Home | History | Annotate | Line # | Download | only in pci
if_sk.c revision 1.26
      1 /*	$NetBSD: if_sk.c,v 1.26 2006/05/31 21:46:32 riz Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the NetBSD
     18  *	Foundation, Inc. and its contributors.
     19  * 4. Neither the name of The NetBSD Foundation nor the names of its
     20  *    contributors may be used to endorse or promote products derived
     21  *    from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 /*	$OpenBSD: if_sk.c,v 1.33 2003/08/12 05:23:06 nate Exp $	*/
     37 
     38 /*
     39  * Copyright (c) 1997, 1998, 1999, 2000
     40  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by Bill Paul.
     53  * 4. Neither the name of the author nor the names of any co-contributors
     54  *    may be used to endorse or promote products derived from this software
     55  *    without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     61  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     62  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     63  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     64  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     65  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     66  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     67  * THE POSSIBILITY OF SUCH DAMAGE.
     68  *
     69  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
     70  */
     71 
     72 /*
     73  * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
     74  *
     75  * Permission to use, copy, modify, and distribute this software for any
     76  * purpose with or without fee is hereby granted, provided that the above
     77  * copyright notice and this permission notice appear in all copies.
     78  *
     79  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     80  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     81  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     82  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     83  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     84  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     85  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     86  */
     87 
     88 /*
     89  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
     90  * the SK-984x series adapters, both single port and dual port.
     91  * References:
     92  * 	The XaQti XMAC II datasheet,
     93  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     94  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
     95  *
     96  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
     97  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
     98  * convenience to others until Vitesse corrects this problem:
     99  *
    100  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
    101  *
    102  * Written by Bill Paul <wpaul (at) ee.columbia.edu>
    103  * Department of Electrical Engineering
    104  * Columbia University, New York City
    105  */
    106 
    107 /*
    108  * The SysKonnect gigabit ethernet adapters consist of two main
    109  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
    110  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
    111  * components and a PHY while the GEnesis controller provides a PCI
    112  * interface with DMA support. Each card may have between 512K and
    113  * 2MB of SRAM on board depending on the configuration.
    114  *
    115  * The SysKonnect GEnesis controller can have either one or two XMAC
    116  * chips connected to it, allowing single or dual port NIC configurations.
    117  * SysKonnect has the distinction of being the only vendor on the market
    118  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
    119  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
    120  * XMAC registers. This driver takes advantage of these features to allow
    121  * both XMACs to operate as independent interfaces.
    122  */
    123 
    124 #include "bpfilter.h"
    125 #include "rnd.h"
    126 
    127 #include <sys/param.h>
    128 #include <sys/systm.h>
    129 #include <sys/sockio.h>
    130 #include <sys/mbuf.h>
    131 #include <sys/malloc.h>
    132 #include <sys/kernel.h>
    133 #include <sys/socket.h>
    134 #include <sys/device.h>
    135 #include <sys/queue.h>
    136 #include <sys/callout.h>
    137 #include <sys/sysctl.h>
    138 
    139 #include <net/if.h>
    140 #include <net/if_dl.h>
    141 #include <net/if_types.h>
    142 
    143 #ifdef INET
    144 #include <netinet/in.h>
    145 #include <netinet/in_systm.h>
    146 #include <netinet/in_var.h>
    147 #include <netinet/ip.h>
    148 #include <netinet/if_ether.h>
    149 #endif
    150 
    151 #include <net/if_media.h>
    152 
    153 #if NBPFILTER > 0
    154 #include <net/bpf.h>
    155 #endif
    156 #if NRND > 0
    157 #include <sys/rnd.h>
    158 #endif
    159 
    160 #include <dev/mii/mii.h>
    161 #include <dev/mii/miivar.h>
    162 #include <dev/mii/brgphyreg.h>
    163 
    164 #include <dev/pci/pcireg.h>
    165 #include <dev/pci/pcivar.h>
    166 #include <dev/pci/pcidevs.h>
    167 
    168 #define	SK_VERBOSE
    169 /* #define SK_USEIOSPACE */
    170 
    171 #include <dev/pci/if_skreg.h>
    172 #include <dev/pci/if_skvar.h>
    173 
    174 int skc_probe(struct device *, struct cfdata *, void *);
    175 void skc_attach(struct device *, struct device *self, void *aux);
    176 int sk_probe(struct device *, struct cfdata *, void *);
    177 void sk_attach(struct device *, struct device *self, void *aux);
    178 int skcprint(void *, const char *);
    179 int sk_intr(void *);
    180 void sk_intr_bcom(struct sk_if_softc *);
    181 void sk_intr_xmac(struct sk_if_softc *);
    182 void sk_intr_yukon(struct sk_if_softc *);
    183 void sk_rxeof(struct sk_if_softc *);
    184 void sk_txeof(struct sk_if_softc *);
    185 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
    186 void sk_start(struct ifnet *);
    187 int sk_ioctl(struct ifnet *, u_long, caddr_t);
    188 int sk_init(struct ifnet *);
    189 void sk_init_xmac(struct sk_if_softc *);
    190 void sk_init_yukon(struct sk_if_softc *);
    191 void sk_stop(struct ifnet *, int);
    192 void sk_watchdog(struct ifnet *);
    193 void sk_shutdown(void *);
    194 int sk_ifmedia_upd(struct ifnet *);
    195 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    196 void sk_reset(struct sk_softc *);
    197 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
    198 int sk_alloc_jumbo_mem(struct sk_if_softc *);
    199 void sk_free_jumbo_mem(struct sk_if_softc *);
    200 void *sk_jalloc(struct sk_if_softc *);
    201 void sk_jfree(struct mbuf *, caddr_t, size_t, void *);
    202 int sk_init_rx_ring(struct sk_if_softc *);
    203 int sk_init_tx_ring(struct sk_if_softc *);
    204 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
    205 void sk_vpd_read_res(struct sk_softc *,
    206 					struct vpd_res *, int);
    207 void sk_vpd_read(struct sk_softc *);
    208 
    209 void sk_update_int_mod(struct sk_softc *);
    210 
    211 int sk_xmac_miibus_readreg(struct device *, int, int);
    212 void sk_xmac_miibus_writereg(struct device *, int, int, int);
    213 void sk_xmac_miibus_statchg(struct device *);
    214 
    215 int sk_marv_miibus_readreg(struct device *, int, int);
    216 void sk_marv_miibus_writereg(struct device *, int, int, int);
    217 void sk_marv_miibus_statchg(struct device *);
    218 
    219 u_int32_t sk_xmac_hash(caddr_t);
    220 u_int32_t sk_yukon_hash(caddr_t);
    221 void sk_setfilt(struct sk_if_softc *, caddr_t, int);
    222 void sk_setmulti(struct sk_if_softc *);
    223 void sk_tick(void *);
    224 
    225 /* #define SK_DEBUG 2 */
    226 #ifdef SK_DEBUG
    227 #define DPRINTF(x)	if (skdebug) printf x
    228 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
    229 int	skdebug = SK_DEBUG;
    230 
    231 void sk_dump_txdesc(struct sk_tx_desc *, int);
    232 void sk_dump_mbuf(struct mbuf *);
    233 void sk_dump_bytes(const char *, int);
    234 #else
    235 #define DPRINTF(x)
    236 #define DPRINTFN(n,x)
    237 #endif
    238 
    239 #define SK_SETBIT(sc, reg, x)		\
    240 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
    241 
    242 #define SK_CLRBIT(sc, reg, x)		\
    243 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
    244 
    245 #define SK_WIN_SETBIT_4(sc, reg, x)	\
    246 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
    247 
    248 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
    249 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
    250 
    251 #define SK_WIN_SETBIT_2(sc, reg, x)	\
    252 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
    253 
    254 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
    255 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
    256 
    257 static int sk_sysctl_handler(SYSCTLFN_PROTO);
    258 static int sk_root_num;
    259 
    260 /* supported device vendors */
    261 static const struct sk_product {
    262 	pci_vendor_id_t		sk_vendor;
    263 	pci_product_id_t	sk_product;
    264 } sk_products[] = {
    265 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
    266 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
    267 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T, },
    268 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
    269 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
    270 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
    271 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
    272 	{ PCI_VENDOR_GALILEO, PCI_PRODUCT_GALILEO_SKNET, },
    273 	{ PCI_VENDOR_GALILEO, PCI_PRODUCT_GALILEO_BELKIN, },
    274 	{ 0, 0, }
    275 };
    276 
    277 #define SK_LINKSYS_EG1032_SUBID	0x00151737
    278 
    279 static inline u_int32_t
    280 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
    281 {
    282 #ifdef SK_USEIOSPACE
    283 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    284 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
    285 #else
    286 	return CSR_READ_4(sc, reg);
    287 #endif
    288 }
    289 
    290 static inline u_int16_t
    291 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
    292 {
    293 #ifdef SK_USEIOSPACE
    294 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    295 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
    296 #else
    297 	return CSR_READ_2(sc, reg);
    298 #endif
    299 }
    300 
    301 static inline u_int8_t
    302 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
    303 {
    304 #ifdef SK_USEIOSPACE
    305 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    306 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
    307 #else
    308 	return CSR_READ_1(sc, reg);
    309 #endif
    310 }
    311 
    312 static inline void
    313 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
    314 {
    315 #ifdef SK_USEIOSPACE
    316 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    317 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
    318 #else
    319 	CSR_WRITE_4(sc, reg, x);
    320 #endif
    321 }
    322 
    323 static inline void
    324 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
    325 {
    326 #ifdef SK_USEIOSPACE
    327 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    328 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
    329 #else
    330 	CSR_WRITE_2(sc, reg, x);
    331 #endif
    332 }
    333 
    334 static inline void
    335 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
    336 {
    337 #ifdef SK_USEIOSPACE
    338 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    339 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
    340 #else
    341 	CSR_WRITE_1(sc, reg, x);
    342 #endif
    343 }
    344 
    345 /*
    346  * The VPD EEPROM contains Vital Product Data, as suggested in
    347  * the PCI 2.1 specification. The VPD data is separared into areas
    348  * denoted by resource IDs. The SysKonnect VPD contains an ID string
    349  * resource (the name of the adapter), a read-only area resource
    350  * containing various key/data fields and a read/write area which
    351  * can be used to store asset management information or log messages.
    352  * We read the ID string and read-only into buffers attached to
    353  * the controller softc structure for later use. At the moment,
    354  * we only use the ID string during sk_attach().
    355  */
    356 u_int8_t
    357 sk_vpd_readbyte(struct sk_softc *sc, int addr)
    358 {
    359 	int			i;
    360 
    361 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
    362 	for (i = 0; i < SK_TIMEOUT; i++) {
    363 		DELAY(1);
    364 		if (sk_win_read_2(sc,
    365 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
    366 			break;
    367 	}
    368 
    369 	if (i == SK_TIMEOUT)
    370 		return(0);
    371 
    372 	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
    373 }
    374 
    375 void
    376 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
    377 {
    378 	int			i;
    379 	u_int8_t		*ptr;
    380 
    381 	ptr = (u_int8_t *)res;
    382 	for (i = 0; i < sizeof(struct vpd_res); i++)
    383 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
    384 }
    385 
    386 void
    387 sk_vpd_read(struct sk_softc *sc)
    388 {
    389 	int			pos = 0, i;
    390 	struct vpd_res		res;
    391 
    392 	if (sc->sk_vpd_prodname != NULL)
    393 		free(sc->sk_vpd_prodname, M_DEVBUF);
    394 	if (sc->sk_vpd_readonly != NULL)
    395 		free(sc->sk_vpd_readonly, M_DEVBUF);
    396 	sc->sk_vpd_prodname = NULL;
    397 	sc->sk_vpd_readonly = NULL;
    398 
    399 	sk_vpd_read_res(sc, &res, pos);
    400 
    401 	if (res.vr_id != VPD_RES_ID) {
    402 		printf("%s: bad VPD resource id: expected %x got %x\n",
    403 		    sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
    404 		return;
    405 	}
    406 
    407 	pos += sizeof(res);
    408 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    409 	if (sc->sk_vpd_prodname == NULL)
    410 		panic("sk_vpd_read");
    411 	for (i = 0; i < res.vr_len; i++)
    412 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
    413 	sc->sk_vpd_prodname[i] = '\0';
    414 	pos += i;
    415 
    416 	sk_vpd_read_res(sc, &res, pos);
    417 
    418 	if (res.vr_id != VPD_RES_READ) {
    419 		printf("%s: bad VPD resource id: expected %x got %x\n",
    420 		    sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
    421 		return;
    422 	}
    423 
    424 	pos += sizeof(res);
    425 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    426 	if (sc->sk_vpd_readonly == NULL)
    427 		panic("sk_vpd_read");
    428 	for (i = 0; i < res.vr_len ; i++)
    429 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
    430 }
    431 
    432 int
    433 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
    434 {
    435 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    436 	int i;
    437 
    438 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
    439 
    440 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
    441 		return(0);
    442 
    443 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    444 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
    445 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    446 		for (i = 0; i < SK_TIMEOUT; i++) {
    447 			DELAY(1);
    448 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
    449 			    XM_MMUCMD_PHYDATARDY)
    450 				break;
    451 		}
    452 
    453 		if (i == SK_TIMEOUT) {
    454 			printf("%s: phy failed to come ready\n",
    455 			    sc_if->sk_dev.dv_xname);
    456 			return(0);
    457 		}
    458 	}
    459 	DELAY(1);
    460 	return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
    461 }
    462 
    463 void
    464 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
    465 {
    466 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    467 	int i;
    468 
    469 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
    470 
    471 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    472 	for (i = 0; i < SK_TIMEOUT; i++) {
    473 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    474 			break;
    475 	}
    476 
    477 	if (i == SK_TIMEOUT) {
    478 		printf("%s: phy failed to come ready\n",
    479 		    sc_if->sk_dev.dv_xname);
    480 		return;
    481 	}
    482 
    483 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
    484 	for (i = 0; i < SK_TIMEOUT; i++) {
    485 		DELAY(1);
    486 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    487 			break;
    488 	}
    489 
    490 	if (i == SK_TIMEOUT)
    491 		printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
    492 }
    493 
    494 void
    495 sk_xmac_miibus_statchg(struct device *dev)
    496 {
    497 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    498 	struct mii_data *mii = &sc_if->sk_mii;
    499 
    500 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
    501 
    502 	/*
    503 	 * If this is a GMII PHY, manually set the XMAC's
    504 	 * duplex mode accordingly.
    505 	 */
    506 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    507 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
    508 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    509 		} else {
    510 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    511 		}
    512 	}
    513 }
    514 
    515 int
    516 sk_marv_miibus_readreg(dev, phy, reg)
    517 	struct device *dev;
    518 	int phy, reg;
    519 {
    520 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    521 	u_int16_t val;
    522 	int i;
    523 
    524 	if (phy != 0 ||
    525 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
    526 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
    527 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
    528 			     phy, reg));
    529 		return(0);
    530 	}
    531 
    532         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    533 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
    534 
    535 	for (i = 0; i < SK_TIMEOUT; i++) {
    536 		DELAY(1);
    537 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
    538 		if (val & YU_SMICR_READ_VALID)
    539 			break;
    540 	}
    541 
    542 	if (i == SK_TIMEOUT) {
    543 		printf("%s: phy failed to come ready\n",
    544 		       sc_if->sk_dev.dv_xname);
    545 		return 0;
    546 	}
    547 
    548  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
    549 		     SK_TIMEOUT));
    550 
    551         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
    552 
    553 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
    554 		     phy, reg, val));
    555 
    556 	return val;
    557 }
    558 
    559 void
    560 sk_marv_miibus_writereg(dev, phy, reg, val)
    561 	struct device *dev;
    562 	int phy, reg, val;
    563 {
    564 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    565 	int i;
    566 
    567 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
    568 		     phy, reg, val));
    569 
    570 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
    571 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    572 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
    573 
    574 	for (i = 0; i < SK_TIMEOUT; i++) {
    575 		DELAY(1);
    576 		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
    577 			break;
    578 	}
    579 }
    580 
    581 void
    582 sk_marv_miibus_statchg(dev)
    583 	struct device *dev;
    584 {
    585 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
    586 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
    587 }
    588 
    589 #define SK_HASH_BITS		6
    590 
    591 u_int32_t
    592 sk_xmac_hash(caddr_t addr)
    593 {
    594 	u_int32_t		crc;
    595 
    596 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
    597 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
    598 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    599 	return (crc);
    600 }
    601 
    602 u_int32_t
    603 sk_yukon_hash(caddr_t addr)
    604 {
    605 	u_int32_t		crc;
    606 
    607 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
    608 	crc &= ((1 << SK_HASH_BITS) - 1);
    609 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    610 	return (crc);
    611 }
    612 
    613 void
    614 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
    615 {
    616 	int base = XM_RXFILT_ENTRY(slot);
    617 
    618 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
    619 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
    620 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
    621 }
    622 
    623 void
    624 sk_setmulti(struct sk_if_softc *sc_if)
    625 {
    626 	struct sk_softc *sc = sc_if->sk_softc;
    627 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
    628 	u_int32_t hashes[2] = { 0, 0 };
    629 	int h = 0, i;
    630 	struct ethercom *ec = &sc_if->sk_ethercom;
    631 	struct ether_multi *enm;
    632 	struct ether_multistep step;
    633 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
    634 
    635 	/* First, zot all the existing filters. */
    636 	switch(sc->sk_type) {
    637 	case SK_GENESIS:
    638 		for (i = 1; i < XM_RXFILT_MAX; i++)
    639 			sk_setfilt(sc_if, (caddr_t)&dummy, i);
    640 
    641 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
    642 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
    643 		break;
    644 	case SK_YUKON:
    645 	case SK_YUKON_LITE:
    646 	case SK_YUKON_LP:
    647 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
    648 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
    649 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
    650 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
    651 		break;
    652 	}
    653 
    654 	/* Now program new ones. */
    655 allmulti:
    656 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    657 		hashes[0] = 0xFFFFFFFF;
    658 		hashes[1] = 0xFFFFFFFF;
    659 	} else {
    660 		i = 1;
    661 		/* First find the tail of the list. */
    662 		ETHER_FIRST_MULTI(step, ec, enm);
    663 		while (enm != NULL) {
    664 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
    665 				 ETHER_ADDR_LEN)) {
    666 				ifp->if_flags |= IFF_ALLMULTI;
    667 				goto allmulti;
    668 			}
    669 			DPRINTFN(2,("multicast address %s\n",
    670 	    			ether_sprintf(enm->enm_addrlo)));
    671 			/*
    672 			 * Program the first XM_RXFILT_MAX multicast groups
    673 			 * into the perfect filter. For all others,
    674 			 * use the hash table.
    675 			 */
    676 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
    677 				sk_setfilt(sc_if, enm->enm_addrlo, i);
    678 				i++;
    679 			}
    680 			else {
    681 				switch (sc->sk_type) {
    682 				case SK_GENESIS:
    683 					h = sk_xmac_hash(enm->enm_addrlo);
    684 					break;
    685 				case SK_YUKON:
    686 				case SK_YUKON_LITE:
    687 				case SK_YUKON_LP:
    688 					h = sk_yukon_hash(enm->enm_addrlo);
    689 					break;
    690 				}
    691 				if (h < 32)
    692 					hashes[0] |= (1 << h);
    693 				else
    694 					hashes[1] |= (1 << (h - 32));
    695 			}
    696 
    697 			ETHER_NEXT_MULTI(step, enm);
    698 		}
    699 	}
    700 
    701 	switch(sc->sk_type) {
    702 	case SK_GENESIS:
    703 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
    704 			       XM_MODE_RX_USE_PERFECT);
    705 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
    706 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
    707 		break;
    708 	case SK_YUKON:
    709 	case SK_YUKON_LITE:
    710 	case SK_YUKON_LP:
    711 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
    712 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
    713 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
    714 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
    715 		break;
    716 	}
    717 }
    718 
    719 int
    720 sk_init_rx_ring(struct sk_if_softc *sc_if)
    721 {
    722 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    723 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    724 	int			i;
    725 
    726 	bzero((char *)rd->sk_rx_ring,
    727 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
    728 
    729 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    730 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
    731 		if (i == (SK_RX_RING_CNT - 1)) {
    732 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
    733 			rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if, 0);
    734 		} else {
    735 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
    736 			rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if,i+1);
    737 		}
    738 	}
    739 
    740 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    741 		if (sk_newbuf(sc_if, i, NULL,
    742 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
    743 			printf("%s: failed alloc of %dth mbuf\n",
    744 			    sc_if->sk_dev.dv_xname, i);
    745 			return(ENOBUFS);
    746 		}
    747 	}
    748 	sc_if->sk_cdata.sk_rx_prod = 0;
    749 	sc_if->sk_cdata.sk_rx_cons = 0;
    750 
    751 	return(0);
    752 }
    753 
    754 int
    755 sk_init_tx_ring(struct sk_if_softc *sc_if)
    756 {
    757 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    758 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    759 	int			i;
    760 
    761 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
    762 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
    763 
    764 	for (i = 0; i < SK_TX_RING_CNT; i++) {
    765 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
    766 		if (i == (SK_TX_RING_CNT - 1)) {
    767 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
    768 			rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if, 0);
    769 		} else {
    770 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
    771 			rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if,i+1);
    772 		}
    773 	}
    774 
    775 	sc_if->sk_cdata.sk_tx_prod = 0;
    776 	sc_if->sk_cdata.sk_tx_cons = 0;
    777 	sc_if->sk_cdata.sk_tx_cnt = 0;
    778 
    779 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
    780 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    781 
    782 	return (0);
    783 }
    784 
    785 int
    786 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
    787 	  bus_dmamap_t dmamap)
    788 {
    789 	struct mbuf		*m_new = NULL;
    790 	struct sk_chain		*c;
    791 	struct sk_rx_desc	*r;
    792 
    793 	if (m == NULL) {
    794 		caddr_t buf = NULL;
    795 
    796 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    797 		if (m_new == NULL) {
    798 			printf("%s: no memory for rx list -- "
    799 			    "packet dropped!\n", sc_if->sk_dev.dv_xname);
    800 			return(ENOBUFS);
    801 		}
    802 
    803 		/* Allocate the jumbo buffer */
    804 		buf = sk_jalloc(sc_if);
    805 		if (buf == NULL) {
    806 			m_freem(m_new);
    807 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
    808 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
    809 			return(ENOBUFS);
    810 		}
    811 
    812 		/* Attach the buffer to the mbuf */
    813 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    814 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
    815 
    816 	} else {
    817 		/*
    818 	 	 * We're re-using a previously allocated mbuf;
    819 		 * be sure to re-init pointers and lengths to
    820 		 * default values.
    821 		 */
    822 		m_new = m;
    823 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    824 		m_new->m_data = m_new->m_ext.ext_buf;
    825 	}
    826 	m_adj(m_new, ETHER_ALIGN);
    827 
    828 	c = &sc_if->sk_cdata.sk_rx_chain[i];
    829 	r = c->sk_desc;
    830 	c->sk_mbuf = m_new;
    831 	r->sk_data_lo = dmamap->dm_segs[0].ds_addr +
    832 	    (((vaddr_t)m_new->m_data
    833 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf));
    834 	r->sk_ctl = SK_JLEN | SK_RXSTAT;
    835 
    836 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    837 
    838 	return(0);
    839 }
    840 
    841 /*
    842  * Memory management for jumbo frames.
    843  */
    844 
    845 int
    846 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
    847 {
    848 	struct sk_softc		*sc = sc_if->sk_softc;
    849 	caddr_t			ptr, kva;
    850 	bus_dma_segment_t	seg;
    851 	int		i, rseg, state, error;
    852 	struct sk_jpool_entry   *entry;
    853 
    854 	state = error = 0;
    855 
    856 	/* Grab a big chunk o' storage. */
    857 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
    858 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    859 		printf("%s: can't alloc rx buffers\n", sc->sk_dev.dv_xname);
    860 		return (ENOBUFS);
    861 	}
    862 
    863 	state = 1;
    864 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, &kva,
    865 			   BUS_DMA_NOWAIT)) {
    866 		printf("%s: can't map dma buffers (%d bytes)\n",
    867 		    sc->sk_dev.dv_xname, SK_JMEM);
    868 		error = ENOBUFS;
    869 		goto out;
    870 	}
    871 
    872 	state = 2;
    873 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
    874 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
    875 		printf("%s: can't create dma map\n", sc->sk_dev.dv_xname);
    876 		error = ENOBUFS;
    877 		goto out;
    878 	}
    879 
    880 	state = 3;
    881 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
    882 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
    883 		printf("%s: can't load dma map\n", sc->sk_dev.dv_xname);
    884 		error = ENOBUFS;
    885 		goto out;
    886 	}
    887 
    888 	state = 4;
    889 	sc_if->sk_cdata.sk_jumbo_buf = (caddr_t)kva;
    890 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
    891 
    892 	LIST_INIT(&sc_if->sk_jfree_listhead);
    893 	LIST_INIT(&sc_if->sk_jinuse_listhead);
    894 
    895 	/*
    896 	 * Now divide it up into 9K pieces and save the addresses
    897 	 * in an array.
    898 	 */
    899 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
    900 	for (i = 0; i < SK_JSLOTS; i++) {
    901 		sc_if->sk_cdata.sk_jslots[i] = ptr;
    902 		ptr += SK_JLEN;
    903 		entry = malloc(sizeof(struct sk_jpool_entry),
    904 		    M_DEVBUF, M_NOWAIT);
    905 		if (entry == NULL) {
    906 			printf("%s: no memory for jumbo buffer queue!\n",
    907 			    sc->sk_dev.dv_xname);
    908 			error = ENOBUFS;
    909 			goto out;
    910 		}
    911 		entry->slot = i;
    912 		if (i)
    913 		LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
    914 				 entry, jpool_entries);
    915 		else
    916 		LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
    917 				 entry, jpool_entries);
    918 	}
    919 out:
    920 	if (error != 0) {
    921 		switch (state) {
    922 		case 4:
    923 			bus_dmamap_unload(sc->sc_dmatag,
    924 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    925 		case 3:
    926 			bus_dmamap_destroy(sc->sc_dmatag,
    927 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    928 		case 2:
    929 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
    930 		case 1:
    931 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
    932 			break;
    933 		default:
    934 			break;
    935 		}
    936 	}
    937 
    938 	return (error);
    939 }
    940 
    941 /*
    942  * Allocate a jumbo buffer.
    943  */
    944 void *
    945 sk_jalloc(struct sk_if_softc *sc_if)
    946 {
    947 	struct sk_jpool_entry   *entry;
    948 
    949 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
    950 
    951 	if (entry == NULL)
    952 		return (NULL);
    953 
    954 	LIST_REMOVE(entry, jpool_entries);
    955 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
    956 	return (sc_if->sk_cdata.sk_jslots[entry->slot]);
    957 }
    958 
    959 /*
    960  * Release a jumbo buffer.
    961  */
    962 void
    963 sk_jfree(struct mbuf *m, caddr_t buf, size_t size, void	*arg)
    964 {
    965 	struct sk_jpool_entry *entry;
    966 	struct sk_if_softc *sc;
    967 	int i, s;
    968 
    969 	/* Extract the softc struct pointer. */
    970 	sc = (struct sk_if_softc *)arg;
    971 
    972 	if (sc == NULL)
    973 		panic("sk_jfree: can't find softc pointer!");
    974 
    975 	/* calculate the slot this buffer belongs to */
    976 
    977 	i = ((vaddr_t)buf
    978 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
    979 
    980 	if ((i < 0) || (i >= SK_JSLOTS))
    981 		panic("sk_jfree: asked to free buffer that we don't manage!");
    982 
    983 	s = splvm();
    984 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
    985 	if (entry == NULL)
    986 		panic("sk_jfree: buffer not in use!");
    987 	entry->slot = i;
    988 	LIST_REMOVE(entry, jpool_entries);
    989 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
    990 
    991 	if (__predict_true(m != NULL))
    992 		pool_cache_put(&mbpool_cache, m);
    993 	splx(s);
    994 }
    995 
    996 /*
    997  * Set media options.
    998  */
    999 int
   1000 sk_ifmedia_upd(struct ifnet *ifp)
   1001 {
   1002 	struct sk_if_softc *sc_if = ifp->if_softc;
   1003 
   1004 	(void) sk_init(ifp);
   1005 	mii_mediachg(&sc_if->sk_mii);
   1006 	return(0);
   1007 }
   1008 
   1009 /*
   1010  * Report current media status.
   1011  */
   1012 void
   1013 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1014 {
   1015 	struct sk_if_softc *sc_if = ifp->if_softc;
   1016 
   1017 	mii_pollstat(&sc_if->sk_mii);
   1018 	ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
   1019 	ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
   1020 }
   1021 
   1022 int
   1023 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
   1024 {
   1025 	struct sk_if_softc *sc_if = ifp->if_softc;
   1026 	struct sk_softc *sc = sc_if->sk_softc;
   1027 	struct ifreq *ifr = (struct ifreq *) data;
   1028 	/* struct ifaddr *ifa = (struct ifaddr *) data; */
   1029 	struct mii_data *mii;
   1030 	int s, error = 0;
   1031 
   1032 	/* DPRINTFN(2, ("sk_ioctl\n")); */
   1033 
   1034 	s = splnet();
   1035 
   1036 	switch(command) {
   1037 
   1038 	case SIOCSIFFLAGS:
   1039 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
   1040 		if (ifp->if_flags & IFF_UP) {
   1041 			if (ifp->if_flags & IFF_RUNNING &&
   1042 			    ifp->if_flags & IFF_PROMISC &&
   1043 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
   1044 				switch(sc->sk_type) {
   1045 				case SK_GENESIS:
   1046 					SK_XM_SETBIT_4(sc_if, XM_MODE,
   1047 					    XM_MODE_RX_PROMISC);
   1048 					break;
   1049 				case SK_YUKON:
   1050 				case SK_YUKON_LITE:
   1051 				case SK_YUKON_LP:
   1052 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
   1053 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1054 					break;
   1055 				}
   1056 				sk_setmulti(sc_if);
   1057 			} else if (ifp->if_flags & IFF_RUNNING &&
   1058 			    !(ifp->if_flags & IFF_PROMISC) &&
   1059 			    sc_if->sk_if_flags & IFF_PROMISC) {
   1060 				switch(sc->sk_type) {
   1061 				case SK_GENESIS:
   1062 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
   1063 					    XM_MODE_RX_PROMISC);
   1064 					break;
   1065 				case SK_YUKON:
   1066 				case SK_YUKON_LITE:
   1067 				case SK_YUKON_LP:
   1068 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
   1069 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1070 					break;
   1071 				}
   1072 
   1073 				sk_setmulti(sc_if);
   1074 			} else
   1075 				(void) sk_init(ifp);
   1076 		} else {
   1077 			if (ifp->if_flags & IFF_RUNNING)
   1078 				sk_stop(ifp,0);
   1079 		}
   1080 		sc_if->sk_if_flags = ifp->if_flags;
   1081 		error = 0;
   1082 		break;
   1083 
   1084 	case SIOCGIFMEDIA:
   1085 	case SIOCSIFMEDIA:
   1086 	        DPRINTFN(2, ("sk_ioctl MEDIA\n"));
   1087 		mii = &sc_if->sk_mii;
   1088 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   1089 		break;
   1090 	default:
   1091 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
   1092 		error = ether_ioctl(ifp, command, data);
   1093 
   1094 		if ( error == ENETRESET) {
   1095 			if (ifp->if_flags & IFF_RUNNING) {
   1096 				sk_setmulti(sc_if);
   1097 				DPRINTFN(2, ("sk_ioctl setmulti called\n"));
   1098 			}
   1099 			error = 0;
   1100 		} else if ( error ) {
   1101 			splx(s);
   1102 			return error;
   1103 		}
   1104 		break;
   1105 	}
   1106 
   1107 	splx(s);
   1108 	return(error);
   1109 }
   1110 
   1111 void
   1112 sk_update_int_mod(struct sk_softc *sc)
   1113 {
   1114 	u_int32_t sk_imtimer_ticks;
   1115 
   1116 	/*
   1117          * Configure interrupt moderation. The moderation timer
   1118 	 * defers interrupts specified in the interrupt moderation
   1119 	 * timer mask based on the timeout specified in the interrupt
   1120 	 * moderation timer init register. Each bit in the timer
   1121 	 * register represents one tick, so to specify a timeout in
   1122 	 * microseconds, we have to multiply by the correct number of
   1123 	 * ticks-per-microsecond.
   1124 	 */
   1125 	switch (sc->sk_type) {
   1126 	case SK_GENESIS:
   1127 		sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   1128 		break;
   1129 	case SK_YUKON_EC:
   1130 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   1131 		break;
   1132 	default:
   1133 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   1134 	}
   1135 	aprint_verbose("%s: interrupt moderation is %d us\n",
   1136 	    sc->sk_dev.dv_xname, sc->sk_int_mod);
   1137         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
   1138         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
   1139 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
   1140         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
   1141 	sc->sk_int_mod_pending = 0;
   1142 }
   1143 
   1144 /*
   1145  * Lookup: Check the PCI vendor and device, and return a pointer to
   1146  * The structure if the IDs match against our list.
   1147  */
   1148 
   1149 static const struct sk_product *
   1150 sk_lookup(const struct pci_attach_args *pa)
   1151 {
   1152 	const struct sk_product *psk;
   1153 
   1154 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
   1155 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
   1156 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
   1157 			return (psk);
   1158 	}
   1159 	return (NULL);
   1160 }
   1161 
   1162 /*
   1163  * Probe for a SysKonnect GEnesis chip.
   1164  */
   1165 
   1166 int
   1167 skc_probe(struct device *parent, struct cfdata *match, void *aux)
   1168 {
   1169 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1170 	const struct sk_product *psk;
   1171 	pcireg_t subid;
   1172 
   1173 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
   1174 
   1175 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
   1176 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
   1177 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
   1178 	    subid == SK_LINKSYS_EG1032_SUBID)
   1179 		return(1);
   1180 
   1181 	if ((psk = sk_lookup(pa))) {
   1182 		return(1);
   1183 	}
   1184 	return(0);
   1185 }
   1186 
   1187 /*
   1188  * Force the GEnesis into reset, then bring it out of reset.
   1189  */
   1190 void sk_reset(struct sk_softc *sc)
   1191 {
   1192 	DPRINTFN(2, ("sk_reset\n"));
   1193 
   1194 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
   1195 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
   1196 	if (SK_YUKON_FAMILY(sc->sk_type))
   1197 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
   1198 
   1199 	DELAY(1000);
   1200 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
   1201 	DELAY(2);
   1202 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
   1203 	if (SK_YUKON_FAMILY(sc->sk_type))
   1204 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
   1205 
   1206 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
   1207 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
   1208 		     CSR_READ_2(sc, SK_LINK_CTRL)));
   1209 
   1210 	if (sc->sk_type == SK_GENESIS) {
   1211 		/* Configure packet arbiter */
   1212 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
   1213 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1214 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1215 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1216 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1217 	}
   1218 
   1219 	/* Enable RAM interface */
   1220 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
   1221 
   1222 	sk_update_int_mod(sc);
   1223 }
   1224 
   1225 int
   1226 sk_probe(struct device *parent, struct cfdata *match, void *aux)
   1227 {
   1228 	struct skc_attach_args *sa = aux;
   1229 
   1230 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
   1231 		return(0);
   1232 
   1233 	return (1);
   1234 }
   1235 
   1236 /*
   1237  * Each XMAC chip is attached as a separate logical IP interface.
   1238  * Single port cards will have only one logical interface of course.
   1239  */
   1240 void
   1241 sk_attach(struct device *parent, struct device *self, void *aux)
   1242 {
   1243 	struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
   1244 	struct sk_softc *sc = (struct sk_softc *)parent;
   1245 	struct skc_attach_args *sa = aux;
   1246 	struct sk_txmap_entry	*entry;
   1247 	struct ifnet *ifp;
   1248 	bus_dma_segment_t seg;
   1249 	bus_dmamap_t dmamap;
   1250 	caddr_t kva;
   1251 	int i, rseg;
   1252 
   1253 	sc_if->sk_port = sa->skc_port;
   1254 	sc_if->sk_softc = sc;
   1255 	sc->sk_if[sa->skc_port] = sc_if;
   1256 
   1257 	if (sa->skc_port == SK_PORT_A)
   1258 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
   1259 	if (sa->skc_port == SK_PORT_B)
   1260 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
   1261 
   1262 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
   1263 
   1264 	/*
   1265 	 * Get station address for this interface. Note that
   1266 	 * dual port cards actually come with three station
   1267 	 * addresses: one for each port, plus an extra. The
   1268 	 * extra one is used by the SysKonnect driver software
   1269 	 * as a 'virtual' station address for when both ports
   1270 	 * are operating in failover mode. Currently we don't
   1271 	 * use this extra address.
   1272 	 */
   1273 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1274 		sc_if->sk_enaddr[i] =
   1275 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
   1276 
   1277 
   1278 	aprint_normal(": Ethernet address %s\n",
   1279 	    ether_sprintf(sc_if->sk_enaddr));
   1280 
   1281 	/*
   1282 	 * Set up RAM buffer addresses. The NIC will have a certain
   1283 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
   1284 	 * need to divide this up a) between the transmitter and
   1285  	 * receiver and b) between the two XMACs, if this is a
   1286 	 * dual port NIC. Our algorithm is to divide up the memory
   1287 	 * evenly so that everyone gets a fair share.
   1288 	 */
   1289 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
   1290 		u_int32_t		chunk, val;
   1291 
   1292 		chunk = sc->sk_ramsize / 2;
   1293 		val = sc->sk_rboff / sizeof(u_int64_t);
   1294 		sc_if->sk_rx_ramstart = val;
   1295 		val += (chunk / sizeof(u_int64_t));
   1296 		sc_if->sk_rx_ramend = val - 1;
   1297 		sc_if->sk_tx_ramstart = val;
   1298 		val += (chunk / sizeof(u_int64_t));
   1299 		sc_if->sk_tx_ramend = val - 1;
   1300 	} else {
   1301 		u_int32_t		chunk, val;
   1302 
   1303 		chunk = sc->sk_ramsize / 4;
   1304 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
   1305 		    sizeof(u_int64_t);
   1306 		sc_if->sk_rx_ramstart = val;
   1307 		val += (chunk / sizeof(u_int64_t));
   1308 		sc_if->sk_rx_ramend = val - 1;
   1309 		sc_if->sk_tx_ramstart = val;
   1310 		val += (chunk / sizeof(u_int64_t));
   1311 		sc_if->sk_tx_ramend = val - 1;
   1312 	}
   1313 
   1314 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
   1315 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
   1316 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
   1317 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
   1318 
   1319 	/* Read and save PHY type and set PHY address */
   1320 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
   1321 	switch (sc_if->sk_phytype) {
   1322 	case SK_PHYTYPE_XMAC:
   1323 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
   1324 		break;
   1325 	case SK_PHYTYPE_BCOM:
   1326 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
   1327 		break;
   1328 	case SK_PHYTYPE_MARV_COPPER:
   1329 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
   1330 		break;
   1331 	default:
   1332 		aprint_error("%s: unsupported PHY type: %d\n",
   1333 		    sc->sk_dev.dv_xname, sc_if->sk_phytype);
   1334 		return;
   1335 	}
   1336 
   1337 	/* Allocate the descriptor queues. */
   1338 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
   1339 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1340 		aprint_error("%s: can't alloc rx buffers\n",
   1341 		    sc->sk_dev.dv_xname);
   1342 		goto fail;
   1343 	}
   1344 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
   1345 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
   1346 		aprint_error("%s: can't map dma buffers (%lu bytes)\n",
   1347 		       sc_if->sk_dev.dv_xname,
   1348 		       (u_long) sizeof(struct sk_ring_data));
   1349 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1350 		goto fail;
   1351 	}
   1352 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
   1353 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
   1354             &sc_if->sk_ring_map)) {
   1355 		aprint_error("%s: can't create dma map\n",
   1356 		    sc_if->sk_dev.dv_xname);
   1357 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1358 		    sizeof(struct sk_ring_data));
   1359 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1360 		goto fail;
   1361 	}
   1362 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
   1363 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
   1364 		aprint_error("%s: can't load dma map\n",
   1365 		    sc_if->sk_dev.dv_xname);
   1366 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1367 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1368 		    sizeof(struct sk_ring_data));
   1369 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1370 		goto fail;
   1371 	}
   1372 
   1373 	for (i = 0; i < SK_RX_RING_CNT; i++)
   1374 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   1375 
   1376 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
   1377 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   1378 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   1379 
   1380 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
   1381 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
   1382 			aprint_error("%s: Can't create TX dmamap\n",
   1383 				sc_if->sk_dev.dv_xname);
   1384 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1385 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1386 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1387 			    sizeof(struct sk_ring_data));
   1388 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1389 			goto fail;
   1390 		}
   1391 
   1392 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
   1393 		if (!entry) {
   1394 			aprint_error("%s: Can't alloc txmap entry\n",
   1395 				sc_if->sk_dev.dv_xname);
   1396 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
   1397 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1398 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1399 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1400 			    sizeof(struct sk_ring_data));
   1401 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1402 			goto fail;
   1403 		}
   1404 		entry->dmamap = dmamap;
   1405 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
   1406 	}
   1407 
   1408         sc_if->sk_rdata = (struct sk_ring_data *)kva;
   1409 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
   1410 
   1411 	ifp = &sc_if->sk_ethercom.ec_if;
   1412 	/* Try to allocate memory for jumbo buffers. */
   1413 	if (sk_alloc_jumbo_mem(sc_if)) {
   1414 		printf("%s: jumbo buffer allocation failed\n", ifp->if_xname);
   1415 		goto fail;
   1416 	}
   1417 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
   1418 		| ETHERCAP_JUMBO_MTU;
   1419 
   1420 	ifp->if_softc = sc_if;
   1421 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1422 	ifp->if_ioctl = sk_ioctl;
   1423 	ifp->if_start = sk_start;
   1424 	ifp->if_stop = sk_stop;
   1425 	ifp->if_init = sk_init;
   1426 	ifp->if_watchdog = sk_watchdog;
   1427 	ifp->if_capabilities = 0;
   1428 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
   1429 	IFQ_SET_READY(&ifp->if_snd);
   1430 	strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
   1431 
   1432 	/*
   1433 	 * Do miibus setup.
   1434 	 */
   1435 	switch (sc->sk_type) {
   1436 	case SK_GENESIS:
   1437 		sk_init_xmac(sc_if);
   1438 		break;
   1439 	case SK_YUKON:
   1440 	case SK_YUKON_LITE:
   1441 	case SK_YUKON_LP:
   1442 		sk_init_yukon(sc_if);
   1443 		break;
   1444 	default:
   1445 		panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
   1446 		      sc->sk_type);
   1447 	}
   1448 
   1449  	DPRINTFN(2, ("sk_attach: 1\n"));
   1450 
   1451 	sc_if->sk_mii.mii_ifp = ifp;
   1452 	switch (sc->sk_type) {
   1453 	case SK_GENESIS:
   1454 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
   1455 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
   1456 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
   1457 		break;
   1458 	case SK_YUKON:
   1459 	case SK_YUKON_LITE:
   1460 	case SK_YUKON_LP:
   1461 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
   1462 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
   1463 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
   1464 		break;
   1465 	}
   1466 
   1467 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
   1468 	    sk_ifmedia_upd, sk_ifmedia_sts);
   1469 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
   1470 	    MII_OFFSET_ANY, 0);
   1471 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
   1472 		printf("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
   1473 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
   1474 			    0, NULL);
   1475 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
   1476 	}
   1477 	else
   1478 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1479 
   1480 	callout_init(&sc_if->sk_tick_ch);
   1481 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
   1482 
   1483 	DPRINTFN(2, ("sk_attach: 1\n"));
   1484 
   1485 	/*
   1486 	 * Call MI attach routines.
   1487 	 */
   1488 	if_attach(ifp);
   1489 
   1490 	ether_ifattach(ifp, sc_if->sk_enaddr);
   1491 
   1492 #if NRND > 0
   1493         rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
   1494             RND_TYPE_NET, 0);
   1495 #endif
   1496 
   1497 	DPRINTFN(2, ("sk_attach: end\n"));
   1498 
   1499 	return;
   1500 
   1501 fail:
   1502 	sc->sk_if[sa->skc_port] = NULL;
   1503 }
   1504 
   1505 int
   1506 skcprint(void *aux, const char *pnp)
   1507 {
   1508 	struct skc_attach_args *sa = aux;
   1509 
   1510 	if (pnp)
   1511 		aprint_normal("sk port %c at %s",
   1512 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
   1513 	else
   1514 		aprint_normal(" port %c",
   1515 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
   1516 	return (UNCONF);
   1517 }
   1518 
   1519 /*
   1520  * Attach the interface. Allocate softc structures, do ifmedia
   1521  * setup and ethernet/BPF attach.
   1522  */
   1523 void
   1524 skc_attach(struct device *parent, struct device *self, void *aux)
   1525 {
   1526 	struct sk_softc *sc = (struct sk_softc *)self;
   1527 	struct pci_attach_args *pa = aux;
   1528 	struct skc_attach_args skca;
   1529 	pci_chipset_tag_t pc = pa->pa_pc;
   1530 	pcireg_t memtype;
   1531 	pci_intr_handle_t ih;
   1532 	const char *intrstr = NULL;
   1533 	bus_addr_t iobase;
   1534 	bus_size_t iosize;
   1535 	int s, rc, sk_nodenum;
   1536 	u_int32_t command;
   1537 	const char *revstr;
   1538 	const struct sysctlnode *node;
   1539 
   1540 	DPRINTFN(2, ("begin skc_attach\n"));
   1541 
   1542 	s = splnet();
   1543 
   1544 	/*
   1545 	 * Handle power management nonsense.
   1546 	 */
   1547 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
   1548 
   1549 	if (command == 0x01) {
   1550 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
   1551 		if (command & SK_PSTATE_MASK) {
   1552 			u_int32_t		xiobase, membase, irq;
   1553 
   1554 			/* Save important PCI config data. */
   1555 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
   1556 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
   1557 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
   1558 
   1559 			/* Reset the power state. */
   1560 			aprint_normal("%s chip is in D%d power mode "
   1561 			    "-- setting to D0\n", sc->sk_dev.dv_xname,
   1562 			    command & SK_PSTATE_MASK);
   1563 			command &= 0xFFFFFFFC;
   1564 			pci_conf_write(pc, pa->pa_tag,
   1565 			    SK_PCI_PWRMGMTCTRL, command);
   1566 
   1567 			/* Restore PCI config data. */
   1568 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
   1569 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
   1570 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
   1571 		}
   1572 	}
   1573 
   1574 	/*
   1575 	 * Map control/status registers.
   1576 	 */
   1577 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1578 	command |= PCI_COMMAND_IO_ENABLE |
   1579 	    PCI_COMMAND_MEM_ENABLE |
   1580 	    PCI_COMMAND_MASTER_ENABLE;
   1581 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1582 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1583 
   1584 #ifdef SK_USEIOSPACE
   1585 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
   1586 		aprint_error(": failed to enable I/O ports!\n");
   1587 		goto fail;
   1588 	}
   1589 	/*
   1590 	 * Map control/status registers.
   1591 	 */
   1592 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
   1593 			   &iobase, &iosize)) {
   1594 		aprint_error(": can't find i/o space\n");
   1595 		goto fail;
   1596 	}
   1597 #else
   1598 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1599 		aprint_error(": failed to enable memory mapping!\n");
   1600 		goto fail;
   1601 	}
   1602 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
   1603 	switch (memtype) {
   1604         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1605         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1606                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
   1607 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
   1608 				   &iobase, &iosize) == 0)
   1609                         break;
   1610         default:
   1611                 aprint_error("%s: can't find mem space\n",
   1612 		       sc->sk_dev.dv_xname);
   1613                 return;
   1614 	}
   1615 
   1616 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
   1617 #endif
   1618 	sc->sc_dmatag = pa->pa_dmat;
   1619 
   1620 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
   1621 	sc->sk_rev  = (sk_win_read_1(sc, SK_CONFIG) >> 4);
   1622 
   1623 	/* bail out here if chip is not recognized */
   1624 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
   1625 		aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
   1626 		goto fail;
   1627 	}
   1628 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
   1629 
   1630 	/* Allocate interrupt */
   1631 	if (pci_intr_map(pa, &ih)) {
   1632 		aprint_error(": couldn't map interrupt\n");
   1633 		goto fail;
   1634 	}
   1635 
   1636 	intrstr = pci_intr_string(pc, ih);
   1637 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
   1638 	if (sc->sk_intrhand == NULL) {
   1639 		aprint_error(": couldn't establish interrupt");
   1640 		if (intrstr != NULL)
   1641 			aprint_normal(" at %s", intrstr);
   1642 		goto fail;
   1643 	}
   1644 	aprint_normal(": %s\n", intrstr);
   1645 
   1646 	/* Reset the adapter. */
   1647 	sk_reset(sc);
   1648 
   1649 	/* Read and save vital product data from EEPROM. */
   1650 	sk_vpd_read(sc);
   1651 
   1652 	if (sc->sk_type == SK_GENESIS) {
   1653 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1654 		/* Read and save RAM size and RAMbuffer offset */
   1655 		switch(val) {
   1656 		case SK_RAMSIZE_512K_64:
   1657 			sc->sk_ramsize = 0x80000;
   1658 			sc->sk_rboff = SK_RBOFF_0;
   1659 			break;
   1660 		case SK_RAMSIZE_1024K_64:
   1661 			sc->sk_ramsize = 0x100000;
   1662 			sc->sk_rboff = SK_RBOFF_80000;
   1663 			break;
   1664 		case SK_RAMSIZE_1024K_128:
   1665 			sc->sk_ramsize = 0x100000;
   1666 			sc->sk_rboff = SK_RBOFF_0;
   1667 			break;
   1668 		case SK_RAMSIZE_2048K_128:
   1669 			sc->sk_ramsize = 0x200000;
   1670 			sc->sk_rboff = SK_RBOFF_0;
   1671 			break;
   1672 		default:
   1673 			aprint_error("%s: unknown ram size: %d\n",
   1674 			       sc->sk_dev.dv_xname, val);
   1675 			goto fail;
   1676 			break;
   1677 		}
   1678 
   1679 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
   1680 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
   1681 			     sc->sk_rboff));
   1682 	} else {
   1683 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1684 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
   1685 		sc->sk_rboff = SK_RBOFF_0;
   1686 
   1687 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
   1688 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
   1689 			     sc->sk_rboff));
   1690 	}
   1691 
   1692 	/* Read and save physical media type */
   1693 	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
   1694 	case SK_PMD_1000BASESX:
   1695 		sc->sk_pmd = IFM_1000_SX;
   1696 		break;
   1697 	case SK_PMD_1000BASELX:
   1698 		sc->sk_pmd = IFM_1000_LX;
   1699 		break;
   1700 	case SK_PMD_1000BASECX:
   1701 		sc->sk_pmd = IFM_1000_CX;
   1702 		break;
   1703 	case SK_PMD_1000BASETX:
   1704 	case SK_PMD_1000BASETX_ALT:
   1705 		sc->sk_pmd = IFM_1000_T;
   1706 		break;
   1707 	default:
   1708 		aprint_error("%s: unknown media type: 0x%x\n",
   1709 		    sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
   1710 		goto fail;
   1711 	}
   1712 
   1713 	/* determine whether to name it with vpd or just make it up */
   1714 	/* Marvell Yukon VPD's can freqently be bogus */
   1715 
   1716 	switch (pa->pa_id) {
   1717 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1718 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
   1719 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
   1720 	case PCI_PRODUCT_3COM_3C940:
   1721 	case PCI_PRODUCT_DLINK_DGE530T:
   1722 	case PCI_PRODUCT_DLINK_DGE560T:
   1723 	case PCI_PRODUCT_DLINK_DGE560T_2:
   1724 	case PCI_PRODUCT_LINKSYS_EG1032:
   1725 	case PCI_PRODUCT_LINKSYS_EG1064:
   1726 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1727 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
   1728 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
   1729 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
   1730 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
   1731 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
   1732 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
   1733 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
   1734  		sc->sk_name = sc->sk_vpd_prodname;
   1735  		break;
   1736 	case PCI_ID_CODE(PCI_VENDOR_GALILEO,PCI_PRODUCT_GALILEO_SKNET):
   1737 	/* whoops yukon vpd prodname bears no resemblance to reality */
   1738 		switch (sc->sk_type) {
   1739 		case SK_GENESIS:
   1740 			sc->sk_name = sc->sk_vpd_prodname;
   1741 			break;
   1742 		case SK_YUKON:
   1743 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
   1744 			break;
   1745 		case SK_YUKON_LITE:
   1746 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
   1747 			break;
   1748 		case SK_YUKON_LP:
   1749 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
   1750 			break;
   1751 		default:
   1752 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
   1753 		}
   1754 
   1755 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
   1756 
   1757 		if ( sc->sk_type == SK_YUKON ) {
   1758 			uint32_t flashaddr;
   1759 			uint8_t testbyte;
   1760 
   1761 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
   1762 
   1763 			/* test Flash-Address Register */
   1764 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
   1765 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
   1766 
   1767 			if (testbyte != 0) {
   1768 				/* this is yukon lite Rev. A0 */
   1769 				sc->sk_type = SK_YUKON_LITE;
   1770 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
   1771 				/* restore Flash-Address Register */
   1772 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
   1773 			}
   1774 		}
   1775 		break;
   1776 	case PCI_ID_CODE(PCI_VENDOR_GALILEO,PCI_PRODUCT_GALILEO_BELKIN):
   1777 		sc->sk_name = sc->sk_vpd_prodname;
   1778 		break;
   1779  	default:
   1780 		sc->sk_name = "Unknown Marvell";
   1781 	}
   1782 
   1783 
   1784 	if ( sc->sk_type == SK_YUKON_LITE ) {
   1785 		switch (sc->sk_rev) {
   1786 		case SK_YUKON_LITE_REV_A0:
   1787 			revstr = "A0";
   1788 			break;
   1789 		case SK_YUKON_LITE_REV_A1:
   1790 			revstr = "A1";
   1791 			break;
   1792 		case SK_YUKON_LITE_REV_A3:
   1793 			revstr = "A3";
   1794 			break;
   1795 		default:
   1796 			revstr = "";
   1797 		}
   1798 	} else {
   1799 		revstr = "";
   1800 	}
   1801 
   1802 	/* Announce the product name. */
   1803 	aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
   1804 			      sc->sk_name, revstr, sc->sk_rev);
   1805 
   1806 	skca.skc_port = SK_PORT_A;
   1807 	(void)config_found(&sc->sk_dev, &skca, skcprint);
   1808 
   1809 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
   1810 		skca.skc_port = SK_PORT_B;
   1811 		(void)config_found(&sc->sk_dev, &skca, skcprint);
   1812 	}
   1813 
   1814 	/* Turn on the 'driver is loaded' LED. */
   1815 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   1816 
   1817 	/* skc sysctl setup */
   1818 
   1819 	sc->sk_int_mod = SK_IM_DEFAULT;
   1820 	sc->sk_int_mod_pending = 0;
   1821 
   1822 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1823 	    0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
   1824 	    SYSCTL_DESCR("skc per-controller controls"),
   1825 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
   1826 	    CTL_EOL)) != 0) {
   1827 		aprint_normal("%s: couldn't create sysctl node\n",
   1828 		    sc->sk_dev.dv_xname);
   1829 		goto fail;
   1830 	}
   1831 
   1832 	sk_nodenum = node->sysctl_num;
   1833 
   1834 	/* interrupt moderation time in usecs */
   1835 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1836 	    CTLFLAG_READWRITE,
   1837 	    CTLTYPE_INT, "int_mod",
   1838 	    SYSCTL_DESCR("sk interrupt moderation timer"),
   1839 	    sk_sysctl_handler, 0, sc,
   1840 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
   1841 	    CTL_EOL)) != 0) {
   1842 		aprint_normal("%s: couldn't create int_mod sysctl node\n",
   1843 		    sc->sk_dev.dv_xname);
   1844 		goto fail;
   1845 	}
   1846 
   1847 fail:
   1848 	splx(s);
   1849 }
   1850 
   1851 int
   1852 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
   1853 {
   1854 	struct sk_softc		*sc = sc_if->sk_softc;
   1855 	struct sk_tx_desc	*f = NULL;
   1856 	u_int32_t		frag, cur, cnt = 0;
   1857 	int			i;
   1858 	struct sk_txmap_entry	*entry;
   1859 	bus_dmamap_t		txmap;
   1860 
   1861 	DPRINTFN(3, ("sk_encap\n"));
   1862 
   1863 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
   1864 	if (entry == NULL) {
   1865 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
   1866 		return ENOBUFS;
   1867 	}
   1868 	txmap = entry->dmamap;
   1869 
   1870 	cur = frag = *txidx;
   1871 
   1872 #ifdef SK_DEBUG
   1873 	if (skdebug >= 3)
   1874 		sk_dump_mbuf(m_head);
   1875 #endif
   1876 
   1877 	/*
   1878 	 * Start packing the mbufs in this chain into
   1879 	 * the fragment pointers. Stop when we run out
   1880 	 * of fragments or hit the end of the mbuf chain.
   1881 	 */
   1882 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
   1883 	    BUS_DMA_NOWAIT)) {
   1884 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
   1885 		return(ENOBUFS);
   1886 	}
   1887 
   1888 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
   1889 
   1890 	/* Sync the DMA map. */
   1891 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
   1892 	    BUS_DMASYNC_PREWRITE);
   1893 
   1894 	for (i = 0; i < txmap->dm_nsegs; i++) {
   1895 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
   1896 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
   1897 			return(ENOBUFS);
   1898 		}
   1899 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
   1900 		f->sk_data_lo = txmap->dm_segs[i].ds_addr;
   1901 		f->sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
   1902 		if (cnt == 0)
   1903 			f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
   1904 		else
   1905 			f->sk_ctl |= SK_TXCTL_OWN;
   1906 
   1907 		cur = frag;
   1908 		SK_INC(frag, SK_TX_RING_CNT);
   1909 		cnt++;
   1910 	}
   1911 
   1912 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
   1913 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
   1914 
   1915 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
   1916 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
   1917 		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
   1918 
   1919 	/* Sync descriptors before handing to chip */
   1920 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
   1921 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1922 
   1923 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
   1924 
   1925 	/* Sync first descriptor to hand it off */
   1926 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1927 
   1928 	sc_if->sk_cdata.sk_tx_cnt += cnt;
   1929 
   1930 #ifdef SK_DEBUG
   1931 	if (skdebug >= 3) {
   1932 		struct sk_tx_desc *desc;
   1933 		u_int32_t idx;
   1934 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
   1935 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
   1936 			sk_dump_txdesc(desc, idx);
   1937 		}
   1938 	}
   1939 #endif
   1940 
   1941 	*txidx = frag;
   1942 
   1943 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
   1944 
   1945 	return(0);
   1946 }
   1947 
   1948 void
   1949 sk_start(struct ifnet *ifp)
   1950 {
   1951         struct sk_if_softc	*sc_if = ifp->if_softc;
   1952         struct sk_softc		*sc = sc_if->sk_softc;
   1953         struct mbuf		*m_head = NULL;
   1954         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
   1955 	int			pkts = 0;
   1956 
   1957 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
   1958 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
   1959 
   1960 	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
   1961 
   1962 		IFQ_POLL(&ifp->if_snd, m_head);
   1963 		if (m_head == NULL)
   1964 			break;
   1965 
   1966 		/*
   1967 		 * Pack the data into the transmit ring. If we
   1968 		 * don't have room, set the OACTIVE flag and wait
   1969 		 * for the NIC to drain the ring.
   1970 		 */
   1971 		if (sk_encap(sc_if, m_head, &idx)) {
   1972 			ifp->if_flags |= IFF_OACTIVE;
   1973 			break;
   1974 		}
   1975 
   1976 		/* now we are committed to transmit the packet */
   1977 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1978 		pkts++;
   1979 
   1980 		/*
   1981 		 * If there's a BPF listener, bounce a copy of this frame
   1982 		 * to him.
   1983 		 */
   1984 #if NBPFILTER > 0
   1985 		if (ifp->if_bpf)
   1986 			bpf_mtap(ifp->if_bpf, m_head);
   1987 #endif
   1988 	}
   1989 	if (pkts == 0)
   1990 		return;
   1991 
   1992 	/* Transmit */
   1993 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
   1994 		sc_if->sk_cdata.sk_tx_prod = idx;
   1995 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   1996 
   1997 		/* Set a timeout in case the chip goes out to lunch. */
   1998 		ifp->if_timer = 5;
   1999 	}
   2000 }
   2001 
   2002 
   2003 void
   2004 sk_watchdog(struct ifnet *ifp)
   2005 {
   2006 	struct sk_if_softc *sc_if = ifp->if_softc;
   2007 
   2008 	printf("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
   2009 	(void) sk_init(ifp);
   2010 }
   2011 
   2012 void
   2013 sk_shutdown(void * v)
   2014 {
   2015 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
   2016 	struct sk_softc		*sc = sc_if->sk_softc;
   2017 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
   2018 
   2019 	DPRINTFN(2, ("sk_shutdown\n"));
   2020 	sk_stop(ifp,1);
   2021 
   2022 	/* Turn off the 'driver is loaded' LED. */
   2023 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   2024 
   2025 	/*
   2026 	 * Reset the GEnesis controller. Doing this should also
   2027 	 * assert the resets on the attached XMAC(s).
   2028 	 */
   2029 	sk_reset(sc);
   2030 }
   2031 
   2032 void
   2033 sk_rxeof(struct sk_if_softc *sc_if)
   2034 {
   2035 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2036 	struct mbuf		*m;
   2037 	struct sk_chain		*cur_rx;
   2038 	struct sk_rx_desc	*cur_desc;
   2039 	int			i, cur, total_len = 0;
   2040 	u_int32_t		rxstat;
   2041 	bus_dmamap_t		dmamap;
   2042 
   2043 	i = sc_if->sk_cdata.sk_rx_prod;
   2044 
   2045 	DPRINTFN(3, ("sk_rxeof %d\n", i));
   2046 
   2047 	for (;;) {
   2048 		cur = i;
   2049 
   2050 		/* Sync the descriptor */
   2051 		SK_CDRXSYNC(sc_if, cur,
   2052 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2053 
   2054 		if (sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl & SK_RXCTL_OWN) {
   2055 			/* Invalidate the descriptor -- it's not ready yet */
   2056 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
   2057 			sc_if->sk_cdata.sk_rx_prod = i;
   2058 			break;
   2059 		}
   2060 
   2061 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
   2062 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
   2063 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
   2064 
   2065 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
   2066 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2067 
   2068 		rxstat = cur_desc->sk_xmac_rxstat;
   2069 		m = cur_rx->sk_mbuf;
   2070 		cur_rx->sk_mbuf = NULL;
   2071 		total_len = SK_RXBYTES(cur_desc->sk_ctl);
   2072 
   2073 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
   2074 
   2075 		SK_INC(i, SK_RX_RING_CNT);
   2076 
   2077 		if (rxstat & XM_RXSTAT_ERRFRAME) {
   2078 			ifp->if_ierrors++;
   2079 			sk_newbuf(sc_if, cur, m, dmamap);
   2080 			continue;
   2081 		}
   2082 
   2083 		/*
   2084 		 * Try to allocate a new jumbo buffer. If that
   2085 		 * fails, copy the packet to mbufs and put the
   2086 		 * jumbo buffer back in the ring so it can be
   2087 		 * re-used. If allocating mbufs fails, then we
   2088 		 * have to drop the packet.
   2089 		 */
   2090 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
   2091 			struct mbuf		*m0;
   2092 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
   2093 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
   2094 			sk_newbuf(sc_if, cur, m, dmamap);
   2095 			if (m0 == NULL) {
   2096 				printf("%s: no receive buffers "
   2097 				    "available -- packet dropped!\n",
   2098 				    sc_if->sk_dev.dv_xname);
   2099 				ifp->if_ierrors++;
   2100 				continue;
   2101 			}
   2102 			m_adj(m0, ETHER_ALIGN);
   2103 			m = m0;
   2104 		} else {
   2105 			m->m_pkthdr.rcvif = ifp;
   2106 			m->m_pkthdr.len = m->m_len = total_len;
   2107 		}
   2108 
   2109 		ifp->if_ipackets++;
   2110 
   2111 #if NBPFILTER > 0
   2112 		if (ifp->if_bpf)
   2113 			bpf_mtap(ifp->if_bpf, m);
   2114 #endif
   2115 		/* pass it on. */
   2116 		(*ifp->if_input)(ifp, m);
   2117 	}
   2118 }
   2119 
   2120 void
   2121 sk_txeof(struct sk_if_softc *sc_if)
   2122 {
   2123 	struct sk_softc		*sc = sc_if->sk_softc;
   2124 	struct sk_tx_desc	*cur_tx;
   2125 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2126 	u_int32_t		idx;
   2127 	struct sk_txmap_entry	*entry;
   2128 
   2129 	DPRINTFN(3, ("sk_txeof\n"));
   2130 
   2131 	/*
   2132 	 * Go through our tx ring and free mbufs for those
   2133 	 * frames that have been sent.
   2134 	 */
   2135 	idx = sc_if->sk_cdata.sk_tx_cons;
   2136 	while(idx != sc_if->sk_cdata.sk_tx_prod) {
   2137 		SK_CDTXSYNC(sc_if, idx, 1,
   2138 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2139 
   2140 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
   2141 #ifdef SK_DEBUG
   2142 		if (skdebug >= 3)
   2143 			sk_dump_txdesc(cur_tx, idx);
   2144 #endif
   2145 		if (cur_tx->sk_ctl & SK_TXCTL_OWN) {
   2146 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
   2147 			break;
   2148 		}
   2149 		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
   2150 			ifp->if_opackets++;
   2151 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
   2152 			entry = sc_if->sk_cdata.sk_tx_map[idx];
   2153 
   2154 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
   2155 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
   2156 
   2157 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
   2158 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2159 
   2160 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
   2161 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
   2162 					  link);
   2163 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
   2164 		}
   2165 		sc_if->sk_cdata.sk_tx_cnt--;
   2166 		SK_INC(idx, SK_TX_RING_CNT);
   2167 	}
   2168 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
   2169 		ifp->if_timer = 0;
   2170 	else /* nudge chip to keep tx ring moving */
   2171 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   2172 
   2173 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
   2174 		ifp->if_flags &= ~IFF_OACTIVE;
   2175 
   2176 	sc_if->sk_cdata.sk_tx_cons = idx;
   2177 }
   2178 
   2179 void
   2180 sk_tick(void *xsc_if)
   2181 {
   2182 	struct sk_if_softc *sc_if = xsc_if;
   2183 	struct mii_data *mii = &sc_if->sk_mii;
   2184 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2185 	int i;
   2186 
   2187 	DPRINTFN(3, ("sk_tick\n"));
   2188 
   2189 	if (!(ifp->if_flags & IFF_UP))
   2190 		return;
   2191 
   2192 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2193 		sk_intr_bcom(sc_if);
   2194 		return;
   2195 	}
   2196 
   2197 	/*
   2198 	 * According to SysKonnect, the correct way to verify that
   2199 	 * the link has come back up is to poll bit 0 of the GPIO
   2200 	 * register three times. This pin has the signal from the
   2201 	 * link sync pin connected to it; if we read the same link
   2202 	 * state 3 times in a row, we know the link is up.
   2203 	 */
   2204 	for (i = 0; i < 3; i++) {
   2205 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
   2206 			break;
   2207 	}
   2208 
   2209 	if (i != 3) {
   2210 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2211 		return;
   2212 	}
   2213 
   2214 	/* Turn the GP0 interrupt back on. */
   2215 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2216 	SK_XM_READ_2(sc_if, XM_ISR);
   2217 	mii_tick(mii);
   2218 	mii_pollstat(mii);
   2219 	callout_stop(&sc_if->sk_tick_ch);
   2220 }
   2221 
   2222 void
   2223 sk_intr_bcom(struct sk_if_softc *sc_if)
   2224 {
   2225 	struct mii_data *mii = &sc_if->sk_mii;
   2226 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2227 	int status;
   2228 
   2229 
   2230 	DPRINTFN(3, ("sk_intr_bcom\n"));
   2231 
   2232 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2233 
   2234 	/*
   2235 	 * Read the PHY interrupt register to make sure
   2236 	 * we clear any pending interrupts.
   2237 	 */
   2238 	status = sk_xmac_miibus_readreg((struct device *)sc_if,
   2239 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
   2240 
   2241 	if (!(ifp->if_flags & IFF_RUNNING)) {
   2242 		sk_init_xmac(sc_if);
   2243 		return;
   2244 	}
   2245 
   2246 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
   2247 		int lstat;
   2248 		lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
   2249 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
   2250 
   2251 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
   2252 			mii_mediachg(mii);
   2253 			/* Turn off the link LED. */
   2254 			SK_IF_WRITE_1(sc_if, 0,
   2255 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2256 			sc_if->sk_link = 0;
   2257 		} else if (status & BRGPHY_ISR_LNK_CHG) {
   2258 			sk_xmac_miibus_writereg((struct device *)sc_if,
   2259 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
   2260 			mii_tick(mii);
   2261 			sc_if->sk_link = 1;
   2262 			/* Turn on the link LED. */
   2263 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2264 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
   2265 			    SK_LINKLED_BLINK_OFF);
   2266 			mii_pollstat(mii);
   2267 		} else {
   2268 			mii_tick(mii);
   2269 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
   2270 		}
   2271 	}
   2272 
   2273 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2274 }
   2275 
   2276 void
   2277 sk_intr_xmac(struct sk_if_softc	*sc_if)
   2278 {
   2279 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
   2280 
   2281 	DPRINTFN(3, ("sk_intr_xmac\n"));
   2282 
   2283 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
   2284 		if (status & XM_ISR_GP0_SET) {
   2285 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2286 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2287 		}
   2288 
   2289 		if (status & XM_ISR_AUTONEG_DONE) {
   2290 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2291 		}
   2292 	}
   2293 
   2294 	if (status & XM_IMR_TX_UNDERRUN)
   2295 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
   2296 
   2297 	if (status & XM_IMR_RX_OVERRUN)
   2298 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
   2299 }
   2300 
   2301 void
   2302 sk_intr_yukon(sc_if)
   2303 	struct sk_if_softc *sc_if;
   2304 {
   2305 	int status;
   2306 
   2307 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2308 
   2309 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
   2310 }
   2311 
   2312 int
   2313 sk_intr(void *xsc)
   2314 {
   2315 	struct sk_softc		*sc = xsc;
   2316 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
   2317 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
   2318 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
   2319 	u_int32_t		status;
   2320 	int			claimed = 0;
   2321 
   2322 	if (sc_if0 != NULL)
   2323 		ifp0 = &sc_if0->sk_ethercom.ec_if;
   2324 	if (sc_if1 != NULL)
   2325 		ifp1 = &sc_if1->sk_ethercom.ec_if;
   2326 
   2327 	for (;;) {
   2328 		status = CSR_READ_4(sc, SK_ISSR);
   2329 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
   2330 
   2331 		if (!(status & sc->sk_intrmask))
   2332 			break;
   2333 
   2334 		claimed = 1;
   2335 
   2336 		/* Handle receive interrupts first. */
   2337 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
   2338 			sk_rxeof(sc_if0);
   2339 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
   2340 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2341 		}
   2342 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
   2343 			sk_rxeof(sc_if1);
   2344 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
   2345 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2346 		}
   2347 
   2348 		/* Then transmit interrupts. */
   2349 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
   2350 			sk_txeof(sc_if0);
   2351 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
   2352 			    SK_TXBMU_CLR_IRQ_EOF);
   2353 		}
   2354 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
   2355 			sk_txeof(sc_if1);
   2356 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
   2357 			    SK_TXBMU_CLR_IRQ_EOF);
   2358 		}
   2359 
   2360 		/* Then MAC interrupts. */
   2361 		if (sc_if0 && (status & SK_ISR_MAC1) &&
   2362 		    (ifp0->if_flags & IFF_RUNNING)) {
   2363 			if (sc->sk_type == SK_GENESIS)
   2364 				sk_intr_xmac(sc_if0);
   2365 			else
   2366 				sk_intr_yukon(sc_if0);
   2367 		}
   2368 
   2369 		if (sc_if1 && (status & SK_ISR_MAC2) &&
   2370 		    (ifp1->if_flags & IFF_RUNNING)) {
   2371 			if (sc->sk_type == SK_GENESIS)
   2372 				sk_intr_xmac(sc_if1);
   2373 			else
   2374 				sk_intr_yukon(sc_if1);
   2375 
   2376 		}
   2377 
   2378 		if (status & SK_ISR_EXTERNAL_REG) {
   2379 			if (sc_if0 != NULL &&
   2380 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
   2381 				sk_intr_bcom(sc_if0);
   2382 
   2383 			if (sc_if1 != NULL &&
   2384 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
   2385 				sk_intr_bcom(sc_if1);
   2386 		}
   2387 	}
   2388 
   2389 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2390 
   2391 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
   2392 		sk_start(ifp0);
   2393 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
   2394 		sk_start(ifp1);
   2395 
   2396 #if NRND > 0
   2397 	if (RND_ENABLED(&sc->rnd_source))
   2398 		rnd_add_uint32(&sc->rnd_source, status);
   2399 #endif
   2400 
   2401 	if (sc->sk_int_mod_pending)
   2402 		sk_update_int_mod(sc);
   2403 
   2404 	return (claimed);
   2405 }
   2406 
   2407 void
   2408 sk_init_xmac(struct sk_if_softc	*sc_if)
   2409 {
   2410 	struct sk_softc		*sc = sc_if->sk_softc;
   2411 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2412 	static const struct sk_bcom_hack     bhack[] = {
   2413 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
   2414 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
   2415 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
   2416 	{ 0, 0 } };
   2417 
   2418 	DPRINTFN(1, ("sk_init_xmac\n"));
   2419 
   2420 	/* Unreset the XMAC. */
   2421 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
   2422 	DELAY(1000);
   2423 
   2424 	/* Reset the XMAC's internal state. */
   2425 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2426 
   2427 	/* Save the XMAC II revision */
   2428 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
   2429 
   2430 	/*
   2431 	 * Perform additional initialization for external PHYs,
   2432 	 * namely for the 1000baseTX cards that use the XMAC's
   2433 	 * GMII mode.
   2434 	 */
   2435 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2436 		int			i = 0;
   2437 		u_int32_t		val;
   2438 
   2439 		/* Take PHY out of reset. */
   2440 		val = sk_win_read_4(sc, SK_GPIO);
   2441 		if (sc_if->sk_port == SK_PORT_A)
   2442 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
   2443 		else
   2444 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
   2445 		sk_win_write_4(sc, SK_GPIO, val);
   2446 
   2447 		/* Enable GMII mode on the XMAC. */
   2448 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
   2449 
   2450 		sk_xmac_miibus_writereg((struct device *)sc_if,
   2451 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
   2452 		DELAY(10000);
   2453 		sk_xmac_miibus_writereg((struct device *)sc_if,
   2454 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
   2455 
   2456 		/*
   2457 		 * Early versions of the BCM5400 apparently have
   2458 		 * a bug that requires them to have their reserved
   2459 		 * registers initialized to some magic values. I don't
   2460 		 * know what the numbers do, I'm just the messenger.
   2461 		 */
   2462 		if (sk_xmac_miibus_readreg((struct device *)sc_if,
   2463 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
   2464 			while(bhack[i].reg) {
   2465 				sk_xmac_miibus_writereg((struct device *)sc_if,
   2466 				    SK_PHYADDR_BCOM, bhack[i].reg,
   2467 				    bhack[i].val);
   2468 				i++;
   2469 			}
   2470 		}
   2471 	}
   2472 
   2473 	/* Set station address */
   2474 	SK_XM_WRITE_2(sc_if, XM_PAR0,
   2475 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
   2476 	SK_XM_WRITE_2(sc_if, XM_PAR1,
   2477 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
   2478 	SK_XM_WRITE_2(sc_if, XM_PAR2,
   2479 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
   2480 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
   2481 
   2482 	if (ifp->if_flags & IFF_PROMISC) {
   2483 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2484 	} else {
   2485 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2486 	}
   2487 
   2488 	if (ifp->if_flags & IFF_BROADCAST) {
   2489 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2490 	} else {
   2491 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2492 	}
   2493 
   2494 	/* We don't need the FCS appended to the packet. */
   2495 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
   2496 
   2497 	/* We want short frames padded to 60 bytes. */
   2498 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
   2499 
   2500 	/*
   2501 	 * Enable the reception of all error frames. This is is
   2502 	 * a necessary evil due to the design of the XMAC. The
   2503 	 * XMAC's receive FIFO is only 8K in size, however jumbo
   2504 	 * frames can be up to 9000 bytes in length. When bad
   2505 	 * frame filtering is enabled, the XMAC's RX FIFO operates
   2506 	 * in 'store and forward' mode. For this to work, the
   2507 	 * entire frame has to fit into the FIFO, but that means
   2508 	 * that jumbo frames larger than 8192 bytes will be
   2509 	 * truncated. Disabling all bad frame filtering causes
   2510 	 * the RX FIFO to operate in streaming mode, in which
   2511 	 * case the XMAC will start transfering frames out of the
   2512 	 * RX FIFO as soon as the FIFO threshold is reached.
   2513 	 */
   2514 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
   2515 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
   2516 	    XM_MODE_RX_INRANGELEN);
   2517 
   2518 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2519 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2520 	else
   2521 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2522 
   2523 	/*
   2524 	 * Bump up the transmit threshold. This helps hold off transmit
   2525 	 * underruns when we're blasting traffic from both ports at once.
   2526 	 */
   2527 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
   2528 
   2529 	/* Set multicast filter */
   2530 	sk_setmulti(sc_if);
   2531 
   2532 	/* Clear and enable interrupts */
   2533 	SK_XM_READ_2(sc_if, XM_ISR);
   2534 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
   2535 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
   2536 	else
   2537 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2538 
   2539 	/* Configure MAC arbiter */
   2540 	switch(sc_if->sk_xmac_rev) {
   2541 	case XM_XMAC_REV_B2:
   2542 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
   2543 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
   2544 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
   2545 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
   2546 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
   2547 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
   2548 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
   2549 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
   2550 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2551 		break;
   2552 	case XM_XMAC_REV_C1:
   2553 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
   2554 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
   2555 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
   2556 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
   2557 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
   2558 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
   2559 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
   2560 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
   2561 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2562 		break;
   2563 	default:
   2564 		break;
   2565 	}
   2566 	sk_win_write_2(sc, SK_MACARB_CTL,
   2567 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
   2568 
   2569 	sc_if->sk_link = 1;
   2570 }
   2571 
   2572 void sk_init_yukon(sc_if)
   2573 	struct sk_if_softc	*sc_if;
   2574 {
   2575 	u_int32_t		/*mac, */phy;
   2576 	u_int16_t		reg;
   2577 	struct sk_softc		*sc;
   2578 	int			i;
   2579 
   2580 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
   2581 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
   2582 
   2583 	sc = sc_if->sk_softc;
   2584 	if (sc->sk_type == SK_YUKON_LITE &&
   2585 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
   2586 		/* Take PHY out of reset. */
   2587 		sk_win_write_4(sc, SK_GPIO,
   2588 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
   2589 	}
   2590 
   2591 
   2592 	/* GMAC and GPHY Reset */
   2593 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
   2594 
   2595 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
   2596 
   2597 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2598 	DELAY(1000);
   2599 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
   2600 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2601 	DELAY(1000);
   2602 
   2603 
   2604 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
   2605 
   2606 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
   2607 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
   2608 
   2609 	switch(sc_if->sk_softc->sk_pmd) {
   2610 	case IFM_1000_SX:
   2611 	case IFM_1000_LX:
   2612 		phy |= SK_GPHY_FIBER;
   2613 		break;
   2614 
   2615 	case IFM_1000_CX:
   2616 	case IFM_1000_T:
   2617 		phy |= SK_GPHY_COPPER;
   2618 		break;
   2619 	}
   2620 
   2621 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
   2622 
   2623 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
   2624 	DELAY(1000);
   2625 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
   2626 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
   2627 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
   2628 
   2629 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
   2630 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
   2631 
   2632 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
   2633 
   2634 	/* unused read of the interrupt source register */
   2635 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
   2636 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2637 
   2638 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
   2639 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
   2640 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2641 
   2642 	/* MIB Counter Clear Mode set */
   2643         reg |= YU_PAR_MIB_CLR;
   2644 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2645 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
   2646 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2647 
   2648 	/* MIB Counter Clear Mode clear */
   2649 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
   2650         reg &= ~YU_PAR_MIB_CLR;
   2651 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2652 
   2653 	/* receive control reg */
   2654 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
   2655 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
   2656 		      YU_RCR_CRCR);
   2657 
   2658 	/* transmit parameter register */
   2659 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
   2660 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
   2661 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
   2662 
   2663 	/* serial mode register */
   2664 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
   2665 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
   2666 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
   2667 		      YU_SMR_IPG_DATA(0x1e));
   2668 
   2669 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
   2670 	/* Setup Yukon's address */
   2671 	for (i = 0; i < 3; i++) {
   2672 		/* Write Source Address 1 (unicast filter) */
   2673 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
   2674 			      sc_if->sk_enaddr[i * 2] |
   2675 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
   2676 	}
   2677 
   2678 	for (i = 0; i < 3; i++) {
   2679 		reg = sk_win_read_2(sc_if->sk_softc,
   2680 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
   2681 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
   2682 	}
   2683 
   2684 	/* Set multicast filter */
   2685 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
   2686 	sk_setmulti(sc_if);
   2687 
   2688 	/* enable interrupt mask for counter overflows */
   2689 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
   2690 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
   2691 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
   2692 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
   2693 
   2694 	/* Configure RX MAC FIFO */
   2695 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
   2696 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
   2697 
   2698 	/* Configure TX MAC FIFO */
   2699 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
   2700 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
   2701 
   2702 	DPRINTFN(6, ("sk_init_yukon: end\n"));
   2703 }
   2704 
   2705 /*
   2706  * Note that to properly initialize any part of the GEnesis chip,
   2707  * you first have to take it out of reset mode.
   2708  */
   2709 int
   2710 sk_init(struct ifnet *ifp)
   2711 {
   2712 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2713 	struct sk_softc		*sc = sc_if->sk_softc;
   2714 	struct mii_data		*mii = &sc_if->sk_mii;
   2715 	int			s;
   2716 	u_int32_t		imr, sk_imtimer_ticks;
   2717 
   2718 	DPRINTFN(1, ("sk_init\n"));
   2719 
   2720 	s = splnet();
   2721 
   2722 	if (ifp->if_flags & IFF_RUNNING) {
   2723 		splx(s);
   2724 		return 0;
   2725 	}
   2726 
   2727 	/* Cancel pending I/O and free all RX/TX buffers. */
   2728 	sk_stop(ifp,0);
   2729 
   2730 	if (sc->sk_type == SK_GENESIS) {
   2731 		/* Configure LINK_SYNC LED */
   2732 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
   2733 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2734 			      SK_LINKLED_LINKSYNC_ON);
   2735 
   2736 		/* Configure RX LED */
   2737 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
   2738 			      SK_RXLEDCTL_COUNTER_START);
   2739 
   2740 		/* Configure TX LED */
   2741 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
   2742 			      SK_TXLEDCTL_COUNTER_START);
   2743 	}
   2744 
   2745 	/* Configure I2C registers */
   2746 
   2747 	/* Configure XMAC(s) */
   2748 	switch (sc->sk_type) {
   2749 	case SK_GENESIS:
   2750 		sk_init_xmac(sc_if);
   2751 		break;
   2752 	case SK_YUKON:
   2753 	case SK_YUKON_LITE:
   2754 	case SK_YUKON_LP:
   2755 		sk_init_yukon(sc_if);
   2756 		break;
   2757 	}
   2758 	mii_mediachg(mii);
   2759 
   2760 	if (sc->sk_type == SK_GENESIS) {
   2761 		/* Configure MAC FIFOs */
   2762 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
   2763 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
   2764 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
   2765 
   2766 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
   2767 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
   2768 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
   2769 	}
   2770 
   2771 	/* Configure transmit arbiter(s) */
   2772 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
   2773 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
   2774 
   2775 	/* Configure RAMbuffers */
   2776 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
   2777 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
   2778 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
   2779 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
   2780 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
   2781 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
   2782 
   2783 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
   2784 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
   2785 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
   2786 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
   2787 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
   2788 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
   2789 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
   2790 
   2791 	/* Configure BMUs */
   2792 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
   2793 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
   2794 	    SK_RX_RING_ADDR(sc_if, 0));
   2795 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
   2796 
   2797 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
   2798 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
   2799             SK_TX_RING_ADDR(sc_if, 0));
   2800 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
   2801 
   2802 	/* Init descriptors */
   2803 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
   2804 		printf("%s: initialization failed: no "
   2805 		    "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
   2806 		sk_stop(ifp,0);
   2807 		splx(s);
   2808 		return(ENOBUFS);
   2809 	}
   2810 
   2811 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
   2812 		printf("%s: initialization failed: no "
   2813 		    "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
   2814 		sk_stop(ifp,0);
   2815 		splx(s);
   2816 		return(ENOBUFS);
   2817 	}
   2818 
   2819 	/* Set interrupt moderation if changed via sysctl. */
   2820 	switch (sc->sk_type) {
   2821 	case SK_GENESIS:
   2822 		sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   2823 		break;
   2824 	case SK_YUKON_EC:
   2825 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   2826 		break;
   2827 	default:
   2828 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   2829 	}
   2830 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
   2831 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
   2832 		sk_win_write_4(sc, SK_IMTIMERINIT,
   2833 		    SK_IM_USECS(sc->sk_int_mod));
   2834 		aprint_verbose("%s: interrupt moderation is %d us\n",
   2835 		    sc->sk_dev.dv_xname, sc->sk_int_mod);
   2836 	}
   2837 
   2838 	/* Configure interrupt handling */
   2839 	CSR_READ_4(sc, SK_ISSR);
   2840 	if (sc_if->sk_port == SK_PORT_A)
   2841 		sc->sk_intrmask |= SK_INTRS1;
   2842 	else
   2843 		sc->sk_intrmask |= SK_INTRS2;
   2844 
   2845 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
   2846 
   2847 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2848 
   2849 	/* Start BMUs. */
   2850 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
   2851 
   2852 	if (sc->sk_type == SK_GENESIS) {
   2853 		/* Enable XMACs TX and RX state machines */
   2854 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
   2855 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
   2856 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2857 	}
   2858 
   2859 	if (SK_YUKON_FAMILY(sc->sk_type)) {
   2860 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
   2861 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
   2862 		reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
   2863 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
   2864 	}
   2865 
   2866 
   2867 	ifp->if_flags |= IFF_RUNNING;
   2868 	ifp->if_flags &= ~IFF_OACTIVE;
   2869 
   2870 	splx(s);
   2871 	return(0);
   2872 }
   2873 
   2874 void
   2875 sk_stop(struct ifnet *ifp, int disable)
   2876 {
   2877         struct sk_if_softc	*sc_if = ifp->if_softc;
   2878 	struct sk_softc		*sc = sc_if->sk_softc;
   2879 	//struct sk_txmap_entry	*dma;
   2880 	int			i;
   2881 
   2882 	DPRINTFN(1, ("sk_stop\n"));
   2883 
   2884 	callout_stop(&sc_if->sk_tick_ch);
   2885 
   2886 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2887 		u_int32_t		val;
   2888 
   2889 		/* Put PHY back into reset. */
   2890 		val = sk_win_read_4(sc, SK_GPIO);
   2891 		if (sc_if->sk_port == SK_PORT_A) {
   2892 			val |= SK_GPIO_DIR0;
   2893 			val &= ~SK_GPIO_DAT0;
   2894 		} else {
   2895 			val |= SK_GPIO_DIR2;
   2896 			val &= ~SK_GPIO_DAT2;
   2897 		}
   2898 		sk_win_write_4(sc, SK_GPIO, val);
   2899 	}
   2900 
   2901 	/* Turn off various components of this interface. */
   2902 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2903 	switch (sc->sk_type) {
   2904 	case SK_GENESIS:
   2905 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
   2906 			      SK_TXMACCTL_XMAC_RESET);
   2907 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
   2908 		break;
   2909 	case SK_YUKON:
   2910 	case SK_YUKON_LITE:
   2911 	case SK_YUKON_LP:
   2912 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
   2913 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
   2914 		break;
   2915 	}
   2916 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
   2917 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2918 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
   2919 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2920 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
   2921 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2922 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2923 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2924 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
   2925 
   2926 	/* Disable interrupts */
   2927 	if (sc_if->sk_port == SK_PORT_A)
   2928 		sc->sk_intrmask &= ~SK_INTRS1;
   2929 	else
   2930 		sc->sk_intrmask &= ~SK_INTRS2;
   2931 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2932 
   2933 	SK_XM_READ_2(sc_if, XM_ISR);
   2934 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2935 
   2936 	/* Free RX and TX mbufs still in the queues. */
   2937 	for (i = 0; i < SK_RX_RING_CNT; i++) {
   2938 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
   2939 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
   2940 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   2941 		}
   2942 	}
   2943 
   2944 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   2945 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
   2946 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
   2947 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   2948 		}
   2949 	}
   2950 
   2951 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
   2952 }
   2953 
   2954 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
   2955 
   2956 /*
   2957 struct cfdriver skc_cd = {
   2958 	0, "skc", DV_DULL
   2959 };
   2960 */
   2961 
   2962 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
   2963 
   2964 /*
   2965 struct cfdriver sk_cd = {
   2966 	0, "sk", DV_IFNET
   2967 };
   2968 */
   2969 
   2970 #ifdef SK_DEBUG
   2971 void
   2972 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
   2973 {
   2974 #define DESC_PRINT(X)					\
   2975 	if (desc->X)					\
   2976 		printf("txdesc[%d]." #X "=%#x\n",	\
   2977 		       idx, desc->X);
   2978 
   2979 	DESC_PRINT(sk_ctl);
   2980 	DESC_PRINT(sk_next);
   2981 	DESC_PRINT(sk_data_lo);
   2982 	DESC_PRINT(sk_data_hi);
   2983 	DESC_PRINT(sk_xmac_txstat);
   2984 	DESC_PRINT(sk_rsvd0);
   2985 	DESC_PRINT(sk_csum_startval);
   2986 	DESC_PRINT(sk_csum_startpos);
   2987 	DESC_PRINT(sk_csum_writepos);
   2988 	DESC_PRINT(sk_rsvd1);
   2989 #undef PRINT
   2990 }
   2991 
   2992 void
   2993 sk_dump_bytes(const char *data, int len)
   2994 {
   2995 	int c, i, j;
   2996 
   2997 	for (i = 0; i < len; i += 16) {
   2998 		printf("%08x  ", i);
   2999 		c = len - i;
   3000 		if (c > 16) c = 16;
   3001 
   3002 		for (j = 0; j < c; j++) {
   3003 			printf("%02x ", data[i + j] & 0xff);
   3004 			if ((j & 0xf) == 7 && j > 0)
   3005 				printf(" ");
   3006 		}
   3007 
   3008 		for (; j < 16; j++)
   3009 			printf("   ");
   3010 		printf("  ");
   3011 
   3012 		for (j = 0; j < c; j++) {
   3013 			int ch = data[i + j] & 0xff;
   3014 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
   3015 		}
   3016 
   3017 		printf("\n");
   3018 
   3019 		if (c < 16)
   3020 			break;
   3021 	}
   3022 }
   3023 
   3024 void
   3025 sk_dump_mbuf(struct mbuf *m)
   3026 {
   3027 	int count = m->m_pkthdr.len;
   3028 
   3029 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
   3030 
   3031 	while (count > 0 && m) {
   3032 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
   3033 		       m, m->m_data, m->m_len);
   3034 		sk_dump_bytes(mtod(m, char *), m->m_len);
   3035 
   3036 		count -= m->m_len;
   3037 		m = m->m_next;
   3038 	}
   3039 }
   3040 #endif
   3041 
   3042 static int
   3043 sk_sysctl_handler(SYSCTLFN_ARGS)
   3044 {
   3045 	int error, t;
   3046 	struct sysctlnode node;
   3047 	struct sk_softc *sc;
   3048 
   3049 	node = *rnode;
   3050 	sc = node.sysctl_data;
   3051 	t = sc->sk_int_mod;
   3052 	node.sysctl_data = &t;
   3053 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3054 	if (error || newp == NULL)
   3055 		return (error);
   3056 
   3057 	if (t < SK_IM_MIN || t > SK_IM_MAX)
   3058 		return (EINVAL);
   3059 
   3060 	/* update the softc with sysctl-changed value, and mark
   3061 	   for hardware update */
   3062 	sc->sk_int_mod = t;
   3063 	sc->sk_int_mod_pending = 1;
   3064 	return (0);
   3065 }
   3066 
   3067 /*
   3068  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
   3069  * set up in skc_attach()
   3070  */
   3071 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
   3072 {
   3073 	int rc;
   3074 	const struct sysctlnode *node;
   3075 
   3076 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   3077 	    0, CTLTYPE_NODE, "hw", NULL,
   3078 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   3079 		goto err;
   3080 	}
   3081 
   3082 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   3083 	    0, CTLTYPE_NODE, "sk",
   3084 	    SYSCTL_DESCR("sk interface controls"),
   3085 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   3086 		goto err;
   3087 	}
   3088 
   3089 	sk_root_num = node->sysctl_num;
   3090 	return;
   3091 
   3092 err:
   3093 	printf("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
   3094 }
   3095