if_sk.c revision 1.21 1 /* $NetBSD: if_sk.c,v 1.21 2006/02/25 02:28:58 wiz Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the NetBSD
18 * Foundation, Inc. and its contributors.
19 * 4. Neither the name of The NetBSD Foundation nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /* $OpenBSD: if_sk.c,v 1.33 2003/08/12 05:23:06 nate Exp $ */
37
38 /*
39 * Copyright (c) 1997, 1998, 1999, 2000
40 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Bill Paul.
53 * 4. Neither the name of the author nor the names of any co-contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67 * THE POSSIBILITY OF SUCH DAMAGE.
68 *
69 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70 */
71
72 /*
73 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
74 *
75 * Permission to use, copy, modify, and distribute this software for any
76 * purpose with or without fee is hereby granted, provided that the above
77 * copyright notice and this permission notice appear in all copies.
78 *
79 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86 */
87
88 /*
89 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90 * the SK-984x series adapters, both single port and dual port.
91 * References:
92 * The XaQti XMAC II datasheet,
93 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 * The SysKonnect GEnesis manual, http://www.syskonnect.com
95 *
96 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98 * convenience to others until Vitesse corrects this problem:
99 *
100 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101 *
102 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
103 * Department of Electrical Engineering
104 * Columbia University, New York City
105 */
106
107 /*
108 * The SysKonnect gigabit ethernet adapters consist of two main
109 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111 * components and a PHY while the GEnesis controller provides a PCI
112 * interface with DMA support. Each card may have between 512K and
113 * 2MB of SRAM on board depending on the configuration.
114 *
115 * The SysKonnect GEnesis controller can have either one or two XMAC
116 * chips connected to it, allowing single or dual port NIC configurations.
117 * SysKonnect has the distinction of being the only vendor on the market
118 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120 * XMAC registers. This driver takes advantage of these features to allow
121 * both XMACs to operate as independent interfaces.
122 */
123
124 #include "bpfilter.h"
125 #include "rnd.h"
126
127 #include <sys/param.h>
128 #include <sys/systm.h>
129 #include <sys/sockio.h>
130 #include <sys/mbuf.h>
131 #include <sys/malloc.h>
132 #include <sys/kernel.h>
133 #include <sys/socket.h>
134 #include <sys/device.h>
135 #include <sys/queue.h>
136 #include <sys/callout.h>
137 #include <sys/sysctl.h>
138
139 #include <net/if.h>
140 #include <net/if_dl.h>
141 #include <net/if_types.h>
142
143 #ifdef INET
144 #include <netinet/in.h>
145 #include <netinet/in_systm.h>
146 #include <netinet/in_var.h>
147 #include <netinet/ip.h>
148 #include <netinet/if_ether.h>
149 #endif
150
151 #include <net/if_media.h>
152
153 #if NBPFILTER > 0
154 #include <net/bpf.h>
155 #endif
156 #if NRND > 0
157 #include <sys/rnd.h>
158 #endif
159
160 #include <dev/mii/mii.h>
161 #include <dev/mii/miivar.h>
162 #include <dev/mii/brgphyreg.h>
163
164 #include <dev/pci/pcireg.h>
165 #include <dev/pci/pcivar.h>
166 #include <dev/pci/pcidevs.h>
167
168 #define SK_VERBOSE
169 /* #define SK_USEIOSPACE */
170
171 #include <dev/pci/if_skreg.h>
172 #include <dev/pci/if_skvar.h>
173
174 int skc_probe(struct device *, struct cfdata *, void *);
175 void skc_attach(struct device *, struct device *self, void *aux);
176 int sk_probe(struct device *, struct cfdata *, void *);
177 void sk_attach(struct device *, struct device *self, void *aux);
178 int skcprint(void *, const char *);
179 int sk_intr(void *);
180 void sk_intr_bcom(struct sk_if_softc *);
181 void sk_intr_xmac(struct sk_if_softc *);
182 void sk_intr_yukon(struct sk_if_softc *);
183 void sk_rxeof(struct sk_if_softc *);
184 void sk_txeof(struct sk_if_softc *);
185 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
186 void sk_start(struct ifnet *);
187 int sk_ioctl(struct ifnet *, u_long, caddr_t);
188 int sk_init(struct ifnet *);
189 void sk_init_xmac(struct sk_if_softc *);
190 void sk_init_yukon(struct sk_if_softc *);
191 void sk_stop(struct ifnet *, int);
192 void sk_watchdog(struct ifnet *);
193 void sk_shutdown(void *);
194 int sk_ifmedia_upd(struct ifnet *);
195 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
196 void sk_reset(struct sk_softc *);
197 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
198 int sk_init_rx_ring(struct sk_if_softc *);
199 int sk_init_tx_ring(struct sk_if_softc *);
200 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
201 void sk_vpd_read_res(struct sk_softc *,
202 struct vpd_res *, int);
203 void sk_vpd_read(struct sk_softc *);
204
205 void sk_update_int_mod(struct sk_softc *);
206
207 int sk_xmac_miibus_readreg(struct device *, int, int);
208 void sk_xmac_miibus_writereg(struct device *, int, int, int);
209 void sk_xmac_miibus_statchg(struct device *);
210
211 int sk_marv_miibus_readreg(struct device *, int, int);
212 void sk_marv_miibus_writereg(struct device *, int, int, int);
213 void sk_marv_miibus_statchg(struct device *);
214
215 u_int32_t sk_xmac_hash(caddr_t);
216 u_int32_t sk_yukon_hash(caddr_t);
217 void sk_setfilt(struct sk_if_softc *, caddr_t, int);
218 void sk_setmulti(struct sk_if_softc *);
219 void sk_tick(void *);
220
221 /* #define SK_DEBUG 2 */
222 #ifdef SK_DEBUG
223 #define DPRINTF(x) if (skdebug) printf x
224 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
225 int skdebug = SK_DEBUG;
226
227 void sk_dump_txdesc(struct sk_tx_desc *, int);
228 void sk_dump_mbuf(struct mbuf *);
229 void sk_dump_bytes(const char *, int);
230 #else
231 #define DPRINTF(x)
232 #define DPRINTFN(n,x)
233 #endif
234
235 #define SK_SETBIT(sc, reg, x) \
236 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
237
238 #define SK_CLRBIT(sc, reg, x) \
239 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
240
241 #define SK_WIN_SETBIT_4(sc, reg, x) \
242 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
243
244 #define SK_WIN_CLRBIT_4(sc, reg, x) \
245 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
246
247 #define SK_WIN_SETBIT_2(sc, reg, x) \
248 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
249
250 #define SK_WIN_CLRBIT_2(sc, reg, x) \
251 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
252
253 static int sk_sysctl_handler(SYSCTLFN_PROTO);
254 static int sk_root_num;
255
256 /* supported device vendors */
257 static const struct sk_product {
258 pci_vendor_id_t sk_vendor;
259 pci_product_id_t sk_product;
260 } sk_products[] = {
261 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
262 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
263 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
264 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
265 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
266 { PCI_VENDOR_GALILEO, PCI_PRODUCT_GALILEO_SKNET, },
267 { PCI_VENDOR_GALILEO, PCI_PRODUCT_GALILEO_BELKIN, },
268 { 0, 0, }
269 };
270
271 #define SK_LINKSYS_EG1032_SUBID 0x00151737
272
273 static inline u_int32_t
274 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
275 {
276 #ifdef SK_USEIOSPACE
277 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
278 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
279 #else
280 return CSR_READ_4(sc, reg);
281 #endif
282 }
283
284 static inline u_int16_t
285 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
286 {
287 #ifdef SK_USEIOSPACE
288 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
289 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
290 #else
291 return CSR_READ_2(sc, reg);
292 #endif
293 }
294
295 static inline u_int8_t
296 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
297 {
298 #ifdef SK_USEIOSPACE
299 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
300 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
301 #else
302 return CSR_READ_1(sc, reg);
303 #endif
304 }
305
306 static inline void
307 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
308 {
309 #ifdef SK_USEIOSPACE
310 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
311 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
312 #else
313 CSR_WRITE_4(sc, reg, x);
314 #endif
315 }
316
317 static inline void
318 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
319 {
320 #ifdef SK_USEIOSPACE
321 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
322 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
323 #else
324 CSR_WRITE_2(sc, reg, x);
325 #endif
326 }
327
328 static inline void
329 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
330 {
331 #ifdef SK_USEIOSPACE
332 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
333 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
334 #else
335 CSR_WRITE_1(sc, reg, x);
336 #endif
337 }
338
339 /*
340 * The VPD EEPROM contains Vital Product Data, as suggested in
341 * the PCI 2.1 specification. The VPD data is separared into areas
342 * denoted by resource IDs. The SysKonnect VPD contains an ID string
343 * resource (the name of the adapter), a read-only area resource
344 * containing various key/data fields and a read/write area which
345 * can be used to store asset management information or log messages.
346 * We read the ID string and read-only into buffers attached to
347 * the controller softc structure for later use. At the moment,
348 * we only use the ID string during sk_attach().
349 */
350 u_int8_t
351 sk_vpd_readbyte(struct sk_softc *sc, int addr)
352 {
353 int i;
354
355 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
356 for (i = 0; i < SK_TIMEOUT; i++) {
357 DELAY(1);
358 if (sk_win_read_2(sc,
359 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
360 break;
361 }
362
363 if (i == SK_TIMEOUT)
364 return(0);
365
366 return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
367 }
368
369 void
370 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
371 {
372 int i;
373 u_int8_t *ptr;
374
375 ptr = (u_int8_t *)res;
376 for (i = 0; i < sizeof(struct vpd_res); i++)
377 ptr[i] = sk_vpd_readbyte(sc, i + addr);
378 }
379
380 void
381 sk_vpd_read(struct sk_softc *sc)
382 {
383 int pos = 0, i;
384 struct vpd_res res;
385
386 if (sc->sk_vpd_prodname != NULL)
387 free(sc->sk_vpd_prodname, M_DEVBUF);
388 if (sc->sk_vpd_readonly != NULL)
389 free(sc->sk_vpd_readonly, M_DEVBUF);
390 sc->sk_vpd_prodname = NULL;
391 sc->sk_vpd_readonly = NULL;
392
393 sk_vpd_read_res(sc, &res, pos);
394
395 if (res.vr_id != VPD_RES_ID) {
396 printf("%s: bad VPD resource id: expected %x got %x\n",
397 sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
398 return;
399 }
400
401 pos += sizeof(res);
402 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
403 if (sc->sk_vpd_prodname == NULL)
404 panic("sk_vpd_read");
405 for (i = 0; i < res.vr_len; i++)
406 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
407 sc->sk_vpd_prodname[i] = '\0';
408 pos += i;
409
410 sk_vpd_read_res(sc, &res, pos);
411
412 if (res.vr_id != VPD_RES_READ) {
413 printf("%s: bad VPD resource id: expected %x got %x\n",
414 sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
415 return;
416 }
417
418 pos += sizeof(res);
419 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
420 if (sc->sk_vpd_readonly == NULL)
421 panic("sk_vpd_read");
422 for (i = 0; i < res.vr_len ; i++)
423 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
424 }
425
426 int
427 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
428 {
429 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
430 int i;
431
432 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
433
434 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
435 return(0);
436
437 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
438 SK_XM_READ_2(sc_if, XM_PHY_DATA);
439 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
440 for (i = 0; i < SK_TIMEOUT; i++) {
441 DELAY(1);
442 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
443 XM_MMUCMD_PHYDATARDY)
444 break;
445 }
446
447 if (i == SK_TIMEOUT) {
448 printf("%s: phy failed to come ready\n",
449 sc_if->sk_dev.dv_xname);
450 return(0);
451 }
452 }
453 DELAY(1);
454 return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
455 }
456
457 void
458 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
459 {
460 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
461 int i;
462
463 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
464
465 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
466 for (i = 0; i < SK_TIMEOUT; i++) {
467 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
468 break;
469 }
470
471 if (i == SK_TIMEOUT) {
472 printf("%s: phy failed to come ready\n",
473 sc_if->sk_dev.dv_xname);
474 return;
475 }
476
477 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
478 for (i = 0; i < SK_TIMEOUT; i++) {
479 DELAY(1);
480 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
481 break;
482 }
483
484 if (i == SK_TIMEOUT)
485 printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
486 }
487
488 void
489 sk_xmac_miibus_statchg(struct device *dev)
490 {
491 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
492 struct mii_data *mii = &sc_if->sk_mii;
493
494 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
495
496 /*
497 * If this is a GMII PHY, manually set the XMAC's
498 * duplex mode accordingly.
499 */
500 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
501 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
502 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
503 } else {
504 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
505 }
506 }
507 }
508
509 int
510 sk_marv_miibus_readreg(dev, phy, reg)
511 struct device *dev;
512 int phy, reg;
513 {
514 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
515 u_int16_t val;
516 int i;
517
518 if (phy != 0 ||
519 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
520 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
521 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
522 phy, reg));
523 return(0);
524 }
525
526 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
527 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
528
529 for (i = 0; i < SK_TIMEOUT; i++) {
530 DELAY(1);
531 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
532 if (val & YU_SMICR_READ_VALID)
533 break;
534 }
535
536 if (i == SK_TIMEOUT) {
537 printf("%s: phy failed to come ready\n",
538 sc_if->sk_dev.dv_xname);
539 return 0;
540 }
541
542 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
543 SK_TIMEOUT));
544
545 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
546
547 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
548 phy, reg, val));
549
550 return val;
551 }
552
553 void
554 sk_marv_miibus_writereg(dev, phy, reg, val)
555 struct device *dev;
556 int phy, reg, val;
557 {
558 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
559 int i;
560
561 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
562 phy, reg, val));
563
564 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
565 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
566 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
567
568 for (i = 0; i < SK_TIMEOUT; i++) {
569 DELAY(1);
570 if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
571 break;
572 }
573 }
574
575 void
576 sk_marv_miibus_statchg(dev)
577 struct device *dev;
578 {
579 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
580 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
581 }
582
583 #define SK_HASH_BITS 6
584
585 u_int32_t
586 sk_xmac_hash(caddr_t addr)
587 {
588 u_int32_t crc;
589
590 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
591 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
592 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
593 return (crc);
594 }
595
596 u_int32_t
597 sk_yukon_hash(caddr_t addr)
598 {
599 u_int32_t crc;
600
601 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
602 crc &= ((1 << SK_HASH_BITS) - 1);
603 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
604 return (crc);
605 }
606
607 void
608 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
609 {
610 int base = XM_RXFILT_ENTRY(slot);
611
612 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
613 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
614 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
615 }
616
617 void
618 sk_setmulti(struct sk_if_softc *sc_if)
619 {
620 struct sk_softc *sc = sc_if->sk_softc;
621 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
622 u_int32_t hashes[2] = { 0, 0 };
623 int h = 0, i;
624 struct ethercom *ec = &sc_if->sk_ethercom;
625 struct ether_multi *enm;
626 struct ether_multistep step;
627 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
628
629 /* First, zot all the existing filters. */
630 switch(sc->sk_type) {
631 case SK_GENESIS:
632 for (i = 1; i < XM_RXFILT_MAX; i++)
633 sk_setfilt(sc_if, (caddr_t)&dummy, i);
634
635 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
636 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
637 break;
638 case SK_YUKON:
639 case SK_YUKON_LITE:
640 case SK_YUKON_LP:
641 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
642 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
643 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
644 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
645 break;
646 }
647
648 /* Now program new ones. */
649 allmulti:
650 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
651 hashes[0] = 0xFFFFFFFF;
652 hashes[1] = 0xFFFFFFFF;
653 } else {
654 i = 1;
655 /* First find the tail of the list. */
656 ETHER_FIRST_MULTI(step, ec, enm);
657 while (enm != NULL) {
658 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
659 ETHER_ADDR_LEN)) {
660 ifp->if_flags |= IFF_ALLMULTI;
661 goto allmulti;
662 }
663 DPRINTFN(2,("multicast address %s\n",
664 ether_sprintf(enm->enm_addrlo)));
665 /*
666 * Program the first XM_RXFILT_MAX multicast groups
667 * into the perfect filter. For all others,
668 * use the hash table.
669 */
670 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
671 sk_setfilt(sc_if, enm->enm_addrlo, i);
672 i++;
673 }
674 else {
675 switch (sc->sk_type) {
676 case SK_GENESIS:
677 h = sk_xmac_hash(enm->enm_addrlo);
678 break;
679 case SK_YUKON:
680 case SK_YUKON_LITE:
681 case SK_YUKON_LP:
682 h = sk_yukon_hash(enm->enm_addrlo);
683 break;
684 }
685 if (h < 32)
686 hashes[0] |= (1 << h);
687 else
688 hashes[1] |= (1 << (h - 32));
689 }
690
691 ETHER_NEXT_MULTI(step, enm);
692 }
693 }
694
695 switch(sc->sk_type) {
696 case SK_GENESIS:
697 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
698 XM_MODE_RX_USE_PERFECT);
699 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
700 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
701 break;
702 case SK_YUKON:
703 case SK_YUKON_LITE:
704 case SK_YUKON_LP:
705 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
706 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
707 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
708 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
709 break;
710 }
711 }
712
713 int
714 sk_init_rx_ring(struct sk_if_softc *sc_if)
715 {
716 struct sk_chain_data *cd = &sc_if->sk_cdata;
717 struct sk_ring_data *rd = sc_if->sk_rdata;
718 int i;
719
720 bzero((char *)rd->sk_rx_ring,
721 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
722
723 for (i = 0; i < SK_RX_RING_CNT; i++) {
724 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
725 if (i == (SK_RX_RING_CNT - 1)) {
726 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
727 rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if, 0);
728 } else {
729 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
730 rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if,i+1);
731 }
732 }
733
734 for (i = 0; i < SK_RX_RING_CNT; i++) {
735 if (sk_newbuf(sc_if, i, NULL, NULL) == ENOBUFS) {
736 printf("%s: failed alloc of %dth mbuf\n",
737 sc_if->sk_dev.dv_xname, i);
738 return(ENOBUFS);
739 }
740 }
741 sc_if->sk_cdata.sk_rx_prod = 0;
742 sc_if->sk_cdata.sk_rx_cons = 0;
743
744 return(0);
745 }
746
747 int
748 sk_init_tx_ring(struct sk_if_softc *sc_if)
749 {
750 struct sk_chain_data *cd = &sc_if->sk_cdata;
751 struct sk_ring_data *rd = sc_if->sk_rdata;
752 int i;
753
754 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
755 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
756
757 for (i = 0; i < SK_TX_RING_CNT; i++) {
758 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
759 if (i == (SK_TX_RING_CNT - 1)) {
760 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
761 rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if, 0);
762 } else {
763 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
764 rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if,i+1);
765 }
766 }
767
768 sc_if->sk_cdata.sk_tx_prod = 0;
769 sc_if->sk_cdata.sk_tx_cons = 0;
770 sc_if->sk_cdata.sk_tx_cnt = 0;
771
772 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
773 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
774
775 return (0);
776 }
777
778 int
779 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
780 bus_dmamap_t dmamap)
781 {
782 struct sk_softc *sc = sc_if->sk_softc;
783 struct mbuf *m_new = NULL;
784 struct sk_chain *c;
785 struct sk_rx_desc *r;
786
787 if (dmamap == NULL) {
788 /* if (m) panic() */
789
790 if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1, MCLBYTES,
791 0, BUS_DMA_NOWAIT, &dmamap)) {
792 printf("%s: can't create recv map\n",
793 sc_if->sk_dev.dv_xname);
794 return(ENOMEM);
795 }
796 } else if (m == NULL)
797 bus_dmamap_unload(sc->sc_dmatag, dmamap);
798
799 sc_if->sk_cdata.sk_rx_map[i] = dmamap;
800
801 if (m == NULL) {
802 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
803 if (m_new == NULL) {
804 printf("%s: no memory for rx list -- "
805 "packet dropped!\n", sc_if->sk_dev.dv_xname);
806 return(ENOBUFS);
807 }
808
809 /* Allocate the jumbo buffer */
810 MCLGET(m_new, M_DONTWAIT);
811 if (!(m_new->m_flags & M_EXT)) {
812 m_freem(m_new);
813 return (ENOBUFS);
814 }
815
816 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
817
818 m_adj(m_new, ETHER_ALIGN);
819
820 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m_new,
821 BUS_DMA_NOWAIT))
822 return(ENOBUFS);
823 } else {
824 /*
825 * We're re-using a previously allocated mbuf;
826 * be sure to re-init pointers and lengths to
827 * default values.
828 */
829 m_new = m;
830 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
831 m_adj(m_new, ETHER_ALIGN);
832 m_new->m_data = m_new->m_ext.ext_buf;
833 }
834
835 c = &sc_if->sk_cdata.sk_rx_chain[i];
836 r = c->sk_desc;
837 c->sk_mbuf = m_new;
838 r->sk_data_lo = dmamap->dm_segs[0].ds_addr;
839 r->sk_ctl = dmamap->dm_segs[0].ds_len | SK_RXSTAT;
840
841 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
842
843 return(0);
844 }
845
846 /*
847 * Set media options.
848 */
849 int
850 sk_ifmedia_upd(struct ifnet *ifp)
851 {
852 struct sk_if_softc *sc_if = ifp->if_softc;
853
854 (void) sk_init(ifp);
855 mii_mediachg(&sc_if->sk_mii);
856 return(0);
857 }
858
859 /*
860 * Report current media status.
861 */
862 void
863 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
864 {
865 struct sk_if_softc *sc_if = ifp->if_softc;
866
867 mii_pollstat(&sc_if->sk_mii);
868 ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
869 ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
870 }
871
872 int
873 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
874 {
875 struct sk_if_softc *sc_if = ifp->if_softc;
876 struct sk_softc *sc = sc_if->sk_softc;
877 struct ifreq *ifr = (struct ifreq *) data;
878 /* struct ifaddr *ifa = (struct ifaddr *) data; */
879 struct mii_data *mii;
880 int s, error = 0;
881
882 /* DPRINTFN(2, ("sk_ioctl\n")); */
883
884 s = splnet();
885
886 switch(command) {
887
888 case SIOCSIFFLAGS:
889 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
890 if (ifp->if_flags & IFF_UP) {
891 if (ifp->if_flags & IFF_RUNNING &&
892 ifp->if_flags & IFF_PROMISC &&
893 !(sc_if->sk_if_flags & IFF_PROMISC)) {
894 switch(sc->sk_type) {
895 case SK_GENESIS:
896 SK_XM_SETBIT_4(sc_if, XM_MODE,
897 XM_MODE_RX_PROMISC);
898 break;
899 case SK_YUKON:
900 case SK_YUKON_LITE:
901 case SK_YUKON_LP:
902 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
903 YU_RCR_UFLEN | YU_RCR_MUFLEN);
904 break;
905 }
906 sk_setmulti(sc_if);
907 } else if (ifp->if_flags & IFF_RUNNING &&
908 !(ifp->if_flags & IFF_PROMISC) &&
909 sc_if->sk_if_flags & IFF_PROMISC) {
910 switch(sc->sk_type) {
911 case SK_GENESIS:
912 SK_XM_CLRBIT_4(sc_if, XM_MODE,
913 XM_MODE_RX_PROMISC);
914 break;
915 case SK_YUKON:
916 case SK_YUKON_LITE:
917 case SK_YUKON_LP:
918 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
919 YU_RCR_UFLEN | YU_RCR_MUFLEN);
920 break;
921 }
922
923 sk_setmulti(sc_if);
924 } else
925 (void) sk_init(ifp);
926 } else {
927 if (ifp->if_flags & IFF_RUNNING)
928 sk_stop(ifp,0);
929 }
930 sc_if->sk_if_flags = ifp->if_flags;
931 error = 0;
932 break;
933
934 case SIOCGIFMEDIA:
935 case SIOCSIFMEDIA:
936 DPRINTFN(2, ("sk_ioctl MEDIA\n"));
937 mii = &sc_if->sk_mii;
938 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
939 break;
940 default:
941 DPRINTFN(2, ("sk_ioctl ETHER\n"));
942 error = ether_ioctl(ifp, command, data);
943
944 if ( error == ENETRESET) {
945 if (ifp->if_flags & IFF_RUNNING) {
946 sk_setmulti(sc_if);
947 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
948 }
949 error = 0;
950 } else if ( error ) {
951 splx(s);
952 return error;
953 }
954 break;
955 }
956
957 splx(s);
958 return(error);
959 }
960
961 void
962 sk_update_int_mod(struct sk_softc *sc)
963 {
964 u_int32_t sk_imtimer_ticks;
965
966 /*
967 * Configure interrupt moderation. The moderation timer
968 * defers interrupts specified in the interrupt moderation
969 * timer mask based on the timeout specified in the interrupt
970 * moderation timer init register. Each bit in the timer
971 * register represents one tick, so to specify a timeout in
972 * microseconds, we have to multiply by the correct number of
973 * ticks-per-microsecond.
974 */
975 switch (sc->sk_type) {
976 case SK_GENESIS:
977 sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
978 break;
979 case SK_YUKON_EC:
980 sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
981 break;
982 default:
983 sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
984 }
985 aprint_verbose("%s: interrupt moderation is %d us\n",
986 sc->sk_dev.dv_xname, sc->sk_int_mod);
987 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
988 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
989 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
990 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
991 sc->sk_int_mod_pending = 0;
992 }
993
994 /*
995 * Lookup: Check the PCI vendor and device, and return a pointer to
996 * The structure if the IDs match against our list.
997 */
998
999 static const struct sk_product *
1000 sk_lookup(const struct pci_attach_args *pa)
1001 {
1002 const struct sk_product *psk;
1003
1004 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1005 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1006 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1007 return (psk);
1008 }
1009 return (NULL);
1010 }
1011
1012 /*
1013 * Probe for a SysKonnect GEnesis chip.
1014 */
1015
1016 int
1017 skc_probe(struct device *parent, struct cfdata *match, void *aux)
1018 {
1019 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1020 const struct sk_product *psk;
1021 pcireg_t subid;
1022
1023 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1024
1025 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1026 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1027 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1028 subid == SK_LINKSYS_EG1032_SUBID)
1029 return(1);
1030
1031 if ((psk = sk_lookup(pa))) {
1032 return(1);
1033 }
1034 return(0);
1035 }
1036
1037 /*
1038 * Force the GEnesis into reset, then bring it out of reset.
1039 */
1040 void sk_reset(struct sk_softc *sc)
1041 {
1042 DPRINTFN(2, ("sk_reset\n"));
1043
1044 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1045 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1046 if (SK_YUKON_FAMILY(sc->sk_type))
1047 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1048
1049 DELAY(1000);
1050 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1051 DELAY(2);
1052 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1053 if (SK_YUKON_FAMILY(sc->sk_type))
1054 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1055
1056 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1057 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1058 CSR_READ_2(sc, SK_LINK_CTRL)));
1059
1060 if (sc->sk_type == SK_GENESIS) {
1061 /* Configure packet arbiter */
1062 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1063 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1064 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1065 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1066 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1067 }
1068
1069 /* Enable RAM interface */
1070 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1071
1072 sk_update_int_mod(sc);
1073 }
1074
1075 int
1076 sk_probe(struct device *parent, struct cfdata *match, void *aux)
1077 {
1078 struct skc_attach_args *sa = aux;
1079
1080 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1081 return(0);
1082
1083 return (1);
1084 }
1085
1086 /*
1087 * Each XMAC chip is attached as a separate logical IP interface.
1088 * Single port cards will have only one logical interface of course.
1089 */
1090 void
1091 sk_attach(struct device *parent, struct device *self, void *aux)
1092 {
1093 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1094 struct sk_softc *sc = (struct sk_softc *)parent;
1095 struct skc_attach_args *sa = aux;
1096 struct sk_txmap_entry *entry;
1097 struct ifnet *ifp;
1098 bus_dma_segment_t seg;
1099 bus_dmamap_t dmamap;
1100 caddr_t kva;
1101 int i, rseg;
1102
1103 sc_if->sk_port = sa->skc_port;
1104 sc_if->sk_softc = sc;
1105 sc->sk_if[sa->skc_port] = sc_if;
1106
1107 if (sa->skc_port == SK_PORT_A)
1108 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1109 if (sa->skc_port == SK_PORT_B)
1110 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1111
1112 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1113
1114 /*
1115 * Get station address for this interface. Note that
1116 * dual port cards actually come with three station
1117 * addresses: one for each port, plus an extra. The
1118 * extra one is used by the SysKonnect driver software
1119 * as a 'virtual' station address for when both ports
1120 * are operating in failover mode. Currently we don't
1121 * use this extra address.
1122 */
1123 for (i = 0; i < ETHER_ADDR_LEN; i++)
1124 sc_if->sk_enaddr[i] =
1125 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1126
1127
1128 aprint_normal(": Ethernet address %s\n",
1129 ether_sprintf(sc_if->sk_enaddr));
1130
1131 /*
1132 * Set up RAM buffer addresses. The NIC will have a certain
1133 * amount of SRAM on it, somewhere between 512K and 2MB. We
1134 * need to divide this up a) between the transmitter and
1135 * receiver and b) between the two XMACs, if this is a
1136 * dual port NIC. Our algotithm is to divide up the memory
1137 * evenly so that everyone gets a fair share.
1138 */
1139 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1140 u_int32_t chunk, val;
1141
1142 chunk = sc->sk_ramsize / 2;
1143 val = sc->sk_rboff / sizeof(u_int64_t);
1144 sc_if->sk_rx_ramstart = val;
1145 val += (chunk / sizeof(u_int64_t));
1146 sc_if->sk_rx_ramend = val - 1;
1147 sc_if->sk_tx_ramstart = val;
1148 val += (chunk / sizeof(u_int64_t));
1149 sc_if->sk_tx_ramend = val - 1;
1150 } else {
1151 u_int32_t chunk, val;
1152
1153 chunk = sc->sk_ramsize / 4;
1154 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1155 sizeof(u_int64_t);
1156 sc_if->sk_rx_ramstart = val;
1157 val += (chunk / sizeof(u_int64_t));
1158 sc_if->sk_rx_ramend = val - 1;
1159 sc_if->sk_tx_ramstart = val;
1160 val += (chunk / sizeof(u_int64_t));
1161 sc_if->sk_tx_ramend = val - 1;
1162 }
1163
1164 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1165 " tx_ramstart=%#x tx_ramend=%#x\n",
1166 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1167 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1168
1169 /* Read and save PHY type and set PHY address */
1170 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1171 switch (sc_if->sk_phytype) {
1172 case SK_PHYTYPE_XMAC:
1173 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1174 break;
1175 case SK_PHYTYPE_BCOM:
1176 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1177 break;
1178 case SK_PHYTYPE_MARV_COPPER:
1179 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1180 break;
1181 default:
1182 aprint_error("%s: unsupported PHY type: %d\n",
1183 sc->sk_dev.dv_xname, sc_if->sk_phytype);
1184 return;
1185 }
1186
1187 /* Allocate the descriptor queues. */
1188 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1189 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1190 aprint_error("%s: can't alloc rx buffers\n",
1191 sc->sk_dev.dv_xname);
1192 goto fail;
1193 }
1194 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1195 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1196 aprint_error("%s: can't map dma buffers (%lu bytes)\n",
1197 sc_if->sk_dev.dv_xname,
1198 (u_long) sizeof(struct sk_ring_data));
1199 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1200 goto fail;
1201 }
1202 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1203 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1204 &sc_if->sk_ring_map)) {
1205 aprint_error("%s: can't create dma map\n",
1206 sc_if->sk_dev.dv_xname);
1207 bus_dmamem_unmap(sc->sc_dmatag, kva,
1208 sizeof(struct sk_ring_data));
1209 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1210 goto fail;
1211 }
1212 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1213 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1214 aprint_error("%s: can't load dma map\n",
1215 sc_if->sk_dev.dv_xname);
1216 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1217 bus_dmamem_unmap(sc->sc_dmatag, kva,
1218 sizeof(struct sk_ring_data));
1219 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1220 goto fail;
1221 }
1222
1223 for (i = 0; i < SK_RX_RING_CNT; i++)
1224 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1225
1226 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1227 for (i = 0; i < SK_TX_RING_CNT; i++) {
1228 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1229
1230 if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, SK_NTXSEG,
1231 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap)) {
1232 aprint_error("%s: Can't create TX dmamap\n",
1233 sc_if->sk_dev.dv_xname);
1234 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1235 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1236 bus_dmamem_unmap(sc->sc_dmatag, kva,
1237 sizeof(struct sk_ring_data));
1238 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1239 goto fail;
1240 }
1241
1242 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1243 if (!entry) {
1244 aprint_error("%s: Can't alloc txmap entry\n",
1245 sc_if->sk_dev.dv_xname);
1246 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1247 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1248 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1249 bus_dmamem_unmap(sc->sc_dmatag, kva,
1250 sizeof(struct sk_ring_data));
1251 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1252 goto fail;
1253 }
1254 entry->dmamap = dmamap;
1255 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1256 }
1257
1258 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1259 bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1260
1261 /* XXX TLS It's not clear what's wrong with the Jumbo MTU
1262 XXX TLS support in this driver, so we don't enable it. */
1263
1264 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1265
1266 ifp = &sc_if->sk_ethercom.ec_if;
1267 ifp->if_softc = sc_if;
1268 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1269 ifp->if_ioctl = sk_ioctl;
1270 ifp->if_start = sk_start;
1271 ifp->if_stop = sk_stop;
1272 ifp->if_init = sk_init;
1273 ifp->if_watchdog = sk_watchdog;
1274 ifp->if_capabilities = 0;
1275 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1276 IFQ_SET_READY(&ifp->if_snd);
1277 strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1278
1279 /*
1280 * Do miibus setup.
1281 */
1282 switch (sc->sk_type) {
1283 case SK_GENESIS:
1284 sk_init_xmac(sc_if);
1285 break;
1286 case SK_YUKON:
1287 case SK_YUKON_LITE:
1288 case SK_YUKON_LP:
1289 sk_init_yukon(sc_if);
1290 break;
1291 default:
1292 panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
1293 sc->sk_type);
1294 }
1295
1296 DPRINTFN(2, ("sk_attach: 1\n"));
1297
1298 sc_if->sk_mii.mii_ifp = ifp;
1299 switch (sc->sk_type) {
1300 case SK_GENESIS:
1301 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1302 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1303 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1304 break;
1305 case SK_YUKON:
1306 case SK_YUKON_LITE:
1307 case SK_YUKON_LP:
1308 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1309 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1310 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1311 break;
1312 }
1313
1314 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1315 sk_ifmedia_upd, sk_ifmedia_sts);
1316 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1317 MII_OFFSET_ANY, 0);
1318 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1319 printf("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1320 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1321 0, NULL);
1322 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1323 }
1324 else
1325 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1326
1327 callout_init(&sc_if->sk_tick_ch);
1328 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1329
1330 DPRINTFN(2, ("sk_attach: 1\n"));
1331
1332 /*
1333 * Call MI attach routines.
1334 */
1335 if_attach(ifp);
1336
1337 ether_ifattach(ifp, sc_if->sk_enaddr);
1338
1339 #if NRND > 0
1340 rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
1341 RND_TYPE_NET, 0);
1342 #endif
1343
1344 DPRINTFN(2, ("sk_attach: end\n"));
1345
1346 return;
1347
1348 fail:
1349 sc->sk_if[sa->skc_port] = NULL;
1350 }
1351
1352 int
1353 skcprint(void *aux, const char *pnp)
1354 {
1355 struct skc_attach_args *sa = aux;
1356
1357 if (pnp)
1358 aprint_normal("sk port %c at %s",
1359 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1360 else
1361 aprint_normal(" port %c",
1362 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1363 return (UNCONF);
1364 }
1365
1366 /*
1367 * Attach the interface. Allocate softc structures, do ifmedia
1368 * setup and ethernet/BPF attach.
1369 */
1370 void
1371 skc_attach(struct device *parent, struct device *self, void *aux)
1372 {
1373 struct sk_softc *sc = (struct sk_softc *)self;
1374 struct pci_attach_args *pa = aux;
1375 struct skc_attach_args skca;
1376 pci_chipset_tag_t pc = pa->pa_pc;
1377 pcireg_t memtype;
1378 pci_intr_handle_t ih;
1379 const char *intrstr = NULL;
1380 bus_addr_t iobase;
1381 bus_size_t iosize;
1382 int s, rc, sk_nodenum;
1383 u_int32_t command;
1384 const char *revstr;
1385 const struct sysctlnode *node;
1386
1387 DPRINTFN(2, ("begin skc_attach\n"));
1388
1389 s = splnet();
1390
1391 /*
1392 * Handle power management nonsense.
1393 */
1394 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1395
1396 if (command == 0x01) {
1397 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1398 if (command & SK_PSTATE_MASK) {
1399 u_int32_t xiobase, membase, irq;
1400
1401 /* Save important PCI config data. */
1402 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1403 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1404 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1405
1406 /* Reset the power state. */
1407 aprint_normal("%s chip is in D%d power mode "
1408 "-- setting to D0\n", sc->sk_dev.dv_xname,
1409 command & SK_PSTATE_MASK);
1410 command &= 0xFFFFFFFC;
1411 pci_conf_write(pc, pa->pa_tag,
1412 SK_PCI_PWRMGMTCTRL, command);
1413
1414 /* Restore PCI config data. */
1415 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1416 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1417 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1418 }
1419 }
1420
1421 /*
1422 * Map control/status registers.
1423 */
1424 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1425 command |= PCI_COMMAND_IO_ENABLE |
1426 PCI_COMMAND_MEM_ENABLE |
1427 PCI_COMMAND_MASTER_ENABLE;
1428 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1429 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1430
1431 #ifdef SK_USEIOSPACE
1432 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1433 aprint_error(": failed to enable I/O ports!\n");
1434 goto fail;
1435 }
1436 /*
1437 * Map control/status registers.
1438 */
1439 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1440 &iobase, &iosize)) {
1441 aprint_error(": can't find i/o space\n");
1442 goto fail;
1443 }
1444 #else
1445 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1446 aprint_error(": failed to enable memory mapping!\n");
1447 goto fail;
1448 }
1449 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1450 switch (memtype) {
1451 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1452 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1453 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1454 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1455 &iobase, &iosize) == 0)
1456 break;
1457 default:
1458 aprint_error("%s: can't find mem space\n",
1459 sc->sk_dev.dv_xname);
1460 return;
1461 }
1462
1463 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1464 #endif
1465 sc->sc_dmatag = pa->pa_dmat;
1466
1467 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1468 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1469
1470 /* bail out here if chip is not recognized */
1471 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1472 aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
1473 goto fail;
1474 }
1475 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1476
1477 /* Allocate interrupt */
1478 if (pci_intr_map(pa, &ih)) {
1479 aprint_error(": couldn't map interrupt\n");
1480 goto fail;
1481 }
1482
1483 intrstr = pci_intr_string(pc, ih);
1484 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1485 if (sc->sk_intrhand == NULL) {
1486 aprint_error(": couldn't establish interrupt");
1487 if (intrstr != NULL)
1488 aprint_normal(" at %s", intrstr);
1489 goto fail;
1490 }
1491 aprint_normal(": %s\n", intrstr);
1492
1493 /* Reset the adapter. */
1494 sk_reset(sc);
1495
1496 /* Read and save vital product data from EEPROM. */
1497 sk_vpd_read(sc);
1498
1499 if (sc->sk_type == SK_GENESIS) {
1500 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1501 /* Read and save RAM size and RAMbuffer offset */
1502 switch(val) {
1503 case SK_RAMSIZE_512K_64:
1504 sc->sk_ramsize = 0x80000;
1505 sc->sk_rboff = SK_RBOFF_0;
1506 break;
1507 case SK_RAMSIZE_1024K_64:
1508 sc->sk_ramsize = 0x100000;
1509 sc->sk_rboff = SK_RBOFF_80000;
1510 break;
1511 case SK_RAMSIZE_1024K_128:
1512 sc->sk_ramsize = 0x100000;
1513 sc->sk_rboff = SK_RBOFF_0;
1514 break;
1515 case SK_RAMSIZE_2048K_128:
1516 sc->sk_ramsize = 0x200000;
1517 sc->sk_rboff = SK_RBOFF_0;
1518 break;
1519 default:
1520 aprint_error("%s: unknown ram size: %d\n",
1521 sc->sk_dev.dv_xname, val);
1522 goto fail;
1523 break;
1524 }
1525
1526 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1527 sc->sk_ramsize, sc->sk_ramsize / 1024,
1528 sc->sk_rboff));
1529 } else {
1530 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1531 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1532 sc->sk_rboff = SK_RBOFF_0;
1533
1534 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1535 sc->sk_ramsize / 1024, sc->sk_ramsize,
1536 sc->sk_rboff));
1537 }
1538
1539 /* Read and save physical media type */
1540 switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1541 case SK_PMD_1000BASESX:
1542 sc->sk_pmd = IFM_1000_SX;
1543 break;
1544 case SK_PMD_1000BASELX:
1545 sc->sk_pmd = IFM_1000_LX;
1546 break;
1547 case SK_PMD_1000BASECX:
1548 sc->sk_pmd = IFM_1000_CX;
1549 break;
1550 case SK_PMD_1000BASETX:
1551 sc->sk_pmd = IFM_1000_T;
1552 break;
1553 default:
1554 aprint_error("%s: unknown media type: 0x%x\n",
1555 sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
1556 goto fail;
1557 }
1558
1559 /* determine whether to name it with vpd or just make it up */
1560 /* Marvell Yukon VPD's can freqently be bogus */
1561
1562 switch (pa->pa_id) {
1563 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1564 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1565 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1566 case PCI_PRODUCT_3COM_3C940:
1567 case PCI_PRODUCT_DLINK_DGE530T:
1568 case PCI_PRODUCT_LINKSYS_EG1032:
1569 case PCI_PRODUCT_LINKSYS_EG1064:
1570 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1571 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1572 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1573 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1574 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1575 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1576 sc->sk_name = sc->sk_vpd_prodname;
1577 break;
1578 case PCI_ID_CODE(PCI_VENDOR_GALILEO,PCI_PRODUCT_GALILEO_SKNET):
1579 /* whoops yukon vpd prodname bears no resemblance to reality */
1580 switch (sc->sk_type) {
1581 case SK_GENESIS:
1582 sc->sk_name = sc->sk_vpd_prodname;
1583 break;
1584 case SK_YUKON:
1585 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1586 break;
1587 case SK_YUKON_LITE:
1588 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1589 break;
1590 case SK_YUKON_LP:
1591 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1592 break;
1593 default:
1594 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1595 }
1596
1597 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1598
1599 if ( sc->sk_type == SK_YUKON ) {
1600 uint32_t flashaddr;
1601 uint8_t testbyte;
1602
1603 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1604
1605 /* test Flash-Address Register */
1606 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1607 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1608
1609 if (testbyte != 0) {
1610 /* this is yukon lite Rev. A0 */
1611 sc->sk_type = SK_YUKON_LITE;
1612 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1613 /* restore Flash-Address Register */
1614 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1615 }
1616 }
1617 break;
1618 case PCI_ID_CODE(PCI_VENDOR_GALILEO,PCI_PRODUCT_GALILEO_BELKIN):
1619 sc->sk_name = sc->sk_vpd_prodname;
1620 break;
1621 default:
1622 sc->sk_name = "Unknown Marvell";
1623 }
1624
1625
1626 if ( sc->sk_type == SK_YUKON_LITE ) {
1627 switch (sc->sk_rev) {
1628 case SK_YUKON_LITE_REV_A0:
1629 revstr = "A0";
1630 break;
1631 case SK_YUKON_LITE_REV_A1:
1632 revstr = "A1";
1633 break;
1634 case SK_YUKON_LITE_REV_A3:
1635 revstr = "A3";
1636 break;
1637 default:
1638 revstr = "";
1639 }
1640 } else {
1641 revstr = "";
1642 }
1643
1644 /* Announce the product name. */
1645 aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
1646 sc->sk_name, revstr, sc->sk_rev);
1647
1648 skca.skc_port = SK_PORT_A;
1649 (void)config_found(&sc->sk_dev, &skca, skcprint);
1650
1651 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1652 skca.skc_port = SK_PORT_B;
1653 (void)config_found(&sc->sk_dev, &skca, skcprint);
1654 }
1655
1656 /* Turn on the 'driver is loaded' LED. */
1657 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1658
1659 /* skc sysctl setup */
1660
1661 sc->sk_int_mod = SK_IM_DEFAULT;
1662 sc->sk_int_mod_pending = 0;
1663
1664 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1665 0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
1666 SYSCTL_DESCR("skc per-controller controls"),
1667 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1668 CTL_EOL)) != 0) {
1669 aprint_normal("%s: couldn't create sysctl node\n",
1670 sc->sk_dev.dv_xname);
1671 goto fail;
1672 }
1673
1674 sk_nodenum = node->sysctl_num;
1675
1676 /* interrupt moderation time in usecs */
1677 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1678 CTLFLAG_READWRITE,
1679 CTLTYPE_INT, "int_mod",
1680 SYSCTL_DESCR("sk interrupt moderation timer"),
1681 sk_sysctl_handler, 0, sc,
1682 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1683 CTL_EOL)) != 0) {
1684 aprint_normal("%s: couldn't create int_mod sysctl node\n",
1685 sc->sk_dev.dv_xname);
1686 goto fail;
1687 }
1688
1689 fail:
1690 splx(s);
1691 }
1692
1693 int
1694 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1695 {
1696 struct sk_softc *sc = sc_if->sk_softc;
1697 struct sk_tx_desc *f = NULL;
1698 u_int32_t frag, cur, cnt = 0;
1699 int i;
1700 struct sk_txmap_entry *entry;
1701 bus_dmamap_t txmap;
1702
1703 DPRINTFN(3, ("sk_encap\n"));
1704
1705 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1706 if (entry == NULL) {
1707 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1708 return ENOBUFS;
1709 }
1710 txmap = entry->dmamap;
1711
1712 cur = frag = *txidx;
1713
1714 #ifdef SK_DEBUG
1715 if (skdebug >= 3)
1716 sk_dump_mbuf(m_head);
1717 #endif
1718
1719 /*
1720 * Start packing the mbufs in this chain into
1721 * the fragment pointers. Stop when we run out
1722 * of fragments or hit the end of the mbuf chain.
1723 */
1724 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1725 BUS_DMA_NOWAIT)) {
1726 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1727 return(ENOBUFS);
1728 }
1729
1730 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1731
1732 /* Sync the DMA map. */
1733 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1734 BUS_DMASYNC_PREWRITE);
1735
1736 for (i = 0; i < txmap->dm_nsegs; i++) {
1737 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1738 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1739 return(ENOBUFS);
1740 }
1741 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1742 f->sk_data_lo = txmap->dm_segs[i].ds_addr;
1743 f->sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1744 if (cnt == 0)
1745 f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1746 else
1747 f->sk_ctl |= SK_TXCTL_OWN;
1748
1749 cur = frag;
1750 SK_INC(frag, SK_TX_RING_CNT);
1751 cnt++;
1752 }
1753
1754 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1755 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1756
1757 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1758 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1759 SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1760
1761 /* Sync descriptors before handing to chip */
1762 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1763 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1764
1765 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1766
1767 /* Sync first descriptor to hand it off */
1768 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1769
1770 sc_if->sk_cdata.sk_tx_cnt += cnt;
1771
1772 #ifdef SK_DEBUG
1773 if (skdebug >= 3) {
1774 struct sk_tx_desc *desc;
1775 u_int32_t idx;
1776 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1777 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1778 sk_dump_txdesc(desc, idx);
1779 }
1780 }
1781 #endif
1782
1783 *txidx = frag;
1784
1785 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1786
1787 return(0);
1788 }
1789
1790 void
1791 sk_start(struct ifnet *ifp)
1792 {
1793 struct sk_if_softc *sc_if = ifp->if_softc;
1794 struct sk_softc *sc = sc_if->sk_softc;
1795 struct mbuf *m_head = NULL;
1796 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1797 int pkts = 0;
1798
1799 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1800 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1801
1802 while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1803
1804 IFQ_POLL(&ifp->if_snd, m_head);
1805 if (m_head == NULL)
1806 break;
1807
1808 /*
1809 * Pack the data into the transmit ring. If we
1810 * don't have room, set the OACTIVE flag and wait
1811 * for the NIC to drain the ring.
1812 */
1813 if (sk_encap(sc_if, m_head, &idx)) {
1814 ifp->if_flags |= IFF_OACTIVE;
1815 break;
1816 }
1817
1818 /* now we are committed to transmit the packet */
1819 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1820 pkts++;
1821
1822 /*
1823 * If there's a BPF listener, bounce a copy of this frame
1824 * to him.
1825 */
1826 #if NBPFILTER > 0
1827 if (ifp->if_bpf)
1828 bpf_mtap(ifp->if_bpf, m_head);
1829 #endif
1830 }
1831 if (pkts == 0)
1832 return;
1833
1834 /* Transmit */
1835 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1836 sc_if->sk_cdata.sk_tx_prod = idx;
1837 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1838
1839 /* Set a timeout in case the chip goes out to lunch. */
1840 ifp->if_timer = 5;
1841 }
1842 }
1843
1844
1845 void
1846 sk_watchdog(struct ifnet *ifp)
1847 {
1848 struct sk_if_softc *sc_if = ifp->if_softc;
1849
1850 printf("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1851 (void) sk_init(ifp);
1852 }
1853
1854 void
1855 sk_shutdown(void * v)
1856 {
1857 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
1858 struct sk_softc *sc = sc_if->sk_softc;
1859 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1860
1861 DPRINTFN(2, ("sk_shutdown\n"));
1862 sk_stop(ifp,1);
1863
1864 /* Turn off the 'driver is loaded' LED. */
1865 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1866
1867 /*
1868 * Reset the GEnesis controller. Doing this should also
1869 * assert the resets on the attached XMAC(s).
1870 */
1871 sk_reset(sc);
1872 }
1873
1874 void
1875 sk_rxeof(struct sk_if_softc *sc_if)
1876 {
1877 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1878 struct mbuf *m;
1879 struct sk_chain *cur_rx;
1880 struct sk_rx_desc *cur_desc;
1881 int i, cur, total_len = 0;
1882 u_int32_t rxstat;
1883 bus_dmamap_t dmamap;
1884
1885 i = sc_if->sk_cdata.sk_rx_prod;
1886
1887 DPRINTFN(3, ("sk_rxeof %d\n", i));
1888
1889 for (;;) {
1890 cur = i;
1891
1892 /* Sync the descriptor */
1893 SK_CDRXSYNC(sc_if, cur,
1894 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1895
1896 if (sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl & SK_RXCTL_OWN) {
1897 /* Invalidate the descriptor -- it's not ready yet */
1898 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
1899 sc_if->sk_cdata.sk_rx_prod = i;
1900 break;
1901 }
1902
1903 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1904 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
1905 dmamap = sc_if->sk_cdata.sk_rx_map[cur];
1906
1907 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1908 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1909
1910 rxstat = cur_desc->sk_xmac_rxstat;
1911 m = cur_rx->sk_mbuf;
1912 cur_rx->sk_mbuf = NULL;
1913 total_len = SK_RXBYTES(cur_desc->sk_ctl);
1914
1915 sc_if->sk_cdata.sk_rx_map[cur] = 0;
1916
1917 SK_INC(i, SK_RX_RING_CNT);
1918
1919 if (rxstat & XM_RXSTAT_ERRFRAME) {
1920 ifp->if_ierrors++;
1921 sk_newbuf(sc_if, cur, m, dmamap);
1922 continue;
1923 }
1924
1925 /*
1926 * Try to allocate a new jumbo buffer. If that
1927 * fails, copy the packet to mbufs and put the
1928 * jumbo buffer back in the ring so it can be
1929 * re-used. If allocating mbufs fails, then we
1930 * have to drop the packet.
1931 */
1932 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1933 struct mbuf *m0;
1934 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1935 total_len + ETHER_ALIGN, 0, ifp, NULL);
1936 sk_newbuf(sc_if, cur, m, dmamap);
1937 if (m0 == NULL) {
1938 printf("%s: no receive buffers "
1939 "available -- packet dropped!\n",
1940 sc_if->sk_dev.dv_xname);
1941 ifp->if_ierrors++;
1942 continue;
1943 }
1944 m_adj(m0, ETHER_ALIGN);
1945 m = m0;
1946 } else {
1947 m->m_pkthdr.rcvif = ifp;
1948 m->m_pkthdr.len = m->m_len = total_len;
1949 }
1950
1951 ifp->if_ipackets++;
1952
1953 #if NBPFILTER > 0
1954 if (ifp->if_bpf)
1955 bpf_mtap(ifp->if_bpf, m);
1956 #endif
1957 /* pass it on. */
1958 (*ifp->if_input)(ifp, m);
1959 }
1960 }
1961
1962 void
1963 sk_txeof(struct sk_if_softc *sc_if)
1964 {
1965 struct sk_softc *sc = sc_if->sk_softc;
1966 struct sk_tx_desc *cur_tx;
1967 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1968 u_int32_t idx;
1969 struct sk_txmap_entry *entry;
1970
1971 DPRINTFN(3, ("sk_txeof\n"));
1972
1973 /*
1974 * Go through our tx ring and free mbufs for those
1975 * frames that have been sent.
1976 */
1977 idx = sc_if->sk_cdata.sk_tx_cons;
1978 while(idx != sc_if->sk_cdata.sk_tx_prod) {
1979 SK_CDTXSYNC(sc_if, idx, 1,
1980 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1981
1982 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1983 #ifdef SK_DEBUG
1984 if (skdebug >= 3)
1985 sk_dump_txdesc(cur_tx, idx);
1986 #endif
1987 if (cur_tx->sk_ctl & SK_TXCTL_OWN) {
1988 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
1989 break;
1990 }
1991 if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
1992 ifp->if_opackets++;
1993 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1994 entry = sc_if->sk_cdata.sk_tx_map[idx];
1995
1996 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1997 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1998
1999 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2000 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2001
2002 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2003 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2004 link);
2005 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2006 }
2007 sc_if->sk_cdata.sk_tx_cnt--;
2008 SK_INC(idx, SK_TX_RING_CNT);
2009 }
2010 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2011 ifp->if_timer = 0;
2012 else /* nudge chip to keep tx ring moving */
2013 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2014
2015 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2016 ifp->if_flags &= ~IFF_OACTIVE;
2017
2018 sc_if->sk_cdata.sk_tx_cons = idx;
2019 }
2020
2021 void
2022 sk_tick(void *xsc_if)
2023 {
2024 struct sk_if_softc *sc_if = xsc_if;
2025 struct mii_data *mii = &sc_if->sk_mii;
2026 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2027 int i;
2028
2029 DPRINTFN(3, ("sk_tick\n"));
2030
2031 if (!(ifp->if_flags & IFF_UP))
2032 return;
2033
2034 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2035 sk_intr_bcom(sc_if);
2036 return;
2037 }
2038
2039 /*
2040 * According to SysKonnect, the correct way to verify that
2041 * the link has come back up is to poll bit 0 of the GPIO
2042 * register three times. This pin has the signal from the
2043 * link sync pin connected to it; if we read the same link
2044 * state 3 times in a row, we know the link is up.
2045 */
2046 for (i = 0; i < 3; i++) {
2047 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2048 break;
2049 }
2050
2051 if (i != 3) {
2052 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2053 return;
2054 }
2055
2056 /* Turn the GP0 interrupt back on. */
2057 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2058 SK_XM_READ_2(sc_if, XM_ISR);
2059 mii_tick(mii);
2060 mii_pollstat(mii);
2061 callout_stop(&sc_if->sk_tick_ch);
2062 }
2063
2064 void
2065 sk_intr_bcom(struct sk_if_softc *sc_if)
2066 {
2067 struct mii_data *mii = &sc_if->sk_mii;
2068 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2069 int status;
2070
2071
2072 DPRINTFN(3, ("sk_intr_bcom\n"));
2073
2074 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2075
2076 /*
2077 * Read the PHY interrupt register to make sure
2078 * we clear any pending interrupts.
2079 */
2080 status = sk_xmac_miibus_readreg((struct device *)sc_if,
2081 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2082
2083 if (!(ifp->if_flags & IFF_RUNNING)) {
2084 sk_init_xmac(sc_if);
2085 return;
2086 }
2087
2088 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2089 int lstat;
2090 lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
2091 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2092
2093 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2094 mii_mediachg(mii);
2095 /* Turn off the link LED. */
2096 SK_IF_WRITE_1(sc_if, 0,
2097 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2098 sc_if->sk_link = 0;
2099 } else if (status & BRGPHY_ISR_LNK_CHG) {
2100 sk_xmac_miibus_writereg((struct device *)sc_if,
2101 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2102 mii_tick(mii);
2103 sc_if->sk_link = 1;
2104 /* Turn on the link LED. */
2105 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2106 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2107 SK_LINKLED_BLINK_OFF);
2108 mii_pollstat(mii);
2109 } else {
2110 mii_tick(mii);
2111 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2112 }
2113 }
2114
2115 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2116 }
2117
2118 void
2119 sk_intr_xmac(struct sk_if_softc *sc_if)
2120 {
2121 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2122
2123 DPRINTFN(3, ("sk_intr_xmac\n"));
2124
2125 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2126 if (status & XM_ISR_GP0_SET) {
2127 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2128 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2129 }
2130
2131 if (status & XM_ISR_AUTONEG_DONE) {
2132 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2133 }
2134 }
2135
2136 if (status & XM_IMR_TX_UNDERRUN)
2137 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2138
2139 if (status & XM_IMR_RX_OVERRUN)
2140 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2141 }
2142
2143 void
2144 sk_intr_yukon(sc_if)
2145 struct sk_if_softc *sc_if;
2146 {
2147 int status;
2148
2149 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2150
2151 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2152 }
2153
2154 int
2155 sk_intr(void *xsc)
2156 {
2157 struct sk_softc *sc = xsc;
2158 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2159 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2160 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2161 u_int32_t status;
2162 int claimed = 0;
2163
2164 if (sc_if0 != NULL)
2165 ifp0 = &sc_if0->sk_ethercom.ec_if;
2166 if (sc_if1 != NULL)
2167 ifp1 = &sc_if1->sk_ethercom.ec_if;
2168
2169 for (;;) {
2170 status = CSR_READ_4(sc, SK_ISSR);
2171 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2172
2173 if (!(status & sc->sk_intrmask))
2174 break;
2175
2176 claimed = 1;
2177
2178 /* Handle receive interrupts first. */
2179 if (status & SK_ISR_RX1_EOF) {
2180 sk_rxeof(sc_if0);
2181 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2182 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2183 }
2184 if (status & SK_ISR_RX2_EOF) {
2185 sk_rxeof(sc_if1);
2186 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2187 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2188 }
2189
2190 /* Then transmit interrupts. */
2191 if (status & SK_ISR_TX1_S_EOF) {
2192 sk_txeof(sc_if0);
2193 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2194 SK_TXBMU_CLR_IRQ_EOF);
2195 }
2196 if (status & SK_ISR_TX2_S_EOF) {
2197 sk_txeof(sc_if1);
2198 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2199 SK_TXBMU_CLR_IRQ_EOF);
2200 }
2201
2202 /* Then MAC interrupts. */
2203 if (status & SK_ISR_MAC1 && (ifp0->if_flags & IFF_RUNNING)) {
2204 if (sc->sk_type == SK_GENESIS)
2205 sk_intr_xmac(sc_if0);
2206 else
2207 sk_intr_yukon(sc_if0);
2208 }
2209
2210 if (status & SK_ISR_MAC2 && (ifp1->if_flags & IFF_RUNNING)) {
2211 if (sc->sk_type == SK_GENESIS)
2212 sk_intr_xmac(sc_if1);
2213 else
2214 sk_intr_yukon(sc_if1);
2215
2216 }
2217
2218 if (status & SK_ISR_EXTERNAL_REG) {
2219 if (ifp0 != NULL &&
2220 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2221 sk_intr_bcom(sc_if0);
2222
2223 if (ifp1 != NULL &&
2224 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2225 sk_intr_bcom(sc_if1);
2226 }
2227 }
2228
2229 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2230
2231 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2232 sk_start(ifp0);
2233 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2234 sk_start(ifp1);
2235
2236 #if NRND > 0
2237 if (RND_ENABLED(&sc->rnd_source))
2238 rnd_add_uint32(&sc->rnd_source, status);
2239 #endif
2240
2241 if (sc->sk_int_mod_pending)
2242 sk_update_int_mod(sc);
2243
2244 return (claimed);
2245 }
2246
2247 void
2248 sk_init_xmac(struct sk_if_softc *sc_if)
2249 {
2250 struct sk_softc *sc = sc_if->sk_softc;
2251 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2252 static const struct sk_bcom_hack bhack[] = {
2253 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2254 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2255 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2256 { 0, 0 } };
2257
2258 DPRINTFN(1, ("sk_init_xmac\n"));
2259
2260 /* Unreset the XMAC. */
2261 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2262 DELAY(1000);
2263
2264 /* Reset the XMAC's internal state. */
2265 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2266
2267 /* Save the XMAC II revision */
2268 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2269
2270 /*
2271 * Perform additional initialization for external PHYs,
2272 * namely for the 1000baseTX cards that use the XMAC's
2273 * GMII mode.
2274 */
2275 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2276 int i = 0;
2277 u_int32_t val;
2278
2279 /* Take PHY out of reset. */
2280 val = sk_win_read_4(sc, SK_GPIO);
2281 if (sc_if->sk_port == SK_PORT_A)
2282 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2283 else
2284 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2285 sk_win_write_4(sc, SK_GPIO, val);
2286
2287 /* Enable GMII mode on the XMAC. */
2288 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2289
2290 sk_xmac_miibus_writereg((struct device *)sc_if,
2291 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2292 DELAY(10000);
2293 sk_xmac_miibus_writereg((struct device *)sc_if,
2294 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2295
2296 /*
2297 * Early versions of the BCM5400 apparently have
2298 * a bug that requires them to have their reserved
2299 * registers initialized to some magic values. I don't
2300 * know what the numbers do, I'm just the messenger.
2301 */
2302 if (sk_xmac_miibus_readreg((struct device *)sc_if,
2303 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2304 while(bhack[i].reg) {
2305 sk_xmac_miibus_writereg((struct device *)sc_if,
2306 SK_PHYADDR_BCOM, bhack[i].reg,
2307 bhack[i].val);
2308 i++;
2309 }
2310 }
2311 }
2312
2313 /* Set station address */
2314 SK_XM_WRITE_2(sc_if, XM_PAR0,
2315 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2316 SK_XM_WRITE_2(sc_if, XM_PAR1,
2317 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2318 SK_XM_WRITE_2(sc_if, XM_PAR2,
2319 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2320 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2321
2322 if (ifp->if_flags & IFF_PROMISC) {
2323 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2324 } else {
2325 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2326 }
2327
2328 if (ifp->if_flags & IFF_BROADCAST) {
2329 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2330 } else {
2331 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2332 }
2333
2334 /* We don't need the FCS appended to the packet. */
2335 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2336
2337 /* We want short frames padded to 60 bytes. */
2338 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2339
2340 /*
2341 * Enable the reception of all error frames. This is is
2342 * a necessary evil due to the design of the XMAC. The
2343 * XMAC's receive FIFO is only 8K in size, however jumbo
2344 * frames can be up to 9000 bytes in length. When bad
2345 * frame filtering is enabled, the XMAC's RX FIFO operates
2346 * in 'store and forward' mode. For this to work, the
2347 * entire frame has to fit into the FIFO, but that means
2348 * that jumbo frames larger than 8192 bytes will be
2349 * truncated. Disabling all bad frame filtering causes
2350 * the RX FIFO to operate in streaming mode, in which
2351 * case the XMAC will start transfering frames out of the
2352 * RX FIFO as soon as the FIFO threshold is reached.
2353 */
2354 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2355 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2356 XM_MODE_RX_INRANGELEN);
2357
2358 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2359 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2360 else
2361 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2362
2363 /*
2364 * Bump up the transmit threshold. This helps hold off transmit
2365 * underruns when we're blasting traffic from both ports at once.
2366 */
2367 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2368
2369 /* Set multicast filter */
2370 sk_setmulti(sc_if);
2371
2372 /* Clear and enable interrupts */
2373 SK_XM_READ_2(sc_if, XM_ISR);
2374 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2375 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2376 else
2377 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2378
2379 /* Configure MAC arbiter */
2380 switch(sc_if->sk_xmac_rev) {
2381 case XM_XMAC_REV_B2:
2382 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2383 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2384 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2385 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2386 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2387 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2388 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2389 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2390 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2391 break;
2392 case XM_XMAC_REV_C1:
2393 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2394 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2395 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2396 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2397 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2398 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2399 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2400 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2401 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2402 break;
2403 default:
2404 break;
2405 }
2406 sk_win_write_2(sc, SK_MACARB_CTL,
2407 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2408
2409 sc_if->sk_link = 1;
2410 }
2411
2412 void sk_init_yukon(sc_if)
2413 struct sk_if_softc *sc_if;
2414 {
2415 u_int32_t /*mac, */phy;
2416 u_int16_t reg;
2417 struct sk_softc *sc;
2418 int i;
2419
2420 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2421 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2422
2423 sc = sc_if->sk_softc;
2424 if (sc->sk_type == SK_YUKON_LITE &&
2425 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2426 /* Take PHY out of reset. */
2427 sk_win_write_4(sc, SK_GPIO,
2428 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2429 }
2430
2431
2432 /* GMAC and GPHY Reset */
2433 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2434
2435 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2436
2437 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2438 DELAY(1000);
2439 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2440 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2441 DELAY(1000);
2442
2443
2444 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2445
2446 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2447 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2448
2449 switch(sc_if->sk_softc->sk_pmd) {
2450 case IFM_1000_SX:
2451 case IFM_1000_LX:
2452 phy |= SK_GPHY_FIBER;
2453 break;
2454
2455 case IFM_1000_CX:
2456 case IFM_1000_T:
2457 phy |= SK_GPHY_COPPER;
2458 break;
2459 }
2460
2461 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2462
2463 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2464 DELAY(1000);
2465 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2466 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2467 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2468
2469 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2470 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2471
2472 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2473
2474 /* unused read of the interrupt source register */
2475 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2476 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2477
2478 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2479 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2480 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2481
2482 /* MIB Counter Clear Mode set */
2483 reg |= YU_PAR_MIB_CLR;
2484 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2485 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2486 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2487
2488 /* MIB Counter Clear Mode clear */
2489 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2490 reg &= ~YU_PAR_MIB_CLR;
2491 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2492
2493 /* receive control reg */
2494 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2495 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2496 YU_RCR_CRCR);
2497
2498 /* transmit parameter register */
2499 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2500 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2501 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2502
2503 /* serial mode register */
2504 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2505 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2506 YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e));
2507
2508 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2509 /* Setup Yukon's address */
2510 for (i = 0; i < 3; i++) {
2511 /* Write Source Address 1 (unicast filter) */
2512 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2513 sc_if->sk_enaddr[i * 2] |
2514 sc_if->sk_enaddr[i * 2 + 1] << 8);
2515 }
2516
2517 for (i = 0; i < 3; i++) {
2518 reg = sk_win_read_2(sc_if->sk_softc,
2519 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2520 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2521 }
2522
2523 /* Set multicast filter */
2524 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2525 sk_setmulti(sc_if);
2526
2527 /* enable interrupt mask for counter overflows */
2528 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2529 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2530 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2531 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2532
2533 /* Configure RX MAC FIFO */
2534 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2535 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2536
2537 /* Configure TX MAC FIFO */
2538 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2539 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2540
2541 DPRINTFN(6, ("sk_init_yukon: end\n"));
2542 }
2543
2544 /*
2545 * Note that to properly initialize any part of the GEnesis chip,
2546 * you first have to take it out of reset mode.
2547 */
2548 int
2549 sk_init(struct ifnet *ifp)
2550 {
2551 struct sk_if_softc *sc_if = ifp->if_softc;
2552 struct sk_softc *sc = sc_if->sk_softc;
2553 struct mii_data *mii = &sc_if->sk_mii;
2554 int s;
2555 u_int32_t imr, sk_imtimer_ticks;
2556
2557 DPRINTFN(1, ("sk_init\n"));
2558
2559 s = splnet();
2560
2561 if (ifp->if_flags & IFF_RUNNING) {
2562 splx(s);
2563 return 0;
2564 }
2565
2566 /* Cancel pending I/O and free all RX/TX buffers. */
2567 sk_stop(ifp,0);
2568
2569 if (sc->sk_type == SK_GENESIS) {
2570 /* Configure LINK_SYNC LED */
2571 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2572 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2573 SK_LINKLED_LINKSYNC_ON);
2574
2575 /* Configure RX LED */
2576 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2577 SK_RXLEDCTL_COUNTER_START);
2578
2579 /* Configure TX LED */
2580 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2581 SK_TXLEDCTL_COUNTER_START);
2582 }
2583
2584 /* Configure I2C registers */
2585
2586 /* Configure XMAC(s) */
2587 switch (sc->sk_type) {
2588 case SK_GENESIS:
2589 sk_init_xmac(sc_if);
2590 break;
2591 case SK_YUKON:
2592 case SK_YUKON_LITE:
2593 case SK_YUKON_LP:
2594 sk_init_yukon(sc_if);
2595 break;
2596 }
2597 mii_mediachg(mii);
2598
2599 if (sc->sk_type == SK_GENESIS) {
2600 /* Configure MAC FIFOs */
2601 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2602 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2603 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2604
2605 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2606 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2607 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2608 }
2609
2610 /* Configure transmit arbiter(s) */
2611 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2612 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2613
2614 /* Configure RAMbuffers */
2615 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2616 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2617 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2618 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2619 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2620 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2621
2622 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2623 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2624 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2625 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2626 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2627 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2628 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2629
2630 /* Configure BMUs */
2631 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2632 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2633 SK_RX_RING_ADDR(sc_if, 0));
2634 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2635
2636 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2637 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2638 SK_TX_RING_ADDR(sc_if, 0));
2639 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2640
2641 /* Init descriptors */
2642 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2643 printf("%s: initialization failed: no "
2644 "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2645 sk_stop(ifp,0);
2646 splx(s);
2647 return(ENOBUFS);
2648 }
2649
2650 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2651 printf("%s: initialization failed: no "
2652 "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2653 sk_stop(ifp,0);
2654 splx(s);
2655 return(ENOBUFS);
2656 }
2657
2658 /* Set interrupt moderation if changed via sysctl. */
2659 switch (sc->sk_type) {
2660 case SK_GENESIS:
2661 sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2662 break;
2663 case SK_YUKON_EC:
2664 sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2665 break;
2666 default:
2667 sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2668 }
2669 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2670 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2671 sk_win_write_4(sc, SK_IMTIMERINIT,
2672 SK_IM_USECS(sc->sk_int_mod));
2673 aprint_verbose("%s: interrupt moderation is %d us\n",
2674 sc->sk_dev.dv_xname, sc->sk_int_mod);
2675 }
2676
2677 /* Configure interrupt handling */
2678 CSR_READ_4(sc, SK_ISSR);
2679 if (sc_if->sk_port == SK_PORT_A)
2680 sc->sk_intrmask |= SK_INTRS1;
2681 else
2682 sc->sk_intrmask |= SK_INTRS2;
2683
2684 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2685
2686 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2687
2688 /* Start BMUs. */
2689 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2690
2691 if (sc->sk_type == SK_GENESIS) {
2692 /* Enable XMACs TX and RX state machines */
2693 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2694 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2695 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2696 }
2697
2698 if (SK_YUKON_FAMILY(sc->sk_type)) {
2699 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2700 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2701 reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2702 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2703 }
2704
2705
2706 ifp->if_flags |= IFF_RUNNING;
2707 ifp->if_flags &= ~IFF_OACTIVE;
2708
2709 splx(s);
2710 return(0);
2711 }
2712
2713 void
2714 sk_stop(struct ifnet *ifp, int disable)
2715 {
2716 struct sk_if_softc *sc_if = ifp->if_softc;
2717 struct sk_softc *sc = sc_if->sk_softc;
2718 //struct sk_txmap_entry *dma;
2719 int i;
2720
2721 DPRINTFN(1, ("sk_stop\n"));
2722
2723 callout_stop(&sc_if->sk_tick_ch);
2724
2725 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2726 u_int32_t val;
2727
2728 /* Put PHY back into reset. */
2729 val = sk_win_read_4(sc, SK_GPIO);
2730 if (sc_if->sk_port == SK_PORT_A) {
2731 val |= SK_GPIO_DIR0;
2732 val &= ~SK_GPIO_DAT0;
2733 } else {
2734 val |= SK_GPIO_DIR2;
2735 val &= ~SK_GPIO_DAT2;
2736 }
2737 sk_win_write_4(sc, SK_GPIO, val);
2738 }
2739
2740 /* Turn off various components of this interface. */
2741 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2742 switch (sc->sk_type) {
2743 case SK_GENESIS:
2744 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2745 SK_TXMACCTL_XMAC_RESET);
2746 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2747 break;
2748 case SK_YUKON:
2749 case SK_YUKON_LITE:
2750 case SK_YUKON_LP:
2751 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2752 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2753 break;
2754 }
2755 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2756 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2757 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2758 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2759 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2760 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2761 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2762 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2763 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2764
2765 /* Disable interrupts */
2766 if (sc_if->sk_port == SK_PORT_A)
2767 sc->sk_intrmask &= ~SK_INTRS1;
2768 else
2769 sc->sk_intrmask &= ~SK_INTRS2;
2770 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2771
2772 SK_XM_READ_2(sc_if, XM_ISR);
2773 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2774
2775 /* Free RX and TX mbufs still in the queues. */
2776 for (i = 0; i < SK_RX_RING_CNT; i++) {
2777 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2778 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2779 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2780 }
2781 }
2782
2783 for (i = 0; i < SK_TX_RING_CNT; i++) {
2784 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2785 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2786 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2787 }
2788 }
2789
2790 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2791 }
2792
2793 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2794
2795 /*
2796 struct cfdriver skc_cd = {
2797 0, "skc", DV_DULL
2798 };
2799 */
2800
2801 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2802
2803 /*
2804 struct cfdriver sk_cd = {
2805 0, "sk", DV_IFNET
2806 };
2807 */
2808
2809 #ifdef SK_DEBUG
2810 void
2811 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2812 {
2813 #define DESC_PRINT(X) \
2814 if (desc->X) \
2815 printf("txdesc[%d]." #X "=%#x\n", \
2816 idx, desc->X);
2817
2818 DESC_PRINT(sk_ctl);
2819 DESC_PRINT(sk_next);
2820 DESC_PRINT(sk_data_lo);
2821 DESC_PRINT(sk_data_hi);
2822 DESC_PRINT(sk_xmac_txstat);
2823 DESC_PRINT(sk_rsvd0);
2824 DESC_PRINT(sk_csum_startval);
2825 DESC_PRINT(sk_csum_startpos);
2826 DESC_PRINT(sk_csum_writepos);
2827 DESC_PRINT(sk_rsvd1);
2828 #undef PRINT
2829 }
2830
2831 void
2832 sk_dump_bytes(const char *data, int len)
2833 {
2834 int c, i, j;
2835
2836 for (i = 0; i < len; i += 16) {
2837 printf("%08x ", i);
2838 c = len - i;
2839 if (c > 16) c = 16;
2840
2841 for (j = 0; j < c; j++) {
2842 printf("%02x ", data[i + j] & 0xff);
2843 if ((j & 0xf) == 7 && j > 0)
2844 printf(" ");
2845 }
2846
2847 for (; j < 16; j++)
2848 printf(" ");
2849 printf(" ");
2850
2851 for (j = 0; j < c; j++) {
2852 int ch = data[i + j] & 0xff;
2853 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2854 }
2855
2856 printf("\n");
2857
2858 if (c < 16)
2859 break;
2860 }
2861 }
2862
2863 void
2864 sk_dump_mbuf(struct mbuf *m)
2865 {
2866 int count = m->m_pkthdr.len;
2867
2868 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2869
2870 while (count > 0 && m) {
2871 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2872 m, m->m_data, m->m_len);
2873 sk_dump_bytes(mtod(m, char *), m->m_len);
2874
2875 count -= m->m_len;
2876 m = m->m_next;
2877 }
2878 }
2879 #endif
2880
2881 static int
2882 sk_sysctl_handler(SYSCTLFN_ARGS)
2883 {
2884 int error, t;
2885 struct sysctlnode node;
2886 struct sk_softc *sc;
2887
2888 node = *rnode;
2889 sc = node.sysctl_data;
2890 t = sc->sk_int_mod;
2891 node.sysctl_data = &t;
2892 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2893 if (error || newp == NULL)
2894 return (error);
2895
2896 if (t < SK_IM_MIN || t > SK_IM_MAX)
2897 return (EINVAL);
2898
2899 /* update the softc with sysctl-changed value, and mark
2900 for hardware update */
2901 sc->sk_int_mod = t;
2902 sc->sk_int_mod_pending = 1;
2903 return (0);
2904 }
2905
2906 /*
2907 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
2908 * set up in skc_attach()
2909 */
2910 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
2911 {
2912 int rc;
2913 const struct sysctlnode *node;
2914
2915 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
2916 0, CTLTYPE_NODE, "hw", NULL,
2917 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
2918 goto err;
2919 }
2920
2921 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2922 0, CTLTYPE_NODE, "sk",
2923 SYSCTL_DESCR("sk interface controls"),
2924 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2925 goto err;
2926 }
2927
2928 sk_root_num = node->sysctl_num;
2929 return;
2930
2931 err:
2932 printf("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2933 }
2934