if_sk.c revision 1.13 1 /* $NetBSD: if_sk.c,v 1.13 2005/01/23 03:06:07 fredb Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the NetBSD
18 * Foundation, Inc. and its contributors.
19 * 4. Neither the name of The NetBSD Foundation nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /* $OpenBSD: if_sk.c,v 1.33 2003/08/12 05:23:06 nate Exp $ */
37
38 /*
39 * Copyright (c) 1997, 1998, 1999, 2000
40 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Bill Paul.
53 * 4. Neither the name of the author nor the names of any co-contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67 * THE POSSIBILITY OF SUCH DAMAGE.
68 *
69 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70 */
71
72 /*
73 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
74 *
75 * Permission to use, copy, modify, and distribute this software for any
76 * purpose with or without fee is hereby granted, provided that the above
77 * copyright notice and this permission notice appear in all copies.
78 *
79 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86 */
87
88 /*
89 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90 * the SK-984x series adapters, both single port and dual port.
91 * References:
92 * The XaQti XMAC II datasheet,
93 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 * The SysKonnect GEnesis manual, http://www.syskonnect.com
95 *
96 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98 * convenience to others until Vitesse corrects this problem:
99 *
100 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101 *
102 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
103 * Department of Electrical Engineering
104 * Columbia University, New York City
105 */
106
107 /*
108 * The SysKonnect gigabit ethernet adapters consist of two main
109 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111 * components and a PHY while the GEnesis controller provides a PCI
112 * interface with DMA support. Each card may have between 512K and
113 * 2MB of SRAM on board depending on the configuration.
114 *
115 * The SysKonnect GEnesis controller can have either one or two XMAC
116 * chips connected to it, allowing single or dual port NIC configurations.
117 * SysKonnect has the distinction of being the only vendor on the market
118 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120 * XMAC registers. This driver takes advantage of these features to allow
121 * both XMACs to operate as independent interfaces.
122 */
123
124 #include "bpfilter.h"
125
126 #include <sys/param.h>
127 #include <sys/systm.h>
128 #include <sys/sockio.h>
129 #include <sys/mbuf.h>
130 #include <sys/malloc.h>
131 #include <sys/kernel.h>
132 #include <sys/socket.h>
133 #include <sys/device.h>
134 #include <sys/queue.h>
135 #include <sys/callout.h>
136
137 #include <net/if.h>
138 #include <net/if_dl.h>
139 #include <net/if_types.h>
140
141 #ifdef INET
142 #include <netinet/in.h>
143 #include <netinet/in_systm.h>
144 #include <netinet/in_var.h>
145 #include <netinet/ip.h>
146 #include <netinet/if_ether.h>
147 #endif
148
149 #include <net/if_media.h>
150
151 #if NBPFILTER > 0
152 #include <net/bpf.h>
153 #endif
154
155 #include <dev/mii/mii.h>
156 #include <dev/mii/miivar.h>
157 #include <dev/mii/brgphyreg.h>
158
159 #include <dev/pci/pcireg.h>
160 #include <dev/pci/pcivar.h>
161 #include <dev/pci/pcidevs.h>
162
163 #define SK_VERBOSE
164 /* #define SK_USEIOSPACE */
165
166 #include <dev/pci/if_skreg.h>
167 #include <dev/pci/if_skvar.h>
168
169 int skc_probe(struct device *, struct cfdata *, void *);
170 void skc_attach(struct device *, struct device *self, void *aux);
171 int sk_probe(struct device *, struct cfdata *, void *);
172 void sk_attach(struct device *, struct device *self, void *aux);
173 int skcprint(void *, const char *);
174 int sk_intr(void *);
175 void sk_intr_bcom(struct sk_if_softc *);
176 void sk_intr_xmac(struct sk_if_softc *);
177 void sk_intr_yukon(struct sk_if_softc *);
178 void sk_rxeof(struct sk_if_softc *);
179 void sk_txeof(struct sk_if_softc *);
180 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
181 void sk_start(struct ifnet *);
182 int sk_ioctl(struct ifnet *, u_long, caddr_t);
183 int sk_init(struct ifnet *);
184 void sk_init_xmac(struct sk_if_softc *);
185 void sk_init_yukon(struct sk_if_softc *);
186 void sk_stop(struct ifnet *, int);
187 void sk_watchdog(struct ifnet *);
188 void sk_shutdown(void *);
189 int sk_ifmedia_upd(struct ifnet *);
190 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
191 void sk_reset(struct sk_softc *);
192 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
193 int sk_init_rx_ring(struct sk_if_softc *);
194 int sk_init_tx_ring(struct sk_if_softc *);
195 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
196 void sk_vpd_read_res(struct sk_softc *,
197 struct vpd_res *, int);
198 void sk_vpd_read(struct sk_softc *);
199
200 int sk_xmac_miibus_readreg(struct device *, int, int);
201 void sk_xmac_miibus_writereg(struct device *, int, int, int);
202 void sk_xmac_miibus_statchg(struct device *);
203
204 int sk_marv_miibus_readreg(struct device *, int, int);
205 void sk_marv_miibus_writereg(struct device *, int, int, int);
206 void sk_marv_miibus_statchg(struct device *);
207
208 u_int32_t sk_xmac_hash(caddr_t);
209 u_int32_t sk_yukon_hash(caddr_t);
210 void sk_setfilt(struct sk_if_softc *, caddr_t, int);
211 void sk_setmulti(struct sk_if_softc *);
212 void sk_tick(void *);
213
214 /* #define SK_DEBUG 2 */
215 #ifdef SK_DEBUG
216 #define DPRINTF(x) if (skdebug) printf x
217 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
218 int skdebug = SK_DEBUG;
219
220 void sk_dump_txdesc(struct sk_tx_desc *, int);
221 void sk_dump_mbuf(struct mbuf *);
222 void sk_dump_bytes(const char *, int);
223 #else
224 #define DPRINTF(x)
225 #define DPRINTFN(n,x)
226 #endif
227
228 #define SK_SETBIT(sc, reg, x) \
229 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
230
231 #define SK_CLRBIT(sc, reg, x) \
232 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
233
234 #define SK_WIN_SETBIT_4(sc, reg, x) \
235 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
236
237 #define SK_WIN_CLRBIT_4(sc, reg, x) \
238 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
239
240 #define SK_WIN_SETBIT_2(sc, reg, x) \
241 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
242
243 #define SK_WIN_CLRBIT_2(sc, reg, x) \
244 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
245
246 /* supported device vendors */
247 static const struct sk_product {
248 pci_vendor_id_t sk_vendor;
249 pci_product_id_t sk_product;
250 } sk_products[] = {
251 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
252 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
253 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032, },
254 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
255 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
256 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
257 { PCI_VENDOR_GALILEO, PCI_PRODUCT_GALILEO_SKNET, },
258 { PCI_VENDOR_GALILEO, PCI_PRODUCT_GALILEO_BELKIN, },
259 { 0, 0, }
260 };
261
262 static inline u_int32_t
263 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
264 {
265 #ifdef SK_USEIOSPACE
266 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
267 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
268 #else
269 return CSR_READ_4(sc, reg);
270 #endif
271 }
272
273 static inline u_int16_t
274 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
275 {
276 #ifdef SK_USEIOSPACE
277 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
278 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
279 #else
280 return CSR_READ_2(sc, reg);
281 #endif
282 }
283
284 static inline u_int8_t
285 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
286 {
287 #ifdef SK_USEIOSPACE
288 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
289 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
290 #else
291 return CSR_READ_1(sc, reg);
292 #endif
293 }
294
295 static inline void
296 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
297 {
298 #ifdef SK_USEIOSPACE
299 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
300 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
301 #else
302 CSR_WRITE_4(sc, reg, x);
303 #endif
304 }
305
306 static inline void
307 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
308 {
309 #ifdef SK_USEIOSPACE
310 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
311 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
312 #else
313 CSR_WRITE_2(sc, reg, x);
314 #endif
315 }
316
317 static inline void
318 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
319 {
320 #ifdef SK_USEIOSPACE
321 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
322 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
323 #else
324 CSR_WRITE_1(sc, reg, x);
325 #endif
326 }
327
328 /*
329 * The VPD EEPROM contains Vital Product Data, as suggested in
330 * the PCI 2.1 specification. The VPD data is separared into areas
331 * denoted by resource IDs. The SysKonnect VPD contains an ID string
332 * resource (the name of the adapter), a read-only area resource
333 * containing various key/data fields and a read/write area which
334 * can be used to store asset management information or log messages.
335 * We read the ID string and read-only into buffers attached to
336 * the controller softc structure for later use. At the moment,
337 * we only use the ID string during sk_attach().
338 */
339 u_int8_t
340 sk_vpd_readbyte(struct sk_softc *sc, int addr)
341 {
342 int i;
343
344 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
345 for (i = 0; i < SK_TIMEOUT; i++) {
346 DELAY(1);
347 if (sk_win_read_2(sc,
348 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
349 break;
350 }
351
352 if (i == SK_TIMEOUT)
353 return(0);
354
355 return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
356 }
357
358 void
359 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
360 {
361 int i;
362 u_int8_t *ptr;
363
364 ptr = (u_int8_t *)res;
365 for (i = 0; i < sizeof(struct vpd_res); i++)
366 ptr[i] = sk_vpd_readbyte(sc, i + addr);
367 }
368
369 void
370 sk_vpd_read(struct sk_softc *sc)
371 {
372 int pos = 0, i;
373 struct vpd_res res;
374
375 if (sc->sk_vpd_prodname != NULL)
376 free(sc->sk_vpd_prodname, M_DEVBUF);
377 if (sc->sk_vpd_readonly != NULL)
378 free(sc->sk_vpd_readonly, M_DEVBUF);
379 sc->sk_vpd_prodname = NULL;
380 sc->sk_vpd_readonly = NULL;
381
382 sk_vpd_read_res(sc, &res, pos);
383
384 if (res.vr_id != VPD_RES_ID) {
385 printf("%s: bad VPD resource id: expected %x got %x\n",
386 sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
387 return;
388 }
389
390 pos += sizeof(res);
391 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
392 if (sc->sk_vpd_prodname == NULL)
393 panic("sk_vpd_read");
394 for (i = 0; i < res.vr_len; i++)
395 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
396 sc->sk_vpd_prodname[i] = '\0';
397 pos += i;
398
399 sk_vpd_read_res(sc, &res, pos);
400
401 if (res.vr_id != VPD_RES_READ) {
402 printf("%s: bad VPD resource id: expected %x got %x\n",
403 sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
404 return;
405 }
406
407 pos += sizeof(res);
408 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
409 if (sc->sk_vpd_readonly == NULL)
410 panic("sk_vpd_read");
411 for (i = 0; i < res.vr_len ; i++)
412 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
413 }
414
415 int
416 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
417 {
418 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
419 int i;
420
421 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
422
423 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
424 return(0);
425
426 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
427 SK_XM_READ_2(sc_if, XM_PHY_DATA);
428 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
429 for (i = 0; i < SK_TIMEOUT; i++) {
430 DELAY(1);
431 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
432 XM_MMUCMD_PHYDATARDY)
433 break;
434 }
435
436 if (i == SK_TIMEOUT) {
437 printf("%s: phy failed to come ready\n",
438 sc_if->sk_dev.dv_xname);
439 return(0);
440 }
441 }
442 DELAY(1);
443 return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
444 }
445
446 void
447 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
448 {
449 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
450 int i;
451
452 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
453
454 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
455 for (i = 0; i < SK_TIMEOUT; i++) {
456 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
457 break;
458 }
459
460 if (i == SK_TIMEOUT) {
461 printf("%s: phy failed to come ready\n",
462 sc_if->sk_dev.dv_xname);
463 return;
464 }
465
466 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
467 for (i = 0; i < SK_TIMEOUT; i++) {
468 DELAY(1);
469 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
470 break;
471 }
472
473 if (i == SK_TIMEOUT)
474 printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
475 }
476
477 void
478 sk_xmac_miibus_statchg(struct device *dev)
479 {
480 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
481 struct mii_data *mii = &sc_if->sk_mii;
482
483 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
484
485 /*
486 * If this is a GMII PHY, manually set the XMAC's
487 * duplex mode accordingly.
488 */
489 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
490 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
491 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
492 } else {
493 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
494 }
495 }
496 }
497
498 int
499 sk_marv_miibus_readreg(dev, phy, reg)
500 struct device *dev;
501 int phy, reg;
502 {
503 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
504 u_int16_t val;
505 int i;
506
507 if (phy != 0 ||
508 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
509 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
510 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
511 phy, reg));
512 return(0);
513 }
514
515 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
516 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
517
518 for (i = 0; i < SK_TIMEOUT; i++) {
519 DELAY(1);
520 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
521 if (val & YU_SMICR_READ_VALID)
522 break;
523 }
524
525 if (i == SK_TIMEOUT) {
526 printf("%s: phy failed to come ready\n",
527 sc_if->sk_dev.dv_xname);
528 return 0;
529 }
530
531 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
532 SK_TIMEOUT));
533
534 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
535
536 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
537 phy, reg, val));
538
539 return val;
540 }
541
542 void
543 sk_marv_miibus_writereg(dev, phy, reg, val)
544 struct device *dev;
545 int phy, reg, val;
546 {
547 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
548 int i;
549
550 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
551 phy, reg, val));
552
553 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
554 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
555 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
556
557 for (i = 0; i < SK_TIMEOUT; i++) {
558 DELAY(1);
559 if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
560 break;
561 }
562 }
563
564 void
565 sk_marv_miibus_statchg(dev)
566 struct device *dev;
567 {
568 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
569 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
570 }
571
572 #define SK_HASH_BITS 6
573
574 u_int32_t
575 sk_xmac_hash(caddr_t addr)
576 {
577 u_int32_t crc;
578
579 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
580 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
581 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
582 return (crc);
583 }
584
585 u_int32_t
586 sk_yukon_hash(caddr_t addr)
587 {
588 u_int32_t crc;
589
590 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
591 crc &= ((1 << SK_HASH_BITS) - 1);
592 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
593 return (crc);
594 }
595
596 void
597 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
598 {
599 int base = XM_RXFILT_ENTRY(slot);
600
601 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
602 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
603 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
604 }
605
606 void
607 sk_setmulti(struct sk_if_softc *sc_if)
608 {
609 struct sk_softc *sc = sc_if->sk_softc;
610 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
611 u_int32_t hashes[2] = { 0, 0 };
612 int h = 0, i;
613 struct ethercom *ec = &sc_if->sk_ethercom;
614 struct ether_multi *enm;
615 struct ether_multistep step;
616 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
617
618 /* First, zot all the existing filters. */
619 switch(sc->sk_type) {
620 case SK_GENESIS:
621 for (i = 1; i < XM_RXFILT_MAX; i++)
622 sk_setfilt(sc_if, (caddr_t)&dummy, i);
623
624 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
625 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
626 break;
627 case SK_YUKON:
628 case SK_YUKON_LITE:
629 case SK_YUKON_LP:
630 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
631 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
632 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
633 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
634 break;
635 }
636
637 /* Now program new ones. */
638 allmulti:
639 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
640 hashes[0] = 0xFFFFFFFF;
641 hashes[1] = 0xFFFFFFFF;
642 } else {
643 i = 1;
644 /* First find the tail of the list. */
645 ETHER_FIRST_MULTI(step, ec, enm);
646 while (enm != NULL) {
647 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
648 ETHER_ADDR_LEN)) {
649 ifp->if_flags |= IFF_ALLMULTI;
650 goto allmulti;
651 }
652 DPRINTFN(2,("multicast address %s\n",
653 ether_sprintf(enm->enm_addrlo)));
654 /*
655 * Program the first XM_RXFILT_MAX multicast groups
656 * into the perfect filter. For all others,
657 * use the hash table.
658 */
659 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
660 sk_setfilt(sc_if, enm->enm_addrlo, i);
661 i++;
662 }
663 else {
664 switch (sc->sk_type) {
665 case SK_GENESIS:
666 h = sk_xmac_hash(enm->enm_addrlo);
667 break;
668 case SK_YUKON:
669 case SK_YUKON_LITE:
670 case SK_YUKON_LP:
671 h = sk_yukon_hash(enm->enm_addrlo);
672 break;
673 }
674 if (h < 32)
675 hashes[0] |= (1 << h);
676 else
677 hashes[1] |= (1 << (h - 32));
678 }
679
680 ETHER_NEXT_MULTI(step, enm);
681 }
682 }
683
684 switch(sc->sk_type) {
685 case SK_GENESIS:
686 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
687 XM_MODE_RX_USE_PERFECT);
688 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
689 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
690 break;
691 case SK_YUKON:
692 case SK_YUKON_LITE:
693 case SK_YUKON_LP:
694 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
695 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
696 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
697 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
698 break;
699 }
700 }
701
702 int
703 sk_init_rx_ring(struct sk_if_softc *sc_if)
704 {
705 struct sk_chain_data *cd = &sc_if->sk_cdata;
706 struct sk_ring_data *rd = sc_if->sk_rdata;
707 int i;
708
709 bzero((char *)rd->sk_rx_ring,
710 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
711
712 for (i = 0; i < SK_RX_RING_CNT; i++) {
713 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
714 if (i == (SK_RX_RING_CNT - 1)) {
715 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
716 rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if, 0);
717 } else {
718 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
719 rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if,i+1);
720 }
721 }
722
723 for (i = 0; i < SK_RX_RING_CNT; i++) {
724 if (sk_newbuf(sc_if, i, NULL, NULL) == ENOBUFS) {
725 printf("%s: failed alloc of %dth mbuf\n",
726 sc_if->sk_dev.dv_xname, i);
727 return(ENOBUFS);
728 }
729 }
730 sc_if->sk_cdata.sk_rx_prod = 0;
731 sc_if->sk_cdata.sk_rx_cons = 0;
732
733 return(0);
734 }
735
736 int
737 sk_init_tx_ring(struct sk_if_softc *sc_if)
738 {
739 struct sk_chain_data *cd = &sc_if->sk_cdata;
740 struct sk_ring_data *rd = sc_if->sk_rdata;
741 int i;
742
743 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
744 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
745
746 for (i = 0; i < SK_TX_RING_CNT; i++) {
747 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
748 if (i == (SK_TX_RING_CNT - 1)) {
749 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
750 rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if, 0);
751 } else {
752 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
753 rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if,i+1);
754 }
755 }
756
757 sc_if->sk_cdata.sk_tx_prod = 0;
758 sc_if->sk_cdata.sk_tx_cons = 0;
759 sc_if->sk_cdata.sk_tx_cnt = 0;
760
761 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
762 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
763
764 return (0);
765 }
766
767 int
768 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
769 bus_dmamap_t dmamap)
770 {
771 struct sk_softc *sc = sc_if->sk_softc;
772 struct mbuf *m_new = NULL;
773 struct sk_chain *c;
774 struct sk_rx_desc *r;
775
776 if (dmamap == NULL) {
777 /* if (m) panic() */
778
779 if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1, MCLBYTES,
780 0, BUS_DMA_NOWAIT, &dmamap)) {
781 printf("%s: can't create recv map\n",
782 sc_if->sk_dev.dv_xname);
783 return(ENOMEM);
784 }
785 } else if (m == NULL)
786 bus_dmamap_unload(sc->sc_dmatag, dmamap);
787
788 sc_if->sk_cdata.sk_rx_map[i] = dmamap;
789
790 if (m == NULL) {
791 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
792 if (m_new == NULL) {
793 printf("%s: no memory for rx list -- "
794 "packet dropped!\n", sc_if->sk_dev.dv_xname);
795 return(ENOBUFS);
796 }
797
798 /* Allocate the jumbo buffer */
799 MCLGET(m_new, M_DONTWAIT);
800 if (!(m_new->m_flags & M_EXT)) {
801 m_freem(m_new);
802 return (ENOBUFS);
803 }
804
805 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
806
807 m_adj(m_new, ETHER_ALIGN);
808
809 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m_new,
810 BUS_DMA_NOWAIT))
811 return(ENOBUFS);
812 } else {
813 /*
814 * We're re-using a previously allocated mbuf;
815 * be sure to re-init pointers and lengths to
816 * default values.
817 */
818 m_new = m;
819 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
820 m_adj(m_new, ETHER_ALIGN);
821 m_new->m_data = m_new->m_ext.ext_buf;
822 }
823
824 c = &sc_if->sk_cdata.sk_rx_chain[i];
825 r = c->sk_desc;
826 c->sk_mbuf = m_new;
827 r->sk_data_lo = dmamap->dm_segs[0].ds_addr;
828 r->sk_ctl = dmamap->dm_segs[0].ds_len | SK_RXSTAT;
829
830 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
831
832 return(0);
833 }
834
835 /*
836 * Set media options.
837 */
838 int
839 sk_ifmedia_upd(struct ifnet *ifp)
840 {
841 struct sk_if_softc *sc_if = ifp->if_softc;
842
843 (void) sk_init(ifp);
844 mii_mediachg(&sc_if->sk_mii);
845 return(0);
846 }
847
848 /*
849 * Report current media status.
850 */
851 void
852 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
853 {
854 struct sk_if_softc *sc_if = ifp->if_softc;
855
856 mii_pollstat(&sc_if->sk_mii);
857 ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
858 ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
859 }
860
861 int
862 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
863 {
864 struct sk_if_softc *sc_if = ifp->if_softc;
865 struct sk_softc *sc = sc_if->sk_softc;
866 struct ifreq *ifr = (struct ifreq *) data;
867 /* struct ifaddr *ifa = (struct ifaddr *) data; */
868 struct mii_data *mii;
869 int s, error = 0;
870
871 /* DPRINTFN(2, ("sk_ioctl\n")); */
872
873 s = splnet();
874
875 switch(command) {
876
877 case SIOCSIFFLAGS:
878 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
879 if (ifp->if_flags & IFF_UP) {
880 if (ifp->if_flags & IFF_RUNNING &&
881 ifp->if_flags & IFF_PROMISC &&
882 !(sc_if->sk_if_flags & IFF_PROMISC)) {
883 switch(sc->sk_type) {
884 case SK_GENESIS:
885 SK_XM_SETBIT_4(sc_if, XM_MODE,
886 XM_MODE_RX_PROMISC);
887 break;
888 case SK_YUKON:
889 case SK_YUKON_LITE:
890 case SK_YUKON_LP:
891 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
892 YU_RCR_UFLEN | YU_RCR_MUFLEN);
893 break;
894 }
895 sk_setmulti(sc_if);
896 } else if (ifp->if_flags & IFF_RUNNING &&
897 !(ifp->if_flags & IFF_PROMISC) &&
898 sc_if->sk_if_flags & IFF_PROMISC) {
899 switch(sc->sk_type) {
900 case SK_GENESIS:
901 SK_XM_CLRBIT_4(sc_if, XM_MODE,
902 XM_MODE_RX_PROMISC);
903 break;
904 case SK_YUKON:
905 case SK_YUKON_LITE:
906 case SK_YUKON_LP:
907 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
908 YU_RCR_UFLEN | YU_RCR_MUFLEN);
909 break;
910 }
911
912 sk_setmulti(sc_if);
913 } else
914 (void) sk_init(ifp);
915 } else {
916 if (ifp->if_flags & IFF_RUNNING)
917 sk_stop(ifp,0);
918 }
919 sc_if->sk_if_flags = ifp->if_flags;
920 error = 0;
921 break;
922
923 case SIOCGIFMEDIA:
924 case SIOCSIFMEDIA:
925 DPRINTFN(2, ("sk_ioctl MEDIA\n"));
926 mii = &sc_if->sk_mii;
927 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
928 break;
929 default:
930 DPRINTFN(2, ("sk_ioctl ETHER\n"));
931 error = ether_ioctl(ifp, command, data);
932
933 if ( error == ENETRESET) {
934 if (ifp->if_flags & IFF_RUNNING) {
935 sk_setmulti(sc_if);
936 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
937 }
938 error = 0;
939 } else if ( error ) {
940 splx(s);
941 return error;
942 }
943 break;
944 }
945
946 splx(s);
947 return(error);
948 }
949
950 /*
951 * Lookup: Check the PCI vendor and device, and return a pointer to
952 * The structure if the IDs match against our list.
953 */
954
955 static const struct sk_product *
956 sk_lookup(const struct pci_attach_args *pa)
957 {
958 const struct sk_product *psk;
959
960 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
961 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
962 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
963 return (psk);
964 }
965 return (NULL);
966 }
967
968 /*
969 * Probe for a SysKonnect GEnesis chip.
970 */
971
972 int
973 skc_probe(struct device *parent, struct cfdata *match, void *aux)
974 {
975 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
976 const struct sk_product *psk;
977
978 if ((psk = sk_lookup(pa))) {
979 return(1);
980 }
981 return(0);
982 }
983
984 /*
985 * Force the GEnesis into reset, then bring it out of reset.
986 */
987 void sk_reset(struct sk_softc *sc)
988 {
989 DPRINTFN(2, ("sk_reset\n"));
990
991 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
992 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
993 if (SK_YUKON_FAMILY(sc->sk_type))
994 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
995
996 DELAY(1000);
997 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
998 DELAY(2);
999 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1000 if (SK_YUKON_FAMILY(sc->sk_type))
1001 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1002
1003 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1004 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1005 CSR_READ_2(sc, SK_LINK_CTRL)));
1006
1007 if (sc->sk_type == SK_GENESIS) {
1008 /* Configure packet arbiter */
1009 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1010 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1011 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1012 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1013 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1014 }
1015
1016 /* Enable RAM interface */
1017 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1018
1019 /*
1020 * Configure interrupt moderation. The moderation timer
1021 * defers interrupts specified in the interrupt moderation
1022 * timer mask based on the timeout specified in the interrupt
1023 * moderation timer init register. Each bit in the timer
1024 * register represents 18.825ns, so to specify a timeout in
1025 * microseconds, we have to multiply by 54.
1026 */
1027 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(100));
1028 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1029 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1030 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1031 }
1032
1033 int
1034 sk_probe(struct device *parent, struct cfdata *match, void *aux)
1035 {
1036 struct skc_attach_args *sa = aux;
1037
1038 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1039 return(0);
1040
1041 return (1);
1042 }
1043
1044 /*
1045 * Each XMAC chip is attached as a separate logical IP interface.
1046 * Single port cards will have only one logical interface of course.
1047 */
1048 void
1049 sk_attach(struct device *parent, struct device *self, void *aux)
1050 {
1051 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1052 struct sk_softc *sc = (struct sk_softc *)parent;
1053 struct skc_attach_args *sa = aux;
1054 struct sk_txmap_entry *entry;
1055 struct ifnet *ifp;
1056 bus_dma_segment_t seg;
1057 bus_dmamap_t dmamap;
1058 caddr_t kva;
1059 int i, rseg;
1060
1061 sc_if->sk_port = sa->skc_port;
1062 sc_if->sk_softc = sc;
1063 sc->sk_if[sa->skc_port] = sc_if;
1064
1065 if (sa->skc_port == SK_PORT_A)
1066 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1067 if (sa->skc_port == SK_PORT_B)
1068 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1069
1070 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1071
1072 /*
1073 * Get station address for this interface. Note that
1074 * dual port cards actually come with three station
1075 * addresses: one for each port, plus an extra. The
1076 * extra one is used by the SysKonnect driver software
1077 * as a 'virtual' station address for when both ports
1078 * are operating in failover mode. Currently we don't
1079 * use this extra address.
1080 */
1081 for (i = 0; i < ETHER_ADDR_LEN; i++)
1082 sc_if->sk_enaddr[i] =
1083 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1084
1085
1086 aprint_normal(": Ethernet address %s\n",
1087 ether_sprintf(sc_if->sk_enaddr));
1088
1089 /*
1090 * Set up RAM buffer addresses. The NIC will have a certain
1091 * amount of SRAM on it, somewhere between 512K and 2MB. We
1092 * need to divide this up a) between the transmitter and
1093 * receiver and b) between the two XMACs, if this is a
1094 * dual port NIC. Our algotithm is to divide up the memory
1095 * evenly so that everyone gets a fair share.
1096 */
1097 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1098 u_int32_t chunk, val;
1099
1100 chunk = sc->sk_ramsize / 2;
1101 val = sc->sk_rboff / sizeof(u_int64_t);
1102 sc_if->sk_rx_ramstart = val;
1103 val += (chunk / sizeof(u_int64_t));
1104 sc_if->sk_rx_ramend = val - 1;
1105 sc_if->sk_tx_ramstart = val;
1106 val += (chunk / sizeof(u_int64_t));
1107 sc_if->sk_tx_ramend = val - 1;
1108 } else {
1109 u_int32_t chunk, val;
1110
1111 chunk = sc->sk_ramsize / 4;
1112 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1113 sizeof(u_int64_t);
1114 sc_if->sk_rx_ramstart = val;
1115 val += (chunk / sizeof(u_int64_t));
1116 sc_if->sk_rx_ramend = val - 1;
1117 sc_if->sk_tx_ramstart = val;
1118 val += (chunk / sizeof(u_int64_t));
1119 sc_if->sk_tx_ramend = val - 1;
1120 }
1121
1122 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1123 " tx_ramstart=%#x tx_ramend=%#x\n",
1124 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1125 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1126
1127 /* Read and save PHY type and set PHY address */
1128 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1129 switch (sc_if->sk_phytype) {
1130 case SK_PHYTYPE_XMAC:
1131 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1132 break;
1133 case SK_PHYTYPE_BCOM:
1134 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1135 break;
1136 case SK_PHYTYPE_MARV_COPPER:
1137 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1138 break;
1139 default:
1140 aprint_error("%s: unsupported PHY type: %d\n",
1141 sc->sk_dev.dv_xname, sc_if->sk_phytype);
1142 return;
1143 }
1144
1145 /* Allocate the descriptor queues. */
1146 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1147 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1148 aprint_error("%s: can't alloc rx buffers\n",
1149 sc->sk_dev.dv_xname);
1150 goto fail;
1151 }
1152 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1153 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1154 aprint_error("%s: can't map dma buffers (%lu bytes)\n",
1155 sc_if->sk_dev.dv_xname,
1156 (u_long) sizeof(struct sk_ring_data));
1157 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1158 goto fail;
1159 }
1160 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1161 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1162 &sc_if->sk_ring_map)) {
1163 aprint_error("%s: can't create dma map\n",
1164 sc_if->sk_dev.dv_xname);
1165 bus_dmamem_unmap(sc->sc_dmatag, kva,
1166 sizeof(struct sk_ring_data));
1167 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1168 goto fail;
1169 }
1170 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1171 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1172 aprint_error("%s: can't load dma map\n",
1173 sc_if->sk_dev.dv_xname);
1174 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1175 bus_dmamem_unmap(sc->sc_dmatag, kva,
1176 sizeof(struct sk_ring_data));
1177 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1178 goto fail;
1179 }
1180
1181 for (i = 0; i < SK_RX_RING_CNT; i++)
1182 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1183
1184 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1185 for (i = 0; i < SK_TX_RING_CNT; i++) {
1186 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1187
1188 if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, SK_NTXSEG,
1189 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap)) {
1190 aprint_error("%s: Can't create TX dmamap\n",
1191 sc_if->sk_dev.dv_xname);
1192 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1193 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1194 bus_dmamem_unmap(sc->sc_dmatag, kva,
1195 sizeof(struct sk_ring_data));
1196 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1197 goto fail;
1198 }
1199
1200 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1201 if (!entry) {
1202 aprint_error("%s: Can't alloc txmap entry\n",
1203 sc_if->sk_dev.dv_xname);
1204 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1205 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1206 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1207 bus_dmamem_unmap(sc->sc_dmatag, kva,
1208 sizeof(struct sk_ring_data));
1209 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1210 goto fail;
1211 }
1212 entry->dmamap = dmamap;
1213 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1214 }
1215
1216 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1217 bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1218
1219 /* XXX TLS It's not clear what's wrong with the Jumbo MTU
1220 XXX TLS support in this driver, so we don't enable it. */
1221
1222 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1223
1224 ifp = &sc_if->sk_ethercom.ec_if;
1225 ifp->if_softc = sc_if;
1226 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1227 ifp->if_ioctl = sk_ioctl;
1228 ifp->if_start = sk_start;
1229 ifp->if_stop = sk_stop;
1230 ifp->if_init = sk_init;
1231 ifp->if_watchdog = sk_watchdog;
1232 ifp->if_capabilities = 0;
1233 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1234 IFQ_SET_READY(&ifp->if_snd);
1235 strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1236
1237 /*
1238 * Do miibus setup.
1239 */
1240 switch (sc->sk_type) {
1241 case SK_GENESIS:
1242 sk_init_xmac(sc_if);
1243 break;
1244 case SK_YUKON:
1245 case SK_YUKON_LITE:
1246 case SK_YUKON_LP:
1247 sk_init_yukon(sc_if);
1248 break;
1249 default:
1250 panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
1251 sc->sk_type);
1252 }
1253
1254 DPRINTFN(2, ("sk_attach: 1\n"));
1255
1256 sc_if->sk_mii.mii_ifp = ifp;
1257 switch (sc->sk_type) {
1258 case SK_GENESIS:
1259 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1260 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1261 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1262 break;
1263 case SK_YUKON:
1264 case SK_YUKON_LITE:
1265 case SK_YUKON_LP:
1266 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1267 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1268 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1269 break;
1270 }
1271
1272 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1273 sk_ifmedia_upd, sk_ifmedia_sts);
1274 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1275 MII_OFFSET_ANY, 0);
1276 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1277 printf("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1278 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1279 0, NULL);
1280 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1281 }
1282 else
1283 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1284
1285 callout_init(&sc_if->sk_tick_ch);
1286 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1287
1288 DPRINTFN(2, ("sk_attach: 1\n"));
1289
1290 /*
1291 * Call MI attach routines.
1292 */
1293 if_attach(ifp);
1294
1295 ether_ifattach(ifp, sc_if->sk_enaddr);
1296
1297 #if NRND > 0
1298 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1299 RND_TYPE_NET, 0);
1300 #endif
1301
1302 DPRINTFN(2, ("sk_attach: end\n"));
1303
1304 return;
1305
1306 fail:
1307 sc->sk_if[sa->skc_port] = NULL;
1308 }
1309
1310 int
1311 skcprint(void *aux, const char *pnp)
1312 {
1313 struct skc_attach_args *sa = aux;
1314
1315 if (pnp)
1316 aprint_normal("sk port %c at %s",
1317 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1318 else
1319 aprint_normal(" port %c",
1320 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1321 return (UNCONF);
1322 }
1323
1324 /*
1325 * Attach the interface. Allocate softc structures, do ifmedia
1326 * setup and ethernet/BPF attach.
1327 */
1328 void
1329 skc_attach(struct device *parent, struct device *self, void *aux)
1330 {
1331 struct sk_softc *sc = (struct sk_softc *)self;
1332 struct pci_attach_args *pa = aux;
1333 struct skc_attach_args skca;
1334 pci_chipset_tag_t pc = pa->pa_pc;
1335 pcireg_t memtype;
1336 pci_intr_handle_t ih;
1337 const char *intrstr = NULL;
1338 bus_addr_t iobase;
1339 bus_size_t iosize;
1340 int s;
1341 u_int32_t command;
1342 char *revstr;
1343
1344 DPRINTFN(2, ("begin skc_attach\n"));
1345
1346 s = splnet();
1347
1348 /*
1349 * Handle power management nonsense.
1350 */
1351 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1352
1353 if (command == 0x01) {
1354 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1355 if (command & SK_PSTATE_MASK) {
1356 u_int32_t iobase, membase, irq;
1357
1358 /* Save important PCI config data. */
1359 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1360 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1361 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1362
1363 /* Reset the power state. */
1364 aprint_normal("%s chip is in D%d power mode "
1365 "-- setting to D0\n", sc->sk_dev.dv_xname,
1366 command & SK_PSTATE_MASK);
1367 command &= 0xFFFFFFFC;
1368 pci_conf_write(pc, pa->pa_tag,
1369 SK_PCI_PWRMGMTCTRL, command);
1370
1371 /* Restore PCI config data. */
1372 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1373 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1374 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1375 }
1376 }
1377
1378 /*
1379 * Map control/status registers.
1380 */
1381 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1382 command |= PCI_COMMAND_IO_ENABLE |
1383 PCI_COMMAND_MEM_ENABLE |
1384 PCI_COMMAND_MASTER_ENABLE;
1385 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1386 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1387
1388 #ifdef SK_USEIOSPACE
1389 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1390 aprint_error(": failed to enable I/O ports!\n");
1391 goto fail;
1392 }
1393 /*
1394 * Map control/status registers.
1395 */
1396 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1397 &iobase, &iosize)) {
1398 aprint_error(": can't find i/o space\n");
1399 goto fail;
1400 }
1401 #else
1402 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1403 aprint_error(": failed to enable memory mapping!\n");
1404 goto fail;
1405 }
1406 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1407 switch (memtype) {
1408 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1409 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1410 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1411 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1412 &iobase, &iosize) == 0)
1413 break;
1414 default:
1415 aprint_error("%s: can't find mem space\n",
1416 sc->sk_dev.dv_xname);
1417 return;
1418 }
1419
1420 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1421 #endif
1422 sc->sc_dmatag = pa->pa_dmat;
1423
1424 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1425 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1426
1427 /* bail out here if chip is not recognized */
1428 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1429 aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
1430 goto fail;
1431 }
1432 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1433
1434 /* Allocate interrupt */
1435 if (pci_intr_map(pa, &ih)) {
1436 aprint_error(": couldn't map interrupt\n");
1437 goto fail;
1438 }
1439
1440 intrstr = pci_intr_string(pc, ih);
1441 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1442 if (sc->sk_intrhand == NULL) {
1443 aprint_error(": couldn't establish interrupt");
1444 if (intrstr != NULL)
1445 aprint_normal(" at %s", intrstr);
1446 goto fail;
1447 }
1448 aprint_normal(": %s\n", intrstr);
1449
1450 /* Reset the adapter. */
1451 sk_reset(sc);
1452
1453 /* Read and save vital product data from EEPROM. */
1454 sk_vpd_read(sc);
1455
1456 if (sc->sk_type == SK_GENESIS) {
1457 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1458 /* Read and save RAM size and RAMbuffer offset */
1459 switch(val) {
1460 case SK_RAMSIZE_512K_64:
1461 sc->sk_ramsize = 0x80000;
1462 sc->sk_rboff = SK_RBOFF_0;
1463 break;
1464 case SK_RAMSIZE_1024K_64:
1465 sc->sk_ramsize = 0x100000;
1466 sc->sk_rboff = SK_RBOFF_80000;
1467 break;
1468 case SK_RAMSIZE_1024K_128:
1469 sc->sk_ramsize = 0x100000;
1470 sc->sk_rboff = SK_RBOFF_0;
1471 break;
1472 case SK_RAMSIZE_2048K_128:
1473 sc->sk_ramsize = 0x200000;
1474 sc->sk_rboff = SK_RBOFF_0;
1475 break;
1476 default:
1477 aprint_error("%s: unknown ram size: %d\n",
1478 sc->sk_dev.dv_xname, val);
1479 goto fail;
1480 break;
1481 }
1482
1483 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1484 sc->sk_ramsize, sc->sk_ramsize / 1024,
1485 sc->sk_rboff));
1486 } else {
1487 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1488 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1489 sc->sk_rboff = SK_RBOFF_0;
1490
1491 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1492 sc->sk_ramsize / 1024, sc->sk_ramsize,
1493 sc->sk_rboff));
1494 }
1495
1496 /* Read and save physical media type */
1497 switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1498 case SK_PMD_1000BASESX:
1499 sc->sk_pmd = IFM_1000_SX;
1500 break;
1501 case SK_PMD_1000BASELX:
1502 sc->sk_pmd = IFM_1000_LX;
1503 break;
1504 case SK_PMD_1000BASECX:
1505 sc->sk_pmd = IFM_1000_CX;
1506 break;
1507 case SK_PMD_1000BASETX:
1508 sc->sk_pmd = IFM_1000_T;
1509 break;
1510 default:
1511 aprint_error("%s: unknown media type: 0x%x\n",
1512 sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
1513 goto fail;
1514 }
1515
1516 /* determine whether to name it with vpd or just make it up */
1517 /* Marvell Yukon VPD's can freqently be bogus */
1518
1519 switch (pa->pa_id) {
1520 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1521 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1522 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1523 case PCI_PRODUCT_3COM_3C940:
1524 case PCI_PRODUCT_DLINK_DGE530T:
1525 case PCI_PRODUCT_LINKSYS_EG1032:
1526 case PCI_PRODUCT_LINKSYS_EG1064:
1527 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1528 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1529 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1530 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1531 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1532 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1533 sc->sk_name = sc->sk_vpd_prodname;
1534 break;
1535 case PCI_ID_CODE(PCI_VENDOR_GALILEO,PCI_PRODUCT_GALILEO_SKNET):
1536 /* whoops yukon vpd prodname bears no resemblance to reality */
1537 switch (sc->sk_type) {
1538 case SK_GENESIS:
1539 sc->sk_name = sc->sk_vpd_prodname;
1540 break;
1541 case SK_YUKON:
1542 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1543 break;
1544 case SK_YUKON_LITE:
1545 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1546 break;
1547 case SK_YUKON_LP:
1548 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1549 break;
1550 default:
1551 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1552 }
1553
1554 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1555
1556 if ( sc->sk_type == SK_YUKON ) {
1557 uint32_t flashaddr;
1558 uint8_t testbyte;
1559
1560 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1561
1562 /* test Flash-Address Register */
1563 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1564 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1565
1566 if (testbyte != 0) {
1567 /* this is yukon lite Rev. A0 */
1568 sc->sk_type = SK_YUKON_LITE;
1569 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1570 /* restore Flash-Address Register */
1571 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1572 }
1573 }
1574 break;
1575 case PCI_ID_CODE(PCI_VENDOR_GALILEO,PCI_PRODUCT_GALILEO_BELKIN):
1576 sc->sk_name = sc->sk_vpd_prodname;
1577 break;
1578 default:
1579 sc->sk_name = "Unkown Marvell";
1580 }
1581
1582
1583 if ( sc->sk_type == SK_YUKON_LITE ) {
1584 switch (sc->sk_rev) {
1585 case SK_YUKON_LITE_REV_A0:
1586 revstr = "A0";
1587 break;
1588 case SK_YUKON_LITE_REV_A1:
1589 revstr = "A1";
1590 break;
1591 case SK_YUKON_LITE_REV_A3:
1592 revstr = "A3";
1593 break;
1594 default:
1595 revstr = "";
1596 }
1597 } else {
1598 revstr = "";
1599 }
1600
1601 /* Announce the product name. */
1602 aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
1603 sc->sk_name, revstr, sc->sk_rev);
1604
1605 skca.skc_port = SK_PORT_A;
1606 (void)config_found(&sc->sk_dev, &skca, skcprint);
1607
1608 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1609 skca.skc_port = SK_PORT_B;
1610 (void)config_found(&sc->sk_dev, &skca, skcprint);
1611 }
1612
1613 /* Turn on the 'driver is loaded' LED. */
1614 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1615
1616 fail:
1617 splx(s);
1618 }
1619
1620 int
1621 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1622 {
1623 struct sk_softc *sc = sc_if->sk_softc;
1624 struct sk_tx_desc *f = NULL;
1625 u_int32_t frag, cur, cnt = 0;
1626 int i;
1627 struct sk_txmap_entry *entry;
1628 bus_dmamap_t txmap;
1629
1630 DPRINTFN(3, ("sk_encap\n"));
1631
1632 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1633 if (entry == NULL) {
1634 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1635 return ENOBUFS;
1636 }
1637 txmap = entry->dmamap;
1638
1639 cur = frag = *txidx;
1640
1641 #ifdef SK_DEBUG
1642 if (skdebug >= 3)
1643 sk_dump_mbuf(m_head);
1644 #endif
1645
1646 /*
1647 * Start packing the mbufs in this chain into
1648 * the fragment pointers. Stop when we run out
1649 * of fragments or hit the end of the mbuf chain.
1650 */
1651 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1652 BUS_DMA_NOWAIT)) {
1653 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1654 return(ENOBUFS);
1655 }
1656
1657 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1658
1659 /* Sync the DMA map. */
1660 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1661 BUS_DMASYNC_PREWRITE);
1662
1663 for (i = 0; i < txmap->dm_nsegs; i++) {
1664 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1665 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1666 return(ENOBUFS);
1667 }
1668 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1669 f->sk_data_lo = txmap->dm_segs[i].ds_addr;
1670 f->sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1671 if (cnt == 0)
1672 f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1673 else
1674 f->sk_ctl |= SK_TXCTL_OWN;
1675
1676 cur = frag;
1677 SK_INC(frag, SK_TX_RING_CNT);
1678 cnt++;
1679 }
1680
1681 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1682 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1683
1684 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1685 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1686 SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1687
1688 /* Sync descriptors before handing to chip */
1689 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1690 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1691
1692 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1693
1694 /* Sync first descriptor to hand it off */
1695 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1696
1697 sc_if->sk_cdata.sk_tx_cnt += cnt;
1698
1699 #ifdef SK_DEBUG
1700 if (skdebug >= 3) {
1701 struct sk_tx_desc *desc;
1702 u_int32_t idx;
1703 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1704 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1705 sk_dump_txdesc(desc, idx);
1706 }
1707 }
1708 #endif
1709
1710 *txidx = frag;
1711
1712 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1713
1714 return(0);
1715 }
1716
1717 void
1718 sk_start(struct ifnet *ifp)
1719 {
1720 struct sk_if_softc *sc_if = ifp->if_softc;
1721 struct sk_softc *sc = sc_if->sk_softc;
1722 struct mbuf *m_head = NULL;
1723 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1724 int pkts = 0;
1725
1726 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1727 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1728
1729 while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1730
1731 IFQ_POLL(&ifp->if_snd, m_head);
1732 if (m_head == NULL)
1733 break;
1734
1735 /*
1736 * Pack the data into the transmit ring. If we
1737 * don't have room, set the OACTIVE flag and wait
1738 * for the NIC to drain the ring.
1739 */
1740 if (sk_encap(sc_if, m_head, &idx)) {
1741 ifp->if_flags |= IFF_OACTIVE;
1742 break;
1743 }
1744
1745 /* now we are committed to transmit the packet */
1746 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1747 pkts++;
1748
1749 /*
1750 * If there's a BPF listener, bounce a copy of this frame
1751 * to him.
1752 */
1753 #if NBPFILTER > 0
1754 if (ifp->if_bpf)
1755 bpf_mtap(ifp->if_bpf, m_head);
1756 #endif
1757 }
1758 if (pkts == 0)
1759 return;
1760
1761 /* Transmit */
1762 sc_if->sk_cdata.sk_tx_prod = idx;
1763 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1764
1765 /* Set a timeout in case the chip goes out to lunch. */
1766 ifp->if_timer = 5;
1767 }
1768
1769
1770 void
1771 sk_watchdog(struct ifnet *ifp)
1772 {
1773 struct sk_if_softc *sc_if = ifp->if_softc;
1774
1775 printf("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1776 (void) sk_init(ifp);
1777 }
1778
1779 void
1780 sk_shutdown(void * v)
1781 {
1782 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
1783 struct sk_softc *sc = sc_if->sk_softc;
1784 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1785
1786 DPRINTFN(2, ("sk_shutdown\n"));
1787 sk_stop(ifp,1);
1788
1789 /* Turn off the 'driver is loaded' LED. */
1790 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1791
1792 /*
1793 * Reset the GEnesis controller. Doing this should also
1794 * assert the resets on the attached XMAC(s).
1795 */
1796 sk_reset(sc);
1797 }
1798
1799 void
1800 sk_rxeof(struct sk_if_softc *sc_if)
1801 {
1802 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1803 struct mbuf *m;
1804 struct sk_chain *cur_rx;
1805 struct sk_rx_desc *cur_desc;
1806 int i, cur, total_len = 0;
1807 u_int32_t rxstat;
1808 bus_dmamap_t dmamap;
1809
1810 i = sc_if->sk_cdata.sk_rx_prod;
1811
1812 DPRINTFN(3, ("sk_rxeof %d\n", i));
1813
1814 for (;;) {
1815 cur = i;
1816
1817 /* Sync the descriptor */
1818 SK_CDRXSYNC(sc_if, cur,
1819 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1820
1821 if (sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl & SK_RXCTL_OWN) {
1822 /* Invalidate the descriptor -- it's not ready yet */
1823 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
1824 sc_if->sk_cdata.sk_rx_prod = i;
1825 break;
1826 }
1827
1828 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1829 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
1830 dmamap = sc_if->sk_cdata.sk_rx_map[cur];
1831
1832 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1833 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1834
1835 rxstat = cur_desc->sk_xmac_rxstat;
1836 m = cur_rx->sk_mbuf;
1837 cur_rx->sk_mbuf = NULL;
1838 total_len = SK_RXBYTES(cur_desc->sk_ctl);
1839
1840 sc_if->sk_cdata.sk_rx_map[cur] = 0;
1841
1842 SK_INC(i, SK_RX_RING_CNT);
1843
1844 if (rxstat & XM_RXSTAT_ERRFRAME) {
1845 ifp->if_ierrors++;
1846 sk_newbuf(sc_if, cur, m, dmamap);
1847 continue;
1848 }
1849
1850 /*
1851 * Try to allocate a new jumbo buffer. If that
1852 * fails, copy the packet to mbufs and put the
1853 * jumbo buffer back in the ring so it can be
1854 * re-used. If allocating mbufs fails, then we
1855 * have to drop the packet.
1856 */
1857 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1858 struct mbuf *m0;
1859 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1860 total_len + ETHER_ALIGN, 0, ifp, NULL);
1861 sk_newbuf(sc_if, cur, m, dmamap);
1862 if (m0 == NULL) {
1863 printf("%s: no receive buffers "
1864 "available -- packet dropped!\n",
1865 sc_if->sk_dev.dv_xname);
1866 ifp->if_ierrors++;
1867 continue;
1868 }
1869 m_adj(m0, ETHER_ALIGN);
1870 m = m0;
1871 } else {
1872 m->m_pkthdr.rcvif = ifp;
1873 m->m_pkthdr.len = m->m_len = total_len;
1874 }
1875
1876 ifp->if_ipackets++;
1877
1878 #if NBPFILTER > 0
1879 if (ifp->if_bpf)
1880 bpf_mtap(ifp->if_bpf, m);
1881 #endif
1882 /* pass it on. */
1883 (*ifp->if_input)(ifp, m);
1884 }
1885 }
1886
1887 void
1888 sk_txeof(struct sk_if_softc *sc_if)
1889 {
1890 struct sk_softc *sc = sc_if->sk_softc;
1891 struct sk_tx_desc *cur_tx = NULL;
1892 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1893 u_int32_t idx;
1894 struct sk_txmap_entry *entry;
1895
1896 DPRINTFN(3, ("sk_txeof\n"));
1897
1898 /*
1899 * Go through our tx ring and free mbufs for those
1900 * frames that have been sent.
1901 */
1902 idx = sc_if->sk_cdata.sk_tx_cons;
1903 while(idx != sc_if->sk_cdata.sk_tx_prod) {
1904 SK_CDTXSYNC(sc_if, idx, 1,
1905 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1906
1907 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1908 #ifdef SK_DEBUG
1909 if (skdebug >= 3)
1910 sk_dump_txdesc(cur_tx, idx);
1911 #endif
1912 if (cur_tx->sk_ctl & SK_TXCTL_OWN) {
1913 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
1914 break;
1915 }
1916 if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
1917 ifp->if_opackets++;
1918 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1919 entry = sc_if->sk_cdata.sk_tx_map[idx];
1920
1921 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1922 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1923
1924 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1925 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1926
1927 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1928 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
1929 link);
1930 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
1931 }
1932 sc_if->sk_cdata.sk_tx_cnt--;
1933 SK_INC(idx, SK_TX_RING_CNT);
1934 }
1935 if (sc_if->sk_cdata.sk_tx_cnt == 0)
1936 ifp->if_timer = 0;
1937 else /* nudge chip to keep tx ring moving */
1938 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1939
1940 sc_if->sk_cdata.sk_tx_cons = idx;
1941
1942 if (cur_tx != NULL)
1943 ifp->if_flags &= ~IFF_OACTIVE;
1944 }
1945
1946 void
1947 sk_tick(void *xsc_if)
1948 {
1949 struct sk_if_softc *sc_if = xsc_if;
1950 struct mii_data *mii = &sc_if->sk_mii;
1951 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1952 int i;
1953
1954 DPRINTFN(3, ("sk_tick\n"));
1955
1956 if (!(ifp->if_flags & IFF_UP))
1957 return;
1958
1959 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
1960 sk_intr_bcom(sc_if);
1961 return;
1962 }
1963
1964 /*
1965 * According to SysKonnect, the correct way to verify that
1966 * the link has come back up is to poll bit 0 of the GPIO
1967 * register three times. This pin has the signal from the
1968 * link sync pin connected to it; if we read the same link
1969 * state 3 times in a row, we know the link is up.
1970 */
1971 for (i = 0; i < 3; i++) {
1972 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
1973 break;
1974 }
1975
1976 if (i != 3) {
1977 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1978 return;
1979 }
1980
1981 /* Turn the GP0 interrupt back on. */
1982 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1983 SK_XM_READ_2(sc_if, XM_ISR);
1984 mii_tick(mii);
1985 mii_pollstat(mii);
1986 callout_stop(&sc_if->sk_tick_ch);
1987 }
1988
1989 void
1990 sk_intr_bcom(struct sk_if_softc *sc_if)
1991 {
1992 struct mii_data *mii = &sc_if->sk_mii;
1993 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1994 int status;
1995
1996
1997 DPRINTFN(3, ("sk_intr_bcom\n"));
1998
1999 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2000
2001 /*
2002 * Read the PHY interrupt register to make sure
2003 * we clear any pending interrupts.
2004 */
2005 status = sk_xmac_miibus_readreg((struct device *)sc_if,
2006 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2007
2008 if (!(ifp->if_flags & IFF_RUNNING)) {
2009 sk_init_xmac(sc_if);
2010 return;
2011 }
2012
2013 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2014 int lstat;
2015 lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
2016 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2017
2018 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2019 mii_mediachg(mii);
2020 /* Turn off the link LED. */
2021 SK_IF_WRITE_1(sc_if, 0,
2022 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2023 sc_if->sk_link = 0;
2024 } else if (status & BRGPHY_ISR_LNK_CHG) {
2025 sk_xmac_miibus_writereg((struct device *)sc_if,
2026 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2027 mii_tick(mii);
2028 sc_if->sk_link = 1;
2029 /* Turn on the link LED. */
2030 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2031 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2032 SK_LINKLED_BLINK_OFF);
2033 mii_pollstat(mii);
2034 } else {
2035 mii_tick(mii);
2036 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2037 }
2038 }
2039
2040 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2041 }
2042
2043 void
2044 sk_intr_xmac(struct sk_if_softc *sc_if)
2045 {
2046 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2047
2048 DPRINTFN(3, ("sk_intr_xmac\n"));
2049
2050 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2051 if (status & XM_ISR_GP0_SET) {
2052 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2053 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2054 }
2055
2056 if (status & XM_ISR_AUTONEG_DONE) {
2057 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2058 }
2059 }
2060
2061 if (status & XM_IMR_TX_UNDERRUN)
2062 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2063
2064 if (status & XM_IMR_RX_OVERRUN)
2065 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2066 }
2067
2068 void
2069 sk_intr_yukon(sc_if)
2070 struct sk_if_softc *sc_if;
2071 {
2072 int status;
2073
2074 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2075
2076 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2077 }
2078
2079 int
2080 sk_intr(void *xsc)
2081 {
2082 struct sk_softc *sc = xsc;
2083 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2084 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2085 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2086 u_int32_t status;
2087 int claimed = 0;
2088
2089 if (sc_if0 != NULL)
2090 ifp0 = &sc_if0->sk_ethercom.ec_if;
2091 if (sc_if1 != NULL)
2092 ifp1 = &sc_if1->sk_ethercom.ec_if;
2093
2094 for (;;) {
2095 status = CSR_READ_4(sc, SK_ISSR);
2096 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2097
2098 if (!(status & sc->sk_intrmask))
2099 break;
2100
2101 claimed = 1;
2102
2103 /* Handle receive interrupts first. */
2104 if (status & SK_ISR_RX1_EOF) {
2105 sk_rxeof(sc_if0);
2106 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2107 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2108 }
2109 if (status & SK_ISR_RX2_EOF) {
2110 sk_rxeof(sc_if1);
2111 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2112 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2113 }
2114
2115 /* Then transmit interrupts. */
2116 if (status & SK_ISR_TX1_S_EOF) {
2117 sk_txeof(sc_if0);
2118 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2119 SK_TXBMU_CLR_IRQ_EOF);
2120 }
2121 if (status & SK_ISR_TX2_S_EOF) {
2122 sk_txeof(sc_if1);
2123 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2124 SK_TXBMU_CLR_IRQ_EOF);
2125 }
2126
2127 /* Then MAC interrupts. */
2128 if (status & SK_ISR_MAC1 && (ifp0->if_flags & IFF_RUNNING)) {
2129 if (sc->sk_type == SK_GENESIS)
2130 sk_intr_xmac(sc_if0);
2131 else
2132 sk_intr_yukon(sc_if0);
2133 }
2134
2135 if (status & SK_ISR_MAC2 && (ifp1->if_flags & IFF_RUNNING)) {
2136 if (sc->sk_type == SK_GENESIS)
2137 sk_intr_xmac(sc_if1);
2138 else
2139 sk_intr_yukon(sc_if1);
2140
2141 }
2142
2143 if (status & SK_ISR_EXTERNAL_REG) {
2144 if (ifp0 != NULL &&
2145 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2146 sk_intr_bcom(sc_if0);
2147
2148 if (ifp1 != NULL &&
2149 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2150 sk_intr_bcom(sc_if1);
2151 }
2152 }
2153
2154 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2155
2156 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2157 sk_start(ifp0);
2158 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2159 sk_start(ifp1);
2160
2161 return (claimed);
2162 }
2163
2164 void
2165 sk_init_xmac(struct sk_if_softc *sc_if)
2166 {
2167 struct sk_softc *sc = sc_if->sk_softc;
2168 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2169 static const struct sk_bcom_hack bhack[] = {
2170 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2171 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2172 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2173 { 0, 0 } };
2174
2175 DPRINTFN(1, ("sk_init_xmac\n"));
2176
2177 /* Unreset the XMAC. */
2178 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2179 DELAY(1000);
2180
2181 /* Reset the XMAC's internal state. */
2182 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2183
2184 /* Save the XMAC II revision */
2185 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2186
2187 /*
2188 * Perform additional initialization for external PHYs,
2189 * namely for the 1000baseTX cards that use the XMAC's
2190 * GMII mode.
2191 */
2192 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2193 int i = 0;
2194 u_int32_t val;
2195
2196 /* Take PHY out of reset. */
2197 val = sk_win_read_4(sc, SK_GPIO);
2198 if (sc_if->sk_port == SK_PORT_A)
2199 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2200 else
2201 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2202 sk_win_write_4(sc, SK_GPIO, val);
2203
2204 /* Enable GMII mode on the XMAC. */
2205 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2206
2207 sk_xmac_miibus_writereg((struct device *)sc_if,
2208 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2209 DELAY(10000);
2210 sk_xmac_miibus_writereg((struct device *)sc_if,
2211 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2212
2213 /*
2214 * Early versions of the BCM5400 apparently have
2215 * a bug that requires them to have their reserved
2216 * registers initialized to some magic values. I don't
2217 * know what the numbers do, I'm just the messenger.
2218 */
2219 if (sk_xmac_miibus_readreg((struct device *)sc_if,
2220 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2221 while(bhack[i].reg) {
2222 sk_xmac_miibus_writereg((struct device *)sc_if,
2223 SK_PHYADDR_BCOM, bhack[i].reg,
2224 bhack[i].val);
2225 i++;
2226 }
2227 }
2228 }
2229
2230 /* Set station address */
2231 SK_XM_WRITE_2(sc_if, XM_PAR0,
2232 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2233 SK_XM_WRITE_2(sc_if, XM_PAR1,
2234 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2235 SK_XM_WRITE_2(sc_if, XM_PAR2,
2236 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2237 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2238
2239 if (ifp->if_flags & IFF_PROMISC) {
2240 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2241 } else {
2242 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2243 }
2244
2245 if (ifp->if_flags & IFF_BROADCAST) {
2246 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2247 } else {
2248 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2249 }
2250
2251 /* We don't need the FCS appended to the packet. */
2252 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2253
2254 /* We want short frames padded to 60 bytes. */
2255 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2256
2257 /*
2258 * Enable the reception of all error frames. This is is
2259 * a necessary evil due to the design of the XMAC. The
2260 * XMAC's receive FIFO is only 8K in size, however jumbo
2261 * frames can be up to 9000 bytes in length. When bad
2262 * frame filtering is enabled, the XMAC's RX FIFO operates
2263 * in 'store and forward' mode. For this to work, the
2264 * entire frame has to fit into the FIFO, but that means
2265 * that jumbo frames larger than 8192 bytes will be
2266 * truncated. Disabling all bad frame filtering causes
2267 * the RX FIFO to operate in streaming mode, in which
2268 * case the XMAC will start transfering frames out of the
2269 * RX FIFO as soon as the FIFO threshold is reached.
2270 */
2271 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2272 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2273 XM_MODE_RX_INRANGELEN);
2274
2275 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2276 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2277 else
2278 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2279
2280 /*
2281 * Bump up the transmit threshold. This helps hold off transmit
2282 * underruns when we're blasting traffic from both ports at once.
2283 */
2284 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2285
2286 /* Set multicast filter */
2287 sk_setmulti(sc_if);
2288
2289 /* Clear and enable interrupts */
2290 SK_XM_READ_2(sc_if, XM_ISR);
2291 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2292 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2293 else
2294 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2295
2296 /* Configure MAC arbiter */
2297 switch(sc_if->sk_xmac_rev) {
2298 case XM_XMAC_REV_B2:
2299 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2300 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2301 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2302 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2303 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2304 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2305 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2306 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2307 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2308 break;
2309 case XM_XMAC_REV_C1:
2310 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2311 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2312 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2313 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2314 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2315 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2316 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2317 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2318 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2319 break;
2320 default:
2321 break;
2322 }
2323 sk_win_write_2(sc, SK_MACARB_CTL,
2324 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2325
2326 sc_if->sk_link = 1;
2327 }
2328
2329 void sk_init_yukon(sc_if)
2330 struct sk_if_softc *sc_if;
2331 {
2332 u_int32_t /*mac, */phy;
2333 u_int16_t reg;
2334 int i;
2335
2336 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2337 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2338
2339 /* GMAC and GPHY Reset */
2340 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2341
2342 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2343
2344 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2345 DELAY(1000);
2346 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2347 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2348 DELAY(1000);
2349
2350
2351 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2352
2353 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2354 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2355
2356 switch(sc_if->sk_softc->sk_pmd) {
2357 case IFM_1000_SX:
2358 case IFM_1000_LX:
2359 phy |= SK_GPHY_FIBER;
2360 break;
2361
2362 case IFM_1000_CX:
2363 case IFM_1000_T:
2364 phy |= SK_GPHY_COPPER;
2365 break;
2366 }
2367
2368 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2369
2370 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2371 DELAY(1000);
2372 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2373 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2374 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2375
2376 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2377 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2378
2379 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2380
2381 /* unused read of the interrupt source register */
2382 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2383 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2384
2385 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2386 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2387 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2388
2389 /* MIB Counter Clear Mode set */
2390 reg |= YU_PAR_MIB_CLR;
2391 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2392 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2393 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2394
2395 /* MIB Counter Clear Mode clear */
2396 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2397 reg &= ~YU_PAR_MIB_CLR;
2398 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2399
2400 /* receive control reg */
2401 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2402 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2403 YU_RCR_CRCR);
2404
2405 /* transmit parameter register */
2406 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2407 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2408 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2409
2410 /* serial mode register */
2411 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2412 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2413 YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e));
2414
2415 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2416 /* Setup Yukon's address */
2417 for (i = 0; i < 3; i++) {
2418 /* Write Source Address 1 (unicast filter) */
2419 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2420 sc_if->sk_enaddr[i * 2] |
2421 sc_if->sk_enaddr[i * 2 + 1] << 8);
2422 }
2423
2424 for (i = 0; i < 3; i++) {
2425 reg = sk_win_read_2(sc_if->sk_softc,
2426 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2427 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2428 }
2429
2430 /* Set multicast filter */
2431 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2432 sk_setmulti(sc_if);
2433
2434 /* enable interrupt mask for counter overflows */
2435 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2436 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2437 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2438 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2439
2440 /* Configure RX MAC FIFO */
2441 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2442 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2443
2444 /* Configure TX MAC FIFO */
2445 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2446 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2447
2448 DPRINTFN(6, ("sk_init_yukon: end\n"));
2449 }
2450
2451 /*
2452 * Note that to properly initialize any part of the GEnesis chip,
2453 * you first have to take it out of reset mode.
2454 */
2455 int
2456 sk_init(struct ifnet *ifp)
2457 {
2458 struct sk_if_softc *sc_if = ifp->if_softc;
2459 struct sk_softc *sc = sc_if->sk_softc;
2460 struct mii_data *mii = &sc_if->sk_mii;
2461 int s;
2462
2463 DPRINTFN(1, ("sk_init\n"));
2464
2465 s = splnet();
2466
2467 /* Cancel pending I/O and free all RX/TX buffers. */
2468 sk_stop(ifp,0);
2469
2470 if (sc->sk_type == SK_GENESIS) {
2471 /* Configure LINK_SYNC LED */
2472 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2473 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2474 SK_LINKLED_LINKSYNC_ON);
2475
2476 /* Configure RX LED */
2477 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2478 SK_RXLEDCTL_COUNTER_START);
2479
2480 /* Configure TX LED */
2481 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2482 SK_TXLEDCTL_COUNTER_START);
2483 }
2484
2485 /* Configure I2C registers */
2486
2487 /* Configure XMAC(s) */
2488 switch (sc->sk_type) {
2489 case SK_GENESIS:
2490 sk_init_xmac(sc_if);
2491 break;
2492 case SK_YUKON:
2493 case SK_YUKON_LITE:
2494 case SK_YUKON_LP:
2495 sk_init_yukon(sc_if);
2496 break;
2497 }
2498 mii_mediachg(mii);
2499
2500 if (sc->sk_type == SK_GENESIS) {
2501 /* Configure MAC FIFOs */
2502 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2503 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2504 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2505
2506 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2507 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2508 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2509 }
2510
2511 /* Configure transmit arbiter(s) */
2512 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2513 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2514
2515 /* Configure RAMbuffers */
2516 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2517 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2518 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2519 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2520 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2521 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2522
2523 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2524 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2525 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2526 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2527 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2528 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2529 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2530
2531 /* Configure BMUs */
2532 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2533 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2534 SK_RX_RING_ADDR(sc_if, 0));
2535 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2536
2537 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2538 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2539 SK_TX_RING_ADDR(sc_if, 0));
2540 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2541
2542 /* Init descriptors */
2543 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2544 printf("%s: initialization failed: no "
2545 "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2546 sk_stop(ifp,0);
2547 splx(s);
2548 return(ENOBUFS);
2549 }
2550
2551 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2552 printf("%s: initialization failed: no "
2553 "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2554 sk_stop(ifp,0);
2555 splx(s);
2556 return(ENOBUFS);
2557 }
2558
2559 /* Configure interrupt handling */
2560 CSR_READ_4(sc, SK_ISSR);
2561 if (sc_if->sk_port == SK_PORT_A)
2562 sc->sk_intrmask |= SK_INTRS1;
2563 else
2564 sc->sk_intrmask |= SK_INTRS2;
2565
2566 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2567
2568 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2569
2570 /* Start BMUs. */
2571 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2572
2573 if (sc->sk_type == SK_GENESIS) {
2574 /* Enable XMACs TX and RX state machines */
2575 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2576 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2577 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2578 }
2579
2580 if (SK_YUKON_FAMILY(sc->sk_type)) {
2581 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2582 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2583 reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2584 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2585 }
2586
2587
2588 ifp->if_flags |= IFF_RUNNING;
2589 ifp->if_flags &= ~IFF_OACTIVE;
2590
2591 splx(s);
2592 return(0);
2593 }
2594
2595 void
2596 sk_stop(struct ifnet *ifp, int disable)
2597 {
2598 struct sk_if_softc *sc_if = ifp->if_softc;
2599 struct sk_softc *sc = sc_if->sk_softc;
2600 int i;
2601
2602 DPRINTFN(1, ("sk_stop\n"));
2603
2604 callout_stop(&sc_if->sk_tick_ch);
2605
2606 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2607 u_int32_t val;
2608
2609 /* Put PHY back into reset. */
2610 val = sk_win_read_4(sc, SK_GPIO);
2611 if (sc_if->sk_port == SK_PORT_A) {
2612 val |= SK_GPIO_DIR0;
2613 val &= ~SK_GPIO_DAT0;
2614 } else {
2615 val |= SK_GPIO_DIR2;
2616 val &= ~SK_GPIO_DAT2;
2617 }
2618 sk_win_write_4(sc, SK_GPIO, val);
2619 }
2620
2621 /* Turn off various components of this interface. */
2622 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2623 switch (sc->sk_type) {
2624 case SK_GENESIS:
2625 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2626 SK_TXMACCTL_XMAC_RESET);
2627 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2628 break;
2629 case SK_YUKON:
2630 case SK_YUKON_LITE:
2631 case SK_YUKON_LP:
2632 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2633 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2634 break;
2635 }
2636 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2637 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2638 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2639 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2640 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2641 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2642 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2643 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2644 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2645
2646 /* Disable interrupts */
2647 if (sc_if->sk_port == SK_PORT_A)
2648 sc->sk_intrmask &= ~SK_INTRS1;
2649 else
2650 sc->sk_intrmask &= ~SK_INTRS2;
2651 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2652
2653 SK_XM_READ_2(sc_if, XM_ISR);
2654 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2655
2656 /* Free RX and TX mbufs still in the queues. */
2657 for (i = 0; i < SK_RX_RING_CNT; i++) {
2658 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2659 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2660 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2661 }
2662 }
2663
2664 for (i = 0; i < SK_TX_RING_CNT; i++) {
2665 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2666 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2667 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2668 }
2669 }
2670
2671 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2672 }
2673
2674 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2675
2676 /*
2677 struct cfdriver skc_cd = {
2678 0, "skc", DV_DULL
2679 };
2680 */
2681
2682 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2683
2684 /*
2685 struct cfdriver sk_cd = {
2686 0, "sk", DV_IFNET
2687 };
2688 */
2689
2690 #ifdef SK_DEBUG
2691 void
2692 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2693 {
2694 #define DESC_PRINT(X) \
2695 if (desc->X) \
2696 printf("txdesc[%d]." #X "=%#x\n", \
2697 idx, desc->X);
2698
2699 DESC_PRINT(sk_ctl);
2700 DESC_PRINT(sk_next);
2701 DESC_PRINT(sk_data_lo);
2702 DESC_PRINT(sk_data_hi);
2703 DESC_PRINT(sk_xmac_txstat);
2704 DESC_PRINT(sk_rsvd0);
2705 DESC_PRINT(sk_csum_startval);
2706 DESC_PRINT(sk_csum_startpos);
2707 DESC_PRINT(sk_csum_writepos);
2708 DESC_PRINT(sk_rsvd1);
2709 #undef PRINT
2710 }
2711
2712 void
2713 sk_dump_bytes(const char *data, int len)
2714 {
2715 int c, i, j;
2716
2717 for (i = 0; i < len; i += 16) {
2718 printf("%08x ", i);
2719 c = len - i;
2720 if (c > 16) c = 16;
2721
2722 for (j = 0; j < c; j++) {
2723 printf("%02x ", data[i + j] & 0xff);
2724 if ((j & 0xf) == 7 && j > 0)
2725 printf(" ");
2726 }
2727
2728 for (; j < 16; j++)
2729 printf(" ");
2730 printf(" ");
2731
2732 for (j = 0; j < c; j++) {
2733 int ch = data[i + j] & 0xff;
2734 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2735 }
2736
2737 printf("\n");
2738
2739 if (c < 16)
2740 break;
2741 }
2742 }
2743
2744 void
2745 sk_dump_mbuf(struct mbuf *m)
2746 {
2747 int count = m->m_pkthdr.len;
2748
2749 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2750
2751 while (count > 0 && m) {
2752 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2753 m, m->m_data, m->m_len);
2754 sk_dump_bytes(mtod(m, char *), m->m_len);
2755
2756 count -= m->m_len;
2757 m = m->m_next;
2758 }
2759 }
2760 #endif
2761