if_sk.c revision 1.19 1 /* $NetBSD: if_sk.c,v 1.19 2006/02/11 13:04:44 rpaulo Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the NetBSD
18 * Foundation, Inc. and its contributors.
19 * 4. Neither the name of The NetBSD Foundation nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /* $OpenBSD: if_sk.c,v 1.33 2003/08/12 05:23:06 nate Exp $ */
37
38 /*
39 * Copyright (c) 1997, 1998, 1999, 2000
40 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Bill Paul.
53 * 4. Neither the name of the author nor the names of any co-contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67 * THE POSSIBILITY OF SUCH DAMAGE.
68 *
69 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70 */
71
72 /*
73 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
74 *
75 * Permission to use, copy, modify, and distribute this software for any
76 * purpose with or without fee is hereby granted, provided that the above
77 * copyright notice and this permission notice appear in all copies.
78 *
79 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86 */
87
88 /*
89 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90 * the SK-984x series adapters, both single port and dual port.
91 * References:
92 * The XaQti XMAC II datasheet,
93 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 * The SysKonnect GEnesis manual, http://www.syskonnect.com
95 *
96 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98 * convenience to others until Vitesse corrects this problem:
99 *
100 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101 *
102 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
103 * Department of Electrical Engineering
104 * Columbia University, New York City
105 */
106
107 /*
108 * The SysKonnect gigabit ethernet adapters consist of two main
109 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111 * components and a PHY while the GEnesis controller provides a PCI
112 * interface with DMA support. Each card may have between 512K and
113 * 2MB of SRAM on board depending on the configuration.
114 *
115 * The SysKonnect GEnesis controller can have either one or two XMAC
116 * chips connected to it, allowing single or dual port NIC configurations.
117 * SysKonnect has the distinction of being the only vendor on the market
118 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120 * XMAC registers. This driver takes advantage of these features to allow
121 * both XMACs to operate as independent interfaces.
122 */
123
124 #include "bpfilter.h"
125 #include "rnd.h"
126
127 #include <sys/param.h>
128 #include <sys/systm.h>
129 #include <sys/sockio.h>
130 #include <sys/mbuf.h>
131 #include <sys/malloc.h>
132 #include <sys/kernel.h>
133 #include <sys/socket.h>
134 #include <sys/device.h>
135 #include <sys/queue.h>
136 #include <sys/callout.h>
137
138 #include <net/if.h>
139 #include <net/if_dl.h>
140 #include <net/if_types.h>
141
142 #ifdef INET
143 #include <netinet/in.h>
144 #include <netinet/in_systm.h>
145 #include <netinet/in_var.h>
146 #include <netinet/ip.h>
147 #include <netinet/if_ether.h>
148 #endif
149
150 #include <net/if_media.h>
151
152 #if NBPFILTER > 0
153 #include <net/bpf.h>
154 #endif
155 #if NRND > 0
156 #include <sys/rnd.h>
157 #endif
158
159 #include <dev/mii/mii.h>
160 #include <dev/mii/miivar.h>
161 #include <dev/mii/brgphyreg.h>
162
163 #include <dev/pci/pcireg.h>
164 #include <dev/pci/pcivar.h>
165 #include <dev/pci/pcidevs.h>
166
167 #define SK_VERBOSE
168 /* #define SK_USEIOSPACE */
169
170 #include <dev/pci/if_skreg.h>
171 #include <dev/pci/if_skvar.h>
172
173 int skc_probe(struct device *, struct cfdata *, void *);
174 void skc_attach(struct device *, struct device *self, void *aux);
175 int sk_probe(struct device *, struct cfdata *, void *);
176 void sk_attach(struct device *, struct device *self, void *aux);
177 int skcprint(void *, const char *);
178 int sk_intr(void *);
179 void sk_intr_bcom(struct sk_if_softc *);
180 void sk_intr_xmac(struct sk_if_softc *);
181 void sk_intr_yukon(struct sk_if_softc *);
182 void sk_rxeof(struct sk_if_softc *);
183 void sk_txeof(struct sk_if_softc *);
184 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
185 void sk_start(struct ifnet *);
186 int sk_ioctl(struct ifnet *, u_long, caddr_t);
187 int sk_init(struct ifnet *);
188 void sk_init_xmac(struct sk_if_softc *);
189 void sk_init_yukon(struct sk_if_softc *);
190 void sk_stop(struct ifnet *, int);
191 void sk_watchdog(struct ifnet *);
192 void sk_shutdown(void *);
193 int sk_ifmedia_upd(struct ifnet *);
194 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
195 void sk_reset(struct sk_softc *);
196 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
197 int sk_init_rx_ring(struct sk_if_softc *);
198 int sk_init_tx_ring(struct sk_if_softc *);
199 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
200 void sk_vpd_read_res(struct sk_softc *,
201 struct vpd_res *, int);
202 void sk_vpd_read(struct sk_softc *);
203
204 int sk_xmac_miibus_readreg(struct device *, int, int);
205 void sk_xmac_miibus_writereg(struct device *, int, int, int);
206 void sk_xmac_miibus_statchg(struct device *);
207
208 int sk_marv_miibus_readreg(struct device *, int, int);
209 void sk_marv_miibus_writereg(struct device *, int, int, int);
210 void sk_marv_miibus_statchg(struct device *);
211
212 u_int32_t sk_xmac_hash(caddr_t);
213 u_int32_t sk_yukon_hash(caddr_t);
214 void sk_setfilt(struct sk_if_softc *, caddr_t, int);
215 void sk_setmulti(struct sk_if_softc *);
216 void sk_tick(void *);
217
218 /* #define SK_DEBUG 2 */
219 #ifdef SK_DEBUG
220 #define DPRINTF(x) if (skdebug) printf x
221 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
222 int skdebug = SK_DEBUG;
223
224 void sk_dump_txdesc(struct sk_tx_desc *, int);
225 void sk_dump_mbuf(struct mbuf *);
226 void sk_dump_bytes(const char *, int);
227 #else
228 #define DPRINTF(x)
229 #define DPRINTFN(n,x)
230 #endif
231
232 #define SK_SETBIT(sc, reg, x) \
233 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
234
235 #define SK_CLRBIT(sc, reg, x) \
236 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
237
238 #define SK_WIN_SETBIT_4(sc, reg, x) \
239 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
240
241 #define SK_WIN_CLRBIT_4(sc, reg, x) \
242 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
243
244 #define SK_WIN_SETBIT_2(sc, reg, x) \
245 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
246
247 #define SK_WIN_CLRBIT_2(sc, reg, x) \
248 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
249
250 /* supported device vendors */
251 static const struct sk_product {
252 pci_vendor_id_t sk_vendor;
253 pci_product_id_t sk_product;
254 } sk_products[] = {
255 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
256 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
257 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
258 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
259 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
260 { PCI_VENDOR_GALILEO, PCI_PRODUCT_GALILEO_SKNET, },
261 { PCI_VENDOR_GALILEO, PCI_PRODUCT_GALILEO_BELKIN, },
262 { 0, 0, }
263 };
264
265 #define SK_LINKSYS_EG1032_SUBID 0x00151737
266
267 static inline u_int32_t
268 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
269 {
270 #ifdef SK_USEIOSPACE
271 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
272 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
273 #else
274 return CSR_READ_4(sc, reg);
275 #endif
276 }
277
278 static inline u_int16_t
279 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
280 {
281 #ifdef SK_USEIOSPACE
282 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
283 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
284 #else
285 return CSR_READ_2(sc, reg);
286 #endif
287 }
288
289 static inline u_int8_t
290 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
291 {
292 #ifdef SK_USEIOSPACE
293 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
294 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
295 #else
296 return CSR_READ_1(sc, reg);
297 #endif
298 }
299
300 static inline void
301 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
302 {
303 #ifdef SK_USEIOSPACE
304 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
305 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
306 #else
307 CSR_WRITE_4(sc, reg, x);
308 #endif
309 }
310
311 static inline void
312 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
313 {
314 #ifdef SK_USEIOSPACE
315 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
316 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
317 #else
318 CSR_WRITE_2(sc, reg, x);
319 #endif
320 }
321
322 static inline void
323 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
324 {
325 #ifdef SK_USEIOSPACE
326 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
327 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
328 #else
329 CSR_WRITE_1(sc, reg, x);
330 #endif
331 }
332
333 /*
334 * The VPD EEPROM contains Vital Product Data, as suggested in
335 * the PCI 2.1 specification. The VPD data is separared into areas
336 * denoted by resource IDs. The SysKonnect VPD contains an ID string
337 * resource (the name of the adapter), a read-only area resource
338 * containing various key/data fields and a read/write area which
339 * can be used to store asset management information or log messages.
340 * We read the ID string and read-only into buffers attached to
341 * the controller softc structure for later use. At the moment,
342 * we only use the ID string during sk_attach().
343 */
344 u_int8_t
345 sk_vpd_readbyte(struct sk_softc *sc, int addr)
346 {
347 int i;
348
349 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
350 for (i = 0; i < SK_TIMEOUT; i++) {
351 DELAY(1);
352 if (sk_win_read_2(sc,
353 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
354 break;
355 }
356
357 if (i == SK_TIMEOUT)
358 return(0);
359
360 return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
361 }
362
363 void
364 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
365 {
366 int i;
367 u_int8_t *ptr;
368
369 ptr = (u_int8_t *)res;
370 for (i = 0; i < sizeof(struct vpd_res); i++)
371 ptr[i] = sk_vpd_readbyte(sc, i + addr);
372 }
373
374 void
375 sk_vpd_read(struct sk_softc *sc)
376 {
377 int pos = 0, i;
378 struct vpd_res res;
379
380 if (sc->sk_vpd_prodname != NULL)
381 free(sc->sk_vpd_prodname, M_DEVBUF);
382 if (sc->sk_vpd_readonly != NULL)
383 free(sc->sk_vpd_readonly, M_DEVBUF);
384 sc->sk_vpd_prodname = NULL;
385 sc->sk_vpd_readonly = NULL;
386
387 sk_vpd_read_res(sc, &res, pos);
388
389 if (res.vr_id != VPD_RES_ID) {
390 printf("%s: bad VPD resource id: expected %x got %x\n",
391 sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
392 return;
393 }
394
395 pos += sizeof(res);
396 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
397 if (sc->sk_vpd_prodname == NULL)
398 panic("sk_vpd_read");
399 for (i = 0; i < res.vr_len; i++)
400 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
401 sc->sk_vpd_prodname[i] = '\0';
402 pos += i;
403
404 sk_vpd_read_res(sc, &res, pos);
405
406 if (res.vr_id != VPD_RES_READ) {
407 printf("%s: bad VPD resource id: expected %x got %x\n",
408 sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
409 return;
410 }
411
412 pos += sizeof(res);
413 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
414 if (sc->sk_vpd_readonly == NULL)
415 panic("sk_vpd_read");
416 for (i = 0; i < res.vr_len ; i++)
417 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
418 }
419
420 int
421 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
422 {
423 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
424 int i;
425
426 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
427
428 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
429 return(0);
430
431 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
432 SK_XM_READ_2(sc_if, XM_PHY_DATA);
433 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
434 for (i = 0; i < SK_TIMEOUT; i++) {
435 DELAY(1);
436 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
437 XM_MMUCMD_PHYDATARDY)
438 break;
439 }
440
441 if (i == SK_TIMEOUT) {
442 printf("%s: phy failed to come ready\n",
443 sc_if->sk_dev.dv_xname);
444 return(0);
445 }
446 }
447 DELAY(1);
448 return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
449 }
450
451 void
452 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
453 {
454 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
455 int i;
456
457 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
458
459 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
460 for (i = 0; i < SK_TIMEOUT; i++) {
461 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
462 break;
463 }
464
465 if (i == SK_TIMEOUT) {
466 printf("%s: phy failed to come ready\n",
467 sc_if->sk_dev.dv_xname);
468 return;
469 }
470
471 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
472 for (i = 0; i < SK_TIMEOUT; i++) {
473 DELAY(1);
474 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
475 break;
476 }
477
478 if (i == SK_TIMEOUT)
479 printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
480 }
481
482 void
483 sk_xmac_miibus_statchg(struct device *dev)
484 {
485 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
486 struct mii_data *mii = &sc_if->sk_mii;
487
488 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
489
490 /*
491 * If this is a GMII PHY, manually set the XMAC's
492 * duplex mode accordingly.
493 */
494 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
495 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
496 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
497 } else {
498 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
499 }
500 }
501 }
502
503 int
504 sk_marv_miibus_readreg(dev, phy, reg)
505 struct device *dev;
506 int phy, reg;
507 {
508 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
509 u_int16_t val;
510 int i;
511
512 if (phy != 0 ||
513 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
514 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
515 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
516 phy, reg));
517 return(0);
518 }
519
520 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
521 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
522
523 for (i = 0; i < SK_TIMEOUT; i++) {
524 DELAY(1);
525 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
526 if (val & YU_SMICR_READ_VALID)
527 break;
528 }
529
530 if (i == SK_TIMEOUT) {
531 printf("%s: phy failed to come ready\n",
532 sc_if->sk_dev.dv_xname);
533 return 0;
534 }
535
536 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
537 SK_TIMEOUT));
538
539 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
540
541 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
542 phy, reg, val));
543
544 return val;
545 }
546
547 void
548 sk_marv_miibus_writereg(dev, phy, reg, val)
549 struct device *dev;
550 int phy, reg, val;
551 {
552 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
553 int i;
554
555 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
556 phy, reg, val));
557
558 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
559 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
560 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
561
562 for (i = 0; i < SK_TIMEOUT; i++) {
563 DELAY(1);
564 if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
565 break;
566 }
567 }
568
569 void
570 sk_marv_miibus_statchg(dev)
571 struct device *dev;
572 {
573 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
574 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
575 }
576
577 #define SK_HASH_BITS 6
578
579 u_int32_t
580 sk_xmac_hash(caddr_t addr)
581 {
582 u_int32_t crc;
583
584 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
585 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
586 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
587 return (crc);
588 }
589
590 u_int32_t
591 sk_yukon_hash(caddr_t addr)
592 {
593 u_int32_t crc;
594
595 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
596 crc &= ((1 << SK_HASH_BITS) - 1);
597 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
598 return (crc);
599 }
600
601 void
602 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
603 {
604 int base = XM_RXFILT_ENTRY(slot);
605
606 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
607 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
608 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
609 }
610
611 void
612 sk_setmulti(struct sk_if_softc *sc_if)
613 {
614 struct sk_softc *sc = sc_if->sk_softc;
615 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
616 u_int32_t hashes[2] = { 0, 0 };
617 int h = 0, i;
618 struct ethercom *ec = &sc_if->sk_ethercom;
619 struct ether_multi *enm;
620 struct ether_multistep step;
621 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
622
623 /* First, zot all the existing filters. */
624 switch(sc->sk_type) {
625 case SK_GENESIS:
626 for (i = 1; i < XM_RXFILT_MAX; i++)
627 sk_setfilt(sc_if, (caddr_t)&dummy, i);
628
629 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
630 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
631 break;
632 case SK_YUKON:
633 case SK_YUKON_LITE:
634 case SK_YUKON_LP:
635 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
636 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
637 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
638 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
639 break;
640 }
641
642 /* Now program new ones. */
643 allmulti:
644 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
645 hashes[0] = 0xFFFFFFFF;
646 hashes[1] = 0xFFFFFFFF;
647 } else {
648 i = 1;
649 /* First find the tail of the list. */
650 ETHER_FIRST_MULTI(step, ec, enm);
651 while (enm != NULL) {
652 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
653 ETHER_ADDR_LEN)) {
654 ifp->if_flags |= IFF_ALLMULTI;
655 goto allmulti;
656 }
657 DPRINTFN(2,("multicast address %s\n",
658 ether_sprintf(enm->enm_addrlo)));
659 /*
660 * Program the first XM_RXFILT_MAX multicast groups
661 * into the perfect filter. For all others,
662 * use the hash table.
663 */
664 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
665 sk_setfilt(sc_if, enm->enm_addrlo, i);
666 i++;
667 }
668 else {
669 switch (sc->sk_type) {
670 case SK_GENESIS:
671 h = sk_xmac_hash(enm->enm_addrlo);
672 break;
673 case SK_YUKON:
674 case SK_YUKON_LITE:
675 case SK_YUKON_LP:
676 h = sk_yukon_hash(enm->enm_addrlo);
677 break;
678 }
679 if (h < 32)
680 hashes[0] |= (1 << h);
681 else
682 hashes[1] |= (1 << (h - 32));
683 }
684
685 ETHER_NEXT_MULTI(step, enm);
686 }
687 }
688
689 switch(sc->sk_type) {
690 case SK_GENESIS:
691 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
692 XM_MODE_RX_USE_PERFECT);
693 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
694 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
695 break;
696 case SK_YUKON:
697 case SK_YUKON_LITE:
698 case SK_YUKON_LP:
699 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
700 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
701 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
702 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
703 break;
704 }
705 }
706
707 int
708 sk_init_rx_ring(struct sk_if_softc *sc_if)
709 {
710 struct sk_chain_data *cd = &sc_if->sk_cdata;
711 struct sk_ring_data *rd = sc_if->sk_rdata;
712 int i;
713
714 bzero((char *)rd->sk_rx_ring,
715 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
716
717 for (i = 0; i < SK_RX_RING_CNT; i++) {
718 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
719 if (i == (SK_RX_RING_CNT - 1)) {
720 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
721 rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if, 0);
722 } else {
723 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
724 rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if,i+1);
725 }
726 }
727
728 for (i = 0; i < SK_RX_RING_CNT; i++) {
729 if (sk_newbuf(sc_if, i, NULL, NULL) == ENOBUFS) {
730 printf("%s: failed alloc of %dth mbuf\n",
731 sc_if->sk_dev.dv_xname, i);
732 return(ENOBUFS);
733 }
734 }
735 sc_if->sk_cdata.sk_rx_prod = 0;
736 sc_if->sk_cdata.sk_rx_cons = 0;
737
738 return(0);
739 }
740
741 int
742 sk_init_tx_ring(struct sk_if_softc *sc_if)
743 {
744 struct sk_chain_data *cd = &sc_if->sk_cdata;
745 struct sk_ring_data *rd = sc_if->sk_rdata;
746 int i;
747
748 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
749 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
750
751 for (i = 0; i < SK_TX_RING_CNT; i++) {
752 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
753 if (i == (SK_TX_RING_CNT - 1)) {
754 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
755 rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if, 0);
756 } else {
757 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
758 rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if,i+1);
759 }
760 }
761
762 sc_if->sk_cdata.sk_tx_prod = 0;
763 sc_if->sk_cdata.sk_tx_cons = 0;
764 sc_if->sk_cdata.sk_tx_cnt = 0;
765
766 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
767 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
768
769 return (0);
770 }
771
772 int
773 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
774 bus_dmamap_t dmamap)
775 {
776 struct sk_softc *sc = sc_if->sk_softc;
777 struct mbuf *m_new = NULL;
778 struct sk_chain *c;
779 struct sk_rx_desc *r;
780
781 if (dmamap == NULL) {
782 /* if (m) panic() */
783
784 if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1, MCLBYTES,
785 0, BUS_DMA_NOWAIT, &dmamap)) {
786 printf("%s: can't create recv map\n",
787 sc_if->sk_dev.dv_xname);
788 return(ENOMEM);
789 }
790 } else if (m == NULL)
791 bus_dmamap_unload(sc->sc_dmatag, dmamap);
792
793 sc_if->sk_cdata.sk_rx_map[i] = dmamap;
794
795 if (m == NULL) {
796 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
797 if (m_new == NULL) {
798 printf("%s: no memory for rx list -- "
799 "packet dropped!\n", sc_if->sk_dev.dv_xname);
800 return(ENOBUFS);
801 }
802
803 /* Allocate the jumbo buffer */
804 MCLGET(m_new, M_DONTWAIT);
805 if (!(m_new->m_flags & M_EXT)) {
806 m_freem(m_new);
807 return (ENOBUFS);
808 }
809
810 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
811
812 m_adj(m_new, ETHER_ALIGN);
813
814 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m_new,
815 BUS_DMA_NOWAIT))
816 return(ENOBUFS);
817 } else {
818 /*
819 * We're re-using a previously allocated mbuf;
820 * be sure to re-init pointers and lengths to
821 * default values.
822 */
823 m_new = m;
824 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
825 m_adj(m_new, ETHER_ALIGN);
826 m_new->m_data = m_new->m_ext.ext_buf;
827 }
828
829 c = &sc_if->sk_cdata.sk_rx_chain[i];
830 r = c->sk_desc;
831 c->sk_mbuf = m_new;
832 r->sk_data_lo = dmamap->dm_segs[0].ds_addr;
833 r->sk_ctl = dmamap->dm_segs[0].ds_len | SK_RXSTAT;
834
835 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
836
837 return(0);
838 }
839
840 /*
841 * Set media options.
842 */
843 int
844 sk_ifmedia_upd(struct ifnet *ifp)
845 {
846 struct sk_if_softc *sc_if = ifp->if_softc;
847
848 (void) sk_init(ifp);
849 mii_mediachg(&sc_if->sk_mii);
850 return(0);
851 }
852
853 /*
854 * Report current media status.
855 */
856 void
857 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
858 {
859 struct sk_if_softc *sc_if = ifp->if_softc;
860
861 mii_pollstat(&sc_if->sk_mii);
862 ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
863 ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
864 }
865
866 int
867 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
868 {
869 struct sk_if_softc *sc_if = ifp->if_softc;
870 struct sk_softc *sc = sc_if->sk_softc;
871 struct ifreq *ifr = (struct ifreq *) data;
872 /* struct ifaddr *ifa = (struct ifaddr *) data; */
873 struct mii_data *mii;
874 int s, error = 0;
875
876 /* DPRINTFN(2, ("sk_ioctl\n")); */
877
878 s = splnet();
879
880 switch(command) {
881
882 case SIOCSIFFLAGS:
883 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
884 if (ifp->if_flags & IFF_UP) {
885 if (ifp->if_flags & IFF_RUNNING &&
886 ifp->if_flags & IFF_PROMISC &&
887 !(sc_if->sk_if_flags & IFF_PROMISC)) {
888 switch(sc->sk_type) {
889 case SK_GENESIS:
890 SK_XM_SETBIT_4(sc_if, XM_MODE,
891 XM_MODE_RX_PROMISC);
892 break;
893 case SK_YUKON:
894 case SK_YUKON_LITE:
895 case SK_YUKON_LP:
896 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
897 YU_RCR_UFLEN | YU_RCR_MUFLEN);
898 break;
899 }
900 sk_setmulti(sc_if);
901 } else if (ifp->if_flags & IFF_RUNNING &&
902 !(ifp->if_flags & IFF_PROMISC) &&
903 sc_if->sk_if_flags & IFF_PROMISC) {
904 switch(sc->sk_type) {
905 case SK_GENESIS:
906 SK_XM_CLRBIT_4(sc_if, XM_MODE,
907 XM_MODE_RX_PROMISC);
908 break;
909 case SK_YUKON:
910 case SK_YUKON_LITE:
911 case SK_YUKON_LP:
912 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
913 YU_RCR_UFLEN | YU_RCR_MUFLEN);
914 break;
915 }
916
917 sk_setmulti(sc_if);
918 } else
919 (void) sk_init(ifp);
920 } else {
921 if (ifp->if_flags & IFF_RUNNING)
922 sk_stop(ifp,0);
923 }
924 sc_if->sk_if_flags = ifp->if_flags;
925 error = 0;
926 break;
927
928 case SIOCGIFMEDIA:
929 case SIOCSIFMEDIA:
930 DPRINTFN(2, ("sk_ioctl MEDIA\n"));
931 mii = &sc_if->sk_mii;
932 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
933 break;
934 default:
935 DPRINTFN(2, ("sk_ioctl ETHER\n"));
936 error = ether_ioctl(ifp, command, data);
937
938 if ( error == ENETRESET) {
939 if (ifp->if_flags & IFF_RUNNING) {
940 sk_setmulti(sc_if);
941 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
942 }
943 error = 0;
944 } else if ( error ) {
945 splx(s);
946 return error;
947 }
948 break;
949 }
950
951 splx(s);
952 return(error);
953 }
954
955 /*
956 * Lookup: Check the PCI vendor and device, and return a pointer to
957 * The structure if the IDs match against our list.
958 */
959
960 static const struct sk_product *
961 sk_lookup(const struct pci_attach_args *pa)
962 {
963 const struct sk_product *psk;
964
965 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
966 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
967 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
968 return (psk);
969 }
970 return (NULL);
971 }
972
973 /*
974 * Probe for a SysKonnect GEnesis chip.
975 */
976
977 int
978 skc_probe(struct device *parent, struct cfdata *match, void *aux)
979 {
980 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
981 const struct sk_product *psk;
982 pcireg_t subid;
983
984 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
985
986 /* special-case Linksys EG1032, since rev 3 uses re(4) */
987 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
988 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
989 subid == SK_LINKSYS_EG1032_SUBID)
990 return(1);
991
992 if ((psk = sk_lookup(pa))) {
993 return(1);
994 }
995 return(0);
996 }
997
998 /*
999 * Force the GEnesis into reset, then bring it out of reset.
1000 */
1001 void sk_reset(struct sk_softc *sc)
1002 {
1003 DPRINTFN(2, ("sk_reset\n"));
1004
1005 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1006 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1007 if (SK_YUKON_FAMILY(sc->sk_type))
1008 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1009
1010 DELAY(1000);
1011 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1012 DELAY(2);
1013 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1014 if (SK_YUKON_FAMILY(sc->sk_type))
1015 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1016
1017 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1018 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1019 CSR_READ_2(sc, SK_LINK_CTRL)));
1020
1021 if (sc->sk_type == SK_GENESIS) {
1022 /* Configure packet arbiter */
1023 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1024 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1025 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1026 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1027 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1028 }
1029
1030 /* Enable RAM interface */
1031 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1032
1033 /*
1034 * Configure interrupt moderation. The moderation timer
1035 * defers interrupts specified in the interrupt moderation
1036 * timer mask based on the timeout specified in the interrupt
1037 * moderation timer init register. Each bit in the timer
1038 * register represents 18.825ns, so to specify a timeout in
1039 * microseconds, we have to multiply by 54.
1040 */
1041 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(100));
1042 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1043 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1044 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1045 }
1046
1047 int
1048 sk_probe(struct device *parent, struct cfdata *match, void *aux)
1049 {
1050 struct skc_attach_args *sa = aux;
1051
1052 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1053 return(0);
1054
1055 return (1);
1056 }
1057
1058 /*
1059 * Each XMAC chip is attached as a separate logical IP interface.
1060 * Single port cards will have only one logical interface of course.
1061 */
1062 void
1063 sk_attach(struct device *parent, struct device *self, void *aux)
1064 {
1065 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1066 struct sk_softc *sc = (struct sk_softc *)parent;
1067 struct skc_attach_args *sa = aux;
1068 struct sk_txmap_entry *entry;
1069 struct ifnet *ifp;
1070 bus_dma_segment_t seg;
1071 bus_dmamap_t dmamap;
1072 caddr_t kva;
1073 int i, rseg;
1074
1075 sc_if->sk_port = sa->skc_port;
1076 sc_if->sk_softc = sc;
1077 sc->sk_if[sa->skc_port] = sc_if;
1078
1079 if (sa->skc_port == SK_PORT_A)
1080 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1081 if (sa->skc_port == SK_PORT_B)
1082 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1083
1084 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1085
1086 /*
1087 * Get station address for this interface. Note that
1088 * dual port cards actually come with three station
1089 * addresses: one for each port, plus an extra. The
1090 * extra one is used by the SysKonnect driver software
1091 * as a 'virtual' station address for when both ports
1092 * are operating in failover mode. Currently we don't
1093 * use this extra address.
1094 */
1095 for (i = 0; i < ETHER_ADDR_LEN; i++)
1096 sc_if->sk_enaddr[i] =
1097 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1098
1099
1100 aprint_normal(": Ethernet address %s\n",
1101 ether_sprintf(sc_if->sk_enaddr));
1102
1103 /*
1104 * Set up RAM buffer addresses. The NIC will have a certain
1105 * amount of SRAM on it, somewhere between 512K and 2MB. We
1106 * need to divide this up a) between the transmitter and
1107 * receiver and b) between the two XMACs, if this is a
1108 * dual port NIC. Our algotithm is to divide up the memory
1109 * evenly so that everyone gets a fair share.
1110 */
1111 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1112 u_int32_t chunk, val;
1113
1114 chunk = sc->sk_ramsize / 2;
1115 val = sc->sk_rboff / sizeof(u_int64_t);
1116 sc_if->sk_rx_ramstart = val;
1117 val += (chunk / sizeof(u_int64_t));
1118 sc_if->sk_rx_ramend = val - 1;
1119 sc_if->sk_tx_ramstart = val;
1120 val += (chunk / sizeof(u_int64_t));
1121 sc_if->sk_tx_ramend = val - 1;
1122 } else {
1123 u_int32_t chunk, val;
1124
1125 chunk = sc->sk_ramsize / 4;
1126 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1127 sizeof(u_int64_t);
1128 sc_if->sk_rx_ramstart = val;
1129 val += (chunk / sizeof(u_int64_t));
1130 sc_if->sk_rx_ramend = val - 1;
1131 sc_if->sk_tx_ramstart = val;
1132 val += (chunk / sizeof(u_int64_t));
1133 sc_if->sk_tx_ramend = val - 1;
1134 }
1135
1136 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1137 " tx_ramstart=%#x tx_ramend=%#x\n",
1138 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1139 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1140
1141 /* Read and save PHY type and set PHY address */
1142 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1143 switch (sc_if->sk_phytype) {
1144 case SK_PHYTYPE_XMAC:
1145 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1146 break;
1147 case SK_PHYTYPE_BCOM:
1148 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1149 break;
1150 case SK_PHYTYPE_MARV_COPPER:
1151 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1152 break;
1153 default:
1154 aprint_error("%s: unsupported PHY type: %d\n",
1155 sc->sk_dev.dv_xname, sc_if->sk_phytype);
1156 return;
1157 }
1158
1159 /* Allocate the descriptor queues. */
1160 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1161 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1162 aprint_error("%s: can't alloc rx buffers\n",
1163 sc->sk_dev.dv_xname);
1164 goto fail;
1165 }
1166 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1167 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1168 aprint_error("%s: can't map dma buffers (%lu bytes)\n",
1169 sc_if->sk_dev.dv_xname,
1170 (u_long) sizeof(struct sk_ring_data));
1171 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1172 goto fail;
1173 }
1174 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1175 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1176 &sc_if->sk_ring_map)) {
1177 aprint_error("%s: can't create dma map\n",
1178 sc_if->sk_dev.dv_xname);
1179 bus_dmamem_unmap(sc->sc_dmatag, kva,
1180 sizeof(struct sk_ring_data));
1181 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1182 goto fail;
1183 }
1184 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1185 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1186 aprint_error("%s: can't load dma map\n",
1187 sc_if->sk_dev.dv_xname);
1188 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1189 bus_dmamem_unmap(sc->sc_dmatag, kva,
1190 sizeof(struct sk_ring_data));
1191 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1192 goto fail;
1193 }
1194
1195 for (i = 0; i < SK_RX_RING_CNT; i++)
1196 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1197
1198 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1199 for (i = 0; i < SK_TX_RING_CNT; i++) {
1200 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1201
1202 if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, SK_NTXSEG,
1203 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap)) {
1204 aprint_error("%s: Can't create TX dmamap\n",
1205 sc_if->sk_dev.dv_xname);
1206 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1207 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1208 bus_dmamem_unmap(sc->sc_dmatag, kva,
1209 sizeof(struct sk_ring_data));
1210 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1211 goto fail;
1212 }
1213
1214 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1215 if (!entry) {
1216 aprint_error("%s: Can't alloc txmap entry\n",
1217 sc_if->sk_dev.dv_xname);
1218 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1219 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1220 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1221 bus_dmamem_unmap(sc->sc_dmatag, kva,
1222 sizeof(struct sk_ring_data));
1223 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1224 goto fail;
1225 }
1226 entry->dmamap = dmamap;
1227 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1228 }
1229
1230 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1231 bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1232
1233 /* XXX TLS It's not clear what's wrong with the Jumbo MTU
1234 XXX TLS support in this driver, so we don't enable it. */
1235
1236 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1237
1238 ifp = &sc_if->sk_ethercom.ec_if;
1239 ifp->if_softc = sc_if;
1240 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1241 ifp->if_ioctl = sk_ioctl;
1242 ifp->if_start = sk_start;
1243 ifp->if_stop = sk_stop;
1244 ifp->if_init = sk_init;
1245 ifp->if_watchdog = sk_watchdog;
1246 ifp->if_capabilities = 0;
1247 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1248 IFQ_SET_READY(&ifp->if_snd);
1249 strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1250
1251 /*
1252 * Do miibus setup.
1253 */
1254 switch (sc->sk_type) {
1255 case SK_GENESIS:
1256 sk_init_xmac(sc_if);
1257 break;
1258 case SK_YUKON:
1259 case SK_YUKON_LITE:
1260 case SK_YUKON_LP:
1261 sk_init_yukon(sc_if);
1262 break;
1263 default:
1264 panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
1265 sc->sk_type);
1266 }
1267
1268 DPRINTFN(2, ("sk_attach: 1\n"));
1269
1270 sc_if->sk_mii.mii_ifp = ifp;
1271 switch (sc->sk_type) {
1272 case SK_GENESIS:
1273 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1274 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1275 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1276 break;
1277 case SK_YUKON:
1278 case SK_YUKON_LITE:
1279 case SK_YUKON_LP:
1280 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1281 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1282 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1283 break;
1284 }
1285
1286 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1287 sk_ifmedia_upd, sk_ifmedia_sts);
1288 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1289 MII_OFFSET_ANY, 0);
1290 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1291 printf("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1292 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1293 0, NULL);
1294 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1295 }
1296 else
1297 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1298
1299 callout_init(&sc_if->sk_tick_ch);
1300 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1301
1302 DPRINTFN(2, ("sk_attach: 1\n"));
1303
1304 /*
1305 * Call MI attach routines.
1306 */
1307 if_attach(ifp);
1308
1309 ether_ifattach(ifp, sc_if->sk_enaddr);
1310
1311 #if NRND > 0
1312 rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
1313 RND_TYPE_NET, 0);
1314 #endif
1315
1316 DPRINTFN(2, ("sk_attach: end\n"));
1317
1318 return;
1319
1320 fail:
1321 sc->sk_if[sa->skc_port] = NULL;
1322 }
1323
1324 int
1325 skcprint(void *aux, const char *pnp)
1326 {
1327 struct skc_attach_args *sa = aux;
1328
1329 if (pnp)
1330 aprint_normal("sk port %c at %s",
1331 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1332 else
1333 aprint_normal(" port %c",
1334 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1335 return (UNCONF);
1336 }
1337
1338 /*
1339 * Attach the interface. Allocate softc structures, do ifmedia
1340 * setup and ethernet/BPF attach.
1341 */
1342 void
1343 skc_attach(struct device *parent, struct device *self, void *aux)
1344 {
1345 struct sk_softc *sc = (struct sk_softc *)self;
1346 struct pci_attach_args *pa = aux;
1347 struct skc_attach_args skca;
1348 pci_chipset_tag_t pc = pa->pa_pc;
1349 pcireg_t memtype;
1350 pci_intr_handle_t ih;
1351 const char *intrstr = NULL;
1352 bus_addr_t iobase;
1353 bus_size_t iosize;
1354 int s;
1355 u_int32_t command;
1356 const char *revstr;
1357
1358 DPRINTFN(2, ("begin skc_attach\n"));
1359
1360 s = splnet();
1361
1362 /*
1363 * Handle power management nonsense.
1364 */
1365 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1366
1367 if (command == 0x01) {
1368 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1369 if (command & SK_PSTATE_MASK) {
1370 u_int32_t xiobase, membase, irq;
1371
1372 /* Save important PCI config data. */
1373 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1374 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1375 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1376
1377 /* Reset the power state. */
1378 aprint_normal("%s chip is in D%d power mode "
1379 "-- setting to D0\n", sc->sk_dev.dv_xname,
1380 command & SK_PSTATE_MASK);
1381 command &= 0xFFFFFFFC;
1382 pci_conf_write(pc, pa->pa_tag,
1383 SK_PCI_PWRMGMTCTRL, command);
1384
1385 /* Restore PCI config data. */
1386 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1387 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1388 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1389 }
1390 }
1391
1392 /*
1393 * Map control/status registers.
1394 */
1395 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1396 command |= PCI_COMMAND_IO_ENABLE |
1397 PCI_COMMAND_MEM_ENABLE |
1398 PCI_COMMAND_MASTER_ENABLE;
1399 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1400 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1401
1402 #ifdef SK_USEIOSPACE
1403 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1404 aprint_error(": failed to enable I/O ports!\n");
1405 goto fail;
1406 }
1407 /*
1408 * Map control/status registers.
1409 */
1410 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1411 &iobase, &iosize)) {
1412 aprint_error(": can't find i/o space\n");
1413 goto fail;
1414 }
1415 #else
1416 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1417 aprint_error(": failed to enable memory mapping!\n");
1418 goto fail;
1419 }
1420 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1421 switch (memtype) {
1422 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1423 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1424 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1425 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1426 &iobase, &iosize) == 0)
1427 break;
1428 default:
1429 aprint_error("%s: can't find mem space\n",
1430 sc->sk_dev.dv_xname);
1431 return;
1432 }
1433
1434 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1435 #endif
1436 sc->sc_dmatag = pa->pa_dmat;
1437
1438 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1439 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1440
1441 /* bail out here if chip is not recognized */
1442 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1443 aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
1444 goto fail;
1445 }
1446 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1447
1448 /* Allocate interrupt */
1449 if (pci_intr_map(pa, &ih)) {
1450 aprint_error(": couldn't map interrupt\n");
1451 goto fail;
1452 }
1453
1454 intrstr = pci_intr_string(pc, ih);
1455 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1456 if (sc->sk_intrhand == NULL) {
1457 aprint_error(": couldn't establish interrupt");
1458 if (intrstr != NULL)
1459 aprint_normal(" at %s", intrstr);
1460 goto fail;
1461 }
1462 aprint_normal(": %s\n", intrstr);
1463
1464 /* Reset the adapter. */
1465 sk_reset(sc);
1466
1467 /* Read and save vital product data from EEPROM. */
1468 sk_vpd_read(sc);
1469
1470 if (sc->sk_type == SK_GENESIS) {
1471 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1472 /* Read and save RAM size and RAMbuffer offset */
1473 switch(val) {
1474 case SK_RAMSIZE_512K_64:
1475 sc->sk_ramsize = 0x80000;
1476 sc->sk_rboff = SK_RBOFF_0;
1477 break;
1478 case SK_RAMSIZE_1024K_64:
1479 sc->sk_ramsize = 0x100000;
1480 sc->sk_rboff = SK_RBOFF_80000;
1481 break;
1482 case SK_RAMSIZE_1024K_128:
1483 sc->sk_ramsize = 0x100000;
1484 sc->sk_rboff = SK_RBOFF_0;
1485 break;
1486 case SK_RAMSIZE_2048K_128:
1487 sc->sk_ramsize = 0x200000;
1488 sc->sk_rboff = SK_RBOFF_0;
1489 break;
1490 default:
1491 aprint_error("%s: unknown ram size: %d\n",
1492 sc->sk_dev.dv_xname, val);
1493 goto fail;
1494 break;
1495 }
1496
1497 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1498 sc->sk_ramsize, sc->sk_ramsize / 1024,
1499 sc->sk_rboff));
1500 } else {
1501 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1502 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1503 sc->sk_rboff = SK_RBOFF_0;
1504
1505 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1506 sc->sk_ramsize / 1024, sc->sk_ramsize,
1507 sc->sk_rboff));
1508 }
1509
1510 /* Read and save physical media type */
1511 switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1512 case SK_PMD_1000BASESX:
1513 sc->sk_pmd = IFM_1000_SX;
1514 break;
1515 case SK_PMD_1000BASELX:
1516 sc->sk_pmd = IFM_1000_LX;
1517 break;
1518 case SK_PMD_1000BASECX:
1519 sc->sk_pmd = IFM_1000_CX;
1520 break;
1521 case SK_PMD_1000BASETX:
1522 sc->sk_pmd = IFM_1000_T;
1523 break;
1524 default:
1525 aprint_error("%s: unknown media type: 0x%x\n",
1526 sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
1527 goto fail;
1528 }
1529
1530 /* determine whether to name it with vpd or just make it up */
1531 /* Marvell Yukon VPD's can freqently be bogus */
1532
1533 switch (pa->pa_id) {
1534 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1535 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1536 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1537 case PCI_PRODUCT_3COM_3C940:
1538 case PCI_PRODUCT_DLINK_DGE530T:
1539 case PCI_PRODUCT_LINKSYS_EG1032:
1540 case PCI_PRODUCT_LINKSYS_EG1064:
1541 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1542 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1543 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1544 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1545 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1546 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1547 sc->sk_name = sc->sk_vpd_prodname;
1548 break;
1549 case PCI_ID_CODE(PCI_VENDOR_GALILEO,PCI_PRODUCT_GALILEO_SKNET):
1550 /* whoops yukon vpd prodname bears no resemblance to reality */
1551 switch (sc->sk_type) {
1552 case SK_GENESIS:
1553 sc->sk_name = sc->sk_vpd_prodname;
1554 break;
1555 case SK_YUKON:
1556 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1557 break;
1558 case SK_YUKON_LITE:
1559 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1560 break;
1561 case SK_YUKON_LP:
1562 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1563 break;
1564 default:
1565 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1566 }
1567
1568 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1569
1570 if ( sc->sk_type == SK_YUKON ) {
1571 uint32_t flashaddr;
1572 uint8_t testbyte;
1573
1574 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1575
1576 /* test Flash-Address Register */
1577 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1578 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1579
1580 if (testbyte != 0) {
1581 /* this is yukon lite Rev. A0 */
1582 sc->sk_type = SK_YUKON_LITE;
1583 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1584 /* restore Flash-Address Register */
1585 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1586 }
1587 }
1588 break;
1589 case PCI_ID_CODE(PCI_VENDOR_GALILEO,PCI_PRODUCT_GALILEO_BELKIN):
1590 sc->sk_name = sc->sk_vpd_prodname;
1591 break;
1592 default:
1593 sc->sk_name = "Unkown Marvell";
1594 }
1595
1596
1597 if ( sc->sk_type == SK_YUKON_LITE ) {
1598 switch (sc->sk_rev) {
1599 case SK_YUKON_LITE_REV_A0:
1600 revstr = "A0";
1601 break;
1602 case SK_YUKON_LITE_REV_A1:
1603 revstr = "A1";
1604 break;
1605 case SK_YUKON_LITE_REV_A3:
1606 revstr = "A3";
1607 break;
1608 default:
1609 revstr = "";
1610 }
1611 } else {
1612 revstr = "";
1613 }
1614
1615 /* Announce the product name. */
1616 aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
1617 sc->sk_name, revstr, sc->sk_rev);
1618
1619 skca.skc_port = SK_PORT_A;
1620 (void)config_found(&sc->sk_dev, &skca, skcprint);
1621
1622 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1623 skca.skc_port = SK_PORT_B;
1624 (void)config_found(&sc->sk_dev, &skca, skcprint);
1625 }
1626
1627 /* Turn on the 'driver is loaded' LED. */
1628 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1629
1630 fail:
1631 splx(s);
1632 }
1633
1634 int
1635 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1636 {
1637 struct sk_softc *sc = sc_if->sk_softc;
1638 struct sk_tx_desc *f = NULL;
1639 u_int32_t frag, cur, cnt = 0;
1640 int i;
1641 struct sk_txmap_entry *entry;
1642 bus_dmamap_t txmap;
1643
1644 DPRINTFN(3, ("sk_encap\n"));
1645
1646 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1647 if (entry == NULL) {
1648 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1649 return ENOBUFS;
1650 }
1651 txmap = entry->dmamap;
1652
1653 cur = frag = *txidx;
1654
1655 #ifdef SK_DEBUG
1656 if (skdebug >= 3)
1657 sk_dump_mbuf(m_head);
1658 #endif
1659
1660 /*
1661 * Start packing the mbufs in this chain into
1662 * the fragment pointers. Stop when we run out
1663 * of fragments or hit the end of the mbuf chain.
1664 */
1665 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1666 BUS_DMA_NOWAIT)) {
1667 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1668 return(ENOBUFS);
1669 }
1670
1671 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1672
1673 /* Sync the DMA map. */
1674 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1675 BUS_DMASYNC_PREWRITE);
1676
1677 for (i = 0; i < txmap->dm_nsegs; i++) {
1678 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1679 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1680 return(ENOBUFS);
1681 }
1682 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1683 f->sk_data_lo = txmap->dm_segs[i].ds_addr;
1684 f->sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1685 if (cnt == 0)
1686 f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1687 else
1688 f->sk_ctl |= SK_TXCTL_OWN;
1689
1690 cur = frag;
1691 SK_INC(frag, SK_TX_RING_CNT);
1692 cnt++;
1693 }
1694
1695 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1696 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1697
1698 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1699 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1700 SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1701
1702 /* Sync descriptors before handing to chip */
1703 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1704 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1705
1706 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1707
1708 /* Sync first descriptor to hand it off */
1709 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1710
1711 sc_if->sk_cdata.sk_tx_cnt += cnt;
1712
1713 #ifdef SK_DEBUG
1714 if (skdebug >= 3) {
1715 struct sk_tx_desc *desc;
1716 u_int32_t idx;
1717 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1718 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1719 sk_dump_txdesc(desc, idx);
1720 }
1721 }
1722 #endif
1723
1724 *txidx = frag;
1725
1726 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1727
1728 return(0);
1729 }
1730
1731 void
1732 sk_start(struct ifnet *ifp)
1733 {
1734 struct sk_if_softc *sc_if = ifp->if_softc;
1735 struct sk_softc *sc = sc_if->sk_softc;
1736 struct mbuf *m_head = NULL;
1737 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1738 int pkts = 0;
1739
1740 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1741 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1742
1743 while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1744
1745 IFQ_POLL(&ifp->if_snd, m_head);
1746 if (m_head == NULL)
1747 break;
1748
1749 /*
1750 * Pack the data into the transmit ring. If we
1751 * don't have room, set the OACTIVE flag and wait
1752 * for the NIC to drain the ring.
1753 */
1754 if (sk_encap(sc_if, m_head, &idx)) {
1755 ifp->if_flags |= IFF_OACTIVE;
1756 break;
1757 }
1758
1759 /* now we are committed to transmit the packet */
1760 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1761 pkts++;
1762
1763 /*
1764 * If there's a BPF listener, bounce a copy of this frame
1765 * to him.
1766 */
1767 #if NBPFILTER > 0
1768 if (ifp->if_bpf)
1769 bpf_mtap(ifp->if_bpf, m_head);
1770 #endif
1771 }
1772 if (pkts == 0)
1773 return;
1774
1775 /* Transmit */
1776 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1777 sc_if->sk_cdata.sk_tx_prod = idx;
1778 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1779
1780 /* Set a timeout in case the chip goes out to lunch. */
1781 ifp->if_timer = 5;
1782 }
1783 }
1784
1785
1786 void
1787 sk_watchdog(struct ifnet *ifp)
1788 {
1789 struct sk_if_softc *sc_if = ifp->if_softc;
1790
1791 printf("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1792 (void) sk_init(ifp);
1793 }
1794
1795 void
1796 sk_shutdown(void * v)
1797 {
1798 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
1799 struct sk_softc *sc = sc_if->sk_softc;
1800 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1801
1802 DPRINTFN(2, ("sk_shutdown\n"));
1803 sk_stop(ifp,1);
1804
1805 /* Turn off the 'driver is loaded' LED. */
1806 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1807
1808 /*
1809 * Reset the GEnesis controller. Doing this should also
1810 * assert the resets on the attached XMAC(s).
1811 */
1812 sk_reset(sc);
1813 }
1814
1815 void
1816 sk_rxeof(struct sk_if_softc *sc_if)
1817 {
1818 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1819 struct mbuf *m;
1820 struct sk_chain *cur_rx;
1821 struct sk_rx_desc *cur_desc;
1822 int i, cur, total_len = 0;
1823 u_int32_t rxstat;
1824 bus_dmamap_t dmamap;
1825
1826 i = sc_if->sk_cdata.sk_rx_prod;
1827
1828 DPRINTFN(3, ("sk_rxeof %d\n", i));
1829
1830 for (;;) {
1831 cur = i;
1832
1833 /* Sync the descriptor */
1834 SK_CDRXSYNC(sc_if, cur,
1835 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1836
1837 if (sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl & SK_RXCTL_OWN) {
1838 /* Invalidate the descriptor -- it's not ready yet */
1839 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
1840 sc_if->sk_cdata.sk_rx_prod = i;
1841 break;
1842 }
1843
1844 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1845 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
1846 dmamap = sc_if->sk_cdata.sk_rx_map[cur];
1847
1848 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1849 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1850
1851 rxstat = cur_desc->sk_xmac_rxstat;
1852 m = cur_rx->sk_mbuf;
1853 cur_rx->sk_mbuf = NULL;
1854 total_len = SK_RXBYTES(cur_desc->sk_ctl);
1855
1856 sc_if->sk_cdata.sk_rx_map[cur] = 0;
1857
1858 SK_INC(i, SK_RX_RING_CNT);
1859
1860 if (rxstat & XM_RXSTAT_ERRFRAME) {
1861 ifp->if_ierrors++;
1862 sk_newbuf(sc_if, cur, m, dmamap);
1863 continue;
1864 }
1865
1866 /*
1867 * Try to allocate a new jumbo buffer. If that
1868 * fails, copy the packet to mbufs and put the
1869 * jumbo buffer back in the ring so it can be
1870 * re-used. If allocating mbufs fails, then we
1871 * have to drop the packet.
1872 */
1873 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1874 struct mbuf *m0;
1875 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1876 total_len + ETHER_ALIGN, 0, ifp, NULL);
1877 sk_newbuf(sc_if, cur, m, dmamap);
1878 if (m0 == NULL) {
1879 printf("%s: no receive buffers "
1880 "available -- packet dropped!\n",
1881 sc_if->sk_dev.dv_xname);
1882 ifp->if_ierrors++;
1883 continue;
1884 }
1885 m_adj(m0, ETHER_ALIGN);
1886 m = m0;
1887 } else {
1888 m->m_pkthdr.rcvif = ifp;
1889 m->m_pkthdr.len = m->m_len = total_len;
1890 }
1891
1892 ifp->if_ipackets++;
1893
1894 #if NBPFILTER > 0
1895 if (ifp->if_bpf)
1896 bpf_mtap(ifp->if_bpf, m);
1897 #endif
1898 /* pass it on. */
1899 (*ifp->if_input)(ifp, m);
1900 }
1901 }
1902
1903 void
1904 sk_txeof(struct sk_if_softc *sc_if)
1905 {
1906 struct sk_softc *sc = sc_if->sk_softc;
1907 struct sk_tx_desc *cur_tx;
1908 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1909 u_int32_t idx;
1910 struct sk_txmap_entry *entry;
1911
1912 DPRINTFN(3, ("sk_txeof\n"));
1913
1914 /*
1915 * Go through our tx ring and free mbufs for those
1916 * frames that have been sent.
1917 */
1918 idx = sc_if->sk_cdata.sk_tx_cons;
1919 while(idx != sc_if->sk_cdata.sk_tx_prod) {
1920 SK_CDTXSYNC(sc_if, idx, 1,
1921 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1922
1923 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1924 #ifdef SK_DEBUG
1925 if (skdebug >= 3)
1926 sk_dump_txdesc(cur_tx, idx);
1927 #endif
1928 if (cur_tx->sk_ctl & SK_TXCTL_OWN) {
1929 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
1930 break;
1931 }
1932 if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
1933 ifp->if_opackets++;
1934 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1935 entry = sc_if->sk_cdata.sk_tx_map[idx];
1936
1937 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1938 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1939
1940 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1941 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1942
1943 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1944 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
1945 link);
1946 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
1947 }
1948 sc_if->sk_cdata.sk_tx_cnt--;
1949 SK_INC(idx, SK_TX_RING_CNT);
1950 }
1951 if (sc_if->sk_cdata.sk_tx_cnt == 0)
1952 ifp->if_timer = 0;
1953 else /* nudge chip to keep tx ring moving */
1954 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1955
1956 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
1957 ifp->if_flags &= ~IFF_OACTIVE;
1958
1959 sc_if->sk_cdata.sk_tx_cons = idx;
1960 }
1961
1962 void
1963 sk_tick(void *xsc_if)
1964 {
1965 struct sk_if_softc *sc_if = xsc_if;
1966 struct mii_data *mii = &sc_if->sk_mii;
1967 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1968 int i;
1969
1970 DPRINTFN(3, ("sk_tick\n"));
1971
1972 if (!(ifp->if_flags & IFF_UP))
1973 return;
1974
1975 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
1976 sk_intr_bcom(sc_if);
1977 return;
1978 }
1979
1980 /*
1981 * According to SysKonnect, the correct way to verify that
1982 * the link has come back up is to poll bit 0 of the GPIO
1983 * register three times. This pin has the signal from the
1984 * link sync pin connected to it; if we read the same link
1985 * state 3 times in a row, we know the link is up.
1986 */
1987 for (i = 0; i < 3; i++) {
1988 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
1989 break;
1990 }
1991
1992 if (i != 3) {
1993 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1994 return;
1995 }
1996
1997 /* Turn the GP0 interrupt back on. */
1998 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1999 SK_XM_READ_2(sc_if, XM_ISR);
2000 mii_tick(mii);
2001 mii_pollstat(mii);
2002 callout_stop(&sc_if->sk_tick_ch);
2003 }
2004
2005 void
2006 sk_intr_bcom(struct sk_if_softc *sc_if)
2007 {
2008 struct mii_data *mii = &sc_if->sk_mii;
2009 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2010 int status;
2011
2012
2013 DPRINTFN(3, ("sk_intr_bcom\n"));
2014
2015 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2016
2017 /*
2018 * Read the PHY interrupt register to make sure
2019 * we clear any pending interrupts.
2020 */
2021 status = sk_xmac_miibus_readreg((struct device *)sc_if,
2022 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2023
2024 if (!(ifp->if_flags & IFF_RUNNING)) {
2025 sk_init_xmac(sc_if);
2026 return;
2027 }
2028
2029 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2030 int lstat;
2031 lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
2032 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2033
2034 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2035 mii_mediachg(mii);
2036 /* Turn off the link LED. */
2037 SK_IF_WRITE_1(sc_if, 0,
2038 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2039 sc_if->sk_link = 0;
2040 } else if (status & BRGPHY_ISR_LNK_CHG) {
2041 sk_xmac_miibus_writereg((struct device *)sc_if,
2042 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2043 mii_tick(mii);
2044 sc_if->sk_link = 1;
2045 /* Turn on the link LED. */
2046 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2047 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2048 SK_LINKLED_BLINK_OFF);
2049 mii_pollstat(mii);
2050 } else {
2051 mii_tick(mii);
2052 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2053 }
2054 }
2055
2056 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2057 }
2058
2059 void
2060 sk_intr_xmac(struct sk_if_softc *sc_if)
2061 {
2062 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2063
2064 DPRINTFN(3, ("sk_intr_xmac\n"));
2065
2066 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2067 if (status & XM_ISR_GP0_SET) {
2068 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2069 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2070 }
2071
2072 if (status & XM_ISR_AUTONEG_DONE) {
2073 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2074 }
2075 }
2076
2077 if (status & XM_IMR_TX_UNDERRUN)
2078 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2079
2080 if (status & XM_IMR_RX_OVERRUN)
2081 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2082 }
2083
2084 void
2085 sk_intr_yukon(sc_if)
2086 struct sk_if_softc *sc_if;
2087 {
2088 int status;
2089
2090 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2091
2092 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2093 }
2094
2095 int
2096 sk_intr(void *xsc)
2097 {
2098 struct sk_softc *sc = xsc;
2099 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2100 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2101 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2102 u_int32_t status;
2103 int claimed = 0;
2104
2105 if (sc_if0 != NULL)
2106 ifp0 = &sc_if0->sk_ethercom.ec_if;
2107 if (sc_if1 != NULL)
2108 ifp1 = &sc_if1->sk_ethercom.ec_if;
2109
2110 for (;;) {
2111 status = CSR_READ_4(sc, SK_ISSR);
2112 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2113
2114 if (!(status & sc->sk_intrmask))
2115 break;
2116
2117 claimed = 1;
2118
2119 /* Handle receive interrupts first. */
2120 if (status & SK_ISR_RX1_EOF) {
2121 sk_rxeof(sc_if0);
2122 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2123 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2124 }
2125 if (status & SK_ISR_RX2_EOF) {
2126 sk_rxeof(sc_if1);
2127 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2128 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2129 }
2130
2131 /* Then transmit interrupts. */
2132 if (status & SK_ISR_TX1_S_EOF) {
2133 sk_txeof(sc_if0);
2134 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2135 SK_TXBMU_CLR_IRQ_EOF);
2136 }
2137 if (status & SK_ISR_TX2_S_EOF) {
2138 sk_txeof(sc_if1);
2139 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2140 SK_TXBMU_CLR_IRQ_EOF);
2141 }
2142
2143 /* Then MAC interrupts. */
2144 if (status & SK_ISR_MAC1 && (ifp0->if_flags & IFF_RUNNING)) {
2145 if (sc->sk_type == SK_GENESIS)
2146 sk_intr_xmac(sc_if0);
2147 else
2148 sk_intr_yukon(sc_if0);
2149 }
2150
2151 if (status & SK_ISR_MAC2 && (ifp1->if_flags & IFF_RUNNING)) {
2152 if (sc->sk_type == SK_GENESIS)
2153 sk_intr_xmac(sc_if1);
2154 else
2155 sk_intr_yukon(sc_if1);
2156
2157 }
2158
2159 if (status & SK_ISR_EXTERNAL_REG) {
2160 if (ifp0 != NULL &&
2161 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2162 sk_intr_bcom(sc_if0);
2163
2164 if (ifp1 != NULL &&
2165 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2166 sk_intr_bcom(sc_if1);
2167 }
2168 }
2169
2170 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2171
2172 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2173 sk_start(ifp0);
2174 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2175 sk_start(ifp1);
2176
2177 #if NRND > 0
2178 if (RND_ENABLED(&sc->rnd_source))
2179 rnd_add_uint32(&sc->rnd_source, status);
2180 #endif
2181
2182 return (claimed);
2183 }
2184
2185 void
2186 sk_init_xmac(struct sk_if_softc *sc_if)
2187 {
2188 struct sk_softc *sc = sc_if->sk_softc;
2189 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2190 static const struct sk_bcom_hack bhack[] = {
2191 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2192 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2193 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2194 { 0, 0 } };
2195
2196 DPRINTFN(1, ("sk_init_xmac\n"));
2197
2198 /* Unreset the XMAC. */
2199 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2200 DELAY(1000);
2201
2202 /* Reset the XMAC's internal state. */
2203 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2204
2205 /* Save the XMAC II revision */
2206 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2207
2208 /*
2209 * Perform additional initialization for external PHYs,
2210 * namely for the 1000baseTX cards that use the XMAC's
2211 * GMII mode.
2212 */
2213 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2214 int i = 0;
2215 u_int32_t val;
2216
2217 /* Take PHY out of reset. */
2218 val = sk_win_read_4(sc, SK_GPIO);
2219 if (sc_if->sk_port == SK_PORT_A)
2220 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2221 else
2222 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2223 sk_win_write_4(sc, SK_GPIO, val);
2224
2225 /* Enable GMII mode on the XMAC. */
2226 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2227
2228 sk_xmac_miibus_writereg((struct device *)sc_if,
2229 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2230 DELAY(10000);
2231 sk_xmac_miibus_writereg((struct device *)sc_if,
2232 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2233
2234 /*
2235 * Early versions of the BCM5400 apparently have
2236 * a bug that requires them to have their reserved
2237 * registers initialized to some magic values. I don't
2238 * know what the numbers do, I'm just the messenger.
2239 */
2240 if (sk_xmac_miibus_readreg((struct device *)sc_if,
2241 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2242 while(bhack[i].reg) {
2243 sk_xmac_miibus_writereg((struct device *)sc_if,
2244 SK_PHYADDR_BCOM, bhack[i].reg,
2245 bhack[i].val);
2246 i++;
2247 }
2248 }
2249 }
2250
2251 /* Set station address */
2252 SK_XM_WRITE_2(sc_if, XM_PAR0,
2253 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2254 SK_XM_WRITE_2(sc_if, XM_PAR1,
2255 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2256 SK_XM_WRITE_2(sc_if, XM_PAR2,
2257 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2258 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2259
2260 if (ifp->if_flags & IFF_PROMISC) {
2261 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2262 } else {
2263 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2264 }
2265
2266 if (ifp->if_flags & IFF_BROADCAST) {
2267 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2268 } else {
2269 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2270 }
2271
2272 /* We don't need the FCS appended to the packet. */
2273 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2274
2275 /* We want short frames padded to 60 bytes. */
2276 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2277
2278 /*
2279 * Enable the reception of all error frames. This is is
2280 * a necessary evil due to the design of the XMAC. The
2281 * XMAC's receive FIFO is only 8K in size, however jumbo
2282 * frames can be up to 9000 bytes in length. When bad
2283 * frame filtering is enabled, the XMAC's RX FIFO operates
2284 * in 'store and forward' mode. For this to work, the
2285 * entire frame has to fit into the FIFO, but that means
2286 * that jumbo frames larger than 8192 bytes will be
2287 * truncated. Disabling all bad frame filtering causes
2288 * the RX FIFO to operate in streaming mode, in which
2289 * case the XMAC will start transfering frames out of the
2290 * RX FIFO as soon as the FIFO threshold is reached.
2291 */
2292 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2293 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2294 XM_MODE_RX_INRANGELEN);
2295
2296 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2297 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2298 else
2299 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2300
2301 /*
2302 * Bump up the transmit threshold. This helps hold off transmit
2303 * underruns when we're blasting traffic from both ports at once.
2304 */
2305 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2306
2307 /* Set multicast filter */
2308 sk_setmulti(sc_if);
2309
2310 /* Clear and enable interrupts */
2311 SK_XM_READ_2(sc_if, XM_ISR);
2312 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2313 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2314 else
2315 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2316
2317 /* Configure MAC arbiter */
2318 switch(sc_if->sk_xmac_rev) {
2319 case XM_XMAC_REV_B2:
2320 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2321 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2322 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2323 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2324 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2325 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2326 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2327 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2328 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2329 break;
2330 case XM_XMAC_REV_C1:
2331 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2332 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2333 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2334 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2335 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2336 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2337 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2338 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2339 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2340 break;
2341 default:
2342 break;
2343 }
2344 sk_win_write_2(sc, SK_MACARB_CTL,
2345 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2346
2347 sc_if->sk_link = 1;
2348 }
2349
2350 void sk_init_yukon(sc_if)
2351 struct sk_if_softc *sc_if;
2352 {
2353 u_int32_t /*mac, */phy;
2354 u_int16_t reg;
2355 struct sk_softc *sc;
2356 int i;
2357
2358 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2359 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2360
2361 sc = sc_if->sk_softc;
2362 if (sc->sk_type == SK_YUKON_LITE &&
2363 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2364 /* Take PHY out of reset. */
2365 sk_win_write_4(sc, SK_GPIO,
2366 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2367 }
2368
2369
2370 /* GMAC and GPHY Reset */
2371 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2372
2373 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2374
2375 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2376 DELAY(1000);
2377 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2378 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2379 DELAY(1000);
2380
2381
2382 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2383
2384 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2385 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2386
2387 switch(sc_if->sk_softc->sk_pmd) {
2388 case IFM_1000_SX:
2389 case IFM_1000_LX:
2390 phy |= SK_GPHY_FIBER;
2391 break;
2392
2393 case IFM_1000_CX:
2394 case IFM_1000_T:
2395 phy |= SK_GPHY_COPPER;
2396 break;
2397 }
2398
2399 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2400
2401 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2402 DELAY(1000);
2403 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2404 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2405 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2406
2407 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2408 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2409
2410 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2411
2412 /* unused read of the interrupt source register */
2413 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2414 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2415
2416 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2417 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2418 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2419
2420 /* MIB Counter Clear Mode set */
2421 reg |= YU_PAR_MIB_CLR;
2422 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2423 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2424 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2425
2426 /* MIB Counter Clear Mode clear */
2427 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2428 reg &= ~YU_PAR_MIB_CLR;
2429 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2430
2431 /* receive control reg */
2432 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2433 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2434 YU_RCR_CRCR);
2435
2436 /* transmit parameter register */
2437 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2438 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2439 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2440
2441 /* serial mode register */
2442 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2443 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2444 YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e));
2445
2446 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2447 /* Setup Yukon's address */
2448 for (i = 0; i < 3; i++) {
2449 /* Write Source Address 1 (unicast filter) */
2450 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2451 sc_if->sk_enaddr[i * 2] |
2452 sc_if->sk_enaddr[i * 2 + 1] << 8);
2453 }
2454
2455 for (i = 0; i < 3; i++) {
2456 reg = sk_win_read_2(sc_if->sk_softc,
2457 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2458 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2459 }
2460
2461 /* Set multicast filter */
2462 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2463 sk_setmulti(sc_if);
2464
2465 /* enable interrupt mask for counter overflows */
2466 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2467 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2468 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2469 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2470
2471 /* Configure RX MAC FIFO */
2472 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2473 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2474
2475 /* Configure TX MAC FIFO */
2476 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2477 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2478
2479 DPRINTFN(6, ("sk_init_yukon: end\n"));
2480 }
2481
2482 /*
2483 * Note that to properly initialize any part of the GEnesis chip,
2484 * you first have to take it out of reset mode.
2485 */
2486 int
2487 sk_init(struct ifnet *ifp)
2488 {
2489 struct sk_if_softc *sc_if = ifp->if_softc;
2490 struct sk_softc *sc = sc_if->sk_softc;
2491 struct mii_data *mii = &sc_if->sk_mii;
2492 int s;
2493
2494 DPRINTFN(1, ("sk_init\n"));
2495
2496 s = splnet();
2497
2498 if (ifp->if_flags & IFF_RUNNING) {
2499 splx(s);
2500 return 0;
2501 }
2502
2503 /* Cancel pending I/O and free all RX/TX buffers. */
2504 sk_stop(ifp,0);
2505
2506 if (sc->sk_type == SK_GENESIS) {
2507 /* Configure LINK_SYNC LED */
2508 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2509 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2510 SK_LINKLED_LINKSYNC_ON);
2511
2512 /* Configure RX LED */
2513 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2514 SK_RXLEDCTL_COUNTER_START);
2515
2516 /* Configure TX LED */
2517 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2518 SK_TXLEDCTL_COUNTER_START);
2519 }
2520
2521 /* Configure I2C registers */
2522
2523 /* Configure XMAC(s) */
2524 switch (sc->sk_type) {
2525 case SK_GENESIS:
2526 sk_init_xmac(sc_if);
2527 break;
2528 case SK_YUKON:
2529 case SK_YUKON_LITE:
2530 case SK_YUKON_LP:
2531 sk_init_yukon(sc_if);
2532 break;
2533 }
2534 mii_mediachg(mii);
2535
2536 if (sc->sk_type == SK_GENESIS) {
2537 /* Configure MAC FIFOs */
2538 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2539 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2540 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2541
2542 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2543 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2544 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2545 }
2546
2547 /* Configure transmit arbiter(s) */
2548 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2549 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2550
2551 /* Configure RAMbuffers */
2552 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2553 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2554 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2555 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2556 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2557 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2558
2559 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2560 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2561 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2562 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2563 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2564 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2565 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2566
2567 /* Configure BMUs */
2568 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2569 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2570 SK_RX_RING_ADDR(sc_if, 0));
2571 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2572
2573 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2574 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2575 SK_TX_RING_ADDR(sc_if, 0));
2576 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2577
2578 /* Init descriptors */
2579 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2580 printf("%s: initialization failed: no "
2581 "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2582 sk_stop(ifp,0);
2583 splx(s);
2584 return(ENOBUFS);
2585 }
2586
2587 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2588 printf("%s: initialization failed: no "
2589 "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2590 sk_stop(ifp,0);
2591 splx(s);
2592 return(ENOBUFS);
2593 }
2594
2595 /* Configure interrupt handling */
2596 CSR_READ_4(sc, SK_ISSR);
2597 if (sc_if->sk_port == SK_PORT_A)
2598 sc->sk_intrmask |= SK_INTRS1;
2599 else
2600 sc->sk_intrmask |= SK_INTRS2;
2601
2602 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2603
2604 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2605
2606 /* Start BMUs. */
2607 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2608
2609 if (sc->sk_type == SK_GENESIS) {
2610 /* Enable XMACs TX and RX state machines */
2611 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2612 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2613 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2614 }
2615
2616 if (SK_YUKON_FAMILY(sc->sk_type)) {
2617 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2618 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2619 reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2620 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2621 }
2622
2623
2624 ifp->if_flags |= IFF_RUNNING;
2625 ifp->if_flags &= ~IFF_OACTIVE;
2626
2627 splx(s);
2628 return(0);
2629 }
2630
2631 void
2632 sk_stop(struct ifnet *ifp, int disable)
2633 {
2634 struct sk_if_softc *sc_if = ifp->if_softc;
2635 struct sk_softc *sc = sc_if->sk_softc;
2636 int i;
2637
2638 DPRINTFN(1, ("sk_stop\n"));
2639
2640 callout_stop(&sc_if->sk_tick_ch);
2641
2642 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2643 u_int32_t val;
2644
2645 /* Put PHY back into reset. */
2646 val = sk_win_read_4(sc, SK_GPIO);
2647 if (sc_if->sk_port == SK_PORT_A) {
2648 val |= SK_GPIO_DIR0;
2649 val &= ~SK_GPIO_DAT0;
2650 } else {
2651 val |= SK_GPIO_DIR2;
2652 val &= ~SK_GPIO_DAT2;
2653 }
2654 sk_win_write_4(sc, SK_GPIO, val);
2655 }
2656
2657 /* Turn off various components of this interface. */
2658 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2659 switch (sc->sk_type) {
2660 case SK_GENESIS:
2661 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2662 SK_TXMACCTL_XMAC_RESET);
2663 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2664 break;
2665 case SK_YUKON:
2666 case SK_YUKON_LITE:
2667 case SK_YUKON_LP:
2668 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2669 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2670 break;
2671 }
2672 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2673 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2674 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2675 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2676 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2677 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2678 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2679 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2680 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2681
2682 /* Disable interrupts */
2683 if (sc_if->sk_port == SK_PORT_A)
2684 sc->sk_intrmask &= ~SK_INTRS1;
2685 else
2686 sc->sk_intrmask &= ~SK_INTRS2;
2687 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2688
2689 SK_XM_READ_2(sc_if, XM_ISR);
2690 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2691
2692 /* Free RX and TX mbufs still in the queues. */
2693 for (i = 0; i < SK_RX_RING_CNT; i++) {
2694 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2695 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2696 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2697 }
2698 }
2699
2700 for (i = 0; i < SK_TX_RING_CNT; i++) {
2701 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2702 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2703 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2704 }
2705 }
2706
2707 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2708 }
2709
2710 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2711
2712 /*
2713 struct cfdriver skc_cd = {
2714 0, "skc", DV_DULL
2715 };
2716 */
2717
2718 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2719
2720 /*
2721 struct cfdriver sk_cd = {
2722 0, "sk", DV_IFNET
2723 };
2724 */
2725
2726 #ifdef SK_DEBUG
2727 void
2728 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2729 {
2730 #define DESC_PRINT(X) \
2731 if (desc->X) \
2732 printf("txdesc[%d]." #X "=%#x\n", \
2733 idx, desc->X);
2734
2735 DESC_PRINT(sk_ctl);
2736 DESC_PRINT(sk_next);
2737 DESC_PRINT(sk_data_lo);
2738 DESC_PRINT(sk_data_hi);
2739 DESC_PRINT(sk_xmac_txstat);
2740 DESC_PRINT(sk_rsvd0);
2741 DESC_PRINT(sk_csum_startval);
2742 DESC_PRINT(sk_csum_startpos);
2743 DESC_PRINT(sk_csum_writepos);
2744 DESC_PRINT(sk_rsvd1);
2745 #undef PRINT
2746 }
2747
2748 void
2749 sk_dump_bytes(const char *data, int len)
2750 {
2751 int c, i, j;
2752
2753 for (i = 0; i < len; i += 16) {
2754 printf("%08x ", i);
2755 c = len - i;
2756 if (c > 16) c = 16;
2757
2758 for (j = 0; j < c; j++) {
2759 printf("%02x ", data[i + j] & 0xff);
2760 if ((j & 0xf) == 7 && j > 0)
2761 printf(" ");
2762 }
2763
2764 for (; j < 16; j++)
2765 printf(" ");
2766 printf(" ");
2767
2768 for (j = 0; j < c; j++) {
2769 int ch = data[i + j] & 0xff;
2770 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2771 }
2772
2773 printf("\n");
2774
2775 if (c < 16)
2776 break;
2777 }
2778 }
2779
2780 void
2781 sk_dump_mbuf(struct mbuf *m)
2782 {
2783 int count = m->m_pkthdr.len;
2784
2785 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2786
2787 while (count > 0 && m) {
2788 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2789 m, m->m_data, m->m_len);
2790 sk_dump_bytes(mtod(m, char *), m->m_len);
2791
2792 count -= m->m_len;
2793 m = m->m_next;
2794 }
2795 }
2796 #endif
2797