622
623 /* Now program new ones. */
624 allmulti:
625 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
626 hashes[0] = 0xFFFFFFFF;
627 hashes[1] = 0xFFFFFFFF;
628 } else {
629 i = 1;
630 /* First find the tail of the list. */
631 ETHER_LOCK(ec);
632 ETHER_FIRST_MULTI(step, ec, enm);
633 while (enm != NULL) {
634 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
635 ETHER_ADDR_LEN)) {
636 ifp->if_flags |= IFF_ALLMULTI;
637 ETHER_UNLOCK(ec);
638 goto allmulti;
639 }
640 DPRINTFN(2,("multicast address %s\n",
641 ether_sprintf(enm->enm_addrlo)));
642 /*
643 * Program the first XM_RXFILT_MAX multicast groups
644 * into the perfect filter. For all others,
645 * use the hash table.
646 */
647 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
648 sk_setfilt(sc_if, enm->enm_addrlo, i);
649 i++;
650 }
651 else {
652 switch (sc->sk_type) {
653 case SK_GENESIS:
654 h = sk_xmac_hash(enm->enm_addrlo);
655 break;
656 case SK_YUKON:
657 case SK_YUKON_LITE:
658 case SK_YUKON_LP:
659 h = sk_yukon_hash(enm->enm_addrlo);
660 break;
661 }
662 if (h < 32)
663 hashes[0] |= (1 << h);
664 else
665 hashes[1] |= (1 << (h - 32));
666 }
667
668 ETHER_NEXT_MULTI(step, enm);
669 }
670 ETHER_UNLOCK(ec);
671 }
672
673 switch (sc->sk_type) {
674 case SK_GENESIS:
675 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH |
676 XM_MODE_RX_USE_PERFECT);
677 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
678 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
679 break;
680 case SK_YUKON:
681 case SK_YUKON_LITE:
682 case SK_YUKON_LP:
683 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
684 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
685 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
686 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
687 break;
688 }
689 }
690
691 static int
692 sk_init_rx_ring(struct sk_if_softc *sc_if)
693 {
694 struct sk_chain_data *cd = &sc_if->sk_cdata;
695 struct sk_ring_data *rd = sc_if->sk_rdata;
696 int i;
697
698 memset((char *)rd->sk_rx_ring, 0,
699 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
700
701 for (i = 0; i < SK_RX_RING_CNT; i++) {
702 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
703 if (i == (SK_RX_RING_CNT - 1)) {
704 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
705 rd->sk_rx_ring[i].sk_next =
706 htole32(SK_RX_RING_ADDR(sc_if, 0));
707 } else {
708 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
709 rd->sk_rx_ring[i].sk_next =
710 htole32(SK_RX_RING_ADDR(sc_if, i+1));
711 }
712 }
713
714 for (i = 0; i < SK_RX_RING_CNT; i++) {
715 if (sk_newbuf(sc_if, i, NULL,
716 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
717 aprint_error_dev(sc_if->sk_dev,
718 "failed alloc of %dth mbuf\n", i);
719 return ENOBUFS;
720 }
721 }
722 sc_if->sk_cdata.sk_rx_prod = 0;
723 sc_if->sk_cdata.sk_rx_cons = 0;
724
725 return 0;
726 }
727
728 static int
729 sk_init_tx_ring(struct sk_if_softc *sc_if)
730 {
731 struct sk_chain_data *cd = &sc_if->sk_cdata;
732 struct sk_ring_data *rd = sc_if->sk_rdata;
733 int i;
734
735 memset(sc_if->sk_rdata->sk_tx_ring, 0,
736 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
737
738 for (i = 0; i < SK_TX_RING_CNT; i++) {
739 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
740 if (i == (SK_TX_RING_CNT - 1)) {
741 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
742 rd->sk_tx_ring[i].sk_next =
743 htole32(SK_TX_RING_ADDR(sc_if, 0));
744 } else {
745 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
746 rd->sk_tx_ring[i].sk_next =
747 htole32(SK_TX_RING_ADDR(sc_if, i+1));
748 }
749 }
750
751 sc_if->sk_cdata.sk_tx_prod = 0;
752 sc_if->sk_cdata.sk_tx_cons = 0;
753 sc_if->sk_cdata.sk_tx_cnt = 0;
754
755 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
756 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
757
758 return 0;
759 }
760
761 static int
762 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
763 bus_dmamap_t dmamap)
764 {
765 struct mbuf *m_new = NULL;
766 struct sk_chain *c;
767 struct sk_rx_desc *r;
768
769 if (m == NULL) {
770 void *buf = NULL;
771
772 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
773 if (m_new == NULL) {
774 aprint_error_dev(sc_if->sk_dev,
775 "no memory for rx list -- packet dropped!\n");
776 return ENOBUFS;
777 }
778
779 /* Allocate the jumbo buffer */
780 buf = sk_jalloc(sc_if);
781 if (buf == NULL) {
782 m_freem(m_new);
783 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
784 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
785 return ENOBUFS;
786 }
787
788 /* Attach the buffer to the mbuf */
789 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
790 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
791
792 } else {
793 /*
794 * We're re-using a previously allocated mbuf;
795 * be sure to re-init pointers and lengths to
796 * default values.
797 */
798 m_new = m;
799 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
800 m_new->m_data = m_new->m_ext.ext_buf;
801 }
802 m_adj(m_new, ETHER_ALIGN);
803
804 c = &sc_if->sk_cdata.sk_rx_chain[i];
805 r = c->sk_desc;
806 c->sk_mbuf = m_new;
807 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
808 (((vaddr_t)m_new->m_data
809 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
810 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
811
812 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
813
814 return 0;
815 }
816
817 /*
818 * Memory management for jumbo frames.
819 */
820
821 static int
822 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
823 {
824 struct sk_softc *sc = sc_if->sk_softc;
825 char *ptr, *kva;
826 bus_dma_segment_t seg;
827 int i, rseg, state, error;
828 struct sk_jpool_entry *entry;
829
830 state = error = 0;
831
832 /* Grab a big chunk o' storage. */
833 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
834 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
835 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
836 return ENOBUFS;
837 }
838
839 state = 1;
840 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
841 BUS_DMA_NOWAIT)) {
842 aprint_error_dev(sc->sk_dev,
843 "can't map dma buffers (%d bytes)\n",
844 SK_JMEM);
845 error = ENOBUFS;
846 goto out;
847 }
848
849 state = 2;
850 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
851 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
852 aprint_error_dev(sc->sk_dev, "can't create dma map\n");
853 error = ENOBUFS;
854 goto out;
855 }
856
857 state = 3;
858 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
859 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
860 aprint_error_dev(sc->sk_dev, "can't load dma map\n");
861 error = ENOBUFS;
862 goto out;
863 }
864
865 state = 4;
866 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
867 DPRINTFN(1,("sk_jumbo_buf = %p\n", sc_if->sk_cdata.sk_jumbo_buf));
868
869 LIST_INIT(&sc_if->sk_jfree_listhead);
870 LIST_INIT(&sc_if->sk_jinuse_listhead);
871 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
872
873 /*
874 * Now divide it up into 9K pieces and save the addresses
875 * in an array.
876 */
877 ptr = sc_if->sk_cdata.sk_jumbo_buf;
878 for (i = 0; i < SK_JSLOTS; i++) {
879 sc_if->sk_cdata.sk_jslots[i] = ptr;
880 ptr += SK_JLEN;
881 entry = malloc(sizeof(struct sk_jpool_entry),
882 M_DEVBUF, M_WAITOK);
883 entry->slot = i;
884 if (i)
885 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
886 entry, jpool_entries);
887 else
888 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
889 entry, jpool_entries);
890 }
891 out:
892 if (error != 0) {
893 switch (state) {
894 case 4:
895 bus_dmamap_unload(sc->sc_dmatag,
896 sc_if->sk_cdata.sk_rx_jumbo_map);
897 /* FALLTHROUGH */
898 case 3:
899 bus_dmamap_destroy(sc->sc_dmatag,
900 sc_if->sk_cdata.sk_rx_jumbo_map);
901 /* FALLTHROUGH */
902 case 2:
903 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
904 /* FALLTHROUGH */
905 case 1:
906 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
907 break;
908 default:
909 break;
910 }
911 }
912
913 return error;
914 }
915
916 /*
917 * Allocate a jumbo buffer.
918 */
919 static void *
920 sk_jalloc(struct sk_if_softc *sc_if)
921 {
922 struct sk_jpool_entry *entry;
923
924 mutex_enter(&sc_if->sk_jpool_mtx);
925 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
926
927 if (entry == NULL) {
928 mutex_exit(&sc_if->sk_jpool_mtx);
929 return NULL;
930 }
931
932 LIST_REMOVE(entry, jpool_entries);
933 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
934 mutex_exit(&sc_if->sk_jpool_mtx);
935 return sc_if->sk_cdata.sk_jslots[entry->slot];
936 }
937
938 /*
939 * Release a jumbo buffer.
940 */
941 static void
942 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
943 {
944 struct sk_jpool_entry *entry;
945 struct sk_if_softc *sc;
946 int i;
947
948 /* Extract the softc struct pointer. */
949 sc = (struct sk_if_softc *)arg;
950
951 if (sc == NULL)
952 panic("sk_jfree: can't find softc pointer!");
953
954 /* calculate the slot this buffer belongs to */
955
956 i = ((vaddr_t)buf
957 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
958
959 if ((i < 0) || (i >= SK_JSLOTS))
960 panic("sk_jfree: asked to free buffer that we don't manage!");
961
962 mutex_enter(&sc->sk_jpool_mtx);
963 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
964 if (entry == NULL)
965 panic("sk_jfree: buffer not in use!");
966 entry->slot = i;
967 LIST_REMOVE(entry, jpool_entries);
968 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
969 mutex_exit(&sc->sk_jpool_mtx);
970
971 if (__predict_true(m != NULL))
972 pool_cache_put(mb_cache, m);
973 }
974
975 /*
976 * Set media options.
977 */
978 static int
979 sk_ifmedia_upd(struct ifnet *ifp)
980 {
981 struct sk_if_softc *sc_if = ifp->if_softc;
982 int rc;
983
984 (void) sk_init(ifp);
985 if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
986 return 0;
987 return rc;
988 }
989
990 static void
991 sk_promisc(struct sk_if_softc *sc_if, int on)
992 {
993 struct sk_softc *sc = sc_if->sk_softc;
994 switch (sc->sk_type) {
995 case SK_GENESIS:
996 if (on)
997 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
998 else
999 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1000 break;
1001 case SK_YUKON:
1002 case SK_YUKON_LITE:
1003 case SK_YUKON_LP:
1004 if (on)
1005 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1006 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1007 else
1008 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1009 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1010 break;
1011 default:
1012 aprint_error_dev(sc_if->sk_dev, "Can't set promisc for %d\n",
1013 sc->sk_type);
1014 break;
1015 }
1016 }
1017
1018 static int
1019 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
1020 {
1021 struct sk_if_softc *sc_if = ifp->if_softc;
1022 int s, error = 0;
1023
1024 /* DPRINTFN(2, ("sk_ioctl\n")); */
1025
1026 s = splnet();
1027
1028 switch (command) {
1029
1030 case SIOCSIFFLAGS:
1031 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1032 if ((error = ifioctl_common(ifp, command, data)) != 0)
1033 break;
1034 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1035 case IFF_RUNNING:
1036 sk_stop(ifp, 1);
1037 break;
1038 case IFF_UP:
1039 sk_init(ifp);
1040 break;
1041 case IFF_UP | IFF_RUNNING:
1042 if ((ifp->if_flags ^ sc_if->sk_if_flags) == IFF_PROMISC) {
1043 sk_promisc(sc_if, ifp->if_flags & IFF_PROMISC);
1044 sk_setmulti(sc_if);
1045 } else
1046 sk_init(ifp);
1047 break;
1048 }
1049 sc_if->sk_if_flags = ifp->if_flags;
1050 error = 0;
1051 break;
1052
1053 default:
1054 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1055 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1056 break;
1057
1058 error = 0;
1059
1060 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1061 ;
1062 else if (ifp->if_flags & IFF_RUNNING) {
1063 sk_setmulti(sc_if);
1064 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1065 }
1066 break;
1067 }
1068
1069 splx(s);
1070 return error;
1071 }
1072
1073 static void
1074 sk_update_int_mod(struct sk_softc *sc)
1075 {
1076 uint32_t imtimer_ticks;
1077
1078 /*
1079 * Configure interrupt moderation. The moderation timer
1080 * defers interrupts specified in the interrupt moderation
1081 * timer mask based on the timeout specified in the interrupt
1082 * moderation timer init register. Each bit in the timer
1083 * register represents one tick, so to specify a timeout in
1084 * microseconds, we have to multiply by the correct number of
1085 * ticks-per-microsecond.
1086 */
1087 switch (sc->sk_type) {
1088 case SK_GENESIS:
1089 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1090 break;
1091 case SK_YUKON_EC:
1092 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1093 break;
1094 default:
1095 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1096 }
1097 aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
1098 sc->sk_int_mod);
1099 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1100 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF | SK_ISR_TX2_S_EOF |
1101 SK_ISR_RX1_EOF | SK_ISR_RX2_EOF);
1102 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1103 sc->sk_int_mod_pending = 0;
1104 }
1105
1106 /*
1107 * Lookup: Check the PCI vendor and device, and return a pointer to
1108 * The structure if the IDs match against our list.
1109 */
1110
1111 static const struct sk_product *
1112 sk_lookup(const struct pci_attach_args *pa)
1113 {
1114 const struct sk_product *psk;
1115
1116 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1117 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1118 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1119 return psk;
1120 }
1121 return NULL;
1122 }
1123
1124 /*
1125 * Probe for a SysKonnect GEnesis chip.
1126 */
1127
1128 static int
1129 skc_probe(device_t parent, cfdata_t match, void *aux)
1130 {
1131 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1132 const struct sk_product *psk;
1133 pcireg_t subid;
1134
1135 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1136
1137 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1138 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1139 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1140 subid == SK_LINKSYS_EG1032_SUBID)
1141 return 1;
1142
1143 if ((psk = sk_lookup(pa))) {
1144 return 1;
1145 }
1146 return 0;
1147 }
1148
1149 /*
1150 * Force the GEnesis into reset, then bring it out of reset.
1151 */
1152 static void
1153 sk_reset(struct sk_softc *sc)
1154 {
1155 DPRINTFN(2, ("sk_reset\n"));
1156
1157 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1158 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1159 if (SK_YUKON_FAMILY(sc->sk_type))
1160 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1161
1162 DELAY(1000);
1163 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1164 DELAY(2);
1165 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1166 if (SK_YUKON_FAMILY(sc->sk_type))
1167 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1168
1169 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1170 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1171 CSR_READ_2(sc, SK_LINK_CTRL)));
1172
1173 if (sc->sk_type == SK_GENESIS) {
1174 /* Configure packet arbiter */
1175 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1176 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1177 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1178 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1179 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1180 }
1181
1182 /* Enable RAM interface */
1183 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1184
1185 sk_update_int_mod(sc);
1186 }
1187
1188 static int
1189 sk_probe(device_t parent, cfdata_t match, void *aux)
1190 {
1191 struct skc_attach_args *sa = aux;
1192
1193 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1194 return 0;
1195
1196 return 1;
1197 }
1198
1199 /*
1200 * Each XMAC chip is attached as a separate logical IP interface.
1201 * Single port cards will have only one logical interface of course.
1202 */
1203 static void
1204 sk_attach(device_t parent, device_t self, void *aux)
1205 {
1206 struct sk_if_softc *sc_if = device_private(self);
1207 struct mii_data *mii = &sc_if->sk_mii;
1208 struct sk_softc *sc = device_private(parent);
1209 struct skc_attach_args *sa = aux;
1210 struct sk_txmap_entry *entry;
1211 struct ifnet *ifp;
1212 bus_dma_segment_t seg;
1213 bus_dmamap_t dmamap;
1214 prop_data_t data;
1215 void *kva;
1216 int i, rseg;
1217 int mii_flags = 0;
1218
1219 aprint_naive("\n");
1220
1221 sc_if->sk_dev = self;
1222 sc_if->sk_port = sa->skc_port;
1223 sc_if->sk_softc = sc;
1224 sc->sk_if[sa->skc_port] = sc_if;
1225
1226 if (sa->skc_port == SK_PORT_A)
1227 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1228 if (sa->skc_port == SK_PORT_B)
1229 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1230
1231 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1232
1233 /*
1234 * Get station address for this interface. Note that
1235 * dual port cards actually come with three station
1236 * addresses: one for each port, plus an extra. The
1237 * extra one is used by the SysKonnect driver software
1238 * as a 'virtual' station address for when both ports
1239 * are operating in failover mode. Currently we don't
1240 * use this extra address.
1241 */
1242 data = prop_dictionary_get(device_properties(self), "mac-address");
1243 if (data != NULL) {
1244 /*
1245 * Try to get the station address from device properties
1246 * first, in case the ROM is missing.
1247 */
1248 KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
1249 KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
1250 memcpy(sc_if->sk_enaddr, prop_data_value(data),
1251 ETHER_ADDR_LEN);
1252 } else
1253 for (i = 0; i < ETHER_ADDR_LEN; i++)
1254 sc_if->sk_enaddr[i] = sk_win_read_1(sc,
1255 SK_MAC0_0 + (sa->skc_port * 8) + i);
1256
1257 aprint_normal(": Ethernet address %s\n",
1258 ether_sprintf(sc_if->sk_enaddr));
1259
1260 /*
1261 * Set up RAM buffer addresses. The NIC will have a certain
1262 * amount of SRAM on it, somewhere between 512K and 2MB. We
1263 * need to divide this up a) between the transmitter and
1264 * receiver and b) between the two XMACs, if this is a
1265 * dual port NIC. Our algorithm is to divide up the memory
1266 * evenly so that everyone gets a fair share.
1267 */
1268 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1269 uint32_t chunk, val;
1270
1271 chunk = sc->sk_ramsize / 2;
1272 val = sc->sk_rboff / sizeof(uint64_t);
1273 sc_if->sk_rx_ramstart = val;
1274 val += (chunk / sizeof(uint64_t));
1275 sc_if->sk_rx_ramend = val - 1;
1276 sc_if->sk_tx_ramstart = val;
1277 val += (chunk / sizeof(uint64_t));
1278 sc_if->sk_tx_ramend = val - 1;
1279 } else {
1280 uint32_t chunk, val;
1281
1282 chunk = sc->sk_ramsize / 4;
1283 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1284 sizeof(uint64_t);
1285 sc_if->sk_rx_ramstart = val;
1286 val += (chunk / sizeof(uint64_t));
1287 sc_if->sk_rx_ramend = val - 1;
1288 sc_if->sk_tx_ramstart = val;
1289 val += (chunk / sizeof(uint64_t));
1290 sc_if->sk_tx_ramend = val - 1;
1291 }
1292
1293 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1294 " tx_ramstart=%#x tx_ramend=%#x\n",
1295 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1296 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1297
1298 /* Read and save PHY type and set PHY address */
1299 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1300 switch (sc_if->sk_phytype) {
1301 case SK_PHYTYPE_XMAC:
1302 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1303 break;
1304 case SK_PHYTYPE_BCOM:
1305 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1306 break;
1307 case SK_PHYTYPE_MARV_COPPER:
1308 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1309 break;
1310 default:
1311 aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
1312 sc_if->sk_phytype);
1313 return;
1314 }
1315
1316 /* Allocate the descriptor queues. */
1317 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1318 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1319 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
1320 goto fail;
1321 }
1322 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1323 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1324 aprint_error_dev(sc_if->sk_dev,
1325 "can't map dma buffers (%lu bytes)\n",
1326 (u_long) sizeof(struct sk_ring_data));
1327 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1328 goto fail;
1329 }
1330 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1331 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1332 &sc_if->sk_ring_map)) {
1333 aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
1334 bus_dmamem_unmap(sc->sc_dmatag, kva,
1335 sizeof(struct sk_ring_data));
1336 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1337 goto fail;
1338 }
1339 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1340 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1341 aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
1342 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1343 bus_dmamem_unmap(sc->sc_dmatag, kva,
1344 sizeof(struct sk_ring_data));
1345 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1346 goto fail;
1347 }
1348
1349 for (i = 0; i < SK_RX_RING_CNT; i++)
1350 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1351
1352 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1353 for (i = 0; i < SK_TX_RING_CNT; i++) {
1354 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1355
1356 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1357 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1358 aprint_error_dev(sc_if->sk_dev,
1359 "Can't create TX dmamap\n");
1360 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1361 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1362 bus_dmamem_unmap(sc->sc_dmatag, kva,
1363 sizeof(struct sk_ring_data));
1364 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1365 goto fail;
1366 }
1367
1368 entry = malloc(sizeof(*entry), M_DEVBUF, M_WAITOK);
1369 entry->dmamap = dmamap;
1370 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1371 }
1372
1373 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1374 memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
1375
1376 ifp = &sc_if->sk_ethercom.ec_if;
1377 /* Try to allocate memory for jumbo buffers. */
1378 if (sk_alloc_jumbo_mem(sc_if)) {
1379 aprint_error("%s: jumbo buffer allocation failed\n",
1380 ifp->if_xname);
1381 goto fail;
1382 }
1383 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1384 | ETHERCAP_JUMBO_MTU;
1385
1386 ifp->if_softc = sc_if;
1387 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1388 ifp->if_ioctl = sk_ioctl;
1389 ifp->if_start = sk_start;
1390 ifp->if_stop = sk_stop;
1391 ifp->if_init = sk_init;
1392 ifp->if_watchdog = sk_watchdog;
1393 ifp->if_capabilities = 0;
1394 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1395 IFQ_SET_READY(&ifp->if_snd);
1396 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1397
1398 /*
1399 * Do miibus setup.
1400 */
1401 switch (sc->sk_type) {
1402 case SK_GENESIS:
1403 sk_unreset_xmac(sc_if);
1404 break;
1405 case SK_YUKON:
1406 case SK_YUKON_LITE:
1407 case SK_YUKON_LP:
1408 sk_unreset_yukon(sc_if);
1409 break;
1410 default:
1411 aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
1412 sc->sk_type);
1413 goto fail;
1414 }
1415
1416 DPRINTFN(2, ("sk_attach: 1\n"));
1417
1418 mii->mii_ifp = ifp;
1419 switch (sc->sk_type) {
1420 case SK_GENESIS:
1421 mii->mii_readreg = sk_xmac_miibus_readreg;
1422 mii->mii_writereg = sk_xmac_miibus_writereg;
1423 mii->mii_statchg = sk_xmac_miibus_statchg;
1424 break;
1425 case SK_YUKON:
1426 case SK_YUKON_LITE:
1427 case SK_YUKON_LP:
1428 mii->mii_readreg = sk_marv_miibus_readreg;
1429 mii->mii_writereg = sk_marv_miibus_writereg;
1430 mii->mii_statchg = sk_marv_miibus_statchg;
1431 mii_flags = MIIF_DOPAUSE;
1432 break;
1433 }
1434
1435 sc_if->sk_ethercom.ec_mii = mii;
1436 ifmedia_init(&mii->mii_media, 0, sk_ifmedia_upd, ether_mediastatus);
1437 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
1438 MII_OFFSET_ANY, mii_flags);
1439 if (LIST_EMPTY(&mii->mii_phys)) {
1440 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1441 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
1442 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
1443 } else
1444 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1445
1446 callout_init(&sc_if->sk_tick_ch, 0);
1447 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1448
1449 DPRINTFN(2, ("sk_attach: 1\n"));
1450
1451 /*
1452 * Call MI attach routines.
1453 */
1454 if_attach(ifp);
1455 if_deferred_start_init(ifp, NULL);
1456
1457 ether_ifattach(ifp, sc_if->sk_enaddr);
1458
1459 if (sc->rnd_attached++ == 0) {
1460 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1461 RND_TYPE_NET, RND_FLAG_DEFAULT);
1462 }
1463
1464 if (pmf_device_register(self, NULL, sk_resume))
1465 pmf_class_network_register(self, ifp);
1466 else
1467 aprint_error_dev(self, "couldn't establish power handler\n");
1468
1469 DPRINTFN(2, ("sk_attach: end\n"));
1470
1471 return;
1472
1473 fail:
1474 sc->sk_if[sa->skc_port] = NULL;
1475 }
1476
1477 static int
1478 skcprint(void *aux, const char *pnp)
1479 {
1480 struct skc_attach_args *sa = aux;
1481
1482 if (pnp)
1483 aprint_normal("sk port %c at %s",
1484 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1485 else
1486 aprint_normal(" port %c",
1487 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1488 return UNCONF;
1489 }
1490
1491 /*
1492 * Attach the interface. Allocate softc structures, do ifmedia
1493 * setup and ethernet/BPF attach.
1494 */
1495 static void
1496 skc_attach(device_t parent, device_t self, void *aux)
1497 {
1498 struct sk_softc *sc = device_private(self);
1499 struct pci_attach_args *pa = aux;
1500 struct skc_attach_args skca;
1501 pci_chipset_tag_t pc = pa->pa_pc;
1502 #ifndef SK_USEIOSPACE
1503 pcireg_t memtype;
1504 #endif
1505 pci_intr_handle_t ih;
1506 const char *intrstr = NULL;
1507 bus_addr_t iobase;
1508 bus_size_t iosize;
1509 int rc, sk_nodenum;
1510 uint32_t command;
1511 const char *revstr;
1512 const struct sysctlnode *node;
1513 char intrbuf[PCI_INTRSTR_LEN];
1514
1515 sc->sk_dev = self;
1516 aprint_naive("\n");
1517
1518 DPRINTFN(2, ("begin skc_attach\n"));
1519
1520 /*
1521 * Handle power management nonsense.
1522 */
1523 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1524
1525 if (command == 0x01) {
1526 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1527 if (command & SK_PSTATE_MASK) {
1528 uint32_t xiobase, membase, irq;
1529
1530 /* Save important PCI config data. */
1531 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1532 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1533 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1534
1535 /* Reset the power state. */
1536 aprint_normal_dev(sc->sk_dev,
1537 "chip is in D%d power mode -- setting to D0\n",
1538 command & SK_PSTATE_MASK);
1539 command &= 0xFFFFFFFC;
1540 pci_conf_write(pc, pa->pa_tag,
1541 SK_PCI_PWRMGMTCTRL, command);
1542
1543 /* Restore PCI config data. */
1544 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1545 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1546 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1547 }
1548 }
1549
1550 /*
1551 * The firmware might have configured the interface to revert the
1552 * byte order in all descriptors. Make that undone.
1553 */
1554 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_OURREG2);
1555 if (command & SK_REG2_REV_DESC)
1556 pci_conf_write(pc, pa->pa_tag, SK_PCI_OURREG2,
1557 command & ~SK_REG2_REV_DESC);
1558
1559 /*
1560 * Map control/status registers.
1561 */
1562 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1563 command |= PCI_COMMAND_IO_ENABLE |
1564 PCI_COMMAND_MEM_ENABLE |
1565 PCI_COMMAND_MASTER_ENABLE;
1566 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1567 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1568
1569 #ifdef SK_USEIOSPACE
1570 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1571 aprint_error(": failed to enable I/O ports!\n");
1572 return;
1573 }
1574 /*
1575 * Map control/status registers.
1576 */
1577 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1578 &sc->sk_btag, &sc->sk_bhandle,
1579 &iobase, &iosize)) {
1580 aprint_error(": can't find i/o space\n");
1581 return;
1582 }
1583 #else
1584 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1585 aprint_error(": failed to enable memory mapping!\n");
1586 return;
1587 }
1588 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1589 switch (memtype) {
1590 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1591 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1592 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1593 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1594 &iobase, &iosize) == 0)
1595 break;
1596 /* FALLTHROUGH */
1597 default:
1598 aprint_error_dev(sc->sk_dev, "can't find mem space\n");
1599 return;
1600 }
1601
1602 DPRINTFN(2, ("skc_attach: iobase=%#" PRIxPADDR ", iosize=%zx\n",
1603 iobase, iosize));
1604 #endif
1605 sc->sc_dmatag = pa->pa_dmat;
1606
1607 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1608 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1609
1610 /* bail out here if chip is not recognized */
1611 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1612 aprint_error_dev(sc->sk_dev, "unknown chip type\n");
1613 goto fail;
1614 }
1615 if (SK_IS_YUKON2(sc)) {
1616 aprint_error_dev(sc->sk_dev,
1617 "Does not support Yukon2--try msk(4).\n");
1618 goto fail;
1619 }
1620 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1621
1622 /* Allocate interrupt */
1623 if (pci_intr_map(pa, &ih)) {
1624 aprint_error(": couldn't map interrupt\n");
1625 goto fail;
1626 }
1627
1628 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1629 sc->sk_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, sk_intr,
1630 sc, device_xname(sc->sk_dev));
1631 if (sc->sk_intrhand == NULL) {
1632 aprint_error(": couldn't establish interrupt");
1633 if (intrstr != NULL)
1634 aprint_error(" at %s", intrstr);
1635 aprint_error("\n");
1636 goto fail;
1637 }
1638 aprint_normal(": %s\n", intrstr);
1639
1640 /* Reset the adapter. */
1641 sk_reset(sc);
1642
1643 /* Read and save vital product data from EEPROM. */
1644 sk_vpd_read(sc);
1645
1646 if (sc->sk_type == SK_GENESIS) {
1647 uint8_t val = sk_win_read_1(sc, SK_EPROM0);
1648 /* Read and save RAM size and RAMbuffer offset */
1649 switch (val) {
1650 case SK_RAMSIZE_512K_64:
1651 sc->sk_ramsize = 0x80000;
1652 sc->sk_rboff = SK_RBOFF_0;
1653 break;
1654 case SK_RAMSIZE_1024K_64:
1655 sc->sk_ramsize = 0x100000;
1656 sc->sk_rboff = SK_RBOFF_80000;
1657 break;
1658 case SK_RAMSIZE_1024K_128:
1659 sc->sk_ramsize = 0x100000;
1660 sc->sk_rboff = SK_RBOFF_0;
1661 break;
1662 case SK_RAMSIZE_2048K_128:
1663 sc->sk_ramsize = 0x200000;
1664 sc->sk_rboff = SK_RBOFF_0;
1665 break;
1666 default:
1667 aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
1668 val);
1669 goto fail_1;
1670 break;
1671 }
1672
1673 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1674 sc->sk_ramsize, sc->sk_ramsize / 1024,
1675 sc->sk_rboff));
1676 } else {
1677 uint8_t val = sk_win_read_1(sc, SK_EPROM0);
1678 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1679 sc->sk_rboff = SK_RBOFF_0;
1680
1681 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1682 sc->sk_ramsize / 1024, sc->sk_ramsize,
1683 sc->sk_rboff));
1684 }
1685
1686 /* Read and save physical media type */
1687 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1688 case SK_PMD_1000BASESX:
1689 sc->sk_pmd = IFM_1000_SX;
1690 break;
1691 case SK_PMD_1000BASELX:
1692 sc->sk_pmd = IFM_1000_LX;
1693 break;
1694 case SK_PMD_1000BASECX:
1695 sc->sk_pmd = IFM_1000_CX;
1696 break;
1697 case SK_PMD_1000BASETX:
1698 case SK_PMD_1000BASETX_ALT:
1699 sc->sk_pmd = IFM_1000_T;
1700 break;
1701 default:
1702 aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
1703 sk_win_read_1(sc, SK_PMDTYPE));
1704 goto fail_1;
1705 }
1706
1707 /* determine whether to name it with vpd or just make it up */
1708 /* Marvell Yukon VPD's can freqently be bogus */
1709
1710 switch (pa->pa_id) {
1711 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1712 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1713 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1714 case PCI_PRODUCT_3COM_3C940:
1715 case PCI_PRODUCT_DLINK_DGE530T:
1716 case PCI_PRODUCT_DLINK_DGE560T:
1717 case PCI_PRODUCT_DLINK_DGE560T_2:
1718 case PCI_PRODUCT_LINKSYS_EG1032:
1719 case PCI_PRODUCT_LINKSYS_EG1064:
1720 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1721 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1722 case PCI_ID_CODE(PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940):
1723 case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T):
1724 case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T):
1725 case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2):
1726 case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032):
1727 case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064):
1728 sc->sk_name = sc->sk_vpd_prodname;
1729 break;
1730 case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET):
1731 /* whoops yukon vpd prodname bears no resemblance to reality */
1732 switch (sc->sk_type) {
1733 case SK_GENESIS:
1734 sc->sk_name = sc->sk_vpd_prodname;
1735 break;
1736 case SK_YUKON:
1737 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1738 break;
1739 case SK_YUKON_LITE:
1740 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1741 break;
1742 case SK_YUKON_LP:
1743 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1744 break;
1745 default:
1746 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1747 }
1748
1749 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1750
1751 if ( sc->sk_type == SK_YUKON ) {
1752 uint32_t flashaddr;
1753 uint8_t testbyte;
1754
1755 flashaddr = sk_win_read_4(sc, SK_EP_ADDR);
1756
1757 /* test Flash-Address Register */
1758 sk_win_write_1(sc, SK_EP_ADDR+3, 0xff);
1759 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1760
1761 if (testbyte != 0) {
1762 /* this is yukon lite Rev. A0 */
1763 sc->sk_type = SK_YUKON_LITE;
1764 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1765 /* restore Flash-Address Register */
1766 sk_win_write_4(sc, SK_EP_ADDR, flashaddr);
1767 }
1768 }
1769 break;
1770 case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN):
1771 sc->sk_name = sc->sk_vpd_prodname;
1772 break;
1773 default:
1774 sc->sk_name = "Unknown Marvell";
1775 }
1776
1777
1778 if ( sc->sk_type == SK_YUKON_LITE ) {
1779 switch (sc->sk_rev) {
1780 case SK_YUKON_LITE_REV_A0:
1781 revstr = "A0";
1782 break;
1783 case SK_YUKON_LITE_REV_A1:
1784 revstr = "A1";
1785 break;
1786 case SK_YUKON_LITE_REV_A3:
1787 revstr = "A3";
1788 break;
1789 default:
1790 revstr = "";
1791 }
1792 } else {
1793 revstr = "";
1794 }
1795
1796 /* Announce the product name. */
1797 aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
1798 sc->sk_name, revstr, sc->sk_rev);
1799
1800 skca.skc_port = SK_PORT_A;
1801 (void)config_found(sc->sk_dev, &skca, skcprint);
1802
1803 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1804 skca.skc_port = SK_PORT_B;
1805 (void)config_found(sc->sk_dev, &skca, skcprint);
1806 }
1807
1808 /* Turn on the 'driver is loaded' LED. */
1809 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1810
1811 /* skc sysctl setup */
1812
1813 sc->sk_int_mod = SK_IM_DEFAULT;
1814 sc->sk_int_mod_pending = 0;
1815
1816 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1817 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1818 SYSCTL_DESCR("skc per-controller controls"),
1819 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1820 CTL_EOL)) != 0) {
1821 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1822 goto fail_1;
1823 }
1824
1825 sk_nodenum = node->sysctl_num;
1826
1827 /* interrupt moderation time in usecs */
1828 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1829 CTLFLAG_READWRITE,
1830 CTLTYPE_INT, "int_mod",
1831 SYSCTL_DESCR("sk interrupt moderation timer"),
1832 sk_sysctl_handler, 0, (void *)sc,
1833 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1834 CTL_EOL)) != 0) {
1835 aprint_normal_dev(sc->sk_dev,
1836 "couldn't create int_mod sysctl node\n");
1837 goto fail_1;
1838 }
1839
1840 if (!pmf_device_register(self, skc_suspend, skc_resume))
1841 aprint_error_dev(self, "couldn't establish power handler\n");
1842
1843 return;
1844
1845 fail_1:
1846 pci_intr_disestablish(pc, sc->sk_intrhand);
1847 fail:
1848 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1849 }
1850
1851 static int
1852 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1853 {
1854 struct sk_softc *sc = sc_if->sk_softc;
1855 struct sk_tx_desc *f = NULL;
1856 uint32_t frag, cur, cnt = 0, sk_ctl;
1857 int i;
1858 struct sk_txmap_entry *entry;
1859 bus_dmamap_t txmap;
1860
1861 DPRINTFN(3, ("sk_encap\n"));
1862
1863 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1864 if (entry == NULL) {
1865 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1866 return ENOBUFS;
1867 }
1868 txmap = entry->dmamap;
1869
1870 cur = frag = *txidx;
1871
1872 #ifdef SK_DEBUG
1873 if (skdebug >= 3)
1874 sk_dump_mbuf(m_head);
1875 #endif
1876
1877 /*
1878 * Start packing the mbufs in this chain into
1879 * the fragment pointers. Stop when we run out
1880 * of fragments or hit the end of the mbuf chain.
1881 */
1882 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1883 BUS_DMA_NOWAIT)) {
1884 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1885 return ENOBUFS;
1886 }
1887
1888 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1889
1890 /* Sync the DMA map. */
1891 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1892 BUS_DMASYNC_PREWRITE);
1893
1894 for (i = 0; i < txmap->dm_nsegs; i++) {
1895 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1896 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1897 return ENOBUFS;
1898 }
1899 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1900 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1901 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1902 if (cnt == 0)
1903 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1904 else
1905 sk_ctl |= SK_TXCTL_OWN;
1906 f->sk_ctl = htole32(sk_ctl);
1907 cur = frag;
1908 SK_INC(frag, SK_TX_RING_CNT);
1909 cnt++;
1910 }
1911
1912 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1913 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1914
1915 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1916 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1917 htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
1918
1919 /* Sync descriptors before handing to chip */
1920 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1921 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1922
1923 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1924 htole32(SK_TXCTL_OWN);
1925
1926 /* Sync first descriptor to hand it off */
1927 SK_CDTXSYNC(sc_if, *txidx, 1,
1928 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1929
1930 sc_if->sk_cdata.sk_tx_cnt += cnt;
1931
1932 #ifdef SK_DEBUG
1933 if (skdebug >= 3) {
1934 struct sk_tx_desc *desc;
1935 uint32_t idx;
1936 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1937 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1938 sk_dump_txdesc(desc, idx);
1939 }
1940 }
1941 #endif
1942
1943 *txidx = frag;
1944
1945 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1946
1947 return 0;
1948 }
1949
1950 static void
1951 sk_start(struct ifnet *ifp)
1952 {
1953 struct sk_if_softc *sc_if = ifp->if_softc;
1954 struct sk_softc *sc = sc_if->sk_softc;
1955 struct mbuf *m_head = NULL;
1956 uint32_t idx = sc_if->sk_cdata.sk_tx_prod;
1957 int pkts = 0;
1958
1959 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1960 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1961
1962 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1963 IFQ_POLL(&ifp->if_snd, m_head);
1964 if (m_head == NULL)
1965 break;
1966
1967 /*
1968 * Pack the data into the transmit ring. If we
1969 * don't have room, set the OACTIVE flag and wait
1970 * for the NIC to drain the ring.
1971 */
1972 if (sk_encap(sc_if, m_head, &idx)) {
1973 ifp->if_flags |= IFF_OACTIVE;
1974 break;
1975 }
1976
1977 /* now we are committed to transmit the packet */
1978 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1979 pkts++;
1980
1981 /*
1982 * If there's a BPF listener, bounce a copy of this frame
1983 * to him.
1984 */
1985 bpf_mtap(ifp, m_head, BPF_D_OUT);
1986 }
1987 if (pkts == 0)
1988 return;
1989
1990 /* Transmit */
1991 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1992 sc_if->sk_cdata.sk_tx_prod = idx;
1993 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1994
1995 /* Set a timeout in case the chip goes out to lunch. */
1996 ifp->if_timer = 5;
1997 }
1998 }
1999
2000
2001 static void
2002 sk_watchdog(struct ifnet *ifp)
2003 {
2004 struct sk_if_softc *sc_if = ifp->if_softc;
2005
2006 /*
2007 * Reclaim first as there is a possibility of losing Tx completion
2008 * interrupts.
2009 */
2010 sk_txeof(sc_if);
2011 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2012 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
2013
2014 if_statinc(ifp, if_oerrors);
2015
2016 sk_init(ifp);
2017 }
2018 }
2019
2020 #if 0 /* XXX XXX XXX UNUSED */
2021 static void
2022 sk_shutdown(void *v)
2023 {
2024 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
2025 struct sk_softc *sc = sc_if->sk_softc;
2026 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2027
2028 DPRINTFN(2, ("sk_shutdown\n"));
2029 sk_stop(ifp, 1);
2030
2031 /* Turn off the 'driver is loaded' LED. */
2032 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2033
2034 /*
2035 * Reset the GEnesis controller. Doing this should also
2036 * assert the resets on the attached XMAC(s).
2037 */
2038 sk_reset(sc);
2039 }
2040 #endif
2041
2042 static void
2043 sk_rxeof(struct sk_if_softc *sc_if)
2044 {
2045 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2046 struct mbuf *m;
2047 struct sk_chain *cur_rx;
2048 struct sk_rx_desc *cur_desc;
2049 int i, cur, total_len = 0;
2050 uint32_t rxstat, sk_ctl;
2051 bus_dmamap_t dmamap;
2052
2053 i = sc_if->sk_cdata.sk_rx_prod;
2054
2055 DPRINTFN(3, ("sk_rxeof %d\n", i));
2056
2057 for (;;) {
2058 cur = i;
2059
2060 /* Sync the descriptor */
2061 SK_CDRXSYNC(sc_if, cur,
2062 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2063
2064 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2065 if (sk_ctl & SK_RXCTL_OWN) {
2066 /* Invalidate the descriptor -- it's not ready yet */
2067 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2068 sc_if->sk_cdata.sk_rx_prod = i;
2069 break;
2070 }
2071
2072 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2073 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2074 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2075
2076 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2077 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2078
2079 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2080 m = cur_rx->sk_mbuf;
2081 cur_rx->sk_mbuf = NULL;
2082 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2083
2084 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2085
2086 SK_INC(i, SK_RX_RING_CNT);
2087
2088 if (rxstat & XM_RXSTAT_ERRFRAME) {
2089 if_statinc(ifp, if_ierrors);
2090 sk_newbuf(sc_if, cur, m, dmamap);
2091 continue;
2092 }
2093
2094 /*
2095 * Try to allocate a new jumbo buffer. If that
2096 * fails, copy the packet to mbufs and put the
2097 * jumbo buffer back in the ring so it can be
2098 * re-used. If allocating mbufs fails, then we
2099 * have to drop the packet.
2100 */
2101 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2102 struct mbuf *m0;
2103 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2104 total_len + ETHER_ALIGN, 0, ifp);
2105 sk_newbuf(sc_if, cur, m, dmamap);
2106 if (m0 == NULL) {
2107 aprint_error_dev(sc_if->sk_dev, "no receive "
2108 "buffers available -- packet dropped!\n");
2109 if_statinc(ifp, if_ierrors);
2110 continue;
2111 }
2112 m_adj(m0, ETHER_ALIGN);
2113 m = m0;
2114 } else {
2115 m_set_rcvif(m, ifp);
2116 m->m_pkthdr.len = m->m_len = total_len;
2117 }
2118
2119 /* pass it on. */
2120 if_percpuq_enqueue(ifp->if_percpuq, m);
2121 }
2122 }
2123
2124 static void
2125 sk_txeof(struct sk_if_softc *sc_if)
2126 {
2127 struct sk_softc *sc = sc_if->sk_softc;
2128 struct sk_tx_desc *cur_tx;
2129 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2130 uint32_t idx, sk_ctl;
2131 struct sk_txmap_entry *entry;
2132
2133 DPRINTFN(3, ("sk_txeof\n"));
2134
2135 /*
2136 * Go through our tx ring and free mbufs for those
2137 * frames that have been sent.
2138 */
2139 idx = sc_if->sk_cdata.sk_tx_cons;
2140 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2141 SK_CDTXSYNC(sc_if, idx, 1,
2142 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2143
2144 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2145 sk_ctl = le32toh(cur_tx->sk_ctl);
2146 #ifdef SK_DEBUG
2147 if (skdebug >= 3)
2148 sk_dump_txdesc(cur_tx, idx);
2149 #endif
2150 if (sk_ctl & SK_TXCTL_OWN) {
2151 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2152 break;
2153 }
2154 if (sk_ctl & SK_TXCTL_LASTFRAG)
2155 if_statinc(ifp, if_opackets);
2156 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2157 entry = sc_if->sk_cdata.sk_tx_map[idx];
2158
2159 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2160 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2161
2162 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2163 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2164
2165 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2166 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2167 link);
2168 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2169 }
2170 sc_if->sk_cdata.sk_tx_cnt--;
2171 SK_INC(idx, SK_TX_RING_CNT);
2172 }
2173 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2174 ifp->if_timer = 0;
2175 else /* nudge chip to keep tx ring moving */
2176 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2177
2178 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2179 ifp->if_flags &= ~IFF_OACTIVE;
2180
2181 sc_if->sk_cdata.sk_tx_cons = idx;
2182 }
2183
2184 static void
2185 sk_tick(void *xsc_if)
2186 {
2187 struct sk_if_softc *sc_if = xsc_if;
2188 struct mii_data *mii = &sc_if->sk_mii;
2189 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2190 int i;
2191
2192 DPRINTFN(3, ("sk_tick\n"));
2193
2194 if (!(ifp->if_flags & IFF_UP))
2195 return;
2196
2197 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2198 sk_intr_bcom(sc_if);
2199 return;
2200 }
2201
2202 /*
2203 * According to SysKonnect, the correct way to verify that
2204 * the link has come back up is to poll bit 0 of the GPIO
2205 * register three times. This pin has the signal from the
2206 * link sync pin connected to it; if we read the same link
2207 * state 3 times in a row, we know the link is up.
2208 */
2209 for (i = 0; i < 3; i++) {
2210 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2211 break;
2212 }
2213
2214 if (i != 3) {
2215 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2216 return;
2217 }
2218
2219 /* Turn the GP0 interrupt back on. */
2220 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2221 SK_XM_READ_2(sc_if, XM_ISR);
2222 mii_tick(mii);
2223 if (ifp->if_link_state != LINK_STATE_UP)
2224 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2225 else
2226 callout_stop(&sc_if->sk_tick_ch);
2227 }
2228
2229 static void
2230 sk_intr_bcom(struct sk_if_softc *sc_if)
2231 {
2232 struct mii_data *mii = &sc_if->sk_mii;
2233 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2234 uint16_t status;
2235
2236
2237 DPRINTFN(3, ("sk_intr_bcom\n"));
2238
2239 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2240
2241 /*
2242 * Read the PHY interrupt register to make sure
2243 * we clear any pending interrupts.
2244 */
2245 sk_xmac_miibus_readreg(sc_if->sk_dev,
2246 SK_PHYADDR_BCOM, BRGPHY_MII_ISR, &status);
2247
2248 if (!(ifp->if_flags & IFF_RUNNING)) {
2249 sk_init_xmac(sc_if);
2250 return;
2251 }
2252
2253 if (status & (BRGPHY_ISR_LNK_CHG | BRGPHY_ISR_AN_PR)) {
2254 uint16_t lstat;
2255 sk_xmac_miibus_readreg(sc_if->sk_dev,
2256 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS, &lstat);
2257
2258 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2259 (void)mii_mediachg(mii);
2260 /* Turn off the link LED. */
2261 SK_IF_WRITE_1(sc_if, 0,
2262 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2263 sc_if->sk_link = 0;
2264 } else if (status & BRGPHY_ISR_LNK_CHG) {
2265 sk_xmac_miibus_writereg(sc_if->sk_dev,
2266 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2267 mii_tick(mii);
2268 sc_if->sk_link = 1;
2269 /* Turn on the link LED. */
2270 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2271 SK_LINKLED_ON | SK_LINKLED_LINKSYNC_OFF |
2272 SK_LINKLED_BLINK_OFF);
2273 mii_pollstat(mii);
2274 } else {
2275 mii_tick(mii);
2276 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2277 }
2278 }
2279
2280 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2281 }
2282
2283 static void
2284 sk_intr_xmac(struct sk_if_softc *sc_if)
2285 {
2286 uint16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2287
2288 DPRINTFN(3, ("sk_intr_xmac\n"));
2289
2290 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2291 if (status & XM_ISR_GP0_SET) {
2292 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2293 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2294 }
2295
2296 if (status & XM_ISR_AUTONEG_DONE) {
2297 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2298 }
2299 }
2300
2301 if (status & XM_IMR_TX_UNDERRUN)
2302 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2303
2304 if (status & XM_IMR_RX_OVERRUN)
2305 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2306 }
2307
2308 static void
2309 sk_intr_yukon(struct sk_if_softc *sc_if)
2310 {
2311 #ifdef SK_DEBUG
2312 int status;
2313
2314 status =
2315 #endif
2316 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2317
2318 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2319 }
2320
2321 static int
2322 sk_intr(void *xsc)
2323 {
2324 struct sk_softc *sc = xsc;
2325 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2326 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2327 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2328 uint32_t status;
2329 int claimed = 0;
2330
2331 if (sc_if0 != NULL)
2332 ifp0 = &sc_if0->sk_ethercom.ec_if;
2333 if (sc_if1 != NULL)
2334 ifp1 = &sc_if1->sk_ethercom.ec_if;
2335
2336 for (;;) {
2337 status = CSR_READ_4(sc, SK_ISSR);
2338 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2339
2340 if (!(status & sc->sk_intrmask))
2341 break;
2342
2343 claimed = 1;
2344
2345 /* Handle receive interrupts first. */
2346 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2347 sk_rxeof(sc_if0);
2348 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2349 SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
2350 }
2351 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2352 sk_rxeof(sc_if1);
2353 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2354 SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
2355 }
2356
2357 /* Then transmit interrupts. */
2358 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2359 sk_txeof(sc_if0);
2360 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2361 SK_TXBMU_CLR_IRQ_EOF);
2362 }
2363 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2364 sk_txeof(sc_if1);
2365 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2366 SK_TXBMU_CLR_IRQ_EOF);
2367 }
2368
2369 /* Then MAC interrupts. */
2370 if (sc_if0 && (status & SK_ISR_MAC1) &&
2371 (ifp0->if_flags & IFF_RUNNING)) {
2372 if (sc->sk_type == SK_GENESIS)
2373 sk_intr_xmac(sc_if0);
2374 else
2375 sk_intr_yukon(sc_if0);
2376 }
2377
2378 if (sc_if1 && (status & SK_ISR_MAC2) &&
2379 (ifp1->if_flags & IFF_RUNNING)) {
2380 if (sc->sk_type == SK_GENESIS)
2381 sk_intr_xmac(sc_if1);
2382 else
2383 sk_intr_yukon(sc_if1);
2384
2385 }
2386
2387 if (status & SK_ISR_EXTERNAL_REG) {
2388 if (sc_if0 != NULL &&
2389 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2390 sk_intr_bcom(sc_if0);
2391
2392 if (sc_if1 != NULL &&
2393 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2394 sk_intr_bcom(sc_if1);
2395 }
2396 }
2397
2398 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2399
2400 if (ifp0 != NULL)
2401 if_schedule_deferred_start(ifp0);
2402 if (ifp1 != NULL)
2403 if_schedule_deferred_start(ifp1);
2404
2405 KASSERT(sc->rnd_attached > 0);
2406 rnd_add_uint32(&sc->rnd_source, status);
2407
2408 if (sc->sk_int_mod_pending)
2409 sk_update_int_mod(sc);
2410
2411 return claimed;
2412 }
2413
2414 static void
2415 sk_unreset_xmac(struct sk_if_softc *sc_if)
2416 {
2417 struct sk_softc *sc = sc_if->sk_softc;
2418 static const struct sk_bcom_hack bhack[] = {
2419 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2420 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2421 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2422 { 0, 0 } };
2423
2424 DPRINTFN(1, ("sk_unreset_xmac\n"));
2425
2426 /* Unreset the XMAC. */
2427 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2428 DELAY(1000);
2429
2430 /* Reset the XMAC's internal state. */
2431 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2432
2433 /* Save the XMAC II revision */
2434 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2435
2436 /*
2437 * Perform additional initialization for external PHYs,
2438 * namely for the 1000baseTX cards that use the XMAC's
2439 * GMII mode.
2440 */
2441 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2442 int i = 0;
2443 uint32_t val;
2444 uint16_t phyval;
2445
2446 /* Take PHY out of reset. */
2447 val = sk_win_read_4(sc, SK_GPIO);
2448 if (sc_if->sk_port == SK_PORT_A)
2449 val |= SK_GPIO_DIR0 | SK_GPIO_DAT0;
2450 else
2451 val |= SK_GPIO_DIR2 | SK_GPIO_DAT2;
2452 sk_win_write_4(sc, SK_GPIO, val);
2453
2454 /* Enable GMII mode on the XMAC. */
2455 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2456
2457 sk_xmac_miibus_writereg(sc_if->sk_dev,
2458 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2459 DELAY(10000);
2460 sk_xmac_miibus_writereg(sc_if->sk_dev,
2461 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2462
2463 /*
2464 * Early versions of the BCM5400 apparently have
2465 * a bug that requires them to have their reserved
2466 * registers initialized to some magic values. I don't
2467 * know what the numbers do, I'm just the messenger.
2468 */
2469 sk_xmac_miibus_readreg(sc_if->sk_dev,
2470 SK_PHYADDR_BCOM, 0x03, &phyval);
2471 if (phyval == 0x6041) {
2472 while (bhack[i].reg) {
2473 sk_xmac_miibus_writereg(sc_if->sk_dev,
2474 SK_PHYADDR_BCOM, bhack[i].reg,
2475 bhack[i].val);
2476 i++;
2477 }
2478 }
2479 }
2480 }
2481
2482 static void
2483 sk_init_xmac(struct sk_if_softc *sc_if)
2484 {
2485 struct sk_softc *sc = sc_if->sk_softc;
2486 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2487
2488 sk_unreset_xmac(sc_if);
2489
2490 /* Set station address */
2491 SK_XM_WRITE_2(sc_if, XM_PAR0,
2492 *(uint16_t *)(&sc_if->sk_enaddr[0]));
2493 SK_XM_WRITE_2(sc_if, XM_PAR1,
2494 *(uint16_t *)(&sc_if->sk_enaddr[2]));
2495 SK_XM_WRITE_2(sc_if, XM_PAR2,
2496 *(uint16_t *)(&sc_if->sk_enaddr[4]));
2497 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2498
2499 if (ifp->if_flags & IFF_PROMISC)
2500 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2501 else
2502 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2503
2504 if (ifp->if_flags & IFF_BROADCAST)
2505 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2506 else
2507 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2508
2509 /* We don't need the FCS appended to the packet. */
2510 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2511
2512 /* We want short frames padded to 60 bytes. */
2513 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2514
2515 /*
2516 * Enable the reception of all error frames. This is
2517 * a necessary evil due to the design of the XMAC. The
2518 * XMAC's receive FIFO is only 8K in size, however jumbo
2519 * frames can be up to 9000 bytes in length. When bad
2520 * frame filtering is enabled, the XMAC's RX FIFO operates
2521 * in 'store and forward' mode. For this to work, the
2522 * entire frame has to fit into the FIFO, but that means
2523 * that jumbo frames larger than 8192 bytes will be
2524 * truncated. Disabling all bad frame filtering causes
2525 * the RX FIFO to operate in streaming mode, in which
2526 * case the XMAC will start transfering frames out of the
2527 * RX FIFO as soon as the FIFO threshold is reached.
2528 */
2529 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES |
2530 XM_MODE_RX_GIANTS | XM_MODE_RX_RUNTS | XM_MODE_RX_CRCERRS |
2531 XM_MODE_RX_INRANGELEN);
2532
2533 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2534 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2535 else
2536 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2537
2538 /*
2539 * Bump up the transmit threshold. This helps hold off transmit
2540 * underruns when we're blasting traffic from both ports at once.
2541 */
2542 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2543
2544 /* Set multicast filter */
2545 sk_setmulti(sc_if);
2546
2547 /* Clear and enable interrupts */
2548 SK_XM_READ_2(sc_if, XM_ISR);
2549 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2550 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2551 else
2552 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2553
2554 /* Configure MAC arbiter */
2555 switch (sc_if->sk_xmac_rev) {
2556 case XM_XMAC_REV_B2:
2557 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2558 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2559 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2560 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2561 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2562 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2563 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2564 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2565 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2566 break;
2567 case XM_XMAC_REV_C1:
2568 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2569 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2570 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2571 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2572 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2573 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2574 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2575 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2576 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2577 break;
2578 default:
2579 break;
2580 }
2581 sk_win_write_2(sc, SK_MACARB_CTL,
2582 SK_MACARBCTL_UNRESET | SK_MACARBCTL_FASTOE_OFF);
2583
2584 sc_if->sk_link = 1;
2585 }
2586
2587 static void
2588 sk_unreset_yukon(struct sk_if_softc *sc_if)
2589 {
2590 uint32_t /*mac, */phy;
2591 struct sk_softc *sc;
2592
2593 DPRINTFN(1, ("sk_unreset_yukon: start: sk_csr=%#x\n",
2594 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2595
2596 sc = sc_if->sk_softc;
2597 if (sc->sk_type == SK_YUKON_LITE &&
2598 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2599 /* Take PHY out of reset. */
2600 sk_win_write_4(sc, SK_GPIO,
2601 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9)
2602 & ~SK_GPIO_DAT9);
2603 }
2604
2605 /* GMAC and GPHY Reset */
2606 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2607
2608 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2609
2610 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2611 DELAY(1000);
2612 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2613 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2614 DELAY(1000);
2615
2616
2617 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2618
2619 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2620 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2621
2622 switch (sc_if->sk_softc->sk_pmd) {
2623 case IFM_1000_SX:
2624 case IFM_1000_LX:
2625 phy |= SK_GPHY_FIBER;
2626 break;
2627
2628 case IFM_1000_CX:
2629 case IFM_1000_T:
2630 phy |= SK_GPHY_COPPER;
2631 break;
2632 }
2633
2634 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2635
2636 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2637 DELAY(1000);
2638 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2639 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2640 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2641
2642 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2643 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2644 }
2645
2646 static void
2647 sk_init_yukon(struct sk_if_softc *sc_if)
2648 {
2649 uint16_t reg;
2650 int i;
2651
2652 DPRINTFN(1, ("sk_init_yukon: start\n"));
2653 sk_unreset_yukon(sc_if);
2654
2655 /* unused read of the interrupt source register */
2656 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2657 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2658
2659 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2660 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2661 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2662
2663 /* MIB Counter Clear Mode set */
2664 reg |= YU_PAR_MIB_CLR;
2665 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2666 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2667 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2668
2669 /* MIB Counter Clear Mode clear */
2670 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2671 reg &= ~YU_PAR_MIB_CLR;
2672 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2673
2674 /* receive control reg */
2675 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2676 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2677 YU_RCR_CRCR);
2678
2679 /* transmit parameter register */
2680 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2681 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2682 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a));
2683
2684 /* serial mode register */
2685 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2686 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2687 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2688 YU_SMR_IPG_DATA(0x1e));
2689
2690 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2691 /* Setup Yukon's address */
2692 for (i = 0; i < 3; i++) {
2693 /* Write Source Address 1 (unicast filter) */
2694 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2695 sc_if->sk_enaddr[i * 2] |
2696 sc_if->sk_enaddr[i * 2 + 1] << 8);
2697 }
2698
2699 for (i = 0; i < 3; i++) {
2700 reg = sk_win_read_2(sc_if->sk_softc,
2701 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2702 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2703 }
2704
2705 /* Set multicast filter */
2706 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2707 sk_setmulti(sc_if);
2708
2709 /* enable interrupt mask for counter overflows */
2710 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2711 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2712 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2713 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2714
2715 /* Configure RX MAC FIFO */
2716 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2717 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2718
2719 /* Configure TX MAC FIFO */
2720 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2721 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2722
2723 DPRINTFN(6, ("sk_init_yukon: end\n"));
2724 }
2725
2726 /*
2727 * Note that to properly initialize any part of the GEnesis chip,
2728 * you first have to take it out of reset mode.
2729 */
2730 static int
2731 sk_init(struct ifnet *ifp)
2732 {
2733 struct sk_if_softc *sc_if = ifp->if_softc;
2734 struct sk_softc *sc = sc_if->sk_softc;
2735 struct mii_data *mii = &sc_if->sk_mii;
2736 int rc = 0, s;
2737 uint32_t imr, imtimer_ticks;
2738
2739 DPRINTFN(1, ("sk_init\n"));
2740
2741 s = splnet();
2742
2743 if (ifp->if_flags & IFF_RUNNING) {
2744 splx(s);
2745 return 0;
2746 }
2747
2748 /* Cancel pending I/O and free all RX/TX buffers. */
2749 sk_stop(ifp, 0);
2750
2751 if (sc->sk_type == SK_GENESIS) {
2752 /* Configure LINK_SYNC LED */
2753 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2754 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2755 SK_LINKLED_LINKSYNC_ON);
2756
2757 /* Configure RX LED */
2758 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2759 SK_RXLEDCTL_COUNTER_START);
2760
2761 /* Configure TX LED */
2762 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2763 SK_TXLEDCTL_COUNTER_START);
2764 }
2765
2766 /* Configure I2C registers */
2767
2768 /* Configure XMAC(s) */
2769 switch (sc->sk_type) {
2770 case SK_GENESIS:
2771 sk_init_xmac(sc_if);
2772 break;
2773 case SK_YUKON:
2774 case SK_YUKON_LITE:
2775 case SK_YUKON_LP:
2776 sk_init_yukon(sc_if);
2777 break;
2778 }
2779 if ((rc = mii_mediachg(mii)) == ENXIO)
2780 rc = 0;
2781 else if (rc != 0)
2782 goto out;
2783
2784 if (sc->sk_type == SK_GENESIS) {
2785 /* Configure MAC FIFOs */
2786 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2787 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2788 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2789
2790 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2791 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2792 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2793 }
2794
2795 /* Configure transmit arbiter(s) */
2796 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2797 SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON);
2798
2799 /* Configure RAMbuffers */
2800 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2801 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2802 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2803 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2804 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2805 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2806
2807 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2808 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2809 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2810 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2811 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2812 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2813 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2814
2815 /* Configure BMUs */
2816 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2817 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2818 SK_RX_RING_ADDR(sc_if, 0));
2819 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2820
2821 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2822 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2823 SK_TX_RING_ADDR(sc_if, 0));
2824 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2825
2826 /* Init descriptors */
2827 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2828 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2829 "memory for rx buffers\n");
2830 sk_stop(ifp, 0);
2831 splx(s);
2832 return ENOBUFS;
2833 }
2834
2835 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2836 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2837 "memory for tx buffers\n");
2838 sk_stop(ifp, 0);
2839 splx(s);
2840 return ENOBUFS;
2841 }
2842
2843 /* Set interrupt moderation if changed via sysctl. */
2844 switch (sc->sk_type) {
2845 case SK_GENESIS:
2846 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2847 break;
2848 case SK_YUKON_EC:
2849 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2850 break;
2851 default:
2852 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2853 }
2854 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2855 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2856 sk_win_write_4(sc, SK_IMTIMERINIT,
2857 SK_IM_USECS(sc->sk_int_mod));
2858 aprint_verbose_dev(sc->sk_dev,
2859 "interrupt moderation is %d us\n", sc->sk_int_mod);
2860 }
2861
2862 /* Configure interrupt handling */
2863 CSR_READ_4(sc, SK_ISSR);
2864 if (sc_if->sk_port == SK_PORT_A)
2865 sc->sk_intrmask |= SK_INTRS1;
2866 else
2867 sc->sk_intrmask |= SK_INTRS2;
2868
2869 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2870
2871 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2872
2873 /* Start BMUs. */
2874 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2875
2876 if (sc->sk_type == SK_GENESIS) {
2877 /* Enable XMACs TX and RX state machines */
2878 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2879 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2880 XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2881 }
2882
2883 if (SK_YUKON_FAMILY(sc->sk_type)) {
2884 uint16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2885 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2886 #if 0
2887 /* XXX disable 100Mbps and full duplex mode? */
2888 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2889 #endif
2890 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2891 }
2892
2893
2894 ifp->if_flags |= IFF_RUNNING;
2895 ifp->if_flags &= ~IFF_OACTIVE;
2896 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2897
2898 out:
2899 splx(s);
2900 return rc;
2901 }
2902
2903 static void
2904 sk_stop(struct ifnet *ifp, int disable)
2905 {
2906 struct sk_if_softc *sc_if = ifp->if_softc;
2907 struct sk_softc *sc = sc_if->sk_softc;
2908 int i;
2909
2910 DPRINTFN(1, ("sk_stop\n"));
2911
2912 callout_stop(&sc_if->sk_tick_ch);
2913
2914 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2915 uint32_t val;
2916
2917 /* Put PHY back into reset. */
2918 val = sk_win_read_4(sc, SK_GPIO);
2919 if (sc_if->sk_port == SK_PORT_A) {
2920 val |= SK_GPIO_DIR0;
2921 val &= ~SK_GPIO_DAT0;
2922 } else {
2923 val |= SK_GPIO_DIR2;
2924 val &= ~SK_GPIO_DAT2;
2925 }
2926 sk_win_write_4(sc, SK_GPIO, val);
2927 }
2928
2929 /* Turn off various components of this interface. */
2930 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2931 switch (sc->sk_type) {
2932 case SK_GENESIS:
2933 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2934 SK_TXMACCTL_XMAC_RESET);
2935 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2936 break;
2937 case SK_YUKON:
2938 case SK_YUKON_LITE:
2939 case SK_YUKON_LP:
2940 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2941 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2942 break;
2943 }
2944 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2945 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET |SK_RBCTL_OFF);
2946 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2947 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2948 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2949 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2950 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2951 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2952 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2953
2954 /* Disable interrupts */
2955 if (sc_if->sk_port == SK_PORT_A)
2956 sc->sk_intrmask &= ~SK_INTRS1;
2957 else
2958 sc->sk_intrmask &= ~SK_INTRS2;
2959 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2960
2961 SK_XM_READ_2(sc_if, XM_ISR);
2962 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2963
2964 /* Free RX and TX mbufs still in the queues. */
2965 for (i = 0; i < SK_RX_RING_CNT; i++) {
2966 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2967 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2968 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2969 }
2970 }
2971
2972 for (i = 0; i < SK_TX_RING_CNT; i++) {
2973 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2974 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2975 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2976 }
2977 }
2978
2979 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2980 }
2981
2982 /* Power Management Framework */
2983
2984 static bool
2985 skc_suspend(device_t dv, const pmf_qual_t *qual)
2986 {
2987 struct sk_softc *sc = device_private(dv);
2988
2989 DPRINTFN(2, ("skc_suspend\n"));
2990
2991 /* Turn off the driver is loaded LED */
2992 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2993
2994 return true;
2995 }
2996
2997 static bool
2998 skc_resume(device_t dv, const pmf_qual_t *qual)
2999 {
3000 struct sk_softc *sc = device_private(dv);
3001
3002 DPRINTFN(2, ("skc_resume\n"));
3003
3004 sk_reset(sc);
3005 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
3006
3007 return true;
3008 }
3009
3010 static bool
3011 sk_resume(device_t dv, const pmf_qual_t *qual)
3012 {
3013 struct sk_if_softc *sc_if = device_private(dv);
3014
3015 sk_init_yukon(sc_if);
3016 return true;
3017 }
3018
3019 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
3020 skc_probe, skc_attach, NULL, NULL);
3021
3022 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
3023 sk_probe, sk_attach, NULL, NULL);
3024
3025 #ifdef SK_DEBUG
3026 static void
3027 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
3028 {
3029 #define DESC_PRINT(X) \
3030 if (X) \
3031 printf("txdesc[%d]." #X "=%#x\n", \
3032 idx, X);
3033
3034 DESC_PRINT(le32toh(desc->sk_ctl));
3035 DESC_PRINT(le32toh(desc->sk_next));
3036 DESC_PRINT(le32toh(desc->sk_data_lo));
3037 DESC_PRINT(le32toh(desc->sk_data_hi));
3038 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
3039 DESC_PRINT(le16toh(desc->sk_rsvd0));
3040 DESC_PRINT(le16toh(desc->sk_csum_startval));
3041 DESC_PRINT(le16toh(desc->sk_csum_startpos));
3042 DESC_PRINT(le16toh(desc->sk_csum_writepos));
3043 DESC_PRINT(le16toh(desc->sk_rsvd1));
3044 #undef PRINT
3045 }
3046
3047 static void
3048 sk_dump_bytes(const char *data, int len)
3049 {
3050 int c, i, j;
3051
3052 for (i = 0; i < len; i += 16) {
3053 printf("%08x ", i);
3054 c = len - i;
3055 if (c > 16) c = 16;
3056
3057 for (j = 0; j < c; j++) {
3058 printf("%02x ", data[i + j] & 0xff);
3059 if ((j & 0xf) == 7 && j > 0)
3060 printf(" ");
3061 }
3062
3063 for (; j < 16; j++)
3064 printf(" ");
3065 printf(" ");
3066
3067 for (j = 0; j < c; j++) {
3068 int ch = data[i + j] & 0xff;
3069 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
3070 }
3071
3072 printf("\n");
3073
3074 if (c < 16)
3075 break;
3076 }
3077 }
3078
3079 static void
3080 sk_dump_mbuf(struct mbuf *m)
3081 {
3082 int count = m->m_pkthdr.len;
3083
3084 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3085
3086 while (count > 0 && m) {
3087 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3088 m, m->m_data, m->m_len);
3089 sk_dump_bytes(mtod(m, char *), m->m_len);
3090
3091 count -= m->m_len;
3092 m = m->m_next;
3093 }
3094 }
3095 #endif
3096
3097 static int
3098 sk_sysctl_handler(SYSCTLFN_ARGS)
3099 {
3100 int error, t;
3101 struct sysctlnode node;
3102 struct sk_softc *sc;
3103
3104 node = *rnode;
3105 sc = node.sysctl_data;
3106 t = sc->sk_int_mod;
3107 node.sysctl_data = &t;
3108 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3109 if (error || newp == NULL)
3110 return error;
3111
3112 if (t < SK_IM_MIN || t > SK_IM_MAX)
3113 return EINVAL;
3114
3115 /* update the softc with sysctl-changed value, and mark
3116 for hardware update */
3117 sc->sk_int_mod = t;
3118 sc->sk_int_mod_pending = 1;
3119 return 0;
3120 }
3121
3122 /*
3123 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3124 * set up in skc_attach()
3125 */
3126 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3127 {
3128 int rc;
3129 const struct sysctlnode *node;
3130
3131 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3132 0, CTLTYPE_NODE, "sk",
3133 SYSCTL_DESCR("sk interface controls"),
3134 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3135 goto err;
3136 }
3137
3138 sk_root_num = node->sysctl_num;
3139 return;
3140
3141 err:
3142 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3143 }
3144