Home | History | Annotate | Line # | Download | only in pci
if_sk.c revision 1.14.2.6
      1 /*	$NetBSD: if_sk.c,v 1.14.2.6 2006/06/04 08:53:50 tron Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the NetBSD
     18  *	Foundation, Inc. and its contributors.
     19  * 4. Neither the name of The NetBSD Foundation nor the names of its
     20  *    contributors may be used to endorse or promote products derived
     21  *    from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 /*	$OpenBSD: if_sk.c,v 1.33 2003/08/12 05:23:06 nate Exp $	*/
     37 
     38 /*
     39  * Copyright (c) 1997, 1998, 1999, 2000
     40  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by Bill Paul.
     53  * 4. Neither the name of the author nor the names of any co-contributors
     54  *    may be used to endorse or promote products derived from this software
     55  *    without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     61  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     62  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     63  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     64  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     65  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     66  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     67  * THE POSSIBILITY OF SUCH DAMAGE.
     68  *
     69  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
     70  */
     71 
     72 /*
     73  * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
     74  *
     75  * Permission to use, copy, modify, and distribute this software for any
     76  * purpose with or without fee is hereby granted, provided that the above
     77  * copyright notice and this permission notice appear in all copies.
     78  *
     79  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     80  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     81  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     82  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     83  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     84  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     85  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     86  */
     87 
     88 /*
     89  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
     90  * the SK-984x series adapters, both single port and dual port.
     91  * References:
     92  * 	The XaQti XMAC II datasheet,
     93  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     94  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
     95  *
     96  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
     97  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
     98  * convenience to others until Vitesse corrects this problem:
     99  *
    100  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
    101  *
    102  * Written by Bill Paul <wpaul (at) ee.columbia.edu>
    103  * Department of Electrical Engineering
    104  * Columbia University, New York City
    105  */
    106 
    107 /*
    108  * The SysKonnect gigabit ethernet adapters consist of two main
    109  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
    110  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
    111  * components and a PHY while the GEnesis controller provides a PCI
    112  * interface with DMA support. Each card may have between 512K and
    113  * 2MB of SRAM on board depending on the configuration.
    114  *
    115  * The SysKonnect GEnesis controller can have either one or two XMAC
    116  * chips connected to it, allowing single or dual port NIC configurations.
    117  * SysKonnect has the distinction of being the only vendor on the market
    118  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
    119  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
    120  * XMAC registers. This driver takes advantage of these features to allow
    121  * both XMACs to operate as independent interfaces.
    122  */
    123 
    124 #include "bpfilter.h"
    125 #include "rnd.h"
    126 
    127 #include <sys/param.h>
    128 #include <sys/systm.h>
    129 #include <sys/sockio.h>
    130 #include <sys/mbuf.h>
    131 #include <sys/malloc.h>
    132 #include <sys/kernel.h>
    133 #include <sys/socket.h>
    134 #include <sys/device.h>
    135 #include <sys/queue.h>
    136 #include <sys/callout.h>
    137 #include <sys/sysctl.h>
    138 
    139 #include <net/if.h>
    140 #include <net/if_dl.h>
    141 #include <net/if_types.h>
    142 
    143 #ifdef INET
    144 #include <netinet/in.h>
    145 #include <netinet/in_systm.h>
    146 #include <netinet/in_var.h>
    147 #include <netinet/ip.h>
    148 #include <netinet/if_ether.h>
    149 #endif
    150 
    151 #include <net/if_media.h>
    152 
    153 #if NBPFILTER > 0
    154 #include <net/bpf.h>
    155 #endif
    156 #if NRND > 0
    157 #include <sys/rnd.h>
    158 #endif
    159 
    160 #include <dev/mii/mii.h>
    161 #include <dev/mii/miivar.h>
    162 #include <dev/mii/brgphyreg.h>
    163 
    164 #include <dev/pci/pcireg.h>
    165 #include <dev/pci/pcivar.h>
    166 #include <dev/pci/pcidevs.h>
    167 
    168 #define	SK_VERBOSE
    169 /* #define SK_USEIOSPACE */
    170 
    171 #include <dev/pci/if_skreg.h>
    172 #include <dev/pci/if_skvar.h>
    173 
    174 int skc_probe(struct device *, struct cfdata *, void *);
    175 void skc_attach(struct device *, struct device *self, void *aux);
    176 int sk_probe(struct device *, struct cfdata *, void *);
    177 void sk_attach(struct device *, struct device *self, void *aux);
    178 int skcprint(void *, const char *);
    179 int sk_intr(void *);
    180 void sk_intr_bcom(struct sk_if_softc *);
    181 void sk_intr_xmac(struct sk_if_softc *);
    182 void sk_intr_yukon(struct sk_if_softc *);
    183 void sk_rxeof(struct sk_if_softc *);
    184 void sk_txeof(struct sk_if_softc *);
    185 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
    186 void sk_start(struct ifnet *);
    187 int sk_ioctl(struct ifnet *, u_long, caddr_t);
    188 int sk_init(struct ifnet *);
    189 void sk_init_xmac(struct sk_if_softc *);
    190 void sk_init_yukon(struct sk_if_softc *);
    191 void sk_stop(struct ifnet *, int);
    192 void sk_watchdog(struct ifnet *);
    193 void sk_shutdown(void *);
    194 int sk_ifmedia_upd(struct ifnet *);
    195 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    196 void sk_reset(struct sk_softc *);
    197 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
    198 int sk_init_rx_ring(struct sk_if_softc *);
    199 int sk_init_tx_ring(struct sk_if_softc *);
    200 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
    201 void sk_vpd_read_res(struct sk_softc *,
    202 					struct vpd_res *, int);
    203 void sk_vpd_read(struct sk_softc *);
    204 
    205 void sk_update_int_mod(struct sk_softc *);
    206 
    207 int sk_xmac_miibus_readreg(struct device *, int, int);
    208 void sk_xmac_miibus_writereg(struct device *, int, int, int);
    209 void sk_xmac_miibus_statchg(struct device *);
    210 
    211 int sk_marv_miibus_readreg(struct device *, int, int);
    212 void sk_marv_miibus_writereg(struct device *, int, int, int);
    213 void sk_marv_miibus_statchg(struct device *);
    214 
    215 u_int32_t sk_xmac_hash(caddr_t);
    216 u_int32_t sk_yukon_hash(caddr_t);
    217 void sk_setfilt(struct sk_if_softc *, caddr_t, int);
    218 void sk_setmulti(struct sk_if_softc *);
    219 void sk_tick(void *);
    220 
    221 /* #define SK_DEBUG 2 */
    222 #ifdef SK_DEBUG
    223 #define DPRINTF(x)	if (skdebug) printf x
    224 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
    225 int	skdebug = SK_DEBUG;
    226 
    227 void sk_dump_txdesc(struct sk_tx_desc *, int);
    228 void sk_dump_mbuf(struct mbuf *);
    229 void sk_dump_bytes(const char *, int);
    230 #else
    231 #define DPRINTF(x)
    232 #define DPRINTFN(n,x)
    233 #endif
    234 
    235 #define SK_SETBIT(sc, reg, x)		\
    236 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
    237 
    238 #define SK_CLRBIT(sc, reg, x)		\
    239 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
    240 
    241 #define SK_WIN_SETBIT_4(sc, reg, x)	\
    242 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
    243 
    244 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
    245 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
    246 
    247 #define SK_WIN_SETBIT_2(sc, reg, x)	\
    248 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
    249 
    250 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
    251 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
    252 
    253 static int sk_sysctl_handler(SYSCTLFN_PROTO);
    254 static int sk_root_num;
    255 
    256 /* supported device vendors */
    257 static const struct sk_product {
    258 	pci_vendor_id_t		sk_vendor;
    259 	pci_product_id_t	sk_product;
    260 } sk_products[] = {
    261 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
    262 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
    263 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T, },
    264 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
    265 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
    266 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
    267 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
    268 	{ PCI_VENDOR_GALILEO, PCI_PRODUCT_GALILEO_SKNET, },
    269 	{ PCI_VENDOR_GALILEO, PCI_PRODUCT_GALILEO_BELKIN, },
    270 	{ 0, 0, }
    271 };
    272 
    273 #define SK_LINKSYS_EG1032_SUBID	0x00151737
    274 
    275 static inline u_int32_t
    276 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
    277 {
    278 #ifdef SK_USEIOSPACE
    279 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    280 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
    281 #else
    282 	return CSR_READ_4(sc, reg);
    283 #endif
    284 }
    285 
    286 static inline u_int16_t
    287 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
    288 {
    289 #ifdef SK_USEIOSPACE
    290 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    291 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
    292 #else
    293 	return CSR_READ_2(sc, reg);
    294 #endif
    295 }
    296 
    297 static inline u_int8_t
    298 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
    299 {
    300 #ifdef SK_USEIOSPACE
    301 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    302 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
    303 #else
    304 	return CSR_READ_1(sc, reg);
    305 #endif
    306 }
    307 
    308 static inline void
    309 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
    310 {
    311 #ifdef SK_USEIOSPACE
    312 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    313 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
    314 #else
    315 	CSR_WRITE_4(sc, reg, x);
    316 #endif
    317 }
    318 
    319 static inline void
    320 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
    321 {
    322 #ifdef SK_USEIOSPACE
    323 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    324 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
    325 #else
    326 	CSR_WRITE_2(sc, reg, x);
    327 #endif
    328 }
    329 
    330 static inline void
    331 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
    332 {
    333 #ifdef SK_USEIOSPACE
    334 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    335 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
    336 #else
    337 	CSR_WRITE_1(sc, reg, x);
    338 #endif
    339 }
    340 
    341 /*
    342  * The VPD EEPROM contains Vital Product Data, as suggested in
    343  * the PCI 2.1 specification. The VPD data is separared into areas
    344  * denoted by resource IDs. The SysKonnect VPD contains an ID string
    345  * resource (the name of the adapter), a read-only area resource
    346  * containing various key/data fields and a read/write area which
    347  * can be used to store asset management information or log messages.
    348  * We read the ID string and read-only into buffers attached to
    349  * the controller softc structure for later use. At the moment,
    350  * we only use the ID string during sk_attach().
    351  */
    352 u_int8_t
    353 sk_vpd_readbyte(struct sk_softc *sc, int addr)
    354 {
    355 	int			i;
    356 
    357 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
    358 	for (i = 0; i < SK_TIMEOUT; i++) {
    359 		DELAY(1);
    360 		if (sk_win_read_2(sc,
    361 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
    362 			break;
    363 	}
    364 
    365 	if (i == SK_TIMEOUT)
    366 		return(0);
    367 
    368 	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
    369 }
    370 
    371 void
    372 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
    373 {
    374 	int			i;
    375 	u_int8_t		*ptr;
    376 
    377 	ptr = (u_int8_t *)res;
    378 	for (i = 0; i < sizeof(struct vpd_res); i++)
    379 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
    380 }
    381 
    382 void
    383 sk_vpd_read(struct sk_softc *sc)
    384 {
    385 	int			pos = 0, i;
    386 	struct vpd_res		res;
    387 
    388 	if (sc->sk_vpd_prodname != NULL)
    389 		free(sc->sk_vpd_prodname, M_DEVBUF);
    390 	if (sc->sk_vpd_readonly != NULL)
    391 		free(sc->sk_vpd_readonly, M_DEVBUF);
    392 	sc->sk_vpd_prodname = NULL;
    393 	sc->sk_vpd_readonly = NULL;
    394 
    395 	sk_vpd_read_res(sc, &res, pos);
    396 
    397 	if (res.vr_id != VPD_RES_ID) {
    398 		printf("%s: bad VPD resource id: expected %x got %x\n",
    399 		    sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
    400 		return;
    401 	}
    402 
    403 	pos += sizeof(res);
    404 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    405 	if (sc->sk_vpd_prodname == NULL)
    406 		panic("sk_vpd_read");
    407 	for (i = 0; i < res.vr_len; i++)
    408 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
    409 	sc->sk_vpd_prodname[i] = '\0';
    410 	pos += i;
    411 
    412 	sk_vpd_read_res(sc, &res, pos);
    413 
    414 	if (res.vr_id != VPD_RES_READ) {
    415 		printf("%s: bad VPD resource id: expected %x got %x\n",
    416 		    sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
    417 		return;
    418 	}
    419 
    420 	pos += sizeof(res);
    421 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    422 	if (sc->sk_vpd_readonly == NULL)
    423 		panic("sk_vpd_read");
    424 	for (i = 0; i < res.vr_len ; i++)
    425 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
    426 }
    427 
    428 int
    429 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
    430 {
    431 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    432 	int i;
    433 
    434 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
    435 
    436 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
    437 		return(0);
    438 
    439 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    440 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
    441 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    442 		for (i = 0; i < SK_TIMEOUT; i++) {
    443 			DELAY(1);
    444 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
    445 			    XM_MMUCMD_PHYDATARDY)
    446 				break;
    447 		}
    448 
    449 		if (i == SK_TIMEOUT) {
    450 			printf("%s: phy failed to come ready\n",
    451 			    sc_if->sk_dev.dv_xname);
    452 			return(0);
    453 		}
    454 	}
    455 	DELAY(1);
    456 	return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
    457 }
    458 
    459 void
    460 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
    461 {
    462 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    463 	int i;
    464 
    465 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
    466 
    467 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    468 	for (i = 0; i < SK_TIMEOUT; i++) {
    469 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    470 			break;
    471 	}
    472 
    473 	if (i == SK_TIMEOUT) {
    474 		printf("%s: phy failed to come ready\n",
    475 		    sc_if->sk_dev.dv_xname);
    476 		return;
    477 	}
    478 
    479 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
    480 	for (i = 0; i < SK_TIMEOUT; i++) {
    481 		DELAY(1);
    482 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    483 			break;
    484 	}
    485 
    486 	if (i == SK_TIMEOUT)
    487 		printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
    488 }
    489 
    490 void
    491 sk_xmac_miibus_statchg(struct device *dev)
    492 {
    493 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    494 	struct mii_data *mii = &sc_if->sk_mii;
    495 
    496 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
    497 
    498 	/*
    499 	 * If this is a GMII PHY, manually set the XMAC's
    500 	 * duplex mode accordingly.
    501 	 */
    502 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    503 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
    504 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    505 		} else {
    506 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    507 		}
    508 	}
    509 }
    510 
    511 int
    512 sk_marv_miibus_readreg(dev, phy, reg)
    513 	struct device *dev;
    514 	int phy, reg;
    515 {
    516 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    517 	u_int16_t val;
    518 	int i;
    519 
    520 	if (phy != 0 ||
    521 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
    522 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
    523 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
    524 			     phy, reg));
    525 		return(0);
    526 	}
    527 
    528         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    529 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
    530 
    531 	for (i = 0; i < SK_TIMEOUT; i++) {
    532 		DELAY(1);
    533 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
    534 		if (val & YU_SMICR_READ_VALID)
    535 			break;
    536 	}
    537 
    538 	if (i == SK_TIMEOUT) {
    539 		printf("%s: phy failed to come ready\n",
    540 		       sc_if->sk_dev.dv_xname);
    541 		return 0;
    542 	}
    543 
    544  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
    545 		     SK_TIMEOUT));
    546 
    547         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
    548 
    549 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
    550 		     phy, reg, val));
    551 
    552 	return val;
    553 }
    554 
    555 void
    556 sk_marv_miibus_writereg(dev, phy, reg, val)
    557 	struct device *dev;
    558 	int phy, reg, val;
    559 {
    560 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    561 	int i;
    562 
    563 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
    564 		     phy, reg, val));
    565 
    566 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
    567 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    568 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
    569 
    570 	for (i = 0; i < SK_TIMEOUT; i++) {
    571 		DELAY(1);
    572 		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
    573 			break;
    574 	}
    575 }
    576 
    577 void
    578 sk_marv_miibus_statchg(dev)
    579 	struct device *dev;
    580 {
    581 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
    582 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
    583 }
    584 
    585 #define SK_HASH_BITS		6
    586 
    587 u_int32_t
    588 sk_xmac_hash(caddr_t addr)
    589 {
    590 	u_int32_t		crc;
    591 
    592 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
    593 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
    594 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    595 	return (crc);
    596 }
    597 
    598 u_int32_t
    599 sk_yukon_hash(caddr_t addr)
    600 {
    601 	u_int32_t		crc;
    602 
    603 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
    604 	crc &= ((1 << SK_HASH_BITS) - 1);
    605 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    606 	return (crc);
    607 }
    608 
    609 void
    610 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
    611 {
    612 	int base = XM_RXFILT_ENTRY(slot);
    613 
    614 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
    615 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
    616 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
    617 }
    618 
    619 void
    620 sk_setmulti(struct sk_if_softc *sc_if)
    621 {
    622 	struct sk_softc *sc = sc_if->sk_softc;
    623 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
    624 	u_int32_t hashes[2] = { 0, 0 };
    625 	int h = 0, i;
    626 	struct ethercom *ec = &sc_if->sk_ethercom;
    627 	struct ether_multi *enm;
    628 	struct ether_multistep step;
    629 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
    630 
    631 	/* First, zot all the existing filters. */
    632 	switch(sc->sk_type) {
    633 	case SK_GENESIS:
    634 		for (i = 1; i < XM_RXFILT_MAX; i++)
    635 			sk_setfilt(sc_if, (caddr_t)&dummy, i);
    636 
    637 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
    638 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
    639 		break;
    640 	case SK_YUKON:
    641 	case SK_YUKON_LITE:
    642 	case SK_YUKON_LP:
    643 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
    644 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
    645 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
    646 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
    647 		break;
    648 	}
    649 
    650 	/* Now program new ones. */
    651 allmulti:
    652 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    653 		hashes[0] = 0xFFFFFFFF;
    654 		hashes[1] = 0xFFFFFFFF;
    655 	} else {
    656 		i = 1;
    657 		/* First find the tail of the list. */
    658 		ETHER_FIRST_MULTI(step, ec, enm);
    659 		while (enm != NULL) {
    660 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
    661 				 ETHER_ADDR_LEN)) {
    662 				ifp->if_flags |= IFF_ALLMULTI;
    663 				goto allmulti;
    664 			}
    665 			DPRINTFN(2,("multicast address %s\n",
    666 	    			ether_sprintf(enm->enm_addrlo)));
    667 			/*
    668 			 * Program the first XM_RXFILT_MAX multicast groups
    669 			 * into the perfect filter. For all others,
    670 			 * use the hash table.
    671 			 */
    672 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
    673 				sk_setfilt(sc_if, enm->enm_addrlo, i);
    674 				i++;
    675 			}
    676 			else {
    677 				switch (sc->sk_type) {
    678 				case SK_GENESIS:
    679 					h = sk_xmac_hash(enm->enm_addrlo);
    680 					break;
    681 				case SK_YUKON:
    682 				case SK_YUKON_LITE:
    683 				case SK_YUKON_LP:
    684 					h = sk_yukon_hash(enm->enm_addrlo);
    685 					break;
    686 				}
    687 				if (h < 32)
    688 					hashes[0] |= (1 << h);
    689 				else
    690 					hashes[1] |= (1 << (h - 32));
    691 			}
    692 
    693 			ETHER_NEXT_MULTI(step, enm);
    694 		}
    695 	}
    696 
    697 	switch(sc->sk_type) {
    698 	case SK_GENESIS:
    699 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
    700 			       XM_MODE_RX_USE_PERFECT);
    701 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
    702 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
    703 		break;
    704 	case SK_YUKON:
    705 	case SK_YUKON_LITE:
    706 	case SK_YUKON_LP:
    707 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
    708 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
    709 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
    710 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
    711 		break;
    712 	}
    713 }
    714 
    715 int
    716 sk_init_rx_ring(struct sk_if_softc *sc_if)
    717 {
    718 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    719 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    720 	int			i;
    721 
    722 	bzero((char *)rd->sk_rx_ring,
    723 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
    724 
    725 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    726 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
    727 		if (i == (SK_RX_RING_CNT - 1)) {
    728 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
    729 			rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if, 0);
    730 		} else {
    731 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
    732 			rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if,i+1);
    733 		}
    734 	}
    735 
    736 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    737 		if (sk_newbuf(sc_if, i, NULL, NULL) == ENOBUFS) {
    738 			printf("%s: failed alloc of %dth mbuf\n",
    739 			    sc_if->sk_dev.dv_xname, i);
    740 			return(ENOBUFS);
    741 		}
    742 	}
    743 	sc_if->sk_cdata.sk_rx_prod = 0;
    744 	sc_if->sk_cdata.sk_rx_cons = 0;
    745 
    746 	return(0);
    747 }
    748 
    749 int
    750 sk_init_tx_ring(struct sk_if_softc *sc_if)
    751 {
    752 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    753 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    754 	int			i;
    755 
    756 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
    757 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
    758 
    759 	for (i = 0; i < SK_TX_RING_CNT; i++) {
    760 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
    761 		if (i == (SK_TX_RING_CNT - 1)) {
    762 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
    763 			rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if, 0);
    764 		} else {
    765 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
    766 			rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if,i+1);
    767 		}
    768 	}
    769 
    770 	sc_if->sk_cdata.sk_tx_prod = 0;
    771 	sc_if->sk_cdata.sk_tx_cons = 0;
    772 	sc_if->sk_cdata.sk_tx_cnt = 0;
    773 
    774 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
    775 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    776 
    777 	return (0);
    778 }
    779 
    780 int
    781 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
    782 	  bus_dmamap_t dmamap)
    783 {
    784 	struct sk_softc		*sc = sc_if->sk_softc;
    785 	struct mbuf		*m_new = NULL;
    786 	struct sk_chain		*c;
    787 	struct sk_rx_desc	*r;
    788 
    789 	if (dmamap == NULL) {
    790 		/* if (m) panic() */
    791 
    792 		if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1, MCLBYTES,
    793 				      0, BUS_DMA_NOWAIT, &dmamap)) {
    794 			printf("%s: can't create recv map\n",
    795 			       sc_if->sk_dev.dv_xname);
    796 			return(ENOMEM);
    797 		}
    798 	} else if (m == NULL)
    799 		bus_dmamap_unload(sc->sc_dmatag, dmamap);
    800 
    801 	sc_if->sk_cdata.sk_rx_map[i] = dmamap;
    802 
    803 	if (m == NULL) {
    804 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    805 		if (m_new == NULL) {
    806 			printf("%s: no memory for rx list -- "
    807 			    "packet dropped!\n", sc_if->sk_dev.dv_xname);
    808 			return(ENOBUFS);
    809 		}
    810 
    811 		/* Allocate the jumbo buffer */
    812 		MCLGET(m_new, M_DONTWAIT);
    813 		if (!(m_new->m_flags & M_EXT)) {
    814 			m_freem(m_new);
    815 			return (ENOBUFS);
    816 		}
    817 
    818 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    819 
    820 		m_adj(m_new, ETHER_ALIGN);
    821 
    822 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m_new,
    823 					 BUS_DMA_NOWAIT))
    824 			return(ENOBUFS);
    825 	} else {
    826 		/*
    827 	 	 * We're re-using a previously allocated mbuf;
    828 		 * be sure to re-init pointers and lengths to
    829 		 * default values.
    830 		 */
    831 		m_new = m;
    832 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    833 		m_adj(m_new, ETHER_ALIGN);
    834 		m_new->m_data = m_new->m_ext.ext_buf;
    835 	}
    836 
    837 	c = &sc_if->sk_cdata.sk_rx_chain[i];
    838 	r = c->sk_desc;
    839 	c->sk_mbuf = m_new;
    840 	r->sk_data_lo = dmamap->dm_segs[0].ds_addr;
    841 	r->sk_ctl = dmamap->dm_segs[0].ds_len | SK_RXSTAT;
    842 
    843 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    844 
    845 	return(0);
    846 }
    847 
    848 /*
    849  * Set media options.
    850  */
    851 int
    852 sk_ifmedia_upd(struct ifnet *ifp)
    853 {
    854 	struct sk_if_softc *sc_if = ifp->if_softc;
    855 
    856 	(void) sk_init(ifp);
    857 	mii_mediachg(&sc_if->sk_mii);
    858 	return(0);
    859 }
    860 
    861 /*
    862  * Report current media status.
    863  */
    864 void
    865 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
    866 {
    867 	struct sk_if_softc *sc_if = ifp->if_softc;
    868 
    869 	mii_pollstat(&sc_if->sk_mii);
    870 	ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
    871 	ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
    872 }
    873 
    874 int
    875 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
    876 {
    877 	struct sk_if_softc *sc_if = ifp->if_softc;
    878 	struct sk_softc *sc = sc_if->sk_softc;
    879 	struct ifreq *ifr = (struct ifreq *) data;
    880 	/* struct ifaddr *ifa = (struct ifaddr *) data; */
    881 	struct mii_data *mii;
    882 	int s, error = 0;
    883 
    884 	/* DPRINTFN(2, ("sk_ioctl\n")); */
    885 
    886 	s = splnet();
    887 
    888 	switch(command) {
    889 
    890 	case SIOCSIFFLAGS:
    891 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
    892 		if (ifp->if_flags & IFF_UP) {
    893 			if (ifp->if_flags & IFF_RUNNING &&
    894 			    ifp->if_flags & IFF_PROMISC &&
    895 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
    896 				switch(sc->sk_type) {
    897 				case SK_GENESIS:
    898 					SK_XM_SETBIT_4(sc_if, XM_MODE,
    899 					    XM_MODE_RX_PROMISC);
    900 					break;
    901 				case SK_YUKON:
    902 				case SK_YUKON_LITE:
    903 				case SK_YUKON_LP:
    904 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
    905 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
    906 					break;
    907 				}
    908 				sk_setmulti(sc_if);
    909 			} else if (ifp->if_flags & IFF_RUNNING &&
    910 			    !(ifp->if_flags & IFF_PROMISC) &&
    911 			    sc_if->sk_if_flags & IFF_PROMISC) {
    912 				switch(sc->sk_type) {
    913 				case SK_GENESIS:
    914 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
    915 					    XM_MODE_RX_PROMISC);
    916 					break;
    917 				case SK_YUKON:
    918 				case SK_YUKON_LITE:
    919 				case SK_YUKON_LP:
    920 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
    921 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
    922 					break;
    923 				}
    924 
    925 				sk_setmulti(sc_if);
    926 			} else
    927 				(void) sk_init(ifp);
    928 		} else {
    929 			if (ifp->if_flags & IFF_RUNNING)
    930 				sk_stop(ifp,0);
    931 		}
    932 		sc_if->sk_if_flags = ifp->if_flags;
    933 		error = 0;
    934 		break;
    935 
    936 	case SIOCGIFMEDIA:
    937 	case SIOCSIFMEDIA:
    938 	        DPRINTFN(2, ("sk_ioctl MEDIA\n"));
    939 		mii = &sc_if->sk_mii;
    940 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
    941 		break;
    942 	default:
    943 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
    944 		error = ether_ioctl(ifp, command, data);
    945 
    946 		if ( error == ENETRESET) {
    947 			if (ifp->if_flags & IFF_RUNNING) {
    948 				sk_setmulti(sc_if);
    949 				DPRINTFN(2, ("sk_ioctl setmulti called\n"));
    950 			}
    951 			error = 0;
    952 		} else if ( error ) {
    953 			splx(s);
    954 			return error;
    955 		}
    956 		break;
    957 	}
    958 
    959 	splx(s);
    960 	return(error);
    961 }
    962 
    963 void
    964 sk_update_int_mod(struct sk_softc *sc)
    965 {
    966 	u_int32_t sk_imtimer_ticks;
    967 
    968 	/*
    969          * Configure interrupt moderation. The moderation timer
    970 	 * defers interrupts specified in the interrupt moderation
    971 	 * timer mask based on the timeout specified in the interrupt
    972 	 * moderation timer init register. Each bit in the timer
    973 	 * register represents one tick, so to specify a timeout in
    974 	 * microseconds, we have to multiply by the correct number of
    975 	 * ticks-per-microsecond.
    976 	 */
    977 	switch (sc->sk_type) {
    978 	case SK_GENESIS:
    979 		sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
    980 		break;
    981 	case SK_YUKON_EC:
    982 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
    983 		break;
    984 	default:
    985 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
    986 	}
    987 	aprint_verbose("%s: interrupt moderation is %d us\n",
    988 	    sc->sk_dev.dv_xname, sc->sk_int_mod);
    989         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
    990         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
    991 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
    992         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
    993 	sc->sk_int_mod_pending = 0;
    994 }
    995 
    996 /*
    997  * Lookup: Check the PCI vendor and device, and return a pointer to
    998  * The structure if the IDs match against our list.
    999  */
   1000 
   1001 static const struct sk_product *
   1002 sk_lookup(const struct pci_attach_args *pa)
   1003 {
   1004 	const struct sk_product *psk;
   1005 
   1006 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
   1007 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
   1008 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
   1009 			return (psk);
   1010 	}
   1011 	return (NULL);
   1012 }
   1013 
   1014 /*
   1015  * Probe for a SysKonnect GEnesis chip.
   1016  */
   1017 
   1018 int
   1019 skc_probe(struct device *parent, struct cfdata *match, void *aux)
   1020 {
   1021 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1022 	const struct sk_product *psk;
   1023 	pcireg_t subid;
   1024 
   1025 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
   1026 
   1027 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
   1028 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
   1029 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
   1030 	    subid == SK_LINKSYS_EG1032_SUBID)
   1031 		return(1);
   1032 
   1033 	if ((psk = sk_lookup(pa))) {
   1034 		return(1);
   1035 	}
   1036 	return(0);
   1037 }
   1038 
   1039 /*
   1040  * Force the GEnesis into reset, then bring it out of reset.
   1041  */
   1042 void sk_reset(struct sk_softc *sc)
   1043 {
   1044 	DPRINTFN(2, ("sk_reset\n"));
   1045 
   1046 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
   1047 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
   1048 	if (SK_YUKON_FAMILY(sc->sk_type))
   1049 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
   1050 
   1051 	DELAY(1000);
   1052 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
   1053 	DELAY(2);
   1054 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
   1055 	if (SK_YUKON_FAMILY(sc->sk_type))
   1056 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
   1057 
   1058 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
   1059 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
   1060 		     CSR_READ_2(sc, SK_LINK_CTRL)));
   1061 
   1062 	if (sc->sk_type == SK_GENESIS) {
   1063 		/* Configure packet arbiter */
   1064 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
   1065 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1066 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1067 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1068 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1069 	}
   1070 
   1071 	/* Enable RAM interface */
   1072 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
   1073 
   1074 	sk_update_int_mod(sc);
   1075 }
   1076 
   1077 int
   1078 sk_probe(struct device *parent, struct cfdata *match, void *aux)
   1079 {
   1080 	struct skc_attach_args *sa = aux;
   1081 
   1082 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
   1083 		return(0);
   1084 
   1085 	return (1);
   1086 }
   1087 
   1088 /*
   1089  * Each XMAC chip is attached as a separate logical IP interface.
   1090  * Single port cards will have only one logical interface of course.
   1091  */
   1092 void
   1093 sk_attach(struct device *parent, struct device *self, void *aux)
   1094 {
   1095 	struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
   1096 	struct sk_softc *sc = (struct sk_softc *)parent;
   1097 	struct skc_attach_args *sa = aux;
   1098 	struct sk_txmap_entry	*entry;
   1099 	struct ifnet *ifp;
   1100 	bus_dma_segment_t seg;
   1101 	bus_dmamap_t dmamap;
   1102 	caddr_t kva;
   1103 	int i, rseg;
   1104 
   1105 	sc_if->sk_port = sa->skc_port;
   1106 	sc_if->sk_softc = sc;
   1107 	sc->sk_if[sa->skc_port] = sc_if;
   1108 
   1109 	if (sa->skc_port == SK_PORT_A)
   1110 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
   1111 	if (sa->skc_port == SK_PORT_B)
   1112 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
   1113 
   1114 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
   1115 
   1116 	/*
   1117 	 * Get station address for this interface. Note that
   1118 	 * dual port cards actually come with three station
   1119 	 * addresses: one for each port, plus an extra. The
   1120 	 * extra one is used by the SysKonnect driver software
   1121 	 * as a 'virtual' station address for when both ports
   1122 	 * are operating in failover mode. Currently we don't
   1123 	 * use this extra address.
   1124 	 */
   1125 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1126 		sc_if->sk_enaddr[i] =
   1127 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
   1128 
   1129 
   1130 	aprint_normal(": Ethernet address %s\n",
   1131 	    ether_sprintf(sc_if->sk_enaddr));
   1132 
   1133 	/*
   1134 	 * Set up RAM buffer addresses. The NIC will have a certain
   1135 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
   1136 	 * need to divide this up a) between the transmitter and
   1137  	 * receiver and b) between the two XMACs, if this is a
   1138 	 * dual port NIC. Our algotithm is to divide up the memory
   1139 	 * evenly so that everyone gets a fair share.
   1140 	 */
   1141 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
   1142 		u_int32_t		chunk, val;
   1143 
   1144 		chunk = sc->sk_ramsize / 2;
   1145 		val = sc->sk_rboff / sizeof(u_int64_t);
   1146 		sc_if->sk_rx_ramstart = val;
   1147 		val += (chunk / sizeof(u_int64_t));
   1148 		sc_if->sk_rx_ramend = val - 1;
   1149 		sc_if->sk_tx_ramstart = val;
   1150 		val += (chunk / sizeof(u_int64_t));
   1151 		sc_if->sk_tx_ramend = val - 1;
   1152 	} else {
   1153 		u_int32_t		chunk, val;
   1154 
   1155 		chunk = sc->sk_ramsize / 4;
   1156 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
   1157 		    sizeof(u_int64_t);
   1158 		sc_if->sk_rx_ramstart = val;
   1159 		val += (chunk / sizeof(u_int64_t));
   1160 		sc_if->sk_rx_ramend = val - 1;
   1161 		sc_if->sk_tx_ramstart = val;
   1162 		val += (chunk / sizeof(u_int64_t));
   1163 		sc_if->sk_tx_ramend = val - 1;
   1164 	}
   1165 
   1166 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
   1167 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
   1168 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
   1169 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
   1170 
   1171 	/* Read and save PHY type and set PHY address */
   1172 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
   1173 	switch (sc_if->sk_phytype) {
   1174 	case SK_PHYTYPE_XMAC:
   1175 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
   1176 		break;
   1177 	case SK_PHYTYPE_BCOM:
   1178 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
   1179 		break;
   1180 	case SK_PHYTYPE_MARV_COPPER:
   1181 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
   1182 		break;
   1183 	default:
   1184 		aprint_error("%s: unsupported PHY type: %d\n",
   1185 		    sc->sk_dev.dv_xname, sc_if->sk_phytype);
   1186 		return;
   1187 	}
   1188 
   1189 	/* Allocate the descriptor queues. */
   1190 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
   1191 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1192 		aprint_error("%s: can't alloc rx buffers\n",
   1193 		    sc->sk_dev.dv_xname);
   1194 		goto fail;
   1195 	}
   1196 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
   1197 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
   1198 		aprint_error("%s: can't map dma buffers (%lu bytes)\n",
   1199 		       sc_if->sk_dev.dv_xname,
   1200 		       (u_long) sizeof(struct sk_ring_data));
   1201 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1202 		goto fail;
   1203 	}
   1204 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
   1205 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
   1206             &sc_if->sk_ring_map)) {
   1207 		aprint_error("%s: can't create dma map\n",
   1208 		    sc_if->sk_dev.dv_xname);
   1209 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1210 		    sizeof(struct sk_ring_data));
   1211 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1212 		goto fail;
   1213 	}
   1214 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
   1215 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
   1216 		aprint_error("%s: can't load dma map\n",
   1217 		    sc_if->sk_dev.dv_xname);
   1218 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1219 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1220 		    sizeof(struct sk_ring_data));
   1221 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1222 		goto fail;
   1223 	}
   1224 
   1225 	for (i = 0; i < SK_RX_RING_CNT; i++)
   1226 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   1227 
   1228 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
   1229 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   1230 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   1231 
   1232 		if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, SK_NTXSEG,
   1233 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap)) {
   1234 			aprint_error("%s: Can't create TX dmamap\n",
   1235 				sc_if->sk_dev.dv_xname);
   1236 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1237 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1238 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1239 			    sizeof(struct sk_ring_data));
   1240 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1241 			goto fail;
   1242 		}
   1243 
   1244 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
   1245 		if (!entry) {
   1246 			aprint_error("%s: Can't alloc txmap entry\n",
   1247 				sc_if->sk_dev.dv_xname);
   1248 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
   1249 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1250 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1251 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1252 			    sizeof(struct sk_ring_data));
   1253 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1254 			goto fail;
   1255 		}
   1256 		entry->dmamap = dmamap;
   1257 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
   1258 	}
   1259 
   1260         sc_if->sk_rdata = (struct sk_ring_data *)kva;
   1261 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
   1262 
   1263 	/* XXX TLS It's not clear what's wrong with the Jumbo MTU
   1264 	   XXX TLS support in this driver, so we don't enable it. */
   1265 
   1266 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
   1267 
   1268 	ifp = &sc_if->sk_ethercom.ec_if;
   1269 	ifp->if_softc = sc_if;
   1270 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1271 	ifp->if_ioctl = sk_ioctl;
   1272 	ifp->if_start = sk_start;
   1273 	ifp->if_stop = sk_stop;
   1274 	ifp->if_init = sk_init;
   1275 	ifp->if_watchdog = sk_watchdog;
   1276 	ifp->if_capabilities = 0;
   1277 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
   1278 	IFQ_SET_READY(&ifp->if_snd);
   1279 	strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
   1280 
   1281 	/*
   1282 	 * Do miibus setup.
   1283 	 */
   1284 	switch (sc->sk_type) {
   1285 	case SK_GENESIS:
   1286 		sk_init_xmac(sc_if);
   1287 		break;
   1288 	case SK_YUKON:
   1289 	case SK_YUKON_LITE:
   1290 	case SK_YUKON_LP:
   1291 		sk_init_yukon(sc_if);
   1292 		break;
   1293 	default:
   1294 		panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
   1295 		      sc->sk_type);
   1296 	}
   1297 
   1298  	DPRINTFN(2, ("sk_attach: 1\n"));
   1299 
   1300 	sc_if->sk_mii.mii_ifp = ifp;
   1301 	switch (sc->sk_type) {
   1302 	case SK_GENESIS:
   1303 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
   1304 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
   1305 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
   1306 		break;
   1307 	case SK_YUKON:
   1308 	case SK_YUKON_LITE:
   1309 	case SK_YUKON_LP:
   1310 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
   1311 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
   1312 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
   1313 		break;
   1314 	}
   1315 
   1316 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
   1317 	    sk_ifmedia_upd, sk_ifmedia_sts);
   1318 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
   1319 	    MII_OFFSET_ANY, 0);
   1320 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
   1321 		printf("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
   1322 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
   1323 			    0, NULL);
   1324 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
   1325 	}
   1326 	else
   1327 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1328 
   1329 	callout_init(&sc_if->sk_tick_ch);
   1330 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
   1331 
   1332 	DPRINTFN(2, ("sk_attach: 1\n"));
   1333 
   1334 	/*
   1335 	 * Call MI attach routines.
   1336 	 */
   1337 	if_attach(ifp);
   1338 
   1339 	ether_ifattach(ifp, sc_if->sk_enaddr);
   1340 
   1341 #if NRND > 0
   1342         rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
   1343             RND_TYPE_NET, 0);
   1344 #endif
   1345 
   1346 	DPRINTFN(2, ("sk_attach: end\n"));
   1347 
   1348 	return;
   1349 
   1350 fail:
   1351 	sc->sk_if[sa->skc_port] = NULL;
   1352 }
   1353 
   1354 int
   1355 skcprint(void *aux, const char *pnp)
   1356 {
   1357 	struct skc_attach_args *sa = aux;
   1358 
   1359 	if (pnp)
   1360 		aprint_normal("sk port %c at %s",
   1361 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
   1362 	else
   1363 		aprint_normal(" port %c",
   1364 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
   1365 	return (UNCONF);
   1366 }
   1367 
   1368 /*
   1369  * Attach the interface. Allocate softc structures, do ifmedia
   1370  * setup and ethernet/BPF attach.
   1371  */
   1372 void
   1373 skc_attach(struct device *parent, struct device *self, void *aux)
   1374 {
   1375 	struct sk_softc *sc = (struct sk_softc *)self;
   1376 	struct pci_attach_args *pa = aux;
   1377 	struct skc_attach_args skca;
   1378 	pci_chipset_tag_t pc = pa->pa_pc;
   1379 	pcireg_t memtype;
   1380 	pci_intr_handle_t ih;
   1381 	const char *intrstr = NULL;
   1382 	bus_addr_t iobase;
   1383 	bus_size_t iosize;
   1384 	int s, rc, sk_nodenum;
   1385 	u_int32_t command;
   1386 	char *revstr;
   1387 	struct sysctlnode *node;
   1388 
   1389 	DPRINTFN(2, ("begin skc_attach\n"));
   1390 
   1391 	s = splnet();
   1392 
   1393 	/*
   1394 	 * Handle power management nonsense.
   1395 	 */
   1396 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
   1397 
   1398 	if (command == 0x01) {
   1399 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
   1400 		if (command & SK_PSTATE_MASK) {
   1401 			u_int32_t		iobase, membase, irq;
   1402 
   1403 			/* Save important PCI config data. */
   1404 			iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
   1405 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
   1406 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
   1407 
   1408 			/* Reset the power state. */
   1409 			aprint_normal("%s chip is in D%d power mode "
   1410 			    "-- setting to D0\n", sc->sk_dev.dv_xname,
   1411 			    command & SK_PSTATE_MASK);
   1412 			command &= 0xFFFFFFFC;
   1413 			pci_conf_write(pc, pa->pa_tag,
   1414 			    SK_PCI_PWRMGMTCTRL, command);
   1415 
   1416 			/* Restore PCI config data. */
   1417 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
   1418 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
   1419 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
   1420 		}
   1421 	}
   1422 
   1423 	/*
   1424 	 * Map control/status registers.
   1425 	 */
   1426 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1427 	command |= PCI_COMMAND_IO_ENABLE |
   1428 	    PCI_COMMAND_MEM_ENABLE |
   1429 	    PCI_COMMAND_MASTER_ENABLE;
   1430 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1431 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1432 
   1433 #ifdef SK_USEIOSPACE
   1434 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
   1435 		aprint_error(": failed to enable I/O ports!\n");
   1436 		goto fail;
   1437 	}
   1438 	/*
   1439 	 * Map control/status registers.
   1440 	 */
   1441 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
   1442 			   &iobase, &iosize)) {
   1443 		aprint_error(": can't find i/o space\n");
   1444 		goto fail;
   1445 	}
   1446 #else
   1447 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1448 		aprint_error(": failed to enable memory mapping!\n");
   1449 		goto fail;
   1450 	}
   1451 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
   1452 	switch (memtype) {
   1453         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1454         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1455                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
   1456 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
   1457 				   &iobase, &iosize) == 0)
   1458                         break;
   1459         default:
   1460                 aprint_error("%s: can't find mem space\n",
   1461 		       sc->sk_dev.dv_xname);
   1462                 return;
   1463 	}
   1464 
   1465 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
   1466 #endif
   1467 	sc->sc_dmatag = pa->pa_dmat;
   1468 
   1469 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
   1470 	sc->sk_rev  = (sk_win_read_1(sc, SK_CONFIG) >> 4);
   1471 
   1472 	/* bail out here if chip is not recognized */
   1473 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
   1474 		aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
   1475 		goto fail;
   1476 	}
   1477 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
   1478 
   1479 	/* Allocate interrupt */
   1480 	if (pci_intr_map(pa, &ih)) {
   1481 		aprint_error(": couldn't map interrupt\n");
   1482 		goto fail;
   1483 	}
   1484 
   1485 	intrstr = pci_intr_string(pc, ih);
   1486 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
   1487 	if (sc->sk_intrhand == NULL) {
   1488 		aprint_error(": couldn't establish interrupt");
   1489 		if (intrstr != NULL)
   1490 			aprint_normal(" at %s", intrstr);
   1491 		goto fail;
   1492 	}
   1493 	aprint_normal(": %s\n", intrstr);
   1494 
   1495 	/* Reset the adapter. */
   1496 	sk_reset(sc);
   1497 
   1498 	/* Read and save vital product data from EEPROM. */
   1499 	sk_vpd_read(sc);
   1500 
   1501 	if (sc->sk_type == SK_GENESIS) {
   1502 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1503 		/* Read and save RAM size and RAMbuffer offset */
   1504 		switch(val) {
   1505 		case SK_RAMSIZE_512K_64:
   1506 			sc->sk_ramsize = 0x80000;
   1507 			sc->sk_rboff = SK_RBOFF_0;
   1508 			break;
   1509 		case SK_RAMSIZE_1024K_64:
   1510 			sc->sk_ramsize = 0x100000;
   1511 			sc->sk_rboff = SK_RBOFF_80000;
   1512 			break;
   1513 		case SK_RAMSIZE_1024K_128:
   1514 			sc->sk_ramsize = 0x100000;
   1515 			sc->sk_rboff = SK_RBOFF_0;
   1516 			break;
   1517 		case SK_RAMSIZE_2048K_128:
   1518 			sc->sk_ramsize = 0x200000;
   1519 			sc->sk_rboff = SK_RBOFF_0;
   1520 			break;
   1521 		default:
   1522 			aprint_error("%s: unknown ram size: %d\n",
   1523 			       sc->sk_dev.dv_xname, val);
   1524 			goto fail;
   1525 			break;
   1526 		}
   1527 
   1528 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
   1529 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
   1530 			     sc->sk_rboff));
   1531 	} else {
   1532 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1533 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
   1534 		sc->sk_rboff = SK_RBOFF_0;
   1535 
   1536 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
   1537 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
   1538 			     sc->sk_rboff));
   1539 	}
   1540 
   1541 	/* Read and save physical media type */
   1542 	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
   1543 	case SK_PMD_1000BASESX:
   1544 		sc->sk_pmd = IFM_1000_SX;
   1545 		break;
   1546 	case SK_PMD_1000BASELX:
   1547 		sc->sk_pmd = IFM_1000_LX;
   1548 		break;
   1549 	case SK_PMD_1000BASECX:
   1550 		sc->sk_pmd = IFM_1000_CX;
   1551 		break;
   1552 	case SK_PMD_1000BASETX:
   1553 	case SK_PMD_1000BASETX_ALT:
   1554 		sc->sk_pmd = IFM_1000_T;
   1555 		break;
   1556 	default:
   1557 		aprint_error("%s: unknown media type: 0x%x\n",
   1558 		    sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
   1559 		goto fail;
   1560 	}
   1561 
   1562 	/* determine whether to name it with vpd or just make it up */
   1563 	/* Marvell Yukon VPD's can freqently be bogus */
   1564 
   1565 	switch (pa->pa_id) {
   1566 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1567 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
   1568 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
   1569 	case PCI_PRODUCT_3COM_3C940:
   1570 	case PCI_PRODUCT_DLINK_DGE530T:
   1571 	case PCI_PRODUCT_DLINK_DGE560T:
   1572 	case PCI_PRODUCT_DLINK_DGE560T_2:
   1573 	case PCI_PRODUCT_LINKSYS_EG1032:
   1574 	case PCI_PRODUCT_LINKSYS_EG1064:
   1575 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1576 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
   1577 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
   1578 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
   1579 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
   1580 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
   1581 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
   1582 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
   1583  		sc->sk_name = sc->sk_vpd_prodname;
   1584  		break;
   1585 	case PCI_ID_CODE(PCI_VENDOR_GALILEO,PCI_PRODUCT_GALILEO_SKNET):
   1586 	/* whoops yukon vpd prodname bears no resemblance to reality */
   1587 		switch (sc->sk_type) {
   1588 		case SK_GENESIS:
   1589 			sc->sk_name = sc->sk_vpd_prodname;
   1590 			break;
   1591 		case SK_YUKON:
   1592 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
   1593 			break;
   1594 		case SK_YUKON_LITE:
   1595 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
   1596 			break;
   1597 		case SK_YUKON_LP:
   1598 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
   1599 			break;
   1600 		default:
   1601 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
   1602 		}
   1603 
   1604 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
   1605 
   1606 		if ( sc->sk_type == SK_YUKON ) {
   1607 			uint32_t flashaddr;
   1608 			uint8_t testbyte;
   1609 
   1610 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
   1611 
   1612 			/* test Flash-Address Register */
   1613 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
   1614 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
   1615 
   1616 			if (testbyte != 0) {
   1617 				/* this is yukon lite Rev. A0 */
   1618 				sc->sk_type = SK_YUKON_LITE;
   1619 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
   1620 				/* restore Flash-Address Register */
   1621 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
   1622 			}
   1623 		}
   1624 		break;
   1625 	case PCI_ID_CODE(PCI_VENDOR_GALILEO,PCI_PRODUCT_GALILEO_BELKIN):
   1626 		sc->sk_name = sc->sk_vpd_prodname;
   1627 		break;
   1628  	default:
   1629 		sc->sk_name = "Unkown Marvell";
   1630 	}
   1631 
   1632 
   1633 	if ( sc->sk_type == SK_YUKON_LITE ) {
   1634 		switch (sc->sk_rev) {
   1635 		case SK_YUKON_LITE_REV_A0:
   1636 			revstr = "A0";
   1637 			break;
   1638 		case SK_YUKON_LITE_REV_A1:
   1639 			revstr = "A1";
   1640 			break;
   1641 		case SK_YUKON_LITE_REV_A3:
   1642 			revstr = "A3";
   1643 			break;
   1644 		default:
   1645 			revstr = "";
   1646 		}
   1647 	} else {
   1648 		revstr = "";
   1649 	}
   1650 
   1651 	/* Announce the product name. */
   1652 	aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
   1653 			      sc->sk_name, revstr, sc->sk_rev);
   1654 
   1655 	skca.skc_port = SK_PORT_A;
   1656 	(void)config_found(&sc->sk_dev, &skca, skcprint);
   1657 
   1658 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
   1659 		skca.skc_port = SK_PORT_B;
   1660 		(void)config_found(&sc->sk_dev, &skca, skcprint);
   1661 	}
   1662 
   1663 	/* Turn on the 'driver is loaded' LED. */
   1664 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   1665 
   1666 	/* skc sysctl setup */
   1667 
   1668 	sc->sk_int_mod = SK_IM_DEFAULT;
   1669 	sc->sk_int_mod_pending = 0;
   1670 
   1671 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1672 	    0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
   1673 	    SYSCTL_DESCR("skc per-controller controls"),
   1674 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
   1675 	    CTL_EOL)) != 0) {
   1676 		aprint_normal("%s: couldn't create sysctl node\n",
   1677 		    sc->sk_dev.dv_xname);
   1678 		goto fail;
   1679 	}
   1680 
   1681 	sk_nodenum = node->sysctl_num;
   1682 
   1683 	/* interrupt moderation time in usecs */
   1684 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1685 	    CTLFLAG_READWRITE,
   1686 	    CTLTYPE_INT, "int_mod",
   1687 	    SYSCTL_DESCR("sk interrupt moderation timer"),
   1688 	    sk_sysctl_handler, 0, sc,
   1689 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
   1690 	    CTL_EOL)) != 0) {
   1691 		aprint_normal("%s: couldn't create int_mod sysctl node\n",
   1692 		    sc->sk_dev.dv_xname);
   1693 		goto fail;
   1694 	}
   1695 
   1696 fail:
   1697 	splx(s);
   1698 }
   1699 
   1700 int
   1701 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
   1702 {
   1703 	struct sk_softc		*sc = sc_if->sk_softc;
   1704 	struct sk_tx_desc	*f = NULL;
   1705 	u_int32_t		frag, cur, cnt = 0;
   1706 	int			i;
   1707 	struct sk_txmap_entry	*entry;
   1708 	bus_dmamap_t		txmap;
   1709 
   1710 	DPRINTFN(3, ("sk_encap\n"));
   1711 
   1712 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
   1713 	if (entry == NULL) {
   1714 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
   1715 		return ENOBUFS;
   1716 	}
   1717 	txmap = entry->dmamap;
   1718 
   1719 	cur = frag = *txidx;
   1720 
   1721 #ifdef SK_DEBUG
   1722 	if (skdebug >= 3)
   1723 		sk_dump_mbuf(m_head);
   1724 #endif
   1725 
   1726 	/*
   1727 	 * Start packing the mbufs in this chain into
   1728 	 * the fragment pointers. Stop when we run out
   1729 	 * of fragments or hit the end of the mbuf chain.
   1730 	 */
   1731 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
   1732 	    BUS_DMA_NOWAIT)) {
   1733 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
   1734 		return(ENOBUFS);
   1735 	}
   1736 
   1737 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
   1738 
   1739 	/* Sync the DMA map. */
   1740 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
   1741 	    BUS_DMASYNC_PREWRITE);
   1742 
   1743 	for (i = 0; i < txmap->dm_nsegs; i++) {
   1744 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
   1745 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
   1746 			return(ENOBUFS);
   1747 		}
   1748 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
   1749 		f->sk_data_lo = txmap->dm_segs[i].ds_addr;
   1750 		f->sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
   1751 		if (cnt == 0)
   1752 			f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
   1753 		else
   1754 			f->sk_ctl |= SK_TXCTL_OWN;
   1755 
   1756 		cur = frag;
   1757 		SK_INC(frag, SK_TX_RING_CNT);
   1758 		cnt++;
   1759 	}
   1760 
   1761 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
   1762 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
   1763 
   1764 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
   1765 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
   1766 		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
   1767 
   1768 	/* Sync descriptors before handing to chip */
   1769 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
   1770 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1771 
   1772 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
   1773 
   1774 	/* Sync first descriptor to hand it off */
   1775 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1776 
   1777 	sc_if->sk_cdata.sk_tx_cnt += cnt;
   1778 
   1779 #ifdef SK_DEBUG
   1780 	if (skdebug >= 3) {
   1781 		struct sk_tx_desc *desc;
   1782 		u_int32_t idx;
   1783 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
   1784 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
   1785 			sk_dump_txdesc(desc, idx);
   1786 		}
   1787 	}
   1788 #endif
   1789 
   1790 	*txidx = frag;
   1791 
   1792 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
   1793 
   1794 	return(0);
   1795 }
   1796 
   1797 void
   1798 sk_start(struct ifnet *ifp)
   1799 {
   1800         struct sk_if_softc	*sc_if = ifp->if_softc;
   1801         struct sk_softc		*sc = sc_if->sk_softc;
   1802         struct mbuf		*m_head = NULL;
   1803         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
   1804 	int			pkts = 0;
   1805 
   1806 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
   1807 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
   1808 
   1809 	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
   1810 
   1811 		IFQ_POLL(&ifp->if_snd, m_head);
   1812 		if (m_head == NULL)
   1813 			break;
   1814 
   1815 		/*
   1816 		 * Pack the data into the transmit ring. If we
   1817 		 * don't have room, set the OACTIVE flag and wait
   1818 		 * for the NIC to drain the ring.
   1819 		 */
   1820 		if (sk_encap(sc_if, m_head, &idx)) {
   1821 			ifp->if_flags |= IFF_OACTIVE;
   1822 			break;
   1823 		}
   1824 
   1825 		/* now we are committed to transmit the packet */
   1826 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1827 		pkts++;
   1828 
   1829 		/*
   1830 		 * If there's a BPF listener, bounce a copy of this frame
   1831 		 * to him.
   1832 		 */
   1833 #if NBPFILTER > 0
   1834 		if (ifp->if_bpf)
   1835 			bpf_mtap(ifp->if_bpf, m_head);
   1836 #endif
   1837 	}
   1838 	if (pkts == 0)
   1839 		return;
   1840 
   1841 	/* Transmit */
   1842 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
   1843 		sc_if->sk_cdata.sk_tx_prod = idx;
   1844 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   1845 
   1846 		/* Set a timeout in case the chip goes out to lunch. */
   1847 		ifp->if_timer = 5;
   1848 	}
   1849 }
   1850 
   1851 
   1852 void
   1853 sk_watchdog(struct ifnet *ifp)
   1854 {
   1855 	struct sk_if_softc *sc_if = ifp->if_softc;
   1856 
   1857 	printf("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
   1858 	(void) sk_init(ifp);
   1859 }
   1860 
   1861 void
   1862 sk_shutdown(void * v)
   1863 {
   1864 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
   1865 	struct sk_softc		*sc = sc_if->sk_softc;
   1866 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
   1867 
   1868 	DPRINTFN(2, ("sk_shutdown\n"));
   1869 	sk_stop(ifp,1);
   1870 
   1871 	/* Turn off the 'driver is loaded' LED. */
   1872 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   1873 
   1874 	/*
   1875 	 * Reset the GEnesis controller. Doing this should also
   1876 	 * assert the resets on the attached XMAC(s).
   1877 	 */
   1878 	sk_reset(sc);
   1879 }
   1880 
   1881 void
   1882 sk_rxeof(struct sk_if_softc *sc_if)
   1883 {
   1884 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   1885 	struct mbuf		*m;
   1886 	struct sk_chain		*cur_rx;
   1887 	struct sk_rx_desc	*cur_desc;
   1888 	int			i, cur, total_len = 0;
   1889 	u_int32_t		rxstat;
   1890 	bus_dmamap_t		dmamap;
   1891 
   1892 	i = sc_if->sk_cdata.sk_rx_prod;
   1893 
   1894 	DPRINTFN(3, ("sk_rxeof %d\n", i));
   1895 
   1896 	for (;;) {
   1897 		cur = i;
   1898 
   1899 		/* Sync the descriptor */
   1900 		SK_CDRXSYNC(sc_if, cur,
   1901 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1902 
   1903 		if (sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl & SK_RXCTL_OWN) {
   1904 			/* Invalidate the descriptor -- it's not ready yet */
   1905 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
   1906 			sc_if->sk_cdata.sk_rx_prod = i;
   1907 			break;
   1908 		}
   1909 
   1910 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
   1911 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
   1912 		dmamap = sc_if->sk_cdata.sk_rx_map[cur];
   1913 
   1914 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
   1915 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1916 
   1917 		rxstat = cur_desc->sk_xmac_rxstat;
   1918 		m = cur_rx->sk_mbuf;
   1919 		cur_rx->sk_mbuf = NULL;
   1920 		total_len = SK_RXBYTES(cur_desc->sk_ctl);
   1921 
   1922 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
   1923 
   1924 		SK_INC(i, SK_RX_RING_CNT);
   1925 
   1926 		if (rxstat & XM_RXSTAT_ERRFRAME) {
   1927 			ifp->if_ierrors++;
   1928 			sk_newbuf(sc_if, cur, m, dmamap);
   1929 			continue;
   1930 		}
   1931 
   1932 		/*
   1933 		 * Try to allocate a new jumbo buffer. If that
   1934 		 * fails, copy the packet to mbufs and put the
   1935 		 * jumbo buffer back in the ring so it can be
   1936 		 * re-used. If allocating mbufs fails, then we
   1937 		 * have to drop the packet.
   1938 		 */
   1939 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
   1940 			struct mbuf		*m0;
   1941 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
   1942 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
   1943 			sk_newbuf(sc_if, cur, m, dmamap);
   1944 			if (m0 == NULL) {
   1945 				printf("%s: no receive buffers "
   1946 				    "available -- packet dropped!\n",
   1947 				    sc_if->sk_dev.dv_xname);
   1948 				ifp->if_ierrors++;
   1949 				continue;
   1950 			}
   1951 			m_adj(m0, ETHER_ALIGN);
   1952 			m = m0;
   1953 		} else {
   1954 			m->m_pkthdr.rcvif = ifp;
   1955 			m->m_pkthdr.len = m->m_len = total_len;
   1956 		}
   1957 
   1958 		ifp->if_ipackets++;
   1959 
   1960 #if NBPFILTER > 0
   1961 		if (ifp->if_bpf)
   1962 			bpf_mtap(ifp->if_bpf, m);
   1963 #endif
   1964 		/* pass it on. */
   1965 		(*ifp->if_input)(ifp, m);
   1966 	}
   1967 }
   1968 
   1969 void
   1970 sk_txeof(struct sk_if_softc *sc_if)
   1971 {
   1972 	struct sk_softc		*sc = sc_if->sk_softc;
   1973 	struct sk_tx_desc	*cur_tx;
   1974 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   1975 	u_int32_t		idx;
   1976 	struct sk_txmap_entry	*entry;
   1977 
   1978 	DPRINTFN(3, ("sk_txeof\n"));
   1979 
   1980 	/*
   1981 	 * Go through our tx ring and free mbufs for those
   1982 	 * frames that have been sent.
   1983 	 */
   1984 	idx = sc_if->sk_cdata.sk_tx_cons;
   1985 	while(idx != sc_if->sk_cdata.sk_tx_prod) {
   1986 		SK_CDTXSYNC(sc_if, idx, 1,
   1987 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1988 
   1989 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
   1990 #ifdef SK_DEBUG
   1991 		if (skdebug >= 3)
   1992 			sk_dump_txdesc(cur_tx, idx);
   1993 #endif
   1994 		if (cur_tx->sk_ctl & SK_TXCTL_OWN) {
   1995 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
   1996 			break;
   1997 		}
   1998 		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
   1999 			ifp->if_opackets++;
   2000 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
   2001 			entry = sc_if->sk_cdata.sk_tx_map[idx];
   2002 
   2003 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
   2004 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
   2005 
   2006 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
   2007 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2008 
   2009 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
   2010 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
   2011 					  link);
   2012 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
   2013 		}
   2014 		sc_if->sk_cdata.sk_tx_cnt--;
   2015 		SK_INC(idx, SK_TX_RING_CNT);
   2016 	}
   2017 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
   2018 		ifp->if_timer = 0;
   2019 	else /* nudge chip to keep tx ring moving */
   2020 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   2021 
   2022 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
   2023 		ifp->if_flags &= ~IFF_OACTIVE;
   2024 
   2025 	sc_if->sk_cdata.sk_tx_cons = idx;
   2026 }
   2027 
   2028 void
   2029 sk_tick(void *xsc_if)
   2030 {
   2031 	struct sk_if_softc *sc_if = xsc_if;
   2032 	struct mii_data *mii = &sc_if->sk_mii;
   2033 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2034 	int i;
   2035 
   2036 	DPRINTFN(3, ("sk_tick\n"));
   2037 
   2038 	if (!(ifp->if_flags & IFF_UP))
   2039 		return;
   2040 
   2041 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2042 		sk_intr_bcom(sc_if);
   2043 		return;
   2044 	}
   2045 
   2046 	/*
   2047 	 * According to SysKonnect, the correct way to verify that
   2048 	 * the link has come back up is to poll bit 0 of the GPIO
   2049 	 * register three times. This pin has the signal from the
   2050 	 * link sync pin connected to it; if we read the same link
   2051 	 * state 3 times in a row, we know the link is up.
   2052 	 */
   2053 	for (i = 0; i < 3; i++) {
   2054 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
   2055 			break;
   2056 	}
   2057 
   2058 	if (i != 3) {
   2059 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2060 		return;
   2061 	}
   2062 
   2063 	/* Turn the GP0 interrupt back on. */
   2064 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2065 	SK_XM_READ_2(sc_if, XM_ISR);
   2066 	mii_tick(mii);
   2067 	mii_pollstat(mii);
   2068 	callout_stop(&sc_if->sk_tick_ch);
   2069 }
   2070 
   2071 void
   2072 sk_intr_bcom(struct sk_if_softc *sc_if)
   2073 {
   2074 	struct mii_data *mii = &sc_if->sk_mii;
   2075 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2076 	int status;
   2077 
   2078 
   2079 	DPRINTFN(3, ("sk_intr_bcom\n"));
   2080 
   2081 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2082 
   2083 	/*
   2084 	 * Read the PHY interrupt register to make sure
   2085 	 * we clear any pending interrupts.
   2086 	 */
   2087 	status = sk_xmac_miibus_readreg((struct device *)sc_if,
   2088 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
   2089 
   2090 	if (!(ifp->if_flags & IFF_RUNNING)) {
   2091 		sk_init_xmac(sc_if);
   2092 		return;
   2093 	}
   2094 
   2095 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
   2096 		int lstat;
   2097 		lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
   2098 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
   2099 
   2100 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
   2101 			mii_mediachg(mii);
   2102 			/* Turn off the link LED. */
   2103 			SK_IF_WRITE_1(sc_if, 0,
   2104 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2105 			sc_if->sk_link = 0;
   2106 		} else if (status & BRGPHY_ISR_LNK_CHG) {
   2107 			sk_xmac_miibus_writereg((struct device *)sc_if,
   2108 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
   2109 			mii_tick(mii);
   2110 			sc_if->sk_link = 1;
   2111 			/* Turn on the link LED. */
   2112 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2113 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
   2114 			    SK_LINKLED_BLINK_OFF);
   2115 			mii_pollstat(mii);
   2116 		} else {
   2117 			mii_tick(mii);
   2118 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
   2119 		}
   2120 	}
   2121 
   2122 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2123 }
   2124 
   2125 void
   2126 sk_intr_xmac(struct sk_if_softc	*sc_if)
   2127 {
   2128 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
   2129 
   2130 	DPRINTFN(3, ("sk_intr_xmac\n"));
   2131 
   2132 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
   2133 		if (status & XM_ISR_GP0_SET) {
   2134 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2135 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2136 		}
   2137 
   2138 		if (status & XM_ISR_AUTONEG_DONE) {
   2139 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2140 		}
   2141 	}
   2142 
   2143 	if (status & XM_IMR_TX_UNDERRUN)
   2144 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
   2145 
   2146 	if (status & XM_IMR_RX_OVERRUN)
   2147 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
   2148 }
   2149 
   2150 void
   2151 sk_intr_yukon(sc_if)
   2152 	struct sk_if_softc *sc_if;
   2153 {
   2154 	int status;
   2155 
   2156 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2157 
   2158 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
   2159 }
   2160 
   2161 int
   2162 sk_intr(void *xsc)
   2163 {
   2164 	struct sk_softc		*sc = xsc;
   2165 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
   2166 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
   2167 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
   2168 	u_int32_t		status;
   2169 	int			claimed = 0;
   2170 
   2171 	if (sc_if0 != NULL)
   2172 		ifp0 = &sc_if0->sk_ethercom.ec_if;
   2173 	if (sc_if1 != NULL)
   2174 		ifp1 = &sc_if1->sk_ethercom.ec_if;
   2175 
   2176 	for (;;) {
   2177 		status = CSR_READ_4(sc, SK_ISSR);
   2178 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
   2179 
   2180 		if (!(status & sc->sk_intrmask))
   2181 			break;
   2182 
   2183 		claimed = 1;
   2184 
   2185 		/* Handle receive interrupts first. */
   2186 		if (status & SK_ISR_RX1_EOF) {
   2187 			sk_rxeof(sc_if0);
   2188 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
   2189 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2190 		}
   2191 		if (status & SK_ISR_RX2_EOF) {
   2192 			sk_rxeof(sc_if1);
   2193 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
   2194 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2195 		}
   2196 
   2197 		/* Then transmit interrupts. */
   2198 		if (status & SK_ISR_TX1_S_EOF) {
   2199 			sk_txeof(sc_if0);
   2200 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
   2201 			    SK_TXBMU_CLR_IRQ_EOF);
   2202 		}
   2203 		if (status & SK_ISR_TX2_S_EOF) {
   2204 			sk_txeof(sc_if1);
   2205 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
   2206 			    SK_TXBMU_CLR_IRQ_EOF);
   2207 		}
   2208 
   2209 		/* Then MAC interrupts. */
   2210 		if (status & SK_ISR_MAC1 && (ifp0->if_flags & IFF_RUNNING)) {
   2211 			if (sc->sk_type == SK_GENESIS)
   2212 				sk_intr_xmac(sc_if0);
   2213 			else
   2214 				sk_intr_yukon(sc_if0);
   2215 		}
   2216 
   2217 		if (status & SK_ISR_MAC2 && (ifp1->if_flags & IFF_RUNNING)) {
   2218 			if (sc->sk_type == SK_GENESIS)
   2219 				sk_intr_xmac(sc_if1);
   2220 			else
   2221 				sk_intr_yukon(sc_if1);
   2222 
   2223 		}
   2224 
   2225 		if (status & SK_ISR_EXTERNAL_REG) {
   2226 			if (ifp0 != NULL &&
   2227 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
   2228 				sk_intr_bcom(sc_if0);
   2229 
   2230 			if (ifp1 != NULL &&
   2231 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
   2232 				sk_intr_bcom(sc_if1);
   2233 		}
   2234 	}
   2235 
   2236 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2237 
   2238 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
   2239 		sk_start(ifp0);
   2240 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
   2241 		sk_start(ifp1);
   2242 
   2243 #if NRND > 0
   2244 	if (RND_ENABLED(&sc->rnd_source))
   2245 		rnd_add_uint32(&sc->rnd_source, status);
   2246 #endif
   2247 
   2248 	if (sc->sk_int_mod_pending)
   2249 		sk_update_int_mod(sc);
   2250 
   2251 	return (claimed);
   2252 }
   2253 
   2254 void
   2255 sk_init_xmac(struct sk_if_softc	*sc_if)
   2256 {
   2257 	struct sk_softc		*sc = sc_if->sk_softc;
   2258 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2259 	static const struct sk_bcom_hack     bhack[] = {
   2260 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
   2261 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
   2262 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
   2263 	{ 0, 0 } };
   2264 
   2265 	DPRINTFN(1, ("sk_init_xmac\n"));
   2266 
   2267 	/* Unreset the XMAC. */
   2268 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
   2269 	DELAY(1000);
   2270 
   2271 	/* Reset the XMAC's internal state. */
   2272 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2273 
   2274 	/* Save the XMAC II revision */
   2275 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
   2276 
   2277 	/*
   2278 	 * Perform additional initialization for external PHYs,
   2279 	 * namely for the 1000baseTX cards that use the XMAC's
   2280 	 * GMII mode.
   2281 	 */
   2282 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2283 		int			i = 0;
   2284 		u_int32_t		val;
   2285 
   2286 		/* Take PHY out of reset. */
   2287 		val = sk_win_read_4(sc, SK_GPIO);
   2288 		if (sc_if->sk_port == SK_PORT_A)
   2289 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
   2290 		else
   2291 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
   2292 		sk_win_write_4(sc, SK_GPIO, val);
   2293 
   2294 		/* Enable GMII mode on the XMAC. */
   2295 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
   2296 
   2297 		sk_xmac_miibus_writereg((struct device *)sc_if,
   2298 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
   2299 		DELAY(10000);
   2300 		sk_xmac_miibus_writereg((struct device *)sc_if,
   2301 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
   2302 
   2303 		/*
   2304 		 * Early versions of the BCM5400 apparently have
   2305 		 * a bug that requires them to have their reserved
   2306 		 * registers initialized to some magic values. I don't
   2307 		 * know what the numbers do, I'm just the messenger.
   2308 		 */
   2309 		if (sk_xmac_miibus_readreg((struct device *)sc_if,
   2310 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
   2311 			while(bhack[i].reg) {
   2312 				sk_xmac_miibus_writereg((struct device *)sc_if,
   2313 				    SK_PHYADDR_BCOM, bhack[i].reg,
   2314 				    bhack[i].val);
   2315 				i++;
   2316 			}
   2317 		}
   2318 	}
   2319 
   2320 	/* Set station address */
   2321 	SK_XM_WRITE_2(sc_if, XM_PAR0,
   2322 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
   2323 	SK_XM_WRITE_2(sc_if, XM_PAR1,
   2324 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
   2325 	SK_XM_WRITE_2(sc_if, XM_PAR2,
   2326 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
   2327 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
   2328 
   2329 	if (ifp->if_flags & IFF_PROMISC) {
   2330 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2331 	} else {
   2332 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2333 	}
   2334 
   2335 	if (ifp->if_flags & IFF_BROADCAST) {
   2336 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2337 	} else {
   2338 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2339 	}
   2340 
   2341 	/* We don't need the FCS appended to the packet. */
   2342 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
   2343 
   2344 	/* We want short frames padded to 60 bytes. */
   2345 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
   2346 
   2347 	/*
   2348 	 * Enable the reception of all error frames. This is is
   2349 	 * a necessary evil due to the design of the XMAC. The
   2350 	 * XMAC's receive FIFO is only 8K in size, however jumbo
   2351 	 * frames can be up to 9000 bytes in length. When bad
   2352 	 * frame filtering is enabled, the XMAC's RX FIFO operates
   2353 	 * in 'store and forward' mode. For this to work, the
   2354 	 * entire frame has to fit into the FIFO, but that means
   2355 	 * that jumbo frames larger than 8192 bytes will be
   2356 	 * truncated. Disabling all bad frame filtering causes
   2357 	 * the RX FIFO to operate in streaming mode, in which
   2358 	 * case the XMAC will start transfering frames out of the
   2359 	 * RX FIFO as soon as the FIFO threshold is reached.
   2360 	 */
   2361 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
   2362 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
   2363 	    XM_MODE_RX_INRANGELEN);
   2364 
   2365 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2366 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2367 	else
   2368 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2369 
   2370 	/*
   2371 	 * Bump up the transmit threshold. This helps hold off transmit
   2372 	 * underruns when we're blasting traffic from both ports at once.
   2373 	 */
   2374 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
   2375 
   2376 	/* Set multicast filter */
   2377 	sk_setmulti(sc_if);
   2378 
   2379 	/* Clear and enable interrupts */
   2380 	SK_XM_READ_2(sc_if, XM_ISR);
   2381 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
   2382 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
   2383 	else
   2384 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2385 
   2386 	/* Configure MAC arbiter */
   2387 	switch(sc_if->sk_xmac_rev) {
   2388 	case XM_XMAC_REV_B2:
   2389 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
   2390 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
   2391 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
   2392 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
   2393 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
   2394 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
   2395 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
   2396 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
   2397 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2398 		break;
   2399 	case XM_XMAC_REV_C1:
   2400 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
   2401 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
   2402 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
   2403 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
   2404 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
   2405 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
   2406 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
   2407 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
   2408 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2409 		break;
   2410 	default:
   2411 		break;
   2412 	}
   2413 	sk_win_write_2(sc, SK_MACARB_CTL,
   2414 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
   2415 
   2416 	sc_if->sk_link = 1;
   2417 }
   2418 
   2419 void sk_init_yukon(sc_if)
   2420 	struct sk_if_softc	*sc_if;
   2421 {
   2422 	u_int32_t		/*mac, */phy;
   2423 	u_int16_t		reg;
   2424 	struct sk_softc		*sc;
   2425 	int			i;
   2426 
   2427 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
   2428 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
   2429 
   2430 	sc = sc_if->sk_softc;
   2431 	if (sc->sk_type == SK_YUKON_LITE &&
   2432 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
   2433 		/* Take PHY out of reset. */
   2434 		sk_win_write_4(sc, SK_GPIO,
   2435 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
   2436 	}
   2437 
   2438 
   2439 	/* GMAC and GPHY Reset */
   2440 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
   2441 
   2442 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
   2443 
   2444 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2445 	DELAY(1000);
   2446 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
   2447 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2448 	DELAY(1000);
   2449 
   2450 
   2451 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
   2452 
   2453 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
   2454 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
   2455 
   2456 	switch(sc_if->sk_softc->sk_pmd) {
   2457 	case IFM_1000_SX:
   2458 	case IFM_1000_LX:
   2459 		phy |= SK_GPHY_FIBER;
   2460 		break;
   2461 
   2462 	case IFM_1000_CX:
   2463 	case IFM_1000_T:
   2464 		phy |= SK_GPHY_COPPER;
   2465 		break;
   2466 	}
   2467 
   2468 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
   2469 
   2470 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
   2471 	DELAY(1000);
   2472 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
   2473 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
   2474 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
   2475 
   2476 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
   2477 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
   2478 
   2479 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
   2480 
   2481 	/* unused read of the interrupt source register */
   2482 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
   2483 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2484 
   2485 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
   2486 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
   2487 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2488 
   2489 	/* MIB Counter Clear Mode set */
   2490         reg |= YU_PAR_MIB_CLR;
   2491 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2492 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
   2493 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2494 
   2495 	/* MIB Counter Clear Mode clear */
   2496 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
   2497         reg &= ~YU_PAR_MIB_CLR;
   2498 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2499 
   2500 	/* receive control reg */
   2501 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
   2502 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
   2503 		      YU_RCR_CRCR);
   2504 
   2505 	/* transmit parameter register */
   2506 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
   2507 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
   2508 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
   2509 
   2510 	/* serial mode register */
   2511 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
   2512 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
   2513 		      YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e));
   2514 
   2515 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
   2516 	/* Setup Yukon's address */
   2517 	for (i = 0; i < 3; i++) {
   2518 		/* Write Source Address 1 (unicast filter) */
   2519 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
   2520 			      sc_if->sk_enaddr[i * 2] |
   2521 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
   2522 	}
   2523 
   2524 	for (i = 0; i < 3; i++) {
   2525 		reg = sk_win_read_2(sc_if->sk_softc,
   2526 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
   2527 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
   2528 	}
   2529 
   2530 	/* Set multicast filter */
   2531 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
   2532 	sk_setmulti(sc_if);
   2533 
   2534 	/* enable interrupt mask for counter overflows */
   2535 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
   2536 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
   2537 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
   2538 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
   2539 
   2540 	/* Configure RX MAC FIFO */
   2541 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
   2542 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
   2543 
   2544 	/* Configure TX MAC FIFO */
   2545 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
   2546 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
   2547 
   2548 	DPRINTFN(6, ("sk_init_yukon: end\n"));
   2549 }
   2550 
   2551 /*
   2552  * Note that to properly initialize any part of the GEnesis chip,
   2553  * you first have to take it out of reset mode.
   2554  */
   2555 int
   2556 sk_init(struct ifnet *ifp)
   2557 {
   2558 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2559 	struct sk_softc		*sc = sc_if->sk_softc;
   2560 	struct mii_data		*mii = &sc_if->sk_mii;
   2561 	int			s;
   2562 	u_int32_t		imr, sk_imtimer_ticks;
   2563 
   2564 	DPRINTFN(1, ("sk_init\n"));
   2565 
   2566 	s = splnet();
   2567 
   2568 	if (ifp->if_flags & IFF_RUNNING) {
   2569 		splx(s);
   2570 		return 0;
   2571 	}
   2572 
   2573 	/* Cancel pending I/O and free all RX/TX buffers. */
   2574 	sk_stop(ifp,0);
   2575 
   2576 	if (sc->sk_type == SK_GENESIS) {
   2577 		/* Configure LINK_SYNC LED */
   2578 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
   2579 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2580 			      SK_LINKLED_LINKSYNC_ON);
   2581 
   2582 		/* Configure RX LED */
   2583 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
   2584 			      SK_RXLEDCTL_COUNTER_START);
   2585 
   2586 		/* Configure TX LED */
   2587 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
   2588 			      SK_TXLEDCTL_COUNTER_START);
   2589 	}
   2590 
   2591 	/* Configure I2C registers */
   2592 
   2593 	/* Configure XMAC(s) */
   2594 	switch (sc->sk_type) {
   2595 	case SK_GENESIS:
   2596 		sk_init_xmac(sc_if);
   2597 		break;
   2598 	case SK_YUKON:
   2599 	case SK_YUKON_LITE:
   2600 	case SK_YUKON_LP:
   2601 		sk_init_yukon(sc_if);
   2602 		break;
   2603 	}
   2604 	mii_mediachg(mii);
   2605 
   2606 	if (sc->sk_type == SK_GENESIS) {
   2607 		/* Configure MAC FIFOs */
   2608 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
   2609 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
   2610 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
   2611 
   2612 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
   2613 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
   2614 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
   2615 	}
   2616 
   2617 	/* Configure transmit arbiter(s) */
   2618 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
   2619 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
   2620 
   2621 	/* Configure RAMbuffers */
   2622 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
   2623 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
   2624 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
   2625 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
   2626 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
   2627 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
   2628 
   2629 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
   2630 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
   2631 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
   2632 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
   2633 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
   2634 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
   2635 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
   2636 
   2637 	/* Configure BMUs */
   2638 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
   2639 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
   2640 	    SK_RX_RING_ADDR(sc_if, 0));
   2641 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
   2642 
   2643 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
   2644 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
   2645             SK_TX_RING_ADDR(sc_if, 0));
   2646 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
   2647 
   2648 	/* Init descriptors */
   2649 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
   2650 		printf("%s: initialization failed: no "
   2651 		    "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
   2652 		sk_stop(ifp,0);
   2653 		splx(s);
   2654 		return(ENOBUFS);
   2655 	}
   2656 
   2657 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
   2658 		printf("%s: initialization failed: no "
   2659 		    "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
   2660 		sk_stop(ifp,0);
   2661 		splx(s);
   2662 		return(ENOBUFS);
   2663 	}
   2664 
   2665 	/* Set interrupt moderation if changed via sysctl. */
   2666 	switch (sc->sk_type) {
   2667 	case SK_GENESIS:
   2668 		sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   2669 		break;
   2670 	case SK_YUKON_EC:
   2671 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   2672 		break;
   2673 	default:
   2674 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   2675 	}
   2676 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
   2677 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
   2678 		sk_win_write_4(sc, SK_IMTIMERINIT,
   2679 		    SK_IM_USECS(sc->sk_int_mod));
   2680 		aprint_verbose("%s: interrupt moderation is %d us\n",
   2681 		    sc->sk_dev.dv_xname, sc->sk_int_mod);
   2682 	}
   2683 
   2684 	/* Configure interrupt handling */
   2685 	CSR_READ_4(sc, SK_ISSR);
   2686 	if (sc_if->sk_port == SK_PORT_A)
   2687 		sc->sk_intrmask |= SK_INTRS1;
   2688 	else
   2689 		sc->sk_intrmask |= SK_INTRS2;
   2690 
   2691 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
   2692 
   2693 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2694 
   2695 	/* Start BMUs. */
   2696 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
   2697 
   2698 	if (sc->sk_type == SK_GENESIS) {
   2699 		/* Enable XMACs TX and RX state machines */
   2700 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
   2701 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
   2702 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2703 	}
   2704 
   2705 	if (SK_YUKON_FAMILY(sc->sk_type)) {
   2706 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
   2707 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
   2708 		reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
   2709 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
   2710 	}
   2711 
   2712 
   2713 	ifp->if_flags |= IFF_RUNNING;
   2714 	ifp->if_flags &= ~IFF_OACTIVE;
   2715 
   2716 	splx(s);
   2717 	return(0);
   2718 }
   2719 
   2720 void
   2721 sk_stop(struct ifnet *ifp, int disable)
   2722 {
   2723         struct sk_if_softc	*sc_if = ifp->if_softc;
   2724 	struct sk_softc		*sc = sc_if->sk_softc;
   2725 	//struct sk_txmap_entry	*dma;
   2726 	int			i;
   2727 
   2728 	DPRINTFN(1, ("sk_stop\n"));
   2729 
   2730 	callout_stop(&sc_if->sk_tick_ch);
   2731 
   2732 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2733 		u_int32_t		val;
   2734 
   2735 		/* Put PHY back into reset. */
   2736 		val = sk_win_read_4(sc, SK_GPIO);
   2737 		if (sc_if->sk_port == SK_PORT_A) {
   2738 			val |= SK_GPIO_DIR0;
   2739 			val &= ~SK_GPIO_DAT0;
   2740 		} else {
   2741 			val |= SK_GPIO_DIR2;
   2742 			val &= ~SK_GPIO_DAT2;
   2743 		}
   2744 		sk_win_write_4(sc, SK_GPIO, val);
   2745 	}
   2746 
   2747 	/* Turn off various components of this interface. */
   2748 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2749 	switch (sc->sk_type) {
   2750 	case SK_GENESIS:
   2751 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
   2752 			      SK_TXMACCTL_XMAC_RESET);
   2753 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
   2754 		break;
   2755 	case SK_YUKON:
   2756 	case SK_YUKON_LITE:
   2757 	case SK_YUKON_LP:
   2758 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
   2759 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
   2760 		break;
   2761 	}
   2762 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
   2763 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2764 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
   2765 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2766 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
   2767 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2768 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2769 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2770 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
   2771 
   2772 	/* Disable interrupts */
   2773 	if (sc_if->sk_port == SK_PORT_A)
   2774 		sc->sk_intrmask &= ~SK_INTRS1;
   2775 	else
   2776 		sc->sk_intrmask &= ~SK_INTRS2;
   2777 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2778 
   2779 	SK_XM_READ_2(sc_if, XM_ISR);
   2780 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2781 
   2782 	/* Free RX and TX mbufs still in the queues. */
   2783 	for (i = 0; i < SK_RX_RING_CNT; i++) {
   2784 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
   2785 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
   2786 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   2787 		}
   2788 	}
   2789 
   2790 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   2791 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
   2792 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
   2793 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   2794 		}
   2795 	}
   2796 
   2797 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
   2798 }
   2799 
   2800 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
   2801 
   2802 /*
   2803 struct cfdriver skc_cd = {
   2804 	0, "skc", DV_DULL
   2805 };
   2806 */
   2807 
   2808 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
   2809 
   2810 /*
   2811 struct cfdriver sk_cd = {
   2812 	0, "sk", DV_IFNET
   2813 };
   2814 */
   2815 
   2816 #ifdef SK_DEBUG
   2817 void
   2818 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
   2819 {
   2820 #define DESC_PRINT(X)					\
   2821 	if (desc->X)					\
   2822 		printf("txdesc[%d]." #X "=%#x\n",	\
   2823 		       idx, desc->X);
   2824 
   2825 	DESC_PRINT(sk_ctl);
   2826 	DESC_PRINT(sk_next);
   2827 	DESC_PRINT(sk_data_lo);
   2828 	DESC_PRINT(sk_data_hi);
   2829 	DESC_PRINT(sk_xmac_txstat);
   2830 	DESC_PRINT(sk_rsvd0);
   2831 	DESC_PRINT(sk_csum_startval);
   2832 	DESC_PRINT(sk_csum_startpos);
   2833 	DESC_PRINT(sk_csum_writepos);
   2834 	DESC_PRINT(sk_rsvd1);
   2835 #undef PRINT
   2836 }
   2837 
   2838 void
   2839 sk_dump_bytes(const char *data, int len)
   2840 {
   2841 	int c, i, j;
   2842 
   2843 	for (i = 0; i < len; i += 16) {
   2844 		printf("%08x  ", i);
   2845 		c = len - i;
   2846 		if (c > 16) c = 16;
   2847 
   2848 		for (j = 0; j < c; j++) {
   2849 			printf("%02x ", data[i + j] & 0xff);
   2850 			if ((j & 0xf) == 7 && j > 0)
   2851 				printf(" ");
   2852 		}
   2853 
   2854 		for (; j < 16; j++)
   2855 			printf("   ");
   2856 		printf("  ");
   2857 
   2858 		for (j = 0; j < c; j++) {
   2859 			int ch = data[i + j] & 0xff;
   2860 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
   2861 		}
   2862 
   2863 		printf("\n");
   2864 
   2865 		if (c < 16)
   2866 			break;
   2867 	}
   2868 }
   2869 
   2870 void
   2871 sk_dump_mbuf(struct mbuf *m)
   2872 {
   2873 	int count = m->m_pkthdr.len;
   2874 
   2875 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
   2876 
   2877 	while (count > 0 && m) {
   2878 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
   2879 		       m, m->m_data, m->m_len);
   2880 		sk_dump_bytes(mtod(m, char *), m->m_len);
   2881 
   2882 		count -= m->m_len;
   2883 		m = m->m_next;
   2884 	}
   2885 }
   2886 #endif
   2887 
   2888 static int
   2889 sk_sysctl_handler(SYSCTLFN_ARGS)
   2890 {
   2891 	int error, t;
   2892 	struct sysctlnode node;
   2893 	struct sk_softc *sc;
   2894 
   2895 	node = *rnode;
   2896 	sc = node.sysctl_data;
   2897 	t = sc->sk_int_mod;
   2898 	node.sysctl_data = &t;
   2899 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2900 	if (error || newp == NULL)
   2901 		return (error);
   2902 
   2903 	if (t < SK_IM_MIN || t > SK_IM_MAX)
   2904 		return (EINVAL);
   2905 
   2906 	/* update the softc with sysctl-changed value, and mark
   2907 	   for hardware update */
   2908 	sc->sk_int_mod = t;
   2909 	sc->sk_int_mod_pending = 1;
   2910 	return (0);
   2911 }
   2912 
   2913 /*
   2914  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
   2915  * set up in skc_attach()
   2916  */
   2917 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
   2918 {
   2919 	int rc;
   2920 	struct sysctlnode *node;
   2921 
   2922 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   2923 	    0, CTLTYPE_NODE, "hw", NULL,
   2924 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   2925 		goto err;
   2926 	}
   2927 
   2928 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   2929 	    0, CTLTYPE_NODE, "sk",
   2930 	    SYSCTL_DESCR("sk interface controls"),
   2931 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   2932 		goto err;
   2933 	}
   2934 
   2935 	sk_root_num = node->sysctl_num;
   2936 	return;
   2937 
   2938 err:
   2939 	printf("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
   2940 }
   2941