Home | History | Annotate | Line # | Download | only in pci
if_sk.c revision 1.23
      1 /*	$NetBSD: if_sk.c,v 1.23 2006/04/14 18:50:18 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the NetBSD
     18  *	Foundation, Inc. and its contributors.
     19  * 4. Neither the name of The NetBSD Foundation nor the names of its
     20  *    contributors may be used to endorse or promote products derived
     21  *    from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 /*	$OpenBSD: if_sk.c,v 1.33 2003/08/12 05:23:06 nate Exp $	*/
     37 
     38 /*
     39  * Copyright (c) 1997, 1998, 1999, 2000
     40  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by Bill Paul.
     53  * 4. Neither the name of the author nor the names of any co-contributors
     54  *    may be used to endorse or promote products derived from this software
     55  *    without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     61  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     62  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     63  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     64  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     65  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     66  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     67  * THE POSSIBILITY OF SUCH DAMAGE.
     68  *
     69  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
     70  */
     71 
     72 /*
     73  * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
     74  *
     75  * Permission to use, copy, modify, and distribute this software for any
     76  * purpose with or without fee is hereby granted, provided that the above
     77  * copyright notice and this permission notice appear in all copies.
     78  *
     79  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     80  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     81  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     82  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     83  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     84  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     85  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     86  */
     87 
     88 /*
     89  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
     90  * the SK-984x series adapters, both single port and dual port.
     91  * References:
     92  * 	The XaQti XMAC II datasheet,
     93  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     94  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
     95  *
     96  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
     97  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
     98  * convenience to others until Vitesse corrects this problem:
     99  *
    100  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
    101  *
    102  * Written by Bill Paul <wpaul (at) ee.columbia.edu>
    103  * Department of Electrical Engineering
    104  * Columbia University, New York City
    105  */
    106 
    107 /*
    108  * The SysKonnect gigabit ethernet adapters consist of two main
    109  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
    110  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
    111  * components and a PHY while the GEnesis controller provides a PCI
    112  * interface with DMA support. Each card may have between 512K and
    113  * 2MB of SRAM on board depending on the configuration.
    114  *
    115  * The SysKonnect GEnesis controller can have either one or two XMAC
    116  * chips connected to it, allowing single or dual port NIC configurations.
    117  * SysKonnect has the distinction of being the only vendor on the market
    118  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
    119  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
    120  * XMAC registers. This driver takes advantage of these features to allow
    121  * both XMACs to operate as independent interfaces.
    122  */
    123 
    124 #include "bpfilter.h"
    125 #include "rnd.h"
    126 
    127 #include <sys/param.h>
    128 #include <sys/systm.h>
    129 #include <sys/sockio.h>
    130 #include <sys/mbuf.h>
    131 #include <sys/malloc.h>
    132 #include <sys/kernel.h>
    133 #include <sys/socket.h>
    134 #include <sys/device.h>
    135 #include <sys/queue.h>
    136 #include <sys/callout.h>
    137 #include <sys/sysctl.h>
    138 
    139 #include <net/if.h>
    140 #include <net/if_dl.h>
    141 #include <net/if_types.h>
    142 
    143 #ifdef INET
    144 #include <netinet/in.h>
    145 #include <netinet/in_systm.h>
    146 #include <netinet/in_var.h>
    147 #include <netinet/ip.h>
    148 #include <netinet/if_ether.h>
    149 #endif
    150 
    151 #include <net/if_media.h>
    152 
    153 #if NBPFILTER > 0
    154 #include <net/bpf.h>
    155 #endif
    156 #if NRND > 0
    157 #include <sys/rnd.h>
    158 #endif
    159 
    160 #include <dev/mii/mii.h>
    161 #include <dev/mii/miivar.h>
    162 #include <dev/mii/brgphyreg.h>
    163 
    164 #include <dev/pci/pcireg.h>
    165 #include <dev/pci/pcivar.h>
    166 #include <dev/pci/pcidevs.h>
    167 
    168 #define	SK_VERBOSE
    169 /* #define SK_USEIOSPACE */
    170 
    171 #include <dev/pci/if_skreg.h>
    172 #include <dev/pci/if_skvar.h>
    173 
    174 int skc_probe(struct device *, struct cfdata *, void *);
    175 void skc_attach(struct device *, struct device *self, void *aux);
    176 int sk_probe(struct device *, struct cfdata *, void *);
    177 void sk_attach(struct device *, struct device *self, void *aux);
    178 int skcprint(void *, const char *);
    179 int sk_intr(void *);
    180 void sk_intr_bcom(struct sk_if_softc *);
    181 void sk_intr_xmac(struct sk_if_softc *);
    182 void sk_intr_yukon(struct sk_if_softc *);
    183 void sk_rxeof(struct sk_if_softc *);
    184 void sk_txeof(struct sk_if_softc *);
    185 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
    186 void sk_start(struct ifnet *);
    187 int sk_ioctl(struct ifnet *, u_long, caddr_t);
    188 int sk_init(struct ifnet *);
    189 void sk_init_xmac(struct sk_if_softc *);
    190 void sk_init_yukon(struct sk_if_softc *);
    191 void sk_stop(struct ifnet *, int);
    192 void sk_watchdog(struct ifnet *);
    193 void sk_shutdown(void *);
    194 int sk_ifmedia_upd(struct ifnet *);
    195 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    196 void sk_reset(struct sk_softc *);
    197 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
    198 int sk_alloc_jumbo_mem(struct sk_if_softc *);
    199 void sk_free_jumbo_mem(struct sk_if_softc *);
    200 void *sk_jalloc(struct sk_if_softc *);
    201 void sk_jfree(struct mbuf *, caddr_t, size_t, void *);
    202 int sk_init_rx_ring(struct sk_if_softc *);
    203 int sk_init_tx_ring(struct sk_if_softc *);
    204 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
    205 void sk_vpd_read_res(struct sk_softc *,
    206 					struct vpd_res *, int);
    207 void sk_vpd_read(struct sk_softc *);
    208 
    209 void sk_update_int_mod(struct sk_softc *);
    210 
    211 int sk_xmac_miibus_readreg(struct device *, int, int);
    212 void sk_xmac_miibus_writereg(struct device *, int, int, int);
    213 void sk_xmac_miibus_statchg(struct device *);
    214 
    215 int sk_marv_miibus_readreg(struct device *, int, int);
    216 void sk_marv_miibus_writereg(struct device *, int, int, int);
    217 void sk_marv_miibus_statchg(struct device *);
    218 
    219 u_int32_t sk_xmac_hash(caddr_t);
    220 u_int32_t sk_yukon_hash(caddr_t);
    221 void sk_setfilt(struct sk_if_softc *, caddr_t, int);
    222 void sk_setmulti(struct sk_if_softc *);
    223 void sk_tick(void *);
    224 
    225 /* #define SK_DEBUG 2 */
    226 #ifdef SK_DEBUG
    227 #define DPRINTF(x)	if (skdebug) printf x
    228 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
    229 int	skdebug = SK_DEBUG;
    230 
    231 void sk_dump_txdesc(struct sk_tx_desc *, int);
    232 void sk_dump_mbuf(struct mbuf *);
    233 void sk_dump_bytes(const char *, int);
    234 #else
    235 #define DPRINTF(x)
    236 #define DPRINTFN(n,x)
    237 #endif
    238 
    239 #define SK_SETBIT(sc, reg, x)		\
    240 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
    241 
    242 #define SK_CLRBIT(sc, reg, x)		\
    243 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
    244 
    245 #define SK_WIN_SETBIT_4(sc, reg, x)	\
    246 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
    247 
    248 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
    249 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
    250 
    251 #define SK_WIN_SETBIT_2(sc, reg, x)	\
    252 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
    253 
    254 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
    255 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
    256 
    257 static int sk_sysctl_handler(SYSCTLFN_PROTO);
    258 static int sk_root_num;
    259 
    260 /* supported device vendors */
    261 static const struct sk_product {
    262 	pci_vendor_id_t		sk_vendor;
    263 	pci_product_id_t	sk_product;
    264 } sk_products[] = {
    265 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
    266 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
    267 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
    268 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
    269 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
    270 	{ PCI_VENDOR_GALILEO, PCI_PRODUCT_GALILEO_SKNET, },
    271 	{ PCI_VENDOR_GALILEO, PCI_PRODUCT_GALILEO_BELKIN, },
    272 	{ 0, 0, }
    273 };
    274 
    275 #define SK_LINKSYS_EG1032_SUBID	0x00151737
    276 
    277 static inline u_int32_t
    278 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
    279 {
    280 #ifdef SK_USEIOSPACE
    281 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    282 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
    283 #else
    284 	return CSR_READ_4(sc, reg);
    285 #endif
    286 }
    287 
    288 static inline u_int16_t
    289 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
    290 {
    291 #ifdef SK_USEIOSPACE
    292 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    293 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
    294 #else
    295 	return CSR_READ_2(sc, reg);
    296 #endif
    297 }
    298 
    299 static inline u_int8_t
    300 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
    301 {
    302 #ifdef SK_USEIOSPACE
    303 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    304 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
    305 #else
    306 	return CSR_READ_1(sc, reg);
    307 #endif
    308 }
    309 
    310 static inline void
    311 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
    312 {
    313 #ifdef SK_USEIOSPACE
    314 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    315 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
    316 #else
    317 	CSR_WRITE_4(sc, reg, x);
    318 #endif
    319 }
    320 
    321 static inline void
    322 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
    323 {
    324 #ifdef SK_USEIOSPACE
    325 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    326 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
    327 #else
    328 	CSR_WRITE_2(sc, reg, x);
    329 #endif
    330 }
    331 
    332 static inline void
    333 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
    334 {
    335 #ifdef SK_USEIOSPACE
    336 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    337 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
    338 #else
    339 	CSR_WRITE_1(sc, reg, x);
    340 #endif
    341 }
    342 
    343 /*
    344  * The VPD EEPROM contains Vital Product Data, as suggested in
    345  * the PCI 2.1 specification. The VPD data is separared into areas
    346  * denoted by resource IDs. The SysKonnect VPD contains an ID string
    347  * resource (the name of the adapter), a read-only area resource
    348  * containing various key/data fields and a read/write area which
    349  * can be used to store asset management information or log messages.
    350  * We read the ID string and read-only into buffers attached to
    351  * the controller softc structure for later use. At the moment,
    352  * we only use the ID string during sk_attach().
    353  */
    354 u_int8_t
    355 sk_vpd_readbyte(struct sk_softc *sc, int addr)
    356 {
    357 	int			i;
    358 
    359 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
    360 	for (i = 0; i < SK_TIMEOUT; i++) {
    361 		DELAY(1);
    362 		if (sk_win_read_2(sc,
    363 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
    364 			break;
    365 	}
    366 
    367 	if (i == SK_TIMEOUT)
    368 		return(0);
    369 
    370 	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
    371 }
    372 
    373 void
    374 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
    375 {
    376 	int			i;
    377 	u_int8_t		*ptr;
    378 
    379 	ptr = (u_int8_t *)res;
    380 	for (i = 0; i < sizeof(struct vpd_res); i++)
    381 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
    382 }
    383 
    384 void
    385 sk_vpd_read(struct sk_softc *sc)
    386 {
    387 	int			pos = 0, i;
    388 	struct vpd_res		res;
    389 
    390 	if (sc->sk_vpd_prodname != NULL)
    391 		free(sc->sk_vpd_prodname, M_DEVBUF);
    392 	if (sc->sk_vpd_readonly != NULL)
    393 		free(sc->sk_vpd_readonly, M_DEVBUF);
    394 	sc->sk_vpd_prodname = NULL;
    395 	sc->sk_vpd_readonly = NULL;
    396 
    397 	sk_vpd_read_res(sc, &res, pos);
    398 
    399 	if (res.vr_id != VPD_RES_ID) {
    400 		printf("%s: bad VPD resource id: expected %x got %x\n",
    401 		    sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
    402 		return;
    403 	}
    404 
    405 	pos += sizeof(res);
    406 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    407 	if (sc->sk_vpd_prodname == NULL)
    408 		panic("sk_vpd_read");
    409 	for (i = 0; i < res.vr_len; i++)
    410 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
    411 	sc->sk_vpd_prodname[i] = '\0';
    412 	pos += i;
    413 
    414 	sk_vpd_read_res(sc, &res, pos);
    415 
    416 	if (res.vr_id != VPD_RES_READ) {
    417 		printf("%s: bad VPD resource id: expected %x got %x\n",
    418 		    sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
    419 		return;
    420 	}
    421 
    422 	pos += sizeof(res);
    423 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    424 	if (sc->sk_vpd_readonly == NULL)
    425 		panic("sk_vpd_read");
    426 	for (i = 0; i < res.vr_len ; i++)
    427 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
    428 }
    429 
    430 int
    431 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
    432 {
    433 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    434 	int i;
    435 
    436 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
    437 
    438 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
    439 		return(0);
    440 
    441 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    442 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
    443 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    444 		for (i = 0; i < SK_TIMEOUT; i++) {
    445 			DELAY(1);
    446 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
    447 			    XM_MMUCMD_PHYDATARDY)
    448 				break;
    449 		}
    450 
    451 		if (i == SK_TIMEOUT) {
    452 			printf("%s: phy failed to come ready\n",
    453 			    sc_if->sk_dev.dv_xname);
    454 			return(0);
    455 		}
    456 	}
    457 	DELAY(1);
    458 	return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
    459 }
    460 
    461 void
    462 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
    463 {
    464 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    465 	int i;
    466 
    467 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
    468 
    469 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    470 	for (i = 0; i < SK_TIMEOUT; i++) {
    471 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    472 			break;
    473 	}
    474 
    475 	if (i == SK_TIMEOUT) {
    476 		printf("%s: phy failed to come ready\n",
    477 		    sc_if->sk_dev.dv_xname);
    478 		return;
    479 	}
    480 
    481 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
    482 	for (i = 0; i < SK_TIMEOUT; i++) {
    483 		DELAY(1);
    484 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    485 			break;
    486 	}
    487 
    488 	if (i == SK_TIMEOUT)
    489 		printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
    490 }
    491 
    492 void
    493 sk_xmac_miibus_statchg(struct device *dev)
    494 {
    495 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    496 	struct mii_data *mii = &sc_if->sk_mii;
    497 
    498 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
    499 
    500 	/*
    501 	 * If this is a GMII PHY, manually set the XMAC's
    502 	 * duplex mode accordingly.
    503 	 */
    504 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    505 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
    506 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    507 		} else {
    508 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    509 		}
    510 	}
    511 }
    512 
    513 int
    514 sk_marv_miibus_readreg(dev, phy, reg)
    515 	struct device *dev;
    516 	int phy, reg;
    517 {
    518 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    519 	u_int16_t val;
    520 	int i;
    521 
    522 	if (phy != 0 ||
    523 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
    524 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
    525 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
    526 			     phy, reg));
    527 		return(0);
    528 	}
    529 
    530         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    531 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
    532 
    533 	for (i = 0; i < SK_TIMEOUT; i++) {
    534 		DELAY(1);
    535 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
    536 		if (val & YU_SMICR_READ_VALID)
    537 			break;
    538 	}
    539 
    540 	if (i == SK_TIMEOUT) {
    541 		printf("%s: phy failed to come ready\n",
    542 		       sc_if->sk_dev.dv_xname);
    543 		return 0;
    544 	}
    545 
    546  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
    547 		     SK_TIMEOUT));
    548 
    549         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
    550 
    551 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
    552 		     phy, reg, val));
    553 
    554 	return val;
    555 }
    556 
    557 void
    558 sk_marv_miibus_writereg(dev, phy, reg, val)
    559 	struct device *dev;
    560 	int phy, reg, val;
    561 {
    562 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    563 	int i;
    564 
    565 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
    566 		     phy, reg, val));
    567 
    568 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
    569 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    570 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
    571 
    572 	for (i = 0; i < SK_TIMEOUT; i++) {
    573 		DELAY(1);
    574 		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
    575 			break;
    576 	}
    577 }
    578 
    579 void
    580 sk_marv_miibus_statchg(dev)
    581 	struct device *dev;
    582 {
    583 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
    584 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
    585 }
    586 
    587 #define SK_HASH_BITS		6
    588 
    589 u_int32_t
    590 sk_xmac_hash(caddr_t addr)
    591 {
    592 	u_int32_t		crc;
    593 
    594 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
    595 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
    596 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    597 	return (crc);
    598 }
    599 
    600 u_int32_t
    601 sk_yukon_hash(caddr_t addr)
    602 {
    603 	u_int32_t		crc;
    604 
    605 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
    606 	crc &= ((1 << SK_HASH_BITS) - 1);
    607 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    608 	return (crc);
    609 }
    610 
    611 void
    612 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
    613 {
    614 	int base = XM_RXFILT_ENTRY(slot);
    615 
    616 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
    617 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
    618 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
    619 }
    620 
    621 void
    622 sk_setmulti(struct sk_if_softc *sc_if)
    623 {
    624 	struct sk_softc *sc = sc_if->sk_softc;
    625 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
    626 	u_int32_t hashes[2] = { 0, 0 };
    627 	int h = 0, i;
    628 	struct ethercom *ec = &sc_if->sk_ethercom;
    629 	struct ether_multi *enm;
    630 	struct ether_multistep step;
    631 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
    632 
    633 	/* First, zot all the existing filters. */
    634 	switch(sc->sk_type) {
    635 	case SK_GENESIS:
    636 		for (i = 1; i < XM_RXFILT_MAX; i++)
    637 			sk_setfilt(sc_if, (caddr_t)&dummy, i);
    638 
    639 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
    640 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
    641 		break;
    642 	case SK_YUKON:
    643 	case SK_YUKON_LITE:
    644 	case SK_YUKON_LP:
    645 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
    646 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
    647 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
    648 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
    649 		break;
    650 	}
    651 
    652 	/* Now program new ones. */
    653 allmulti:
    654 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    655 		hashes[0] = 0xFFFFFFFF;
    656 		hashes[1] = 0xFFFFFFFF;
    657 	} else {
    658 		i = 1;
    659 		/* First find the tail of the list. */
    660 		ETHER_FIRST_MULTI(step, ec, enm);
    661 		while (enm != NULL) {
    662 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
    663 				 ETHER_ADDR_LEN)) {
    664 				ifp->if_flags |= IFF_ALLMULTI;
    665 				goto allmulti;
    666 			}
    667 			DPRINTFN(2,("multicast address %s\n",
    668 	    			ether_sprintf(enm->enm_addrlo)));
    669 			/*
    670 			 * Program the first XM_RXFILT_MAX multicast groups
    671 			 * into the perfect filter. For all others,
    672 			 * use the hash table.
    673 			 */
    674 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
    675 				sk_setfilt(sc_if, enm->enm_addrlo, i);
    676 				i++;
    677 			}
    678 			else {
    679 				switch (sc->sk_type) {
    680 				case SK_GENESIS:
    681 					h = sk_xmac_hash(enm->enm_addrlo);
    682 					break;
    683 				case SK_YUKON:
    684 				case SK_YUKON_LITE:
    685 				case SK_YUKON_LP:
    686 					h = sk_yukon_hash(enm->enm_addrlo);
    687 					break;
    688 				}
    689 				if (h < 32)
    690 					hashes[0] |= (1 << h);
    691 				else
    692 					hashes[1] |= (1 << (h - 32));
    693 			}
    694 
    695 			ETHER_NEXT_MULTI(step, enm);
    696 		}
    697 	}
    698 
    699 	switch(sc->sk_type) {
    700 	case SK_GENESIS:
    701 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
    702 			       XM_MODE_RX_USE_PERFECT);
    703 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
    704 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
    705 		break;
    706 	case SK_YUKON:
    707 	case SK_YUKON_LITE:
    708 	case SK_YUKON_LP:
    709 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
    710 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
    711 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
    712 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
    713 		break;
    714 	}
    715 }
    716 
    717 int
    718 sk_init_rx_ring(struct sk_if_softc *sc_if)
    719 {
    720 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    721 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    722 	int			i;
    723 
    724 	bzero((char *)rd->sk_rx_ring,
    725 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
    726 
    727 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    728 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
    729 		if (i == (SK_RX_RING_CNT - 1)) {
    730 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
    731 			rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if, 0);
    732 		} else {
    733 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
    734 			rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if,i+1);
    735 		}
    736 	}
    737 
    738 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    739 		if (sk_newbuf(sc_if, i, NULL,
    740 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
    741 			printf("%s: failed alloc of %dth mbuf\n",
    742 			    sc_if->sk_dev.dv_xname, i);
    743 			return(ENOBUFS);
    744 		}
    745 	}
    746 	sc_if->sk_cdata.sk_rx_prod = 0;
    747 	sc_if->sk_cdata.sk_rx_cons = 0;
    748 
    749 	return(0);
    750 }
    751 
    752 int
    753 sk_init_tx_ring(struct sk_if_softc *sc_if)
    754 {
    755 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    756 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    757 	int			i;
    758 
    759 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
    760 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
    761 
    762 	for (i = 0; i < SK_TX_RING_CNT; i++) {
    763 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
    764 		if (i == (SK_TX_RING_CNT - 1)) {
    765 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
    766 			rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if, 0);
    767 		} else {
    768 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
    769 			rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if,i+1);
    770 		}
    771 	}
    772 
    773 	sc_if->sk_cdata.sk_tx_prod = 0;
    774 	sc_if->sk_cdata.sk_tx_cons = 0;
    775 	sc_if->sk_cdata.sk_tx_cnt = 0;
    776 
    777 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
    778 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    779 
    780 	return (0);
    781 }
    782 
    783 int
    784 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
    785 	  bus_dmamap_t dmamap)
    786 {
    787 	struct mbuf		*m_new = NULL;
    788 	struct sk_chain		*c;
    789 	struct sk_rx_desc	*r;
    790 
    791 	if (m == NULL) {
    792 		caddr_t buf = NULL;
    793 
    794 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    795 		if (m_new == NULL) {
    796 			printf("%s: no memory for rx list -- "
    797 			    "packet dropped!\n", sc_if->sk_dev.dv_xname);
    798 			return(ENOBUFS);
    799 		}
    800 
    801 		/* Allocate the jumbo buffer */
    802 		buf = sk_jalloc(sc_if);
    803 		if (buf == NULL) {
    804 			m_freem(m_new);
    805 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
    806 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
    807 			return(ENOBUFS);
    808 		}
    809 
    810 		/* Attach the buffer to the mbuf */
    811 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    812 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
    813 
    814 	} else {
    815 		/*
    816 	 	 * We're re-using a previously allocated mbuf;
    817 		 * be sure to re-init pointers and lengths to
    818 		 * default values.
    819 		 */
    820 		m_new = m;
    821 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    822 		m_new->m_data = m_new->m_ext.ext_buf;
    823 	}
    824 	m_adj(m_new, ETHER_ALIGN);
    825 
    826 	c = &sc_if->sk_cdata.sk_rx_chain[i];
    827 	r = c->sk_desc;
    828 	c->sk_mbuf = m_new;
    829 	r->sk_data_lo = dmamap->dm_segs[0].ds_addr +
    830 	    (((vaddr_t)m_new->m_data
    831 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf));
    832 	r->sk_ctl = SK_JLEN | SK_RXSTAT;
    833 
    834 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    835 
    836 	return(0);
    837 }
    838 
    839 /*
    840  * Memory management for jumbo frames.
    841  */
    842 
    843 int
    844 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
    845 {
    846 	struct sk_softc		*sc = sc_if->sk_softc;
    847 	caddr_t			ptr, kva;
    848 	bus_dma_segment_t	seg;
    849 	int		i, rseg, state, error;
    850 	struct sk_jpool_entry   *entry;
    851 
    852 	state = error = 0;
    853 
    854 	/* Grab a big chunk o' storage. */
    855 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
    856 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    857 		printf("%s: can't alloc rx buffers\n", sc->sk_dev.dv_xname);
    858 		return (ENOBUFS);
    859 	}
    860 
    861 	state = 1;
    862 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, &kva,
    863 			   BUS_DMA_NOWAIT)) {
    864 		printf("%s: can't map dma buffers (%d bytes)\n",
    865 		    sc->sk_dev.dv_xname, SK_JMEM);
    866 		error = ENOBUFS;
    867 		goto out;
    868 	}
    869 
    870 	state = 2;
    871 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
    872 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
    873 		printf("%s: can't create dma map\n", sc->sk_dev.dv_xname);
    874 		error = ENOBUFS;
    875 		goto out;
    876 	}
    877 
    878 	state = 3;
    879 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
    880 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
    881 		printf("%s: can't load dma map\n", sc->sk_dev.dv_xname);
    882 		error = ENOBUFS;
    883 		goto out;
    884 	}
    885 
    886 	state = 4;
    887 	sc_if->sk_cdata.sk_jumbo_buf = (caddr_t)kva;
    888 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
    889 
    890 	LIST_INIT(&sc_if->sk_jfree_listhead);
    891 	LIST_INIT(&sc_if->sk_jinuse_listhead);
    892 
    893 	/*
    894 	 * Now divide it up into 9K pieces and save the addresses
    895 	 * in an array.
    896 	 */
    897 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
    898 	for (i = 0; i < SK_JSLOTS; i++) {
    899 		sc_if->sk_cdata.sk_jslots[i] = ptr;
    900 		ptr += SK_JLEN;
    901 		entry = malloc(sizeof(struct sk_jpool_entry),
    902 		    M_DEVBUF, M_NOWAIT);
    903 		if (entry == NULL) {
    904 			printf("%s: no memory for jumbo buffer queue!\n",
    905 			    sc->sk_dev.dv_xname);
    906 			error = ENOBUFS;
    907 			goto out;
    908 		}
    909 		entry->slot = i;
    910 		if (i)
    911 		LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
    912 				 entry, jpool_entries);
    913 		else
    914 		LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
    915 				 entry, jpool_entries);
    916 	}
    917 out:
    918 	if (error != 0) {
    919 		switch (state) {
    920 		case 4:
    921 			bus_dmamap_unload(sc->sc_dmatag,
    922 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    923 		case 3:
    924 			bus_dmamap_destroy(sc->sc_dmatag,
    925 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    926 		case 2:
    927 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
    928 		case 1:
    929 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
    930 			break;
    931 		default:
    932 			break;
    933 		}
    934 	}
    935 
    936 	return (error);
    937 }
    938 
    939 /*
    940  * Allocate a jumbo buffer.
    941  */
    942 void *
    943 sk_jalloc(struct sk_if_softc *sc_if)
    944 {
    945 	struct sk_jpool_entry   *entry;
    946 
    947 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
    948 
    949 	if (entry == NULL)
    950 		return (NULL);
    951 
    952 	LIST_REMOVE(entry, jpool_entries);
    953 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
    954 	return (sc_if->sk_cdata.sk_jslots[entry->slot]);
    955 }
    956 
    957 /*
    958  * Release a jumbo buffer.
    959  */
    960 void
    961 sk_jfree(struct mbuf *m, caddr_t buf, size_t size, void	*arg)
    962 {
    963 	struct sk_jpool_entry *entry;
    964 	struct sk_if_softc *sc;
    965 	int i, s;
    966 
    967 	/* Extract the softc struct pointer. */
    968 	sc = (struct sk_if_softc *)arg;
    969 
    970 	if (sc == NULL)
    971 		panic("sk_jfree: can't find softc pointer!");
    972 
    973 	/* calculate the slot this buffer belongs to */
    974 
    975 	i = ((vaddr_t)buf
    976 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
    977 
    978 	if ((i < 0) || (i >= SK_JSLOTS))
    979 		panic("sk_jfree: asked to free buffer that we don't manage!");
    980 
    981 	s = splvm();
    982 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
    983 	if (entry == NULL)
    984 		panic("sk_jfree: buffer not in use!");
    985 	entry->slot = i;
    986 	LIST_REMOVE(entry, jpool_entries);
    987 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
    988 
    989 	if (__predict_true(m != NULL))
    990 		pool_cache_put(&mbpool_cache, m);
    991 	splx(s);
    992 }
    993 
    994 /*
    995  * Set media options.
    996  */
    997 int
    998 sk_ifmedia_upd(struct ifnet *ifp)
    999 {
   1000 	struct sk_if_softc *sc_if = ifp->if_softc;
   1001 
   1002 	(void) sk_init(ifp);
   1003 	mii_mediachg(&sc_if->sk_mii);
   1004 	return(0);
   1005 }
   1006 
   1007 /*
   1008  * Report current media status.
   1009  */
   1010 void
   1011 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1012 {
   1013 	struct sk_if_softc *sc_if = ifp->if_softc;
   1014 
   1015 	mii_pollstat(&sc_if->sk_mii);
   1016 	ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
   1017 	ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
   1018 }
   1019 
   1020 int
   1021 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
   1022 {
   1023 	struct sk_if_softc *sc_if = ifp->if_softc;
   1024 	struct sk_softc *sc = sc_if->sk_softc;
   1025 	struct ifreq *ifr = (struct ifreq *) data;
   1026 	/* struct ifaddr *ifa = (struct ifaddr *) data; */
   1027 	struct mii_data *mii;
   1028 	int s, error = 0;
   1029 
   1030 	/* DPRINTFN(2, ("sk_ioctl\n")); */
   1031 
   1032 	s = splnet();
   1033 
   1034 	switch(command) {
   1035 
   1036 	case SIOCSIFFLAGS:
   1037 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
   1038 		if (ifp->if_flags & IFF_UP) {
   1039 			if (ifp->if_flags & IFF_RUNNING &&
   1040 			    ifp->if_flags & IFF_PROMISC &&
   1041 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
   1042 				switch(sc->sk_type) {
   1043 				case SK_GENESIS:
   1044 					SK_XM_SETBIT_4(sc_if, XM_MODE,
   1045 					    XM_MODE_RX_PROMISC);
   1046 					break;
   1047 				case SK_YUKON:
   1048 				case SK_YUKON_LITE:
   1049 				case SK_YUKON_LP:
   1050 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
   1051 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1052 					break;
   1053 				}
   1054 				sk_setmulti(sc_if);
   1055 			} else if (ifp->if_flags & IFF_RUNNING &&
   1056 			    !(ifp->if_flags & IFF_PROMISC) &&
   1057 			    sc_if->sk_if_flags & IFF_PROMISC) {
   1058 				switch(sc->sk_type) {
   1059 				case SK_GENESIS:
   1060 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
   1061 					    XM_MODE_RX_PROMISC);
   1062 					break;
   1063 				case SK_YUKON:
   1064 				case SK_YUKON_LITE:
   1065 				case SK_YUKON_LP:
   1066 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
   1067 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1068 					break;
   1069 				}
   1070 
   1071 				sk_setmulti(sc_if);
   1072 			} else
   1073 				(void) sk_init(ifp);
   1074 		} else {
   1075 			if (ifp->if_flags & IFF_RUNNING)
   1076 				sk_stop(ifp,0);
   1077 		}
   1078 		sc_if->sk_if_flags = ifp->if_flags;
   1079 		error = 0;
   1080 		break;
   1081 
   1082 	case SIOCGIFMEDIA:
   1083 	case SIOCSIFMEDIA:
   1084 	        DPRINTFN(2, ("sk_ioctl MEDIA\n"));
   1085 		mii = &sc_if->sk_mii;
   1086 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   1087 		break;
   1088 	default:
   1089 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
   1090 		error = ether_ioctl(ifp, command, data);
   1091 
   1092 		if ( error == ENETRESET) {
   1093 			if (ifp->if_flags & IFF_RUNNING) {
   1094 				sk_setmulti(sc_if);
   1095 				DPRINTFN(2, ("sk_ioctl setmulti called\n"));
   1096 			}
   1097 			error = 0;
   1098 		} else if ( error ) {
   1099 			splx(s);
   1100 			return error;
   1101 		}
   1102 		break;
   1103 	}
   1104 
   1105 	splx(s);
   1106 	return(error);
   1107 }
   1108 
   1109 void
   1110 sk_update_int_mod(struct sk_softc *sc)
   1111 {
   1112 	u_int32_t sk_imtimer_ticks;
   1113 
   1114 	/*
   1115          * Configure interrupt moderation. The moderation timer
   1116 	 * defers interrupts specified in the interrupt moderation
   1117 	 * timer mask based on the timeout specified in the interrupt
   1118 	 * moderation timer init register. Each bit in the timer
   1119 	 * register represents one tick, so to specify a timeout in
   1120 	 * microseconds, we have to multiply by the correct number of
   1121 	 * ticks-per-microsecond.
   1122 	 */
   1123 	switch (sc->sk_type) {
   1124 	case SK_GENESIS:
   1125 		sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   1126 		break;
   1127 	case SK_YUKON_EC:
   1128 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   1129 		break;
   1130 	default:
   1131 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   1132 	}
   1133 	aprint_verbose("%s: interrupt moderation is %d us\n",
   1134 	    sc->sk_dev.dv_xname, sc->sk_int_mod);
   1135         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
   1136         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
   1137 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
   1138         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
   1139 	sc->sk_int_mod_pending = 0;
   1140 }
   1141 
   1142 /*
   1143  * Lookup: Check the PCI vendor and device, and return a pointer to
   1144  * The structure if the IDs match against our list.
   1145  */
   1146 
   1147 static const struct sk_product *
   1148 sk_lookup(const struct pci_attach_args *pa)
   1149 {
   1150 	const struct sk_product *psk;
   1151 
   1152 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
   1153 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
   1154 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
   1155 			return (psk);
   1156 	}
   1157 	return (NULL);
   1158 }
   1159 
   1160 /*
   1161  * Probe for a SysKonnect GEnesis chip.
   1162  */
   1163 
   1164 int
   1165 skc_probe(struct device *parent, struct cfdata *match, void *aux)
   1166 {
   1167 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1168 	const struct sk_product *psk;
   1169 	pcireg_t subid;
   1170 
   1171 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
   1172 
   1173 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
   1174 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
   1175 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
   1176 	    subid == SK_LINKSYS_EG1032_SUBID)
   1177 		return(1);
   1178 
   1179 	if ((psk = sk_lookup(pa))) {
   1180 		return(1);
   1181 	}
   1182 	return(0);
   1183 }
   1184 
   1185 /*
   1186  * Force the GEnesis into reset, then bring it out of reset.
   1187  */
   1188 void sk_reset(struct sk_softc *sc)
   1189 {
   1190 	DPRINTFN(2, ("sk_reset\n"));
   1191 
   1192 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
   1193 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
   1194 	if (SK_YUKON_FAMILY(sc->sk_type))
   1195 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
   1196 
   1197 	DELAY(1000);
   1198 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
   1199 	DELAY(2);
   1200 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
   1201 	if (SK_YUKON_FAMILY(sc->sk_type))
   1202 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
   1203 
   1204 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
   1205 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
   1206 		     CSR_READ_2(sc, SK_LINK_CTRL)));
   1207 
   1208 	if (sc->sk_type == SK_GENESIS) {
   1209 		/* Configure packet arbiter */
   1210 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
   1211 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1212 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1213 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1214 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1215 	}
   1216 
   1217 	/* Enable RAM interface */
   1218 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
   1219 
   1220 	sk_update_int_mod(sc);
   1221 }
   1222 
   1223 int
   1224 sk_probe(struct device *parent, struct cfdata *match, void *aux)
   1225 {
   1226 	struct skc_attach_args *sa = aux;
   1227 
   1228 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
   1229 		return(0);
   1230 
   1231 	return (1);
   1232 }
   1233 
   1234 /*
   1235  * Each XMAC chip is attached as a separate logical IP interface.
   1236  * Single port cards will have only one logical interface of course.
   1237  */
   1238 void
   1239 sk_attach(struct device *parent, struct device *self, void *aux)
   1240 {
   1241 	struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
   1242 	struct sk_softc *sc = (struct sk_softc *)parent;
   1243 	struct skc_attach_args *sa = aux;
   1244 	struct sk_txmap_entry	*entry;
   1245 	struct ifnet *ifp;
   1246 	bus_dma_segment_t seg;
   1247 	bus_dmamap_t dmamap;
   1248 	caddr_t kva;
   1249 	int i, rseg;
   1250 
   1251 	sc_if->sk_port = sa->skc_port;
   1252 	sc_if->sk_softc = sc;
   1253 	sc->sk_if[sa->skc_port] = sc_if;
   1254 
   1255 	if (sa->skc_port == SK_PORT_A)
   1256 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
   1257 	if (sa->skc_port == SK_PORT_B)
   1258 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
   1259 
   1260 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
   1261 
   1262 	/*
   1263 	 * Get station address for this interface. Note that
   1264 	 * dual port cards actually come with three station
   1265 	 * addresses: one for each port, plus an extra. The
   1266 	 * extra one is used by the SysKonnect driver software
   1267 	 * as a 'virtual' station address for when both ports
   1268 	 * are operating in failover mode. Currently we don't
   1269 	 * use this extra address.
   1270 	 */
   1271 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1272 		sc_if->sk_enaddr[i] =
   1273 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
   1274 
   1275 
   1276 	aprint_normal(": Ethernet address %s\n",
   1277 	    ether_sprintf(sc_if->sk_enaddr));
   1278 
   1279 	/*
   1280 	 * Set up RAM buffer addresses. The NIC will have a certain
   1281 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
   1282 	 * need to divide this up a) between the transmitter and
   1283  	 * receiver and b) between the two XMACs, if this is a
   1284 	 * dual port NIC. Our algorithm is to divide up the memory
   1285 	 * evenly so that everyone gets a fair share.
   1286 	 */
   1287 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
   1288 		u_int32_t		chunk, val;
   1289 
   1290 		chunk = sc->sk_ramsize / 2;
   1291 		val = sc->sk_rboff / sizeof(u_int64_t);
   1292 		sc_if->sk_rx_ramstart = val;
   1293 		val += (chunk / sizeof(u_int64_t));
   1294 		sc_if->sk_rx_ramend = val - 1;
   1295 		sc_if->sk_tx_ramstart = val;
   1296 		val += (chunk / sizeof(u_int64_t));
   1297 		sc_if->sk_tx_ramend = val - 1;
   1298 	} else {
   1299 		u_int32_t		chunk, val;
   1300 
   1301 		chunk = sc->sk_ramsize / 4;
   1302 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
   1303 		    sizeof(u_int64_t);
   1304 		sc_if->sk_rx_ramstart = val;
   1305 		val += (chunk / sizeof(u_int64_t));
   1306 		sc_if->sk_rx_ramend = val - 1;
   1307 		sc_if->sk_tx_ramstart = val;
   1308 		val += (chunk / sizeof(u_int64_t));
   1309 		sc_if->sk_tx_ramend = val - 1;
   1310 	}
   1311 
   1312 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
   1313 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
   1314 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
   1315 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
   1316 
   1317 	/* Read and save PHY type and set PHY address */
   1318 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
   1319 	switch (sc_if->sk_phytype) {
   1320 	case SK_PHYTYPE_XMAC:
   1321 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
   1322 		break;
   1323 	case SK_PHYTYPE_BCOM:
   1324 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
   1325 		break;
   1326 	case SK_PHYTYPE_MARV_COPPER:
   1327 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
   1328 		break;
   1329 	default:
   1330 		aprint_error("%s: unsupported PHY type: %d\n",
   1331 		    sc->sk_dev.dv_xname, sc_if->sk_phytype);
   1332 		return;
   1333 	}
   1334 
   1335 	/* Allocate the descriptor queues. */
   1336 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
   1337 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1338 		aprint_error("%s: can't alloc rx buffers\n",
   1339 		    sc->sk_dev.dv_xname);
   1340 		goto fail;
   1341 	}
   1342 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
   1343 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
   1344 		aprint_error("%s: can't map dma buffers (%lu bytes)\n",
   1345 		       sc_if->sk_dev.dv_xname,
   1346 		       (u_long) sizeof(struct sk_ring_data));
   1347 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1348 		goto fail;
   1349 	}
   1350 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
   1351 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
   1352             &sc_if->sk_ring_map)) {
   1353 		aprint_error("%s: can't create dma map\n",
   1354 		    sc_if->sk_dev.dv_xname);
   1355 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1356 		    sizeof(struct sk_ring_data));
   1357 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1358 		goto fail;
   1359 	}
   1360 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
   1361 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
   1362 		aprint_error("%s: can't load dma map\n",
   1363 		    sc_if->sk_dev.dv_xname);
   1364 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1365 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1366 		    sizeof(struct sk_ring_data));
   1367 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1368 		goto fail;
   1369 	}
   1370 
   1371 	for (i = 0; i < SK_RX_RING_CNT; i++)
   1372 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   1373 
   1374 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
   1375 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   1376 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   1377 
   1378 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
   1379 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
   1380 			aprint_error("%s: Can't create TX dmamap\n",
   1381 				sc_if->sk_dev.dv_xname);
   1382 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1383 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1384 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1385 			    sizeof(struct sk_ring_data));
   1386 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1387 			goto fail;
   1388 		}
   1389 
   1390 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
   1391 		if (!entry) {
   1392 			aprint_error("%s: Can't alloc txmap entry\n",
   1393 				sc_if->sk_dev.dv_xname);
   1394 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
   1395 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1396 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1397 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1398 			    sizeof(struct sk_ring_data));
   1399 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1400 			goto fail;
   1401 		}
   1402 		entry->dmamap = dmamap;
   1403 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
   1404 	}
   1405 
   1406         sc_if->sk_rdata = (struct sk_ring_data *)kva;
   1407 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
   1408 
   1409 	ifp = &sc_if->sk_ethercom.ec_if;
   1410 	/* Try to allocate memory for jumbo buffers. */
   1411 	if (sk_alloc_jumbo_mem(sc_if)) {
   1412 		printf("%s: jumbo buffer allocation failed\n", ifp->if_xname);
   1413 		goto fail;
   1414 	}
   1415 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
   1416 		| ETHERCAP_JUMBO_MTU;
   1417 
   1418 	ifp->if_softc = sc_if;
   1419 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1420 	ifp->if_ioctl = sk_ioctl;
   1421 	ifp->if_start = sk_start;
   1422 	ifp->if_stop = sk_stop;
   1423 	ifp->if_init = sk_init;
   1424 	ifp->if_watchdog = sk_watchdog;
   1425 	ifp->if_capabilities = 0;
   1426 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
   1427 	IFQ_SET_READY(&ifp->if_snd);
   1428 	strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
   1429 
   1430 	/*
   1431 	 * Do miibus setup.
   1432 	 */
   1433 	switch (sc->sk_type) {
   1434 	case SK_GENESIS:
   1435 		sk_init_xmac(sc_if);
   1436 		break;
   1437 	case SK_YUKON:
   1438 	case SK_YUKON_LITE:
   1439 	case SK_YUKON_LP:
   1440 		sk_init_yukon(sc_if);
   1441 		break;
   1442 	default:
   1443 		panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
   1444 		      sc->sk_type);
   1445 	}
   1446 
   1447  	DPRINTFN(2, ("sk_attach: 1\n"));
   1448 
   1449 	sc_if->sk_mii.mii_ifp = ifp;
   1450 	switch (sc->sk_type) {
   1451 	case SK_GENESIS:
   1452 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
   1453 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
   1454 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
   1455 		break;
   1456 	case SK_YUKON:
   1457 	case SK_YUKON_LITE:
   1458 	case SK_YUKON_LP:
   1459 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
   1460 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
   1461 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
   1462 		break;
   1463 	}
   1464 
   1465 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
   1466 	    sk_ifmedia_upd, sk_ifmedia_sts);
   1467 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
   1468 	    MII_OFFSET_ANY, 0);
   1469 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
   1470 		printf("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
   1471 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
   1472 			    0, NULL);
   1473 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
   1474 	}
   1475 	else
   1476 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1477 
   1478 	callout_init(&sc_if->sk_tick_ch);
   1479 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
   1480 
   1481 	DPRINTFN(2, ("sk_attach: 1\n"));
   1482 
   1483 	/*
   1484 	 * Call MI attach routines.
   1485 	 */
   1486 	if_attach(ifp);
   1487 
   1488 	ether_ifattach(ifp, sc_if->sk_enaddr);
   1489 
   1490 #if NRND > 0
   1491         rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
   1492             RND_TYPE_NET, 0);
   1493 #endif
   1494 
   1495 	DPRINTFN(2, ("sk_attach: end\n"));
   1496 
   1497 	return;
   1498 
   1499 fail:
   1500 	sc->sk_if[sa->skc_port] = NULL;
   1501 }
   1502 
   1503 int
   1504 skcprint(void *aux, const char *pnp)
   1505 {
   1506 	struct skc_attach_args *sa = aux;
   1507 
   1508 	if (pnp)
   1509 		aprint_normal("sk port %c at %s",
   1510 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
   1511 	else
   1512 		aprint_normal(" port %c",
   1513 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
   1514 	return (UNCONF);
   1515 }
   1516 
   1517 /*
   1518  * Attach the interface. Allocate softc structures, do ifmedia
   1519  * setup and ethernet/BPF attach.
   1520  */
   1521 void
   1522 skc_attach(struct device *parent, struct device *self, void *aux)
   1523 {
   1524 	struct sk_softc *sc = (struct sk_softc *)self;
   1525 	struct pci_attach_args *pa = aux;
   1526 	struct skc_attach_args skca;
   1527 	pci_chipset_tag_t pc = pa->pa_pc;
   1528 	pcireg_t memtype;
   1529 	pci_intr_handle_t ih;
   1530 	const char *intrstr = NULL;
   1531 	bus_addr_t iobase;
   1532 	bus_size_t iosize;
   1533 	int s, rc, sk_nodenum;
   1534 	u_int32_t command;
   1535 	const char *revstr;
   1536 	const struct sysctlnode *node;
   1537 
   1538 	DPRINTFN(2, ("begin skc_attach\n"));
   1539 
   1540 	s = splnet();
   1541 
   1542 	/*
   1543 	 * Handle power management nonsense.
   1544 	 */
   1545 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
   1546 
   1547 	if (command == 0x01) {
   1548 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
   1549 		if (command & SK_PSTATE_MASK) {
   1550 			u_int32_t		xiobase, membase, irq;
   1551 
   1552 			/* Save important PCI config data. */
   1553 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
   1554 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
   1555 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
   1556 
   1557 			/* Reset the power state. */
   1558 			aprint_normal("%s chip is in D%d power mode "
   1559 			    "-- setting to D0\n", sc->sk_dev.dv_xname,
   1560 			    command & SK_PSTATE_MASK);
   1561 			command &= 0xFFFFFFFC;
   1562 			pci_conf_write(pc, pa->pa_tag,
   1563 			    SK_PCI_PWRMGMTCTRL, command);
   1564 
   1565 			/* Restore PCI config data. */
   1566 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
   1567 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
   1568 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
   1569 		}
   1570 	}
   1571 
   1572 	/*
   1573 	 * Map control/status registers.
   1574 	 */
   1575 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1576 	command |= PCI_COMMAND_IO_ENABLE |
   1577 	    PCI_COMMAND_MEM_ENABLE |
   1578 	    PCI_COMMAND_MASTER_ENABLE;
   1579 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1580 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1581 
   1582 #ifdef SK_USEIOSPACE
   1583 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
   1584 		aprint_error(": failed to enable I/O ports!\n");
   1585 		goto fail;
   1586 	}
   1587 	/*
   1588 	 * Map control/status registers.
   1589 	 */
   1590 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
   1591 			   &iobase, &iosize)) {
   1592 		aprint_error(": can't find i/o space\n");
   1593 		goto fail;
   1594 	}
   1595 #else
   1596 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1597 		aprint_error(": failed to enable memory mapping!\n");
   1598 		goto fail;
   1599 	}
   1600 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
   1601 	switch (memtype) {
   1602         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1603         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1604                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
   1605 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
   1606 				   &iobase, &iosize) == 0)
   1607                         break;
   1608         default:
   1609                 aprint_error("%s: can't find mem space\n",
   1610 		       sc->sk_dev.dv_xname);
   1611                 return;
   1612 	}
   1613 
   1614 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
   1615 #endif
   1616 	sc->sc_dmatag = pa->pa_dmat;
   1617 
   1618 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
   1619 	sc->sk_rev  = (sk_win_read_1(sc, SK_CONFIG) >> 4);
   1620 
   1621 	/* bail out here if chip is not recognized */
   1622 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
   1623 		aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
   1624 		goto fail;
   1625 	}
   1626 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
   1627 
   1628 	/* Allocate interrupt */
   1629 	if (pci_intr_map(pa, &ih)) {
   1630 		aprint_error(": couldn't map interrupt\n");
   1631 		goto fail;
   1632 	}
   1633 
   1634 	intrstr = pci_intr_string(pc, ih);
   1635 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
   1636 	if (sc->sk_intrhand == NULL) {
   1637 		aprint_error(": couldn't establish interrupt");
   1638 		if (intrstr != NULL)
   1639 			aprint_normal(" at %s", intrstr);
   1640 		goto fail;
   1641 	}
   1642 	aprint_normal(": %s\n", intrstr);
   1643 
   1644 	/* Reset the adapter. */
   1645 	sk_reset(sc);
   1646 
   1647 	/* Read and save vital product data from EEPROM. */
   1648 	sk_vpd_read(sc);
   1649 
   1650 	if (sc->sk_type == SK_GENESIS) {
   1651 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1652 		/* Read and save RAM size and RAMbuffer offset */
   1653 		switch(val) {
   1654 		case SK_RAMSIZE_512K_64:
   1655 			sc->sk_ramsize = 0x80000;
   1656 			sc->sk_rboff = SK_RBOFF_0;
   1657 			break;
   1658 		case SK_RAMSIZE_1024K_64:
   1659 			sc->sk_ramsize = 0x100000;
   1660 			sc->sk_rboff = SK_RBOFF_80000;
   1661 			break;
   1662 		case SK_RAMSIZE_1024K_128:
   1663 			sc->sk_ramsize = 0x100000;
   1664 			sc->sk_rboff = SK_RBOFF_0;
   1665 			break;
   1666 		case SK_RAMSIZE_2048K_128:
   1667 			sc->sk_ramsize = 0x200000;
   1668 			sc->sk_rboff = SK_RBOFF_0;
   1669 			break;
   1670 		default:
   1671 			aprint_error("%s: unknown ram size: %d\n",
   1672 			       sc->sk_dev.dv_xname, val);
   1673 			goto fail;
   1674 			break;
   1675 		}
   1676 
   1677 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
   1678 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
   1679 			     sc->sk_rboff));
   1680 	} else {
   1681 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1682 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
   1683 		sc->sk_rboff = SK_RBOFF_0;
   1684 
   1685 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
   1686 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
   1687 			     sc->sk_rboff));
   1688 	}
   1689 
   1690 	/* Read and save physical media type */
   1691 	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
   1692 	case SK_PMD_1000BASESX:
   1693 		sc->sk_pmd = IFM_1000_SX;
   1694 		break;
   1695 	case SK_PMD_1000BASELX:
   1696 		sc->sk_pmd = IFM_1000_LX;
   1697 		break;
   1698 	case SK_PMD_1000BASECX:
   1699 		sc->sk_pmd = IFM_1000_CX;
   1700 		break;
   1701 	case SK_PMD_1000BASETX:
   1702 		sc->sk_pmd = IFM_1000_T;
   1703 		break;
   1704 	default:
   1705 		aprint_error("%s: unknown media type: 0x%x\n",
   1706 		    sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
   1707 		goto fail;
   1708 	}
   1709 
   1710 	/* determine whether to name it with vpd or just make it up */
   1711 	/* Marvell Yukon VPD's can freqently be bogus */
   1712 
   1713 	switch (pa->pa_id) {
   1714 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1715 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
   1716 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
   1717 	case PCI_PRODUCT_3COM_3C940:
   1718 	case PCI_PRODUCT_DLINK_DGE530T:
   1719 	case PCI_PRODUCT_LINKSYS_EG1032:
   1720 	case PCI_PRODUCT_LINKSYS_EG1064:
   1721 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1722 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
   1723 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
   1724 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
   1725 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
   1726 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
   1727  		sc->sk_name = sc->sk_vpd_prodname;
   1728  		break;
   1729 	case PCI_ID_CODE(PCI_VENDOR_GALILEO,PCI_PRODUCT_GALILEO_SKNET):
   1730 	/* whoops yukon vpd prodname bears no resemblance to reality */
   1731 		switch (sc->sk_type) {
   1732 		case SK_GENESIS:
   1733 			sc->sk_name = sc->sk_vpd_prodname;
   1734 			break;
   1735 		case SK_YUKON:
   1736 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
   1737 			break;
   1738 		case SK_YUKON_LITE:
   1739 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
   1740 			break;
   1741 		case SK_YUKON_LP:
   1742 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
   1743 			break;
   1744 		default:
   1745 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
   1746 		}
   1747 
   1748 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
   1749 
   1750 		if ( sc->sk_type == SK_YUKON ) {
   1751 			uint32_t flashaddr;
   1752 			uint8_t testbyte;
   1753 
   1754 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
   1755 
   1756 			/* test Flash-Address Register */
   1757 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
   1758 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
   1759 
   1760 			if (testbyte != 0) {
   1761 				/* this is yukon lite Rev. A0 */
   1762 				sc->sk_type = SK_YUKON_LITE;
   1763 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
   1764 				/* restore Flash-Address Register */
   1765 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
   1766 			}
   1767 		}
   1768 		break;
   1769 	case PCI_ID_CODE(PCI_VENDOR_GALILEO,PCI_PRODUCT_GALILEO_BELKIN):
   1770 		sc->sk_name = sc->sk_vpd_prodname;
   1771 		break;
   1772  	default:
   1773 		sc->sk_name = "Unknown Marvell";
   1774 	}
   1775 
   1776 
   1777 	if ( sc->sk_type == SK_YUKON_LITE ) {
   1778 		switch (sc->sk_rev) {
   1779 		case SK_YUKON_LITE_REV_A0:
   1780 			revstr = "A0";
   1781 			break;
   1782 		case SK_YUKON_LITE_REV_A1:
   1783 			revstr = "A1";
   1784 			break;
   1785 		case SK_YUKON_LITE_REV_A3:
   1786 			revstr = "A3";
   1787 			break;
   1788 		default:
   1789 			revstr = "";
   1790 		}
   1791 	} else {
   1792 		revstr = "";
   1793 	}
   1794 
   1795 	/* Announce the product name. */
   1796 	aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
   1797 			      sc->sk_name, revstr, sc->sk_rev);
   1798 
   1799 	skca.skc_port = SK_PORT_A;
   1800 	(void)config_found(&sc->sk_dev, &skca, skcprint);
   1801 
   1802 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
   1803 		skca.skc_port = SK_PORT_B;
   1804 		(void)config_found(&sc->sk_dev, &skca, skcprint);
   1805 	}
   1806 
   1807 	/* Turn on the 'driver is loaded' LED. */
   1808 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   1809 
   1810 	/* skc sysctl setup */
   1811 
   1812 	sc->sk_int_mod = SK_IM_DEFAULT;
   1813 	sc->sk_int_mod_pending = 0;
   1814 
   1815 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1816 	    0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
   1817 	    SYSCTL_DESCR("skc per-controller controls"),
   1818 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
   1819 	    CTL_EOL)) != 0) {
   1820 		aprint_normal("%s: couldn't create sysctl node\n",
   1821 		    sc->sk_dev.dv_xname);
   1822 		goto fail;
   1823 	}
   1824 
   1825 	sk_nodenum = node->sysctl_num;
   1826 
   1827 	/* interrupt moderation time in usecs */
   1828 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1829 	    CTLFLAG_READWRITE,
   1830 	    CTLTYPE_INT, "int_mod",
   1831 	    SYSCTL_DESCR("sk interrupt moderation timer"),
   1832 	    sk_sysctl_handler, 0, sc,
   1833 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
   1834 	    CTL_EOL)) != 0) {
   1835 		aprint_normal("%s: couldn't create int_mod sysctl node\n",
   1836 		    sc->sk_dev.dv_xname);
   1837 		goto fail;
   1838 	}
   1839 
   1840 fail:
   1841 	splx(s);
   1842 }
   1843 
   1844 int
   1845 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
   1846 {
   1847 	struct sk_softc		*sc = sc_if->sk_softc;
   1848 	struct sk_tx_desc	*f = NULL;
   1849 	u_int32_t		frag, cur, cnt = 0;
   1850 	int			i;
   1851 	struct sk_txmap_entry	*entry;
   1852 	bus_dmamap_t		txmap;
   1853 
   1854 	DPRINTFN(3, ("sk_encap\n"));
   1855 
   1856 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
   1857 	if (entry == NULL) {
   1858 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
   1859 		return ENOBUFS;
   1860 	}
   1861 	txmap = entry->dmamap;
   1862 
   1863 	cur = frag = *txidx;
   1864 
   1865 #ifdef SK_DEBUG
   1866 	if (skdebug >= 3)
   1867 		sk_dump_mbuf(m_head);
   1868 #endif
   1869 
   1870 	/*
   1871 	 * Start packing the mbufs in this chain into
   1872 	 * the fragment pointers. Stop when we run out
   1873 	 * of fragments or hit the end of the mbuf chain.
   1874 	 */
   1875 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
   1876 	    BUS_DMA_NOWAIT)) {
   1877 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
   1878 		return(ENOBUFS);
   1879 	}
   1880 
   1881 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
   1882 
   1883 	/* Sync the DMA map. */
   1884 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
   1885 	    BUS_DMASYNC_PREWRITE);
   1886 
   1887 	for (i = 0; i < txmap->dm_nsegs; i++) {
   1888 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
   1889 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
   1890 			return(ENOBUFS);
   1891 		}
   1892 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
   1893 		f->sk_data_lo = txmap->dm_segs[i].ds_addr;
   1894 		f->sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
   1895 		if (cnt == 0)
   1896 			f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
   1897 		else
   1898 			f->sk_ctl |= SK_TXCTL_OWN;
   1899 
   1900 		cur = frag;
   1901 		SK_INC(frag, SK_TX_RING_CNT);
   1902 		cnt++;
   1903 	}
   1904 
   1905 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
   1906 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
   1907 
   1908 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
   1909 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
   1910 		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
   1911 
   1912 	/* Sync descriptors before handing to chip */
   1913 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
   1914 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1915 
   1916 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
   1917 
   1918 	/* Sync first descriptor to hand it off */
   1919 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1920 
   1921 	sc_if->sk_cdata.sk_tx_cnt += cnt;
   1922 
   1923 #ifdef SK_DEBUG
   1924 	if (skdebug >= 3) {
   1925 		struct sk_tx_desc *desc;
   1926 		u_int32_t idx;
   1927 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
   1928 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
   1929 			sk_dump_txdesc(desc, idx);
   1930 		}
   1931 	}
   1932 #endif
   1933 
   1934 	*txidx = frag;
   1935 
   1936 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
   1937 
   1938 	return(0);
   1939 }
   1940 
   1941 void
   1942 sk_start(struct ifnet *ifp)
   1943 {
   1944         struct sk_if_softc	*sc_if = ifp->if_softc;
   1945         struct sk_softc		*sc = sc_if->sk_softc;
   1946         struct mbuf		*m_head = NULL;
   1947         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
   1948 	int			pkts = 0;
   1949 
   1950 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
   1951 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
   1952 
   1953 	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
   1954 
   1955 		IFQ_POLL(&ifp->if_snd, m_head);
   1956 		if (m_head == NULL)
   1957 			break;
   1958 
   1959 		/*
   1960 		 * Pack the data into the transmit ring. If we
   1961 		 * don't have room, set the OACTIVE flag and wait
   1962 		 * for the NIC to drain the ring.
   1963 		 */
   1964 		if (sk_encap(sc_if, m_head, &idx)) {
   1965 			ifp->if_flags |= IFF_OACTIVE;
   1966 			break;
   1967 		}
   1968 
   1969 		/* now we are committed to transmit the packet */
   1970 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1971 		pkts++;
   1972 
   1973 		/*
   1974 		 * If there's a BPF listener, bounce a copy of this frame
   1975 		 * to him.
   1976 		 */
   1977 #if NBPFILTER > 0
   1978 		if (ifp->if_bpf)
   1979 			bpf_mtap(ifp->if_bpf, m_head);
   1980 #endif
   1981 	}
   1982 	if (pkts == 0)
   1983 		return;
   1984 
   1985 	/* Transmit */
   1986 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
   1987 		sc_if->sk_cdata.sk_tx_prod = idx;
   1988 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   1989 
   1990 		/* Set a timeout in case the chip goes out to lunch. */
   1991 		ifp->if_timer = 5;
   1992 	}
   1993 }
   1994 
   1995 
   1996 void
   1997 sk_watchdog(struct ifnet *ifp)
   1998 {
   1999 	struct sk_if_softc *sc_if = ifp->if_softc;
   2000 
   2001 	printf("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
   2002 	(void) sk_init(ifp);
   2003 }
   2004 
   2005 void
   2006 sk_shutdown(void * v)
   2007 {
   2008 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
   2009 	struct sk_softc		*sc = sc_if->sk_softc;
   2010 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
   2011 
   2012 	DPRINTFN(2, ("sk_shutdown\n"));
   2013 	sk_stop(ifp,1);
   2014 
   2015 	/* Turn off the 'driver is loaded' LED. */
   2016 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   2017 
   2018 	/*
   2019 	 * Reset the GEnesis controller. Doing this should also
   2020 	 * assert the resets on the attached XMAC(s).
   2021 	 */
   2022 	sk_reset(sc);
   2023 }
   2024 
   2025 void
   2026 sk_rxeof(struct sk_if_softc *sc_if)
   2027 {
   2028 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2029 	struct mbuf		*m;
   2030 	struct sk_chain		*cur_rx;
   2031 	struct sk_rx_desc	*cur_desc;
   2032 	int			i, cur, total_len = 0;
   2033 	u_int32_t		rxstat;
   2034 	bus_dmamap_t		dmamap;
   2035 
   2036 	i = sc_if->sk_cdata.sk_rx_prod;
   2037 
   2038 	DPRINTFN(3, ("sk_rxeof %d\n", i));
   2039 
   2040 	for (;;) {
   2041 		cur = i;
   2042 
   2043 		/* Sync the descriptor */
   2044 		SK_CDRXSYNC(sc_if, cur,
   2045 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2046 
   2047 		if (sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl & SK_RXCTL_OWN) {
   2048 			/* Invalidate the descriptor -- it's not ready yet */
   2049 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
   2050 			sc_if->sk_cdata.sk_rx_prod = i;
   2051 			break;
   2052 		}
   2053 
   2054 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
   2055 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
   2056 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
   2057 
   2058 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
   2059 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2060 
   2061 		rxstat = cur_desc->sk_xmac_rxstat;
   2062 		m = cur_rx->sk_mbuf;
   2063 		cur_rx->sk_mbuf = NULL;
   2064 		total_len = SK_RXBYTES(cur_desc->sk_ctl);
   2065 
   2066 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
   2067 
   2068 		SK_INC(i, SK_RX_RING_CNT);
   2069 
   2070 		if (rxstat & XM_RXSTAT_ERRFRAME) {
   2071 			ifp->if_ierrors++;
   2072 			sk_newbuf(sc_if, cur, m, dmamap);
   2073 			continue;
   2074 		}
   2075 
   2076 		/*
   2077 		 * Try to allocate a new jumbo buffer. If that
   2078 		 * fails, copy the packet to mbufs and put the
   2079 		 * jumbo buffer back in the ring so it can be
   2080 		 * re-used. If allocating mbufs fails, then we
   2081 		 * have to drop the packet.
   2082 		 */
   2083 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
   2084 			struct mbuf		*m0;
   2085 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
   2086 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
   2087 			sk_newbuf(sc_if, cur, m, dmamap);
   2088 			if (m0 == NULL) {
   2089 				printf("%s: no receive buffers "
   2090 				    "available -- packet dropped!\n",
   2091 				    sc_if->sk_dev.dv_xname);
   2092 				ifp->if_ierrors++;
   2093 				continue;
   2094 			}
   2095 			m_adj(m0, ETHER_ALIGN);
   2096 			m = m0;
   2097 		} else {
   2098 			m->m_pkthdr.rcvif = ifp;
   2099 			m->m_pkthdr.len = m->m_len = total_len;
   2100 		}
   2101 
   2102 		ifp->if_ipackets++;
   2103 
   2104 #if NBPFILTER > 0
   2105 		if (ifp->if_bpf)
   2106 			bpf_mtap(ifp->if_bpf, m);
   2107 #endif
   2108 		/* pass it on. */
   2109 		(*ifp->if_input)(ifp, m);
   2110 	}
   2111 }
   2112 
   2113 void
   2114 sk_txeof(struct sk_if_softc *sc_if)
   2115 {
   2116 	struct sk_softc		*sc = sc_if->sk_softc;
   2117 	struct sk_tx_desc	*cur_tx;
   2118 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2119 	u_int32_t		idx;
   2120 	struct sk_txmap_entry	*entry;
   2121 
   2122 	DPRINTFN(3, ("sk_txeof\n"));
   2123 
   2124 	/*
   2125 	 * Go through our tx ring and free mbufs for those
   2126 	 * frames that have been sent.
   2127 	 */
   2128 	idx = sc_if->sk_cdata.sk_tx_cons;
   2129 	while(idx != sc_if->sk_cdata.sk_tx_prod) {
   2130 		SK_CDTXSYNC(sc_if, idx, 1,
   2131 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2132 
   2133 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
   2134 #ifdef SK_DEBUG
   2135 		if (skdebug >= 3)
   2136 			sk_dump_txdesc(cur_tx, idx);
   2137 #endif
   2138 		if (cur_tx->sk_ctl & SK_TXCTL_OWN) {
   2139 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
   2140 			break;
   2141 		}
   2142 		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
   2143 			ifp->if_opackets++;
   2144 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
   2145 			entry = sc_if->sk_cdata.sk_tx_map[idx];
   2146 
   2147 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
   2148 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
   2149 
   2150 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
   2151 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2152 
   2153 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
   2154 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
   2155 					  link);
   2156 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
   2157 		}
   2158 		sc_if->sk_cdata.sk_tx_cnt--;
   2159 		SK_INC(idx, SK_TX_RING_CNT);
   2160 	}
   2161 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
   2162 		ifp->if_timer = 0;
   2163 	else /* nudge chip to keep tx ring moving */
   2164 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   2165 
   2166 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
   2167 		ifp->if_flags &= ~IFF_OACTIVE;
   2168 
   2169 	sc_if->sk_cdata.sk_tx_cons = idx;
   2170 }
   2171 
   2172 void
   2173 sk_tick(void *xsc_if)
   2174 {
   2175 	struct sk_if_softc *sc_if = xsc_if;
   2176 	struct mii_data *mii = &sc_if->sk_mii;
   2177 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2178 	int i;
   2179 
   2180 	DPRINTFN(3, ("sk_tick\n"));
   2181 
   2182 	if (!(ifp->if_flags & IFF_UP))
   2183 		return;
   2184 
   2185 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2186 		sk_intr_bcom(sc_if);
   2187 		return;
   2188 	}
   2189 
   2190 	/*
   2191 	 * According to SysKonnect, the correct way to verify that
   2192 	 * the link has come back up is to poll bit 0 of the GPIO
   2193 	 * register three times. This pin has the signal from the
   2194 	 * link sync pin connected to it; if we read the same link
   2195 	 * state 3 times in a row, we know the link is up.
   2196 	 */
   2197 	for (i = 0; i < 3; i++) {
   2198 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
   2199 			break;
   2200 	}
   2201 
   2202 	if (i != 3) {
   2203 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2204 		return;
   2205 	}
   2206 
   2207 	/* Turn the GP0 interrupt back on. */
   2208 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2209 	SK_XM_READ_2(sc_if, XM_ISR);
   2210 	mii_tick(mii);
   2211 	mii_pollstat(mii);
   2212 	callout_stop(&sc_if->sk_tick_ch);
   2213 }
   2214 
   2215 void
   2216 sk_intr_bcom(struct sk_if_softc *sc_if)
   2217 {
   2218 	struct mii_data *mii = &sc_if->sk_mii;
   2219 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2220 	int status;
   2221 
   2222 
   2223 	DPRINTFN(3, ("sk_intr_bcom\n"));
   2224 
   2225 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2226 
   2227 	/*
   2228 	 * Read the PHY interrupt register to make sure
   2229 	 * we clear any pending interrupts.
   2230 	 */
   2231 	status = sk_xmac_miibus_readreg((struct device *)sc_if,
   2232 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
   2233 
   2234 	if (!(ifp->if_flags & IFF_RUNNING)) {
   2235 		sk_init_xmac(sc_if);
   2236 		return;
   2237 	}
   2238 
   2239 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
   2240 		int lstat;
   2241 		lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
   2242 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
   2243 
   2244 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
   2245 			mii_mediachg(mii);
   2246 			/* Turn off the link LED. */
   2247 			SK_IF_WRITE_1(sc_if, 0,
   2248 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2249 			sc_if->sk_link = 0;
   2250 		} else if (status & BRGPHY_ISR_LNK_CHG) {
   2251 			sk_xmac_miibus_writereg((struct device *)sc_if,
   2252 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
   2253 			mii_tick(mii);
   2254 			sc_if->sk_link = 1;
   2255 			/* Turn on the link LED. */
   2256 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2257 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
   2258 			    SK_LINKLED_BLINK_OFF);
   2259 			mii_pollstat(mii);
   2260 		} else {
   2261 			mii_tick(mii);
   2262 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
   2263 		}
   2264 	}
   2265 
   2266 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2267 }
   2268 
   2269 void
   2270 sk_intr_xmac(struct sk_if_softc	*sc_if)
   2271 {
   2272 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
   2273 
   2274 	DPRINTFN(3, ("sk_intr_xmac\n"));
   2275 
   2276 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
   2277 		if (status & XM_ISR_GP0_SET) {
   2278 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2279 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2280 		}
   2281 
   2282 		if (status & XM_ISR_AUTONEG_DONE) {
   2283 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2284 		}
   2285 	}
   2286 
   2287 	if (status & XM_IMR_TX_UNDERRUN)
   2288 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
   2289 
   2290 	if (status & XM_IMR_RX_OVERRUN)
   2291 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
   2292 }
   2293 
   2294 void
   2295 sk_intr_yukon(sc_if)
   2296 	struct sk_if_softc *sc_if;
   2297 {
   2298 	int status;
   2299 
   2300 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2301 
   2302 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
   2303 }
   2304 
   2305 int
   2306 sk_intr(void *xsc)
   2307 {
   2308 	struct sk_softc		*sc = xsc;
   2309 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
   2310 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
   2311 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
   2312 	u_int32_t		status;
   2313 	int			claimed = 0;
   2314 
   2315 	if (sc_if0 != NULL)
   2316 		ifp0 = &sc_if0->sk_ethercom.ec_if;
   2317 	if (sc_if1 != NULL)
   2318 		ifp1 = &sc_if1->sk_ethercom.ec_if;
   2319 
   2320 	for (;;) {
   2321 		status = CSR_READ_4(sc, SK_ISSR);
   2322 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
   2323 
   2324 		if (!(status & sc->sk_intrmask))
   2325 			break;
   2326 
   2327 		claimed = 1;
   2328 
   2329 		/* Handle receive interrupts first. */
   2330 		if (status & SK_ISR_RX1_EOF) {
   2331 			sk_rxeof(sc_if0);
   2332 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
   2333 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2334 		}
   2335 		if (status & SK_ISR_RX2_EOF) {
   2336 			sk_rxeof(sc_if1);
   2337 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
   2338 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2339 		}
   2340 
   2341 		/* Then transmit interrupts. */
   2342 		if (status & SK_ISR_TX1_S_EOF) {
   2343 			sk_txeof(sc_if0);
   2344 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
   2345 			    SK_TXBMU_CLR_IRQ_EOF);
   2346 		}
   2347 		if (status & SK_ISR_TX2_S_EOF) {
   2348 			sk_txeof(sc_if1);
   2349 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
   2350 			    SK_TXBMU_CLR_IRQ_EOF);
   2351 		}
   2352 
   2353 		/* Then MAC interrupts. */
   2354 		if ((status & SK_ISR_MAC1) && ifp0 &&
   2355 		    (ifp0->if_flags & IFF_RUNNING)) {
   2356 			if (sc->sk_type == SK_GENESIS)
   2357 				sk_intr_xmac(sc_if0);
   2358 			else
   2359 				sk_intr_yukon(sc_if0);
   2360 		}
   2361 
   2362 		if ((status & SK_ISR_MAC2) && ifp1 &&
   2363 		    (ifp1->if_flags & IFF_RUNNING)) {
   2364 			if (sc->sk_type == SK_GENESIS)
   2365 				sk_intr_xmac(sc_if1);
   2366 			else
   2367 				sk_intr_yukon(sc_if1);
   2368 
   2369 		}
   2370 
   2371 		if (status & SK_ISR_EXTERNAL_REG) {
   2372 			if (ifp0 != NULL &&
   2373 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
   2374 				sk_intr_bcom(sc_if0);
   2375 
   2376 			if (ifp1 != NULL &&
   2377 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
   2378 				sk_intr_bcom(sc_if1);
   2379 		}
   2380 	}
   2381 
   2382 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2383 
   2384 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
   2385 		sk_start(ifp0);
   2386 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
   2387 		sk_start(ifp1);
   2388 
   2389 #if NRND > 0
   2390 	if (RND_ENABLED(&sc->rnd_source))
   2391 		rnd_add_uint32(&sc->rnd_source, status);
   2392 #endif
   2393 
   2394 	if (sc->sk_int_mod_pending)
   2395 		sk_update_int_mod(sc);
   2396 
   2397 	return (claimed);
   2398 }
   2399 
   2400 void
   2401 sk_init_xmac(struct sk_if_softc	*sc_if)
   2402 {
   2403 	struct sk_softc		*sc = sc_if->sk_softc;
   2404 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2405 	static const struct sk_bcom_hack     bhack[] = {
   2406 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
   2407 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
   2408 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
   2409 	{ 0, 0 } };
   2410 
   2411 	DPRINTFN(1, ("sk_init_xmac\n"));
   2412 
   2413 	/* Unreset the XMAC. */
   2414 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
   2415 	DELAY(1000);
   2416 
   2417 	/* Reset the XMAC's internal state. */
   2418 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2419 
   2420 	/* Save the XMAC II revision */
   2421 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
   2422 
   2423 	/*
   2424 	 * Perform additional initialization for external PHYs,
   2425 	 * namely for the 1000baseTX cards that use the XMAC's
   2426 	 * GMII mode.
   2427 	 */
   2428 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2429 		int			i = 0;
   2430 		u_int32_t		val;
   2431 
   2432 		/* Take PHY out of reset. */
   2433 		val = sk_win_read_4(sc, SK_GPIO);
   2434 		if (sc_if->sk_port == SK_PORT_A)
   2435 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
   2436 		else
   2437 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
   2438 		sk_win_write_4(sc, SK_GPIO, val);
   2439 
   2440 		/* Enable GMII mode on the XMAC. */
   2441 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
   2442 
   2443 		sk_xmac_miibus_writereg((struct device *)sc_if,
   2444 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
   2445 		DELAY(10000);
   2446 		sk_xmac_miibus_writereg((struct device *)sc_if,
   2447 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
   2448 
   2449 		/*
   2450 		 * Early versions of the BCM5400 apparently have
   2451 		 * a bug that requires them to have their reserved
   2452 		 * registers initialized to some magic values. I don't
   2453 		 * know what the numbers do, I'm just the messenger.
   2454 		 */
   2455 		if (sk_xmac_miibus_readreg((struct device *)sc_if,
   2456 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
   2457 			while(bhack[i].reg) {
   2458 				sk_xmac_miibus_writereg((struct device *)sc_if,
   2459 				    SK_PHYADDR_BCOM, bhack[i].reg,
   2460 				    bhack[i].val);
   2461 				i++;
   2462 			}
   2463 		}
   2464 	}
   2465 
   2466 	/* Set station address */
   2467 	SK_XM_WRITE_2(sc_if, XM_PAR0,
   2468 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
   2469 	SK_XM_WRITE_2(sc_if, XM_PAR1,
   2470 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
   2471 	SK_XM_WRITE_2(sc_if, XM_PAR2,
   2472 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
   2473 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
   2474 
   2475 	if (ifp->if_flags & IFF_PROMISC) {
   2476 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2477 	} else {
   2478 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2479 	}
   2480 
   2481 	if (ifp->if_flags & IFF_BROADCAST) {
   2482 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2483 	} else {
   2484 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2485 	}
   2486 
   2487 	/* We don't need the FCS appended to the packet. */
   2488 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
   2489 
   2490 	/* We want short frames padded to 60 bytes. */
   2491 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
   2492 
   2493 	/*
   2494 	 * Enable the reception of all error frames. This is is
   2495 	 * a necessary evil due to the design of the XMAC. The
   2496 	 * XMAC's receive FIFO is only 8K in size, however jumbo
   2497 	 * frames can be up to 9000 bytes in length. When bad
   2498 	 * frame filtering is enabled, the XMAC's RX FIFO operates
   2499 	 * in 'store and forward' mode. For this to work, the
   2500 	 * entire frame has to fit into the FIFO, but that means
   2501 	 * that jumbo frames larger than 8192 bytes will be
   2502 	 * truncated. Disabling all bad frame filtering causes
   2503 	 * the RX FIFO to operate in streaming mode, in which
   2504 	 * case the XMAC will start transfering frames out of the
   2505 	 * RX FIFO as soon as the FIFO threshold is reached.
   2506 	 */
   2507 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
   2508 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
   2509 	    XM_MODE_RX_INRANGELEN);
   2510 
   2511 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2512 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2513 	else
   2514 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2515 
   2516 	/*
   2517 	 * Bump up the transmit threshold. This helps hold off transmit
   2518 	 * underruns when we're blasting traffic from both ports at once.
   2519 	 */
   2520 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
   2521 
   2522 	/* Set multicast filter */
   2523 	sk_setmulti(sc_if);
   2524 
   2525 	/* Clear and enable interrupts */
   2526 	SK_XM_READ_2(sc_if, XM_ISR);
   2527 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
   2528 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
   2529 	else
   2530 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2531 
   2532 	/* Configure MAC arbiter */
   2533 	switch(sc_if->sk_xmac_rev) {
   2534 	case XM_XMAC_REV_B2:
   2535 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
   2536 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
   2537 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
   2538 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
   2539 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
   2540 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
   2541 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
   2542 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
   2543 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2544 		break;
   2545 	case XM_XMAC_REV_C1:
   2546 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
   2547 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
   2548 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
   2549 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
   2550 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
   2551 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
   2552 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
   2553 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
   2554 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2555 		break;
   2556 	default:
   2557 		break;
   2558 	}
   2559 	sk_win_write_2(sc, SK_MACARB_CTL,
   2560 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
   2561 
   2562 	sc_if->sk_link = 1;
   2563 }
   2564 
   2565 void sk_init_yukon(sc_if)
   2566 	struct sk_if_softc	*sc_if;
   2567 {
   2568 	u_int32_t		/*mac, */phy;
   2569 	u_int16_t		reg;
   2570 	struct sk_softc		*sc;
   2571 	int			i;
   2572 
   2573 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
   2574 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
   2575 
   2576 	sc = sc_if->sk_softc;
   2577 	if (sc->sk_type == SK_YUKON_LITE &&
   2578 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
   2579 		/* Take PHY out of reset. */
   2580 		sk_win_write_4(sc, SK_GPIO,
   2581 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
   2582 	}
   2583 
   2584 
   2585 	/* GMAC and GPHY Reset */
   2586 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
   2587 
   2588 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
   2589 
   2590 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2591 	DELAY(1000);
   2592 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
   2593 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2594 	DELAY(1000);
   2595 
   2596 
   2597 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
   2598 
   2599 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
   2600 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
   2601 
   2602 	switch(sc_if->sk_softc->sk_pmd) {
   2603 	case IFM_1000_SX:
   2604 	case IFM_1000_LX:
   2605 		phy |= SK_GPHY_FIBER;
   2606 		break;
   2607 
   2608 	case IFM_1000_CX:
   2609 	case IFM_1000_T:
   2610 		phy |= SK_GPHY_COPPER;
   2611 		break;
   2612 	}
   2613 
   2614 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
   2615 
   2616 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
   2617 	DELAY(1000);
   2618 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
   2619 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
   2620 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
   2621 
   2622 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
   2623 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
   2624 
   2625 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
   2626 
   2627 	/* unused read of the interrupt source register */
   2628 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
   2629 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2630 
   2631 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
   2632 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
   2633 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2634 
   2635 	/* MIB Counter Clear Mode set */
   2636         reg |= YU_PAR_MIB_CLR;
   2637 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2638 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
   2639 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2640 
   2641 	/* MIB Counter Clear Mode clear */
   2642 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
   2643         reg &= ~YU_PAR_MIB_CLR;
   2644 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2645 
   2646 	/* receive control reg */
   2647 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
   2648 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
   2649 		      YU_RCR_CRCR);
   2650 
   2651 	/* transmit parameter register */
   2652 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
   2653 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
   2654 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
   2655 
   2656 	/* serial mode register */
   2657 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
   2658 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
   2659 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
   2660 		      YU_SMR_IPG_DATA(0x1e));
   2661 
   2662 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
   2663 	/* Setup Yukon's address */
   2664 	for (i = 0; i < 3; i++) {
   2665 		/* Write Source Address 1 (unicast filter) */
   2666 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
   2667 			      sc_if->sk_enaddr[i * 2] |
   2668 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
   2669 	}
   2670 
   2671 	for (i = 0; i < 3; i++) {
   2672 		reg = sk_win_read_2(sc_if->sk_softc,
   2673 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
   2674 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
   2675 	}
   2676 
   2677 	/* Set multicast filter */
   2678 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
   2679 	sk_setmulti(sc_if);
   2680 
   2681 	/* enable interrupt mask for counter overflows */
   2682 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
   2683 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
   2684 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
   2685 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
   2686 
   2687 	/* Configure RX MAC FIFO */
   2688 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
   2689 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
   2690 
   2691 	/* Configure TX MAC FIFO */
   2692 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
   2693 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
   2694 
   2695 	DPRINTFN(6, ("sk_init_yukon: end\n"));
   2696 }
   2697 
   2698 /*
   2699  * Note that to properly initialize any part of the GEnesis chip,
   2700  * you first have to take it out of reset mode.
   2701  */
   2702 int
   2703 sk_init(struct ifnet *ifp)
   2704 {
   2705 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2706 	struct sk_softc		*sc = sc_if->sk_softc;
   2707 	struct mii_data		*mii = &sc_if->sk_mii;
   2708 	int			s;
   2709 	u_int32_t		imr, sk_imtimer_ticks;
   2710 
   2711 	DPRINTFN(1, ("sk_init\n"));
   2712 
   2713 	s = splnet();
   2714 
   2715 	if (ifp->if_flags & IFF_RUNNING) {
   2716 		splx(s);
   2717 		return 0;
   2718 	}
   2719 
   2720 	/* Cancel pending I/O and free all RX/TX buffers. */
   2721 	sk_stop(ifp,0);
   2722 
   2723 	if (sc->sk_type == SK_GENESIS) {
   2724 		/* Configure LINK_SYNC LED */
   2725 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
   2726 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2727 			      SK_LINKLED_LINKSYNC_ON);
   2728 
   2729 		/* Configure RX LED */
   2730 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
   2731 			      SK_RXLEDCTL_COUNTER_START);
   2732 
   2733 		/* Configure TX LED */
   2734 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
   2735 			      SK_TXLEDCTL_COUNTER_START);
   2736 	}
   2737 
   2738 	/* Configure I2C registers */
   2739 
   2740 	/* Configure XMAC(s) */
   2741 	switch (sc->sk_type) {
   2742 	case SK_GENESIS:
   2743 		sk_init_xmac(sc_if);
   2744 		break;
   2745 	case SK_YUKON:
   2746 	case SK_YUKON_LITE:
   2747 	case SK_YUKON_LP:
   2748 		sk_init_yukon(sc_if);
   2749 		break;
   2750 	}
   2751 	mii_mediachg(mii);
   2752 
   2753 	if (sc->sk_type == SK_GENESIS) {
   2754 		/* Configure MAC FIFOs */
   2755 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
   2756 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
   2757 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
   2758 
   2759 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
   2760 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
   2761 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
   2762 	}
   2763 
   2764 	/* Configure transmit arbiter(s) */
   2765 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
   2766 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
   2767 
   2768 	/* Configure RAMbuffers */
   2769 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
   2770 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
   2771 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
   2772 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
   2773 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
   2774 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
   2775 
   2776 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
   2777 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
   2778 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
   2779 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
   2780 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
   2781 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
   2782 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
   2783 
   2784 	/* Configure BMUs */
   2785 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
   2786 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
   2787 	    SK_RX_RING_ADDR(sc_if, 0));
   2788 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
   2789 
   2790 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
   2791 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
   2792             SK_TX_RING_ADDR(sc_if, 0));
   2793 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
   2794 
   2795 	/* Init descriptors */
   2796 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
   2797 		printf("%s: initialization failed: no "
   2798 		    "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
   2799 		sk_stop(ifp,0);
   2800 		splx(s);
   2801 		return(ENOBUFS);
   2802 	}
   2803 
   2804 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
   2805 		printf("%s: initialization failed: no "
   2806 		    "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
   2807 		sk_stop(ifp,0);
   2808 		splx(s);
   2809 		return(ENOBUFS);
   2810 	}
   2811 
   2812 	/* Set interrupt moderation if changed via sysctl. */
   2813 	switch (sc->sk_type) {
   2814 	case SK_GENESIS:
   2815 		sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   2816 		break;
   2817 	case SK_YUKON_EC:
   2818 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   2819 		break;
   2820 	default:
   2821 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   2822 	}
   2823 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
   2824 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
   2825 		sk_win_write_4(sc, SK_IMTIMERINIT,
   2826 		    SK_IM_USECS(sc->sk_int_mod));
   2827 		aprint_verbose("%s: interrupt moderation is %d us\n",
   2828 		    sc->sk_dev.dv_xname, sc->sk_int_mod);
   2829 	}
   2830 
   2831 	/* Configure interrupt handling */
   2832 	CSR_READ_4(sc, SK_ISSR);
   2833 	if (sc_if->sk_port == SK_PORT_A)
   2834 		sc->sk_intrmask |= SK_INTRS1;
   2835 	else
   2836 		sc->sk_intrmask |= SK_INTRS2;
   2837 
   2838 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
   2839 
   2840 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2841 
   2842 	/* Start BMUs. */
   2843 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
   2844 
   2845 	if (sc->sk_type == SK_GENESIS) {
   2846 		/* Enable XMACs TX and RX state machines */
   2847 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
   2848 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
   2849 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2850 	}
   2851 
   2852 	if (SK_YUKON_FAMILY(sc->sk_type)) {
   2853 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
   2854 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
   2855 		reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
   2856 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
   2857 	}
   2858 
   2859 
   2860 	ifp->if_flags |= IFF_RUNNING;
   2861 	ifp->if_flags &= ~IFF_OACTIVE;
   2862 
   2863 	splx(s);
   2864 	return(0);
   2865 }
   2866 
   2867 void
   2868 sk_stop(struct ifnet *ifp, int disable)
   2869 {
   2870         struct sk_if_softc	*sc_if = ifp->if_softc;
   2871 	struct sk_softc		*sc = sc_if->sk_softc;
   2872 	//struct sk_txmap_entry	*dma;
   2873 	int			i;
   2874 
   2875 	DPRINTFN(1, ("sk_stop\n"));
   2876 
   2877 	callout_stop(&sc_if->sk_tick_ch);
   2878 
   2879 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2880 		u_int32_t		val;
   2881 
   2882 		/* Put PHY back into reset. */
   2883 		val = sk_win_read_4(sc, SK_GPIO);
   2884 		if (sc_if->sk_port == SK_PORT_A) {
   2885 			val |= SK_GPIO_DIR0;
   2886 			val &= ~SK_GPIO_DAT0;
   2887 		} else {
   2888 			val |= SK_GPIO_DIR2;
   2889 			val &= ~SK_GPIO_DAT2;
   2890 		}
   2891 		sk_win_write_4(sc, SK_GPIO, val);
   2892 	}
   2893 
   2894 	/* Turn off various components of this interface. */
   2895 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2896 	switch (sc->sk_type) {
   2897 	case SK_GENESIS:
   2898 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
   2899 			      SK_TXMACCTL_XMAC_RESET);
   2900 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
   2901 		break;
   2902 	case SK_YUKON:
   2903 	case SK_YUKON_LITE:
   2904 	case SK_YUKON_LP:
   2905 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
   2906 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
   2907 		break;
   2908 	}
   2909 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
   2910 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2911 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
   2912 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2913 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
   2914 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2915 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2916 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2917 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
   2918 
   2919 	/* Disable interrupts */
   2920 	if (sc_if->sk_port == SK_PORT_A)
   2921 		sc->sk_intrmask &= ~SK_INTRS1;
   2922 	else
   2923 		sc->sk_intrmask &= ~SK_INTRS2;
   2924 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2925 
   2926 	SK_XM_READ_2(sc_if, XM_ISR);
   2927 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2928 
   2929 	/* Free RX and TX mbufs still in the queues. */
   2930 	for (i = 0; i < SK_RX_RING_CNT; i++) {
   2931 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
   2932 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
   2933 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   2934 		}
   2935 	}
   2936 
   2937 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   2938 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
   2939 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
   2940 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   2941 		}
   2942 	}
   2943 
   2944 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
   2945 }
   2946 
   2947 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
   2948 
   2949 /*
   2950 struct cfdriver skc_cd = {
   2951 	0, "skc", DV_DULL
   2952 };
   2953 */
   2954 
   2955 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
   2956 
   2957 /*
   2958 struct cfdriver sk_cd = {
   2959 	0, "sk", DV_IFNET
   2960 };
   2961 */
   2962 
   2963 #ifdef SK_DEBUG
   2964 void
   2965 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
   2966 {
   2967 #define DESC_PRINT(X)					\
   2968 	if (desc->X)					\
   2969 		printf("txdesc[%d]." #X "=%#x\n",	\
   2970 		       idx, desc->X);
   2971 
   2972 	DESC_PRINT(sk_ctl);
   2973 	DESC_PRINT(sk_next);
   2974 	DESC_PRINT(sk_data_lo);
   2975 	DESC_PRINT(sk_data_hi);
   2976 	DESC_PRINT(sk_xmac_txstat);
   2977 	DESC_PRINT(sk_rsvd0);
   2978 	DESC_PRINT(sk_csum_startval);
   2979 	DESC_PRINT(sk_csum_startpos);
   2980 	DESC_PRINT(sk_csum_writepos);
   2981 	DESC_PRINT(sk_rsvd1);
   2982 #undef PRINT
   2983 }
   2984 
   2985 void
   2986 sk_dump_bytes(const char *data, int len)
   2987 {
   2988 	int c, i, j;
   2989 
   2990 	for (i = 0; i < len; i += 16) {
   2991 		printf("%08x  ", i);
   2992 		c = len - i;
   2993 		if (c > 16) c = 16;
   2994 
   2995 		for (j = 0; j < c; j++) {
   2996 			printf("%02x ", data[i + j] & 0xff);
   2997 			if ((j & 0xf) == 7 && j > 0)
   2998 				printf(" ");
   2999 		}
   3000 
   3001 		for (; j < 16; j++)
   3002 			printf("   ");
   3003 		printf("  ");
   3004 
   3005 		for (j = 0; j < c; j++) {
   3006 			int ch = data[i + j] & 0xff;
   3007 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
   3008 		}
   3009 
   3010 		printf("\n");
   3011 
   3012 		if (c < 16)
   3013 			break;
   3014 	}
   3015 }
   3016 
   3017 void
   3018 sk_dump_mbuf(struct mbuf *m)
   3019 {
   3020 	int count = m->m_pkthdr.len;
   3021 
   3022 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
   3023 
   3024 	while (count > 0 && m) {
   3025 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
   3026 		       m, m->m_data, m->m_len);
   3027 		sk_dump_bytes(mtod(m, char *), m->m_len);
   3028 
   3029 		count -= m->m_len;
   3030 		m = m->m_next;
   3031 	}
   3032 }
   3033 #endif
   3034 
   3035 static int
   3036 sk_sysctl_handler(SYSCTLFN_ARGS)
   3037 {
   3038 	int error, t;
   3039 	struct sysctlnode node;
   3040 	struct sk_softc *sc;
   3041 
   3042 	node = *rnode;
   3043 	sc = node.sysctl_data;
   3044 	t = sc->sk_int_mod;
   3045 	node.sysctl_data = &t;
   3046 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3047 	if (error || newp == NULL)
   3048 		return (error);
   3049 
   3050 	if (t < SK_IM_MIN || t > SK_IM_MAX)
   3051 		return (EINVAL);
   3052 
   3053 	/* update the softc with sysctl-changed value, and mark
   3054 	   for hardware update */
   3055 	sc->sk_int_mod = t;
   3056 	sc->sk_int_mod_pending = 1;
   3057 	return (0);
   3058 }
   3059 
   3060 /*
   3061  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
   3062  * set up in skc_attach()
   3063  */
   3064 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
   3065 {
   3066 	int rc;
   3067 	const struct sysctlnode *node;
   3068 
   3069 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   3070 	    0, CTLTYPE_NODE, "hw", NULL,
   3071 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   3072 		goto err;
   3073 	}
   3074 
   3075 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   3076 	    0, CTLTYPE_NODE, "sk",
   3077 	    SYSCTL_DESCR("sk interface controls"),
   3078 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   3079 		goto err;
   3080 	}
   3081 
   3082 	sk_root_num = node->sysctl_num;
   3083 	return;
   3084 
   3085 err:
   3086 	printf("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
   3087 }
   3088