Home | History | Annotate | Line # | Download | only in pci
if_sk.c revision 1.15
      1 /*	$NetBSD: if_sk.c,v 1.15 2005/05/30 04:35:22 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the NetBSD
     18  *	Foundation, Inc. and its contributors.
     19  * 4. Neither the name of The NetBSD Foundation nor the names of its
     20  *    contributors may be used to endorse or promote products derived
     21  *    from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 /*	$OpenBSD: if_sk.c,v 1.33 2003/08/12 05:23:06 nate Exp $	*/
     37 
     38 /*
     39  * Copyright (c) 1997, 1998, 1999, 2000
     40  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by Bill Paul.
     53  * 4. Neither the name of the author nor the names of any co-contributors
     54  *    may be used to endorse or promote products derived from this software
     55  *    without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     61  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     62  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     63  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     64  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     65  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     66  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     67  * THE POSSIBILITY OF SUCH DAMAGE.
     68  *
     69  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
     70  */
     71 
     72 /*
     73  * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
     74  *
     75  * Permission to use, copy, modify, and distribute this software for any
     76  * purpose with or without fee is hereby granted, provided that the above
     77  * copyright notice and this permission notice appear in all copies.
     78  *
     79  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     80  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     81  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     82  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     83  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     84  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     85  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     86  */
     87 
     88 /*
     89  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
     90  * the SK-984x series adapters, both single port and dual port.
     91  * References:
     92  * 	The XaQti XMAC II datasheet,
     93  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     94  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
     95  *
     96  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
     97  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
     98  * convenience to others until Vitesse corrects this problem:
     99  *
    100  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
    101  *
    102  * Written by Bill Paul <wpaul (at) ee.columbia.edu>
    103  * Department of Electrical Engineering
    104  * Columbia University, New York City
    105  */
    106 
    107 /*
    108  * The SysKonnect gigabit ethernet adapters consist of two main
    109  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
    110  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
    111  * components and a PHY while the GEnesis controller provides a PCI
    112  * interface with DMA support. Each card may have between 512K and
    113  * 2MB of SRAM on board depending on the configuration.
    114  *
    115  * The SysKonnect GEnesis controller can have either one or two XMAC
    116  * chips connected to it, allowing single or dual port NIC configurations.
    117  * SysKonnect has the distinction of being the only vendor on the market
    118  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
    119  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
    120  * XMAC registers. This driver takes advantage of these features to allow
    121  * both XMACs to operate as independent interfaces.
    122  */
    123 
    124 #include "bpfilter.h"
    125 
    126 #include <sys/param.h>
    127 #include <sys/systm.h>
    128 #include <sys/sockio.h>
    129 #include <sys/mbuf.h>
    130 #include <sys/malloc.h>
    131 #include <sys/kernel.h>
    132 #include <sys/socket.h>
    133 #include <sys/device.h>
    134 #include <sys/queue.h>
    135 #include <sys/callout.h>
    136 
    137 #include <net/if.h>
    138 #include <net/if_dl.h>
    139 #include <net/if_types.h>
    140 
    141 #ifdef INET
    142 #include <netinet/in.h>
    143 #include <netinet/in_systm.h>
    144 #include <netinet/in_var.h>
    145 #include <netinet/ip.h>
    146 #include <netinet/if_ether.h>
    147 #endif
    148 
    149 #include <net/if_media.h>
    150 
    151 #if NBPFILTER > 0
    152 #include <net/bpf.h>
    153 #endif
    154 
    155 #include <dev/mii/mii.h>
    156 #include <dev/mii/miivar.h>
    157 #include <dev/mii/brgphyreg.h>
    158 
    159 #include <dev/pci/pcireg.h>
    160 #include <dev/pci/pcivar.h>
    161 #include <dev/pci/pcidevs.h>
    162 
    163 #define	SK_VERBOSE
    164 /* #define SK_USEIOSPACE */
    165 
    166 #include <dev/pci/if_skreg.h>
    167 #include <dev/pci/if_skvar.h>
    168 
    169 int skc_probe(struct device *, struct cfdata *, void *);
    170 void skc_attach(struct device *, struct device *self, void *aux);
    171 int sk_probe(struct device *, struct cfdata *, void *);
    172 void sk_attach(struct device *, struct device *self, void *aux);
    173 int skcprint(void *, const char *);
    174 int sk_intr(void *);
    175 void sk_intr_bcom(struct sk_if_softc *);
    176 void sk_intr_xmac(struct sk_if_softc *);
    177 void sk_intr_yukon(struct sk_if_softc *);
    178 void sk_rxeof(struct sk_if_softc *);
    179 void sk_txeof(struct sk_if_softc *);
    180 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
    181 void sk_start(struct ifnet *);
    182 int sk_ioctl(struct ifnet *, u_long, caddr_t);
    183 int sk_init(struct ifnet *);
    184 void sk_init_xmac(struct sk_if_softc *);
    185 void sk_init_yukon(struct sk_if_softc *);
    186 void sk_stop(struct ifnet *, int);
    187 void sk_watchdog(struct ifnet *);
    188 void sk_shutdown(void *);
    189 int sk_ifmedia_upd(struct ifnet *);
    190 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    191 void sk_reset(struct sk_softc *);
    192 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
    193 int sk_init_rx_ring(struct sk_if_softc *);
    194 int sk_init_tx_ring(struct sk_if_softc *);
    195 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
    196 void sk_vpd_read_res(struct sk_softc *,
    197 					struct vpd_res *, int);
    198 void sk_vpd_read(struct sk_softc *);
    199 
    200 int sk_xmac_miibus_readreg(struct device *, int, int);
    201 void sk_xmac_miibus_writereg(struct device *, int, int, int);
    202 void sk_xmac_miibus_statchg(struct device *);
    203 
    204 int sk_marv_miibus_readreg(struct device *, int, int);
    205 void sk_marv_miibus_writereg(struct device *, int, int, int);
    206 void sk_marv_miibus_statchg(struct device *);
    207 
    208 u_int32_t sk_xmac_hash(caddr_t);
    209 u_int32_t sk_yukon_hash(caddr_t);
    210 void sk_setfilt(struct sk_if_softc *, caddr_t, int);
    211 void sk_setmulti(struct sk_if_softc *);
    212 void sk_tick(void *);
    213 
    214 /* #define SK_DEBUG 2 */
    215 #ifdef SK_DEBUG
    216 #define DPRINTF(x)	if (skdebug) printf x
    217 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
    218 int	skdebug = SK_DEBUG;
    219 
    220 void sk_dump_txdesc(struct sk_tx_desc *, int);
    221 void sk_dump_mbuf(struct mbuf *);
    222 void sk_dump_bytes(const char *, int);
    223 #else
    224 #define DPRINTF(x)
    225 #define DPRINTFN(n,x)
    226 #endif
    227 
    228 #define SK_SETBIT(sc, reg, x)		\
    229 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
    230 
    231 #define SK_CLRBIT(sc, reg, x)		\
    232 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
    233 
    234 #define SK_WIN_SETBIT_4(sc, reg, x)	\
    235 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
    236 
    237 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
    238 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
    239 
    240 #define SK_WIN_SETBIT_2(sc, reg, x)	\
    241 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
    242 
    243 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
    244 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
    245 
    246 /* supported device vendors */
    247 static const struct sk_product {
    248 	pci_vendor_id_t		sk_vendor;
    249 	pci_product_id_t	sk_product;
    250 } sk_products[] = {
    251 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
    252 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
    253 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032, },
    254 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
    255 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
    256 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
    257 	{ PCI_VENDOR_GALILEO, PCI_PRODUCT_GALILEO_SKNET, },
    258 	{ PCI_VENDOR_GALILEO, PCI_PRODUCT_GALILEO_BELKIN, },
    259 	{ 0, 0, }
    260 };
    261 
    262 static inline u_int32_t
    263 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
    264 {
    265 #ifdef SK_USEIOSPACE
    266 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    267 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
    268 #else
    269 	return CSR_READ_4(sc, reg);
    270 #endif
    271 }
    272 
    273 static inline u_int16_t
    274 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
    275 {
    276 #ifdef SK_USEIOSPACE
    277 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    278 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
    279 #else
    280 	return CSR_READ_2(sc, reg);
    281 #endif
    282 }
    283 
    284 static inline u_int8_t
    285 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
    286 {
    287 #ifdef SK_USEIOSPACE
    288 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    289 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
    290 #else
    291 	return CSR_READ_1(sc, reg);
    292 #endif
    293 }
    294 
    295 static inline void
    296 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
    297 {
    298 #ifdef SK_USEIOSPACE
    299 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    300 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
    301 #else
    302 	CSR_WRITE_4(sc, reg, x);
    303 #endif
    304 }
    305 
    306 static inline void
    307 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
    308 {
    309 #ifdef SK_USEIOSPACE
    310 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    311 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
    312 #else
    313 	CSR_WRITE_2(sc, reg, x);
    314 #endif
    315 }
    316 
    317 static inline void
    318 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
    319 {
    320 #ifdef SK_USEIOSPACE
    321 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    322 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
    323 #else
    324 	CSR_WRITE_1(sc, reg, x);
    325 #endif
    326 }
    327 
    328 /*
    329  * The VPD EEPROM contains Vital Product Data, as suggested in
    330  * the PCI 2.1 specification. The VPD data is separared into areas
    331  * denoted by resource IDs. The SysKonnect VPD contains an ID string
    332  * resource (the name of the adapter), a read-only area resource
    333  * containing various key/data fields and a read/write area which
    334  * can be used to store asset management information or log messages.
    335  * We read the ID string and read-only into buffers attached to
    336  * the controller softc structure for later use. At the moment,
    337  * we only use the ID string during sk_attach().
    338  */
    339 u_int8_t
    340 sk_vpd_readbyte(struct sk_softc *sc, int addr)
    341 {
    342 	int			i;
    343 
    344 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
    345 	for (i = 0; i < SK_TIMEOUT; i++) {
    346 		DELAY(1);
    347 		if (sk_win_read_2(sc,
    348 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
    349 			break;
    350 	}
    351 
    352 	if (i == SK_TIMEOUT)
    353 		return(0);
    354 
    355 	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
    356 }
    357 
    358 void
    359 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
    360 {
    361 	int			i;
    362 	u_int8_t		*ptr;
    363 
    364 	ptr = (u_int8_t *)res;
    365 	for (i = 0; i < sizeof(struct vpd_res); i++)
    366 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
    367 }
    368 
    369 void
    370 sk_vpd_read(struct sk_softc *sc)
    371 {
    372 	int			pos = 0, i;
    373 	struct vpd_res		res;
    374 
    375 	if (sc->sk_vpd_prodname != NULL)
    376 		free(sc->sk_vpd_prodname, M_DEVBUF);
    377 	if (sc->sk_vpd_readonly != NULL)
    378 		free(sc->sk_vpd_readonly, M_DEVBUF);
    379 	sc->sk_vpd_prodname = NULL;
    380 	sc->sk_vpd_readonly = NULL;
    381 
    382 	sk_vpd_read_res(sc, &res, pos);
    383 
    384 	if (res.vr_id != VPD_RES_ID) {
    385 		printf("%s: bad VPD resource id: expected %x got %x\n",
    386 		    sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
    387 		return;
    388 	}
    389 
    390 	pos += sizeof(res);
    391 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    392 	if (sc->sk_vpd_prodname == NULL)
    393 		panic("sk_vpd_read");
    394 	for (i = 0; i < res.vr_len; i++)
    395 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
    396 	sc->sk_vpd_prodname[i] = '\0';
    397 	pos += i;
    398 
    399 	sk_vpd_read_res(sc, &res, pos);
    400 
    401 	if (res.vr_id != VPD_RES_READ) {
    402 		printf("%s: bad VPD resource id: expected %x got %x\n",
    403 		    sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
    404 		return;
    405 	}
    406 
    407 	pos += sizeof(res);
    408 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    409 	if (sc->sk_vpd_readonly == NULL)
    410 		panic("sk_vpd_read");
    411 	for (i = 0; i < res.vr_len ; i++)
    412 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
    413 }
    414 
    415 int
    416 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
    417 {
    418 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    419 	int i;
    420 
    421 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
    422 
    423 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
    424 		return(0);
    425 
    426 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    427 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
    428 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    429 		for (i = 0; i < SK_TIMEOUT; i++) {
    430 			DELAY(1);
    431 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
    432 			    XM_MMUCMD_PHYDATARDY)
    433 				break;
    434 		}
    435 
    436 		if (i == SK_TIMEOUT) {
    437 			printf("%s: phy failed to come ready\n",
    438 			    sc_if->sk_dev.dv_xname);
    439 			return(0);
    440 		}
    441 	}
    442 	DELAY(1);
    443 	return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
    444 }
    445 
    446 void
    447 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
    448 {
    449 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    450 	int i;
    451 
    452 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
    453 
    454 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    455 	for (i = 0; i < SK_TIMEOUT; i++) {
    456 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    457 			break;
    458 	}
    459 
    460 	if (i == SK_TIMEOUT) {
    461 		printf("%s: phy failed to come ready\n",
    462 		    sc_if->sk_dev.dv_xname);
    463 		return;
    464 	}
    465 
    466 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
    467 	for (i = 0; i < SK_TIMEOUT; i++) {
    468 		DELAY(1);
    469 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    470 			break;
    471 	}
    472 
    473 	if (i == SK_TIMEOUT)
    474 		printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
    475 }
    476 
    477 void
    478 sk_xmac_miibus_statchg(struct device *dev)
    479 {
    480 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    481 	struct mii_data *mii = &sc_if->sk_mii;
    482 
    483 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
    484 
    485 	/*
    486 	 * If this is a GMII PHY, manually set the XMAC's
    487 	 * duplex mode accordingly.
    488 	 */
    489 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    490 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
    491 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    492 		} else {
    493 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    494 		}
    495 	}
    496 }
    497 
    498 int
    499 sk_marv_miibus_readreg(dev, phy, reg)
    500 	struct device *dev;
    501 	int phy, reg;
    502 {
    503 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    504 	u_int16_t val;
    505 	int i;
    506 
    507 	if (phy != 0 ||
    508 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
    509 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
    510 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
    511 			     phy, reg));
    512 		return(0);
    513 	}
    514 
    515         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    516 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
    517 
    518 	for (i = 0; i < SK_TIMEOUT; i++) {
    519 		DELAY(1);
    520 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
    521 		if (val & YU_SMICR_READ_VALID)
    522 			break;
    523 	}
    524 
    525 	if (i == SK_TIMEOUT) {
    526 		printf("%s: phy failed to come ready\n",
    527 		       sc_if->sk_dev.dv_xname);
    528 		return 0;
    529 	}
    530 
    531  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
    532 		     SK_TIMEOUT));
    533 
    534         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
    535 
    536 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
    537 		     phy, reg, val));
    538 
    539 	return val;
    540 }
    541 
    542 void
    543 sk_marv_miibus_writereg(dev, phy, reg, val)
    544 	struct device *dev;
    545 	int phy, reg, val;
    546 {
    547 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    548 	int i;
    549 
    550 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
    551 		     phy, reg, val));
    552 
    553 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
    554 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    555 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
    556 
    557 	for (i = 0; i < SK_TIMEOUT; i++) {
    558 		DELAY(1);
    559 		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
    560 			break;
    561 	}
    562 }
    563 
    564 void
    565 sk_marv_miibus_statchg(dev)
    566 	struct device *dev;
    567 {
    568 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
    569 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
    570 }
    571 
    572 #define SK_HASH_BITS		6
    573 
    574 u_int32_t
    575 sk_xmac_hash(caddr_t addr)
    576 {
    577 	u_int32_t		crc;
    578 
    579 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
    580 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
    581 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    582 	return (crc);
    583 }
    584 
    585 u_int32_t
    586 sk_yukon_hash(caddr_t addr)
    587 {
    588 	u_int32_t		crc;
    589 
    590 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
    591 	crc &= ((1 << SK_HASH_BITS) - 1);
    592 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    593 	return (crc);
    594 }
    595 
    596 void
    597 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
    598 {
    599 	int base = XM_RXFILT_ENTRY(slot);
    600 
    601 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
    602 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
    603 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
    604 }
    605 
    606 void
    607 sk_setmulti(struct sk_if_softc *sc_if)
    608 {
    609 	struct sk_softc *sc = sc_if->sk_softc;
    610 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
    611 	u_int32_t hashes[2] = { 0, 0 };
    612 	int h = 0, i;
    613 	struct ethercom *ec = &sc_if->sk_ethercom;
    614 	struct ether_multi *enm;
    615 	struct ether_multistep step;
    616 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
    617 
    618 	/* First, zot all the existing filters. */
    619 	switch(sc->sk_type) {
    620 	case SK_GENESIS:
    621 		for (i = 1; i < XM_RXFILT_MAX; i++)
    622 			sk_setfilt(sc_if, (caddr_t)&dummy, i);
    623 
    624 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
    625 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
    626 		break;
    627 	case SK_YUKON:
    628 	case SK_YUKON_LITE:
    629 	case SK_YUKON_LP:
    630 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
    631 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
    632 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
    633 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
    634 		break;
    635 	}
    636 
    637 	/* Now program new ones. */
    638 allmulti:
    639 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    640 		hashes[0] = 0xFFFFFFFF;
    641 		hashes[1] = 0xFFFFFFFF;
    642 	} else {
    643 		i = 1;
    644 		/* First find the tail of the list. */
    645 		ETHER_FIRST_MULTI(step, ec, enm);
    646 		while (enm != NULL) {
    647 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
    648 				 ETHER_ADDR_LEN)) {
    649 				ifp->if_flags |= IFF_ALLMULTI;
    650 				goto allmulti;
    651 			}
    652 			DPRINTFN(2,("multicast address %s\n",
    653 	    			ether_sprintf(enm->enm_addrlo)));
    654 			/*
    655 			 * Program the first XM_RXFILT_MAX multicast groups
    656 			 * into the perfect filter. For all others,
    657 			 * use the hash table.
    658 			 */
    659 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
    660 				sk_setfilt(sc_if, enm->enm_addrlo, i);
    661 				i++;
    662 			}
    663 			else {
    664 				switch (sc->sk_type) {
    665 				case SK_GENESIS:
    666 					h = sk_xmac_hash(enm->enm_addrlo);
    667 					break;
    668 				case SK_YUKON:
    669 				case SK_YUKON_LITE:
    670 				case SK_YUKON_LP:
    671 					h = sk_yukon_hash(enm->enm_addrlo);
    672 					break;
    673 				}
    674 				if (h < 32)
    675 					hashes[0] |= (1 << h);
    676 				else
    677 					hashes[1] |= (1 << (h - 32));
    678 			}
    679 
    680 			ETHER_NEXT_MULTI(step, enm);
    681 		}
    682 	}
    683 
    684 	switch(sc->sk_type) {
    685 	case SK_GENESIS:
    686 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
    687 			       XM_MODE_RX_USE_PERFECT);
    688 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
    689 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
    690 		break;
    691 	case SK_YUKON:
    692 	case SK_YUKON_LITE:
    693 	case SK_YUKON_LP:
    694 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
    695 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
    696 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
    697 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
    698 		break;
    699 	}
    700 }
    701 
    702 int
    703 sk_init_rx_ring(struct sk_if_softc *sc_if)
    704 {
    705 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    706 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    707 	int			i;
    708 
    709 	bzero((char *)rd->sk_rx_ring,
    710 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
    711 
    712 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    713 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
    714 		if (i == (SK_RX_RING_CNT - 1)) {
    715 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
    716 			rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if, 0);
    717 		} else {
    718 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
    719 			rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if,i+1);
    720 		}
    721 	}
    722 
    723 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    724 		if (sk_newbuf(sc_if, i, NULL, NULL) == ENOBUFS) {
    725 			printf("%s: failed alloc of %dth mbuf\n",
    726 			    sc_if->sk_dev.dv_xname, i);
    727 			return(ENOBUFS);
    728 		}
    729 	}
    730 	sc_if->sk_cdata.sk_rx_prod = 0;
    731 	sc_if->sk_cdata.sk_rx_cons = 0;
    732 
    733 	return(0);
    734 }
    735 
    736 int
    737 sk_init_tx_ring(struct sk_if_softc *sc_if)
    738 {
    739 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    740 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    741 	int			i;
    742 
    743 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
    744 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
    745 
    746 	for (i = 0; i < SK_TX_RING_CNT; i++) {
    747 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
    748 		if (i == (SK_TX_RING_CNT - 1)) {
    749 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
    750 			rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if, 0);
    751 		} else {
    752 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
    753 			rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if,i+1);
    754 		}
    755 	}
    756 
    757 	sc_if->sk_cdata.sk_tx_prod = 0;
    758 	sc_if->sk_cdata.sk_tx_cons = 0;
    759 	sc_if->sk_cdata.sk_tx_cnt = 0;
    760 
    761 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
    762 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    763 
    764 	return (0);
    765 }
    766 
    767 int
    768 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
    769 	  bus_dmamap_t dmamap)
    770 {
    771 	struct sk_softc		*sc = sc_if->sk_softc;
    772 	struct mbuf		*m_new = NULL;
    773 	struct sk_chain		*c;
    774 	struct sk_rx_desc	*r;
    775 
    776 	if (dmamap == NULL) {
    777 		/* if (m) panic() */
    778 
    779 		if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1, MCLBYTES,
    780 				      0, BUS_DMA_NOWAIT, &dmamap)) {
    781 			printf("%s: can't create recv map\n",
    782 			       sc_if->sk_dev.dv_xname);
    783 			return(ENOMEM);
    784 		}
    785 	} else if (m == NULL)
    786 		bus_dmamap_unload(sc->sc_dmatag, dmamap);
    787 
    788 	sc_if->sk_cdata.sk_rx_map[i] = dmamap;
    789 
    790 	if (m == NULL) {
    791 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    792 		if (m_new == NULL) {
    793 			printf("%s: no memory for rx list -- "
    794 			    "packet dropped!\n", sc_if->sk_dev.dv_xname);
    795 			return(ENOBUFS);
    796 		}
    797 
    798 		/* Allocate the jumbo buffer */
    799 		MCLGET(m_new, M_DONTWAIT);
    800 		if (!(m_new->m_flags & M_EXT)) {
    801 			m_freem(m_new);
    802 			return (ENOBUFS);
    803 		}
    804 
    805 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    806 
    807 		m_adj(m_new, ETHER_ALIGN);
    808 
    809 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m_new,
    810 					 BUS_DMA_NOWAIT))
    811 			return(ENOBUFS);
    812 	} else {
    813 		/*
    814 	 	 * We're re-using a previously allocated mbuf;
    815 		 * be sure to re-init pointers and lengths to
    816 		 * default values.
    817 		 */
    818 		m_new = m;
    819 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    820 		m_adj(m_new, ETHER_ALIGN);
    821 		m_new->m_data = m_new->m_ext.ext_buf;
    822 	}
    823 
    824 	c = &sc_if->sk_cdata.sk_rx_chain[i];
    825 	r = c->sk_desc;
    826 	c->sk_mbuf = m_new;
    827 	r->sk_data_lo = dmamap->dm_segs[0].ds_addr;
    828 	r->sk_ctl = dmamap->dm_segs[0].ds_len | SK_RXSTAT;
    829 
    830 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    831 
    832 	return(0);
    833 }
    834 
    835 /*
    836  * Set media options.
    837  */
    838 int
    839 sk_ifmedia_upd(struct ifnet *ifp)
    840 {
    841 	struct sk_if_softc *sc_if = ifp->if_softc;
    842 
    843 	(void) sk_init(ifp);
    844 	mii_mediachg(&sc_if->sk_mii);
    845 	return(0);
    846 }
    847 
    848 /*
    849  * Report current media status.
    850  */
    851 void
    852 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
    853 {
    854 	struct sk_if_softc *sc_if = ifp->if_softc;
    855 
    856 	mii_pollstat(&sc_if->sk_mii);
    857 	ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
    858 	ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
    859 }
    860 
    861 int
    862 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
    863 {
    864 	struct sk_if_softc *sc_if = ifp->if_softc;
    865 	struct sk_softc *sc = sc_if->sk_softc;
    866 	struct ifreq *ifr = (struct ifreq *) data;
    867 	/* struct ifaddr *ifa = (struct ifaddr *) data; */
    868 	struct mii_data *mii;
    869 	int s, error = 0;
    870 
    871 	/* DPRINTFN(2, ("sk_ioctl\n")); */
    872 
    873 	s = splnet();
    874 
    875 	switch(command) {
    876 
    877 	case SIOCSIFFLAGS:
    878 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
    879 		if (ifp->if_flags & IFF_UP) {
    880 			if (ifp->if_flags & IFF_RUNNING &&
    881 			    ifp->if_flags & IFF_PROMISC &&
    882 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
    883 				switch(sc->sk_type) {
    884 				case SK_GENESIS:
    885 					SK_XM_SETBIT_4(sc_if, XM_MODE,
    886 					    XM_MODE_RX_PROMISC);
    887 					break;
    888 				case SK_YUKON:
    889 				case SK_YUKON_LITE:
    890 				case SK_YUKON_LP:
    891 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
    892 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
    893 					break;
    894 				}
    895 				sk_setmulti(sc_if);
    896 			} else if (ifp->if_flags & IFF_RUNNING &&
    897 			    !(ifp->if_flags & IFF_PROMISC) &&
    898 			    sc_if->sk_if_flags & IFF_PROMISC) {
    899 				switch(sc->sk_type) {
    900 				case SK_GENESIS:
    901 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
    902 					    XM_MODE_RX_PROMISC);
    903 					break;
    904 				case SK_YUKON:
    905 				case SK_YUKON_LITE:
    906 				case SK_YUKON_LP:
    907 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
    908 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
    909 					break;
    910 				}
    911 
    912 				sk_setmulti(sc_if);
    913 			} else
    914 				(void) sk_init(ifp);
    915 		} else {
    916 			if (ifp->if_flags & IFF_RUNNING)
    917 				sk_stop(ifp,0);
    918 		}
    919 		sc_if->sk_if_flags = ifp->if_flags;
    920 		error = 0;
    921 		break;
    922 
    923 	case SIOCGIFMEDIA:
    924 	case SIOCSIFMEDIA:
    925 	        DPRINTFN(2, ("sk_ioctl MEDIA\n"));
    926 		mii = &sc_if->sk_mii;
    927 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
    928 		break;
    929 	default:
    930 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
    931 		error = ether_ioctl(ifp, command, data);
    932 
    933 		if ( error == ENETRESET) {
    934 			if (ifp->if_flags & IFF_RUNNING) {
    935 				sk_setmulti(sc_if);
    936 				DPRINTFN(2, ("sk_ioctl setmulti called\n"));
    937 			}
    938 			error = 0;
    939 		} else if ( error ) {
    940 			splx(s);
    941 			return error;
    942 		}
    943 		break;
    944 	}
    945 
    946 	splx(s);
    947 	return(error);
    948 }
    949 
    950 /*
    951  * Lookup: Check the PCI vendor and device, and return a pointer to
    952  * The structure if the IDs match against our list.
    953  */
    954 
    955 static const struct sk_product *
    956 sk_lookup(const struct pci_attach_args *pa)
    957 {
    958 	const struct sk_product *psk;
    959 
    960 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
    961 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
    962 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
    963 			return (psk);
    964 	}
    965 	return (NULL);
    966 }
    967 
    968 /*
    969  * Probe for a SysKonnect GEnesis chip.
    970  */
    971 
    972 int
    973 skc_probe(struct device *parent, struct cfdata *match, void *aux)
    974 {
    975 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    976 	const struct sk_product *psk;
    977 
    978 	if ((psk = sk_lookup(pa))) {
    979 		return(1);
    980 	}
    981 	return(0);
    982 }
    983 
    984 /*
    985  * Force the GEnesis into reset, then bring it out of reset.
    986  */
    987 void sk_reset(struct sk_softc *sc)
    988 {
    989 	DPRINTFN(2, ("sk_reset\n"));
    990 
    991 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
    992 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
    993 	if (SK_YUKON_FAMILY(sc->sk_type))
    994 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
    995 
    996 	DELAY(1000);
    997 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
    998 	DELAY(2);
    999 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
   1000 	if (SK_YUKON_FAMILY(sc->sk_type))
   1001 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
   1002 
   1003 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
   1004 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
   1005 		     CSR_READ_2(sc, SK_LINK_CTRL)));
   1006 
   1007 	if (sc->sk_type == SK_GENESIS) {
   1008 		/* Configure packet arbiter */
   1009 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
   1010 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1011 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1012 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1013 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1014 	}
   1015 
   1016 	/* Enable RAM interface */
   1017 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
   1018 
   1019 	/*
   1020          * Configure interrupt moderation. The moderation timer
   1021 	 * defers interrupts specified in the interrupt moderation
   1022 	 * timer mask based on the timeout specified in the interrupt
   1023 	 * moderation timer init register. Each bit in the timer
   1024 	 * register represents 18.825ns, so to specify a timeout in
   1025 	 * microseconds, we have to multiply by 54.
   1026 	 */
   1027         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(100));
   1028         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
   1029 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
   1030         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
   1031 }
   1032 
   1033 int
   1034 sk_probe(struct device *parent, struct cfdata *match, void *aux)
   1035 {
   1036 	struct skc_attach_args *sa = aux;
   1037 
   1038 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
   1039 		return(0);
   1040 
   1041 	return (1);
   1042 }
   1043 
   1044 /*
   1045  * Each XMAC chip is attached as a separate logical IP interface.
   1046  * Single port cards will have only one logical interface of course.
   1047  */
   1048 void
   1049 sk_attach(struct device *parent, struct device *self, void *aux)
   1050 {
   1051 	struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
   1052 	struct sk_softc *sc = (struct sk_softc *)parent;
   1053 	struct skc_attach_args *sa = aux;
   1054 	struct sk_txmap_entry	*entry;
   1055 	struct ifnet *ifp;
   1056 	bus_dma_segment_t seg;
   1057 	bus_dmamap_t dmamap;
   1058 	caddr_t kva;
   1059 	int i, rseg;
   1060 
   1061 	sc_if->sk_port = sa->skc_port;
   1062 	sc_if->sk_softc = sc;
   1063 	sc->sk_if[sa->skc_port] = sc_if;
   1064 
   1065 	if (sa->skc_port == SK_PORT_A)
   1066 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
   1067 	if (sa->skc_port == SK_PORT_B)
   1068 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
   1069 
   1070 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
   1071 
   1072 	/*
   1073 	 * Get station address for this interface. Note that
   1074 	 * dual port cards actually come with three station
   1075 	 * addresses: one for each port, plus an extra. The
   1076 	 * extra one is used by the SysKonnect driver software
   1077 	 * as a 'virtual' station address for when both ports
   1078 	 * are operating in failover mode. Currently we don't
   1079 	 * use this extra address.
   1080 	 */
   1081 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1082 		sc_if->sk_enaddr[i] =
   1083 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
   1084 
   1085 
   1086 	aprint_normal(": Ethernet address %s\n",
   1087 	    ether_sprintf(sc_if->sk_enaddr));
   1088 
   1089 	/*
   1090 	 * Set up RAM buffer addresses. The NIC will have a certain
   1091 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
   1092 	 * need to divide this up a) between the transmitter and
   1093  	 * receiver and b) between the two XMACs, if this is a
   1094 	 * dual port NIC. Our algotithm is to divide up the memory
   1095 	 * evenly so that everyone gets a fair share.
   1096 	 */
   1097 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
   1098 		u_int32_t		chunk, val;
   1099 
   1100 		chunk = sc->sk_ramsize / 2;
   1101 		val = sc->sk_rboff / sizeof(u_int64_t);
   1102 		sc_if->sk_rx_ramstart = val;
   1103 		val += (chunk / sizeof(u_int64_t));
   1104 		sc_if->sk_rx_ramend = val - 1;
   1105 		sc_if->sk_tx_ramstart = val;
   1106 		val += (chunk / sizeof(u_int64_t));
   1107 		sc_if->sk_tx_ramend = val - 1;
   1108 	} else {
   1109 		u_int32_t		chunk, val;
   1110 
   1111 		chunk = sc->sk_ramsize / 4;
   1112 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
   1113 		    sizeof(u_int64_t);
   1114 		sc_if->sk_rx_ramstart = val;
   1115 		val += (chunk / sizeof(u_int64_t));
   1116 		sc_if->sk_rx_ramend = val - 1;
   1117 		sc_if->sk_tx_ramstart = val;
   1118 		val += (chunk / sizeof(u_int64_t));
   1119 		sc_if->sk_tx_ramend = val - 1;
   1120 	}
   1121 
   1122 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
   1123 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
   1124 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
   1125 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
   1126 
   1127 	/* Read and save PHY type and set PHY address */
   1128 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
   1129 	switch (sc_if->sk_phytype) {
   1130 	case SK_PHYTYPE_XMAC:
   1131 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
   1132 		break;
   1133 	case SK_PHYTYPE_BCOM:
   1134 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
   1135 		break;
   1136 	case SK_PHYTYPE_MARV_COPPER:
   1137 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
   1138 		break;
   1139 	default:
   1140 		aprint_error("%s: unsupported PHY type: %d\n",
   1141 		    sc->sk_dev.dv_xname, sc_if->sk_phytype);
   1142 		return;
   1143 	}
   1144 
   1145 	/* Allocate the descriptor queues. */
   1146 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
   1147 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1148 		aprint_error("%s: can't alloc rx buffers\n",
   1149 		    sc->sk_dev.dv_xname);
   1150 		goto fail;
   1151 	}
   1152 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
   1153 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
   1154 		aprint_error("%s: can't map dma buffers (%lu bytes)\n",
   1155 		       sc_if->sk_dev.dv_xname,
   1156 		       (u_long) sizeof(struct sk_ring_data));
   1157 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1158 		goto fail;
   1159 	}
   1160 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
   1161 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
   1162             &sc_if->sk_ring_map)) {
   1163 		aprint_error("%s: can't create dma map\n",
   1164 		    sc_if->sk_dev.dv_xname);
   1165 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1166 		    sizeof(struct sk_ring_data));
   1167 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1168 		goto fail;
   1169 	}
   1170 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
   1171 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
   1172 		aprint_error("%s: can't load dma map\n",
   1173 		    sc_if->sk_dev.dv_xname);
   1174 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1175 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1176 		    sizeof(struct sk_ring_data));
   1177 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1178 		goto fail;
   1179 	}
   1180 
   1181 	for (i = 0; i < SK_RX_RING_CNT; i++)
   1182 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   1183 
   1184 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
   1185 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   1186 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   1187 
   1188 		if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, SK_NTXSEG,
   1189 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap)) {
   1190 			aprint_error("%s: Can't create TX dmamap\n",
   1191 				sc_if->sk_dev.dv_xname);
   1192 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1193 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1194 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1195 			    sizeof(struct sk_ring_data));
   1196 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1197 			goto fail;
   1198 		}
   1199 
   1200 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
   1201 		if (!entry) {
   1202 			aprint_error("%s: Can't alloc txmap entry\n",
   1203 				sc_if->sk_dev.dv_xname);
   1204 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
   1205 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1206 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1207 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1208 			    sizeof(struct sk_ring_data));
   1209 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1210 			goto fail;
   1211 		}
   1212 		entry->dmamap = dmamap;
   1213 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
   1214 	}
   1215 
   1216         sc_if->sk_rdata = (struct sk_ring_data *)kva;
   1217 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
   1218 
   1219 	/* XXX TLS It's not clear what's wrong with the Jumbo MTU
   1220 	   XXX TLS support in this driver, so we don't enable it. */
   1221 
   1222 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
   1223 
   1224 	ifp = &sc_if->sk_ethercom.ec_if;
   1225 	ifp->if_softc = sc_if;
   1226 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1227 	ifp->if_ioctl = sk_ioctl;
   1228 	ifp->if_start = sk_start;
   1229 	ifp->if_stop = sk_stop;
   1230 	ifp->if_init = sk_init;
   1231 	ifp->if_watchdog = sk_watchdog;
   1232 	ifp->if_capabilities = 0;
   1233 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
   1234 	IFQ_SET_READY(&ifp->if_snd);
   1235 	strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
   1236 
   1237 	/*
   1238 	 * Do miibus setup.
   1239 	 */
   1240 	switch (sc->sk_type) {
   1241 	case SK_GENESIS:
   1242 		sk_init_xmac(sc_if);
   1243 		break;
   1244 	case SK_YUKON:
   1245 	case SK_YUKON_LITE:
   1246 	case SK_YUKON_LP:
   1247 		sk_init_yukon(sc_if);
   1248 		break;
   1249 	default:
   1250 		panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
   1251 		      sc->sk_type);
   1252 	}
   1253 
   1254  	DPRINTFN(2, ("sk_attach: 1\n"));
   1255 
   1256 	sc_if->sk_mii.mii_ifp = ifp;
   1257 	switch (sc->sk_type) {
   1258 	case SK_GENESIS:
   1259 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
   1260 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
   1261 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
   1262 		break;
   1263 	case SK_YUKON:
   1264 	case SK_YUKON_LITE:
   1265 	case SK_YUKON_LP:
   1266 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
   1267 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
   1268 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
   1269 		break;
   1270 	}
   1271 
   1272 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
   1273 	    sk_ifmedia_upd, sk_ifmedia_sts);
   1274 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
   1275 	    MII_OFFSET_ANY, 0);
   1276 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
   1277 		printf("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
   1278 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
   1279 			    0, NULL);
   1280 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
   1281 	}
   1282 	else
   1283 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1284 
   1285 	callout_init(&sc_if->sk_tick_ch);
   1286 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
   1287 
   1288 	DPRINTFN(2, ("sk_attach: 1\n"));
   1289 
   1290 	/*
   1291 	 * Call MI attach routines.
   1292 	 */
   1293 	if_attach(ifp);
   1294 
   1295 	ether_ifattach(ifp, sc_if->sk_enaddr);
   1296 
   1297 #if NRND > 0
   1298         rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
   1299             RND_TYPE_NET, 0);
   1300 #endif
   1301 
   1302 	DPRINTFN(2, ("sk_attach: end\n"));
   1303 
   1304 	return;
   1305 
   1306 fail:
   1307 	sc->sk_if[sa->skc_port] = NULL;
   1308 }
   1309 
   1310 int
   1311 skcprint(void *aux, const char *pnp)
   1312 {
   1313 	struct skc_attach_args *sa = aux;
   1314 
   1315 	if (pnp)
   1316 		aprint_normal("sk port %c at %s",
   1317 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
   1318 	else
   1319 		aprint_normal(" port %c",
   1320 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
   1321 	return (UNCONF);
   1322 }
   1323 
   1324 /*
   1325  * Attach the interface. Allocate softc structures, do ifmedia
   1326  * setup and ethernet/BPF attach.
   1327  */
   1328 void
   1329 skc_attach(struct device *parent, struct device *self, void *aux)
   1330 {
   1331 	struct sk_softc *sc = (struct sk_softc *)self;
   1332 	struct pci_attach_args *pa = aux;
   1333 	struct skc_attach_args skca;
   1334 	pci_chipset_tag_t pc = pa->pa_pc;
   1335 	pcireg_t memtype;
   1336 	pci_intr_handle_t ih;
   1337 	const char *intrstr = NULL;
   1338 	bus_addr_t iobase;
   1339 	bus_size_t iosize;
   1340 	int s;
   1341 	u_int32_t command;
   1342 	const char *revstr;
   1343 
   1344 	DPRINTFN(2, ("begin skc_attach\n"));
   1345 
   1346 	s = splnet();
   1347 
   1348 	/*
   1349 	 * Handle power management nonsense.
   1350 	 */
   1351 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
   1352 
   1353 	if (command == 0x01) {
   1354 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
   1355 		if (command & SK_PSTATE_MASK) {
   1356 			u_int32_t		xiobase, membase, irq;
   1357 
   1358 			/* Save important PCI config data. */
   1359 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
   1360 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
   1361 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
   1362 
   1363 			/* Reset the power state. */
   1364 			aprint_normal("%s chip is in D%d power mode "
   1365 			    "-- setting to D0\n", sc->sk_dev.dv_xname,
   1366 			    command & SK_PSTATE_MASK);
   1367 			command &= 0xFFFFFFFC;
   1368 			pci_conf_write(pc, pa->pa_tag,
   1369 			    SK_PCI_PWRMGMTCTRL, command);
   1370 
   1371 			/* Restore PCI config data. */
   1372 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
   1373 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
   1374 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
   1375 		}
   1376 	}
   1377 
   1378 	/*
   1379 	 * Map control/status registers.
   1380 	 */
   1381 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1382 	command |= PCI_COMMAND_IO_ENABLE |
   1383 	    PCI_COMMAND_MEM_ENABLE |
   1384 	    PCI_COMMAND_MASTER_ENABLE;
   1385 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1386 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1387 
   1388 #ifdef SK_USEIOSPACE
   1389 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
   1390 		aprint_error(": failed to enable I/O ports!\n");
   1391 		goto fail;
   1392 	}
   1393 	/*
   1394 	 * Map control/status registers.
   1395 	 */
   1396 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
   1397 			   &iobase, &iosize)) {
   1398 		aprint_error(": can't find i/o space\n");
   1399 		goto fail;
   1400 	}
   1401 #else
   1402 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1403 		aprint_error(": failed to enable memory mapping!\n");
   1404 		goto fail;
   1405 	}
   1406 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
   1407 	switch (memtype) {
   1408         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1409         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1410                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
   1411 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
   1412 				   &iobase, &iosize) == 0)
   1413                         break;
   1414         default:
   1415                 aprint_error("%s: can't find mem space\n",
   1416 		       sc->sk_dev.dv_xname);
   1417                 return;
   1418 	}
   1419 
   1420 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
   1421 #endif
   1422 	sc->sc_dmatag = pa->pa_dmat;
   1423 
   1424 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
   1425 	sc->sk_rev  = (sk_win_read_1(sc, SK_CONFIG) >> 4);
   1426 
   1427 	/* bail out here if chip is not recognized */
   1428 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
   1429 		aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
   1430 		goto fail;
   1431 	}
   1432 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
   1433 
   1434 	/* Allocate interrupt */
   1435 	if (pci_intr_map(pa, &ih)) {
   1436 		aprint_error(": couldn't map interrupt\n");
   1437 		goto fail;
   1438 	}
   1439 
   1440 	intrstr = pci_intr_string(pc, ih);
   1441 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
   1442 	if (sc->sk_intrhand == NULL) {
   1443 		aprint_error(": couldn't establish interrupt");
   1444 		if (intrstr != NULL)
   1445 			aprint_normal(" at %s", intrstr);
   1446 		goto fail;
   1447 	}
   1448 	aprint_normal(": %s\n", intrstr);
   1449 
   1450 	/* Reset the adapter. */
   1451 	sk_reset(sc);
   1452 
   1453 	/* Read and save vital product data from EEPROM. */
   1454 	sk_vpd_read(sc);
   1455 
   1456 	if (sc->sk_type == SK_GENESIS) {
   1457 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1458 		/* Read and save RAM size and RAMbuffer offset */
   1459 		switch(val) {
   1460 		case SK_RAMSIZE_512K_64:
   1461 			sc->sk_ramsize = 0x80000;
   1462 			sc->sk_rboff = SK_RBOFF_0;
   1463 			break;
   1464 		case SK_RAMSIZE_1024K_64:
   1465 			sc->sk_ramsize = 0x100000;
   1466 			sc->sk_rboff = SK_RBOFF_80000;
   1467 			break;
   1468 		case SK_RAMSIZE_1024K_128:
   1469 			sc->sk_ramsize = 0x100000;
   1470 			sc->sk_rboff = SK_RBOFF_0;
   1471 			break;
   1472 		case SK_RAMSIZE_2048K_128:
   1473 			sc->sk_ramsize = 0x200000;
   1474 			sc->sk_rboff = SK_RBOFF_0;
   1475 			break;
   1476 		default:
   1477 			aprint_error("%s: unknown ram size: %d\n",
   1478 			       sc->sk_dev.dv_xname, val);
   1479 			goto fail;
   1480 			break;
   1481 		}
   1482 
   1483 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
   1484 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
   1485 			     sc->sk_rboff));
   1486 	} else {
   1487 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1488 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
   1489 		sc->sk_rboff = SK_RBOFF_0;
   1490 
   1491 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
   1492 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
   1493 			     sc->sk_rboff));
   1494 	}
   1495 
   1496 	/* Read and save physical media type */
   1497 	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
   1498 	case SK_PMD_1000BASESX:
   1499 		sc->sk_pmd = IFM_1000_SX;
   1500 		break;
   1501 	case SK_PMD_1000BASELX:
   1502 		sc->sk_pmd = IFM_1000_LX;
   1503 		break;
   1504 	case SK_PMD_1000BASECX:
   1505 		sc->sk_pmd = IFM_1000_CX;
   1506 		break;
   1507 	case SK_PMD_1000BASETX:
   1508 		sc->sk_pmd = IFM_1000_T;
   1509 		break;
   1510 	default:
   1511 		aprint_error("%s: unknown media type: 0x%x\n",
   1512 		    sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
   1513 		goto fail;
   1514 	}
   1515 
   1516 	/* determine whether to name it with vpd or just make it up */
   1517 	/* Marvell Yukon VPD's can freqently be bogus */
   1518 
   1519 	switch (pa->pa_id) {
   1520 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1521 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
   1522 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
   1523 	case PCI_PRODUCT_3COM_3C940:
   1524 	case PCI_PRODUCT_DLINK_DGE530T:
   1525 	case PCI_PRODUCT_LINKSYS_EG1032:
   1526 	case PCI_PRODUCT_LINKSYS_EG1064:
   1527 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1528 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
   1529 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
   1530 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
   1531 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
   1532 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
   1533  		sc->sk_name = sc->sk_vpd_prodname;
   1534  		break;
   1535 	case PCI_ID_CODE(PCI_VENDOR_GALILEO,PCI_PRODUCT_GALILEO_SKNET):
   1536 	/* whoops yukon vpd prodname bears no resemblance to reality */
   1537 		switch (sc->sk_type) {
   1538 		case SK_GENESIS:
   1539 			sc->sk_name = sc->sk_vpd_prodname;
   1540 			break;
   1541 		case SK_YUKON:
   1542 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
   1543 			break;
   1544 		case SK_YUKON_LITE:
   1545 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
   1546 			break;
   1547 		case SK_YUKON_LP:
   1548 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
   1549 			break;
   1550 		default:
   1551 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
   1552 		}
   1553 
   1554 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
   1555 
   1556 		if ( sc->sk_type == SK_YUKON ) {
   1557 			uint32_t flashaddr;
   1558 			uint8_t testbyte;
   1559 
   1560 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
   1561 
   1562 			/* test Flash-Address Register */
   1563 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
   1564 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
   1565 
   1566 			if (testbyte != 0) {
   1567 				/* this is yukon lite Rev. A0 */
   1568 				sc->sk_type = SK_YUKON_LITE;
   1569 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
   1570 				/* restore Flash-Address Register */
   1571 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
   1572 			}
   1573 		}
   1574 		break;
   1575 	case PCI_ID_CODE(PCI_VENDOR_GALILEO,PCI_PRODUCT_GALILEO_BELKIN):
   1576 		sc->sk_name = sc->sk_vpd_prodname;
   1577 		break;
   1578  	default:
   1579 		sc->sk_name = "Unkown Marvell";
   1580 	}
   1581 
   1582 
   1583 	if ( sc->sk_type == SK_YUKON_LITE ) {
   1584 		switch (sc->sk_rev) {
   1585 		case SK_YUKON_LITE_REV_A0:
   1586 			revstr = "A0";
   1587 			break;
   1588 		case SK_YUKON_LITE_REV_A1:
   1589 			revstr = "A1";
   1590 			break;
   1591 		case SK_YUKON_LITE_REV_A3:
   1592 			revstr = "A3";
   1593 			break;
   1594 		default:
   1595 			revstr = "";
   1596 		}
   1597 	} else {
   1598 		revstr = "";
   1599 	}
   1600 
   1601 	/* Announce the product name. */
   1602 	aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
   1603 			      sc->sk_name, revstr, sc->sk_rev);
   1604 
   1605 	skca.skc_port = SK_PORT_A;
   1606 	(void)config_found(&sc->sk_dev, &skca, skcprint);
   1607 
   1608 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
   1609 		skca.skc_port = SK_PORT_B;
   1610 		(void)config_found(&sc->sk_dev, &skca, skcprint);
   1611 	}
   1612 
   1613 	/* Turn on the 'driver is loaded' LED. */
   1614 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   1615 
   1616 fail:
   1617 	splx(s);
   1618 }
   1619 
   1620 int
   1621 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
   1622 {
   1623 	struct sk_softc		*sc = sc_if->sk_softc;
   1624 	struct sk_tx_desc	*f = NULL;
   1625 	u_int32_t		frag, cur, cnt = 0;
   1626 	int			i;
   1627 	struct sk_txmap_entry	*entry;
   1628 	bus_dmamap_t		txmap;
   1629 
   1630 	DPRINTFN(3, ("sk_encap\n"));
   1631 
   1632 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
   1633 	if (entry == NULL) {
   1634 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
   1635 		return ENOBUFS;
   1636 	}
   1637 	txmap = entry->dmamap;
   1638 
   1639 	cur = frag = *txidx;
   1640 
   1641 #ifdef SK_DEBUG
   1642 	if (skdebug >= 3)
   1643 		sk_dump_mbuf(m_head);
   1644 #endif
   1645 
   1646 	/*
   1647 	 * Start packing the mbufs in this chain into
   1648 	 * the fragment pointers. Stop when we run out
   1649 	 * of fragments or hit the end of the mbuf chain.
   1650 	 */
   1651 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
   1652 	    BUS_DMA_NOWAIT)) {
   1653 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
   1654 		return(ENOBUFS);
   1655 	}
   1656 
   1657 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
   1658 
   1659 	/* Sync the DMA map. */
   1660 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
   1661 	    BUS_DMASYNC_PREWRITE);
   1662 
   1663 	for (i = 0; i < txmap->dm_nsegs; i++) {
   1664 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
   1665 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
   1666 			return(ENOBUFS);
   1667 		}
   1668 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
   1669 		f->sk_data_lo = txmap->dm_segs[i].ds_addr;
   1670 		f->sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
   1671 		if (cnt == 0)
   1672 			f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
   1673 		else
   1674 			f->sk_ctl |= SK_TXCTL_OWN;
   1675 
   1676 		cur = frag;
   1677 		SK_INC(frag, SK_TX_RING_CNT);
   1678 		cnt++;
   1679 	}
   1680 
   1681 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
   1682 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
   1683 
   1684 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
   1685 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
   1686 		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
   1687 
   1688 	/* Sync descriptors before handing to chip */
   1689 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
   1690 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1691 
   1692 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
   1693 
   1694 	/* Sync first descriptor to hand it off */
   1695 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1696 
   1697 	sc_if->sk_cdata.sk_tx_cnt += cnt;
   1698 
   1699 #ifdef SK_DEBUG
   1700 	if (skdebug >= 3) {
   1701 		struct sk_tx_desc *desc;
   1702 		u_int32_t idx;
   1703 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
   1704 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
   1705 			sk_dump_txdesc(desc, idx);
   1706 		}
   1707 	}
   1708 #endif
   1709 
   1710 	*txidx = frag;
   1711 
   1712 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
   1713 
   1714 	return(0);
   1715 }
   1716 
   1717 void
   1718 sk_start(struct ifnet *ifp)
   1719 {
   1720         struct sk_if_softc	*sc_if = ifp->if_softc;
   1721         struct sk_softc		*sc = sc_if->sk_softc;
   1722         struct mbuf		*m_head = NULL;
   1723         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
   1724 	int			pkts = 0;
   1725 
   1726 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
   1727 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
   1728 
   1729 	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
   1730 
   1731 		IFQ_POLL(&ifp->if_snd, m_head);
   1732 		if (m_head == NULL)
   1733 			break;
   1734 
   1735 		/*
   1736 		 * Pack the data into the transmit ring. If we
   1737 		 * don't have room, set the OACTIVE flag and wait
   1738 		 * for the NIC to drain the ring.
   1739 		 */
   1740 		if (sk_encap(sc_if, m_head, &idx)) {
   1741 			ifp->if_flags |= IFF_OACTIVE;
   1742 			break;
   1743 		}
   1744 
   1745 		/* now we are committed to transmit the packet */
   1746 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1747 		pkts++;
   1748 
   1749 		/*
   1750 		 * If there's a BPF listener, bounce a copy of this frame
   1751 		 * to him.
   1752 		 */
   1753 #if NBPFILTER > 0
   1754 		if (ifp->if_bpf)
   1755 			bpf_mtap(ifp->if_bpf, m_head);
   1756 #endif
   1757 	}
   1758 	if (pkts == 0)
   1759 		return;
   1760 
   1761 	/* Transmit */
   1762 	sc_if->sk_cdata.sk_tx_prod = idx;
   1763 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   1764 
   1765 	/* Set a timeout in case the chip goes out to lunch. */
   1766 	ifp->if_timer = 5;
   1767 }
   1768 
   1769 
   1770 void
   1771 sk_watchdog(struct ifnet *ifp)
   1772 {
   1773 	struct sk_if_softc *sc_if = ifp->if_softc;
   1774 
   1775 	printf("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
   1776 	(void) sk_init(ifp);
   1777 }
   1778 
   1779 void
   1780 sk_shutdown(void * v)
   1781 {
   1782 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
   1783 	struct sk_softc		*sc = sc_if->sk_softc;
   1784 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
   1785 
   1786 	DPRINTFN(2, ("sk_shutdown\n"));
   1787 	sk_stop(ifp,1);
   1788 
   1789 	/* Turn off the 'driver is loaded' LED. */
   1790 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   1791 
   1792 	/*
   1793 	 * Reset the GEnesis controller. Doing this should also
   1794 	 * assert the resets on the attached XMAC(s).
   1795 	 */
   1796 	sk_reset(sc);
   1797 }
   1798 
   1799 void
   1800 sk_rxeof(struct sk_if_softc *sc_if)
   1801 {
   1802 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   1803 	struct mbuf		*m;
   1804 	struct sk_chain		*cur_rx;
   1805 	struct sk_rx_desc	*cur_desc;
   1806 	int			i, cur, total_len = 0;
   1807 	u_int32_t		rxstat;
   1808 	bus_dmamap_t		dmamap;
   1809 
   1810 	i = sc_if->sk_cdata.sk_rx_prod;
   1811 
   1812 	DPRINTFN(3, ("sk_rxeof %d\n", i));
   1813 
   1814 	for (;;) {
   1815 		cur = i;
   1816 
   1817 		/* Sync the descriptor */
   1818 		SK_CDRXSYNC(sc_if, cur,
   1819 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1820 
   1821 		if (sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl & SK_RXCTL_OWN) {
   1822 			/* Invalidate the descriptor -- it's not ready yet */
   1823 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
   1824 			sc_if->sk_cdata.sk_rx_prod = i;
   1825 			break;
   1826 		}
   1827 
   1828 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
   1829 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
   1830 		dmamap = sc_if->sk_cdata.sk_rx_map[cur];
   1831 
   1832 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
   1833 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1834 
   1835 		rxstat = cur_desc->sk_xmac_rxstat;
   1836 		m = cur_rx->sk_mbuf;
   1837 		cur_rx->sk_mbuf = NULL;
   1838 		total_len = SK_RXBYTES(cur_desc->sk_ctl);
   1839 
   1840 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
   1841 
   1842 		SK_INC(i, SK_RX_RING_CNT);
   1843 
   1844 		if (rxstat & XM_RXSTAT_ERRFRAME) {
   1845 			ifp->if_ierrors++;
   1846 			sk_newbuf(sc_if, cur, m, dmamap);
   1847 			continue;
   1848 		}
   1849 
   1850 		/*
   1851 		 * Try to allocate a new jumbo buffer. If that
   1852 		 * fails, copy the packet to mbufs and put the
   1853 		 * jumbo buffer back in the ring so it can be
   1854 		 * re-used. If allocating mbufs fails, then we
   1855 		 * have to drop the packet.
   1856 		 */
   1857 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
   1858 			struct mbuf		*m0;
   1859 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
   1860 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
   1861 			sk_newbuf(sc_if, cur, m, dmamap);
   1862 			if (m0 == NULL) {
   1863 				printf("%s: no receive buffers "
   1864 				    "available -- packet dropped!\n",
   1865 				    sc_if->sk_dev.dv_xname);
   1866 				ifp->if_ierrors++;
   1867 				continue;
   1868 			}
   1869 			m_adj(m0, ETHER_ALIGN);
   1870 			m = m0;
   1871 		} else {
   1872 			m->m_pkthdr.rcvif = ifp;
   1873 			m->m_pkthdr.len = m->m_len = total_len;
   1874 		}
   1875 
   1876 		ifp->if_ipackets++;
   1877 
   1878 #if NBPFILTER > 0
   1879 		if (ifp->if_bpf)
   1880 			bpf_mtap(ifp->if_bpf, m);
   1881 #endif
   1882 		/* pass it on. */
   1883 		(*ifp->if_input)(ifp, m);
   1884 	}
   1885 }
   1886 
   1887 void
   1888 sk_txeof(struct sk_if_softc *sc_if)
   1889 {
   1890 	struct sk_softc		*sc = sc_if->sk_softc;
   1891 	struct sk_tx_desc	*cur_tx = NULL;
   1892 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   1893 	u_int32_t		idx;
   1894 	struct sk_txmap_entry	*entry;
   1895 
   1896 	DPRINTFN(3, ("sk_txeof\n"));
   1897 
   1898 	/*
   1899 	 * Go through our tx ring and free mbufs for those
   1900 	 * frames that have been sent.
   1901 	 */
   1902 	idx = sc_if->sk_cdata.sk_tx_cons;
   1903 	while(idx != sc_if->sk_cdata.sk_tx_prod) {
   1904 		SK_CDTXSYNC(sc_if, idx, 1,
   1905 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1906 
   1907 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
   1908 #ifdef SK_DEBUG
   1909 		if (skdebug >= 3)
   1910 			sk_dump_txdesc(cur_tx, idx);
   1911 #endif
   1912 		if (cur_tx->sk_ctl & SK_TXCTL_OWN) {
   1913 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
   1914 			break;
   1915 		}
   1916 		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
   1917 			ifp->if_opackets++;
   1918 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
   1919 			entry = sc_if->sk_cdata.sk_tx_map[idx];
   1920 
   1921 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
   1922 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
   1923 
   1924 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
   1925 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1926 
   1927 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
   1928 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
   1929 					  link);
   1930 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
   1931 		}
   1932 		sc_if->sk_cdata.sk_tx_cnt--;
   1933 		SK_INC(idx, SK_TX_RING_CNT);
   1934 	}
   1935 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
   1936 		ifp->if_timer = 0;
   1937 	else /* nudge chip to keep tx ring moving */
   1938 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   1939 
   1940 	sc_if->sk_cdata.sk_tx_cons = idx;
   1941 
   1942 	if (cur_tx != NULL)
   1943 		ifp->if_flags &= ~IFF_OACTIVE;
   1944 }
   1945 
   1946 void
   1947 sk_tick(void *xsc_if)
   1948 {
   1949 	struct sk_if_softc *sc_if = xsc_if;
   1950 	struct mii_data *mii = &sc_if->sk_mii;
   1951 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   1952 	int i;
   1953 
   1954 	DPRINTFN(3, ("sk_tick\n"));
   1955 
   1956 	if (!(ifp->if_flags & IFF_UP))
   1957 		return;
   1958 
   1959 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   1960 		sk_intr_bcom(sc_if);
   1961 		return;
   1962 	}
   1963 
   1964 	/*
   1965 	 * According to SysKonnect, the correct way to verify that
   1966 	 * the link has come back up is to poll bit 0 of the GPIO
   1967 	 * register three times. This pin has the signal from the
   1968 	 * link sync pin connected to it; if we read the same link
   1969 	 * state 3 times in a row, we know the link is up.
   1970 	 */
   1971 	for (i = 0; i < 3; i++) {
   1972 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
   1973 			break;
   1974 	}
   1975 
   1976 	if (i != 3) {
   1977 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   1978 		return;
   1979 	}
   1980 
   1981 	/* Turn the GP0 interrupt back on. */
   1982 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   1983 	SK_XM_READ_2(sc_if, XM_ISR);
   1984 	mii_tick(mii);
   1985 	mii_pollstat(mii);
   1986 	callout_stop(&sc_if->sk_tick_ch);
   1987 }
   1988 
   1989 void
   1990 sk_intr_bcom(struct sk_if_softc *sc_if)
   1991 {
   1992 	struct mii_data *mii = &sc_if->sk_mii;
   1993 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   1994 	int status;
   1995 
   1996 
   1997 	DPRINTFN(3, ("sk_intr_bcom\n"));
   1998 
   1999 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2000 
   2001 	/*
   2002 	 * Read the PHY interrupt register to make sure
   2003 	 * we clear any pending interrupts.
   2004 	 */
   2005 	status = sk_xmac_miibus_readreg((struct device *)sc_if,
   2006 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
   2007 
   2008 	if (!(ifp->if_flags & IFF_RUNNING)) {
   2009 		sk_init_xmac(sc_if);
   2010 		return;
   2011 	}
   2012 
   2013 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
   2014 		int lstat;
   2015 		lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
   2016 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
   2017 
   2018 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
   2019 			mii_mediachg(mii);
   2020 			/* Turn off the link LED. */
   2021 			SK_IF_WRITE_1(sc_if, 0,
   2022 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2023 			sc_if->sk_link = 0;
   2024 		} else if (status & BRGPHY_ISR_LNK_CHG) {
   2025 			sk_xmac_miibus_writereg((struct device *)sc_if,
   2026 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
   2027 			mii_tick(mii);
   2028 			sc_if->sk_link = 1;
   2029 			/* Turn on the link LED. */
   2030 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2031 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
   2032 			    SK_LINKLED_BLINK_OFF);
   2033 			mii_pollstat(mii);
   2034 		} else {
   2035 			mii_tick(mii);
   2036 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
   2037 		}
   2038 	}
   2039 
   2040 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2041 }
   2042 
   2043 void
   2044 sk_intr_xmac(struct sk_if_softc	*sc_if)
   2045 {
   2046 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
   2047 
   2048 	DPRINTFN(3, ("sk_intr_xmac\n"));
   2049 
   2050 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
   2051 		if (status & XM_ISR_GP0_SET) {
   2052 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2053 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2054 		}
   2055 
   2056 		if (status & XM_ISR_AUTONEG_DONE) {
   2057 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2058 		}
   2059 	}
   2060 
   2061 	if (status & XM_IMR_TX_UNDERRUN)
   2062 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
   2063 
   2064 	if (status & XM_IMR_RX_OVERRUN)
   2065 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
   2066 }
   2067 
   2068 void
   2069 sk_intr_yukon(sc_if)
   2070 	struct sk_if_softc *sc_if;
   2071 {
   2072 	int status;
   2073 
   2074 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2075 
   2076 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
   2077 }
   2078 
   2079 int
   2080 sk_intr(void *xsc)
   2081 {
   2082 	struct sk_softc		*sc = xsc;
   2083 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
   2084 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
   2085 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
   2086 	u_int32_t		status;
   2087 	int			claimed = 0;
   2088 
   2089 	if (sc_if0 != NULL)
   2090 		ifp0 = &sc_if0->sk_ethercom.ec_if;
   2091 	if (sc_if1 != NULL)
   2092 		ifp1 = &sc_if1->sk_ethercom.ec_if;
   2093 
   2094 	for (;;) {
   2095 		status = CSR_READ_4(sc, SK_ISSR);
   2096 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
   2097 
   2098 		if (!(status & sc->sk_intrmask))
   2099 			break;
   2100 
   2101 		claimed = 1;
   2102 
   2103 		/* Handle receive interrupts first. */
   2104 		if (status & SK_ISR_RX1_EOF) {
   2105 			sk_rxeof(sc_if0);
   2106 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
   2107 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2108 		}
   2109 		if (status & SK_ISR_RX2_EOF) {
   2110 			sk_rxeof(sc_if1);
   2111 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
   2112 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2113 		}
   2114 
   2115 		/* Then transmit interrupts. */
   2116 		if (status & SK_ISR_TX1_S_EOF) {
   2117 			sk_txeof(sc_if0);
   2118 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
   2119 			    SK_TXBMU_CLR_IRQ_EOF);
   2120 		}
   2121 		if (status & SK_ISR_TX2_S_EOF) {
   2122 			sk_txeof(sc_if1);
   2123 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
   2124 			    SK_TXBMU_CLR_IRQ_EOF);
   2125 		}
   2126 
   2127 		/* Then MAC interrupts. */
   2128 		if (status & SK_ISR_MAC1 && (ifp0->if_flags & IFF_RUNNING)) {
   2129 			if (sc->sk_type == SK_GENESIS)
   2130 				sk_intr_xmac(sc_if0);
   2131 			else
   2132 				sk_intr_yukon(sc_if0);
   2133 		}
   2134 
   2135 		if (status & SK_ISR_MAC2 && (ifp1->if_flags & IFF_RUNNING)) {
   2136 			if (sc->sk_type == SK_GENESIS)
   2137 				sk_intr_xmac(sc_if1);
   2138 			else
   2139 				sk_intr_yukon(sc_if1);
   2140 
   2141 		}
   2142 
   2143 		if (status & SK_ISR_EXTERNAL_REG) {
   2144 			if (ifp0 != NULL &&
   2145 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
   2146 				sk_intr_bcom(sc_if0);
   2147 
   2148 			if (ifp1 != NULL &&
   2149 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
   2150 				sk_intr_bcom(sc_if1);
   2151 		}
   2152 	}
   2153 
   2154 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2155 
   2156 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
   2157 		sk_start(ifp0);
   2158 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
   2159 		sk_start(ifp1);
   2160 
   2161 	return (claimed);
   2162 }
   2163 
   2164 void
   2165 sk_init_xmac(struct sk_if_softc	*sc_if)
   2166 {
   2167 	struct sk_softc		*sc = sc_if->sk_softc;
   2168 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2169 	static const struct sk_bcom_hack     bhack[] = {
   2170 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
   2171 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
   2172 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
   2173 	{ 0, 0 } };
   2174 
   2175 	DPRINTFN(1, ("sk_init_xmac\n"));
   2176 
   2177 	/* Unreset the XMAC. */
   2178 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
   2179 	DELAY(1000);
   2180 
   2181 	/* Reset the XMAC's internal state. */
   2182 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2183 
   2184 	/* Save the XMAC II revision */
   2185 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
   2186 
   2187 	/*
   2188 	 * Perform additional initialization for external PHYs,
   2189 	 * namely for the 1000baseTX cards that use the XMAC's
   2190 	 * GMII mode.
   2191 	 */
   2192 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2193 		int			i = 0;
   2194 		u_int32_t		val;
   2195 
   2196 		/* Take PHY out of reset. */
   2197 		val = sk_win_read_4(sc, SK_GPIO);
   2198 		if (sc_if->sk_port == SK_PORT_A)
   2199 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
   2200 		else
   2201 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
   2202 		sk_win_write_4(sc, SK_GPIO, val);
   2203 
   2204 		/* Enable GMII mode on the XMAC. */
   2205 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
   2206 
   2207 		sk_xmac_miibus_writereg((struct device *)sc_if,
   2208 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
   2209 		DELAY(10000);
   2210 		sk_xmac_miibus_writereg((struct device *)sc_if,
   2211 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
   2212 
   2213 		/*
   2214 		 * Early versions of the BCM5400 apparently have
   2215 		 * a bug that requires them to have their reserved
   2216 		 * registers initialized to some magic values. I don't
   2217 		 * know what the numbers do, I'm just the messenger.
   2218 		 */
   2219 		if (sk_xmac_miibus_readreg((struct device *)sc_if,
   2220 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
   2221 			while(bhack[i].reg) {
   2222 				sk_xmac_miibus_writereg((struct device *)sc_if,
   2223 				    SK_PHYADDR_BCOM, bhack[i].reg,
   2224 				    bhack[i].val);
   2225 				i++;
   2226 			}
   2227 		}
   2228 	}
   2229 
   2230 	/* Set station address */
   2231 	SK_XM_WRITE_2(sc_if, XM_PAR0,
   2232 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
   2233 	SK_XM_WRITE_2(sc_if, XM_PAR1,
   2234 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
   2235 	SK_XM_WRITE_2(sc_if, XM_PAR2,
   2236 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
   2237 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
   2238 
   2239 	if (ifp->if_flags & IFF_PROMISC) {
   2240 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2241 	} else {
   2242 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2243 	}
   2244 
   2245 	if (ifp->if_flags & IFF_BROADCAST) {
   2246 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2247 	} else {
   2248 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2249 	}
   2250 
   2251 	/* We don't need the FCS appended to the packet. */
   2252 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
   2253 
   2254 	/* We want short frames padded to 60 bytes. */
   2255 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
   2256 
   2257 	/*
   2258 	 * Enable the reception of all error frames. This is is
   2259 	 * a necessary evil due to the design of the XMAC. The
   2260 	 * XMAC's receive FIFO is only 8K in size, however jumbo
   2261 	 * frames can be up to 9000 bytes in length. When bad
   2262 	 * frame filtering is enabled, the XMAC's RX FIFO operates
   2263 	 * in 'store and forward' mode. For this to work, the
   2264 	 * entire frame has to fit into the FIFO, but that means
   2265 	 * that jumbo frames larger than 8192 bytes will be
   2266 	 * truncated. Disabling all bad frame filtering causes
   2267 	 * the RX FIFO to operate in streaming mode, in which
   2268 	 * case the XMAC will start transfering frames out of the
   2269 	 * RX FIFO as soon as the FIFO threshold is reached.
   2270 	 */
   2271 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
   2272 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
   2273 	    XM_MODE_RX_INRANGELEN);
   2274 
   2275 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2276 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2277 	else
   2278 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2279 
   2280 	/*
   2281 	 * Bump up the transmit threshold. This helps hold off transmit
   2282 	 * underruns when we're blasting traffic from both ports at once.
   2283 	 */
   2284 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
   2285 
   2286 	/* Set multicast filter */
   2287 	sk_setmulti(sc_if);
   2288 
   2289 	/* Clear and enable interrupts */
   2290 	SK_XM_READ_2(sc_if, XM_ISR);
   2291 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
   2292 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
   2293 	else
   2294 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2295 
   2296 	/* Configure MAC arbiter */
   2297 	switch(sc_if->sk_xmac_rev) {
   2298 	case XM_XMAC_REV_B2:
   2299 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
   2300 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
   2301 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
   2302 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
   2303 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
   2304 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
   2305 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
   2306 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
   2307 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2308 		break;
   2309 	case XM_XMAC_REV_C1:
   2310 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
   2311 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
   2312 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
   2313 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
   2314 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
   2315 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
   2316 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
   2317 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
   2318 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2319 		break;
   2320 	default:
   2321 		break;
   2322 	}
   2323 	sk_win_write_2(sc, SK_MACARB_CTL,
   2324 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
   2325 
   2326 	sc_if->sk_link = 1;
   2327 }
   2328 
   2329 void sk_init_yukon(sc_if)
   2330 	struct sk_if_softc	*sc_if;
   2331 {
   2332 	u_int32_t		/*mac, */phy;
   2333 	u_int16_t		reg;
   2334 	int			i;
   2335 
   2336 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
   2337 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
   2338 
   2339 	/* GMAC and GPHY Reset */
   2340 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
   2341 
   2342 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
   2343 
   2344 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2345 	DELAY(1000);
   2346 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
   2347 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2348 	DELAY(1000);
   2349 
   2350 
   2351 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
   2352 
   2353 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
   2354 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
   2355 
   2356 	switch(sc_if->sk_softc->sk_pmd) {
   2357 	case IFM_1000_SX:
   2358 	case IFM_1000_LX:
   2359 		phy |= SK_GPHY_FIBER;
   2360 		break;
   2361 
   2362 	case IFM_1000_CX:
   2363 	case IFM_1000_T:
   2364 		phy |= SK_GPHY_COPPER;
   2365 		break;
   2366 	}
   2367 
   2368 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
   2369 
   2370 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
   2371 	DELAY(1000);
   2372 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
   2373 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
   2374 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
   2375 
   2376 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
   2377 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
   2378 
   2379 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
   2380 
   2381 	/* unused read of the interrupt source register */
   2382 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
   2383 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2384 
   2385 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
   2386 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
   2387 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2388 
   2389 	/* MIB Counter Clear Mode set */
   2390         reg |= YU_PAR_MIB_CLR;
   2391 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2392 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
   2393 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2394 
   2395 	/* MIB Counter Clear Mode clear */
   2396 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
   2397         reg &= ~YU_PAR_MIB_CLR;
   2398 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2399 
   2400 	/* receive control reg */
   2401 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
   2402 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
   2403 		      YU_RCR_CRCR);
   2404 
   2405 	/* transmit parameter register */
   2406 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
   2407 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
   2408 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
   2409 
   2410 	/* serial mode register */
   2411 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
   2412 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
   2413 		      YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e));
   2414 
   2415 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
   2416 	/* Setup Yukon's address */
   2417 	for (i = 0; i < 3; i++) {
   2418 		/* Write Source Address 1 (unicast filter) */
   2419 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
   2420 			      sc_if->sk_enaddr[i * 2] |
   2421 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
   2422 	}
   2423 
   2424 	for (i = 0; i < 3; i++) {
   2425 		reg = sk_win_read_2(sc_if->sk_softc,
   2426 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
   2427 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
   2428 	}
   2429 
   2430 	/* Set multicast filter */
   2431 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
   2432 	sk_setmulti(sc_if);
   2433 
   2434 	/* enable interrupt mask for counter overflows */
   2435 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
   2436 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
   2437 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
   2438 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
   2439 
   2440 	/* Configure RX MAC FIFO */
   2441 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
   2442 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
   2443 
   2444 	/* Configure TX MAC FIFO */
   2445 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
   2446 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
   2447 
   2448 	DPRINTFN(6, ("sk_init_yukon: end\n"));
   2449 }
   2450 
   2451 /*
   2452  * Note that to properly initialize any part of the GEnesis chip,
   2453  * you first have to take it out of reset mode.
   2454  */
   2455 int
   2456 sk_init(struct ifnet *ifp)
   2457 {
   2458 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2459 	struct sk_softc		*sc = sc_if->sk_softc;
   2460 	struct mii_data		*mii = &sc_if->sk_mii;
   2461 	int			s;
   2462 
   2463 	DPRINTFN(1, ("sk_init\n"));
   2464 
   2465 	s = splnet();
   2466 
   2467 	/* Cancel pending I/O and free all RX/TX buffers. */
   2468 	sk_stop(ifp,0);
   2469 
   2470 	if (sc->sk_type == SK_GENESIS) {
   2471 		/* Configure LINK_SYNC LED */
   2472 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
   2473 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2474 			      SK_LINKLED_LINKSYNC_ON);
   2475 
   2476 		/* Configure RX LED */
   2477 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
   2478 			      SK_RXLEDCTL_COUNTER_START);
   2479 
   2480 		/* Configure TX LED */
   2481 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
   2482 			      SK_TXLEDCTL_COUNTER_START);
   2483 	}
   2484 
   2485 	/* Configure I2C registers */
   2486 
   2487 	/* Configure XMAC(s) */
   2488 	switch (sc->sk_type) {
   2489 	case SK_GENESIS:
   2490 		sk_init_xmac(sc_if);
   2491 		break;
   2492 	case SK_YUKON:
   2493 	case SK_YUKON_LITE:
   2494 	case SK_YUKON_LP:
   2495 		sk_init_yukon(sc_if);
   2496 		break;
   2497 	}
   2498 	mii_mediachg(mii);
   2499 
   2500 	if (sc->sk_type == SK_GENESIS) {
   2501 		/* Configure MAC FIFOs */
   2502 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
   2503 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
   2504 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
   2505 
   2506 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
   2507 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
   2508 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
   2509 	}
   2510 
   2511 	/* Configure transmit arbiter(s) */
   2512 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
   2513 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
   2514 
   2515 	/* Configure RAMbuffers */
   2516 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
   2517 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
   2518 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
   2519 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
   2520 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
   2521 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
   2522 
   2523 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
   2524 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
   2525 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
   2526 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
   2527 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
   2528 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
   2529 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
   2530 
   2531 	/* Configure BMUs */
   2532 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
   2533 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
   2534 	    SK_RX_RING_ADDR(sc_if, 0));
   2535 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
   2536 
   2537 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
   2538 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
   2539             SK_TX_RING_ADDR(sc_if, 0));
   2540 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
   2541 
   2542 	/* Init descriptors */
   2543 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
   2544 		printf("%s: initialization failed: no "
   2545 		    "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
   2546 		sk_stop(ifp,0);
   2547 		splx(s);
   2548 		return(ENOBUFS);
   2549 	}
   2550 
   2551 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
   2552 		printf("%s: initialization failed: no "
   2553 		    "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
   2554 		sk_stop(ifp,0);
   2555 		splx(s);
   2556 		return(ENOBUFS);
   2557 	}
   2558 
   2559 	/* Configure interrupt handling */
   2560 	CSR_READ_4(sc, SK_ISSR);
   2561 	if (sc_if->sk_port == SK_PORT_A)
   2562 		sc->sk_intrmask |= SK_INTRS1;
   2563 	else
   2564 		sc->sk_intrmask |= SK_INTRS2;
   2565 
   2566 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
   2567 
   2568 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2569 
   2570 	/* Start BMUs. */
   2571 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
   2572 
   2573 	if (sc->sk_type == SK_GENESIS) {
   2574 		/* Enable XMACs TX and RX state machines */
   2575 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
   2576 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
   2577 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2578 	}
   2579 
   2580 	if (SK_YUKON_FAMILY(sc->sk_type)) {
   2581 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
   2582 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
   2583 		reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
   2584 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
   2585 	}
   2586 
   2587 
   2588 	ifp->if_flags |= IFF_RUNNING;
   2589 	ifp->if_flags &= ~IFF_OACTIVE;
   2590 
   2591 	splx(s);
   2592 	return(0);
   2593 }
   2594 
   2595 void
   2596 sk_stop(struct ifnet *ifp, int disable)
   2597 {
   2598         struct sk_if_softc	*sc_if = ifp->if_softc;
   2599 	struct sk_softc		*sc = sc_if->sk_softc;
   2600 	int			i;
   2601 
   2602 	DPRINTFN(1, ("sk_stop\n"));
   2603 
   2604 	callout_stop(&sc_if->sk_tick_ch);
   2605 
   2606 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2607 		u_int32_t		val;
   2608 
   2609 		/* Put PHY back into reset. */
   2610 		val = sk_win_read_4(sc, SK_GPIO);
   2611 		if (sc_if->sk_port == SK_PORT_A) {
   2612 			val |= SK_GPIO_DIR0;
   2613 			val &= ~SK_GPIO_DAT0;
   2614 		} else {
   2615 			val |= SK_GPIO_DIR2;
   2616 			val &= ~SK_GPIO_DAT2;
   2617 		}
   2618 		sk_win_write_4(sc, SK_GPIO, val);
   2619 	}
   2620 
   2621 	/* Turn off various components of this interface. */
   2622 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2623 	switch (sc->sk_type) {
   2624 	case SK_GENESIS:
   2625 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
   2626 			      SK_TXMACCTL_XMAC_RESET);
   2627 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
   2628 		break;
   2629 	case SK_YUKON:
   2630 	case SK_YUKON_LITE:
   2631 	case SK_YUKON_LP:
   2632 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
   2633 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
   2634 		break;
   2635 	}
   2636 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
   2637 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2638 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
   2639 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2640 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
   2641 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2642 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2643 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2644 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
   2645 
   2646 	/* Disable interrupts */
   2647 	if (sc_if->sk_port == SK_PORT_A)
   2648 		sc->sk_intrmask &= ~SK_INTRS1;
   2649 	else
   2650 		sc->sk_intrmask &= ~SK_INTRS2;
   2651 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2652 
   2653 	SK_XM_READ_2(sc_if, XM_ISR);
   2654 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2655 
   2656 	/* Free RX and TX mbufs still in the queues. */
   2657 	for (i = 0; i < SK_RX_RING_CNT; i++) {
   2658 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
   2659 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
   2660 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   2661 		}
   2662 	}
   2663 
   2664 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   2665 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
   2666 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
   2667 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   2668 		}
   2669 	}
   2670 
   2671 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
   2672 }
   2673 
   2674 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
   2675 
   2676 /*
   2677 struct cfdriver skc_cd = {
   2678 	0, "skc", DV_DULL
   2679 };
   2680 */
   2681 
   2682 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
   2683 
   2684 /*
   2685 struct cfdriver sk_cd = {
   2686 	0, "sk", DV_IFNET
   2687 };
   2688 */
   2689 
   2690 #ifdef SK_DEBUG
   2691 void
   2692 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
   2693 {
   2694 #define DESC_PRINT(X)					\
   2695 	if (desc->X)					\
   2696 		printf("txdesc[%d]." #X "=%#x\n",	\
   2697 		       idx, desc->X);
   2698 
   2699 	DESC_PRINT(sk_ctl);
   2700 	DESC_PRINT(sk_next);
   2701 	DESC_PRINT(sk_data_lo);
   2702 	DESC_PRINT(sk_data_hi);
   2703 	DESC_PRINT(sk_xmac_txstat);
   2704 	DESC_PRINT(sk_rsvd0);
   2705 	DESC_PRINT(sk_csum_startval);
   2706 	DESC_PRINT(sk_csum_startpos);
   2707 	DESC_PRINT(sk_csum_writepos);
   2708 	DESC_PRINT(sk_rsvd1);
   2709 #undef PRINT
   2710 }
   2711 
   2712 void
   2713 sk_dump_bytes(const char *data, int len)
   2714 {
   2715 	int c, i, j;
   2716 
   2717 	for (i = 0; i < len; i += 16) {
   2718 		printf("%08x  ", i);
   2719 		c = len - i;
   2720 		if (c > 16) c = 16;
   2721 
   2722 		for (j = 0; j < c; j++) {
   2723 			printf("%02x ", data[i + j] & 0xff);
   2724 			if ((j & 0xf) == 7 && j > 0)
   2725 				printf(" ");
   2726 		}
   2727 
   2728 		for (; j < 16; j++)
   2729 			printf("   ");
   2730 		printf("  ");
   2731 
   2732 		for (j = 0; j < c; j++) {
   2733 			int ch = data[i + j] & 0xff;
   2734 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
   2735 		}
   2736 
   2737 		printf("\n");
   2738 
   2739 		if (c < 16)
   2740 			break;
   2741 	}
   2742 }
   2743 
   2744 void
   2745 sk_dump_mbuf(struct mbuf *m)
   2746 {
   2747 	int count = m->m_pkthdr.len;
   2748 
   2749 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
   2750 
   2751 	while (count > 0 && m) {
   2752 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
   2753 		       m, m->m_data, m->m_len);
   2754 		sk_dump_bytes(mtod(m, char *), m->m_len);
   2755 
   2756 		count -= m->m_len;
   2757 		m = m->m_next;
   2758 	}
   2759 }
   2760 #endif
   2761