Home | History | Annotate | Line # | Download | only in pci
if_sk.c revision 1.21.2.5
      1 /*	$NetBSD: if_sk.c,v 1.21.2.5 2006/09/14 12:31:33 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the NetBSD
     18  *	Foundation, Inc. and its contributors.
     19  * 4. Neither the name of The NetBSD Foundation nor the names of its
     20  *    contributors may be used to endorse or promote products derived
     21  *    from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
     37 
     38 /*
     39  * Copyright (c) 1997, 1998, 1999, 2000
     40  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by Bill Paul.
     53  * 4. Neither the name of the author nor the names of any co-contributors
     54  *    may be used to endorse or promote products derived from this software
     55  *    without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     61  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     62  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     63  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     64  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     65  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     66  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     67  * THE POSSIBILITY OF SUCH DAMAGE.
     68  *
     69  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
     70  */
     71 
     72 /*
     73  * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
     74  *
     75  * Permission to use, copy, modify, and distribute this software for any
     76  * purpose with or without fee is hereby granted, provided that the above
     77  * copyright notice and this permission notice appear in all copies.
     78  *
     79  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     80  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     81  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     82  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     83  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     84  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     85  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     86  */
     87 
     88 /*
     89  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
     90  * the SK-984x series adapters, both single port and dual port.
     91  * References:
     92  * 	The XaQti XMAC II datasheet,
     93  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     94  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
     95  *
     96  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
     97  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
     98  * convenience to others until Vitesse corrects this problem:
     99  *
    100  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
    101  *
    102  * Written by Bill Paul <wpaul (at) ee.columbia.edu>
    103  * Department of Electrical Engineering
    104  * Columbia University, New York City
    105  */
    106 
    107 /*
    108  * The SysKonnect gigabit ethernet adapters consist of two main
    109  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
    110  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
    111  * components and a PHY while the GEnesis controller provides a PCI
    112  * interface with DMA support. Each card may have between 512K and
    113  * 2MB of SRAM on board depending on the configuration.
    114  *
    115  * The SysKonnect GEnesis controller can have either one or two XMAC
    116  * chips connected to it, allowing single or dual port NIC configurations.
    117  * SysKonnect has the distinction of being the only vendor on the market
    118  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
    119  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
    120  * XMAC registers. This driver takes advantage of these features to allow
    121  * both XMACs to operate as independent interfaces.
    122  */
    123 
    124 #include "bpfilter.h"
    125 #include "rnd.h"
    126 
    127 #include <sys/param.h>
    128 #include <sys/systm.h>
    129 #include <sys/sockio.h>
    130 #include <sys/mbuf.h>
    131 #include <sys/malloc.h>
    132 #include <sys/kernel.h>
    133 #include <sys/socket.h>
    134 #include <sys/device.h>
    135 #include <sys/queue.h>
    136 #include <sys/callout.h>
    137 #include <sys/sysctl.h>
    138 #include <sys/endian.h>
    139 
    140 #include <net/if.h>
    141 #include <net/if_dl.h>
    142 #include <net/if_types.h>
    143 
    144 #include <net/if_media.h>
    145 
    146 #if NBPFILTER > 0
    147 #include <net/bpf.h>
    148 #endif
    149 #if NRND > 0
    150 #include <sys/rnd.h>
    151 #endif
    152 
    153 #include <dev/mii/mii.h>
    154 #include <dev/mii/miivar.h>
    155 #include <dev/mii/brgphyreg.h>
    156 
    157 #include <dev/pci/pcireg.h>
    158 #include <dev/pci/pcivar.h>
    159 #include <dev/pci/pcidevs.h>
    160 
    161 /* #define SK_USEIOSPACE */
    162 
    163 #include <dev/pci/if_skreg.h>
    164 #include <dev/pci/if_skvar.h>
    165 
    166 int skc_probe(struct device *, struct cfdata *, void *);
    167 void skc_attach(struct device *, struct device *self, void *aux);
    168 int sk_probe(struct device *, struct cfdata *, void *);
    169 void sk_attach(struct device *, struct device *self, void *aux);
    170 int skcprint(void *, const char *);
    171 int sk_intr(void *);
    172 void sk_intr_bcom(struct sk_if_softc *);
    173 void sk_intr_xmac(struct sk_if_softc *);
    174 void sk_intr_yukon(struct sk_if_softc *);
    175 void sk_rxeof(struct sk_if_softc *);
    176 void sk_txeof(struct sk_if_softc *);
    177 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
    178 void sk_start(struct ifnet *);
    179 int sk_ioctl(struct ifnet *, u_long, caddr_t);
    180 int sk_init(struct ifnet *);
    181 void sk_init_xmac(struct sk_if_softc *);
    182 void sk_init_yukon(struct sk_if_softc *);
    183 void sk_stop(struct ifnet *, int);
    184 void sk_watchdog(struct ifnet *);
    185 void sk_shutdown(void *);
    186 int sk_ifmedia_upd(struct ifnet *);
    187 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    188 void sk_reset(struct sk_softc *);
    189 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
    190 int sk_alloc_jumbo_mem(struct sk_if_softc *);
    191 void sk_free_jumbo_mem(struct sk_if_softc *);
    192 void *sk_jalloc(struct sk_if_softc *);
    193 void sk_jfree(struct mbuf *, caddr_t, size_t, void *);
    194 int sk_init_rx_ring(struct sk_if_softc *);
    195 int sk_init_tx_ring(struct sk_if_softc *);
    196 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
    197 void sk_vpd_read_res(struct sk_softc *,
    198 					struct vpd_res *, int);
    199 void sk_vpd_read(struct sk_softc *);
    200 
    201 void sk_update_int_mod(struct sk_softc *);
    202 
    203 int sk_xmac_miibus_readreg(struct device *, int, int);
    204 void sk_xmac_miibus_writereg(struct device *, int, int, int);
    205 void sk_xmac_miibus_statchg(struct device *);
    206 
    207 int sk_marv_miibus_readreg(struct device *, int, int);
    208 void sk_marv_miibus_writereg(struct device *, int, int, int);
    209 void sk_marv_miibus_statchg(struct device *);
    210 
    211 u_int32_t sk_xmac_hash(caddr_t);
    212 u_int32_t sk_yukon_hash(caddr_t);
    213 void sk_setfilt(struct sk_if_softc *, caddr_t, int);
    214 void sk_setmulti(struct sk_if_softc *);
    215 void sk_tick(void *);
    216 
    217 /* #define SK_DEBUG 2 */
    218 #ifdef SK_DEBUG
    219 #define DPRINTF(x)	if (skdebug) printf x
    220 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
    221 int	skdebug = SK_DEBUG;
    222 
    223 void sk_dump_txdesc(struct sk_tx_desc *, int);
    224 void sk_dump_mbuf(struct mbuf *);
    225 void sk_dump_bytes(const char *, int);
    226 #else
    227 #define DPRINTF(x)
    228 #define DPRINTFN(n,x)
    229 #endif
    230 
    231 static int sk_sysctl_handler(SYSCTLFN_PROTO);
    232 static int sk_root_num;
    233 
    234 /* supported device vendors */
    235 static const struct sk_product {
    236 	pci_vendor_id_t		sk_vendor;
    237 	pci_product_id_t	sk_product;
    238 } sk_products[] = {
    239 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
    240 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
    241 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T, },
    242 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
    243 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
    244 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
    245 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
    246 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
    247 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
    248 	{ 0, 0, }
    249 };
    250 
    251 #define SK_LINKSYS_EG1032_SUBID	0x00151737
    252 
    253 static inline u_int32_t
    254 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
    255 {
    256 #ifdef SK_USEIOSPACE
    257 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    258 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
    259 #else
    260 	return CSR_READ_4(sc, reg);
    261 #endif
    262 }
    263 
    264 static inline u_int16_t
    265 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
    266 {
    267 #ifdef SK_USEIOSPACE
    268 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    269 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
    270 #else
    271 	return CSR_READ_2(sc, reg);
    272 #endif
    273 }
    274 
    275 static inline u_int8_t
    276 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
    277 {
    278 #ifdef SK_USEIOSPACE
    279 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    280 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
    281 #else
    282 	return CSR_READ_1(sc, reg);
    283 #endif
    284 }
    285 
    286 static inline void
    287 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
    288 {
    289 #ifdef SK_USEIOSPACE
    290 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    291 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
    292 #else
    293 	CSR_WRITE_4(sc, reg, x);
    294 #endif
    295 }
    296 
    297 static inline void
    298 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
    299 {
    300 #ifdef SK_USEIOSPACE
    301 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    302 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
    303 #else
    304 	CSR_WRITE_2(sc, reg, x);
    305 #endif
    306 }
    307 
    308 static inline void
    309 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
    310 {
    311 #ifdef SK_USEIOSPACE
    312 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    313 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
    314 #else
    315 	CSR_WRITE_1(sc, reg, x);
    316 #endif
    317 }
    318 
    319 /*
    320  * The VPD EEPROM contains Vital Product Data, as suggested in
    321  * the PCI 2.1 specification. The VPD data is separared into areas
    322  * denoted by resource IDs. The SysKonnect VPD contains an ID string
    323  * resource (the name of the adapter), a read-only area resource
    324  * containing various key/data fields and a read/write area which
    325  * can be used to store asset management information or log messages.
    326  * We read the ID string and read-only into buffers attached to
    327  * the controller softc structure for later use. At the moment,
    328  * we only use the ID string during sk_attach().
    329  */
    330 u_int8_t
    331 sk_vpd_readbyte(struct sk_softc *sc, int addr)
    332 {
    333 	int			i;
    334 
    335 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
    336 	for (i = 0; i < SK_TIMEOUT; i++) {
    337 		DELAY(1);
    338 		if (sk_win_read_2(sc,
    339 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
    340 			break;
    341 	}
    342 
    343 	if (i == SK_TIMEOUT)
    344 		return 0;
    345 
    346 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
    347 }
    348 
    349 void
    350 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
    351 {
    352 	int			i;
    353 	u_int8_t		*ptr;
    354 
    355 	ptr = (u_int8_t *)res;
    356 	for (i = 0; i < sizeof(struct vpd_res); i++)
    357 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
    358 }
    359 
    360 void
    361 sk_vpd_read(struct sk_softc *sc)
    362 {
    363 	int			pos = 0, i;
    364 	struct vpd_res		res;
    365 
    366 	if (sc->sk_vpd_prodname != NULL)
    367 		free(sc->sk_vpd_prodname, M_DEVBUF);
    368 	if (sc->sk_vpd_readonly != NULL)
    369 		free(sc->sk_vpd_readonly, M_DEVBUF);
    370 	sc->sk_vpd_prodname = NULL;
    371 	sc->sk_vpd_readonly = NULL;
    372 
    373 	sk_vpd_read_res(sc, &res, pos);
    374 
    375 	if (res.vr_id != VPD_RES_ID) {
    376 		aprint_error("%s: bad VPD resource id: expected %x got %x\n",
    377 		    sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
    378 		return;
    379 	}
    380 
    381 	pos += sizeof(res);
    382 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    383 	if (sc->sk_vpd_prodname == NULL)
    384 		panic("sk_vpd_read");
    385 	for (i = 0; i < res.vr_len; i++)
    386 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
    387 	sc->sk_vpd_prodname[i] = '\0';
    388 	pos += i;
    389 
    390 	sk_vpd_read_res(sc, &res, pos);
    391 
    392 	if (res.vr_id != VPD_RES_READ) {
    393 		aprint_error("%s: bad VPD resource id: expected %x got %x\n",
    394 		    sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
    395 		return;
    396 	}
    397 
    398 	pos += sizeof(res);
    399 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    400 	if (sc->sk_vpd_readonly == NULL)
    401 		panic("sk_vpd_read");
    402 	for (i = 0; i < res.vr_len ; i++)
    403 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
    404 }
    405 
    406 int
    407 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
    408 {
    409 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    410 	int i;
    411 
    412 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
    413 
    414 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
    415 		return 0;
    416 
    417 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    418 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
    419 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    420 		for (i = 0; i < SK_TIMEOUT; i++) {
    421 			DELAY(1);
    422 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
    423 			    XM_MMUCMD_PHYDATARDY)
    424 				break;
    425 		}
    426 
    427 		if (i == SK_TIMEOUT) {
    428 			aprint_error("%s: phy failed to come ready\n",
    429 			    sc_if->sk_dev.dv_xname);
    430 			return 0;
    431 		}
    432 	}
    433 	DELAY(1);
    434 	return SK_XM_READ_2(sc_if, XM_PHY_DATA);
    435 }
    436 
    437 void
    438 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
    439 {
    440 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    441 	int i;
    442 
    443 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
    444 
    445 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    446 	for (i = 0; i < SK_TIMEOUT; i++) {
    447 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    448 			break;
    449 	}
    450 
    451 	if (i == SK_TIMEOUT) {
    452 		aprint_error("%s: phy failed to come ready\n",
    453 		    sc_if->sk_dev.dv_xname);
    454 		return;
    455 	}
    456 
    457 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
    458 	for (i = 0; i < SK_TIMEOUT; i++) {
    459 		DELAY(1);
    460 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    461 			break;
    462 	}
    463 
    464 	if (i == SK_TIMEOUT)
    465 		aprint_error("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
    466 }
    467 
    468 void
    469 sk_xmac_miibus_statchg(struct device *dev)
    470 {
    471 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    472 	struct mii_data *mii = &sc_if->sk_mii;
    473 
    474 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
    475 
    476 	/*
    477 	 * If this is a GMII PHY, manually set the XMAC's
    478 	 * duplex mode accordingly.
    479 	 */
    480 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    481 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
    482 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    483 		else
    484 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    485 	}
    486 }
    487 
    488 int
    489 sk_marv_miibus_readreg(struct device *dev, int phy, int reg)
    490 {
    491 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    492 	u_int16_t val;
    493 	int i;
    494 
    495 	if (phy != 0 ||
    496 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
    497 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
    498 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
    499 			     phy, reg));
    500 		return 0;
    501 	}
    502 
    503         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    504 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
    505 
    506 	for (i = 0; i < SK_TIMEOUT; i++) {
    507 		DELAY(1);
    508 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
    509 		if (val & YU_SMICR_READ_VALID)
    510 			break;
    511 	}
    512 
    513 	if (i == SK_TIMEOUT) {
    514 		aprint_error("%s: phy failed to come ready\n",
    515 		       sc_if->sk_dev.dv_xname);
    516 		return 0;
    517 	}
    518 
    519  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
    520 		     SK_TIMEOUT));
    521 
    522         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
    523 
    524 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
    525 		     phy, reg, val));
    526 
    527 	return val;
    528 }
    529 
    530 void
    531 sk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
    532 {
    533 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    534 	int i;
    535 
    536 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
    537 		     phy, reg, val));
    538 
    539 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
    540 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    541 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
    542 
    543 	for (i = 0; i < SK_TIMEOUT; i++) {
    544 		DELAY(1);
    545 		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
    546 			break;
    547 	}
    548 }
    549 
    550 void
    551 sk_marv_miibus_statchg(struct device *dev)
    552 {
    553 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
    554 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
    555 }
    556 
    557 #define SK_HASH_BITS		6
    558 
    559 u_int32_t
    560 sk_xmac_hash(caddr_t addr)
    561 {
    562 	u_int32_t		crc;
    563 
    564 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
    565 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
    566 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    567 	return crc;
    568 }
    569 
    570 u_int32_t
    571 sk_yukon_hash(caddr_t addr)
    572 {
    573 	u_int32_t		crc;
    574 
    575 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
    576 	crc &= ((1 << SK_HASH_BITS) - 1);
    577 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    578 	return crc;
    579 }
    580 
    581 void
    582 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
    583 {
    584 	int base = XM_RXFILT_ENTRY(slot);
    585 
    586 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
    587 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
    588 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
    589 }
    590 
    591 void
    592 sk_setmulti(struct sk_if_softc *sc_if)
    593 {
    594 	struct sk_softc *sc = sc_if->sk_softc;
    595 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
    596 	u_int32_t hashes[2] = { 0, 0 };
    597 	int h = 0, i;
    598 	struct ethercom *ec = &sc_if->sk_ethercom;
    599 	struct ether_multi *enm;
    600 	struct ether_multistep step;
    601 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
    602 
    603 	/* First, zot all the existing filters. */
    604 	switch (sc->sk_type) {
    605 	case SK_GENESIS:
    606 		for (i = 1; i < XM_RXFILT_MAX; i++)
    607 			sk_setfilt(sc_if, (caddr_t)&dummy, i);
    608 
    609 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
    610 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
    611 		break;
    612 	case SK_YUKON:
    613 	case SK_YUKON_LITE:
    614 	case SK_YUKON_LP:
    615 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
    616 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
    617 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
    618 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
    619 		break;
    620 	}
    621 
    622 	/* Now program new ones. */
    623 allmulti:
    624 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    625 		hashes[0] = 0xFFFFFFFF;
    626 		hashes[1] = 0xFFFFFFFF;
    627 	} else {
    628 		i = 1;
    629 		/* First find the tail of the list. */
    630 		ETHER_FIRST_MULTI(step, ec, enm);
    631 		while (enm != NULL) {
    632 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
    633 				 ETHER_ADDR_LEN)) {
    634 				ifp->if_flags |= IFF_ALLMULTI;
    635 				goto allmulti;
    636 			}
    637 			DPRINTFN(2,("multicast address %s\n",
    638 	    			ether_sprintf(enm->enm_addrlo)));
    639 			/*
    640 			 * Program the first XM_RXFILT_MAX multicast groups
    641 			 * into the perfect filter. For all others,
    642 			 * use the hash table.
    643 			 */
    644 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
    645 				sk_setfilt(sc_if, enm->enm_addrlo, i);
    646 				i++;
    647 			}
    648 			else {
    649 				switch (sc->sk_type) {
    650 				case SK_GENESIS:
    651 					h = sk_xmac_hash(enm->enm_addrlo);
    652 					break;
    653 				case SK_YUKON:
    654 				case SK_YUKON_LITE:
    655 				case SK_YUKON_LP:
    656 					h = sk_yukon_hash(enm->enm_addrlo);
    657 					break;
    658 				}
    659 				if (h < 32)
    660 					hashes[0] |= (1 << h);
    661 				else
    662 					hashes[1] |= (1 << (h - 32));
    663 			}
    664 
    665 			ETHER_NEXT_MULTI(step, enm);
    666 		}
    667 	}
    668 
    669 	switch (sc->sk_type) {
    670 	case SK_GENESIS:
    671 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
    672 			       XM_MODE_RX_USE_PERFECT);
    673 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
    674 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
    675 		break;
    676 	case SK_YUKON:
    677 	case SK_YUKON_LITE:
    678 	case SK_YUKON_LP:
    679 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
    680 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
    681 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
    682 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
    683 		break;
    684 	}
    685 }
    686 
    687 int
    688 sk_init_rx_ring(struct sk_if_softc *sc_if)
    689 {
    690 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    691 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    692 	int			i;
    693 
    694 	bzero((char *)rd->sk_rx_ring,
    695 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
    696 
    697 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    698 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
    699 		if (i == (SK_RX_RING_CNT - 1)) {
    700 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
    701 			rd->sk_rx_ring[i].sk_next =
    702 				htole32(SK_RX_RING_ADDR(sc_if, 0));
    703 		} else {
    704 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
    705 			rd->sk_rx_ring[i].sk_next =
    706 				htole32(SK_RX_RING_ADDR(sc_if,i+1));
    707 		}
    708 	}
    709 
    710 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    711 		if (sk_newbuf(sc_if, i, NULL,
    712 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
    713 			aprint_error("%s: failed alloc of %dth mbuf\n",
    714 			    sc_if->sk_dev.dv_xname, i);
    715 			return ENOBUFS;
    716 		}
    717 	}
    718 	sc_if->sk_cdata.sk_rx_prod = 0;
    719 	sc_if->sk_cdata.sk_rx_cons = 0;
    720 
    721 	return 0;
    722 }
    723 
    724 int
    725 sk_init_tx_ring(struct sk_if_softc *sc_if)
    726 {
    727 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    728 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    729 	int			i;
    730 
    731 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
    732 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
    733 
    734 	for (i = 0; i < SK_TX_RING_CNT; i++) {
    735 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
    736 		if (i == (SK_TX_RING_CNT - 1)) {
    737 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
    738 			rd->sk_tx_ring[i].sk_next =
    739 				htole32(SK_TX_RING_ADDR(sc_if, 0));
    740 		} else {
    741 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
    742 			rd->sk_tx_ring[i].sk_next =
    743 				htole32(SK_TX_RING_ADDR(sc_if,i+1));
    744 		}
    745 	}
    746 
    747 	sc_if->sk_cdata.sk_tx_prod = 0;
    748 	sc_if->sk_cdata.sk_tx_cons = 0;
    749 	sc_if->sk_cdata.sk_tx_cnt = 0;
    750 
    751 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
    752 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    753 
    754 	return 0;
    755 }
    756 
    757 int
    758 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
    759 	  bus_dmamap_t dmamap)
    760 {
    761 	struct mbuf		*m_new = NULL;
    762 	struct sk_chain		*c;
    763 	struct sk_rx_desc	*r;
    764 
    765 	if (m == NULL) {
    766 		caddr_t buf = NULL;
    767 
    768 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    769 		if (m_new == NULL) {
    770 			aprint_error("%s: no memory for rx list -- "
    771 			    "packet dropped!\n", sc_if->sk_dev.dv_xname);
    772 			return ENOBUFS;
    773 		}
    774 
    775 		/* Allocate the jumbo buffer */
    776 		buf = sk_jalloc(sc_if);
    777 		if (buf == NULL) {
    778 			m_freem(m_new);
    779 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
    780 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
    781 			return ENOBUFS;
    782 		}
    783 
    784 		/* Attach the buffer to the mbuf */
    785 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    786 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
    787 
    788 	} else {
    789 		/*
    790 	 	 * We're re-using a previously allocated mbuf;
    791 		 * be sure to re-init pointers and lengths to
    792 		 * default values.
    793 		 */
    794 		m_new = m;
    795 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    796 		m_new->m_data = m_new->m_ext.ext_buf;
    797 	}
    798 	m_adj(m_new, ETHER_ALIGN);
    799 
    800 	c = &sc_if->sk_cdata.sk_rx_chain[i];
    801 	r = c->sk_desc;
    802 	c->sk_mbuf = m_new;
    803 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
    804 	    (((vaddr_t)m_new->m_data
    805 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
    806 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
    807 
    808 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    809 
    810 	return 0;
    811 }
    812 
    813 /*
    814  * Memory management for jumbo frames.
    815  */
    816 
    817 int
    818 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
    819 {
    820 	struct sk_softc		*sc = sc_if->sk_softc;
    821 	caddr_t			ptr, kva;
    822 	bus_dma_segment_t	seg;
    823 	int		i, rseg, state, error;
    824 	struct sk_jpool_entry   *entry;
    825 
    826 	state = error = 0;
    827 
    828 	/* Grab a big chunk o' storage. */
    829 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
    830 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    831 		aprint_error("%s: can't alloc rx buffers\n", sc->sk_dev.dv_xname);
    832 		return ENOBUFS;
    833 	}
    834 
    835 	state = 1;
    836 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, &kva,
    837 			   BUS_DMA_NOWAIT)) {
    838 		aprint_error("%s: can't map dma buffers (%d bytes)\n",
    839 		    sc->sk_dev.dv_xname, SK_JMEM);
    840 		error = ENOBUFS;
    841 		goto out;
    842 	}
    843 
    844 	state = 2;
    845 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
    846 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
    847 		aprint_error("%s: can't create dma map\n", sc->sk_dev.dv_xname);
    848 		error = ENOBUFS;
    849 		goto out;
    850 	}
    851 
    852 	state = 3;
    853 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
    854 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
    855 		aprint_error("%s: can't load dma map\n", sc->sk_dev.dv_xname);
    856 		error = ENOBUFS;
    857 		goto out;
    858 	}
    859 
    860 	state = 4;
    861 	sc_if->sk_cdata.sk_jumbo_buf = (caddr_t)kva;
    862 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
    863 
    864 	LIST_INIT(&sc_if->sk_jfree_listhead);
    865 	LIST_INIT(&sc_if->sk_jinuse_listhead);
    866 
    867 	/*
    868 	 * Now divide it up into 9K pieces and save the addresses
    869 	 * in an array.
    870 	 */
    871 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
    872 	for (i = 0; i < SK_JSLOTS; i++) {
    873 		sc_if->sk_cdata.sk_jslots[i] = ptr;
    874 		ptr += SK_JLEN;
    875 		entry = malloc(sizeof(struct sk_jpool_entry),
    876 		    M_DEVBUF, M_NOWAIT);
    877 		if (entry == NULL) {
    878 			aprint_error("%s: no memory for jumbo buffer queue!\n",
    879 			    sc->sk_dev.dv_xname);
    880 			error = ENOBUFS;
    881 			goto out;
    882 		}
    883 		entry->slot = i;
    884 		if (i)
    885 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
    886 				 entry, jpool_entries);
    887 		else
    888 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
    889 				 entry, jpool_entries);
    890 	}
    891 out:
    892 	if (error != 0) {
    893 		switch (state) {
    894 		case 4:
    895 			bus_dmamap_unload(sc->sc_dmatag,
    896 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    897 		case 3:
    898 			bus_dmamap_destroy(sc->sc_dmatag,
    899 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    900 		case 2:
    901 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
    902 		case 1:
    903 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
    904 			break;
    905 		default:
    906 			break;
    907 		}
    908 	}
    909 
    910 	return error;
    911 }
    912 
    913 /*
    914  * Allocate a jumbo buffer.
    915  */
    916 void *
    917 sk_jalloc(struct sk_if_softc *sc_if)
    918 {
    919 	struct sk_jpool_entry   *entry;
    920 
    921 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
    922 
    923 	if (entry == NULL)
    924 		return NULL;
    925 
    926 	LIST_REMOVE(entry, jpool_entries);
    927 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
    928 	return sc_if->sk_cdata.sk_jslots[entry->slot];
    929 }
    930 
    931 /*
    932  * Release a jumbo buffer.
    933  */
    934 void
    935 sk_jfree(struct mbuf *m, caddr_t buf, size_t size, void	*arg)
    936 {
    937 	struct sk_jpool_entry *entry;
    938 	struct sk_if_softc *sc;
    939 	int i, s;
    940 
    941 	/* Extract the softc struct pointer. */
    942 	sc = (struct sk_if_softc *)arg;
    943 
    944 	if (sc == NULL)
    945 		panic("sk_jfree: can't find softc pointer!");
    946 
    947 	/* calculate the slot this buffer belongs to */
    948 
    949 	i = ((vaddr_t)buf
    950 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
    951 
    952 	if ((i < 0) || (i >= SK_JSLOTS))
    953 		panic("sk_jfree: asked to free buffer that we don't manage!");
    954 
    955 	s = splvm();
    956 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
    957 	if (entry == NULL)
    958 		panic("sk_jfree: buffer not in use!");
    959 	entry->slot = i;
    960 	LIST_REMOVE(entry, jpool_entries);
    961 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
    962 
    963 	if (__predict_true(m != NULL))
    964 		pool_cache_put(&mbpool_cache, m);
    965 	splx(s);
    966 }
    967 
    968 /*
    969  * Set media options.
    970  */
    971 int
    972 sk_ifmedia_upd(struct ifnet *ifp)
    973 {
    974 	struct sk_if_softc *sc_if = ifp->if_softc;
    975 
    976 	(void) sk_init(ifp);
    977 	mii_mediachg(&sc_if->sk_mii);
    978 	return 0;
    979 }
    980 
    981 /*
    982  * Report current media status.
    983  */
    984 void
    985 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
    986 {
    987 	struct sk_if_softc *sc_if = ifp->if_softc;
    988 
    989 	mii_pollstat(&sc_if->sk_mii);
    990 	ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
    991 	ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
    992 }
    993 
    994 int
    995 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
    996 {
    997 	struct sk_if_softc *sc_if = ifp->if_softc;
    998 	struct sk_softc *sc = sc_if->sk_softc;
    999 	struct ifreq *ifr = (struct ifreq *) data;
   1000 	struct mii_data *mii;
   1001 	int s, error = 0;
   1002 
   1003 	/* DPRINTFN(2, ("sk_ioctl\n")); */
   1004 
   1005 	s = splnet();
   1006 
   1007 	switch (command) {
   1008 
   1009 	case SIOCSIFFLAGS:
   1010 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
   1011 		if (ifp->if_flags & IFF_UP) {
   1012 			if (ifp->if_flags & IFF_RUNNING &&
   1013 			    ifp->if_flags & IFF_PROMISC &&
   1014 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
   1015 				switch (sc->sk_type) {
   1016 				case SK_GENESIS:
   1017 					SK_XM_SETBIT_4(sc_if, XM_MODE,
   1018 					    XM_MODE_RX_PROMISC);
   1019 					break;
   1020 				case SK_YUKON:
   1021 				case SK_YUKON_LITE:
   1022 				case SK_YUKON_LP:
   1023 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
   1024 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1025 					break;
   1026 				}
   1027 				sk_setmulti(sc_if);
   1028 			} else if (ifp->if_flags & IFF_RUNNING &&
   1029 			    !(ifp->if_flags & IFF_PROMISC) &&
   1030 			    sc_if->sk_if_flags & IFF_PROMISC) {
   1031 				switch (sc->sk_type) {
   1032 				case SK_GENESIS:
   1033 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
   1034 					    XM_MODE_RX_PROMISC);
   1035 					break;
   1036 				case SK_YUKON:
   1037 				case SK_YUKON_LITE:
   1038 				case SK_YUKON_LP:
   1039 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
   1040 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1041 					break;
   1042 				}
   1043 
   1044 				sk_setmulti(sc_if);
   1045 			} else
   1046 				(void) sk_init(ifp);
   1047 		} else {
   1048 			if (ifp->if_flags & IFF_RUNNING)
   1049 				sk_stop(ifp,0);
   1050 		}
   1051 		sc_if->sk_if_flags = ifp->if_flags;
   1052 		error = 0;
   1053 		break;
   1054 
   1055 	case SIOCGIFMEDIA:
   1056 	case SIOCSIFMEDIA:
   1057 	        DPRINTFN(2, ("sk_ioctl MEDIA\n"));
   1058 		mii = &sc_if->sk_mii;
   1059 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   1060 		break;
   1061 	default:
   1062 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
   1063 		error = ether_ioctl(ifp, command, data);
   1064 
   1065 		if ( error == ENETRESET) {
   1066 			if (ifp->if_flags & IFF_RUNNING) {
   1067 				sk_setmulti(sc_if);
   1068 				DPRINTFN(2, ("sk_ioctl setmulti called\n"));
   1069 			}
   1070 			error = 0;
   1071 		} else if ( error ) {
   1072 			splx(s);
   1073 			return error;
   1074 		}
   1075 		break;
   1076 	}
   1077 
   1078 	splx(s);
   1079 	return error;
   1080 }
   1081 
   1082 void
   1083 sk_update_int_mod(struct sk_softc *sc)
   1084 {
   1085 	u_int32_t sk_imtimer_ticks;
   1086 
   1087 	/*
   1088          * Configure interrupt moderation. The moderation timer
   1089 	 * defers interrupts specified in the interrupt moderation
   1090 	 * timer mask based on the timeout specified in the interrupt
   1091 	 * moderation timer init register. Each bit in the timer
   1092 	 * register represents one tick, so to specify a timeout in
   1093 	 * microseconds, we have to multiply by the correct number of
   1094 	 * ticks-per-microsecond.
   1095 	 */
   1096 	switch (sc->sk_type) {
   1097 	case SK_GENESIS:
   1098 		sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   1099 		break;
   1100 	case SK_YUKON_EC:
   1101 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   1102 		break;
   1103 	default:
   1104 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   1105 	}
   1106 	aprint_verbose("%s: interrupt moderation is %d us\n",
   1107 	    sc->sk_dev.dv_xname, sc->sk_int_mod);
   1108         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
   1109         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
   1110 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
   1111         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
   1112 	sc->sk_int_mod_pending = 0;
   1113 }
   1114 
   1115 /*
   1116  * Lookup: Check the PCI vendor and device, and return a pointer to
   1117  * The structure if the IDs match against our list.
   1118  */
   1119 
   1120 static const struct sk_product *
   1121 sk_lookup(const struct pci_attach_args *pa)
   1122 {
   1123 	const struct sk_product *psk;
   1124 
   1125 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
   1126 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
   1127 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
   1128 			return psk;
   1129 	}
   1130 	return NULL;
   1131 }
   1132 
   1133 /*
   1134  * Probe for a SysKonnect GEnesis chip.
   1135  */
   1136 
   1137 int
   1138 skc_probe(struct device *parent, struct cfdata *match, void *aux)
   1139 {
   1140 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1141 	const struct sk_product *psk;
   1142 	pcireg_t subid;
   1143 
   1144 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
   1145 
   1146 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
   1147 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
   1148 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
   1149 	    subid == SK_LINKSYS_EG1032_SUBID)
   1150 		return 1;
   1151 
   1152 	if ((psk = sk_lookup(pa))) {
   1153 		return 1;
   1154 	}
   1155 	return 0;
   1156 }
   1157 
   1158 /*
   1159  * Force the GEnesis into reset, then bring it out of reset.
   1160  */
   1161 void sk_reset(struct sk_softc *sc)
   1162 {
   1163 	DPRINTFN(2, ("sk_reset\n"));
   1164 
   1165 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
   1166 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
   1167 	if (SK_YUKON_FAMILY(sc->sk_type))
   1168 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
   1169 
   1170 	DELAY(1000);
   1171 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
   1172 	DELAY(2);
   1173 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
   1174 	if (SK_YUKON_FAMILY(sc->sk_type))
   1175 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
   1176 
   1177 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
   1178 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
   1179 		     CSR_READ_2(sc, SK_LINK_CTRL)));
   1180 
   1181 	if (sc->sk_type == SK_GENESIS) {
   1182 		/* Configure packet arbiter */
   1183 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
   1184 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1185 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1186 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1187 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1188 	}
   1189 
   1190 	/* Enable RAM interface */
   1191 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
   1192 
   1193 	sk_update_int_mod(sc);
   1194 }
   1195 
   1196 int
   1197 sk_probe(struct device *parent, struct cfdata *match, void *aux)
   1198 {
   1199 	struct skc_attach_args *sa = aux;
   1200 
   1201 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
   1202 		return 0;
   1203 
   1204 	return 1;
   1205 }
   1206 
   1207 /*
   1208  * Each XMAC chip is attached as a separate logical IP interface.
   1209  * Single port cards will have only one logical interface of course.
   1210  */
   1211 void
   1212 sk_attach(struct device *parent, struct device *self, void *aux)
   1213 {
   1214 	struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
   1215 	struct sk_softc *sc = (struct sk_softc *)parent;
   1216 	struct skc_attach_args *sa = aux;
   1217 	struct sk_txmap_entry	*entry;
   1218 	struct ifnet *ifp;
   1219 	bus_dma_segment_t seg;
   1220 	bus_dmamap_t dmamap;
   1221 	caddr_t kva;
   1222 	int i, rseg;
   1223 
   1224 	sc_if->sk_port = sa->skc_port;
   1225 	sc_if->sk_softc = sc;
   1226 	sc->sk_if[sa->skc_port] = sc_if;
   1227 
   1228 	if (sa->skc_port == SK_PORT_A)
   1229 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
   1230 	if (sa->skc_port == SK_PORT_B)
   1231 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
   1232 
   1233 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
   1234 
   1235 	/*
   1236 	 * Get station address for this interface. Note that
   1237 	 * dual port cards actually come with three station
   1238 	 * addresses: one for each port, plus an extra. The
   1239 	 * extra one is used by the SysKonnect driver software
   1240 	 * as a 'virtual' station address for when both ports
   1241 	 * are operating in failover mode. Currently we don't
   1242 	 * use this extra address.
   1243 	 */
   1244 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1245 		sc_if->sk_enaddr[i] =
   1246 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
   1247 
   1248 
   1249 	aprint_normal(": Ethernet address %s\n",
   1250 	    ether_sprintf(sc_if->sk_enaddr));
   1251 
   1252 	/*
   1253 	 * Set up RAM buffer addresses. The NIC will have a certain
   1254 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
   1255 	 * need to divide this up a) between the transmitter and
   1256  	 * receiver and b) between the two XMACs, if this is a
   1257 	 * dual port NIC. Our algorithm is to divide up the memory
   1258 	 * evenly so that everyone gets a fair share.
   1259 	 */
   1260 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
   1261 		u_int32_t		chunk, val;
   1262 
   1263 		chunk = sc->sk_ramsize / 2;
   1264 		val = sc->sk_rboff / sizeof(u_int64_t);
   1265 		sc_if->sk_rx_ramstart = val;
   1266 		val += (chunk / sizeof(u_int64_t));
   1267 		sc_if->sk_rx_ramend = val - 1;
   1268 		sc_if->sk_tx_ramstart = val;
   1269 		val += (chunk / sizeof(u_int64_t));
   1270 		sc_if->sk_tx_ramend = val - 1;
   1271 	} else {
   1272 		u_int32_t		chunk, val;
   1273 
   1274 		chunk = sc->sk_ramsize / 4;
   1275 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
   1276 		    sizeof(u_int64_t);
   1277 		sc_if->sk_rx_ramstart = val;
   1278 		val += (chunk / sizeof(u_int64_t));
   1279 		sc_if->sk_rx_ramend = val - 1;
   1280 		sc_if->sk_tx_ramstart = val;
   1281 		val += (chunk / sizeof(u_int64_t));
   1282 		sc_if->sk_tx_ramend = val - 1;
   1283 	}
   1284 
   1285 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
   1286 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
   1287 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
   1288 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
   1289 
   1290 	/* Read and save PHY type and set PHY address */
   1291 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
   1292 	switch (sc_if->sk_phytype) {
   1293 	case SK_PHYTYPE_XMAC:
   1294 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
   1295 		break;
   1296 	case SK_PHYTYPE_BCOM:
   1297 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
   1298 		break;
   1299 	case SK_PHYTYPE_MARV_COPPER:
   1300 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
   1301 		break;
   1302 	default:
   1303 		aprint_error("%s: unsupported PHY type: %d\n",
   1304 		    sc->sk_dev.dv_xname, sc_if->sk_phytype);
   1305 		return;
   1306 	}
   1307 
   1308 	/* Allocate the descriptor queues. */
   1309 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
   1310 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1311 		aprint_error("%s: can't alloc rx buffers\n",
   1312 		    sc->sk_dev.dv_xname);
   1313 		goto fail;
   1314 	}
   1315 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
   1316 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
   1317 		aprint_error("%s: can't map dma buffers (%lu bytes)\n",
   1318 		       sc_if->sk_dev.dv_xname,
   1319 		       (u_long) sizeof(struct sk_ring_data));
   1320 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1321 		goto fail;
   1322 	}
   1323 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
   1324 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
   1325             &sc_if->sk_ring_map)) {
   1326 		aprint_error("%s: can't create dma map\n",
   1327 		    sc_if->sk_dev.dv_xname);
   1328 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1329 		    sizeof(struct sk_ring_data));
   1330 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1331 		goto fail;
   1332 	}
   1333 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
   1334 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
   1335 		aprint_error("%s: can't load dma map\n",
   1336 		    sc_if->sk_dev.dv_xname);
   1337 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1338 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1339 		    sizeof(struct sk_ring_data));
   1340 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1341 		goto fail;
   1342 	}
   1343 
   1344 	for (i = 0; i < SK_RX_RING_CNT; i++)
   1345 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   1346 
   1347 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
   1348 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   1349 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   1350 
   1351 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
   1352 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
   1353 			aprint_error("%s: Can't create TX dmamap\n",
   1354 				sc_if->sk_dev.dv_xname);
   1355 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1356 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1357 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1358 			    sizeof(struct sk_ring_data));
   1359 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1360 			goto fail;
   1361 		}
   1362 
   1363 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
   1364 		if (!entry) {
   1365 			aprint_error("%s: Can't alloc txmap entry\n",
   1366 				sc_if->sk_dev.dv_xname);
   1367 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
   1368 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1369 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1370 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1371 			    sizeof(struct sk_ring_data));
   1372 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1373 			goto fail;
   1374 		}
   1375 		entry->dmamap = dmamap;
   1376 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
   1377 	}
   1378 
   1379         sc_if->sk_rdata = (struct sk_ring_data *)kva;
   1380 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
   1381 
   1382 	ifp = &sc_if->sk_ethercom.ec_if;
   1383 	/* Try to allocate memory for jumbo buffers. */
   1384 	if (sk_alloc_jumbo_mem(sc_if)) {
   1385 		aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
   1386 		goto fail;
   1387 	}
   1388 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
   1389 		| ETHERCAP_JUMBO_MTU;
   1390 
   1391 	ifp->if_softc = sc_if;
   1392 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1393 	ifp->if_ioctl = sk_ioctl;
   1394 	ifp->if_start = sk_start;
   1395 	ifp->if_stop = sk_stop;
   1396 	ifp->if_init = sk_init;
   1397 	ifp->if_watchdog = sk_watchdog;
   1398 	ifp->if_capabilities = 0;
   1399 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
   1400 	IFQ_SET_READY(&ifp->if_snd);
   1401 	strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
   1402 
   1403 	/*
   1404 	 * Do miibus setup.
   1405 	 */
   1406 	switch (sc->sk_type) {
   1407 	case SK_GENESIS:
   1408 		sk_init_xmac(sc_if);
   1409 		break;
   1410 	case SK_YUKON:
   1411 	case SK_YUKON_LITE:
   1412 	case SK_YUKON_LP:
   1413 		sk_init_yukon(sc_if);
   1414 		break;
   1415 	default:
   1416 		panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
   1417 		      sc->sk_type);
   1418 	}
   1419 
   1420  	DPRINTFN(2, ("sk_attach: 1\n"));
   1421 
   1422 	sc_if->sk_mii.mii_ifp = ifp;
   1423 	switch (sc->sk_type) {
   1424 	case SK_GENESIS:
   1425 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
   1426 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
   1427 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
   1428 		break;
   1429 	case SK_YUKON:
   1430 	case SK_YUKON_LITE:
   1431 	case SK_YUKON_LP:
   1432 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
   1433 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
   1434 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
   1435 		break;
   1436 	}
   1437 
   1438 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
   1439 	    sk_ifmedia_upd, sk_ifmedia_sts);
   1440 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
   1441 	    MII_OFFSET_ANY, 0);
   1442 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
   1443 		aprint_error("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
   1444 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
   1445 			    0, NULL);
   1446 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
   1447 	} else
   1448 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1449 
   1450 	callout_init(&sc_if->sk_tick_ch);
   1451 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
   1452 
   1453 	DPRINTFN(2, ("sk_attach: 1\n"));
   1454 
   1455 	/*
   1456 	 * Call MI attach routines.
   1457 	 */
   1458 	if_attach(ifp);
   1459 
   1460 	ether_ifattach(ifp, sc_if->sk_enaddr);
   1461 
   1462 #if NRND > 0
   1463         rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
   1464             RND_TYPE_NET, 0);
   1465 #endif
   1466 
   1467 	DPRINTFN(2, ("sk_attach: end\n"));
   1468 
   1469 	return;
   1470 
   1471 fail:
   1472 	sc->sk_if[sa->skc_port] = NULL;
   1473 }
   1474 
   1475 int
   1476 skcprint(void *aux, const char *pnp)
   1477 {
   1478 	struct skc_attach_args *sa = aux;
   1479 
   1480 	if (pnp)
   1481 		aprint_normal("sk port %c at %s",
   1482 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
   1483 	else
   1484 		aprint_normal(" port %c",
   1485 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
   1486 	return UNCONF;
   1487 }
   1488 
   1489 /*
   1490  * Attach the interface. Allocate softc structures, do ifmedia
   1491  * setup and ethernet/BPF attach.
   1492  */
   1493 void
   1494 skc_attach(struct device *parent, struct device *self, void *aux)
   1495 {
   1496 	struct sk_softc *sc = (struct sk_softc *)self;
   1497 	struct pci_attach_args *pa = aux;
   1498 	struct skc_attach_args skca;
   1499 	pci_chipset_tag_t pc = pa->pa_pc;
   1500 #ifndef SK_USEIOSPACE
   1501 	pcireg_t memtype;
   1502 #endif
   1503 	pci_intr_handle_t ih;
   1504 	const char *intrstr = NULL;
   1505 	bus_addr_t iobase;
   1506 	bus_size_t iosize;
   1507 	int rc, sk_nodenum;
   1508 	u_int32_t command;
   1509 	const char *revstr;
   1510 	const struct sysctlnode *node;
   1511 
   1512 	DPRINTFN(2, ("begin skc_attach\n"));
   1513 
   1514 	/*
   1515 	 * Handle power management nonsense.
   1516 	 */
   1517 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
   1518 
   1519 	if (command == 0x01) {
   1520 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
   1521 		if (command & SK_PSTATE_MASK) {
   1522 			u_int32_t		xiobase, membase, irq;
   1523 
   1524 			/* Save important PCI config data. */
   1525 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
   1526 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
   1527 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
   1528 
   1529 			/* Reset the power state. */
   1530 			aprint_normal("%s chip is in D%d power mode "
   1531 			    "-- setting to D0\n", sc->sk_dev.dv_xname,
   1532 			    command & SK_PSTATE_MASK);
   1533 			command &= 0xFFFFFFFC;
   1534 			pci_conf_write(pc, pa->pa_tag,
   1535 			    SK_PCI_PWRMGMTCTRL, command);
   1536 
   1537 			/* Restore PCI config data. */
   1538 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
   1539 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
   1540 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
   1541 		}
   1542 	}
   1543 
   1544 	/*
   1545 	 * Map control/status registers.
   1546 	 */
   1547 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1548 	command |= PCI_COMMAND_IO_ENABLE |
   1549 	    PCI_COMMAND_MEM_ENABLE |
   1550 	    PCI_COMMAND_MASTER_ENABLE;
   1551 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1552 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1553 
   1554 #ifdef SK_USEIOSPACE
   1555 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
   1556 		aprint_error(": failed to enable I/O ports!\n");
   1557 		return;
   1558 	}
   1559 	/*
   1560 	 * Map control/status registers.
   1561 	 */
   1562 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
   1563 			&sc->sk_btag, &sc->sk_bhandle,
   1564 			&iobase, &iosize)) {
   1565 		aprint_error(": can't find i/o space\n");
   1566 		return;
   1567 	}
   1568 #else
   1569 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1570 		aprint_error(": failed to enable memory mapping!\n");
   1571 		return;
   1572 	}
   1573 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
   1574 	switch (memtype) {
   1575         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1576         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1577                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
   1578 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
   1579 				   &iobase, &iosize) == 0)
   1580                         break;
   1581         default:
   1582                 aprint_error("%s: can't find mem space\n",
   1583 		       sc->sk_dev.dv_xname);
   1584                 return;
   1585 	}
   1586 
   1587 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
   1588 #endif
   1589 	sc->sc_dmatag = pa->pa_dmat;
   1590 
   1591 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
   1592 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
   1593 
   1594 	/* bail out here if chip is not recognized */
   1595 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
   1596 		aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
   1597 		goto fail;
   1598 	}
   1599 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
   1600 
   1601 	/* Allocate interrupt */
   1602 	if (pci_intr_map(pa, &ih)) {
   1603 		aprint_error(": couldn't map interrupt\n");
   1604 		goto fail;
   1605 	}
   1606 
   1607 	intrstr = pci_intr_string(pc, ih);
   1608 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
   1609 	if (sc->sk_intrhand == NULL) {
   1610 		aprint_error(": couldn't establish interrupt");
   1611 		if (intrstr != NULL)
   1612 			aprint_normal(" at %s", intrstr);
   1613 		goto fail;
   1614 	}
   1615 	aprint_normal(": %s\n", intrstr);
   1616 
   1617 	/* Reset the adapter. */
   1618 	sk_reset(sc);
   1619 
   1620 	/* Read and save vital product data from EEPROM. */
   1621 	sk_vpd_read(sc);
   1622 
   1623 	if (sc->sk_type == SK_GENESIS) {
   1624 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1625 		/* Read and save RAM size and RAMbuffer offset */
   1626 		switch (val) {
   1627 		case SK_RAMSIZE_512K_64:
   1628 			sc->sk_ramsize = 0x80000;
   1629 			sc->sk_rboff = SK_RBOFF_0;
   1630 			break;
   1631 		case SK_RAMSIZE_1024K_64:
   1632 			sc->sk_ramsize = 0x100000;
   1633 			sc->sk_rboff = SK_RBOFF_80000;
   1634 			break;
   1635 		case SK_RAMSIZE_1024K_128:
   1636 			sc->sk_ramsize = 0x100000;
   1637 			sc->sk_rboff = SK_RBOFF_0;
   1638 			break;
   1639 		case SK_RAMSIZE_2048K_128:
   1640 			sc->sk_ramsize = 0x200000;
   1641 			sc->sk_rboff = SK_RBOFF_0;
   1642 			break;
   1643 		default:
   1644 			aprint_error("%s: unknown ram size: %d\n",
   1645 			       sc->sk_dev.dv_xname, val);
   1646 			goto fail_1;
   1647 			break;
   1648 		}
   1649 
   1650 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
   1651 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
   1652 			     sc->sk_rboff));
   1653 	} else {
   1654 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1655 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
   1656 		sc->sk_rboff = SK_RBOFF_0;
   1657 
   1658 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
   1659 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
   1660 			     sc->sk_rboff));
   1661 	}
   1662 
   1663 	/* Read and save physical media type */
   1664 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
   1665 	case SK_PMD_1000BASESX:
   1666 		sc->sk_pmd = IFM_1000_SX;
   1667 		break;
   1668 	case SK_PMD_1000BASELX:
   1669 		sc->sk_pmd = IFM_1000_LX;
   1670 		break;
   1671 	case SK_PMD_1000BASECX:
   1672 		sc->sk_pmd = IFM_1000_CX;
   1673 		break;
   1674 	case SK_PMD_1000BASETX:
   1675 	case SK_PMD_1000BASETX_ALT:
   1676 		sc->sk_pmd = IFM_1000_T;
   1677 		break;
   1678 	default:
   1679 		aprint_error("%s: unknown media type: 0x%x\n",
   1680 		    sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
   1681 		goto fail_1;
   1682 	}
   1683 
   1684 	/* determine whether to name it with vpd or just make it up */
   1685 	/* Marvell Yukon VPD's can freqently be bogus */
   1686 
   1687 	switch (pa->pa_id) {
   1688 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1689 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
   1690 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
   1691 	case PCI_PRODUCT_3COM_3C940:
   1692 	case PCI_PRODUCT_DLINK_DGE530T:
   1693 	case PCI_PRODUCT_DLINK_DGE560T:
   1694 	case PCI_PRODUCT_DLINK_DGE560T_2:
   1695 	case PCI_PRODUCT_LINKSYS_EG1032:
   1696 	case PCI_PRODUCT_LINKSYS_EG1064:
   1697 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1698 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
   1699 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
   1700 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
   1701 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
   1702 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
   1703 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
   1704 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
   1705  		sc->sk_name = sc->sk_vpd_prodname;
   1706  		break;
   1707 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
   1708 	/* whoops yukon vpd prodname bears no resemblance to reality */
   1709 		switch (sc->sk_type) {
   1710 		case SK_GENESIS:
   1711 			sc->sk_name = sc->sk_vpd_prodname;
   1712 			break;
   1713 		case SK_YUKON:
   1714 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
   1715 			break;
   1716 		case SK_YUKON_LITE:
   1717 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
   1718 			break;
   1719 		case SK_YUKON_LP:
   1720 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
   1721 			break;
   1722 		default:
   1723 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
   1724 		}
   1725 
   1726 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
   1727 
   1728 		if ( sc->sk_type == SK_YUKON ) {
   1729 			uint32_t flashaddr;
   1730 			uint8_t testbyte;
   1731 
   1732 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
   1733 
   1734 			/* test Flash-Address Register */
   1735 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
   1736 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
   1737 
   1738 			if (testbyte != 0) {
   1739 				/* this is yukon lite Rev. A0 */
   1740 				sc->sk_type = SK_YUKON_LITE;
   1741 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
   1742 				/* restore Flash-Address Register */
   1743 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
   1744 			}
   1745 		}
   1746 		break;
   1747 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
   1748 		sc->sk_name = sc->sk_vpd_prodname;
   1749 		break;
   1750  	default:
   1751 		sc->sk_name = "Unknown Marvell";
   1752 	}
   1753 
   1754 
   1755 	if ( sc->sk_type == SK_YUKON_LITE ) {
   1756 		switch (sc->sk_rev) {
   1757 		case SK_YUKON_LITE_REV_A0:
   1758 			revstr = "A0";
   1759 			break;
   1760 		case SK_YUKON_LITE_REV_A1:
   1761 			revstr = "A1";
   1762 			break;
   1763 		case SK_YUKON_LITE_REV_A3:
   1764 			revstr = "A3";
   1765 			break;
   1766 		default:
   1767 			revstr = "";
   1768 		}
   1769 	} else {
   1770 		revstr = "";
   1771 	}
   1772 
   1773 	/* Announce the product name. */
   1774 	aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
   1775 			      sc->sk_name, revstr, sc->sk_rev);
   1776 
   1777 	skca.skc_port = SK_PORT_A;
   1778 	(void)config_found(&sc->sk_dev, &skca, skcprint);
   1779 
   1780 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
   1781 		skca.skc_port = SK_PORT_B;
   1782 		(void)config_found(&sc->sk_dev, &skca, skcprint);
   1783 	}
   1784 
   1785 	/* Turn on the 'driver is loaded' LED. */
   1786 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   1787 
   1788 	/* skc sysctl setup */
   1789 
   1790 	sc->sk_int_mod = SK_IM_DEFAULT;
   1791 	sc->sk_int_mod_pending = 0;
   1792 
   1793 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1794 	    0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
   1795 	    SYSCTL_DESCR("skc per-controller controls"),
   1796 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
   1797 	    CTL_EOL)) != 0) {
   1798 		aprint_normal("%s: couldn't create sysctl node\n",
   1799 		    sc->sk_dev.dv_xname);
   1800 		goto fail_1;
   1801 	}
   1802 
   1803 	sk_nodenum = node->sysctl_num;
   1804 
   1805 	/* interrupt moderation time in usecs */
   1806 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1807 	    CTLFLAG_READWRITE,
   1808 	    CTLTYPE_INT, "int_mod",
   1809 	    SYSCTL_DESCR("sk interrupt moderation timer"),
   1810 	    sk_sysctl_handler, 0, sc,
   1811 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
   1812 	    CTL_EOL)) != 0) {
   1813 		aprint_normal("%s: couldn't create int_mod sysctl node\n",
   1814 		    sc->sk_dev.dv_xname);
   1815 		goto fail_1;
   1816 	}
   1817 
   1818 	return;
   1819 
   1820 fail_1:
   1821 	pci_intr_disestablish(pc, sc->sk_intrhand);
   1822 fail:
   1823 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
   1824 }
   1825 
   1826 int
   1827 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
   1828 {
   1829 	struct sk_softc		*sc = sc_if->sk_softc;
   1830 	struct sk_tx_desc	*f = NULL;
   1831 	u_int32_t		frag, cur, cnt = 0, sk_ctl;
   1832 	int			i;
   1833 	struct sk_txmap_entry	*entry;
   1834 	bus_dmamap_t		txmap;
   1835 
   1836 	DPRINTFN(3, ("sk_encap\n"));
   1837 
   1838 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
   1839 	if (entry == NULL) {
   1840 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
   1841 		return ENOBUFS;
   1842 	}
   1843 	txmap = entry->dmamap;
   1844 
   1845 	cur = frag = *txidx;
   1846 
   1847 #ifdef SK_DEBUG
   1848 	if (skdebug >= 3)
   1849 		sk_dump_mbuf(m_head);
   1850 #endif
   1851 
   1852 	/*
   1853 	 * Start packing the mbufs in this chain into
   1854 	 * the fragment pointers. Stop when we run out
   1855 	 * of fragments or hit the end of the mbuf chain.
   1856 	 */
   1857 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
   1858 	    BUS_DMA_NOWAIT)) {
   1859 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
   1860 		return ENOBUFS;
   1861 	}
   1862 
   1863 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
   1864 
   1865 	/* Sync the DMA map. */
   1866 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
   1867 	    BUS_DMASYNC_PREWRITE);
   1868 
   1869 	for (i = 0; i < txmap->dm_nsegs; i++) {
   1870 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
   1871 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
   1872 			return ENOBUFS;
   1873 		}
   1874 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
   1875 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
   1876 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
   1877 		if (cnt == 0)
   1878 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
   1879 		else
   1880 			sk_ctl |= SK_TXCTL_OWN;
   1881 		f->sk_ctl = htole32(sk_ctl);
   1882 		cur = frag;
   1883 		SK_INC(frag, SK_TX_RING_CNT);
   1884 		cnt++;
   1885 	}
   1886 
   1887 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
   1888 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
   1889 
   1890 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
   1891 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
   1892 		htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
   1893 
   1894 	/* Sync descriptors before handing to chip */
   1895 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
   1896 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1897 
   1898 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
   1899 		htole32(SK_TXCTL_OWN);
   1900 
   1901 	/* Sync first descriptor to hand it off */
   1902 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1903 
   1904 	sc_if->sk_cdata.sk_tx_cnt += cnt;
   1905 
   1906 #ifdef SK_DEBUG
   1907 	if (skdebug >= 3) {
   1908 		struct sk_tx_desc *desc;
   1909 		u_int32_t idx;
   1910 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
   1911 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
   1912 			sk_dump_txdesc(desc, idx);
   1913 		}
   1914 	}
   1915 #endif
   1916 
   1917 	*txidx = frag;
   1918 
   1919 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
   1920 
   1921 	return 0;
   1922 }
   1923 
   1924 void
   1925 sk_start(struct ifnet *ifp)
   1926 {
   1927         struct sk_if_softc	*sc_if = ifp->if_softc;
   1928         struct sk_softc		*sc = sc_if->sk_softc;
   1929         struct mbuf		*m_head = NULL;
   1930         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
   1931 	int			pkts = 0;
   1932 
   1933 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
   1934 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
   1935 
   1936 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
   1937 		IFQ_POLL(&ifp->if_snd, m_head);
   1938 		if (m_head == NULL)
   1939 			break;
   1940 
   1941 		/*
   1942 		 * Pack the data into the transmit ring. If we
   1943 		 * don't have room, set the OACTIVE flag and wait
   1944 		 * for the NIC to drain the ring.
   1945 		 */
   1946 		if (sk_encap(sc_if, m_head, &idx)) {
   1947 			ifp->if_flags |= IFF_OACTIVE;
   1948 			break;
   1949 		}
   1950 
   1951 		/* now we are committed to transmit the packet */
   1952 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1953 		pkts++;
   1954 
   1955 		/*
   1956 		 * If there's a BPF listener, bounce a copy of this frame
   1957 		 * to him.
   1958 		 */
   1959 #if NBPFILTER > 0
   1960 		if (ifp->if_bpf)
   1961 			bpf_mtap(ifp->if_bpf, m_head);
   1962 #endif
   1963 	}
   1964 	if (pkts == 0)
   1965 		return;
   1966 
   1967 	/* Transmit */
   1968 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
   1969 		sc_if->sk_cdata.sk_tx_prod = idx;
   1970 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   1971 
   1972 		/* Set a timeout in case the chip goes out to lunch. */
   1973 		ifp->if_timer = 5;
   1974 	}
   1975 }
   1976 
   1977 
   1978 void
   1979 sk_watchdog(struct ifnet *ifp)
   1980 {
   1981 	struct sk_if_softc *sc_if = ifp->if_softc;
   1982 
   1983 	/*
   1984 	 * Reclaim first as there is a possibility of losing Tx completion
   1985 	 * interrupts.
   1986 	 */
   1987 	sk_txeof(sc_if);
   1988 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
   1989 		aprint_error("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
   1990 
   1991 		ifp->if_oerrors++;
   1992 
   1993 		sk_init(ifp);
   1994 	}
   1995 }
   1996 
   1997 void
   1998 sk_shutdown(void * v)
   1999 {
   2000 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
   2001 	struct sk_softc		*sc = sc_if->sk_softc;
   2002 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
   2003 
   2004 	DPRINTFN(2, ("sk_shutdown\n"));
   2005 	sk_stop(ifp,1);
   2006 
   2007 	/* Turn off the 'driver is loaded' LED. */
   2008 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   2009 
   2010 	/*
   2011 	 * Reset the GEnesis controller. Doing this should also
   2012 	 * assert the resets on the attached XMAC(s).
   2013 	 */
   2014 	sk_reset(sc);
   2015 }
   2016 
   2017 void
   2018 sk_rxeof(struct sk_if_softc *sc_if)
   2019 {
   2020 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2021 	struct mbuf		*m;
   2022 	struct sk_chain		*cur_rx;
   2023 	struct sk_rx_desc	*cur_desc;
   2024 	int			i, cur, total_len = 0;
   2025 	u_int32_t		rxstat, sk_ctl;
   2026 	bus_dmamap_t		dmamap;
   2027 
   2028 	i = sc_if->sk_cdata.sk_rx_prod;
   2029 
   2030 	DPRINTFN(3, ("sk_rxeof %d\n", i));
   2031 
   2032 	for (;;) {
   2033 		cur = i;
   2034 
   2035 		/* Sync the descriptor */
   2036 		SK_CDRXSYNC(sc_if, cur,
   2037 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2038 
   2039 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
   2040 		if (sk_ctl & SK_RXCTL_OWN) {
   2041 			/* Invalidate the descriptor -- it's not ready yet */
   2042 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
   2043 			sc_if->sk_cdata.sk_rx_prod = i;
   2044 			break;
   2045 		}
   2046 
   2047 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
   2048 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
   2049 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
   2050 
   2051 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
   2052 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2053 
   2054 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
   2055 		m = cur_rx->sk_mbuf;
   2056 		cur_rx->sk_mbuf = NULL;
   2057 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
   2058 
   2059 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
   2060 
   2061 		SK_INC(i, SK_RX_RING_CNT);
   2062 
   2063 		if (rxstat & XM_RXSTAT_ERRFRAME) {
   2064 			ifp->if_ierrors++;
   2065 			sk_newbuf(sc_if, cur, m, dmamap);
   2066 			continue;
   2067 		}
   2068 
   2069 		/*
   2070 		 * Try to allocate a new jumbo buffer. If that
   2071 		 * fails, copy the packet to mbufs and put the
   2072 		 * jumbo buffer back in the ring so it can be
   2073 		 * re-used. If allocating mbufs fails, then we
   2074 		 * have to drop the packet.
   2075 		 */
   2076 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
   2077 			struct mbuf		*m0;
   2078 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
   2079 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
   2080 			sk_newbuf(sc_if, cur, m, dmamap);
   2081 			if (m0 == NULL) {
   2082 				aprint_error("%s: no receive buffers "
   2083 				    "available -- packet dropped!\n",
   2084 				    sc_if->sk_dev.dv_xname);
   2085 				ifp->if_ierrors++;
   2086 				continue;
   2087 			}
   2088 			m_adj(m0, ETHER_ALIGN);
   2089 			m = m0;
   2090 		} else {
   2091 			m->m_pkthdr.rcvif = ifp;
   2092 			m->m_pkthdr.len = m->m_len = total_len;
   2093 		}
   2094 
   2095 		ifp->if_ipackets++;
   2096 
   2097 #if NBPFILTER > 0
   2098 		if (ifp->if_bpf)
   2099 			bpf_mtap(ifp->if_bpf, m);
   2100 #endif
   2101 		/* pass it on. */
   2102 		(*ifp->if_input)(ifp, m);
   2103 	}
   2104 }
   2105 
   2106 void
   2107 sk_txeof(struct sk_if_softc *sc_if)
   2108 {
   2109 	struct sk_softc		*sc = sc_if->sk_softc;
   2110 	struct sk_tx_desc	*cur_tx;
   2111 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2112 	u_int32_t		idx, sk_ctl;
   2113 	struct sk_txmap_entry	*entry;
   2114 
   2115 	DPRINTFN(3, ("sk_txeof\n"));
   2116 
   2117 	/*
   2118 	 * Go through our tx ring and free mbufs for those
   2119 	 * frames that have been sent.
   2120 	 */
   2121 	idx = sc_if->sk_cdata.sk_tx_cons;
   2122 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
   2123 		SK_CDTXSYNC(sc_if, idx, 1,
   2124 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2125 
   2126 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
   2127 		sk_ctl = le32toh(cur_tx->sk_ctl);
   2128 #ifdef SK_DEBUG
   2129 		if (skdebug >= 3)
   2130 			sk_dump_txdesc(cur_tx, idx);
   2131 #endif
   2132 		if (sk_ctl & SK_TXCTL_OWN) {
   2133 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
   2134 			break;
   2135 		}
   2136 		if (sk_ctl & SK_TXCTL_LASTFRAG)
   2137 			ifp->if_opackets++;
   2138 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
   2139 			entry = sc_if->sk_cdata.sk_tx_map[idx];
   2140 
   2141 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
   2142 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
   2143 
   2144 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
   2145 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2146 
   2147 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
   2148 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
   2149 					  link);
   2150 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
   2151 		}
   2152 		sc_if->sk_cdata.sk_tx_cnt--;
   2153 		SK_INC(idx, SK_TX_RING_CNT);
   2154 	}
   2155 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
   2156 		ifp->if_timer = 0;
   2157 	else /* nudge chip to keep tx ring moving */
   2158 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   2159 
   2160 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
   2161 		ifp->if_flags &= ~IFF_OACTIVE;
   2162 
   2163 	sc_if->sk_cdata.sk_tx_cons = idx;
   2164 }
   2165 
   2166 void
   2167 sk_tick(void *xsc_if)
   2168 {
   2169 	struct sk_if_softc *sc_if = xsc_if;
   2170 	struct mii_data *mii = &sc_if->sk_mii;
   2171 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2172 	int i;
   2173 
   2174 	DPRINTFN(3, ("sk_tick\n"));
   2175 
   2176 	if (!(ifp->if_flags & IFF_UP))
   2177 		return;
   2178 
   2179 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2180 		sk_intr_bcom(sc_if);
   2181 		return;
   2182 	}
   2183 
   2184 	/*
   2185 	 * According to SysKonnect, the correct way to verify that
   2186 	 * the link has come back up is to poll bit 0 of the GPIO
   2187 	 * register three times. This pin has the signal from the
   2188 	 * link sync pin connected to it; if we read the same link
   2189 	 * state 3 times in a row, we know the link is up.
   2190 	 */
   2191 	for (i = 0; i < 3; i++) {
   2192 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
   2193 			break;
   2194 	}
   2195 
   2196 	if (i != 3) {
   2197 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2198 		return;
   2199 	}
   2200 
   2201 	/* Turn the GP0 interrupt back on. */
   2202 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2203 	SK_XM_READ_2(sc_if, XM_ISR);
   2204 	mii_tick(mii);
   2205 	mii_pollstat(mii);
   2206 	callout_stop(&sc_if->sk_tick_ch);
   2207 }
   2208 
   2209 void
   2210 sk_intr_bcom(struct sk_if_softc *sc_if)
   2211 {
   2212 	struct mii_data *mii = &sc_if->sk_mii;
   2213 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2214 	int status;
   2215 
   2216 
   2217 	DPRINTFN(3, ("sk_intr_bcom\n"));
   2218 
   2219 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2220 
   2221 	/*
   2222 	 * Read the PHY interrupt register to make sure
   2223 	 * we clear any pending interrupts.
   2224 	 */
   2225 	status = sk_xmac_miibus_readreg((struct device *)sc_if,
   2226 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
   2227 
   2228 	if (!(ifp->if_flags & IFF_RUNNING)) {
   2229 		sk_init_xmac(sc_if);
   2230 		return;
   2231 	}
   2232 
   2233 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
   2234 		int lstat;
   2235 		lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
   2236 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
   2237 
   2238 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
   2239 			mii_mediachg(mii);
   2240 			/* Turn off the link LED. */
   2241 			SK_IF_WRITE_1(sc_if, 0,
   2242 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2243 			sc_if->sk_link = 0;
   2244 		} else if (status & BRGPHY_ISR_LNK_CHG) {
   2245 			sk_xmac_miibus_writereg((struct device *)sc_if,
   2246 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
   2247 			mii_tick(mii);
   2248 			sc_if->sk_link = 1;
   2249 			/* Turn on the link LED. */
   2250 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2251 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
   2252 			    SK_LINKLED_BLINK_OFF);
   2253 			mii_pollstat(mii);
   2254 		} else {
   2255 			mii_tick(mii);
   2256 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
   2257 		}
   2258 	}
   2259 
   2260 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2261 }
   2262 
   2263 void
   2264 sk_intr_xmac(struct sk_if_softc	*sc_if)
   2265 {
   2266 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
   2267 
   2268 	DPRINTFN(3, ("sk_intr_xmac\n"));
   2269 
   2270 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
   2271 		if (status & XM_ISR_GP0_SET) {
   2272 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2273 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2274 		}
   2275 
   2276 		if (status & XM_ISR_AUTONEG_DONE) {
   2277 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2278 		}
   2279 	}
   2280 
   2281 	if (status & XM_IMR_TX_UNDERRUN)
   2282 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
   2283 
   2284 	if (status & XM_IMR_RX_OVERRUN)
   2285 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
   2286 }
   2287 
   2288 void
   2289 sk_intr_yukon(struct sk_if_softc *sc_if)
   2290 {
   2291 	int status;
   2292 
   2293 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2294 
   2295 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
   2296 }
   2297 
   2298 int
   2299 sk_intr(void *xsc)
   2300 {
   2301 	struct sk_softc		*sc = xsc;
   2302 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
   2303 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
   2304 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
   2305 	u_int32_t		status;
   2306 	int			claimed = 0;
   2307 
   2308 	if (sc_if0 != NULL)
   2309 		ifp0 = &sc_if0->sk_ethercom.ec_if;
   2310 	if (sc_if1 != NULL)
   2311 		ifp1 = &sc_if1->sk_ethercom.ec_if;
   2312 
   2313 	for (;;) {
   2314 		status = CSR_READ_4(sc, SK_ISSR);
   2315 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
   2316 
   2317 		if (!(status & sc->sk_intrmask))
   2318 			break;
   2319 
   2320 		claimed = 1;
   2321 
   2322 		/* Handle receive interrupts first. */
   2323 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
   2324 			sk_rxeof(sc_if0);
   2325 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
   2326 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2327 		}
   2328 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
   2329 			sk_rxeof(sc_if1);
   2330 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
   2331 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2332 		}
   2333 
   2334 		/* Then transmit interrupts. */
   2335 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
   2336 			sk_txeof(sc_if0);
   2337 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
   2338 			    SK_TXBMU_CLR_IRQ_EOF);
   2339 		}
   2340 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
   2341 			sk_txeof(sc_if1);
   2342 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
   2343 			    SK_TXBMU_CLR_IRQ_EOF);
   2344 		}
   2345 
   2346 		/* Then MAC interrupts. */
   2347 		if (sc_if0 && (status & SK_ISR_MAC1) &&
   2348 		    (ifp0->if_flags & IFF_RUNNING)) {
   2349 			if (sc->sk_type == SK_GENESIS)
   2350 				sk_intr_xmac(sc_if0);
   2351 			else
   2352 				sk_intr_yukon(sc_if0);
   2353 		}
   2354 
   2355 		if (sc_if1 && (status & SK_ISR_MAC2) &&
   2356 		    (ifp1->if_flags & IFF_RUNNING)) {
   2357 			if (sc->sk_type == SK_GENESIS)
   2358 				sk_intr_xmac(sc_if1);
   2359 			else
   2360 				sk_intr_yukon(sc_if1);
   2361 
   2362 		}
   2363 
   2364 		if (status & SK_ISR_EXTERNAL_REG) {
   2365 			if (sc_if0 != NULL &&
   2366 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
   2367 				sk_intr_bcom(sc_if0);
   2368 
   2369 			if (sc_if1 != NULL &&
   2370 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
   2371 				sk_intr_bcom(sc_if1);
   2372 		}
   2373 	}
   2374 
   2375 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2376 
   2377 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
   2378 		sk_start(ifp0);
   2379 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
   2380 		sk_start(ifp1);
   2381 
   2382 #if NRND > 0
   2383 	if (RND_ENABLED(&sc->rnd_source))
   2384 		rnd_add_uint32(&sc->rnd_source, status);
   2385 #endif
   2386 
   2387 	if (sc->sk_int_mod_pending)
   2388 		sk_update_int_mod(sc);
   2389 
   2390 	return claimed;
   2391 }
   2392 
   2393 void
   2394 sk_init_xmac(struct sk_if_softc	*sc_if)
   2395 {
   2396 	struct sk_softc		*sc = sc_if->sk_softc;
   2397 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2398 	static const struct sk_bcom_hack     bhack[] = {
   2399 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
   2400 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
   2401 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
   2402 	{ 0, 0 } };
   2403 
   2404 	DPRINTFN(1, ("sk_init_xmac\n"));
   2405 
   2406 	/* Unreset the XMAC. */
   2407 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
   2408 	DELAY(1000);
   2409 
   2410 	/* Reset the XMAC's internal state. */
   2411 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2412 
   2413 	/* Save the XMAC II revision */
   2414 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
   2415 
   2416 	/*
   2417 	 * Perform additional initialization for external PHYs,
   2418 	 * namely for the 1000baseTX cards that use the XMAC's
   2419 	 * GMII mode.
   2420 	 */
   2421 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2422 		int			i = 0;
   2423 		u_int32_t		val;
   2424 
   2425 		/* Take PHY out of reset. */
   2426 		val = sk_win_read_4(sc, SK_GPIO);
   2427 		if (sc_if->sk_port == SK_PORT_A)
   2428 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
   2429 		else
   2430 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
   2431 		sk_win_write_4(sc, SK_GPIO, val);
   2432 
   2433 		/* Enable GMII mode on the XMAC. */
   2434 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
   2435 
   2436 		sk_xmac_miibus_writereg((struct device *)sc_if,
   2437 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
   2438 		DELAY(10000);
   2439 		sk_xmac_miibus_writereg((struct device *)sc_if,
   2440 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
   2441 
   2442 		/*
   2443 		 * Early versions of the BCM5400 apparently have
   2444 		 * a bug that requires them to have their reserved
   2445 		 * registers initialized to some magic values. I don't
   2446 		 * know what the numbers do, I'm just the messenger.
   2447 		 */
   2448 		if (sk_xmac_miibus_readreg((struct device *)sc_if,
   2449 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
   2450 			while (bhack[i].reg) {
   2451 				sk_xmac_miibus_writereg((struct device *)sc_if,
   2452 				    SK_PHYADDR_BCOM, bhack[i].reg,
   2453 				    bhack[i].val);
   2454 				i++;
   2455 			}
   2456 		}
   2457 	}
   2458 
   2459 	/* Set station address */
   2460 	SK_XM_WRITE_2(sc_if, XM_PAR0,
   2461 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
   2462 	SK_XM_WRITE_2(sc_if, XM_PAR1,
   2463 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
   2464 	SK_XM_WRITE_2(sc_if, XM_PAR2,
   2465 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
   2466 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
   2467 
   2468 	if (ifp->if_flags & IFF_PROMISC)
   2469 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2470 	else
   2471 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2472 
   2473 	if (ifp->if_flags & IFF_BROADCAST)
   2474 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2475 	else
   2476 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2477 
   2478 	/* We don't need the FCS appended to the packet. */
   2479 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
   2480 
   2481 	/* We want short frames padded to 60 bytes. */
   2482 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
   2483 
   2484 	/*
   2485 	 * Enable the reception of all error frames. This is is
   2486 	 * a necessary evil due to the design of the XMAC. The
   2487 	 * XMAC's receive FIFO is only 8K in size, however jumbo
   2488 	 * frames can be up to 9000 bytes in length. When bad
   2489 	 * frame filtering is enabled, the XMAC's RX FIFO operates
   2490 	 * in 'store and forward' mode. For this to work, the
   2491 	 * entire frame has to fit into the FIFO, but that means
   2492 	 * that jumbo frames larger than 8192 bytes will be
   2493 	 * truncated. Disabling all bad frame filtering causes
   2494 	 * the RX FIFO to operate in streaming mode, in which
   2495 	 * case the XMAC will start transfering frames out of the
   2496 	 * RX FIFO as soon as the FIFO threshold is reached.
   2497 	 */
   2498 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
   2499 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
   2500 	    XM_MODE_RX_INRANGELEN);
   2501 
   2502 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2503 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2504 	else
   2505 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2506 
   2507 	/*
   2508 	 * Bump up the transmit threshold. This helps hold off transmit
   2509 	 * underruns when we're blasting traffic from both ports at once.
   2510 	 */
   2511 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
   2512 
   2513 	/* Set multicast filter */
   2514 	sk_setmulti(sc_if);
   2515 
   2516 	/* Clear and enable interrupts */
   2517 	SK_XM_READ_2(sc_if, XM_ISR);
   2518 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
   2519 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
   2520 	else
   2521 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2522 
   2523 	/* Configure MAC arbiter */
   2524 	switch (sc_if->sk_xmac_rev) {
   2525 	case XM_XMAC_REV_B2:
   2526 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
   2527 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
   2528 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
   2529 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
   2530 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
   2531 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
   2532 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
   2533 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
   2534 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2535 		break;
   2536 	case XM_XMAC_REV_C1:
   2537 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
   2538 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
   2539 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
   2540 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
   2541 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
   2542 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
   2543 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
   2544 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
   2545 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2546 		break;
   2547 	default:
   2548 		break;
   2549 	}
   2550 	sk_win_write_2(sc, SK_MACARB_CTL,
   2551 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
   2552 
   2553 	sc_if->sk_link = 1;
   2554 }
   2555 
   2556 void sk_init_yukon(struct sk_if_softc *sc_if)
   2557 {
   2558 	u_int32_t		/*mac, */phy;
   2559 	u_int16_t		reg;
   2560 	struct sk_softc		*sc;
   2561 	int			i;
   2562 
   2563 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
   2564 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
   2565 
   2566 	sc = sc_if->sk_softc;
   2567 	if (sc->sk_type == SK_YUKON_LITE &&
   2568 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
   2569 		/* Take PHY out of reset. */
   2570 		sk_win_write_4(sc, SK_GPIO,
   2571 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
   2572 	}
   2573 
   2574 
   2575 	/* GMAC and GPHY Reset */
   2576 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
   2577 
   2578 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
   2579 
   2580 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2581 	DELAY(1000);
   2582 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
   2583 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2584 	DELAY(1000);
   2585 
   2586 
   2587 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
   2588 
   2589 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
   2590 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
   2591 
   2592 	switch (sc_if->sk_softc->sk_pmd) {
   2593 	case IFM_1000_SX:
   2594 	case IFM_1000_LX:
   2595 		phy |= SK_GPHY_FIBER;
   2596 		break;
   2597 
   2598 	case IFM_1000_CX:
   2599 	case IFM_1000_T:
   2600 		phy |= SK_GPHY_COPPER;
   2601 		break;
   2602 	}
   2603 
   2604 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
   2605 
   2606 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
   2607 	DELAY(1000);
   2608 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
   2609 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
   2610 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
   2611 
   2612 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
   2613 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
   2614 
   2615 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
   2616 
   2617 	/* unused read of the interrupt source register */
   2618 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
   2619 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2620 
   2621 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
   2622 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
   2623 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2624 
   2625 	/* MIB Counter Clear Mode set */
   2626         reg |= YU_PAR_MIB_CLR;
   2627 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2628 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
   2629 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2630 
   2631 	/* MIB Counter Clear Mode clear */
   2632 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
   2633         reg &= ~YU_PAR_MIB_CLR;
   2634 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2635 
   2636 	/* receive control reg */
   2637 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
   2638 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
   2639 		      YU_RCR_CRCR);
   2640 
   2641 	/* transmit parameter register */
   2642 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
   2643 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
   2644 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
   2645 
   2646 	/* serial mode register */
   2647 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
   2648 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
   2649 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
   2650 		      YU_SMR_IPG_DATA(0x1e));
   2651 
   2652 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
   2653 	/* Setup Yukon's address */
   2654 	for (i = 0; i < 3; i++) {
   2655 		/* Write Source Address 1 (unicast filter) */
   2656 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
   2657 			      sc_if->sk_enaddr[i * 2] |
   2658 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
   2659 	}
   2660 
   2661 	for (i = 0; i < 3; i++) {
   2662 		reg = sk_win_read_2(sc_if->sk_softc,
   2663 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
   2664 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
   2665 	}
   2666 
   2667 	/* Set multicast filter */
   2668 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
   2669 	sk_setmulti(sc_if);
   2670 
   2671 	/* enable interrupt mask for counter overflows */
   2672 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
   2673 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
   2674 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
   2675 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
   2676 
   2677 	/* Configure RX MAC FIFO */
   2678 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
   2679 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
   2680 
   2681 	/* Configure TX MAC FIFO */
   2682 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
   2683 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
   2684 
   2685 	DPRINTFN(6, ("sk_init_yukon: end\n"));
   2686 }
   2687 
   2688 /*
   2689  * Note that to properly initialize any part of the GEnesis chip,
   2690  * you first have to take it out of reset mode.
   2691  */
   2692 int
   2693 sk_init(struct ifnet *ifp)
   2694 {
   2695 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2696 	struct sk_softc		*sc = sc_if->sk_softc;
   2697 	struct mii_data		*mii = &sc_if->sk_mii;
   2698 	int			s;
   2699 	u_int32_t		imr, sk_imtimer_ticks;
   2700 
   2701 	DPRINTFN(1, ("sk_init\n"));
   2702 
   2703 	s = splnet();
   2704 
   2705 	if (ifp->if_flags & IFF_RUNNING) {
   2706 		splx(s);
   2707 		return 0;
   2708 	}
   2709 
   2710 	/* Cancel pending I/O and free all RX/TX buffers. */
   2711 	sk_stop(ifp,0);
   2712 
   2713 	if (sc->sk_type == SK_GENESIS) {
   2714 		/* Configure LINK_SYNC LED */
   2715 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
   2716 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2717 			      SK_LINKLED_LINKSYNC_ON);
   2718 
   2719 		/* Configure RX LED */
   2720 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
   2721 			      SK_RXLEDCTL_COUNTER_START);
   2722 
   2723 		/* Configure TX LED */
   2724 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
   2725 			      SK_TXLEDCTL_COUNTER_START);
   2726 	}
   2727 
   2728 	/* Configure I2C registers */
   2729 
   2730 	/* Configure XMAC(s) */
   2731 	switch (sc->sk_type) {
   2732 	case SK_GENESIS:
   2733 		sk_init_xmac(sc_if);
   2734 		break;
   2735 	case SK_YUKON:
   2736 	case SK_YUKON_LITE:
   2737 	case SK_YUKON_LP:
   2738 		sk_init_yukon(sc_if);
   2739 		break;
   2740 	}
   2741 	mii_mediachg(mii);
   2742 
   2743 	if (sc->sk_type == SK_GENESIS) {
   2744 		/* Configure MAC FIFOs */
   2745 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
   2746 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
   2747 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
   2748 
   2749 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
   2750 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
   2751 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
   2752 	}
   2753 
   2754 	/* Configure transmit arbiter(s) */
   2755 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
   2756 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
   2757 
   2758 	/* Configure RAMbuffers */
   2759 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
   2760 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
   2761 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
   2762 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
   2763 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
   2764 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
   2765 
   2766 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
   2767 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
   2768 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
   2769 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
   2770 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
   2771 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
   2772 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
   2773 
   2774 	/* Configure BMUs */
   2775 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
   2776 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
   2777 	    SK_RX_RING_ADDR(sc_if, 0));
   2778 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
   2779 
   2780 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
   2781 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
   2782             SK_TX_RING_ADDR(sc_if, 0));
   2783 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
   2784 
   2785 	/* Init descriptors */
   2786 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
   2787 		aprint_error("%s: initialization failed: no "
   2788 		    "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
   2789 		sk_stop(ifp,0);
   2790 		splx(s);
   2791 		return ENOBUFS;
   2792 	}
   2793 
   2794 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
   2795 		aprint_error("%s: initialization failed: no "
   2796 		    "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
   2797 		sk_stop(ifp,0);
   2798 		splx(s);
   2799 		return ENOBUFS;
   2800 	}
   2801 
   2802 	/* Set interrupt moderation if changed via sysctl. */
   2803 	switch (sc->sk_type) {
   2804 	case SK_GENESIS:
   2805 		sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   2806 		break;
   2807 	case SK_YUKON_EC:
   2808 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   2809 		break;
   2810 	default:
   2811 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   2812 	}
   2813 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
   2814 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
   2815 		sk_win_write_4(sc, SK_IMTIMERINIT,
   2816 		    SK_IM_USECS(sc->sk_int_mod));
   2817 		aprint_verbose("%s: interrupt moderation is %d us\n",
   2818 		    sc->sk_dev.dv_xname, sc->sk_int_mod);
   2819 	}
   2820 
   2821 	/* Configure interrupt handling */
   2822 	CSR_READ_4(sc, SK_ISSR);
   2823 	if (sc_if->sk_port == SK_PORT_A)
   2824 		sc->sk_intrmask |= SK_INTRS1;
   2825 	else
   2826 		sc->sk_intrmask |= SK_INTRS2;
   2827 
   2828 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
   2829 
   2830 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2831 
   2832 	/* Start BMUs. */
   2833 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
   2834 
   2835 	if (sc->sk_type == SK_GENESIS) {
   2836 		/* Enable XMACs TX and RX state machines */
   2837 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
   2838 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
   2839 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2840 	}
   2841 
   2842 	if (SK_YUKON_FAMILY(sc->sk_type)) {
   2843 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
   2844 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
   2845 		reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
   2846 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
   2847 	}
   2848 
   2849 
   2850 	ifp->if_flags |= IFF_RUNNING;
   2851 	ifp->if_flags &= ~IFF_OACTIVE;
   2852 
   2853 	splx(s);
   2854 	return 0;
   2855 }
   2856 
   2857 void
   2858 sk_stop(struct ifnet *ifp, int disable)
   2859 {
   2860         struct sk_if_softc	*sc_if = ifp->if_softc;
   2861 	struct sk_softc		*sc = sc_if->sk_softc;
   2862 	int			i;
   2863 
   2864 	DPRINTFN(1, ("sk_stop\n"));
   2865 
   2866 	callout_stop(&sc_if->sk_tick_ch);
   2867 
   2868 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2869 		u_int32_t		val;
   2870 
   2871 		/* Put PHY back into reset. */
   2872 		val = sk_win_read_4(sc, SK_GPIO);
   2873 		if (sc_if->sk_port == SK_PORT_A) {
   2874 			val |= SK_GPIO_DIR0;
   2875 			val &= ~SK_GPIO_DAT0;
   2876 		} else {
   2877 			val |= SK_GPIO_DIR2;
   2878 			val &= ~SK_GPIO_DAT2;
   2879 		}
   2880 		sk_win_write_4(sc, SK_GPIO, val);
   2881 	}
   2882 
   2883 	/* Turn off various components of this interface. */
   2884 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2885 	switch (sc->sk_type) {
   2886 	case SK_GENESIS:
   2887 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
   2888 			      SK_TXMACCTL_XMAC_RESET);
   2889 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
   2890 		break;
   2891 	case SK_YUKON:
   2892 	case SK_YUKON_LITE:
   2893 	case SK_YUKON_LP:
   2894 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
   2895 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
   2896 		break;
   2897 	}
   2898 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
   2899 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2900 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
   2901 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2902 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
   2903 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2904 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2905 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2906 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
   2907 
   2908 	/* Disable interrupts */
   2909 	if (sc_if->sk_port == SK_PORT_A)
   2910 		sc->sk_intrmask &= ~SK_INTRS1;
   2911 	else
   2912 		sc->sk_intrmask &= ~SK_INTRS2;
   2913 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2914 
   2915 	SK_XM_READ_2(sc_if, XM_ISR);
   2916 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2917 
   2918 	/* Free RX and TX mbufs still in the queues. */
   2919 	for (i = 0; i < SK_RX_RING_CNT; i++) {
   2920 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
   2921 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
   2922 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   2923 		}
   2924 	}
   2925 
   2926 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   2927 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
   2928 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
   2929 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   2930 		}
   2931 	}
   2932 
   2933 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
   2934 }
   2935 
   2936 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
   2937 
   2938 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
   2939 
   2940 #ifdef SK_DEBUG
   2941 void
   2942 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
   2943 {
   2944 #define DESC_PRINT(X)					\
   2945 	if (X)					\
   2946 		printf("txdesc[%d]." #X "=%#x\n",	\
   2947 		       idx, X);
   2948 
   2949 	DESC_PRINT(le32toh(desc->sk_ctl));
   2950 	DESC_PRINT(le32toh(desc->sk_next));
   2951 	DESC_PRINT(le32toh(desc->sk_data_lo));
   2952 	DESC_PRINT(le32toh(desc->sk_data_hi));
   2953 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
   2954 	DESC_PRINT(le16toh(desc->sk_rsvd0));
   2955 	DESC_PRINT(le16toh(desc->sk_csum_startval));
   2956 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
   2957 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
   2958 	DESC_PRINT(le16toh(desc->sk_rsvd1));
   2959 #undef PRINT
   2960 }
   2961 
   2962 void
   2963 sk_dump_bytes(const char *data, int len)
   2964 {
   2965 	int c, i, j;
   2966 
   2967 	for (i = 0; i < len; i += 16) {
   2968 		printf("%08x  ", i);
   2969 		c = len - i;
   2970 		if (c > 16) c = 16;
   2971 
   2972 		for (j = 0; j < c; j++) {
   2973 			printf("%02x ", data[i + j] & 0xff);
   2974 			if ((j & 0xf) == 7 && j > 0)
   2975 				printf(" ");
   2976 		}
   2977 
   2978 		for (; j < 16; j++)
   2979 			printf("   ");
   2980 		printf("  ");
   2981 
   2982 		for (j = 0; j < c; j++) {
   2983 			int ch = data[i + j] & 0xff;
   2984 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
   2985 		}
   2986 
   2987 		printf("\n");
   2988 
   2989 		if (c < 16)
   2990 			break;
   2991 	}
   2992 }
   2993 
   2994 void
   2995 sk_dump_mbuf(struct mbuf *m)
   2996 {
   2997 	int count = m->m_pkthdr.len;
   2998 
   2999 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
   3000 
   3001 	while (count > 0 && m) {
   3002 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
   3003 		       m, m->m_data, m->m_len);
   3004 		sk_dump_bytes(mtod(m, char *), m->m_len);
   3005 
   3006 		count -= m->m_len;
   3007 		m = m->m_next;
   3008 	}
   3009 }
   3010 #endif
   3011 
   3012 static int
   3013 sk_sysctl_handler(SYSCTLFN_ARGS)
   3014 {
   3015 	int error, t;
   3016 	struct sysctlnode node;
   3017 	struct sk_softc *sc;
   3018 
   3019 	node = *rnode;
   3020 	sc = node.sysctl_data;
   3021 	t = sc->sk_int_mod;
   3022 	node.sysctl_data = &t;
   3023 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3024 	if (error || newp == NULL)
   3025 		return error;
   3026 
   3027 	if (t < SK_IM_MIN || t > SK_IM_MAX)
   3028 		return EINVAL;
   3029 
   3030 	/* update the softc with sysctl-changed value, and mark
   3031 	   for hardware update */
   3032 	sc->sk_int_mod = t;
   3033 	sc->sk_int_mod_pending = 1;
   3034 	return 0;
   3035 }
   3036 
   3037 /*
   3038  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
   3039  * set up in skc_attach()
   3040  */
   3041 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
   3042 {
   3043 	int rc;
   3044 	const struct sysctlnode *node;
   3045 
   3046 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   3047 	    0, CTLTYPE_NODE, "hw", NULL,
   3048 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   3049 		goto err;
   3050 	}
   3051 
   3052 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   3053 	    0, CTLTYPE_NODE, "sk",
   3054 	    SYSCTL_DESCR("sk interface controls"),
   3055 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   3056 		goto err;
   3057 	}
   3058 
   3059 	sk_root_num = node->sysctl_num;
   3060 	return;
   3061 
   3062 err:
   3063 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
   3064 }
   3065