if_sk.c revision 1.21.2.5 1 /* $NetBSD: if_sk.c,v 1.21.2.5 2006/09/14 12:31:33 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the NetBSD
18 * Foundation, Inc. and its contributors.
19 * 4. Neither the name of The NetBSD Foundation nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
37
38 /*
39 * Copyright (c) 1997, 1998, 1999, 2000
40 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Bill Paul.
53 * 4. Neither the name of the author nor the names of any co-contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67 * THE POSSIBILITY OF SUCH DAMAGE.
68 *
69 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70 */
71
72 /*
73 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
74 *
75 * Permission to use, copy, modify, and distribute this software for any
76 * purpose with or without fee is hereby granted, provided that the above
77 * copyright notice and this permission notice appear in all copies.
78 *
79 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86 */
87
88 /*
89 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90 * the SK-984x series adapters, both single port and dual port.
91 * References:
92 * The XaQti XMAC II datasheet,
93 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 * The SysKonnect GEnesis manual, http://www.syskonnect.com
95 *
96 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98 * convenience to others until Vitesse corrects this problem:
99 *
100 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101 *
102 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
103 * Department of Electrical Engineering
104 * Columbia University, New York City
105 */
106
107 /*
108 * The SysKonnect gigabit ethernet adapters consist of two main
109 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111 * components and a PHY while the GEnesis controller provides a PCI
112 * interface with DMA support. Each card may have between 512K and
113 * 2MB of SRAM on board depending on the configuration.
114 *
115 * The SysKonnect GEnesis controller can have either one or two XMAC
116 * chips connected to it, allowing single or dual port NIC configurations.
117 * SysKonnect has the distinction of being the only vendor on the market
118 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120 * XMAC registers. This driver takes advantage of these features to allow
121 * both XMACs to operate as independent interfaces.
122 */
123
124 #include "bpfilter.h"
125 #include "rnd.h"
126
127 #include <sys/param.h>
128 #include <sys/systm.h>
129 #include <sys/sockio.h>
130 #include <sys/mbuf.h>
131 #include <sys/malloc.h>
132 #include <sys/kernel.h>
133 #include <sys/socket.h>
134 #include <sys/device.h>
135 #include <sys/queue.h>
136 #include <sys/callout.h>
137 #include <sys/sysctl.h>
138 #include <sys/endian.h>
139
140 #include <net/if.h>
141 #include <net/if_dl.h>
142 #include <net/if_types.h>
143
144 #include <net/if_media.h>
145
146 #if NBPFILTER > 0
147 #include <net/bpf.h>
148 #endif
149 #if NRND > 0
150 #include <sys/rnd.h>
151 #endif
152
153 #include <dev/mii/mii.h>
154 #include <dev/mii/miivar.h>
155 #include <dev/mii/brgphyreg.h>
156
157 #include <dev/pci/pcireg.h>
158 #include <dev/pci/pcivar.h>
159 #include <dev/pci/pcidevs.h>
160
161 /* #define SK_USEIOSPACE */
162
163 #include <dev/pci/if_skreg.h>
164 #include <dev/pci/if_skvar.h>
165
166 int skc_probe(struct device *, struct cfdata *, void *);
167 void skc_attach(struct device *, struct device *self, void *aux);
168 int sk_probe(struct device *, struct cfdata *, void *);
169 void sk_attach(struct device *, struct device *self, void *aux);
170 int skcprint(void *, const char *);
171 int sk_intr(void *);
172 void sk_intr_bcom(struct sk_if_softc *);
173 void sk_intr_xmac(struct sk_if_softc *);
174 void sk_intr_yukon(struct sk_if_softc *);
175 void sk_rxeof(struct sk_if_softc *);
176 void sk_txeof(struct sk_if_softc *);
177 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
178 void sk_start(struct ifnet *);
179 int sk_ioctl(struct ifnet *, u_long, caddr_t);
180 int sk_init(struct ifnet *);
181 void sk_init_xmac(struct sk_if_softc *);
182 void sk_init_yukon(struct sk_if_softc *);
183 void sk_stop(struct ifnet *, int);
184 void sk_watchdog(struct ifnet *);
185 void sk_shutdown(void *);
186 int sk_ifmedia_upd(struct ifnet *);
187 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
188 void sk_reset(struct sk_softc *);
189 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
190 int sk_alloc_jumbo_mem(struct sk_if_softc *);
191 void sk_free_jumbo_mem(struct sk_if_softc *);
192 void *sk_jalloc(struct sk_if_softc *);
193 void sk_jfree(struct mbuf *, caddr_t, size_t, void *);
194 int sk_init_rx_ring(struct sk_if_softc *);
195 int sk_init_tx_ring(struct sk_if_softc *);
196 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
197 void sk_vpd_read_res(struct sk_softc *,
198 struct vpd_res *, int);
199 void sk_vpd_read(struct sk_softc *);
200
201 void sk_update_int_mod(struct sk_softc *);
202
203 int sk_xmac_miibus_readreg(struct device *, int, int);
204 void sk_xmac_miibus_writereg(struct device *, int, int, int);
205 void sk_xmac_miibus_statchg(struct device *);
206
207 int sk_marv_miibus_readreg(struct device *, int, int);
208 void sk_marv_miibus_writereg(struct device *, int, int, int);
209 void sk_marv_miibus_statchg(struct device *);
210
211 u_int32_t sk_xmac_hash(caddr_t);
212 u_int32_t sk_yukon_hash(caddr_t);
213 void sk_setfilt(struct sk_if_softc *, caddr_t, int);
214 void sk_setmulti(struct sk_if_softc *);
215 void sk_tick(void *);
216
217 /* #define SK_DEBUG 2 */
218 #ifdef SK_DEBUG
219 #define DPRINTF(x) if (skdebug) printf x
220 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
221 int skdebug = SK_DEBUG;
222
223 void sk_dump_txdesc(struct sk_tx_desc *, int);
224 void sk_dump_mbuf(struct mbuf *);
225 void sk_dump_bytes(const char *, int);
226 #else
227 #define DPRINTF(x)
228 #define DPRINTFN(n,x)
229 #endif
230
231 static int sk_sysctl_handler(SYSCTLFN_PROTO);
232 static int sk_root_num;
233
234 /* supported device vendors */
235 static const struct sk_product {
236 pci_vendor_id_t sk_vendor;
237 pci_product_id_t sk_product;
238 } sk_products[] = {
239 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
240 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
241 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T, },
242 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
243 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
244 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
245 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
246 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
247 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
248 { 0, 0, }
249 };
250
251 #define SK_LINKSYS_EG1032_SUBID 0x00151737
252
253 static inline u_int32_t
254 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
255 {
256 #ifdef SK_USEIOSPACE
257 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
258 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
259 #else
260 return CSR_READ_4(sc, reg);
261 #endif
262 }
263
264 static inline u_int16_t
265 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
266 {
267 #ifdef SK_USEIOSPACE
268 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
269 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
270 #else
271 return CSR_READ_2(sc, reg);
272 #endif
273 }
274
275 static inline u_int8_t
276 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
277 {
278 #ifdef SK_USEIOSPACE
279 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
280 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
281 #else
282 return CSR_READ_1(sc, reg);
283 #endif
284 }
285
286 static inline void
287 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
288 {
289 #ifdef SK_USEIOSPACE
290 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
291 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
292 #else
293 CSR_WRITE_4(sc, reg, x);
294 #endif
295 }
296
297 static inline void
298 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
299 {
300 #ifdef SK_USEIOSPACE
301 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
302 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
303 #else
304 CSR_WRITE_2(sc, reg, x);
305 #endif
306 }
307
308 static inline void
309 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
310 {
311 #ifdef SK_USEIOSPACE
312 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
313 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
314 #else
315 CSR_WRITE_1(sc, reg, x);
316 #endif
317 }
318
319 /*
320 * The VPD EEPROM contains Vital Product Data, as suggested in
321 * the PCI 2.1 specification. The VPD data is separared into areas
322 * denoted by resource IDs. The SysKonnect VPD contains an ID string
323 * resource (the name of the adapter), a read-only area resource
324 * containing various key/data fields and a read/write area which
325 * can be used to store asset management information or log messages.
326 * We read the ID string and read-only into buffers attached to
327 * the controller softc structure for later use. At the moment,
328 * we only use the ID string during sk_attach().
329 */
330 u_int8_t
331 sk_vpd_readbyte(struct sk_softc *sc, int addr)
332 {
333 int i;
334
335 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
336 for (i = 0; i < SK_TIMEOUT; i++) {
337 DELAY(1);
338 if (sk_win_read_2(sc,
339 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
340 break;
341 }
342
343 if (i == SK_TIMEOUT)
344 return 0;
345
346 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
347 }
348
349 void
350 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
351 {
352 int i;
353 u_int8_t *ptr;
354
355 ptr = (u_int8_t *)res;
356 for (i = 0; i < sizeof(struct vpd_res); i++)
357 ptr[i] = sk_vpd_readbyte(sc, i + addr);
358 }
359
360 void
361 sk_vpd_read(struct sk_softc *sc)
362 {
363 int pos = 0, i;
364 struct vpd_res res;
365
366 if (sc->sk_vpd_prodname != NULL)
367 free(sc->sk_vpd_prodname, M_DEVBUF);
368 if (sc->sk_vpd_readonly != NULL)
369 free(sc->sk_vpd_readonly, M_DEVBUF);
370 sc->sk_vpd_prodname = NULL;
371 sc->sk_vpd_readonly = NULL;
372
373 sk_vpd_read_res(sc, &res, pos);
374
375 if (res.vr_id != VPD_RES_ID) {
376 aprint_error("%s: bad VPD resource id: expected %x got %x\n",
377 sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
378 return;
379 }
380
381 pos += sizeof(res);
382 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
383 if (sc->sk_vpd_prodname == NULL)
384 panic("sk_vpd_read");
385 for (i = 0; i < res.vr_len; i++)
386 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
387 sc->sk_vpd_prodname[i] = '\0';
388 pos += i;
389
390 sk_vpd_read_res(sc, &res, pos);
391
392 if (res.vr_id != VPD_RES_READ) {
393 aprint_error("%s: bad VPD resource id: expected %x got %x\n",
394 sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
395 return;
396 }
397
398 pos += sizeof(res);
399 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
400 if (sc->sk_vpd_readonly == NULL)
401 panic("sk_vpd_read");
402 for (i = 0; i < res.vr_len ; i++)
403 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
404 }
405
406 int
407 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
408 {
409 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
410 int i;
411
412 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
413
414 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
415 return 0;
416
417 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
418 SK_XM_READ_2(sc_if, XM_PHY_DATA);
419 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
420 for (i = 0; i < SK_TIMEOUT; i++) {
421 DELAY(1);
422 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
423 XM_MMUCMD_PHYDATARDY)
424 break;
425 }
426
427 if (i == SK_TIMEOUT) {
428 aprint_error("%s: phy failed to come ready\n",
429 sc_if->sk_dev.dv_xname);
430 return 0;
431 }
432 }
433 DELAY(1);
434 return SK_XM_READ_2(sc_if, XM_PHY_DATA);
435 }
436
437 void
438 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
439 {
440 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
441 int i;
442
443 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
444
445 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
446 for (i = 0; i < SK_TIMEOUT; i++) {
447 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
448 break;
449 }
450
451 if (i == SK_TIMEOUT) {
452 aprint_error("%s: phy failed to come ready\n",
453 sc_if->sk_dev.dv_xname);
454 return;
455 }
456
457 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
458 for (i = 0; i < SK_TIMEOUT; i++) {
459 DELAY(1);
460 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
461 break;
462 }
463
464 if (i == SK_TIMEOUT)
465 aprint_error("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
466 }
467
468 void
469 sk_xmac_miibus_statchg(struct device *dev)
470 {
471 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
472 struct mii_data *mii = &sc_if->sk_mii;
473
474 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
475
476 /*
477 * If this is a GMII PHY, manually set the XMAC's
478 * duplex mode accordingly.
479 */
480 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
481 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
482 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
483 else
484 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
485 }
486 }
487
488 int
489 sk_marv_miibus_readreg(struct device *dev, int phy, int reg)
490 {
491 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
492 u_int16_t val;
493 int i;
494
495 if (phy != 0 ||
496 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
497 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
498 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
499 phy, reg));
500 return 0;
501 }
502
503 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
504 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
505
506 for (i = 0; i < SK_TIMEOUT; i++) {
507 DELAY(1);
508 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
509 if (val & YU_SMICR_READ_VALID)
510 break;
511 }
512
513 if (i == SK_TIMEOUT) {
514 aprint_error("%s: phy failed to come ready\n",
515 sc_if->sk_dev.dv_xname);
516 return 0;
517 }
518
519 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
520 SK_TIMEOUT));
521
522 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
523
524 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
525 phy, reg, val));
526
527 return val;
528 }
529
530 void
531 sk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
532 {
533 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
534 int i;
535
536 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
537 phy, reg, val));
538
539 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
540 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
541 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
542
543 for (i = 0; i < SK_TIMEOUT; i++) {
544 DELAY(1);
545 if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
546 break;
547 }
548 }
549
550 void
551 sk_marv_miibus_statchg(struct device *dev)
552 {
553 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
554 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
555 }
556
557 #define SK_HASH_BITS 6
558
559 u_int32_t
560 sk_xmac_hash(caddr_t addr)
561 {
562 u_int32_t crc;
563
564 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
565 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
566 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
567 return crc;
568 }
569
570 u_int32_t
571 sk_yukon_hash(caddr_t addr)
572 {
573 u_int32_t crc;
574
575 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
576 crc &= ((1 << SK_HASH_BITS) - 1);
577 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
578 return crc;
579 }
580
581 void
582 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
583 {
584 int base = XM_RXFILT_ENTRY(slot);
585
586 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
587 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
588 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
589 }
590
591 void
592 sk_setmulti(struct sk_if_softc *sc_if)
593 {
594 struct sk_softc *sc = sc_if->sk_softc;
595 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
596 u_int32_t hashes[2] = { 0, 0 };
597 int h = 0, i;
598 struct ethercom *ec = &sc_if->sk_ethercom;
599 struct ether_multi *enm;
600 struct ether_multistep step;
601 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
602
603 /* First, zot all the existing filters. */
604 switch (sc->sk_type) {
605 case SK_GENESIS:
606 for (i = 1; i < XM_RXFILT_MAX; i++)
607 sk_setfilt(sc_if, (caddr_t)&dummy, i);
608
609 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
610 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
611 break;
612 case SK_YUKON:
613 case SK_YUKON_LITE:
614 case SK_YUKON_LP:
615 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
616 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
617 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
618 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
619 break;
620 }
621
622 /* Now program new ones. */
623 allmulti:
624 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
625 hashes[0] = 0xFFFFFFFF;
626 hashes[1] = 0xFFFFFFFF;
627 } else {
628 i = 1;
629 /* First find the tail of the list. */
630 ETHER_FIRST_MULTI(step, ec, enm);
631 while (enm != NULL) {
632 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
633 ETHER_ADDR_LEN)) {
634 ifp->if_flags |= IFF_ALLMULTI;
635 goto allmulti;
636 }
637 DPRINTFN(2,("multicast address %s\n",
638 ether_sprintf(enm->enm_addrlo)));
639 /*
640 * Program the first XM_RXFILT_MAX multicast groups
641 * into the perfect filter. For all others,
642 * use the hash table.
643 */
644 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
645 sk_setfilt(sc_if, enm->enm_addrlo, i);
646 i++;
647 }
648 else {
649 switch (sc->sk_type) {
650 case SK_GENESIS:
651 h = sk_xmac_hash(enm->enm_addrlo);
652 break;
653 case SK_YUKON:
654 case SK_YUKON_LITE:
655 case SK_YUKON_LP:
656 h = sk_yukon_hash(enm->enm_addrlo);
657 break;
658 }
659 if (h < 32)
660 hashes[0] |= (1 << h);
661 else
662 hashes[1] |= (1 << (h - 32));
663 }
664
665 ETHER_NEXT_MULTI(step, enm);
666 }
667 }
668
669 switch (sc->sk_type) {
670 case SK_GENESIS:
671 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
672 XM_MODE_RX_USE_PERFECT);
673 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
674 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
675 break;
676 case SK_YUKON:
677 case SK_YUKON_LITE:
678 case SK_YUKON_LP:
679 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
680 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
681 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
682 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
683 break;
684 }
685 }
686
687 int
688 sk_init_rx_ring(struct sk_if_softc *sc_if)
689 {
690 struct sk_chain_data *cd = &sc_if->sk_cdata;
691 struct sk_ring_data *rd = sc_if->sk_rdata;
692 int i;
693
694 bzero((char *)rd->sk_rx_ring,
695 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
696
697 for (i = 0; i < SK_RX_RING_CNT; i++) {
698 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
699 if (i == (SK_RX_RING_CNT - 1)) {
700 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
701 rd->sk_rx_ring[i].sk_next =
702 htole32(SK_RX_RING_ADDR(sc_if, 0));
703 } else {
704 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
705 rd->sk_rx_ring[i].sk_next =
706 htole32(SK_RX_RING_ADDR(sc_if,i+1));
707 }
708 }
709
710 for (i = 0; i < SK_RX_RING_CNT; i++) {
711 if (sk_newbuf(sc_if, i, NULL,
712 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
713 aprint_error("%s: failed alloc of %dth mbuf\n",
714 sc_if->sk_dev.dv_xname, i);
715 return ENOBUFS;
716 }
717 }
718 sc_if->sk_cdata.sk_rx_prod = 0;
719 sc_if->sk_cdata.sk_rx_cons = 0;
720
721 return 0;
722 }
723
724 int
725 sk_init_tx_ring(struct sk_if_softc *sc_if)
726 {
727 struct sk_chain_data *cd = &sc_if->sk_cdata;
728 struct sk_ring_data *rd = sc_if->sk_rdata;
729 int i;
730
731 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
732 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
733
734 for (i = 0; i < SK_TX_RING_CNT; i++) {
735 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
736 if (i == (SK_TX_RING_CNT - 1)) {
737 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
738 rd->sk_tx_ring[i].sk_next =
739 htole32(SK_TX_RING_ADDR(sc_if, 0));
740 } else {
741 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
742 rd->sk_tx_ring[i].sk_next =
743 htole32(SK_TX_RING_ADDR(sc_if,i+1));
744 }
745 }
746
747 sc_if->sk_cdata.sk_tx_prod = 0;
748 sc_if->sk_cdata.sk_tx_cons = 0;
749 sc_if->sk_cdata.sk_tx_cnt = 0;
750
751 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
752 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
753
754 return 0;
755 }
756
757 int
758 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
759 bus_dmamap_t dmamap)
760 {
761 struct mbuf *m_new = NULL;
762 struct sk_chain *c;
763 struct sk_rx_desc *r;
764
765 if (m == NULL) {
766 caddr_t buf = NULL;
767
768 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
769 if (m_new == NULL) {
770 aprint_error("%s: no memory for rx list -- "
771 "packet dropped!\n", sc_if->sk_dev.dv_xname);
772 return ENOBUFS;
773 }
774
775 /* Allocate the jumbo buffer */
776 buf = sk_jalloc(sc_if);
777 if (buf == NULL) {
778 m_freem(m_new);
779 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
780 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
781 return ENOBUFS;
782 }
783
784 /* Attach the buffer to the mbuf */
785 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
786 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
787
788 } else {
789 /*
790 * We're re-using a previously allocated mbuf;
791 * be sure to re-init pointers and lengths to
792 * default values.
793 */
794 m_new = m;
795 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
796 m_new->m_data = m_new->m_ext.ext_buf;
797 }
798 m_adj(m_new, ETHER_ALIGN);
799
800 c = &sc_if->sk_cdata.sk_rx_chain[i];
801 r = c->sk_desc;
802 c->sk_mbuf = m_new;
803 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
804 (((vaddr_t)m_new->m_data
805 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
806 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
807
808 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
809
810 return 0;
811 }
812
813 /*
814 * Memory management for jumbo frames.
815 */
816
817 int
818 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
819 {
820 struct sk_softc *sc = sc_if->sk_softc;
821 caddr_t ptr, kva;
822 bus_dma_segment_t seg;
823 int i, rseg, state, error;
824 struct sk_jpool_entry *entry;
825
826 state = error = 0;
827
828 /* Grab a big chunk o' storage. */
829 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
830 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
831 aprint_error("%s: can't alloc rx buffers\n", sc->sk_dev.dv_xname);
832 return ENOBUFS;
833 }
834
835 state = 1;
836 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, &kva,
837 BUS_DMA_NOWAIT)) {
838 aprint_error("%s: can't map dma buffers (%d bytes)\n",
839 sc->sk_dev.dv_xname, SK_JMEM);
840 error = ENOBUFS;
841 goto out;
842 }
843
844 state = 2;
845 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
846 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
847 aprint_error("%s: can't create dma map\n", sc->sk_dev.dv_xname);
848 error = ENOBUFS;
849 goto out;
850 }
851
852 state = 3;
853 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
854 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
855 aprint_error("%s: can't load dma map\n", sc->sk_dev.dv_xname);
856 error = ENOBUFS;
857 goto out;
858 }
859
860 state = 4;
861 sc_if->sk_cdata.sk_jumbo_buf = (caddr_t)kva;
862 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
863
864 LIST_INIT(&sc_if->sk_jfree_listhead);
865 LIST_INIT(&sc_if->sk_jinuse_listhead);
866
867 /*
868 * Now divide it up into 9K pieces and save the addresses
869 * in an array.
870 */
871 ptr = sc_if->sk_cdata.sk_jumbo_buf;
872 for (i = 0; i < SK_JSLOTS; i++) {
873 sc_if->sk_cdata.sk_jslots[i] = ptr;
874 ptr += SK_JLEN;
875 entry = malloc(sizeof(struct sk_jpool_entry),
876 M_DEVBUF, M_NOWAIT);
877 if (entry == NULL) {
878 aprint_error("%s: no memory for jumbo buffer queue!\n",
879 sc->sk_dev.dv_xname);
880 error = ENOBUFS;
881 goto out;
882 }
883 entry->slot = i;
884 if (i)
885 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
886 entry, jpool_entries);
887 else
888 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
889 entry, jpool_entries);
890 }
891 out:
892 if (error != 0) {
893 switch (state) {
894 case 4:
895 bus_dmamap_unload(sc->sc_dmatag,
896 sc_if->sk_cdata.sk_rx_jumbo_map);
897 case 3:
898 bus_dmamap_destroy(sc->sc_dmatag,
899 sc_if->sk_cdata.sk_rx_jumbo_map);
900 case 2:
901 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
902 case 1:
903 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
904 break;
905 default:
906 break;
907 }
908 }
909
910 return error;
911 }
912
913 /*
914 * Allocate a jumbo buffer.
915 */
916 void *
917 sk_jalloc(struct sk_if_softc *sc_if)
918 {
919 struct sk_jpool_entry *entry;
920
921 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
922
923 if (entry == NULL)
924 return NULL;
925
926 LIST_REMOVE(entry, jpool_entries);
927 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
928 return sc_if->sk_cdata.sk_jslots[entry->slot];
929 }
930
931 /*
932 * Release a jumbo buffer.
933 */
934 void
935 sk_jfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
936 {
937 struct sk_jpool_entry *entry;
938 struct sk_if_softc *sc;
939 int i, s;
940
941 /* Extract the softc struct pointer. */
942 sc = (struct sk_if_softc *)arg;
943
944 if (sc == NULL)
945 panic("sk_jfree: can't find softc pointer!");
946
947 /* calculate the slot this buffer belongs to */
948
949 i = ((vaddr_t)buf
950 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
951
952 if ((i < 0) || (i >= SK_JSLOTS))
953 panic("sk_jfree: asked to free buffer that we don't manage!");
954
955 s = splvm();
956 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
957 if (entry == NULL)
958 panic("sk_jfree: buffer not in use!");
959 entry->slot = i;
960 LIST_REMOVE(entry, jpool_entries);
961 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
962
963 if (__predict_true(m != NULL))
964 pool_cache_put(&mbpool_cache, m);
965 splx(s);
966 }
967
968 /*
969 * Set media options.
970 */
971 int
972 sk_ifmedia_upd(struct ifnet *ifp)
973 {
974 struct sk_if_softc *sc_if = ifp->if_softc;
975
976 (void) sk_init(ifp);
977 mii_mediachg(&sc_if->sk_mii);
978 return 0;
979 }
980
981 /*
982 * Report current media status.
983 */
984 void
985 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
986 {
987 struct sk_if_softc *sc_if = ifp->if_softc;
988
989 mii_pollstat(&sc_if->sk_mii);
990 ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
991 ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
992 }
993
994 int
995 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
996 {
997 struct sk_if_softc *sc_if = ifp->if_softc;
998 struct sk_softc *sc = sc_if->sk_softc;
999 struct ifreq *ifr = (struct ifreq *) data;
1000 struct mii_data *mii;
1001 int s, error = 0;
1002
1003 /* DPRINTFN(2, ("sk_ioctl\n")); */
1004
1005 s = splnet();
1006
1007 switch (command) {
1008
1009 case SIOCSIFFLAGS:
1010 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1011 if (ifp->if_flags & IFF_UP) {
1012 if (ifp->if_flags & IFF_RUNNING &&
1013 ifp->if_flags & IFF_PROMISC &&
1014 !(sc_if->sk_if_flags & IFF_PROMISC)) {
1015 switch (sc->sk_type) {
1016 case SK_GENESIS:
1017 SK_XM_SETBIT_4(sc_if, XM_MODE,
1018 XM_MODE_RX_PROMISC);
1019 break;
1020 case SK_YUKON:
1021 case SK_YUKON_LITE:
1022 case SK_YUKON_LP:
1023 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1024 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1025 break;
1026 }
1027 sk_setmulti(sc_if);
1028 } else if (ifp->if_flags & IFF_RUNNING &&
1029 !(ifp->if_flags & IFF_PROMISC) &&
1030 sc_if->sk_if_flags & IFF_PROMISC) {
1031 switch (sc->sk_type) {
1032 case SK_GENESIS:
1033 SK_XM_CLRBIT_4(sc_if, XM_MODE,
1034 XM_MODE_RX_PROMISC);
1035 break;
1036 case SK_YUKON:
1037 case SK_YUKON_LITE:
1038 case SK_YUKON_LP:
1039 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1040 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1041 break;
1042 }
1043
1044 sk_setmulti(sc_if);
1045 } else
1046 (void) sk_init(ifp);
1047 } else {
1048 if (ifp->if_flags & IFF_RUNNING)
1049 sk_stop(ifp,0);
1050 }
1051 sc_if->sk_if_flags = ifp->if_flags;
1052 error = 0;
1053 break;
1054
1055 case SIOCGIFMEDIA:
1056 case SIOCSIFMEDIA:
1057 DPRINTFN(2, ("sk_ioctl MEDIA\n"));
1058 mii = &sc_if->sk_mii;
1059 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1060 break;
1061 default:
1062 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1063 error = ether_ioctl(ifp, command, data);
1064
1065 if ( error == ENETRESET) {
1066 if (ifp->if_flags & IFF_RUNNING) {
1067 sk_setmulti(sc_if);
1068 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1069 }
1070 error = 0;
1071 } else if ( error ) {
1072 splx(s);
1073 return error;
1074 }
1075 break;
1076 }
1077
1078 splx(s);
1079 return error;
1080 }
1081
1082 void
1083 sk_update_int_mod(struct sk_softc *sc)
1084 {
1085 u_int32_t sk_imtimer_ticks;
1086
1087 /*
1088 * Configure interrupt moderation. The moderation timer
1089 * defers interrupts specified in the interrupt moderation
1090 * timer mask based on the timeout specified in the interrupt
1091 * moderation timer init register. Each bit in the timer
1092 * register represents one tick, so to specify a timeout in
1093 * microseconds, we have to multiply by the correct number of
1094 * ticks-per-microsecond.
1095 */
1096 switch (sc->sk_type) {
1097 case SK_GENESIS:
1098 sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1099 break;
1100 case SK_YUKON_EC:
1101 sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1102 break;
1103 default:
1104 sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1105 }
1106 aprint_verbose("%s: interrupt moderation is %d us\n",
1107 sc->sk_dev.dv_xname, sc->sk_int_mod);
1108 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1109 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1110 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1111 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1112 sc->sk_int_mod_pending = 0;
1113 }
1114
1115 /*
1116 * Lookup: Check the PCI vendor and device, and return a pointer to
1117 * The structure if the IDs match against our list.
1118 */
1119
1120 static const struct sk_product *
1121 sk_lookup(const struct pci_attach_args *pa)
1122 {
1123 const struct sk_product *psk;
1124
1125 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1126 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1127 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1128 return psk;
1129 }
1130 return NULL;
1131 }
1132
1133 /*
1134 * Probe for a SysKonnect GEnesis chip.
1135 */
1136
1137 int
1138 skc_probe(struct device *parent, struct cfdata *match, void *aux)
1139 {
1140 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1141 const struct sk_product *psk;
1142 pcireg_t subid;
1143
1144 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1145
1146 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1147 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1148 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1149 subid == SK_LINKSYS_EG1032_SUBID)
1150 return 1;
1151
1152 if ((psk = sk_lookup(pa))) {
1153 return 1;
1154 }
1155 return 0;
1156 }
1157
1158 /*
1159 * Force the GEnesis into reset, then bring it out of reset.
1160 */
1161 void sk_reset(struct sk_softc *sc)
1162 {
1163 DPRINTFN(2, ("sk_reset\n"));
1164
1165 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1166 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1167 if (SK_YUKON_FAMILY(sc->sk_type))
1168 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1169
1170 DELAY(1000);
1171 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1172 DELAY(2);
1173 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1174 if (SK_YUKON_FAMILY(sc->sk_type))
1175 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1176
1177 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1178 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1179 CSR_READ_2(sc, SK_LINK_CTRL)));
1180
1181 if (sc->sk_type == SK_GENESIS) {
1182 /* Configure packet arbiter */
1183 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1184 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1185 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1186 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1187 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1188 }
1189
1190 /* Enable RAM interface */
1191 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1192
1193 sk_update_int_mod(sc);
1194 }
1195
1196 int
1197 sk_probe(struct device *parent, struct cfdata *match, void *aux)
1198 {
1199 struct skc_attach_args *sa = aux;
1200
1201 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1202 return 0;
1203
1204 return 1;
1205 }
1206
1207 /*
1208 * Each XMAC chip is attached as a separate logical IP interface.
1209 * Single port cards will have only one logical interface of course.
1210 */
1211 void
1212 sk_attach(struct device *parent, struct device *self, void *aux)
1213 {
1214 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1215 struct sk_softc *sc = (struct sk_softc *)parent;
1216 struct skc_attach_args *sa = aux;
1217 struct sk_txmap_entry *entry;
1218 struct ifnet *ifp;
1219 bus_dma_segment_t seg;
1220 bus_dmamap_t dmamap;
1221 caddr_t kva;
1222 int i, rseg;
1223
1224 sc_if->sk_port = sa->skc_port;
1225 sc_if->sk_softc = sc;
1226 sc->sk_if[sa->skc_port] = sc_if;
1227
1228 if (sa->skc_port == SK_PORT_A)
1229 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1230 if (sa->skc_port == SK_PORT_B)
1231 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1232
1233 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1234
1235 /*
1236 * Get station address for this interface. Note that
1237 * dual port cards actually come with three station
1238 * addresses: one for each port, plus an extra. The
1239 * extra one is used by the SysKonnect driver software
1240 * as a 'virtual' station address for when both ports
1241 * are operating in failover mode. Currently we don't
1242 * use this extra address.
1243 */
1244 for (i = 0; i < ETHER_ADDR_LEN; i++)
1245 sc_if->sk_enaddr[i] =
1246 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1247
1248
1249 aprint_normal(": Ethernet address %s\n",
1250 ether_sprintf(sc_if->sk_enaddr));
1251
1252 /*
1253 * Set up RAM buffer addresses. The NIC will have a certain
1254 * amount of SRAM on it, somewhere between 512K and 2MB. We
1255 * need to divide this up a) between the transmitter and
1256 * receiver and b) between the two XMACs, if this is a
1257 * dual port NIC. Our algorithm is to divide up the memory
1258 * evenly so that everyone gets a fair share.
1259 */
1260 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1261 u_int32_t chunk, val;
1262
1263 chunk = sc->sk_ramsize / 2;
1264 val = sc->sk_rboff / sizeof(u_int64_t);
1265 sc_if->sk_rx_ramstart = val;
1266 val += (chunk / sizeof(u_int64_t));
1267 sc_if->sk_rx_ramend = val - 1;
1268 sc_if->sk_tx_ramstart = val;
1269 val += (chunk / sizeof(u_int64_t));
1270 sc_if->sk_tx_ramend = val - 1;
1271 } else {
1272 u_int32_t chunk, val;
1273
1274 chunk = sc->sk_ramsize / 4;
1275 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1276 sizeof(u_int64_t);
1277 sc_if->sk_rx_ramstart = val;
1278 val += (chunk / sizeof(u_int64_t));
1279 sc_if->sk_rx_ramend = val - 1;
1280 sc_if->sk_tx_ramstart = val;
1281 val += (chunk / sizeof(u_int64_t));
1282 sc_if->sk_tx_ramend = val - 1;
1283 }
1284
1285 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1286 " tx_ramstart=%#x tx_ramend=%#x\n",
1287 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1288 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1289
1290 /* Read and save PHY type and set PHY address */
1291 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1292 switch (sc_if->sk_phytype) {
1293 case SK_PHYTYPE_XMAC:
1294 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1295 break;
1296 case SK_PHYTYPE_BCOM:
1297 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1298 break;
1299 case SK_PHYTYPE_MARV_COPPER:
1300 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1301 break;
1302 default:
1303 aprint_error("%s: unsupported PHY type: %d\n",
1304 sc->sk_dev.dv_xname, sc_if->sk_phytype);
1305 return;
1306 }
1307
1308 /* Allocate the descriptor queues. */
1309 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1310 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1311 aprint_error("%s: can't alloc rx buffers\n",
1312 sc->sk_dev.dv_xname);
1313 goto fail;
1314 }
1315 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1316 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1317 aprint_error("%s: can't map dma buffers (%lu bytes)\n",
1318 sc_if->sk_dev.dv_xname,
1319 (u_long) sizeof(struct sk_ring_data));
1320 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1321 goto fail;
1322 }
1323 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1324 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1325 &sc_if->sk_ring_map)) {
1326 aprint_error("%s: can't create dma map\n",
1327 sc_if->sk_dev.dv_xname);
1328 bus_dmamem_unmap(sc->sc_dmatag, kva,
1329 sizeof(struct sk_ring_data));
1330 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1331 goto fail;
1332 }
1333 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1334 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1335 aprint_error("%s: can't load dma map\n",
1336 sc_if->sk_dev.dv_xname);
1337 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1338 bus_dmamem_unmap(sc->sc_dmatag, kva,
1339 sizeof(struct sk_ring_data));
1340 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1341 goto fail;
1342 }
1343
1344 for (i = 0; i < SK_RX_RING_CNT; i++)
1345 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1346
1347 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1348 for (i = 0; i < SK_TX_RING_CNT; i++) {
1349 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1350
1351 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1352 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1353 aprint_error("%s: Can't create TX dmamap\n",
1354 sc_if->sk_dev.dv_xname);
1355 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1356 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1357 bus_dmamem_unmap(sc->sc_dmatag, kva,
1358 sizeof(struct sk_ring_data));
1359 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1360 goto fail;
1361 }
1362
1363 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1364 if (!entry) {
1365 aprint_error("%s: Can't alloc txmap entry\n",
1366 sc_if->sk_dev.dv_xname);
1367 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1368 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1369 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1370 bus_dmamem_unmap(sc->sc_dmatag, kva,
1371 sizeof(struct sk_ring_data));
1372 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1373 goto fail;
1374 }
1375 entry->dmamap = dmamap;
1376 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1377 }
1378
1379 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1380 bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1381
1382 ifp = &sc_if->sk_ethercom.ec_if;
1383 /* Try to allocate memory for jumbo buffers. */
1384 if (sk_alloc_jumbo_mem(sc_if)) {
1385 aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1386 goto fail;
1387 }
1388 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1389 | ETHERCAP_JUMBO_MTU;
1390
1391 ifp->if_softc = sc_if;
1392 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1393 ifp->if_ioctl = sk_ioctl;
1394 ifp->if_start = sk_start;
1395 ifp->if_stop = sk_stop;
1396 ifp->if_init = sk_init;
1397 ifp->if_watchdog = sk_watchdog;
1398 ifp->if_capabilities = 0;
1399 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1400 IFQ_SET_READY(&ifp->if_snd);
1401 strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1402
1403 /*
1404 * Do miibus setup.
1405 */
1406 switch (sc->sk_type) {
1407 case SK_GENESIS:
1408 sk_init_xmac(sc_if);
1409 break;
1410 case SK_YUKON:
1411 case SK_YUKON_LITE:
1412 case SK_YUKON_LP:
1413 sk_init_yukon(sc_if);
1414 break;
1415 default:
1416 panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
1417 sc->sk_type);
1418 }
1419
1420 DPRINTFN(2, ("sk_attach: 1\n"));
1421
1422 sc_if->sk_mii.mii_ifp = ifp;
1423 switch (sc->sk_type) {
1424 case SK_GENESIS:
1425 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1426 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1427 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1428 break;
1429 case SK_YUKON:
1430 case SK_YUKON_LITE:
1431 case SK_YUKON_LP:
1432 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1433 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1434 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1435 break;
1436 }
1437
1438 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1439 sk_ifmedia_upd, sk_ifmedia_sts);
1440 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1441 MII_OFFSET_ANY, 0);
1442 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1443 aprint_error("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1444 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1445 0, NULL);
1446 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1447 } else
1448 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1449
1450 callout_init(&sc_if->sk_tick_ch);
1451 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1452
1453 DPRINTFN(2, ("sk_attach: 1\n"));
1454
1455 /*
1456 * Call MI attach routines.
1457 */
1458 if_attach(ifp);
1459
1460 ether_ifattach(ifp, sc_if->sk_enaddr);
1461
1462 #if NRND > 0
1463 rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
1464 RND_TYPE_NET, 0);
1465 #endif
1466
1467 DPRINTFN(2, ("sk_attach: end\n"));
1468
1469 return;
1470
1471 fail:
1472 sc->sk_if[sa->skc_port] = NULL;
1473 }
1474
1475 int
1476 skcprint(void *aux, const char *pnp)
1477 {
1478 struct skc_attach_args *sa = aux;
1479
1480 if (pnp)
1481 aprint_normal("sk port %c at %s",
1482 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1483 else
1484 aprint_normal(" port %c",
1485 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1486 return UNCONF;
1487 }
1488
1489 /*
1490 * Attach the interface. Allocate softc structures, do ifmedia
1491 * setup and ethernet/BPF attach.
1492 */
1493 void
1494 skc_attach(struct device *parent, struct device *self, void *aux)
1495 {
1496 struct sk_softc *sc = (struct sk_softc *)self;
1497 struct pci_attach_args *pa = aux;
1498 struct skc_attach_args skca;
1499 pci_chipset_tag_t pc = pa->pa_pc;
1500 #ifndef SK_USEIOSPACE
1501 pcireg_t memtype;
1502 #endif
1503 pci_intr_handle_t ih;
1504 const char *intrstr = NULL;
1505 bus_addr_t iobase;
1506 bus_size_t iosize;
1507 int rc, sk_nodenum;
1508 u_int32_t command;
1509 const char *revstr;
1510 const struct sysctlnode *node;
1511
1512 DPRINTFN(2, ("begin skc_attach\n"));
1513
1514 /*
1515 * Handle power management nonsense.
1516 */
1517 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1518
1519 if (command == 0x01) {
1520 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1521 if (command & SK_PSTATE_MASK) {
1522 u_int32_t xiobase, membase, irq;
1523
1524 /* Save important PCI config data. */
1525 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1526 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1527 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1528
1529 /* Reset the power state. */
1530 aprint_normal("%s chip is in D%d power mode "
1531 "-- setting to D0\n", sc->sk_dev.dv_xname,
1532 command & SK_PSTATE_MASK);
1533 command &= 0xFFFFFFFC;
1534 pci_conf_write(pc, pa->pa_tag,
1535 SK_PCI_PWRMGMTCTRL, command);
1536
1537 /* Restore PCI config data. */
1538 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1539 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1540 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1541 }
1542 }
1543
1544 /*
1545 * Map control/status registers.
1546 */
1547 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1548 command |= PCI_COMMAND_IO_ENABLE |
1549 PCI_COMMAND_MEM_ENABLE |
1550 PCI_COMMAND_MASTER_ENABLE;
1551 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1552 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1553
1554 #ifdef SK_USEIOSPACE
1555 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1556 aprint_error(": failed to enable I/O ports!\n");
1557 return;
1558 }
1559 /*
1560 * Map control/status registers.
1561 */
1562 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1563 &sc->sk_btag, &sc->sk_bhandle,
1564 &iobase, &iosize)) {
1565 aprint_error(": can't find i/o space\n");
1566 return;
1567 }
1568 #else
1569 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1570 aprint_error(": failed to enable memory mapping!\n");
1571 return;
1572 }
1573 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1574 switch (memtype) {
1575 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1576 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1577 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1578 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1579 &iobase, &iosize) == 0)
1580 break;
1581 default:
1582 aprint_error("%s: can't find mem space\n",
1583 sc->sk_dev.dv_xname);
1584 return;
1585 }
1586
1587 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1588 #endif
1589 sc->sc_dmatag = pa->pa_dmat;
1590
1591 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1592 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1593
1594 /* bail out here if chip is not recognized */
1595 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1596 aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
1597 goto fail;
1598 }
1599 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1600
1601 /* Allocate interrupt */
1602 if (pci_intr_map(pa, &ih)) {
1603 aprint_error(": couldn't map interrupt\n");
1604 goto fail;
1605 }
1606
1607 intrstr = pci_intr_string(pc, ih);
1608 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1609 if (sc->sk_intrhand == NULL) {
1610 aprint_error(": couldn't establish interrupt");
1611 if (intrstr != NULL)
1612 aprint_normal(" at %s", intrstr);
1613 goto fail;
1614 }
1615 aprint_normal(": %s\n", intrstr);
1616
1617 /* Reset the adapter. */
1618 sk_reset(sc);
1619
1620 /* Read and save vital product data from EEPROM. */
1621 sk_vpd_read(sc);
1622
1623 if (sc->sk_type == SK_GENESIS) {
1624 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1625 /* Read and save RAM size and RAMbuffer offset */
1626 switch (val) {
1627 case SK_RAMSIZE_512K_64:
1628 sc->sk_ramsize = 0x80000;
1629 sc->sk_rboff = SK_RBOFF_0;
1630 break;
1631 case SK_RAMSIZE_1024K_64:
1632 sc->sk_ramsize = 0x100000;
1633 sc->sk_rboff = SK_RBOFF_80000;
1634 break;
1635 case SK_RAMSIZE_1024K_128:
1636 sc->sk_ramsize = 0x100000;
1637 sc->sk_rboff = SK_RBOFF_0;
1638 break;
1639 case SK_RAMSIZE_2048K_128:
1640 sc->sk_ramsize = 0x200000;
1641 sc->sk_rboff = SK_RBOFF_0;
1642 break;
1643 default:
1644 aprint_error("%s: unknown ram size: %d\n",
1645 sc->sk_dev.dv_xname, val);
1646 goto fail_1;
1647 break;
1648 }
1649
1650 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1651 sc->sk_ramsize, sc->sk_ramsize / 1024,
1652 sc->sk_rboff));
1653 } else {
1654 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1655 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1656 sc->sk_rboff = SK_RBOFF_0;
1657
1658 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1659 sc->sk_ramsize / 1024, sc->sk_ramsize,
1660 sc->sk_rboff));
1661 }
1662
1663 /* Read and save physical media type */
1664 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1665 case SK_PMD_1000BASESX:
1666 sc->sk_pmd = IFM_1000_SX;
1667 break;
1668 case SK_PMD_1000BASELX:
1669 sc->sk_pmd = IFM_1000_LX;
1670 break;
1671 case SK_PMD_1000BASECX:
1672 sc->sk_pmd = IFM_1000_CX;
1673 break;
1674 case SK_PMD_1000BASETX:
1675 case SK_PMD_1000BASETX_ALT:
1676 sc->sk_pmd = IFM_1000_T;
1677 break;
1678 default:
1679 aprint_error("%s: unknown media type: 0x%x\n",
1680 sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
1681 goto fail_1;
1682 }
1683
1684 /* determine whether to name it with vpd or just make it up */
1685 /* Marvell Yukon VPD's can freqently be bogus */
1686
1687 switch (pa->pa_id) {
1688 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1689 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1690 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1691 case PCI_PRODUCT_3COM_3C940:
1692 case PCI_PRODUCT_DLINK_DGE530T:
1693 case PCI_PRODUCT_DLINK_DGE560T:
1694 case PCI_PRODUCT_DLINK_DGE560T_2:
1695 case PCI_PRODUCT_LINKSYS_EG1032:
1696 case PCI_PRODUCT_LINKSYS_EG1064:
1697 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1698 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1699 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1700 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1701 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1702 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1703 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1704 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1705 sc->sk_name = sc->sk_vpd_prodname;
1706 break;
1707 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1708 /* whoops yukon vpd prodname bears no resemblance to reality */
1709 switch (sc->sk_type) {
1710 case SK_GENESIS:
1711 sc->sk_name = sc->sk_vpd_prodname;
1712 break;
1713 case SK_YUKON:
1714 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1715 break;
1716 case SK_YUKON_LITE:
1717 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1718 break;
1719 case SK_YUKON_LP:
1720 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1721 break;
1722 default:
1723 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1724 }
1725
1726 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1727
1728 if ( sc->sk_type == SK_YUKON ) {
1729 uint32_t flashaddr;
1730 uint8_t testbyte;
1731
1732 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1733
1734 /* test Flash-Address Register */
1735 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1736 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1737
1738 if (testbyte != 0) {
1739 /* this is yukon lite Rev. A0 */
1740 sc->sk_type = SK_YUKON_LITE;
1741 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1742 /* restore Flash-Address Register */
1743 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1744 }
1745 }
1746 break;
1747 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1748 sc->sk_name = sc->sk_vpd_prodname;
1749 break;
1750 default:
1751 sc->sk_name = "Unknown Marvell";
1752 }
1753
1754
1755 if ( sc->sk_type == SK_YUKON_LITE ) {
1756 switch (sc->sk_rev) {
1757 case SK_YUKON_LITE_REV_A0:
1758 revstr = "A0";
1759 break;
1760 case SK_YUKON_LITE_REV_A1:
1761 revstr = "A1";
1762 break;
1763 case SK_YUKON_LITE_REV_A3:
1764 revstr = "A3";
1765 break;
1766 default:
1767 revstr = "";
1768 }
1769 } else {
1770 revstr = "";
1771 }
1772
1773 /* Announce the product name. */
1774 aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
1775 sc->sk_name, revstr, sc->sk_rev);
1776
1777 skca.skc_port = SK_PORT_A;
1778 (void)config_found(&sc->sk_dev, &skca, skcprint);
1779
1780 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1781 skca.skc_port = SK_PORT_B;
1782 (void)config_found(&sc->sk_dev, &skca, skcprint);
1783 }
1784
1785 /* Turn on the 'driver is loaded' LED. */
1786 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1787
1788 /* skc sysctl setup */
1789
1790 sc->sk_int_mod = SK_IM_DEFAULT;
1791 sc->sk_int_mod_pending = 0;
1792
1793 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1794 0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
1795 SYSCTL_DESCR("skc per-controller controls"),
1796 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1797 CTL_EOL)) != 0) {
1798 aprint_normal("%s: couldn't create sysctl node\n",
1799 sc->sk_dev.dv_xname);
1800 goto fail_1;
1801 }
1802
1803 sk_nodenum = node->sysctl_num;
1804
1805 /* interrupt moderation time in usecs */
1806 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1807 CTLFLAG_READWRITE,
1808 CTLTYPE_INT, "int_mod",
1809 SYSCTL_DESCR("sk interrupt moderation timer"),
1810 sk_sysctl_handler, 0, sc,
1811 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1812 CTL_EOL)) != 0) {
1813 aprint_normal("%s: couldn't create int_mod sysctl node\n",
1814 sc->sk_dev.dv_xname);
1815 goto fail_1;
1816 }
1817
1818 return;
1819
1820 fail_1:
1821 pci_intr_disestablish(pc, sc->sk_intrhand);
1822 fail:
1823 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1824 }
1825
1826 int
1827 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1828 {
1829 struct sk_softc *sc = sc_if->sk_softc;
1830 struct sk_tx_desc *f = NULL;
1831 u_int32_t frag, cur, cnt = 0, sk_ctl;
1832 int i;
1833 struct sk_txmap_entry *entry;
1834 bus_dmamap_t txmap;
1835
1836 DPRINTFN(3, ("sk_encap\n"));
1837
1838 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1839 if (entry == NULL) {
1840 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1841 return ENOBUFS;
1842 }
1843 txmap = entry->dmamap;
1844
1845 cur = frag = *txidx;
1846
1847 #ifdef SK_DEBUG
1848 if (skdebug >= 3)
1849 sk_dump_mbuf(m_head);
1850 #endif
1851
1852 /*
1853 * Start packing the mbufs in this chain into
1854 * the fragment pointers. Stop when we run out
1855 * of fragments or hit the end of the mbuf chain.
1856 */
1857 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1858 BUS_DMA_NOWAIT)) {
1859 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1860 return ENOBUFS;
1861 }
1862
1863 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1864
1865 /* Sync the DMA map. */
1866 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1867 BUS_DMASYNC_PREWRITE);
1868
1869 for (i = 0; i < txmap->dm_nsegs; i++) {
1870 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1871 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1872 return ENOBUFS;
1873 }
1874 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1875 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1876 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1877 if (cnt == 0)
1878 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1879 else
1880 sk_ctl |= SK_TXCTL_OWN;
1881 f->sk_ctl = htole32(sk_ctl);
1882 cur = frag;
1883 SK_INC(frag, SK_TX_RING_CNT);
1884 cnt++;
1885 }
1886
1887 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1888 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1889
1890 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1891 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1892 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1893
1894 /* Sync descriptors before handing to chip */
1895 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1896 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1897
1898 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1899 htole32(SK_TXCTL_OWN);
1900
1901 /* Sync first descriptor to hand it off */
1902 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1903
1904 sc_if->sk_cdata.sk_tx_cnt += cnt;
1905
1906 #ifdef SK_DEBUG
1907 if (skdebug >= 3) {
1908 struct sk_tx_desc *desc;
1909 u_int32_t idx;
1910 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1911 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1912 sk_dump_txdesc(desc, idx);
1913 }
1914 }
1915 #endif
1916
1917 *txidx = frag;
1918
1919 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1920
1921 return 0;
1922 }
1923
1924 void
1925 sk_start(struct ifnet *ifp)
1926 {
1927 struct sk_if_softc *sc_if = ifp->if_softc;
1928 struct sk_softc *sc = sc_if->sk_softc;
1929 struct mbuf *m_head = NULL;
1930 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1931 int pkts = 0;
1932
1933 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1934 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1935
1936 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1937 IFQ_POLL(&ifp->if_snd, m_head);
1938 if (m_head == NULL)
1939 break;
1940
1941 /*
1942 * Pack the data into the transmit ring. If we
1943 * don't have room, set the OACTIVE flag and wait
1944 * for the NIC to drain the ring.
1945 */
1946 if (sk_encap(sc_if, m_head, &idx)) {
1947 ifp->if_flags |= IFF_OACTIVE;
1948 break;
1949 }
1950
1951 /* now we are committed to transmit the packet */
1952 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1953 pkts++;
1954
1955 /*
1956 * If there's a BPF listener, bounce a copy of this frame
1957 * to him.
1958 */
1959 #if NBPFILTER > 0
1960 if (ifp->if_bpf)
1961 bpf_mtap(ifp->if_bpf, m_head);
1962 #endif
1963 }
1964 if (pkts == 0)
1965 return;
1966
1967 /* Transmit */
1968 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1969 sc_if->sk_cdata.sk_tx_prod = idx;
1970 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1971
1972 /* Set a timeout in case the chip goes out to lunch. */
1973 ifp->if_timer = 5;
1974 }
1975 }
1976
1977
1978 void
1979 sk_watchdog(struct ifnet *ifp)
1980 {
1981 struct sk_if_softc *sc_if = ifp->if_softc;
1982
1983 /*
1984 * Reclaim first as there is a possibility of losing Tx completion
1985 * interrupts.
1986 */
1987 sk_txeof(sc_if);
1988 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1989 aprint_error("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1990
1991 ifp->if_oerrors++;
1992
1993 sk_init(ifp);
1994 }
1995 }
1996
1997 void
1998 sk_shutdown(void * v)
1999 {
2000 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
2001 struct sk_softc *sc = sc_if->sk_softc;
2002 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2003
2004 DPRINTFN(2, ("sk_shutdown\n"));
2005 sk_stop(ifp,1);
2006
2007 /* Turn off the 'driver is loaded' LED. */
2008 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2009
2010 /*
2011 * Reset the GEnesis controller. Doing this should also
2012 * assert the resets on the attached XMAC(s).
2013 */
2014 sk_reset(sc);
2015 }
2016
2017 void
2018 sk_rxeof(struct sk_if_softc *sc_if)
2019 {
2020 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2021 struct mbuf *m;
2022 struct sk_chain *cur_rx;
2023 struct sk_rx_desc *cur_desc;
2024 int i, cur, total_len = 0;
2025 u_int32_t rxstat, sk_ctl;
2026 bus_dmamap_t dmamap;
2027
2028 i = sc_if->sk_cdata.sk_rx_prod;
2029
2030 DPRINTFN(3, ("sk_rxeof %d\n", i));
2031
2032 for (;;) {
2033 cur = i;
2034
2035 /* Sync the descriptor */
2036 SK_CDRXSYNC(sc_if, cur,
2037 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2038
2039 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2040 if (sk_ctl & SK_RXCTL_OWN) {
2041 /* Invalidate the descriptor -- it's not ready yet */
2042 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2043 sc_if->sk_cdata.sk_rx_prod = i;
2044 break;
2045 }
2046
2047 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2048 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2049 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2050
2051 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2052 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2053
2054 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2055 m = cur_rx->sk_mbuf;
2056 cur_rx->sk_mbuf = NULL;
2057 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2058
2059 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2060
2061 SK_INC(i, SK_RX_RING_CNT);
2062
2063 if (rxstat & XM_RXSTAT_ERRFRAME) {
2064 ifp->if_ierrors++;
2065 sk_newbuf(sc_if, cur, m, dmamap);
2066 continue;
2067 }
2068
2069 /*
2070 * Try to allocate a new jumbo buffer. If that
2071 * fails, copy the packet to mbufs and put the
2072 * jumbo buffer back in the ring so it can be
2073 * re-used. If allocating mbufs fails, then we
2074 * have to drop the packet.
2075 */
2076 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2077 struct mbuf *m0;
2078 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2079 total_len + ETHER_ALIGN, 0, ifp, NULL);
2080 sk_newbuf(sc_if, cur, m, dmamap);
2081 if (m0 == NULL) {
2082 aprint_error("%s: no receive buffers "
2083 "available -- packet dropped!\n",
2084 sc_if->sk_dev.dv_xname);
2085 ifp->if_ierrors++;
2086 continue;
2087 }
2088 m_adj(m0, ETHER_ALIGN);
2089 m = m0;
2090 } else {
2091 m->m_pkthdr.rcvif = ifp;
2092 m->m_pkthdr.len = m->m_len = total_len;
2093 }
2094
2095 ifp->if_ipackets++;
2096
2097 #if NBPFILTER > 0
2098 if (ifp->if_bpf)
2099 bpf_mtap(ifp->if_bpf, m);
2100 #endif
2101 /* pass it on. */
2102 (*ifp->if_input)(ifp, m);
2103 }
2104 }
2105
2106 void
2107 sk_txeof(struct sk_if_softc *sc_if)
2108 {
2109 struct sk_softc *sc = sc_if->sk_softc;
2110 struct sk_tx_desc *cur_tx;
2111 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2112 u_int32_t idx, sk_ctl;
2113 struct sk_txmap_entry *entry;
2114
2115 DPRINTFN(3, ("sk_txeof\n"));
2116
2117 /*
2118 * Go through our tx ring and free mbufs for those
2119 * frames that have been sent.
2120 */
2121 idx = sc_if->sk_cdata.sk_tx_cons;
2122 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2123 SK_CDTXSYNC(sc_if, idx, 1,
2124 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2125
2126 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2127 sk_ctl = le32toh(cur_tx->sk_ctl);
2128 #ifdef SK_DEBUG
2129 if (skdebug >= 3)
2130 sk_dump_txdesc(cur_tx, idx);
2131 #endif
2132 if (sk_ctl & SK_TXCTL_OWN) {
2133 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2134 break;
2135 }
2136 if (sk_ctl & SK_TXCTL_LASTFRAG)
2137 ifp->if_opackets++;
2138 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2139 entry = sc_if->sk_cdata.sk_tx_map[idx];
2140
2141 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2142 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2143
2144 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2145 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2146
2147 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2148 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2149 link);
2150 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2151 }
2152 sc_if->sk_cdata.sk_tx_cnt--;
2153 SK_INC(idx, SK_TX_RING_CNT);
2154 }
2155 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2156 ifp->if_timer = 0;
2157 else /* nudge chip to keep tx ring moving */
2158 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2159
2160 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2161 ifp->if_flags &= ~IFF_OACTIVE;
2162
2163 sc_if->sk_cdata.sk_tx_cons = idx;
2164 }
2165
2166 void
2167 sk_tick(void *xsc_if)
2168 {
2169 struct sk_if_softc *sc_if = xsc_if;
2170 struct mii_data *mii = &sc_if->sk_mii;
2171 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2172 int i;
2173
2174 DPRINTFN(3, ("sk_tick\n"));
2175
2176 if (!(ifp->if_flags & IFF_UP))
2177 return;
2178
2179 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2180 sk_intr_bcom(sc_if);
2181 return;
2182 }
2183
2184 /*
2185 * According to SysKonnect, the correct way to verify that
2186 * the link has come back up is to poll bit 0 of the GPIO
2187 * register three times. This pin has the signal from the
2188 * link sync pin connected to it; if we read the same link
2189 * state 3 times in a row, we know the link is up.
2190 */
2191 for (i = 0; i < 3; i++) {
2192 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2193 break;
2194 }
2195
2196 if (i != 3) {
2197 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2198 return;
2199 }
2200
2201 /* Turn the GP0 interrupt back on. */
2202 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2203 SK_XM_READ_2(sc_if, XM_ISR);
2204 mii_tick(mii);
2205 mii_pollstat(mii);
2206 callout_stop(&sc_if->sk_tick_ch);
2207 }
2208
2209 void
2210 sk_intr_bcom(struct sk_if_softc *sc_if)
2211 {
2212 struct mii_data *mii = &sc_if->sk_mii;
2213 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2214 int status;
2215
2216
2217 DPRINTFN(3, ("sk_intr_bcom\n"));
2218
2219 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2220
2221 /*
2222 * Read the PHY interrupt register to make sure
2223 * we clear any pending interrupts.
2224 */
2225 status = sk_xmac_miibus_readreg((struct device *)sc_if,
2226 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2227
2228 if (!(ifp->if_flags & IFF_RUNNING)) {
2229 sk_init_xmac(sc_if);
2230 return;
2231 }
2232
2233 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2234 int lstat;
2235 lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
2236 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2237
2238 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2239 mii_mediachg(mii);
2240 /* Turn off the link LED. */
2241 SK_IF_WRITE_1(sc_if, 0,
2242 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2243 sc_if->sk_link = 0;
2244 } else if (status & BRGPHY_ISR_LNK_CHG) {
2245 sk_xmac_miibus_writereg((struct device *)sc_if,
2246 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2247 mii_tick(mii);
2248 sc_if->sk_link = 1;
2249 /* Turn on the link LED. */
2250 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2251 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2252 SK_LINKLED_BLINK_OFF);
2253 mii_pollstat(mii);
2254 } else {
2255 mii_tick(mii);
2256 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2257 }
2258 }
2259
2260 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2261 }
2262
2263 void
2264 sk_intr_xmac(struct sk_if_softc *sc_if)
2265 {
2266 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2267
2268 DPRINTFN(3, ("sk_intr_xmac\n"));
2269
2270 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2271 if (status & XM_ISR_GP0_SET) {
2272 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2273 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2274 }
2275
2276 if (status & XM_ISR_AUTONEG_DONE) {
2277 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2278 }
2279 }
2280
2281 if (status & XM_IMR_TX_UNDERRUN)
2282 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2283
2284 if (status & XM_IMR_RX_OVERRUN)
2285 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2286 }
2287
2288 void
2289 sk_intr_yukon(struct sk_if_softc *sc_if)
2290 {
2291 int status;
2292
2293 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2294
2295 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2296 }
2297
2298 int
2299 sk_intr(void *xsc)
2300 {
2301 struct sk_softc *sc = xsc;
2302 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2303 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2304 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2305 u_int32_t status;
2306 int claimed = 0;
2307
2308 if (sc_if0 != NULL)
2309 ifp0 = &sc_if0->sk_ethercom.ec_if;
2310 if (sc_if1 != NULL)
2311 ifp1 = &sc_if1->sk_ethercom.ec_if;
2312
2313 for (;;) {
2314 status = CSR_READ_4(sc, SK_ISSR);
2315 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2316
2317 if (!(status & sc->sk_intrmask))
2318 break;
2319
2320 claimed = 1;
2321
2322 /* Handle receive interrupts first. */
2323 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2324 sk_rxeof(sc_if0);
2325 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2326 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2327 }
2328 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2329 sk_rxeof(sc_if1);
2330 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2331 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2332 }
2333
2334 /* Then transmit interrupts. */
2335 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2336 sk_txeof(sc_if0);
2337 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2338 SK_TXBMU_CLR_IRQ_EOF);
2339 }
2340 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2341 sk_txeof(sc_if1);
2342 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2343 SK_TXBMU_CLR_IRQ_EOF);
2344 }
2345
2346 /* Then MAC interrupts. */
2347 if (sc_if0 && (status & SK_ISR_MAC1) &&
2348 (ifp0->if_flags & IFF_RUNNING)) {
2349 if (sc->sk_type == SK_GENESIS)
2350 sk_intr_xmac(sc_if0);
2351 else
2352 sk_intr_yukon(sc_if0);
2353 }
2354
2355 if (sc_if1 && (status & SK_ISR_MAC2) &&
2356 (ifp1->if_flags & IFF_RUNNING)) {
2357 if (sc->sk_type == SK_GENESIS)
2358 sk_intr_xmac(sc_if1);
2359 else
2360 sk_intr_yukon(sc_if1);
2361
2362 }
2363
2364 if (status & SK_ISR_EXTERNAL_REG) {
2365 if (sc_if0 != NULL &&
2366 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2367 sk_intr_bcom(sc_if0);
2368
2369 if (sc_if1 != NULL &&
2370 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2371 sk_intr_bcom(sc_if1);
2372 }
2373 }
2374
2375 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2376
2377 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2378 sk_start(ifp0);
2379 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2380 sk_start(ifp1);
2381
2382 #if NRND > 0
2383 if (RND_ENABLED(&sc->rnd_source))
2384 rnd_add_uint32(&sc->rnd_source, status);
2385 #endif
2386
2387 if (sc->sk_int_mod_pending)
2388 sk_update_int_mod(sc);
2389
2390 return claimed;
2391 }
2392
2393 void
2394 sk_init_xmac(struct sk_if_softc *sc_if)
2395 {
2396 struct sk_softc *sc = sc_if->sk_softc;
2397 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2398 static const struct sk_bcom_hack bhack[] = {
2399 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2400 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2401 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2402 { 0, 0 } };
2403
2404 DPRINTFN(1, ("sk_init_xmac\n"));
2405
2406 /* Unreset the XMAC. */
2407 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2408 DELAY(1000);
2409
2410 /* Reset the XMAC's internal state. */
2411 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2412
2413 /* Save the XMAC II revision */
2414 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2415
2416 /*
2417 * Perform additional initialization for external PHYs,
2418 * namely for the 1000baseTX cards that use the XMAC's
2419 * GMII mode.
2420 */
2421 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2422 int i = 0;
2423 u_int32_t val;
2424
2425 /* Take PHY out of reset. */
2426 val = sk_win_read_4(sc, SK_GPIO);
2427 if (sc_if->sk_port == SK_PORT_A)
2428 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2429 else
2430 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2431 sk_win_write_4(sc, SK_GPIO, val);
2432
2433 /* Enable GMII mode on the XMAC. */
2434 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2435
2436 sk_xmac_miibus_writereg((struct device *)sc_if,
2437 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2438 DELAY(10000);
2439 sk_xmac_miibus_writereg((struct device *)sc_if,
2440 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2441
2442 /*
2443 * Early versions of the BCM5400 apparently have
2444 * a bug that requires them to have their reserved
2445 * registers initialized to some magic values. I don't
2446 * know what the numbers do, I'm just the messenger.
2447 */
2448 if (sk_xmac_miibus_readreg((struct device *)sc_if,
2449 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2450 while (bhack[i].reg) {
2451 sk_xmac_miibus_writereg((struct device *)sc_if,
2452 SK_PHYADDR_BCOM, bhack[i].reg,
2453 bhack[i].val);
2454 i++;
2455 }
2456 }
2457 }
2458
2459 /* Set station address */
2460 SK_XM_WRITE_2(sc_if, XM_PAR0,
2461 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2462 SK_XM_WRITE_2(sc_if, XM_PAR1,
2463 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2464 SK_XM_WRITE_2(sc_if, XM_PAR2,
2465 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2466 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2467
2468 if (ifp->if_flags & IFF_PROMISC)
2469 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2470 else
2471 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2472
2473 if (ifp->if_flags & IFF_BROADCAST)
2474 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2475 else
2476 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2477
2478 /* We don't need the FCS appended to the packet. */
2479 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2480
2481 /* We want short frames padded to 60 bytes. */
2482 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2483
2484 /*
2485 * Enable the reception of all error frames. This is is
2486 * a necessary evil due to the design of the XMAC. The
2487 * XMAC's receive FIFO is only 8K in size, however jumbo
2488 * frames can be up to 9000 bytes in length. When bad
2489 * frame filtering is enabled, the XMAC's RX FIFO operates
2490 * in 'store and forward' mode. For this to work, the
2491 * entire frame has to fit into the FIFO, but that means
2492 * that jumbo frames larger than 8192 bytes will be
2493 * truncated. Disabling all bad frame filtering causes
2494 * the RX FIFO to operate in streaming mode, in which
2495 * case the XMAC will start transfering frames out of the
2496 * RX FIFO as soon as the FIFO threshold is reached.
2497 */
2498 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2499 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2500 XM_MODE_RX_INRANGELEN);
2501
2502 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2503 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2504 else
2505 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2506
2507 /*
2508 * Bump up the transmit threshold. This helps hold off transmit
2509 * underruns when we're blasting traffic from both ports at once.
2510 */
2511 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2512
2513 /* Set multicast filter */
2514 sk_setmulti(sc_if);
2515
2516 /* Clear and enable interrupts */
2517 SK_XM_READ_2(sc_if, XM_ISR);
2518 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2519 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2520 else
2521 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2522
2523 /* Configure MAC arbiter */
2524 switch (sc_if->sk_xmac_rev) {
2525 case XM_XMAC_REV_B2:
2526 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2527 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2528 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2529 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2530 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2531 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2532 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2533 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2534 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2535 break;
2536 case XM_XMAC_REV_C1:
2537 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2538 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2539 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2540 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2541 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2542 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2543 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2544 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2545 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2546 break;
2547 default:
2548 break;
2549 }
2550 sk_win_write_2(sc, SK_MACARB_CTL,
2551 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2552
2553 sc_if->sk_link = 1;
2554 }
2555
2556 void sk_init_yukon(struct sk_if_softc *sc_if)
2557 {
2558 u_int32_t /*mac, */phy;
2559 u_int16_t reg;
2560 struct sk_softc *sc;
2561 int i;
2562
2563 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2564 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2565
2566 sc = sc_if->sk_softc;
2567 if (sc->sk_type == SK_YUKON_LITE &&
2568 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2569 /* Take PHY out of reset. */
2570 sk_win_write_4(sc, SK_GPIO,
2571 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2572 }
2573
2574
2575 /* GMAC and GPHY Reset */
2576 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2577
2578 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2579
2580 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2581 DELAY(1000);
2582 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2583 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2584 DELAY(1000);
2585
2586
2587 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2588
2589 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2590 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2591
2592 switch (sc_if->sk_softc->sk_pmd) {
2593 case IFM_1000_SX:
2594 case IFM_1000_LX:
2595 phy |= SK_GPHY_FIBER;
2596 break;
2597
2598 case IFM_1000_CX:
2599 case IFM_1000_T:
2600 phy |= SK_GPHY_COPPER;
2601 break;
2602 }
2603
2604 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2605
2606 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2607 DELAY(1000);
2608 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2609 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2610 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2611
2612 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2613 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2614
2615 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2616
2617 /* unused read of the interrupt source register */
2618 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2619 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2620
2621 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2622 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2623 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2624
2625 /* MIB Counter Clear Mode set */
2626 reg |= YU_PAR_MIB_CLR;
2627 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2628 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2629 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2630
2631 /* MIB Counter Clear Mode clear */
2632 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2633 reg &= ~YU_PAR_MIB_CLR;
2634 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2635
2636 /* receive control reg */
2637 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2638 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2639 YU_RCR_CRCR);
2640
2641 /* transmit parameter register */
2642 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2643 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2644 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2645
2646 /* serial mode register */
2647 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2648 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2649 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2650 YU_SMR_IPG_DATA(0x1e));
2651
2652 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2653 /* Setup Yukon's address */
2654 for (i = 0; i < 3; i++) {
2655 /* Write Source Address 1 (unicast filter) */
2656 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2657 sc_if->sk_enaddr[i * 2] |
2658 sc_if->sk_enaddr[i * 2 + 1] << 8);
2659 }
2660
2661 for (i = 0; i < 3; i++) {
2662 reg = sk_win_read_2(sc_if->sk_softc,
2663 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2664 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2665 }
2666
2667 /* Set multicast filter */
2668 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2669 sk_setmulti(sc_if);
2670
2671 /* enable interrupt mask for counter overflows */
2672 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2673 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2674 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2675 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2676
2677 /* Configure RX MAC FIFO */
2678 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2679 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2680
2681 /* Configure TX MAC FIFO */
2682 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2683 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2684
2685 DPRINTFN(6, ("sk_init_yukon: end\n"));
2686 }
2687
2688 /*
2689 * Note that to properly initialize any part of the GEnesis chip,
2690 * you first have to take it out of reset mode.
2691 */
2692 int
2693 sk_init(struct ifnet *ifp)
2694 {
2695 struct sk_if_softc *sc_if = ifp->if_softc;
2696 struct sk_softc *sc = sc_if->sk_softc;
2697 struct mii_data *mii = &sc_if->sk_mii;
2698 int s;
2699 u_int32_t imr, sk_imtimer_ticks;
2700
2701 DPRINTFN(1, ("sk_init\n"));
2702
2703 s = splnet();
2704
2705 if (ifp->if_flags & IFF_RUNNING) {
2706 splx(s);
2707 return 0;
2708 }
2709
2710 /* Cancel pending I/O and free all RX/TX buffers. */
2711 sk_stop(ifp,0);
2712
2713 if (sc->sk_type == SK_GENESIS) {
2714 /* Configure LINK_SYNC LED */
2715 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2716 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2717 SK_LINKLED_LINKSYNC_ON);
2718
2719 /* Configure RX LED */
2720 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2721 SK_RXLEDCTL_COUNTER_START);
2722
2723 /* Configure TX LED */
2724 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2725 SK_TXLEDCTL_COUNTER_START);
2726 }
2727
2728 /* Configure I2C registers */
2729
2730 /* Configure XMAC(s) */
2731 switch (sc->sk_type) {
2732 case SK_GENESIS:
2733 sk_init_xmac(sc_if);
2734 break;
2735 case SK_YUKON:
2736 case SK_YUKON_LITE:
2737 case SK_YUKON_LP:
2738 sk_init_yukon(sc_if);
2739 break;
2740 }
2741 mii_mediachg(mii);
2742
2743 if (sc->sk_type == SK_GENESIS) {
2744 /* Configure MAC FIFOs */
2745 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2746 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2747 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2748
2749 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2750 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2751 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2752 }
2753
2754 /* Configure transmit arbiter(s) */
2755 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2756 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2757
2758 /* Configure RAMbuffers */
2759 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2760 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2761 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2762 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2763 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2764 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2765
2766 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2767 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2768 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2769 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2770 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2771 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2772 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2773
2774 /* Configure BMUs */
2775 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2776 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2777 SK_RX_RING_ADDR(sc_if, 0));
2778 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2779
2780 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2781 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2782 SK_TX_RING_ADDR(sc_if, 0));
2783 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2784
2785 /* Init descriptors */
2786 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2787 aprint_error("%s: initialization failed: no "
2788 "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2789 sk_stop(ifp,0);
2790 splx(s);
2791 return ENOBUFS;
2792 }
2793
2794 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2795 aprint_error("%s: initialization failed: no "
2796 "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2797 sk_stop(ifp,0);
2798 splx(s);
2799 return ENOBUFS;
2800 }
2801
2802 /* Set interrupt moderation if changed via sysctl. */
2803 switch (sc->sk_type) {
2804 case SK_GENESIS:
2805 sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2806 break;
2807 case SK_YUKON_EC:
2808 sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2809 break;
2810 default:
2811 sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2812 }
2813 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2814 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2815 sk_win_write_4(sc, SK_IMTIMERINIT,
2816 SK_IM_USECS(sc->sk_int_mod));
2817 aprint_verbose("%s: interrupt moderation is %d us\n",
2818 sc->sk_dev.dv_xname, sc->sk_int_mod);
2819 }
2820
2821 /* Configure interrupt handling */
2822 CSR_READ_4(sc, SK_ISSR);
2823 if (sc_if->sk_port == SK_PORT_A)
2824 sc->sk_intrmask |= SK_INTRS1;
2825 else
2826 sc->sk_intrmask |= SK_INTRS2;
2827
2828 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2829
2830 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2831
2832 /* Start BMUs. */
2833 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2834
2835 if (sc->sk_type == SK_GENESIS) {
2836 /* Enable XMACs TX and RX state machines */
2837 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2838 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2839 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2840 }
2841
2842 if (SK_YUKON_FAMILY(sc->sk_type)) {
2843 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2844 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2845 reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2846 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2847 }
2848
2849
2850 ifp->if_flags |= IFF_RUNNING;
2851 ifp->if_flags &= ~IFF_OACTIVE;
2852
2853 splx(s);
2854 return 0;
2855 }
2856
2857 void
2858 sk_stop(struct ifnet *ifp, int disable)
2859 {
2860 struct sk_if_softc *sc_if = ifp->if_softc;
2861 struct sk_softc *sc = sc_if->sk_softc;
2862 int i;
2863
2864 DPRINTFN(1, ("sk_stop\n"));
2865
2866 callout_stop(&sc_if->sk_tick_ch);
2867
2868 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2869 u_int32_t val;
2870
2871 /* Put PHY back into reset. */
2872 val = sk_win_read_4(sc, SK_GPIO);
2873 if (sc_if->sk_port == SK_PORT_A) {
2874 val |= SK_GPIO_DIR0;
2875 val &= ~SK_GPIO_DAT0;
2876 } else {
2877 val |= SK_GPIO_DIR2;
2878 val &= ~SK_GPIO_DAT2;
2879 }
2880 sk_win_write_4(sc, SK_GPIO, val);
2881 }
2882
2883 /* Turn off various components of this interface. */
2884 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2885 switch (sc->sk_type) {
2886 case SK_GENESIS:
2887 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2888 SK_TXMACCTL_XMAC_RESET);
2889 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2890 break;
2891 case SK_YUKON:
2892 case SK_YUKON_LITE:
2893 case SK_YUKON_LP:
2894 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2895 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2896 break;
2897 }
2898 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2899 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2900 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2901 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2902 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2903 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2904 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2905 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2906 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2907
2908 /* Disable interrupts */
2909 if (sc_if->sk_port == SK_PORT_A)
2910 sc->sk_intrmask &= ~SK_INTRS1;
2911 else
2912 sc->sk_intrmask &= ~SK_INTRS2;
2913 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2914
2915 SK_XM_READ_2(sc_if, XM_ISR);
2916 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2917
2918 /* Free RX and TX mbufs still in the queues. */
2919 for (i = 0; i < SK_RX_RING_CNT; i++) {
2920 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2921 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2922 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2923 }
2924 }
2925
2926 for (i = 0; i < SK_TX_RING_CNT; i++) {
2927 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2928 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2929 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2930 }
2931 }
2932
2933 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2934 }
2935
2936 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2937
2938 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2939
2940 #ifdef SK_DEBUG
2941 void
2942 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2943 {
2944 #define DESC_PRINT(X) \
2945 if (X) \
2946 printf("txdesc[%d]." #X "=%#x\n", \
2947 idx, X);
2948
2949 DESC_PRINT(le32toh(desc->sk_ctl));
2950 DESC_PRINT(le32toh(desc->sk_next));
2951 DESC_PRINT(le32toh(desc->sk_data_lo));
2952 DESC_PRINT(le32toh(desc->sk_data_hi));
2953 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2954 DESC_PRINT(le16toh(desc->sk_rsvd0));
2955 DESC_PRINT(le16toh(desc->sk_csum_startval));
2956 DESC_PRINT(le16toh(desc->sk_csum_startpos));
2957 DESC_PRINT(le16toh(desc->sk_csum_writepos));
2958 DESC_PRINT(le16toh(desc->sk_rsvd1));
2959 #undef PRINT
2960 }
2961
2962 void
2963 sk_dump_bytes(const char *data, int len)
2964 {
2965 int c, i, j;
2966
2967 for (i = 0; i < len; i += 16) {
2968 printf("%08x ", i);
2969 c = len - i;
2970 if (c > 16) c = 16;
2971
2972 for (j = 0; j < c; j++) {
2973 printf("%02x ", data[i + j] & 0xff);
2974 if ((j & 0xf) == 7 && j > 0)
2975 printf(" ");
2976 }
2977
2978 for (; j < 16; j++)
2979 printf(" ");
2980 printf(" ");
2981
2982 for (j = 0; j < c; j++) {
2983 int ch = data[i + j] & 0xff;
2984 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2985 }
2986
2987 printf("\n");
2988
2989 if (c < 16)
2990 break;
2991 }
2992 }
2993
2994 void
2995 sk_dump_mbuf(struct mbuf *m)
2996 {
2997 int count = m->m_pkthdr.len;
2998
2999 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3000
3001 while (count > 0 && m) {
3002 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3003 m, m->m_data, m->m_len);
3004 sk_dump_bytes(mtod(m, char *), m->m_len);
3005
3006 count -= m->m_len;
3007 m = m->m_next;
3008 }
3009 }
3010 #endif
3011
3012 static int
3013 sk_sysctl_handler(SYSCTLFN_ARGS)
3014 {
3015 int error, t;
3016 struct sysctlnode node;
3017 struct sk_softc *sc;
3018
3019 node = *rnode;
3020 sc = node.sysctl_data;
3021 t = sc->sk_int_mod;
3022 node.sysctl_data = &t;
3023 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3024 if (error || newp == NULL)
3025 return error;
3026
3027 if (t < SK_IM_MIN || t > SK_IM_MAX)
3028 return EINVAL;
3029
3030 /* update the softc with sysctl-changed value, and mark
3031 for hardware update */
3032 sc->sk_int_mod = t;
3033 sc->sk_int_mod_pending = 1;
3034 return 0;
3035 }
3036
3037 /*
3038 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3039 * set up in skc_attach()
3040 */
3041 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3042 {
3043 int rc;
3044 const struct sysctlnode *node;
3045
3046 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3047 0, CTLTYPE_NODE, "hw", NULL,
3048 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3049 goto err;
3050 }
3051
3052 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3053 0, CTLTYPE_NODE, "sk",
3054 SYSCTL_DESCR("sk interface controls"),
3055 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3056 goto err;
3057 }
3058
3059 sk_root_num = node->sysctl_num;
3060 return;
3061
3062 err:
3063 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3064 }
3065