Home | History | Annotate | Line # | Download | only in pci
if_sk.c revision 1.21
      1 /*	$NetBSD: if_sk.c,v 1.21 2006/02/25 02:28:58 wiz Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the NetBSD
     18  *	Foundation, Inc. and its contributors.
     19  * 4. Neither the name of The NetBSD Foundation nor the names of its
     20  *    contributors may be used to endorse or promote products derived
     21  *    from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 /*	$OpenBSD: if_sk.c,v 1.33 2003/08/12 05:23:06 nate Exp $	*/
     37 
     38 /*
     39  * Copyright (c) 1997, 1998, 1999, 2000
     40  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by Bill Paul.
     53  * 4. Neither the name of the author nor the names of any co-contributors
     54  *    may be used to endorse or promote products derived from this software
     55  *    without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     61  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     62  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     63  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     64  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     65  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     66  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     67  * THE POSSIBILITY OF SUCH DAMAGE.
     68  *
     69  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
     70  */
     71 
     72 /*
     73  * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
     74  *
     75  * Permission to use, copy, modify, and distribute this software for any
     76  * purpose with or without fee is hereby granted, provided that the above
     77  * copyright notice and this permission notice appear in all copies.
     78  *
     79  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     80  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     81  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     82  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     83  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     84  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     85  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     86  */
     87 
     88 /*
     89  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
     90  * the SK-984x series adapters, both single port and dual port.
     91  * References:
     92  * 	The XaQti XMAC II datasheet,
     93  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     94  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
     95  *
     96  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
     97  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
     98  * convenience to others until Vitesse corrects this problem:
     99  *
    100  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
    101  *
    102  * Written by Bill Paul <wpaul (at) ee.columbia.edu>
    103  * Department of Electrical Engineering
    104  * Columbia University, New York City
    105  */
    106 
    107 /*
    108  * The SysKonnect gigabit ethernet adapters consist of two main
    109  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
    110  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
    111  * components and a PHY while the GEnesis controller provides a PCI
    112  * interface with DMA support. Each card may have between 512K and
    113  * 2MB of SRAM on board depending on the configuration.
    114  *
    115  * The SysKonnect GEnesis controller can have either one or two XMAC
    116  * chips connected to it, allowing single or dual port NIC configurations.
    117  * SysKonnect has the distinction of being the only vendor on the market
    118  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
    119  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
    120  * XMAC registers. This driver takes advantage of these features to allow
    121  * both XMACs to operate as independent interfaces.
    122  */
    123 
    124 #include "bpfilter.h"
    125 #include "rnd.h"
    126 
    127 #include <sys/param.h>
    128 #include <sys/systm.h>
    129 #include <sys/sockio.h>
    130 #include <sys/mbuf.h>
    131 #include <sys/malloc.h>
    132 #include <sys/kernel.h>
    133 #include <sys/socket.h>
    134 #include <sys/device.h>
    135 #include <sys/queue.h>
    136 #include <sys/callout.h>
    137 #include <sys/sysctl.h>
    138 
    139 #include <net/if.h>
    140 #include <net/if_dl.h>
    141 #include <net/if_types.h>
    142 
    143 #ifdef INET
    144 #include <netinet/in.h>
    145 #include <netinet/in_systm.h>
    146 #include <netinet/in_var.h>
    147 #include <netinet/ip.h>
    148 #include <netinet/if_ether.h>
    149 #endif
    150 
    151 #include <net/if_media.h>
    152 
    153 #if NBPFILTER > 0
    154 #include <net/bpf.h>
    155 #endif
    156 #if NRND > 0
    157 #include <sys/rnd.h>
    158 #endif
    159 
    160 #include <dev/mii/mii.h>
    161 #include <dev/mii/miivar.h>
    162 #include <dev/mii/brgphyreg.h>
    163 
    164 #include <dev/pci/pcireg.h>
    165 #include <dev/pci/pcivar.h>
    166 #include <dev/pci/pcidevs.h>
    167 
    168 #define	SK_VERBOSE
    169 /* #define SK_USEIOSPACE */
    170 
    171 #include <dev/pci/if_skreg.h>
    172 #include <dev/pci/if_skvar.h>
    173 
    174 int skc_probe(struct device *, struct cfdata *, void *);
    175 void skc_attach(struct device *, struct device *self, void *aux);
    176 int sk_probe(struct device *, struct cfdata *, void *);
    177 void sk_attach(struct device *, struct device *self, void *aux);
    178 int skcprint(void *, const char *);
    179 int sk_intr(void *);
    180 void sk_intr_bcom(struct sk_if_softc *);
    181 void sk_intr_xmac(struct sk_if_softc *);
    182 void sk_intr_yukon(struct sk_if_softc *);
    183 void sk_rxeof(struct sk_if_softc *);
    184 void sk_txeof(struct sk_if_softc *);
    185 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
    186 void sk_start(struct ifnet *);
    187 int sk_ioctl(struct ifnet *, u_long, caddr_t);
    188 int sk_init(struct ifnet *);
    189 void sk_init_xmac(struct sk_if_softc *);
    190 void sk_init_yukon(struct sk_if_softc *);
    191 void sk_stop(struct ifnet *, int);
    192 void sk_watchdog(struct ifnet *);
    193 void sk_shutdown(void *);
    194 int sk_ifmedia_upd(struct ifnet *);
    195 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    196 void sk_reset(struct sk_softc *);
    197 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
    198 int sk_init_rx_ring(struct sk_if_softc *);
    199 int sk_init_tx_ring(struct sk_if_softc *);
    200 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
    201 void sk_vpd_read_res(struct sk_softc *,
    202 					struct vpd_res *, int);
    203 void sk_vpd_read(struct sk_softc *);
    204 
    205 void sk_update_int_mod(struct sk_softc *);
    206 
    207 int sk_xmac_miibus_readreg(struct device *, int, int);
    208 void sk_xmac_miibus_writereg(struct device *, int, int, int);
    209 void sk_xmac_miibus_statchg(struct device *);
    210 
    211 int sk_marv_miibus_readreg(struct device *, int, int);
    212 void sk_marv_miibus_writereg(struct device *, int, int, int);
    213 void sk_marv_miibus_statchg(struct device *);
    214 
    215 u_int32_t sk_xmac_hash(caddr_t);
    216 u_int32_t sk_yukon_hash(caddr_t);
    217 void sk_setfilt(struct sk_if_softc *, caddr_t, int);
    218 void sk_setmulti(struct sk_if_softc *);
    219 void sk_tick(void *);
    220 
    221 /* #define SK_DEBUG 2 */
    222 #ifdef SK_DEBUG
    223 #define DPRINTF(x)	if (skdebug) printf x
    224 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
    225 int	skdebug = SK_DEBUG;
    226 
    227 void sk_dump_txdesc(struct sk_tx_desc *, int);
    228 void sk_dump_mbuf(struct mbuf *);
    229 void sk_dump_bytes(const char *, int);
    230 #else
    231 #define DPRINTF(x)
    232 #define DPRINTFN(n,x)
    233 #endif
    234 
    235 #define SK_SETBIT(sc, reg, x)		\
    236 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
    237 
    238 #define SK_CLRBIT(sc, reg, x)		\
    239 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
    240 
    241 #define SK_WIN_SETBIT_4(sc, reg, x)	\
    242 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
    243 
    244 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
    245 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
    246 
    247 #define SK_WIN_SETBIT_2(sc, reg, x)	\
    248 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
    249 
    250 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
    251 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
    252 
    253 static int sk_sysctl_handler(SYSCTLFN_PROTO);
    254 static int sk_root_num;
    255 
    256 /* supported device vendors */
    257 static const struct sk_product {
    258 	pci_vendor_id_t		sk_vendor;
    259 	pci_product_id_t	sk_product;
    260 } sk_products[] = {
    261 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
    262 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
    263 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
    264 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
    265 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
    266 	{ PCI_VENDOR_GALILEO, PCI_PRODUCT_GALILEO_SKNET, },
    267 	{ PCI_VENDOR_GALILEO, PCI_PRODUCT_GALILEO_BELKIN, },
    268 	{ 0, 0, }
    269 };
    270 
    271 #define SK_LINKSYS_EG1032_SUBID	0x00151737
    272 
    273 static inline u_int32_t
    274 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
    275 {
    276 #ifdef SK_USEIOSPACE
    277 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    278 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
    279 #else
    280 	return CSR_READ_4(sc, reg);
    281 #endif
    282 }
    283 
    284 static inline u_int16_t
    285 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
    286 {
    287 #ifdef SK_USEIOSPACE
    288 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    289 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
    290 #else
    291 	return CSR_READ_2(sc, reg);
    292 #endif
    293 }
    294 
    295 static inline u_int8_t
    296 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
    297 {
    298 #ifdef SK_USEIOSPACE
    299 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    300 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
    301 #else
    302 	return CSR_READ_1(sc, reg);
    303 #endif
    304 }
    305 
    306 static inline void
    307 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
    308 {
    309 #ifdef SK_USEIOSPACE
    310 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    311 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
    312 #else
    313 	CSR_WRITE_4(sc, reg, x);
    314 #endif
    315 }
    316 
    317 static inline void
    318 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
    319 {
    320 #ifdef SK_USEIOSPACE
    321 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    322 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
    323 #else
    324 	CSR_WRITE_2(sc, reg, x);
    325 #endif
    326 }
    327 
    328 static inline void
    329 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
    330 {
    331 #ifdef SK_USEIOSPACE
    332 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    333 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
    334 #else
    335 	CSR_WRITE_1(sc, reg, x);
    336 #endif
    337 }
    338 
    339 /*
    340  * The VPD EEPROM contains Vital Product Data, as suggested in
    341  * the PCI 2.1 specification. The VPD data is separared into areas
    342  * denoted by resource IDs. The SysKonnect VPD contains an ID string
    343  * resource (the name of the adapter), a read-only area resource
    344  * containing various key/data fields and a read/write area which
    345  * can be used to store asset management information or log messages.
    346  * We read the ID string and read-only into buffers attached to
    347  * the controller softc structure for later use. At the moment,
    348  * we only use the ID string during sk_attach().
    349  */
    350 u_int8_t
    351 sk_vpd_readbyte(struct sk_softc *sc, int addr)
    352 {
    353 	int			i;
    354 
    355 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
    356 	for (i = 0; i < SK_TIMEOUT; i++) {
    357 		DELAY(1);
    358 		if (sk_win_read_2(sc,
    359 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
    360 			break;
    361 	}
    362 
    363 	if (i == SK_TIMEOUT)
    364 		return(0);
    365 
    366 	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
    367 }
    368 
    369 void
    370 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
    371 {
    372 	int			i;
    373 	u_int8_t		*ptr;
    374 
    375 	ptr = (u_int8_t *)res;
    376 	for (i = 0; i < sizeof(struct vpd_res); i++)
    377 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
    378 }
    379 
    380 void
    381 sk_vpd_read(struct sk_softc *sc)
    382 {
    383 	int			pos = 0, i;
    384 	struct vpd_res		res;
    385 
    386 	if (sc->sk_vpd_prodname != NULL)
    387 		free(sc->sk_vpd_prodname, M_DEVBUF);
    388 	if (sc->sk_vpd_readonly != NULL)
    389 		free(sc->sk_vpd_readonly, M_DEVBUF);
    390 	sc->sk_vpd_prodname = NULL;
    391 	sc->sk_vpd_readonly = NULL;
    392 
    393 	sk_vpd_read_res(sc, &res, pos);
    394 
    395 	if (res.vr_id != VPD_RES_ID) {
    396 		printf("%s: bad VPD resource id: expected %x got %x\n",
    397 		    sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
    398 		return;
    399 	}
    400 
    401 	pos += sizeof(res);
    402 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    403 	if (sc->sk_vpd_prodname == NULL)
    404 		panic("sk_vpd_read");
    405 	for (i = 0; i < res.vr_len; i++)
    406 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
    407 	sc->sk_vpd_prodname[i] = '\0';
    408 	pos += i;
    409 
    410 	sk_vpd_read_res(sc, &res, pos);
    411 
    412 	if (res.vr_id != VPD_RES_READ) {
    413 		printf("%s: bad VPD resource id: expected %x got %x\n",
    414 		    sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
    415 		return;
    416 	}
    417 
    418 	pos += sizeof(res);
    419 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    420 	if (sc->sk_vpd_readonly == NULL)
    421 		panic("sk_vpd_read");
    422 	for (i = 0; i < res.vr_len ; i++)
    423 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
    424 }
    425 
    426 int
    427 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
    428 {
    429 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    430 	int i;
    431 
    432 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
    433 
    434 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
    435 		return(0);
    436 
    437 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    438 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
    439 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    440 		for (i = 0; i < SK_TIMEOUT; i++) {
    441 			DELAY(1);
    442 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
    443 			    XM_MMUCMD_PHYDATARDY)
    444 				break;
    445 		}
    446 
    447 		if (i == SK_TIMEOUT) {
    448 			printf("%s: phy failed to come ready\n",
    449 			    sc_if->sk_dev.dv_xname);
    450 			return(0);
    451 		}
    452 	}
    453 	DELAY(1);
    454 	return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
    455 }
    456 
    457 void
    458 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
    459 {
    460 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    461 	int i;
    462 
    463 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
    464 
    465 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    466 	for (i = 0; i < SK_TIMEOUT; i++) {
    467 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    468 			break;
    469 	}
    470 
    471 	if (i == SK_TIMEOUT) {
    472 		printf("%s: phy failed to come ready\n",
    473 		    sc_if->sk_dev.dv_xname);
    474 		return;
    475 	}
    476 
    477 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
    478 	for (i = 0; i < SK_TIMEOUT; i++) {
    479 		DELAY(1);
    480 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    481 			break;
    482 	}
    483 
    484 	if (i == SK_TIMEOUT)
    485 		printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
    486 }
    487 
    488 void
    489 sk_xmac_miibus_statchg(struct device *dev)
    490 {
    491 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    492 	struct mii_data *mii = &sc_if->sk_mii;
    493 
    494 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
    495 
    496 	/*
    497 	 * If this is a GMII PHY, manually set the XMAC's
    498 	 * duplex mode accordingly.
    499 	 */
    500 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    501 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
    502 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    503 		} else {
    504 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    505 		}
    506 	}
    507 }
    508 
    509 int
    510 sk_marv_miibus_readreg(dev, phy, reg)
    511 	struct device *dev;
    512 	int phy, reg;
    513 {
    514 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    515 	u_int16_t val;
    516 	int i;
    517 
    518 	if (phy != 0 ||
    519 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
    520 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
    521 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
    522 			     phy, reg));
    523 		return(0);
    524 	}
    525 
    526         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    527 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
    528 
    529 	for (i = 0; i < SK_TIMEOUT; i++) {
    530 		DELAY(1);
    531 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
    532 		if (val & YU_SMICR_READ_VALID)
    533 			break;
    534 	}
    535 
    536 	if (i == SK_TIMEOUT) {
    537 		printf("%s: phy failed to come ready\n",
    538 		       sc_if->sk_dev.dv_xname);
    539 		return 0;
    540 	}
    541 
    542  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
    543 		     SK_TIMEOUT));
    544 
    545         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
    546 
    547 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
    548 		     phy, reg, val));
    549 
    550 	return val;
    551 }
    552 
    553 void
    554 sk_marv_miibus_writereg(dev, phy, reg, val)
    555 	struct device *dev;
    556 	int phy, reg, val;
    557 {
    558 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    559 	int i;
    560 
    561 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
    562 		     phy, reg, val));
    563 
    564 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
    565 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    566 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
    567 
    568 	for (i = 0; i < SK_TIMEOUT; i++) {
    569 		DELAY(1);
    570 		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
    571 			break;
    572 	}
    573 }
    574 
    575 void
    576 sk_marv_miibus_statchg(dev)
    577 	struct device *dev;
    578 {
    579 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
    580 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
    581 }
    582 
    583 #define SK_HASH_BITS		6
    584 
    585 u_int32_t
    586 sk_xmac_hash(caddr_t addr)
    587 {
    588 	u_int32_t		crc;
    589 
    590 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
    591 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
    592 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    593 	return (crc);
    594 }
    595 
    596 u_int32_t
    597 sk_yukon_hash(caddr_t addr)
    598 {
    599 	u_int32_t		crc;
    600 
    601 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
    602 	crc &= ((1 << SK_HASH_BITS) - 1);
    603 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    604 	return (crc);
    605 }
    606 
    607 void
    608 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
    609 {
    610 	int base = XM_RXFILT_ENTRY(slot);
    611 
    612 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
    613 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
    614 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
    615 }
    616 
    617 void
    618 sk_setmulti(struct sk_if_softc *sc_if)
    619 {
    620 	struct sk_softc *sc = sc_if->sk_softc;
    621 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
    622 	u_int32_t hashes[2] = { 0, 0 };
    623 	int h = 0, i;
    624 	struct ethercom *ec = &sc_if->sk_ethercom;
    625 	struct ether_multi *enm;
    626 	struct ether_multistep step;
    627 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
    628 
    629 	/* First, zot all the existing filters. */
    630 	switch(sc->sk_type) {
    631 	case SK_GENESIS:
    632 		for (i = 1; i < XM_RXFILT_MAX; i++)
    633 			sk_setfilt(sc_if, (caddr_t)&dummy, i);
    634 
    635 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
    636 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
    637 		break;
    638 	case SK_YUKON:
    639 	case SK_YUKON_LITE:
    640 	case SK_YUKON_LP:
    641 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
    642 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
    643 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
    644 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
    645 		break;
    646 	}
    647 
    648 	/* Now program new ones. */
    649 allmulti:
    650 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    651 		hashes[0] = 0xFFFFFFFF;
    652 		hashes[1] = 0xFFFFFFFF;
    653 	} else {
    654 		i = 1;
    655 		/* First find the tail of the list. */
    656 		ETHER_FIRST_MULTI(step, ec, enm);
    657 		while (enm != NULL) {
    658 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
    659 				 ETHER_ADDR_LEN)) {
    660 				ifp->if_flags |= IFF_ALLMULTI;
    661 				goto allmulti;
    662 			}
    663 			DPRINTFN(2,("multicast address %s\n",
    664 	    			ether_sprintf(enm->enm_addrlo)));
    665 			/*
    666 			 * Program the first XM_RXFILT_MAX multicast groups
    667 			 * into the perfect filter. For all others,
    668 			 * use the hash table.
    669 			 */
    670 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
    671 				sk_setfilt(sc_if, enm->enm_addrlo, i);
    672 				i++;
    673 			}
    674 			else {
    675 				switch (sc->sk_type) {
    676 				case SK_GENESIS:
    677 					h = sk_xmac_hash(enm->enm_addrlo);
    678 					break;
    679 				case SK_YUKON:
    680 				case SK_YUKON_LITE:
    681 				case SK_YUKON_LP:
    682 					h = sk_yukon_hash(enm->enm_addrlo);
    683 					break;
    684 				}
    685 				if (h < 32)
    686 					hashes[0] |= (1 << h);
    687 				else
    688 					hashes[1] |= (1 << (h - 32));
    689 			}
    690 
    691 			ETHER_NEXT_MULTI(step, enm);
    692 		}
    693 	}
    694 
    695 	switch(sc->sk_type) {
    696 	case SK_GENESIS:
    697 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
    698 			       XM_MODE_RX_USE_PERFECT);
    699 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
    700 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
    701 		break;
    702 	case SK_YUKON:
    703 	case SK_YUKON_LITE:
    704 	case SK_YUKON_LP:
    705 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
    706 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
    707 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
    708 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
    709 		break;
    710 	}
    711 }
    712 
    713 int
    714 sk_init_rx_ring(struct sk_if_softc *sc_if)
    715 {
    716 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    717 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    718 	int			i;
    719 
    720 	bzero((char *)rd->sk_rx_ring,
    721 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
    722 
    723 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    724 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
    725 		if (i == (SK_RX_RING_CNT - 1)) {
    726 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
    727 			rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if, 0);
    728 		} else {
    729 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
    730 			rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if,i+1);
    731 		}
    732 	}
    733 
    734 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    735 		if (sk_newbuf(sc_if, i, NULL, NULL) == ENOBUFS) {
    736 			printf("%s: failed alloc of %dth mbuf\n",
    737 			    sc_if->sk_dev.dv_xname, i);
    738 			return(ENOBUFS);
    739 		}
    740 	}
    741 	sc_if->sk_cdata.sk_rx_prod = 0;
    742 	sc_if->sk_cdata.sk_rx_cons = 0;
    743 
    744 	return(0);
    745 }
    746 
    747 int
    748 sk_init_tx_ring(struct sk_if_softc *sc_if)
    749 {
    750 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    751 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    752 	int			i;
    753 
    754 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
    755 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
    756 
    757 	for (i = 0; i < SK_TX_RING_CNT; i++) {
    758 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
    759 		if (i == (SK_TX_RING_CNT - 1)) {
    760 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
    761 			rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if, 0);
    762 		} else {
    763 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
    764 			rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if,i+1);
    765 		}
    766 	}
    767 
    768 	sc_if->sk_cdata.sk_tx_prod = 0;
    769 	sc_if->sk_cdata.sk_tx_cons = 0;
    770 	sc_if->sk_cdata.sk_tx_cnt = 0;
    771 
    772 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
    773 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    774 
    775 	return (0);
    776 }
    777 
    778 int
    779 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
    780 	  bus_dmamap_t dmamap)
    781 {
    782 	struct sk_softc		*sc = sc_if->sk_softc;
    783 	struct mbuf		*m_new = NULL;
    784 	struct sk_chain		*c;
    785 	struct sk_rx_desc	*r;
    786 
    787 	if (dmamap == NULL) {
    788 		/* if (m) panic() */
    789 
    790 		if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1, MCLBYTES,
    791 				      0, BUS_DMA_NOWAIT, &dmamap)) {
    792 			printf("%s: can't create recv map\n",
    793 			       sc_if->sk_dev.dv_xname);
    794 			return(ENOMEM);
    795 		}
    796 	} else if (m == NULL)
    797 		bus_dmamap_unload(sc->sc_dmatag, dmamap);
    798 
    799 	sc_if->sk_cdata.sk_rx_map[i] = dmamap;
    800 
    801 	if (m == NULL) {
    802 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    803 		if (m_new == NULL) {
    804 			printf("%s: no memory for rx list -- "
    805 			    "packet dropped!\n", sc_if->sk_dev.dv_xname);
    806 			return(ENOBUFS);
    807 		}
    808 
    809 		/* Allocate the jumbo buffer */
    810 		MCLGET(m_new, M_DONTWAIT);
    811 		if (!(m_new->m_flags & M_EXT)) {
    812 			m_freem(m_new);
    813 			return (ENOBUFS);
    814 		}
    815 
    816 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    817 
    818 		m_adj(m_new, ETHER_ALIGN);
    819 
    820 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m_new,
    821 					 BUS_DMA_NOWAIT))
    822 			return(ENOBUFS);
    823 	} else {
    824 		/*
    825 	 	 * We're re-using a previously allocated mbuf;
    826 		 * be sure to re-init pointers and lengths to
    827 		 * default values.
    828 		 */
    829 		m_new = m;
    830 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    831 		m_adj(m_new, ETHER_ALIGN);
    832 		m_new->m_data = m_new->m_ext.ext_buf;
    833 	}
    834 
    835 	c = &sc_if->sk_cdata.sk_rx_chain[i];
    836 	r = c->sk_desc;
    837 	c->sk_mbuf = m_new;
    838 	r->sk_data_lo = dmamap->dm_segs[0].ds_addr;
    839 	r->sk_ctl = dmamap->dm_segs[0].ds_len | SK_RXSTAT;
    840 
    841 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    842 
    843 	return(0);
    844 }
    845 
    846 /*
    847  * Set media options.
    848  */
    849 int
    850 sk_ifmedia_upd(struct ifnet *ifp)
    851 {
    852 	struct sk_if_softc *sc_if = ifp->if_softc;
    853 
    854 	(void) sk_init(ifp);
    855 	mii_mediachg(&sc_if->sk_mii);
    856 	return(0);
    857 }
    858 
    859 /*
    860  * Report current media status.
    861  */
    862 void
    863 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
    864 {
    865 	struct sk_if_softc *sc_if = ifp->if_softc;
    866 
    867 	mii_pollstat(&sc_if->sk_mii);
    868 	ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
    869 	ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
    870 }
    871 
    872 int
    873 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
    874 {
    875 	struct sk_if_softc *sc_if = ifp->if_softc;
    876 	struct sk_softc *sc = sc_if->sk_softc;
    877 	struct ifreq *ifr = (struct ifreq *) data;
    878 	/* struct ifaddr *ifa = (struct ifaddr *) data; */
    879 	struct mii_data *mii;
    880 	int s, error = 0;
    881 
    882 	/* DPRINTFN(2, ("sk_ioctl\n")); */
    883 
    884 	s = splnet();
    885 
    886 	switch(command) {
    887 
    888 	case SIOCSIFFLAGS:
    889 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
    890 		if (ifp->if_flags & IFF_UP) {
    891 			if (ifp->if_flags & IFF_RUNNING &&
    892 			    ifp->if_flags & IFF_PROMISC &&
    893 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
    894 				switch(sc->sk_type) {
    895 				case SK_GENESIS:
    896 					SK_XM_SETBIT_4(sc_if, XM_MODE,
    897 					    XM_MODE_RX_PROMISC);
    898 					break;
    899 				case SK_YUKON:
    900 				case SK_YUKON_LITE:
    901 				case SK_YUKON_LP:
    902 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
    903 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
    904 					break;
    905 				}
    906 				sk_setmulti(sc_if);
    907 			} else if (ifp->if_flags & IFF_RUNNING &&
    908 			    !(ifp->if_flags & IFF_PROMISC) &&
    909 			    sc_if->sk_if_flags & IFF_PROMISC) {
    910 				switch(sc->sk_type) {
    911 				case SK_GENESIS:
    912 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
    913 					    XM_MODE_RX_PROMISC);
    914 					break;
    915 				case SK_YUKON:
    916 				case SK_YUKON_LITE:
    917 				case SK_YUKON_LP:
    918 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
    919 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
    920 					break;
    921 				}
    922 
    923 				sk_setmulti(sc_if);
    924 			} else
    925 				(void) sk_init(ifp);
    926 		} else {
    927 			if (ifp->if_flags & IFF_RUNNING)
    928 				sk_stop(ifp,0);
    929 		}
    930 		sc_if->sk_if_flags = ifp->if_flags;
    931 		error = 0;
    932 		break;
    933 
    934 	case SIOCGIFMEDIA:
    935 	case SIOCSIFMEDIA:
    936 	        DPRINTFN(2, ("sk_ioctl MEDIA\n"));
    937 		mii = &sc_if->sk_mii;
    938 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
    939 		break;
    940 	default:
    941 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
    942 		error = ether_ioctl(ifp, command, data);
    943 
    944 		if ( error == ENETRESET) {
    945 			if (ifp->if_flags & IFF_RUNNING) {
    946 				sk_setmulti(sc_if);
    947 				DPRINTFN(2, ("sk_ioctl setmulti called\n"));
    948 			}
    949 			error = 0;
    950 		} else if ( error ) {
    951 			splx(s);
    952 			return error;
    953 		}
    954 		break;
    955 	}
    956 
    957 	splx(s);
    958 	return(error);
    959 }
    960 
    961 void
    962 sk_update_int_mod(struct sk_softc *sc)
    963 {
    964 	u_int32_t sk_imtimer_ticks;
    965 
    966 	/*
    967          * Configure interrupt moderation. The moderation timer
    968 	 * defers interrupts specified in the interrupt moderation
    969 	 * timer mask based on the timeout specified in the interrupt
    970 	 * moderation timer init register. Each bit in the timer
    971 	 * register represents one tick, so to specify a timeout in
    972 	 * microseconds, we have to multiply by the correct number of
    973 	 * ticks-per-microsecond.
    974 	 */
    975 	switch (sc->sk_type) {
    976 	case SK_GENESIS:
    977 		sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
    978 		break;
    979 	case SK_YUKON_EC:
    980 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
    981 		break;
    982 	default:
    983 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
    984 	}
    985 	aprint_verbose("%s: interrupt moderation is %d us\n",
    986 	    sc->sk_dev.dv_xname, sc->sk_int_mod);
    987         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
    988         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
    989 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
    990         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
    991 	sc->sk_int_mod_pending = 0;
    992 }
    993 
    994 /*
    995  * Lookup: Check the PCI vendor and device, and return a pointer to
    996  * The structure if the IDs match against our list.
    997  */
    998 
    999 static const struct sk_product *
   1000 sk_lookup(const struct pci_attach_args *pa)
   1001 {
   1002 	const struct sk_product *psk;
   1003 
   1004 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
   1005 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
   1006 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
   1007 			return (psk);
   1008 	}
   1009 	return (NULL);
   1010 }
   1011 
   1012 /*
   1013  * Probe for a SysKonnect GEnesis chip.
   1014  */
   1015 
   1016 int
   1017 skc_probe(struct device *parent, struct cfdata *match, void *aux)
   1018 {
   1019 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1020 	const struct sk_product *psk;
   1021 	pcireg_t subid;
   1022 
   1023 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
   1024 
   1025 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
   1026 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
   1027 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
   1028 	    subid == SK_LINKSYS_EG1032_SUBID)
   1029 		return(1);
   1030 
   1031 	if ((psk = sk_lookup(pa))) {
   1032 		return(1);
   1033 	}
   1034 	return(0);
   1035 }
   1036 
   1037 /*
   1038  * Force the GEnesis into reset, then bring it out of reset.
   1039  */
   1040 void sk_reset(struct sk_softc *sc)
   1041 {
   1042 	DPRINTFN(2, ("sk_reset\n"));
   1043 
   1044 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
   1045 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
   1046 	if (SK_YUKON_FAMILY(sc->sk_type))
   1047 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
   1048 
   1049 	DELAY(1000);
   1050 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
   1051 	DELAY(2);
   1052 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
   1053 	if (SK_YUKON_FAMILY(sc->sk_type))
   1054 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
   1055 
   1056 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
   1057 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
   1058 		     CSR_READ_2(sc, SK_LINK_CTRL)));
   1059 
   1060 	if (sc->sk_type == SK_GENESIS) {
   1061 		/* Configure packet arbiter */
   1062 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
   1063 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1064 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1065 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1066 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1067 	}
   1068 
   1069 	/* Enable RAM interface */
   1070 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
   1071 
   1072 	sk_update_int_mod(sc);
   1073 }
   1074 
   1075 int
   1076 sk_probe(struct device *parent, struct cfdata *match, void *aux)
   1077 {
   1078 	struct skc_attach_args *sa = aux;
   1079 
   1080 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
   1081 		return(0);
   1082 
   1083 	return (1);
   1084 }
   1085 
   1086 /*
   1087  * Each XMAC chip is attached as a separate logical IP interface.
   1088  * Single port cards will have only one logical interface of course.
   1089  */
   1090 void
   1091 sk_attach(struct device *parent, struct device *self, void *aux)
   1092 {
   1093 	struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
   1094 	struct sk_softc *sc = (struct sk_softc *)parent;
   1095 	struct skc_attach_args *sa = aux;
   1096 	struct sk_txmap_entry	*entry;
   1097 	struct ifnet *ifp;
   1098 	bus_dma_segment_t seg;
   1099 	bus_dmamap_t dmamap;
   1100 	caddr_t kva;
   1101 	int i, rseg;
   1102 
   1103 	sc_if->sk_port = sa->skc_port;
   1104 	sc_if->sk_softc = sc;
   1105 	sc->sk_if[sa->skc_port] = sc_if;
   1106 
   1107 	if (sa->skc_port == SK_PORT_A)
   1108 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
   1109 	if (sa->skc_port == SK_PORT_B)
   1110 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
   1111 
   1112 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
   1113 
   1114 	/*
   1115 	 * Get station address for this interface. Note that
   1116 	 * dual port cards actually come with three station
   1117 	 * addresses: one for each port, plus an extra. The
   1118 	 * extra one is used by the SysKonnect driver software
   1119 	 * as a 'virtual' station address for when both ports
   1120 	 * are operating in failover mode. Currently we don't
   1121 	 * use this extra address.
   1122 	 */
   1123 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1124 		sc_if->sk_enaddr[i] =
   1125 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
   1126 
   1127 
   1128 	aprint_normal(": Ethernet address %s\n",
   1129 	    ether_sprintf(sc_if->sk_enaddr));
   1130 
   1131 	/*
   1132 	 * Set up RAM buffer addresses. The NIC will have a certain
   1133 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
   1134 	 * need to divide this up a) between the transmitter and
   1135  	 * receiver and b) between the two XMACs, if this is a
   1136 	 * dual port NIC. Our algotithm is to divide up the memory
   1137 	 * evenly so that everyone gets a fair share.
   1138 	 */
   1139 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
   1140 		u_int32_t		chunk, val;
   1141 
   1142 		chunk = sc->sk_ramsize / 2;
   1143 		val = sc->sk_rboff / sizeof(u_int64_t);
   1144 		sc_if->sk_rx_ramstart = val;
   1145 		val += (chunk / sizeof(u_int64_t));
   1146 		sc_if->sk_rx_ramend = val - 1;
   1147 		sc_if->sk_tx_ramstart = val;
   1148 		val += (chunk / sizeof(u_int64_t));
   1149 		sc_if->sk_tx_ramend = val - 1;
   1150 	} else {
   1151 		u_int32_t		chunk, val;
   1152 
   1153 		chunk = sc->sk_ramsize / 4;
   1154 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
   1155 		    sizeof(u_int64_t);
   1156 		sc_if->sk_rx_ramstart = val;
   1157 		val += (chunk / sizeof(u_int64_t));
   1158 		sc_if->sk_rx_ramend = val - 1;
   1159 		sc_if->sk_tx_ramstart = val;
   1160 		val += (chunk / sizeof(u_int64_t));
   1161 		sc_if->sk_tx_ramend = val - 1;
   1162 	}
   1163 
   1164 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
   1165 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
   1166 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
   1167 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
   1168 
   1169 	/* Read and save PHY type and set PHY address */
   1170 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
   1171 	switch (sc_if->sk_phytype) {
   1172 	case SK_PHYTYPE_XMAC:
   1173 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
   1174 		break;
   1175 	case SK_PHYTYPE_BCOM:
   1176 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
   1177 		break;
   1178 	case SK_PHYTYPE_MARV_COPPER:
   1179 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
   1180 		break;
   1181 	default:
   1182 		aprint_error("%s: unsupported PHY type: %d\n",
   1183 		    sc->sk_dev.dv_xname, sc_if->sk_phytype);
   1184 		return;
   1185 	}
   1186 
   1187 	/* Allocate the descriptor queues. */
   1188 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
   1189 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1190 		aprint_error("%s: can't alloc rx buffers\n",
   1191 		    sc->sk_dev.dv_xname);
   1192 		goto fail;
   1193 	}
   1194 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
   1195 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
   1196 		aprint_error("%s: can't map dma buffers (%lu bytes)\n",
   1197 		       sc_if->sk_dev.dv_xname,
   1198 		       (u_long) sizeof(struct sk_ring_data));
   1199 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1200 		goto fail;
   1201 	}
   1202 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
   1203 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
   1204             &sc_if->sk_ring_map)) {
   1205 		aprint_error("%s: can't create dma map\n",
   1206 		    sc_if->sk_dev.dv_xname);
   1207 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1208 		    sizeof(struct sk_ring_data));
   1209 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1210 		goto fail;
   1211 	}
   1212 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
   1213 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
   1214 		aprint_error("%s: can't load dma map\n",
   1215 		    sc_if->sk_dev.dv_xname);
   1216 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1217 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1218 		    sizeof(struct sk_ring_data));
   1219 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1220 		goto fail;
   1221 	}
   1222 
   1223 	for (i = 0; i < SK_RX_RING_CNT; i++)
   1224 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   1225 
   1226 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
   1227 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   1228 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   1229 
   1230 		if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, SK_NTXSEG,
   1231 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap)) {
   1232 			aprint_error("%s: Can't create TX dmamap\n",
   1233 				sc_if->sk_dev.dv_xname);
   1234 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1235 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1236 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1237 			    sizeof(struct sk_ring_data));
   1238 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1239 			goto fail;
   1240 		}
   1241 
   1242 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
   1243 		if (!entry) {
   1244 			aprint_error("%s: Can't alloc txmap entry\n",
   1245 				sc_if->sk_dev.dv_xname);
   1246 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
   1247 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1248 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1249 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1250 			    sizeof(struct sk_ring_data));
   1251 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1252 			goto fail;
   1253 		}
   1254 		entry->dmamap = dmamap;
   1255 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
   1256 	}
   1257 
   1258         sc_if->sk_rdata = (struct sk_ring_data *)kva;
   1259 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
   1260 
   1261 	/* XXX TLS It's not clear what's wrong with the Jumbo MTU
   1262 	   XXX TLS support in this driver, so we don't enable it. */
   1263 
   1264 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
   1265 
   1266 	ifp = &sc_if->sk_ethercom.ec_if;
   1267 	ifp->if_softc = sc_if;
   1268 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1269 	ifp->if_ioctl = sk_ioctl;
   1270 	ifp->if_start = sk_start;
   1271 	ifp->if_stop = sk_stop;
   1272 	ifp->if_init = sk_init;
   1273 	ifp->if_watchdog = sk_watchdog;
   1274 	ifp->if_capabilities = 0;
   1275 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
   1276 	IFQ_SET_READY(&ifp->if_snd);
   1277 	strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
   1278 
   1279 	/*
   1280 	 * Do miibus setup.
   1281 	 */
   1282 	switch (sc->sk_type) {
   1283 	case SK_GENESIS:
   1284 		sk_init_xmac(sc_if);
   1285 		break;
   1286 	case SK_YUKON:
   1287 	case SK_YUKON_LITE:
   1288 	case SK_YUKON_LP:
   1289 		sk_init_yukon(sc_if);
   1290 		break;
   1291 	default:
   1292 		panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
   1293 		      sc->sk_type);
   1294 	}
   1295 
   1296  	DPRINTFN(2, ("sk_attach: 1\n"));
   1297 
   1298 	sc_if->sk_mii.mii_ifp = ifp;
   1299 	switch (sc->sk_type) {
   1300 	case SK_GENESIS:
   1301 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
   1302 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
   1303 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
   1304 		break;
   1305 	case SK_YUKON:
   1306 	case SK_YUKON_LITE:
   1307 	case SK_YUKON_LP:
   1308 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
   1309 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
   1310 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
   1311 		break;
   1312 	}
   1313 
   1314 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
   1315 	    sk_ifmedia_upd, sk_ifmedia_sts);
   1316 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
   1317 	    MII_OFFSET_ANY, 0);
   1318 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
   1319 		printf("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
   1320 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
   1321 			    0, NULL);
   1322 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
   1323 	}
   1324 	else
   1325 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1326 
   1327 	callout_init(&sc_if->sk_tick_ch);
   1328 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
   1329 
   1330 	DPRINTFN(2, ("sk_attach: 1\n"));
   1331 
   1332 	/*
   1333 	 * Call MI attach routines.
   1334 	 */
   1335 	if_attach(ifp);
   1336 
   1337 	ether_ifattach(ifp, sc_if->sk_enaddr);
   1338 
   1339 #if NRND > 0
   1340         rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
   1341             RND_TYPE_NET, 0);
   1342 #endif
   1343 
   1344 	DPRINTFN(2, ("sk_attach: end\n"));
   1345 
   1346 	return;
   1347 
   1348 fail:
   1349 	sc->sk_if[sa->skc_port] = NULL;
   1350 }
   1351 
   1352 int
   1353 skcprint(void *aux, const char *pnp)
   1354 {
   1355 	struct skc_attach_args *sa = aux;
   1356 
   1357 	if (pnp)
   1358 		aprint_normal("sk port %c at %s",
   1359 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
   1360 	else
   1361 		aprint_normal(" port %c",
   1362 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
   1363 	return (UNCONF);
   1364 }
   1365 
   1366 /*
   1367  * Attach the interface. Allocate softc structures, do ifmedia
   1368  * setup and ethernet/BPF attach.
   1369  */
   1370 void
   1371 skc_attach(struct device *parent, struct device *self, void *aux)
   1372 {
   1373 	struct sk_softc *sc = (struct sk_softc *)self;
   1374 	struct pci_attach_args *pa = aux;
   1375 	struct skc_attach_args skca;
   1376 	pci_chipset_tag_t pc = pa->pa_pc;
   1377 	pcireg_t memtype;
   1378 	pci_intr_handle_t ih;
   1379 	const char *intrstr = NULL;
   1380 	bus_addr_t iobase;
   1381 	bus_size_t iosize;
   1382 	int s, rc, sk_nodenum;
   1383 	u_int32_t command;
   1384 	const char *revstr;
   1385 	const struct sysctlnode *node;
   1386 
   1387 	DPRINTFN(2, ("begin skc_attach\n"));
   1388 
   1389 	s = splnet();
   1390 
   1391 	/*
   1392 	 * Handle power management nonsense.
   1393 	 */
   1394 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
   1395 
   1396 	if (command == 0x01) {
   1397 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
   1398 		if (command & SK_PSTATE_MASK) {
   1399 			u_int32_t		xiobase, membase, irq;
   1400 
   1401 			/* Save important PCI config data. */
   1402 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
   1403 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
   1404 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
   1405 
   1406 			/* Reset the power state. */
   1407 			aprint_normal("%s chip is in D%d power mode "
   1408 			    "-- setting to D0\n", sc->sk_dev.dv_xname,
   1409 			    command & SK_PSTATE_MASK);
   1410 			command &= 0xFFFFFFFC;
   1411 			pci_conf_write(pc, pa->pa_tag,
   1412 			    SK_PCI_PWRMGMTCTRL, command);
   1413 
   1414 			/* Restore PCI config data. */
   1415 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
   1416 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
   1417 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
   1418 		}
   1419 	}
   1420 
   1421 	/*
   1422 	 * Map control/status registers.
   1423 	 */
   1424 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1425 	command |= PCI_COMMAND_IO_ENABLE |
   1426 	    PCI_COMMAND_MEM_ENABLE |
   1427 	    PCI_COMMAND_MASTER_ENABLE;
   1428 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1429 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1430 
   1431 #ifdef SK_USEIOSPACE
   1432 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
   1433 		aprint_error(": failed to enable I/O ports!\n");
   1434 		goto fail;
   1435 	}
   1436 	/*
   1437 	 * Map control/status registers.
   1438 	 */
   1439 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
   1440 			   &iobase, &iosize)) {
   1441 		aprint_error(": can't find i/o space\n");
   1442 		goto fail;
   1443 	}
   1444 #else
   1445 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1446 		aprint_error(": failed to enable memory mapping!\n");
   1447 		goto fail;
   1448 	}
   1449 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
   1450 	switch (memtype) {
   1451         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1452         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1453                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
   1454 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
   1455 				   &iobase, &iosize) == 0)
   1456                         break;
   1457         default:
   1458                 aprint_error("%s: can't find mem space\n",
   1459 		       sc->sk_dev.dv_xname);
   1460                 return;
   1461 	}
   1462 
   1463 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
   1464 #endif
   1465 	sc->sc_dmatag = pa->pa_dmat;
   1466 
   1467 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
   1468 	sc->sk_rev  = (sk_win_read_1(sc, SK_CONFIG) >> 4);
   1469 
   1470 	/* bail out here if chip is not recognized */
   1471 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
   1472 		aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
   1473 		goto fail;
   1474 	}
   1475 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
   1476 
   1477 	/* Allocate interrupt */
   1478 	if (pci_intr_map(pa, &ih)) {
   1479 		aprint_error(": couldn't map interrupt\n");
   1480 		goto fail;
   1481 	}
   1482 
   1483 	intrstr = pci_intr_string(pc, ih);
   1484 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
   1485 	if (sc->sk_intrhand == NULL) {
   1486 		aprint_error(": couldn't establish interrupt");
   1487 		if (intrstr != NULL)
   1488 			aprint_normal(" at %s", intrstr);
   1489 		goto fail;
   1490 	}
   1491 	aprint_normal(": %s\n", intrstr);
   1492 
   1493 	/* Reset the adapter. */
   1494 	sk_reset(sc);
   1495 
   1496 	/* Read and save vital product data from EEPROM. */
   1497 	sk_vpd_read(sc);
   1498 
   1499 	if (sc->sk_type == SK_GENESIS) {
   1500 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1501 		/* Read and save RAM size and RAMbuffer offset */
   1502 		switch(val) {
   1503 		case SK_RAMSIZE_512K_64:
   1504 			sc->sk_ramsize = 0x80000;
   1505 			sc->sk_rboff = SK_RBOFF_0;
   1506 			break;
   1507 		case SK_RAMSIZE_1024K_64:
   1508 			sc->sk_ramsize = 0x100000;
   1509 			sc->sk_rboff = SK_RBOFF_80000;
   1510 			break;
   1511 		case SK_RAMSIZE_1024K_128:
   1512 			sc->sk_ramsize = 0x100000;
   1513 			sc->sk_rboff = SK_RBOFF_0;
   1514 			break;
   1515 		case SK_RAMSIZE_2048K_128:
   1516 			sc->sk_ramsize = 0x200000;
   1517 			sc->sk_rboff = SK_RBOFF_0;
   1518 			break;
   1519 		default:
   1520 			aprint_error("%s: unknown ram size: %d\n",
   1521 			       sc->sk_dev.dv_xname, val);
   1522 			goto fail;
   1523 			break;
   1524 		}
   1525 
   1526 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
   1527 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
   1528 			     sc->sk_rboff));
   1529 	} else {
   1530 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1531 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
   1532 		sc->sk_rboff = SK_RBOFF_0;
   1533 
   1534 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
   1535 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
   1536 			     sc->sk_rboff));
   1537 	}
   1538 
   1539 	/* Read and save physical media type */
   1540 	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
   1541 	case SK_PMD_1000BASESX:
   1542 		sc->sk_pmd = IFM_1000_SX;
   1543 		break;
   1544 	case SK_PMD_1000BASELX:
   1545 		sc->sk_pmd = IFM_1000_LX;
   1546 		break;
   1547 	case SK_PMD_1000BASECX:
   1548 		sc->sk_pmd = IFM_1000_CX;
   1549 		break;
   1550 	case SK_PMD_1000BASETX:
   1551 		sc->sk_pmd = IFM_1000_T;
   1552 		break;
   1553 	default:
   1554 		aprint_error("%s: unknown media type: 0x%x\n",
   1555 		    sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
   1556 		goto fail;
   1557 	}
   1558 
   1559 	/* determine whether to name it with vpd or just make it up */
   1560 	/* Marvell Yukon VPD's can freqently be bogus */
   1561 
   1562 	switch (pa->pa_id) {
   1563 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1564 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
   1565 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
   1566 	case PCI_PRODUCT_3COM_3C940:
   1567 	case PCI_PRODUCT_DLINK_DGE530T:
   1568 	case PCI_PRODUCT_LINKSYS_EG1032:
   1569 	case PCI_PRODUCT_LINKSYS_EG1064:
   1570 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1571 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
   1572 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
   1573 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
   1574 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
   1575 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
   1576  		sc->sk_name = sc->sk_vpd_prodname;
   1577  		break;
   1578 	case PCI_ID_CODE(PCI_VENDOR_GALILEO,PCI_PRODUCT_GALILEO_SKNET):
   1579 	/* whoops yukon vpd prodname bears no resemblance to reality */
   1580 		switch (sc->sk_type) {
   1581 		case SK_GENESIS:
   1582 			sc->sk_name = sc->sk_vpd_prodname;
   1583 			break;
   1584 		case SK_YUKON:
   1585 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
   1586 			break;
   1587 		case SK_YUKON_LITE:
   1588 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
   1589 			break;
   1590 		case SK_YUKON_LP:
   1591 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
   1592 			break;
   1593 		default:
   1594 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
   1595 		}
   1596 
   1597 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
   1598 
   1599 		if ( sc->sk_type == SK_YUKON ) {
   1600 			uint32_t flashaddr;
   1601 			uint8_t testbyte;
   1602 
   1603 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
   1604 
   1605 			/* test Flash-Address Register */
   1606 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
   1607 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
   1608 
   1609 			if (testbyte != 0) {
   1610 				/* this is yukon lite Rev. A0 */
   1611 				sc->sk_type = SK_YUKON_LITE;
   1612 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
   1613 				/* restore Flash-Address Register */
   1614 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
   1615 			}
   1616 		}
   1617 		break;
   1618 	case PCI_ID_CODE(PCI_VENDOR_GALILEO,PCI_PRODUCT_GALILEO_BELKIN):
   1619 		sc->sk_name = sc->sk_vpd_prodname;
   1620 		break;
   1621  	default:
   1622 		sc->sk_name = "Unknown Marvell";
   1623 	}
   1624 
   1625 
   1626 	if ( sc->sk_type == SK_YUKON_LITE ) {
   1627 		switch (sc->sk_rev) {
   1628 		case SK_YUKON_LITE_REV_A0:
   1629 			revstr = "A0";
   1630 			break;
   1631 		case SK_YUKON_LITE_REV_A1:
   1632 			revstr = "A1";
   1633 			break;
   1634 		case SK_YUKON_LITE_REV_A3:
   1635 			revstr = "A3";
   1636 			break;
   1637 		default:
   1638 			revstr = "";
   1639 		}
   1640 	} else {
   1641 		revstr = "";
   1642 	}
   1643 
   1644 	/* Announce the product name. */
   1645 	aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
   1646 			      sc->sk_name, revstr, sc->sk_rev);
   1647 
   1648 	skca.skc_port = SK_PORT_A;
   1649 	(void)config_found(&sc->sk_dev, &skca, skcprint);
   1650 
   1651 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
   1652 		skca.skc_port = SK_PORT_B;
   1653 		(void)config_found(&sc->sk_dev, &skca, skcprint);
   1654 	}
   1655 
   1656 	/* Turn on the 'driver is loaded' LED. */
   1657 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   1658 
   1659 	/* skc sysctl setup */
   1660 
   1661 	sc->sk_int_mod = SK_IM_DEFAULT;
   1662 	sc->sk_int_mod_pending = 0;
   1663 
   1664 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1665 	    0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
   1666 	    SYSCTL_DESCR("skc per-controller controls"),
   1667 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
   1668 	    CTL_EOL)) != 0) {
   1669 		aprint_normal("%s: couldn't create sysctl node\n",
   1670 		    sc->sk_dev.dv_xname);
   1671 		goto fail;
   1672 	}
   1673 
   1674 	sk_nodenum = node->sysctl_num;
   1675 
   1676 	/* interrupt moderation time in usecs */
   1677 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1678 	    CTLFLAG_READWRITE,
   1679 	    CTLTYPE_INT, "int_mod",
   1680 	    SYSCTL_DESCR("sk interrupt moderation timer"),
   1681 	    sk_sysctl_handler, 0, sc,
   1682 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
   1683 	    CTL_EOL)) != 0) {
   1684 		aprint_normal("%s: couldn't create int_mod sysctl node\n",
   1685 		    sc->sk_dev.dv_xname);
   1686 		goto fail;
   1687 	}
   1688 
   1689 fail:
   1690 	splx(s);
   1691 }
   1692 
   1693 int
   1694 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
   1695 {
   1696 	struct sk_softc		*sc = sc_if->sk_softc;
   1697 	struct sk_tx_desc	*f = NULL;
   1698 	u_int32_t		frag, cur, cnt = 0;
   1699 	int			i;
   1700 	struct sk_txmap_entry	*entry;
   1701 	bus_dmamap_t		txmap;
   1702 
   1703 	DPRINTFN(3, ("sk_encap\n"));
   1704 
   1705 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
   1706 	if (entry == NULL) {
   1707 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
   1708 		return ENOBUFS;
   1709 	}
   1710 	txmap = entry->dmamap;
   1711 
   1712 	cur = frag = *txidx;
   1713 
   1714 #ifdef SK_DEBUG
   1715 	if (skdebug >= 3)
   1716 		sk_dump_mbuf(m_head);
   1717 #endif
   1718 
   1719 	/*
   1720 	 * Start packing the mbufs in this chain into
   1721 	 * the fragment pointers. Stop when we run out
   1722 	 * of fragments or hit the end of the mbuf chain.
   1723 	 */
   1724 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
   1725 	    BUS_DMA_NOWAIT)) {
   1726 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
   1727 		return(ENOBUFS);
   1728 	}
   1729 
   1730 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
   1731 
   1732 	/* Sync the DMA map. */
   1733 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
   1734 	    BUS_DMASYNC_PREWRITE);
   1735 
   1736 	for (i = 0; i < txmap->dm_nsegs; i++) {
   1737 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
   1738 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
   1739 			return(ENOBUFS);
   1740 		}
   1741 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
   1742 		f->sk_data_lo = txmap->dm_segs[i].ds_addr;
   1743 		f->sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
   1744 		if (cnt == 0)
   1745 			f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
   1746 		else
   1747 			f->sk_ctl |= SK_TXCTL_OWN;
   1748 
   1749 		cur = frag;
   1750 		SK_INC(frag, SK_TX_RING_CNT);
   1751 		cnt++;
   1752 	}
   1753 
   1754 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
   1755 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
   1756 
   1757 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
   1758 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
   1759 		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
   1760 
   1761 	/* Sync descriptors before handing to chip */
   1762 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
   1763 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1764 
   1765 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
   1766 
   1767 	/* Sync first descriptor to hand it off */
   1768 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1769 
   1770 	sc_if->sk_cdata.sk_tx_cnt += cnt;
   1771 
   1772 #ifdef SK_DEBUG
   1773 	if (skdebug >= 3) {
   1774 		struct sk_tx_desc *desc;
   1775 		u_int32_t idx;
   1776 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
   1777 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
   1778 			sk_dump_txdesc(desc, idx);
   1779 		}
   1780 	}
   1781 #endif
   1782 
   1783 	*txidx = frag;
   1784 
   1785 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
   1786 
   1787 	return(0);
   1788 }
   1789 
   1790 void
   1791 sk_start(struct ifnet *ifp)
   1792 {
   1793         struct sk_if_softc	*sc_if = ifp->if_softc;
   1794         struct sk_softc		*sc = sc_if->sk_softc;
   1795         struct mbuf		*m_head = NULL;
   1796         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
   1797 	int			pkts = 0;
   1798 
   1799 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
   1800 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
   1801 
   1802 	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
   1803 
   1804 		IFQ_POLL(&ifp->if_snd, m_head);
   1805 		if (m_head == NULL)
   1806 			break;
   1807 
   1808 		/*
   1809 		 * Pack the data into the transmit ring. If we
   1810 		 * don't have room, set the OACTIVE flag and wait
   1811 		 * for the NIC to drain the ring.
   1812 		 */
   1813 		if (sk_encap(sc_if, m_head, &idx)) {
   1814 			ifp->if_flags |= IFF_OACTIVE;
   1815 			break;
   1816 		}
   1817 
   1818 		/* now we are committed to transmit the packet */
   1819 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1820 		pkts++;
   1821 
   1822 		/*
   1823 		 * If there's a BPF listener, bounce a copy of this frame
   1824 		 * to him.
   1825 		 */
   1826 #if NBPFILTER > 0
   1827 		if (ifp->if_bpf)
   1828 			bpf_mtap(ifp->if_bpf, m_head);
   1829 #endif
   1830 	}
   1831 	if (pkts == 0)
   1832 		return;
   1833 
   1834 	/* Transmit */
   1835 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
   1836 		sc_if->sk_cdata.sk_tx_prod = idx;
   1837 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   1838 
   1839 		/* Set a timeout in case the chip goes out to lunch. */
   1840 		ifp->if_timer = 5;
   1841 	}
   1842 }
   1843 
   1844 
   1845 void
   1846 sk_watchdog(struct ifnet *ifp)
   1847 {
   1848 	struct sk_if_softc *sc_if = ifp->if_softc;
   1849 
   1850 	printf("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
   1851 	(void) sk_init(ifp);
   1852 }
   1853 
   1854 void
   1855 sk_shutdown(void * v)
   1856 {
   1857 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
   1858 	struct sk_softc		*sc = sc_if->sk_softc;
   1859 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
   1860 
   1861 	DPRINTFN(2, ("sk_shutdown\n"));
   1862 	sk_stop(ifp,1);
   1863 
   1864 	/* Turn off the 'driver is loaded' LED. */
   1865 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   1866 
   1867 	/*
   1868 	 * Reset the GEnesis controller. Doing this should also
   1869 	 * assert the resets on the attached XMAC(s).
   1870 	 */
   1871 	sk_reset(sc);
   1872 }
   1873 
   1874 void
   1875 sk_rxeof(struct sk_if_softc *sc_if)
   1876 {
   1877 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   1878 	struct mbuf		*m;
   1879 	struct sk_chain		*cur_rx;
   1880 	struct sk_rx_desc	*cur_desc;
   1881 	int			i, cur, total_len = 0;
   1882 	u_int32_t		rxstat;
   1883 	bus_dmamap_t		dmamap;
   1884 
   1885 	i = sc_if->sk_cdata.sk_rx_prod;
   1886 
   1887 	DPRINTFN(3, ("sk_rxeof %d\n", i));
   1888 
   1889 	for (;;) {
   1890 		cur = i;
   1891 
   1892 		/* Sync the descriptor */
   1893 		SK_CDRXSYNC(sc_if, cur,
   1894 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1895 
   1896 		if (sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl & SK_RXCTL_OWN) {
   1897 			/* Invalidate the descriptor -- it's not ready yet */
   1898 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
   1899 			sc_if->sk_cdata.sk_rx_prod = i;
   1900 			break;
   1901 		}
   1902 
   1903 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
   1904 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
   1905 		dmamap = sc_if->sk_cdata.sk_rx_map[cur];
   1906 
   1907 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
   1908 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1909 
   1910 		rxstat = cur_desc->sk_xmac_rxstat;
   1911 		m = cur_rx->sk_mbuf;
   1912 		cur_rx->sk_mbuf = NULL;
   1913 		total_len = SK_RXBYTES(cur_desc->sk_ctl);
   1914 
   1915 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
   1916 
   1917 		SK_INC(i, SK_RX_RING_CNT);
   1918 
   1919 		if (rxstat & XM_RXSTAT_ERRFRAME) {
   1920 			ifp->if_ierrors++;
   1921 			sk_newbuf(sc_if, cur, m, dmamap);
   1922 			continue;
   1923 		}
   1924 
   1925 		/*
   1926 		 * Try to allocate a new jumbo buffer. If that
   1927 		 * fails, copy the packet to mbufs and put the
   1928 		 * jumbo buffer back in the ring so it can be
   1929 		 * re-used. If allocating mbufs fails, then we
   1930 		 * have to drop the packet.
   1931 		 */
   1932 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
   1933 			struct mbuf		*m0;
   1934 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
   1935 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
   1936 			sk_newbuf(sc_if, cur, m, dmamap);
   1937 			if (m0 == NULL) {
   1938 				printf("%s: no receive buffers "
   1939 				    "available -- packet dropped!\n",
   1940 				    sc_if->sk_dev.dv_xname);
   1941 				ifp->if_ierrors++;
   1942 				continue;
   1943 			}
   1944 			m_adj(m0, ETHER_ALIGN);
   1945 			m = m0;
   1946 		} else {
   1947 			m->m_pkthdr.rcvif = ifp;
   1948 			m->m_pkthdr.len = m->m_len = total_len;
   1949 		}
   1950 
   1951 		ifp->if_ipackets++;
   1952 
   1953 #if NBPFILTER > 0
   1954 		if (ifp->if_bpf)
   1955 			bpf_mtap(ifp->if_bpf, m);
   1956 #endif
   1957 		/* pass it on. */
   1958 		(*ifp->if_input)(ifp, m);
   1959 	}
   1960 }
   1961 
   1962 void
   1963 sk_txeof(struct sk_if_softc *sc_if)
   1964 {
   1965 	struct sk_softc		*sc = sc_if->sk_softc;
   1966 	struct sk_tx_desc	*cur_tx;
   1967 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   1968 	u_int32_t		idx;
   1969 	struct sk_txmap_entry	*entry;
   1970 
   1971 	DPRINTFN(3, ("sk_txeof\n"));
   1972 
   1973 	/*
   1974 	 * Go through our tx ring and free mbufs for those
   1975 	 * frames that have been sent.
   1976 	 */
   1977 	idx = sc_if->sk_cdata.sk_tx_cons;
   1978 	while(idx != sc_if->sk_cdata.sk_tx_prod) {
   1979 		SK_CDTXSYNC(sc_if, idx, 1,
   1980 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1981 
   1982 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
   1983 #ifdef SK_DEBUG
   1984 		if (skdebug >= 3)
   1985 			sk_dump_txdesc(cur_tx, idx);
   1986 #endif
   1987 		if (cur_tx->sk_ctl & SK_TXCTL_OWN) {
   1988 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
   1989 			break;
   1990 		}
   1991 		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
   1992 			ifp->if_opackets++;
   1993 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
   1994 			entry = sc_if->sk_cdata.sk_tx_map[idx];
   1995 
   1996 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
   1997 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
   1998 
   1999 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
   2000 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2001 
   2002 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
   2003 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
   2004 					  link);
   2005 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
   2006 		}
   2007 		sc_if->sk_cdata.sk_tx_cnt--;
   2008 		SK_INC(idx, SK_TX_RING_CNT);
   2009 	}
   2010 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
   2011 		ifp->if_timer = 0;
   2012 	else /* nudge chip to keep tx ring moving */
   2013 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   2014 
   2015 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
   2016 		ifp->if_flags &= ~IFF_OACTIVE;
   2017 
   2018 	sc_if->sk_cdata.sk_tx_cons = idx;
   2019 }
   2020 
   2021 void
   2022 sk_tick(void *xsc_if)
   2023 {
   2024 	struct sk_if_softc *sc_if = xsc_if;
   2025 	struct mii_data *mii = &sc_if->sk_mii;
   2026 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2027 	int i;
   2028 
   2029 	DPRINTFN(3, ("sk_tick\n"));
   2030 
   2031 	if (!(ifp->if_flags & IFF_UP))
   2032 		return;
   2033 
   2034 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2035 		sk_intr_bcom(sc_if);
   2036 		return;
   2037 	}
   2038 
   2039 	/*
   2040 	 * According to SysKonnect, the correct way to verify that
   2041 	 * the link has come back up is to poll bit 0 of the GPIO
   2042 	 * register three times. This pin has the signal from the
   2043 	 * link sync pin connected to it; if we read the same link
   2044 	 * state 3 times in a row, we know the link is up.
   2045 	 */
   2046 	for (i = 0; i < 3; i++) {
   2047 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
   2048 			break;
   2049 	}
   2050 
   2051 	if (i != 3) {
   2052 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2053 		return;
   2054 	}
   2055 
   2056 	/* Turn the GP0 interrupt back on. */
   2057 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2058 	SK_XM_READ_2(sc_if, XM_ISR);
   2059 	mii_tick(mii);
   2060 	mii_pollstat(mii);
   2061 	callout_stop(&sc_if->sk_tick_ch);
   2062 }
   2063 
   2064 void
   2065 sk_intr_bcom(struct sk_if_softc *sc_if)
   2066 {
   2067 	struct mii_data *mii = &sc_if->sk_mii;
   2068 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2069 	int status;
   2070 
   2071 
   2072 	DPRINTFN(3, ("sk_intr_bcom\n"));
   2073 
   2074 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2075 
   2076 	/*
   2077 	 * Read the PHY interrupt register to make sure
   2078 	 * we clear any pending interrupts.
   2079 	 */
   2080 	status = sk_xmac_miibus_readreg((struct device *)sc_if,
   2081 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
   2082 
   2083 	if (!(ifp->if_flags & IFF_RUNNING)) {
   2084 		sk_init_xmac(sc_if);
   2085 		return;
   2086 	}
   2087 
   2088 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
   2089 		int lstat;
   2090 		lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
   2091 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
   2092 
   2093 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
   2094 			mii_mediachg(mii);
   2095 			/* Turn off the link LED. */
   2096 			SK_IF_WRITE_1(sc_if, 0,
   2097 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2098 			sc_if->sk_link = 0;
   2099 		} else if (status & BRGPHY_ISR_LNK_CHG) {
   2100 			sk_xmac_miibus_writereg((struct device *)sc_if,
   2101 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
   2102 			mii_tick(mii);
   2103 			sc_if->sk_link = 1;
   2104 			/* Turn on the link LED. */
   2105 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2106 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
   2107 			    SK_LINKLED_BLINK_OFF);
   2108 			mii_pollstat(mii);
   2109 		} else {
   2110 			mii_tick(mii);
   2111 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
   2112 		}
   2113 	}
   2114 
   2115 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2116 }
   2117 
   2118 void
   2119 sk_intr_xmac(struct sk_if_softc	*sc_if)
   2120 {
   2121 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
   2122 
   2123 	DPRINTFN(3, ("sk_intr_xmac\n"));
   2124 
   2125 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
   2126 		if (status & XM_ISR_GP0_SET) {
   2127 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2128 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2129 		}
   2130 
   2131 		if (status & XM_ISR_AUTONEG_DONE) {
   2132 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2133 		}
   2134 	}
   2135 
   2136 	if (status & XM_IMR_TX_UNDERRUN)
   2137 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
   2138 
   2139 	if (status & XM_IMR_RX_OVERRUN)
   2140 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
   2141 }
   2142 
   2143 void
   2144 sk_intr_yukon(sc_if)
   2145 	struct sk_if_softc *sc_if;
   2146 {
   2147 	int status;
   2148 
   2149 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2150 
   2151 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
   2152 }
   2153 
   2154 int
   2155 sk_intr(void *xsc)
   2156 {
   2157 	struct sk_softc		*sc = xsc;
   2158 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
   2159 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
   2160 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
   2161 	u_int32_t		status;
   2162 	int			claimed = 0;
   2163 
   2164 	if (sc_if0 != NULL)
   2165 		ifp0 = &sc_if0->sk_ethercom.ec_if;
   2166 	if (sc_if1 != NULL)
   2167 		ifp1 = &sc_if1->sk_ethercom.ec_if;
   2168 
   2169 	for (;;) {
   2170 		status = CSR_READ_4(sc, SK_ISSR);
   2171 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
   2172 
   2173 		if (!(status & sc->sk_intrmask))
   2174 			break;
   2175 
   2176 		claimed = 1;
   2177 
   2178 		/* Handle receive interrupts first. */
   2179 		if (status & SK_ISR_RX1_EOF) {
   2180 			sk_rxeof(sc_if0);
   2181 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
   2182 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2183 		}
   2184 		if (status & SK_ISR_RX2_EOF) {
   2185 			sk_rxeof(sc_if1);
   2186 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
   2187 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2188 		}
   2189 
   2190 		/* Then transmit interrupts. */
   2191 		if (status & SK_ISR_TX1_S_EOF) {
   2192 			sk_txeof(sc_if0);
   2193 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
   2194 			    SK_TXBMU_CLR_IRQ_EOF);
   2195 		}
   2196 		if (status & SK_ISR_TX2_S_EOF) {
   2197 			sk_txeof(sc_if1);
   2198 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
   2199 			    SK_TXBMU_CLR_IRQ_EOF);
   2200 		}
   2201 
   2202 		/* Then MAC interrupts. */
   2203 		if (status & SK_ISR_MAC1 && (ifp0->if_flags & IFF_RUNNING)) {
   2204 			if (sc->sk_type == SK_GENESIS)
   2205 				sk_intr_xmac(sc_if0);
   2206 			else
   2207 				sk_intr_yukon(sc_if0);
   2208 		}
   2209 
   2210 		if (status & SK_ISR_MAC2 && (ifp1->if_flags & IFF_RUNNING)) {
   2211 			if (sc->sk_type == SK_GENESIS)
   2212 				sk_intr_xmac(sc_if1);
   2213 			else
   2214 				sk_intr_yukon(sc_if1);
   2215 
   2216 		}
   2217 
   2218 		if (status & SK_ISR_EXTERNAL_REG) {
   2219 			if (ifp0 != NULL &&
   2220 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
   2221 				sk_intr_bcom(sc_if0);
   2222 
   2223 			if (ifp1 != NULL &&
   2224 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
   2225 				sk_intr_bcom(sc_if1);
   2226 		}
   2227 	}
   2228 
   2229 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2230 
   2231 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
   2232 		sk_start(ifp0);
   2233 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
   2234 		sk_start(ifp1);
   2235 
   2236 #if NRND > 0
   2237 	if (RND_ENABLED(&sc->rnd_source))
   2238 		rnd_add_uint32(&sc->rnd_source, status);
   2239 #endif
   2240 
   2241 	if (sc->sk_int_mod_pending)
   2242 		sk_update_int_mod(sc);
   2243 
   2244 	return (claimed);
   2245 }
   2246 
   2247 void
   2248 sk_init_xmac(struct sk_if_softc	*sc_if)
   2249 {
   2250 	struct sk_softc		*sc = sc_if->sk_softc;
   2251 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2252 	static const struct sk_bcom_hack     bhack[] = {
   2253 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
   2254 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
   2255 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
   2256 	{ 0, 0 } };
   2257 
   2258 	DPRINTFN(1, ("sk_init_xmac\n"));
   2259 
   2260 	/* Unreset the XMAC. */
   2261 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
   2262 	DELAY(1000);
   2263 
   2264 	/* Reset the XMAC's internal state. */
   2265 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2266 
   2267 	/* Save the XMAC II revision */
   2268 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
   2269 
   2270 	/*
   2271 	 * Perform additional initialization for external PHYs,
   2272 	 * namely for the 1000baseTX cards that use the XMAC's
   2273 	 * GMII mode.
   2274 	 */
   2275 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2276 		int			i = 0;
   2277 		u_int32_t		val;
   2278 
   2279 		/* Take PHY out of reset. */
   2280 		val = sk_win_read_4(sc, SK_GPIO);
   2281 		if (sc_if->sk_port == SK_PORT_A)
   2282 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
   2283 		else
   2284 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
   2285 		sk_win_write_4(sc, SK_GPIO, val);
   2286 
   2287 		/* Enable GMII mode on the XMAC. */
   2288 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
   2289 
   2290 		sk_xmac_miibus_writereg((struct device *)sc_if,
   2291 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
   2292 		DELAY(10000);
   2293 		sk_xmac_miibus_writereg((struct device *)sc_if,
   2294 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
   2295 
   2296 		/*
   2297 		 * Early versions of the BCM5400 apparently have
   2298 		 * a bug that requires them to have their reserved
   2299 		 * registers initialized to some magic values. I don't
   2300 		 * know what the numbers do, I'm just the messenger.
   2301 		 */
   2302 		if (sk_xmac_miibus_readreg((struct device *)sc_if,
   2303 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
   2304 			while(bhack[i].reg) {
   2305 				sk_xmac_miibus_writereg((struct device *)sc_if,
   2306 				    SK_PHYADDR_BCOM, bhack[i].reg,
   2307 				    bhack[i].val);
   2308 				i++;
   2309 			}
   2310 		}
   2311 	}
   2312 
   2313 	/* Set station address */
   2314 	SK_XM_WRITE_2(sc_if, XM_PAR0,
   2315 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
   2316 	SK_XM_WRITE_2(sc_if, XM_PAR1,
   2317 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
   2318 	SK_XM_WRITE_2(sc_if, XM_PAR2,
   2319 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
   2320 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
   2321 
   2322 	if (ifp->if_flags & IFF_PROMISC) {
   2323 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2324 	} else {
   2325 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2326 	}
   2327 
   2328 	if (ifp->if_flags & IFF_BROADCAST) {
   2329 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2330 	} else {
   2331 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2332 	}
   2333 
   2334 	/* We don't need the FCS appended to the packet. */
   2335 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
   2336 
   2337 	/* We want short frames padded to 60 bytes. */
   2338 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
   2339 
   2340 	/*
   2341 	 * Enable the reception of all error frames. This is is
   2342 	 * a necessary evil due to the design of the XMAC. The
   2343 	 * XMAC's receive FIFO is only 8K in size, however jumbo
   2344 	 * frames can be up to 9000 bytes in length. When bad
   2345 	 * frame filtering is enabled, the XMAC's RX FIFO operates
   2346 	 * in 'store and forward' mode. For this to work, the
   2347 	 * entire frame has to fit into the FIFO, but that means
   2348 	 * that jumbo frames larger than 8192 bytes will be
   2349 	 * truncated. Disabling all bad frame filtering causes
   2350 	 * the RX FIFO to operate in streaming mode, in which
   2351 	 * case the XMAC will start transfering frames out of the
   2352 	 * RX FIFO as soon as the FIFO threshold is reached.
   2353 	 */
   2354 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
   2355 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
   2356 	    XM_MODE_RX_INRANGELEN);
   2357 
   2358 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2359 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2360 	else
   2361 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2362 
   2363 	/*
   2364 	 * Bump up the transmit threshold. This helps hold off transmit
   2365 	 * underruns when we're blasting traffic from both ports at once.
   2366 	 */
   2367 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
   2368 
   2369 	/* Set multicast filter */
   2370 	sk_setmulti(sc_if);
   2371 
   2372 	/* Clear and enable interrupts */
   2373 	SK_XM_READ_2(sc_if, XM_ISR);
   2374 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
   2375 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
   2376 	else
   2377 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2378 
   2379 	/* Configure MAC arbiter */
   2380 	switch(sc_if->sk_xmac_rev) {
   2381 	case XM_XMAC_REV_B2:
   2382 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
   2383 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
   2384 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
   2385 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
   2386 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
   2387 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
   2388 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
   2389 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
   2390 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2391 		break;
   2392 	case XM_XMAC_REV_C1:
   2393 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
   2394 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
   2395 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
   2396 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
   2397 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
   2398 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
   2399 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
   2400 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
   2401 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2402 		break;
   2403 	default:
   2404 		break;
   2405 	}
   2406 	sk_win_write_2(sc, SK_MACARB_CTL,
   2407 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
   2408 
   2409 	sc_if->sk_link = 1;
   2410 }
   2411 
   2412 void sk_init_yukon(sc_if)
   2413 	struct sk_if_softc	*sc_if;
   2414 {
   2415 	u_int32_t		/*mac, */phy;
   2416 	u_int16_t		reg;
   2417 	struct sk_softc		*sc;
   2418 	int			i;
   2419 
   2420 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
   2421 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
   2422 
   2423 	sc = sc_if->sk_softc;
   2424 	if (sc->sk_type == SK_YUKON_LITE &&
   2425 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
   2426 		/* Take PHY out of reset. */
   2427 		sk_win_write_4(sc, SK_GPIO,
   2428 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
   2429 	}
   2430 
   2431 
   2432 	/* GMAC and GPHY Reset */
   2433 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
   2434 
   2435 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
   2436 
   2437 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2438 	DELAY(1000);
   2439 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
   2440 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2441 	DELAY(1000);
   2442 
   2443 
   2444 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
   2445 
   2446 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
   2447 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
   2448 
   2449 	switch(sc_if->sk_softc->sk_pmd) {
   2450 	case IFM_1000_SX:
   2451 	case IFM_1000_LX:
   2452 		phy |= SK_GPHY_FIBER;
   2453 		break;
   2454 
   2455 	case IFM_1000_CX:
   2456 	case IFM_1000_T:
   2457 		phy |= SK_GPHY_COPPER;
   2458 		break;
   2459 	}
   2460 
   2461 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
   2462 
   2463 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
   2464 	DELAY(1000);
   2465 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
   2466 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
   2467 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
   2468 
   2469 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
   2470 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
   2471 
   2472 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
   2473 
   2474 	/* unused read of the interrupt source register */
   2475 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
   2476 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2477 
   2478 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
   2479 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
   2480 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2481 
   2482 	/* MIB Counter Clear Mode set */
   2483         reg |= YU_PAR_MIB_CLR;
   2484 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2485 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
   2486 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2487 
   2488 	/* MIB Counter Clear Mode clear */
   2489 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
   2490         reg &= ~YU_PAR_MIB_CLR;
   2491 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2492 
   2493 	/* receive control reg */
   2494 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
   2495 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
   2496 		      YU_RCR_CRCR);
   2497 
   2498 	/* transmit parameter register */
   2499 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
   2500 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
   2501 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
   2502 
   2503 	/* serial mode register */
   2504 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
   2505 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
   2506 		      YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e));
   2507 
   2508 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
   2509 	/* Setup Yukon's address */
   2510 	for (i = 0; i < 3; i++) {
   2511 		/* Write Source Address 1 (unicast filter) */
   2512 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
   2513 			      sc_if->sk_enaddr[i * 2] |
   2514 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
   2515 	}
   2516 
   2517 	for (i = 0; i < 3; i++) {
   2518 		reg = sk_win_read_2(sc_if->sk_softc,
   2519 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
   2520 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
   2521 	}
   2522 
   2523 	/* Set multicast filter */
   2524 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
   2525 	sk_setmulti(sc_if);
   2526 
   2527 	/* enable interrupt mask for counter overflows */
   2528 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
   2529 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
   2530 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
   2531 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
   2532 
   2533 	/* Configure RX MAC FIFO */
   2534 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
   2535 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
   2536 
   2537 	/* Configure TX MAC FIFO */
   2538 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
   2539 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
   2540 
   2541 	DPRINTFN(6, ("sk_init_yukon: end\n"));
   2542 }
   2543 
   2544 /*
   2545  * Note that to properly initialize any part of the GEnesis chip,
   2546  * you first have to take it out of reset mode.
   2547  */
   2548 int
   2549 sk_init(struct ifnet *ifp)
   2550 {
   2551 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2552 	struct sk_softc		*sc = sc_if->sk_softc;
   2553 	struct mii_data		*mii = &sc_if->sk_mii;
   2554 	int			s;
   2555 	u_int32_t		imr, sk_imtimer_ticks;
   2556 
   2557 	DPRINTFN(1, ("sk_init\n"));
   2558 
   2559 	s = splnet();
   2560 
   2561 	if (ifp->if_flags & IFF_RUNNING) {
   2562 		splx(s);
   2563 		return 0;
   2564 	}
   2565 
   2566 	/* Cancel pending I/O and free all RX/TX buffers. */
   2567 	sk_stop(ifp,0);
   2568 
   2569 	if (sc->sk_type == SK_GENESIS) {
   2570 		/* Configure LINK_SYNC LED */
   2571 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
   2572 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2573 			      SK_LINKLED_LINKSYNC_ON);
   2574 
   2575 		/* Configure RX LED */
   2576 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
   2577 			      SK_RXLEDCTL_COUNTER_START);
   2578 
   2579 		/* Configure TX LED */
   2580 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
   2581 			      SK_TXLEDCTL_COUNTER_START);
   2582 	}
   2583 
   2584 	/* Configure I2C registers */
   2585 
   2586 	/* Configure XMAC(s) */
   2587 	switch (sc->sk_type) {
   2588 	case SK_GENESIS:
   2589 		sk_init_xmac(sc_if);
   2590 		break;
   2591 	case SK_YUKON:
   2592 	case SK_YUKON_LITE:
   2593 	case SK_YUKON_LP:
   2594 		sk_init_yukon(sc_if);
   2595 		break;
   2596 	}
   2597 	mii_mediachg(mii);
   2598 
   2599 	if (sc->sk_type == SK_GENESIS) {
   2600 		/* Configure MAC FIFOs */
   2601 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
   2602 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
   2603 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
   2604 
   2605 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
   2606 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
   2607 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
   2608 	}
   2609 
   2610 	/* Configure transmit arbiter(s) */
   2611 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
   2612 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
   2613 
   2614 	/* Configure RAMbuffers */
   2615 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
   2616 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
   2617 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
   2618 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
   2619 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
   2620 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
   2621 
   2622 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
   2623 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
   2624 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
   2625 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
   2626 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
   2627 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
   2628 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
   2629 
   2630 	/* Configure BMUs */
   2631 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
   2632 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
   2633 	    SK_RX_RING_ADDR(sc_if, 0));
   2634 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
   2635 
   2636 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
   2637 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
   2638             SK_TX_RING_ADDR(sc_if, 0));
   2639 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
   2640 
   2641 	/* Init descriptors */
   2642 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
   2643 		printf("%s: initialization failed: no "
   2644 		    "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
   2645 		sk_stop(ifp,0);
   2646 		splx(s);
   2647 		return(ENOBUFS);
   2648 	}
   2649 
   2650 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
   2651 		printf("%s: initialization failed: no "
   2652 		    "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
   2653 		sk_stop(ifp,0);
   2654 		splx(s);
   2655 		return(ENOBUFS);
   2656 	}
   2657 
   2658 	/* Set interrupt moderation if changed via sysctl. */
   2659 	switch (sc->sk_type) {
   2660 	case SK_GENESIS:
   2661 		sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   2662 		break;
   2663 	case SK_YUKON_EC:
   2664 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   2665 		break;
   2666 	default:
   2667 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   2668 	}
   2669 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
   2670 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
   2671 		sk_win_write_4(sc, SK_IMTIMERINIT,
   2672 		    SK_IM_USECS(sc->sk_int_mod));
   2673 		aprint_verbose("%s: interrupt moderation is %d us\n",
   2674 		    sc->sk_dev.dv_xname, sc->sk_int_mod);
   2675 	}
   2676 
   2677 	/* Configure interrupt handling */
   2678 	CSR_READ_4(sc, SK_ISSR);
   2679 	if (sc_if->sk_port == SK_PORT_A)
   2680 		sc->sk_intrmask |= SK_INTRS1;
   2681 	else
   2682 		sc->sk_intrmask |= SK_INTRS2;
   2683 
   2684 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
   2685 
   2686 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2687 
   2688 	/* Start BMUs. */
   2689 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
   2690 
   2691 	if (sc->sk_type == SK_GENESIS) {
   2692 		/* Enable XMACs TX and RX state machines */
   2693 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
   2694 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
   2695 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2696 	}
   2697 
   2698 	if (SK_YUKON_FAMILY(sc->sk_type)) {
   2699 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
   2700 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
   2701 		reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
   2702 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
   2703 	}
   2704 
   2705 
   2706 	ifp->if_flags |= IFF_RUNNING;
   2707 	ifp->if_flags &= ~IFF_OACTIVE;
   2708 
   2709 	splx(s);
   2710 	return(0);
   2711 }
   2712 
   2713 void
   2714 sk_stop(struct ifnet *ifp, int disable)
   2715 {
   2716         struct sk_if_softc	*sc_if = ifp->if_softc;
   2717 	struct sk_softc		*sc = sc_if->sk_softc;
   2718 	//struct sk_txmap_entry	*dma;
   2719 	int			i;
   2720 
   2721 	DPRINTFN(1, ("sk_stop\n"));
   2722 
   2723 	callout_stop(&sc_if->sk_tick_ch);
   2724 
   2725 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2726 		u_int32_t		val;
   2727 
   2728 		/* Put PHY back into reset. */
   2729 		val = sk_win_read_4(sc, SK_GPIO);
   2730 		if (sc_if->sk_port == SK_PORT_A) {
   2731 			val |= SK_GPIO_DIR0;
   2732 			val &= ~SK_GPIO_DAT0;
   2733 		} else {
   2734 			val |= SK_GPIO_DIR2;
   2735 			val &= ~SK_GPIO_DAT2;
   2736 		}
   2737 		sk_win_write_4(sc, SK_GPIO, val);
   2738 	}
   2739 
   2740 	/* Turn off various components of this interface. */
   2741 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2742 	switch (sc->sk_type) {
   2743 	case SK_GENESIS:
   2744 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
   2745 			      SK_TXMACCTL_XMAC_RESET);
   2746 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
   2747 		break;
   2748 	case SK_YUKON:
   2749 	case SK_YUKON_LITE:
   2750 	case SK_YUKON_LP:
   2751 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
   2752 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
   2753 		break;
   2754 	}
   2755 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
   2756 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2757 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
   2758 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2759 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
   2760 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2761 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2762 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2763 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
   2764 
   2765 	/* Disable interrupts */
   2766 	if (sc_if->sk_port == SK_PORT_A)
   2767 		sc->sk_intrmask &= ~SK_INTRS1;
   2768 	else
   2769 		sc->sk_intrmask &= ~SK_INTRS2;
   2770 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2771 
   2772 	SK_XM_READ_2(sc_if, XM_ISR);
   2773 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2774 
   2775 	/* Free RX and TX mbufs still in the queues. */
   2776 	for (i = 0; i < SK_RX_RING_CNT; i++) {
   2777 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
   2778 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
   2779 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   2780 		}
   2781 	}
   2782 
   2783 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   2784 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
   2785 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
   2786 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   2787 		}
   2788 	}
   2789 
   2790 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
   2791 }
   2792 
   2793 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
   2794 
   2795 /*
   2796 struct cfdriver skc_cd = {
   2797 	0, "skc", DV_DULL
   2798 };
   2799 */
   2800 
   2801 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
   2802 
   2803 /*
   2804 struct cfdriver sk_cd = {
   2805 	0, "sk", DV_IFNET
   2806 };
   2807 */
   2808 
   2809 #ifdef SK_DEBUG
   2810 void
   2811 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
   2812 {
   2813 #define DESC_PRINT(X)					\
   2814 	if (desc->X)					\
   2815 		printf("txdesc[%d]." #X "=%#x\n",	\
   2816 		       idx, desc->X);
   2817 
   2818 	DESC_PRINT(sk_ctl);
   2819 	DESC_PRINT(sk_next);
   2820 	DESC_PRINT(sk_data_lo);
   2821 	DESC_PRINT(sk_data_hi);
   2822 	DESC_PRINT(sk_xmac_txstat);
   2823 	DESC_PRINT(sk_rsvd0);
   2824 	DESC_PRINT(sk_csum_startval);
   2825 	DESC_PRINT(sk_csum_startpos);
   2826 	DESC_PRINT(sk_csum_writepos);
   2827 	DESC_PRINT(sk_rsvd1);
   2828 #undef PRINT
   2829 }
   2830 
   2831 void
   2832 sk_dump_bytes(const char *data, int len)
   2833 {
   2834 	int c, i, j;
   2835 
   2836 	for (i = 0; i < len; i += 16) {
   2837 		printf("%08x  ", i);
   2838 		c = len - i;
   2839 		if (c > 16) c = 16;
   2840 
   2841 		for (j = 0; j < c; j++) {
   2842 			printf("%02x ", data[i + j] & 0xff);
   2843 			if ((j & 0xf) == 7 && j > 0)
   2844 				printf(" ");
   2845 		}
   2846 
   2847 		for (; j < 16; j++)
   2848 			printf("   ");
   2849 		printf("  ");
   2850 
   2851 		for (j = 0; j < c; j++) {
   2852 			int ch = data[i + j] & 0xff;
   2853 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
   2854 		}
   2855 
   2856 		printf("\n");
   2857 
   2858 		if (c < 16)
   2859 			break;
   2860 	}
   2861 }
   2862 
   2863 void
   2864 sk_dump_mbuf(struct mbuf *m)
   2865 {
   2866 	int count = m->m_pkthdr.len;
   2867 
   2868 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
   2869 
   2870 	while (count > 0 && m) {
   2871 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
   2872 		       m, m->m_data, m->m_len);
   2873 		sk_dump_bytes(mtod(m, char *), m->m_len);
   2874 
   2875 		count -= m->m_len;
   2876 		m = m->m_next;
   2877 	}
   2878 }
   2879 #endif
   2880 
   2881 static int
   2882 sk_sysctl_handler(SYSCTLFN_ARGS)
   2883 {
   2884 	int error, t;
   2885 	struct sysctlnode node;
   2886 	struct sk_softc *sc;
   2887 
   2888 	node = *rnode;
   2889 	sc = node.sysctl_data;
   2890 	t = sc->sk_int_mod;
   2891 	node.sysctl_data = &t;
   2892 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2893 	if (error || newp == NULL)
   2894 		return (error);
   2895 
   2896 	if (t < SK_IM_MIN || t > SK_IM_MAX)
   2897 		return (EINVAL);
   2898 
   2899 	/* update the softc with sysctl-changed value, and mark
   2900 	   for hardware update */
   2901 	sc->sk_int_mod = t;
   2902 	sc->sk_int_mod_pending = 1;
   2903 	return (0);
   2904 }
   2905 
   2906 /*
   2907  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
   2908  * set up in skc_attach()
   2909  */
   2910 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
   2911 {
   2912 	int rc;
   2913 	const struct sysctlnode *node;
   2914 
   2915 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   2916 	    0, CTLTYPE_NODE, "hw", NULL,
   2917 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   2918 		goto err;
   2919 	}
   2920 
   2921 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   2922 	    0, CTLTYPE_NODE, "sk",
   2923 	    SYSCTL_DESCR("sk interface controls"),
   2924 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   2925 		goto err;
   2926 	}
   2927 
   2928 	sk_root_num = node->sysctl_num;
   2929 	return;
   2930 
   2931 err:
   2932 	printf("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
   2933 }
   2934