if_sk.c revision 1.29 1 /* $NetBSD: if_sk.c,v 1.29 2006/08/22 06:24:10 riz Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the NetBSD
18 * Foundation, Inc. and its contributors.
19 * 4. Neither the name of The NetBSD Foundation nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
37
38 /*
39 * Copyright (c) 1997, 1998, 1999, 2000
40 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Bill Paul.
53 * 4. Neither the name of the author nor the names of any co-contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67 * THE POSSIBILITY OF SUCH DAMAGE.
68 *
69 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70 */
71
72 /*
73 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
74 *
75 * Permission to use, copy, modify, and distribute this software for any
76 * purpose with or without fee is hereby granted, provided that the above
77 * copyright notice and this permission notice appear in all copies.
78 *
79 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86 */
87
88 /*
89 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90 * the SK-984x series adapters, both single port and dual port.
91 * References:
92 * The XaQti XMAC II datasheet,
93 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 * The SysKonnect GEnesis manual, http://www.syskonnect.com
95 *
96 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98 * convenience to others until Vitesse corrects this problem:
99 *
100 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101 *
102 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
103 * Department of Electrical Engineering
104 * Columbia University, New York City
105 */
106
107 /*
108 * The SysKonnect gigabit ethernet adapters consist of two main
109 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111 * components and a PHY while the GEnesis controller provides a PCI
112 * interface with DMA support. Each card may have between 512K and
113 * 2MB of SRAM on board depending on the configuration.
114 *
115 * The SysKonnect GEnesis controller can have either one or two XMAC
116 * chips connected to it, allowing single or dual port NIC configurations.
117 * SysKonnect has the distinction of being the only vendor on the market
118 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120 * XMAC registers. This driver takes advantage of these features to allow
121 * both XMACs to operate as independent interfaces.
122 */
123
124 #include "bpfilter.h"
125 #include "rnd.h"
126
127 #include <sys/param.h>
128 #include <sys/systm.h>
129 #include <sys/sockio.h>
130 #include <sys/mbuf.h>
131 #include <sys/malloc.h>
132 #include <sys/kernel.h>
133 #include <sys/socket.h>
134 #include <sys/device.h>
135 #include <sys/queue.h>
136 #include <sys/callout.h>
137 #include <sys/sysctl.h>
138 #include <sys/endian.h>
139
140 #include <net/if.h>
141 #include <net/if_dl.h>
142 #include <net/if_types.h>
143
144 #ifdef INET
145 #include <netinet/in.h>
146 #include <netinet/in_systm.h>
147 #include <netinet/in_var.h>
148 #include <netinet/ip.h>
149 #include <netinet/if_ether.h>
150 #endif
151
152 #include <net/if_media.h>
153
154 #if NBPFILTER > 0
155 #include <net/bpf.h>
156 #endif
157 #if NRND > 0
158 #include <sys/rnd.h>
159 #endif
160
161 #include <dev/mii/mii.h>
162 #include <dev/mii/miivar.h>
163 #include <dev/mii/brgphyreg.h>
164
165 #include <dev/pci/pcireg.h>
166 #include <dev/pci/pcivar.h>
167 #include <dev/pci/pcidevs.h>
168
169 #define SK_VERBOSE
170 /* #define SK_USEIOSPACE */
171
172 #include <dev/pci/if_skreg.h>
173 #include <dev/pci/if_skvar.h>
174
175 int skc_probe(struct device *, struct cfdata *, void *);
176 void skc_attach(struct device *, struct device *self, void *aux);
177 int sk_probe(struct device *, struct cfdata *, void *);
178 void sk_attach(struct device *, struct device *self, void *aux);
179 int skcprint(void *, const char *);
180 int sk_intr(void *);
181 void sk_intr_bcom(struct sk_if_softc *);
182 void sk_intr_xmac(struct sk_if_softc *);
183 void sk_intr_yukon(struct sk_if_softc *);
184 void sk_rxeof(struct sk_if_softc *);
185 void sk_txeof(struct sk_if_softc *);
186 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
187 void sk_start(struct ifnet *);
188 int sk_ioctl(struct ifnet *, u_long, caddr_t);
189 int sk_init(struct ifnet *);
190 void sk_init_xmac(struct sk_if_softc *);
191 void sk_init_yukon(struct sk_if_softc *);
192 void sk_stop(struct ifnet *, int);
193 void sk_watchdog(struct ifnet *);
194 void sk_shutdown(void *);
195 int sk_ifmedia_upd(struct ifnet *);
196 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
197 void sk_reset(struct sk_softc *);
198 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
199 int sk_alloc_jumbo_mem(struct sk_if_softc *);
200 void sk_free_jumbo_mem(struct sk_if_softc *);
201 void *sk_jalloc(struct sk_if_softc *);
202 void sk_jfree(struct mbuf *, caddr_t, size_t, void *);
203 int sk_init_rx_ring(struct sk_if_softc *);
204 int sk_init_tx_ring(struct sk_if_softc *);
205 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
206 void sk_vpd_read_res(struct sk_softc *,
207 struct vpd_res *, int);
208 void sk_vpd_read(struct sk_softc *);
209
210 void sk_update_int_mod(struct sk_softc *);
211
212 int sk_xmac_miibus_readreg(struct device *, int, int);
213 void sk_xmac_miibus_writereg(struct device *, int, int, int);
214 void sk_xmac_miibus_statchg(struct device *);
215
216 int sk_marv_miibus_readreg(struct device *, int, int);
217 void sk_marv_miibus_writereg(struct device *, int, int, int);
218 void sk_marv_miibus_statchg(struct device *);
219
220 u_int32_t sk_xmac_hash(caddr_t);
221 u_int32_t sk_yukon_hash(caddr_t);
222 void sk_setfilt(struct sk_if_softc *, caddr_t, int);
223 void sk_setmulti(struct sk_if_softc *);
224 void sk_tick(void *);
225
226 /* #define SK_DEBUG 2 */
227 #ifdef SK_DEBUG
228 #define DPRINTF(x) if (skdebug) printf x
229 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
230 int skdebug = SK_DEBUG;
231
232 void sk_dump_txdesc(struct sk_tx_desc *, int);
233 void sk_dump_mbuf(struct mbuf *);
234 void sk_dump_bytes(const char *, int);
235 #else
236 #define DPRINTF(x)
237 #define DPRINTFN(n,x)
238 #endif
239
240 #define SK_SETBIT(sc, reg, x) \
241 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
242
243 #define SK_CLRBIT(sc, reg, x) \
244 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
245
246 #define SK_WIN_SETBIT_4(sc, reg, x) \
247 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
248
249 #define SK_WIN_CLRBIT_4(sc, reg, x) \
250 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
251
252 #define SK_WIN_SETBIT_2(sc, reg, x) \
253 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
254
255 #define SK_WIN_CLRBIT_2(sc, reg, x) \
256 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
257
258 static int sk_sysctl_handler(SYSCTLFN_PROTO);
259 static int sk_root_num;
260
261 /* supported device vendors */
262 static const struct sk_product {
263 pci_vendor_id_t sk_vendor;
264 pci_product_id_t sk_product;
265 } sk_products[] = {
266 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
267 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
268 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T, },
269 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
270 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
271 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
272 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
273 { PCI_VENDOR_GALILEO, PCI_PRODUCT_GALILEO_SKNET, },
274 { PCI_VENDOR_GALILEO, PCI_PRODUCT_GALILEO_BELKIN, },
275 { 0, 0, }
276 };
277
278 #define SK_LINKSYS_EG1032_SUBID 0x00151737
279
280 static inline u_int32_t
281 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
282 {
283 #ifdef SK_USEIOSPACE
284 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
285 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
286 #else
287 return CSR_READ_4(sc, reg);
288 #endif
289 }
290
291 static inline u_int16_t
292 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
293 {
294 #ifdef SK_USEIOSPACE
295 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
296 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
297 #else
298 return CSR_READ_2(sc, reg);
299 #endif
300 }
301
302 static inline u_int8_t
303 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
304 {
305 #ifdef SK_USEIOSPACE
306 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
307 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
308 #else
309 return CSR_READ_1(sc, reg);
310 #endif
311 }
312
313 static inline void
314 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
315 {
316 #ifdef SK_USEIOSPACE
317 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
318 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
319 #else
320 CSR_WRITE_4(sc, reg, x);
321 #endif
322 }
323
324 static inline void
325 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
326 {
327 #ifdef SK_USEIOSPACE
328 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
329 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
330 #else
331 CSR_WRITE_2(sc, reg, x);
332 #endif
333 }
334
335 static inline void
336 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
337 {
338 #ifdef SK_USEIOSPACE
339 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
340 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
341 #else
342 CSR_WRITE_1(sc, reg, x);
343 #endif
344 }
345
346 /*
347 * The VPD EEPROM contains Vital Product Data, as suggested in
348 * the PCI 2.1 specification. The VPD data is separared into areas
349 * denoted by resource IDs. The SysKonnect VPD contains an ID string
350 * resource (the name of the adapter), a read-only area resource
351 * containing various key/data fields and a read/write area which
352 * can be used to store asset management information or log messages.
353 * We read the ID string and read-only into buffers attached to
354 * the controller softc structure for later use. At the moment,
355 * we only use the ID string during sk_attach().
356 */
357 u_int8_t
358 sk_vpd_readbyte(struct sk_softc *sc, int addr)
359 {
360 int i;
361
362 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
363 for (i = 0; i < SK_TIMEOUT; i++) {
364 DELAY(1);
365 if (sk_win_read_2(sc,
366 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
367 break;
368 }
369
370 if (i == SK_TIMEOUT)
371 return(0);
372
373 return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
374 }
375
376 void
377 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
378 {
379 int i;
380 u_int8_t *ptr;
381
382 ptr = (u_int8_t *)res;
383 for (i = 0; i < sizeof(struct vpd_res); i++)
384 ptr[i] = sk_vpd_readbyte(sc, i + addr);
385 }
386
387 void
388 sk_vpd_read(struct sk_softc *sc)
389 {
390 int pos = 0, i;
391 struct vpd_res res;
392
393 if (sc->sk_vpd_prodname != NULL)
394 free(sc->sk_vpd_prodname, M_DEVBUF);
395 if (sc->sk_vpd_readonly != NULL)
396 free(sc->sk_vpd_readonly, M_DEVBUF);
397 sc->sk_vpd_prodname = NULL;
398 sc->sk_vpd_readonly = NULL;
399
400 sk_vpd_read_res(sc, &res, pos);
401
402 if (res.vr_id != VPD_RES_ID) {
403 printf("%s: bad VPD resource id: expected %x got %x\n",
404 sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
405 return;
406 }
407
408 pos += sizeof(res);
409 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
410 if (sc->sk_vpd_prodname == NULL)
411 panic("sk_vpd_read");
412 for (i = 0; i < res.vr_len; i++)
413 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
414 sc->sk_vpd_prodname[i] = '\0';
415 pos += i;
416
417 sk_vpd_read_res(sc, &res, pos);
418
419 if (res.vr_id != VPD_RES_READ) {
420 printf("%s: bad VPD resource id: expected %x got %x\n",
421 sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
422 return;
423 }
424
425 pos += sizeof(res);
426 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
427 if (sc->sk_vpd_readonly == NULL)
428 panic("sk_vpd_read");
429 for (i = 0; i < res.vr_len ; i++)
430 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
431 }
432
433 int
434 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
435 {
436 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
437 int i;
438
439 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
440
441 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
442 return(0);
443
444 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
445 SK_XM_READ_2(sc_if, XM_PHY_DATA);
446 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
447 for (i = 0; i < SK_TIMEOUT; i++) {
448 DELAY(1);
449 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
450 XM_MMUCMD_PHYDATARDY)
451 break;
452 }
453
454 if (i == SK_TIMEOUT) {
455 printf("%s: phy failed to come ready\n",
456 sc_if->sk_dev.dv_xname);
457 return(0);
458 }
459 }
460 DELAY(1);
461 return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
462 }
463
464 void
465 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
466 {
467 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
468 int i;
469
470 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
471
472 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
473 for (i = 0; i < SK_TIMEOUT; i++) {
474 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
475 break;
476 }
477
478 if (i == SK_TIMEOUT) {
479 printf("%s: phy failed to come ready\n",
480 sc_if->sk_dev.dv_xname);
481 return;
482 }
483
484 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
485 for (i = 0; i < SK_TIMEOUT; i++) {
486 DELAY(1);
487 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
488 break;
489 }
490
491 if (i == SK_TIMEOUT)
492 printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
493 }
494
495 void
496 sk_xmac_miibus_statchg(struct device *dev)
497 {
498 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
499 struct mii_data *mii = &sc_if->sk_mii;
500
501 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
502
503 /*
504 * If this is a GMII PHY, manually set the XMAC's
505 * duplex mode accordingly.
506 */
507 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
508 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
509 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
510 } else {
511 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
512 }
513 }
514 }
515
516 int
517 sk_marv_miibus_readreg(dev, phy, reg)
518 struct device *dev;
519 int phy, reg;
520 {
521 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
522 u_int16_t val;
523 int i;
524
525 if (phy != 0 ||
526 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
527 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
528 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
529 phy, reg));
530 return(0);
531 }
532
533 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
534 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
535
536 for (i = 0; i < SK_TIMEOUT; i++) {
537 DELAY(1);
538 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
539 if (val & YU_SMICR_READ_VALID)
540 break;
541 }
542
543 if (i == SK_TIMEOUT) {
544 printf("%s: phy failed to come ready\n",
545 sc_if->sk_dev.dv_xname);
546 return 0;
547 }
548
549 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
550 SK_TIMEOUT));
551
552 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
553
554 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
555 phy, reg, val));
556
557 return val;
558 }
559
560 void
561 sk_marv_miibus_writereg(dev, phy, reg, val)
562 struct device *dev;
563 int phy, reg, val;
564 {
565 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
566 int i;
567
568 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
569 phy, reg, val));
570
571 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
572 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
573 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
574
575 for (i = 0; i < SK_TIMEOUT; i++) {
576 DELAY(1);
577 if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
578 break;
579 }
580 }
581
582 void
583 sk_marv_miibus_statchg(dev)
584 struct device *dev;
585 {
586 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
587 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
588 }
589
590 #define SK_HASH_BITS 6
591
592 u_int32_t
593 sk_xmac_hash(caddr_t addr)
594 {
595 u_int32_t crc;
596
597 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
598 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
599 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
600 return (crc);
601 }
602
603 u_int32_t
604 sk_yukon_hash(caddr_t addr)
605 {
606 u_int32_t crc;
607
608 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
609 crc &= ((1 << SK_HASH_BITS) - 1);
610 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
611 return (crc);
612 }
613
614 void
615 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
616 {
617 int base = XM_RXFILT_ENTRY(slot);
618
619 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
620 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
621 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
622 }
623
624 void
625 sk_setmulti(struct sk_if_softc *sc_if)
626 {
627 struct sk_softc *sc = sc_if->sk_softc;
628 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
629 u_int32_t hashes[2] = { 0, 0 };
630 int h = 0, i;
631 struct ethercom *ec = &sc_if->sk_ethercom;
632 struct ether_multi *enm;
633 struct ether_multistep step;
634 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
635
636 /* First, zot all the existing filters. */
637 switch(sc->sk_type) {
638 case SK_GENESIS:
639 for (i = 1; i < XM_RXFILT_MAX; i++)
640 sk_setfilt(sc_if, (caddr_t)&dummy, i);
641
642 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
643 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
644 break;
645 case SK_YUKON:
646 case SK_YUKON_LITE:
647 case SK_YUKON_LP:
648 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
649 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
650 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
651 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
652 break;
653 }
654
655 /* Now program new ones. */
656 allmulti:
657 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
658 hashes[0] = 0xFFFFFFFF;
659 hashes[1] = 0xFFFFFFFF;
660 } else {
661 i = 1;
662 /* First find the tail of the list. */
663 ETHER_FIRST_MULTI(step, ec, enm);
664 while (enm != NULL) {
665 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
666 ETHER_ADDR_LEN)) {
667 ifp->if_flags |= IFF_ALLMULTI;
668 goto allmulti;
669 }
670 DPRINTFN(2,("multicast address %s\n",
671 ether_sprintf(enm->enm_addrlo)));
672 /*
673 * Program the first XM_RXFILT_MAX multicast groups
674 * into the perfect filter. For all others,
675 * use the hash table.
676 */
677 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
678 sk_setfilt(sc_if, enm->enm_addrlo, i);
679 i++;
680 }
681 else {
682 switch (sc->sk_type) {
683 case SK_GENESIS:
684 h = sk_xmac_hash(enm->enm_addrlo);
685 break;
686 case SK_YUKON:
687 case SK_YUKON_LITE:
688 case SK_YUKON_LP:
689 h = sk_yukon_hash(enm->enm_addrlo);
690 break;
691 }
692 if (h < 32)
693 hashes[0] |= (1 << h);
694 else
695 hashes[1] |= (1 << (h - 32));
696 }
697
698 ETHER_NEXT_MULTI(step, enm);
699 }
700 }
701
702 switch(sc->sk_type) {
703 case SK_GENESIS:
704 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
705 XM_MODE_RX_USE_PERFECT);
706 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
707 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
708 break;
709 case SK_YUKON:
710 case SK_YUKON_LITE:
711 case SK_YUKON_LP:
712 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
713 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
714 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
715 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
716 break;
717 }
718 }
719
720 int
721 sk_init_rx_ring(struct sk_if_softc *sc_if)
722 {
723 struct sk_chain_data *cd = &sc_if->sk_cdata;
724 struct sk_ring_data *rd = sc_if->sk_rdata;
725 int i;
726
727 bzero((char *)rd->sk_rx_ring,
728 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
729
730 for (i = 0; i < SK_RX_RING_CNT; i++) {
731 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
732 if (i == (SK_RX_RING_CNT - 1)) {
733 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
734 rd->sk_rx_ring[i].sk_next =
735 htole32(SK_RX_RING_ADDR(sc_if, 0));
736 } else {
737 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
738 rd->sk_rx_ring[i].sk_next =
739 htole32(SK_RX_RING_ADDR(sc_if,i+1));
740 }
741 }
742
743 for (i = 0; i < SK_RX_RING_CNT; i++) {
744 if (sk_newbuf(sc_if, i, NULL,
745 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
746 printf("%s: failed alloc of %dth mbuf\n",
747 sc_if->sk_dev.dv_xname, i);
748 return(ENOBUFS);
749 }
750 }
751 sc_if->sk_cdata.sk_rx_prod = 0;
752 sc_if->sk_cdata.sk_rx_cons = 0;
753
754 return(0);
755 }
756
757 int
758 sk_init_tx_ring(struct sk_if_softc *sc_if)
759 {
760 struct sk_chain_data *cd = &sc_if->sk_cdata;
761 struct sk_ring_data *rd = sc_if->sk_rdata;
762 int i;
763
764 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
765 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
766
767 for (i = 0; i < SK_TX_RING_CNT; i++) {
768 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
769 if (i == (SK_TX_RING_CNT - 1)) {
770 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
771 rd->sk_tx_ring[i].sk_next =
772 htole32(SK_TX_RING_ADDR(sc_if, 0));
773 } else {
774 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
775 rd->sk_tx_ring[i].sk_next =
776 htole32(SK_TX_RING_ADDR(sc_if,i+1));
777 }
778 }
779
780 sc_if->sk_cdata.sk_tx_prod = 0;
781 sc_if->sk_cdata.sk_tx_cons = 0;
782 sc_if->sk_cdata.sk_tx_cnt = 0;
783
784 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
785 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
786
787 return (0);
788 }
789
790 int
791 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
792 bus_dmamap_t dmamap)
793 {
794 struct mbuf *m_new = NULL;
795 struct sk_chain *c;
796 struct sk_rx_desc *r;
797
798 if (m == NULL) {
799 caddr_t buf = NULL;
800
801 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
802 if (m_new == NULL) {
803 printf("%s: no memory for rx list -- "
804 "packet dropped!\n", sc_if->sk_dev.dv_xname);
805 return(ENOBUFS);
806 }
807
808 /* Allocate the jumbo buffer */
809 buf = sk_jalloc(sc_if);
810 if (buf == NULL) {
811 m_freem(m_new);
812 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
813 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
814 return(ENOBUFS);
815 }
816
817 /* Attach the buffer to the mbuf */
818 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
819 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
820
821 } else {
822 /*
823 * We're re-using a previously allocated mbuf;
824 * be sure to re-init pointers and lengths to
825 * default values.
826 */
827 m_new = m;
828 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
829 m_new->m_data = m_new->m_ext.ext_buf;
830 }
831 m_adj(m_new, ETHER_ALIGN);
832
833 c = &sc_if->sk_cdata.sk_rx_chain[i];
834 r = c->sk_desc;
835 c->sk_mbuf = m_new;
836 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
837 (((vaddr_t)m_new->m_data
838 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
839 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
840
841 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
842
843 return(0);
844 }
845
846 /*
847 * Memory management for jumbo frames.
848 */
849
850 int
851 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
852 {
853 struct sk_softc *sc = sc_if->sk_softc;
854 caddr_t ptr, kva;
855 bus_dma_segment_t seg;
856 int i, rseg, state, error;
857 struct sk_jpool_entry *entry;
858
859 state = error = 0;
860
861 /* Grab a big chunk o' storage. */
862 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
863 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
864 printf("%s: can't alloc rx buffers\n", sc->sk_dev.dv_xname);
865 return (ENOBUFS);
866 }
867
868 state = 1;
869 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, &kva,
870 BUS_DMA_NOWAIT)) {
871 printf("%s: can't map dma buffers (%d bytes)\n",
872 sc->sk_dev.dv_xname, SK_JMEM);
873 error = ENOBUFS;
874 goto out;
875 }
876
877 state = 2;
878 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
879 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
880 printf("%s: can't create dma map\n", sc->sk_dev.dv_xname);
881 error = ENOBUFS;
882 goto out;
883 }
884
885 state = 3;
886 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
887 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
888 printf("%s: can't load dma map\n", sc->sk_dev.dv_xname);
889 error = ENOBUFS;
890 goto out;
891 }
892
893 state = 4;
894 sc_if->sk_cdata.sk_jumbo_buf = (caddr_t)kva;
895 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
896
897 LIST_INIT(&sc_if->sk_jfree_listhead);
898 LIST_INIT(&sc_if->sk_jinuse_listhead);
899
900 /*
901 * Now divide it up into 9K pieces and save the addresses
902 * in an array.
903 */
904 ptr = sc_if->sk_cdata.sk_jumbo_buf;
905 for (i = 0; i < SK_JSLOTS; i++) {
906 sc_if->sk_cdata.sk_jslots[i] = ptr;
907 ptr += SK_JLEN;
908 entry = malloc(sizeof(struct sk_jpool_entry),
909 M_DEVBUF, M_NOWAIT);
910 if (entry == NULL) {
911 printf("%s: no memory for jumbo buffer queue!\n",
912 sc->sk_dev.dv_xname);
913 error = ENOBUFS;
914 goto out;
915 }
916 entry->slot = i;
917 if (i)
918 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
919 entry, jpool_entries);
920 else
921 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
922 entry, jpool_entries);
923 }
924 out:
925 if (error != 0) {
926 switch (state) {
927 case 4:
928 bus_dmamap_unload(sc->sc_dmatag,
929 sc_if->sk_cdata.sk_rx_jumbo_map);
930 case 3:
931 bus_dmamap_destroy(sc->sc_dmatag,
932 sc_if->sk_cdata.sk_rx_jumbo_map);
933 case 2:
934 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
935 case 1:
936 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
937 break;
938 default:
939 break;
940 }
941 }
942
943 return (error);
944 }
945
946 /*
947 * Allocate a jumbo buffer.
948 */
949 void *
950 sk_jalloc(struct sk_if_softc *sc_if)
951 {
952 struct sk_jpool_entry *entry;
953
954 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
955
956 if (entry == NULL)
957 return (NULL);
958
959 LIST_REMOVE(entry, jpool_entries);
960 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
961 return (sc_if->sk_cdata.sk_jslots[entry->slot]);
962 }
963
964 /*
965 * Release a jumbo buffer.
966 */
967 void
968 sk_jfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
969 {
970 struct sk_jpool_entry *entry;
971 struct sk_if_softc *sc;
972 int i, s;
973
974 /* Extract the softc struct pointer. */
975 sc = (struct sk_if_softc *)arg;
976
977 if (sc == NULL)
978 panic("sk_jfree: can't find softc pointer!");
979
980 /* calculate the slot this buffer belongs to */
981
982 i = ((vaddr_t)buf
983 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
984
985 if ((i < 0) || (i >= SK_JSLOTS))
986 panic("sk_jfree: asked to free buffer that we don't manage!");
987
988 s = splvm();
989 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
990 if (entry == NULL)
991 panic("sk_jfree: buffer not in use!");
992 entry->slot = i;
993 LIST_REMOVE(entry, jpool_entries);
994 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
995
996 if (__predict_true(m != NULL))
997 pool_cache_put(&mbpool_cache, m);
998 splx(s);
999 }
1000
1001 /*
1002 * Set media options.
1003 */
1004 int
1005 sk_ifmedia_upd(struct ifnet *ifp)
1006 {
1007 struct sk_if_softc *sc_if = ifp->if_softc;
1008
1009 (void) sk_init(ifp);
1010 mii_mediachg(&sc_if->sk_mii);
1011 return(0);
1012 }
1013
1014 /*
1015 * Report current media status.
1016 */
1017 void
1018 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1019 {
1020 struct sk_if_softc *sc_if = ifp->if_softc;
1021
1022 mii_pollstat(&sc_if->sk_mii);
1023 ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
1024 ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
1025 }
1026
1027 int
1028 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1029 {
1030 struct sk_if_softc *sc_if = ifp->if_softc;
1031 struct sk_softc *sc = sc_if->sk_softc;
1032 struct ifreq *ifr = (struct ifreq *) data;
1033 /* struct ifaddr *ifa = (struct ifaddr *) data; */
1034 struct mii_data *mii;
1035 int s, error = 0;
1036
1037 /* DPRINTFN(2, ("sk_ioctl\n")); */
1038
1039 s = splnet();
1040
1041 switch(command) {
1042
1043 case SIOCSIFFLAGS:
1044 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1045 if (ifp->if_flags & IFF_UP) {
1046 if (ifp->if_flags & IFF_RUNNING &&
1047 ifp->if_flags & IFF_PROMISC &&
1048 !(sc_if->sk_if_flags & IFF_PROMISC)) {
1049 switch(sc->sk_type) {
1050 case SK_GENESIS:
1051 SK_XM_SETBIT_4(sc_if, XM_MODE,
1052 XM_MODE_RX_PROMISC);
1053 break;
1054 case SK_YUKON:
1055 case SK_YUKON_LITE:
1056 case SK_YUKON_LP:
1057 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1058 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1059 break;
1060 }
1061 sk_setmulti(sc_if);
1062 } else if (ifp->if_flags & IFF_RUNNING &&
1063 !(ifp->if_flags & IFF_PROMISC) &&
1064 sc_if->sk_if_flags & IFF_PROMISC) {
1065 switch(sc->sk_type) {
1066 case SK_GENESIS:
1067 SK_XM_CLRBIT_4(sc_if, XM_MODE,
1068 XM_MODE_RX_PROMISC);
1069 break;
1070 case SK_YUKON:
1071 case SK_YUKON_LITE:
1072 case SK_YUKON_LP:
1073 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1074 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1075 break;
1076 }
1077
1078 sk_setmulti(sc_if);
1079 } else
1080 (void) sk_init(ifp);
1081 } else {
1082 if (ifp->if_flags & IFF_RUNNING)
1083 sk_stop(ifp,0);
1084 }
1085 sc_if->sk_if_flags = ifp->if_flags;
1086 error = 0;
1087 break;
1088
1089 case SIOCGIFMEDIA:
1090 case SIOCSIFMEDIA:
1091 DPRINTFN(2, ("sk_ioctl MEDIA\n"));
1092 mii = &sc_if->sk_mii;
1093 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1094 break;
1095 default:
1096 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1097 error = ether_ioctl(ifp, command, data);
1098
1099 if ( error == ENETRESET) {
1100 if (ifp->if_flags & IFF_RUNNING) {
1101 sk_setmulti(sc_if);
1102 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1103 }
1104 error = 0;
1105 } else if ( error ) {
1106 splx(s);
1107 return error;
1108 }
1109 break;
1110 }
1111
1112 splx(s);
1113 return(error);
1114 }
1115
1116 void
1117 sk_update_int_mod(struct sk_softc *sc)
1118 {
1119 u_int32_t sk_imtimer_ticks;
1120
1121 /*
1122 * Configure interrupt moderation. The moderation timer
1123 * defers interrupts specified in the interrupt moderation
1124 * timer mask based on the timeout specified in the interrupt
1125 * moderation timer init register. Each bit in the timer
1126 * register represents one tick, so to specify a timeout in
1127 * microseconds, we have to multiply by the correct number of
1128 * ticks-per-microsecond.
1129 */
1130 switch (sc->sk_type) {
1131 case SK_GENESIS:
1132 sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1133 break;
1134 case SK_YUKON_EC:
1135 sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1136 break;
1137 default:
1138 sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1139 }
1140 aprint_verbose("%s: interrupt moderation is %d us\n",
1141 sc->sk_dev.dv_xname, sc->sk_int_mod);
1142 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1143 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1144 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1145 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1146 sc->sk_int_mod_pending = 0;
1147 }
1148
1149 /*
1150 * Lookup: Check the PCI vendor and device, and return a pointer to
1151 * The structure if the IDs match against our list.
1152 */
1153
1154 static const struct sk_product *
1155 sk_lookup(const struct pci_attach_args *pa)
1156 {
1157 const struct sk_product *psk;
1158
1159 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1160 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1161 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1162 return (psk);
1163 }
1164 return (NULL);
1165 }
1166
1167 /*
1168 * Probe for a SysKonnect GEnesis chip.
1169 */
1170
1171 int
1172 skc_probe(struct device *parent, struct cfdata *match, void *aux)
1173 {
1174 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1175 const struct sk_product *psk;
1176 pcireg_t subid;
1177
1178 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1179
1180 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1181 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1182 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1183 subid == SK_LINKSYS_EG1032_SUBID)
1184 return(1);
1185
1186 if ((psk = sk_lookup(pa))) {
1187 return(1);
1188 }
1189 return(0);
1190 }
1191
1192 /*
1193 * Force the GEnesis into reset, then bring it out of reset.
1194 */
1195 void sk_reset(struct sk_softc *sc)
1196 {
1197 DPRINTFN(2, ("sk_reset\n"));
1198
1199 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1200 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1201 if (SK_YUKON_FAMILY(sc->sk_type))
1202 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1203
1204 DELAY(1000);
1205 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1206 DELAY(2);
1207 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1208 if (SK_YUKON_FAMILY(sc->sk_type))
1209 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1210
1211 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1212 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1213 CSR_READ_2(sc, SK_LINK_CTRL)));
1214
1215 if (sc->sk_type == SK_GENESIS) {
1216 /* Configure packet arbiter */
1217 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1218 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1219 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1220 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1221 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1222 }
1223
1224 /* Enable RAM interface */
1225 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1226
1227 sk_update_int_mod(sc);
1228 }
1229
1230 int
1231 sk_probe(struct device *parent, struct cfdata *match, void *aux)
1232 {
1233 struct skc_attach_args *sa = aux;
1234
1235 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1236 return(0);
1237
1238 return (1);
1239 }
1240
1241 /*
1242 * Each XMAC chip is attached as a separate logical IP interface.
1243 * Single port cards will have only one logical interface of course.
1244 */
1245 void
1246 sk_attach(struct device *parent, struct device *self, void *aux)
1247 {
1248 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1249 struct sk_softc *sc = (struct sk_softc *)parent;
1250 struct skc_attach_args *sa = aux;
1251 struct sk_txmap_entry *entry;
1252 struct ifnet *ifp;
1253 bus_dma_segment_t seg;
1254 bus_dmamap_t dmamap;
1255 caddr_t kva;
1256 int i, rseg;
1257
1258 sc_if->sk_port = sa->skc_port;
1259 sc_if->sk_softc = sc;
1260 sc->sk_if[sa->skc_port] = sc_if;
1261
1262 if (sa->skc_port == SK_PORT_A)
1263 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1264 if (sa->skc_port == SK_PORT_B)
1265 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1266
1267 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1268
1269 /*
1270 * Get station address for this interface. Note that
1271 * dual port cards actually come with three station
1272 * addresses: one for each port, plus an extra. The
1273 * extra one is used by the SysKonnect driver software
1274 * as a 'virtual' station address for when both ports
1275 * are operating in failover mode. Currently we don't
1276 * use this extra address.
1277 */
1278 for (i = 0; i < ETHER_ADDR_LEN; i++)
1279 sc_if->sk_enaddr[i] =
1280 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1281
1282
1283 aprint_normal(": Ethernet address %s\n",
1284 ether_sprintf(sc_if->sk_enaddr));
1285
1286 /*
1287 * Set up RAM buffer addresses. The NIC will have a certain
1288 * amount of SRAM on it, somewhere between 512K and 2MB. We
1289 * need to divide this up a) between the transmitter and
1290 * receiver and b) between the two XMACs, if this is a
1291 * dual port NIC. Our algorithm is to divide up the memory
1292 * evenly so that everyone gets a fair share.
1293 */
1294 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1295 u_int32_t chunk, val;
1296
1297 chunk = sc->sk_ramsize / 2;
1298 val = sc->sk_rboff / sizeof(u_int64_t);
1299 sc_if->sk_rx_ramstart = val;
1300 val += (chunk / sizeof(u_int64_t));
1301 sc_if->sk_rx_ramend = val - 1;
1302 sc_if->sk_tx_ramstart = val;
1303 val += (chunk / sizeof(u_int64_t));
1304 sc_if->sk_tx_ramend = val - 1;
1305 } else {
1306 u_int32_t chunk, val;
1307
1308 chunk = sc->sk_ramsize / 4;
1309 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1310 sizeof(u_int64_t);
1311 sc_if->sk_rx_ramstart = val;
1312 val += (chunk / sizeof(u_int64_t));
1313 sc_if->sk_rx_ramend = val - 1;
1314 sc_if->sk_tx_ramstart = val;
1315 val += (chunk / sizeof(u_int64_t));
1316 sc_if->sk_tx_ramend = val - 1;
1317 }
1318
1319 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1320 " tx_ramstart=%#x tx_ramend=%#x\n",
1321 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1322 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1323
1324 /* Read and save PHY type and set PHY address */
1325 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1326 switch (sc_if->sk_phytype) {
1327 case SK_PHYTYPE_XMAC:
1328 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1329 break;
1330 case SK_PHYTYPE_BCOM:
1331 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1332 break;
1333 case SK_PHYTYPE_MARV_COPPER:
1334 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1335 break;
1336 default:
1337 aprint_error("%s: unsupported PHY type: %d\n",
1338 sc->sk_dev.dv_xname, sc_if->sk_phytype);
1339 return;
1340 }
1341
1342 /* Allocate the descriptor queues. */
1343 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1344 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1345 aprint_error("%s: can't alloc rx buffers\n",
1346 sc->sk_dev.dv_xname);
1347 goto fail;
1348 }
1349 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1350 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1351 aprint_error("%s: can't map dma buffers (%lu bytes)\n",
1352 sc_if->sk_dev.dv_xname,
1353 (u_long) sizeof(struct sk_ring_data));
1354 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1355 goto fail;
1356 }
1357 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1358 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1359 &sc_if->sk_ring_map)) {
1360 aprint_error("%s: can't create dma map\n",
1361 sc_if->sk_dev.dv_xname);
1362 bus_dmamem_unmap(sc->sc_dmatag, kva,
1363 sizeof(struct sk_ring_data));
1364 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1365 goto fail;
1366 }
1367 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1368 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1369 aprint_error("%s: can't load dma map\n",
1370 sc_if->sk_dev.dv_xname);
1371 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1372 bus_dmamem_unmap(sc->sc_dmatag, kva,
1373 sizeof(struct sk_ring_data));
1374 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1375 goto fail;
1376 }
1377
1378 for (i = 0; i < SK_RX_RING_CNT; i++)
1379 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1380
1381 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1382 for (i = 0; i < SK_TX_RING_CNT; i++) {
1383 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1384
1385 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1386 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1387 aprint_error("%s: Can't create TX dmamap\n",
1388 sc_if->sk_dev.dv_xname);
1389 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1390 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1391 bus_dmamem_unmap(sc->sc_dmatag, kva,
1392 sizeof(struct sk_ring_data));
1393 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1394 goto fail;
1395 }
1396
1397 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1398 if (!entry) {
1399 aprint_error("%s: Can't alloc txmap entry\n",
1400 sc_if->sk_dev.dv_xname);
1401 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1402 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1403 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1404 bus_dmamem_unmap(sc->sc_dmatag, kva,
1405 sizeof(struct sk_ring_data));
1406 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1407 goto fail;
1408 }
1409 entry->dmamap = dmamap;
1410 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1411 }
1412
1413 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1414 bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1415
1416 ifp = &sc_if->sk_ethercom.ec_if;
1417 /* Try to allocate memory for jumbo buffers. */
1418 if (sk_alloc_jumbo_mem(sc_if)) {
1419 printf("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1420 goto fail;
1421 }
1422 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1423 | ETHERCAP_JUMBO_MTU;
1424
1425 ifp->if_softc = sc_if;
1426 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1427 ifp->if_ioctl = sk_ioctl;
1428 ifp->if_start = sk_start;
1429 ifp->if_stop = sk_stop;
1430 ifp->if_init = sk_init;
1431 ifp->if_watchdog = sk_watchdog;
1432 ifp->if_capabilities = 0;
1433 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1434 IFQ_SET_READY(&ifp->if_snd);
1435 strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1436
1437 /*
1438 * Do miibus setup.
1439 */
1440 switch (sc->sk_type) {
1441 case SK_GENESIS:
1442 sk_init_xmac(sc_if);
1443 break;
1444 case SK_YUKON:
1445 case SK_YUKON_LITE:
1446 case SK_YUKON_LP:
1447 sk_init_yukon(sc_if);
1448 break;
1449 default:
1450 panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
1451 sc->sk_type);
1452 }
1453
1454 DPRINTFN(2, ("sk_attach: 1\n"));
1455
1456 sc_if->sk_mii.mii_ifp = ifp;
1457 switch (sc->sk_type) {
1458 case SK_GENESIS:
1459 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1460 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1461 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1462 break;
1463 case SK_YUKON:
1464 case SK_YUKON_LITE:
1465 case SK_YUKON_LP:
1466 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1467 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1468 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1469 break;
1470 }
1471
1472 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1473 sk_ifmedia_upd, sk_ifmedia_sts);
1474 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1475 MII_OFFSET_ANY, 0);
1476 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1477 printf("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1478 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1479 0, NULL);
1480 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1481 }
1482 else
1483 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1484
1485 callout_init(&sc_if->sk_tick_ch);
1486 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1487
1488 DPRINTFN(2, ("sk_attach: 1\n"));
1489
1490 /*
1491 * Call MI attach routines.
1492 */
1493 if_attach(ifp);
1494
1495 ether_ifattach(ifp, sc_if->sk_enaddr);
1496
1497 #if NRND > 0
1498 rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
1499 RND_TYPE_NET, 0);
1500 #endif
1501
1502 DPRINTFN(2, ("sk_attach: end\n"));
1503
1504 return;
1505
1506 fail:
1507 sc->sk_if[sa->skc_port] = NULL;
1508 }
1509
1510 int
1511 skcprint(void *aux, const char *pnp)
1512 {
1513 struct skc_attach_args *sa = aux;
1514
1515 if (pnp)
1516 aprint_normal("sk port %c at %s",
1517 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1518 else
1519 aprint_normal(" port %c",
1520 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1521 return (UNCONF);
1522 }
1523
1524 /*
1525 * Attach the interface. Allocate softc structures, do ifmedia
1526 * setup and ethernet/BPF attach.
1527 */
1528 void
1529 skc_attach(struct device *parent, struct device *self, void *aux)
1530 {
1531 struct sk_softc *sc = (struct sk_softc *)self;
1532 struct pci_attach_args *pa = aux;
1533 struct skc_attach_args skca;
1534 pci_chipset_tag_t pc = pa->pa_pc;
1535 #ifndef SK_USEIOSPACE
1536 pcireg_t memtype;
1537 #endif
1538 pci_intr_handle_t ih;
1539 const char *intrstr = NULL;
1540 bus_addr_t iobase;
1541 bus_size_t iosize;
1542 int rc, sk_nodenum;
1543 u_int32_t command;
1544 const char *revstr;
1545 const struct sysctlnode *node;
1546
1547 DPRINTFN(2, ("begin skc_attach\n"));
1548
1549 /*
1550 * Handle power management nonsense.
1551 */
1552 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1553
1554 if (command == 0x01) {
1555 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1556 if (command & SK_PSTATE_MASK) {
1557 u_int32_t xiobase, membase, irq;
1558
1559 /* Save important PCI config data. */
1560 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1561 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1562 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1563
1564 /* Reset the power state. */
1565 aprint_normal("%s chip is in D%d power mode "
1566 "-- setting to D0\n", sc->sk_dev.dv_xname,
1567 command & SK_PSTATE_MASK);
1568 command &= 0xFFFFFFFC;
1569 pci_conf_write(pc, pa->pa_tag,
1570 SK_PCI_PWRMGMTCTRL, command);
1571
1572 /* Restore PCI config data. */
1573 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1574 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1575 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1576 }
1577 }
1578
1579 /*
1580 * Map control/status registers.
1581 */
1582 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1583 command |= PCI_COMMAND_IO_ENABLE |
1584 PCI_COMMAND_MEM_ENABLE |
1585 PCI_COMMAND_MASTER_ENABLE;
1586 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1587 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1588
1589 #ifdef SK_USEIOSPACE
1590 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1591 aprint_error(": failed to enable I/O ports!\n");
1592 return;
1593 }
1594 /*
1595 * Map control/status registers.
1596 */
1597 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1598 &sc->sk_btag, &sc->sk_bhandle,
1599 &iobase, &iosize)) {
1600 aprint_error(": can't find i/o space\n");
1601 return;
1602 }
1603 #else
1604 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1605 aprint_error(": failed to enable memory mapping!\n");
1606 return;
1607 }
1608 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1609 switch (memtype) {
1610 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1611 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1612 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1613 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1614 &iobase, &iosize) == 0)
1615 break;
1616 default:
1617 aprint_error("%s: can't find mem space\n",
1618 sc->sk_dev.dv_xname);
1619 return;
1620 }
1621
1622 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1623 #endif
1624 sc->sc_dmatag = pa->pa_dmat;
1625
1626 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1627 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1628
1629 /* bail out here if chip is not recognized */
1630 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1631 aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
1632 goto fail;
1633 }
1634 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1635
1636 /* Allocate interrupt */
1637 if (pci_intr_map(pa, &ih)) {
1638 aprint_error(": couldn't map interrupt\n");
1639 goto fail;
1640 }
1641
1642 intrstr = pci_intr_string(pc, ih);
1643 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1644 if (sc->sk_intrhand == NULL) {
1645 aprint_error(": couldn't establish interrupt");
1646 if (intrstr != NULL)
1647 aprint_normal(" at %s", intrstr);
1648 goto fail;
1649 }
1650 aprint_normal(": %s\n", intrstr);
1651
1652 /* Reset the adapter. */
1653 sk_reset(sc);
1654
1655 /* Read and save vital product data from EEPROM. */
1656 sk_vpd_read(sc);
1657
1658 if (sc->sk_type == SK_GENESIS) {
1659 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1660 /* Read and save RAM size and RAMbuffer offset */
1661 switch(val) {
1662 case SK_RAMSIZE_512K_64:
1663 sc->sk_ramsize = 0x80000;
1664 sc->sk_rboff = SK_RBOFF_0;
1665 break;
1666 case SK_RAMSIZE_1024K_64:
1667 sc->sk_ramsize = 0x100000;
1668 sc->sk_rboff = SK_RBOFF_80000;
1669 break;
1670 case SK_RAMSIZE_1024K_128:
1671 sc->sk_ramsize = 0x100000;
1672 sc->sk_rboff = SK_RBOFF_0;
1673 break;
1674 case SK_RAMSIZE_2048K_128:
1675 sc->sk_ramsize = 0x200000;
1676 sc->sk_rboff = SK_RBOFF_0;
1677 break;
1678 default:
1679 aprint_error("%s: unknown ram size: %d\n",
1680 sc->sk_dev.dv_xname, val);
1681 goto fail_1;
1682 break;
1683 }
1684
1685 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1686 sc->sk_ramsize, sc->sk_ramsize / 1024,
1687 sc->sk_rboff));
1688 } else {
1689 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1690 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1691 sc->sk_rboff = SK_RBOFF_0;
1692
1693 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1694 sc->sk_ramsize / 1024, sc->sk_ramsize,
1695 sc->sk_rboff));
1696 }
1697
1698 /* Read and save physical media type */
1699 switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1700 case SK_PMD_1000BASESX:
1701 sc->sk_pmd = IFM_1000_SX;
1702 break;
1703 case SK_PMD_1000BASELX:
1704 sc->sk_pmd = IFM_1000_LX;
1705 break;
1706 case SK_PMD_1000BASECX:
1707 sc->sk_pmd = IFM_1000_CX;
1708 break;
1709 case SK_PMD_1000BASETX:
1710 case SK_PMD_1000BASETX_ALT:
1711 sc->sk_pmd = IFM_1000_T;
1712 break;
1713 default:
1714 aprint_error("%s: unknown media type: 0x%x\n",
1715 sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
1716 goto fail_1;
1717 }
1718
1719 /* determine whether to name it with vpd or just make it up */
1720 /* Marvell Yukon VPD's can freqently be bogus */
1721
1722 switch (pa->pa_id) {
1723 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1724 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1725 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1726 case PCI_PRODUCT_3COM_3C940:
1727 case PCI_PRODUCT_DLINK_DGE530T:
1728 case PCI_PRODUCT_DLINK_DGE560T:
1729 case PCI_PRODUCT_DLINK_DGE560T_2:
1730 case PCI_PRODUCT_LINKSYS_EG1032:
1731 case PCI_PRODUCT_LINKSYS_EG1064:
1732 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1733 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1734 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1735 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1736 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1737 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1738 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1739 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1740 sc->sk_name = sc->sk_vpd_prodname;
1741 break;
1742 case PCI_ID_CODE(PCI_VENDOR_GALILEO,PCI_PRODUCT_GALILEO_SKNET):
1743 /* whoops yukon vpd prodname bears no resemblance to reality */
1744 switch (sc->sk_type) {
1745 case SK_GENESIS:
1746 sc->sk_name = sc->sk_vpd_prodname;
1747 break;
1748 case SK_YUKON:
1749 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1750 break;
1751 case SK_YUKON_LITE:
1752 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1753 break;
1754 case SK_YUKON_LP:
1755 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1756 break;
1757 default:
1758 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1759 }
1760
1761 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1762
1763 if ( sc->sk_type == SK_YUKON ) {
1764 uint32_t flashaddr;
1765 uint8_t testbyte;
1766
1767 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1768
1769 /* test Flash-Address Register */
1770 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1771 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1772
1773 if (testbyte != 0) {
1774 /* this is yukon lite Rev. A0 */
1775 sc->sk_type = SK_YUKON_LITE;
1776 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1777 /* restore Flash-Address Register */
1778 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1779 }
1780 }
1781 break;
1782 case PCI_ID_CODE(PCI_VENDOR_GALILEO,PCI_PRODUCT_GALILEO_BELKIN):
1783 sc->sk_name = sc->sk_vpd_prodname;
1784 break;
1785 default:
1786 sc->sk_name = "Unknown Marvell";
1787 }
1788
1789
1790 if ( sc->sk_type == SK_YUKON_LITE ) {
1791 switch (sc->sk_rev) {
1792 case SK_YUKON_LITE_REV_A0:
1793 revstr = "A0";
1794 break;
1795 case SK_YUKON_LITE_REV_A1:
1796 revstr = "A1";
1797 break;
1798 case SK_YUKON_LITE_REV_A3:
1799 revstr = "A3";
1800 break;
1801 default:
1802 revstr = "";
1803 }
1804 } else {
1805 revstr = "";
1806 }
1807
1808 /* Announce the product name. */
1809 aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
1810 sc->sk_name, revstr, sc->sk_rev);
1811
1812 skca.skc_port = SK_PORT_A;
1813 (void)config_found(&sc->sk_dev, &skca, skcprint);
1814
1815 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1816 skca.skc_port = SK_PORT_B;
1817 (void)config_found(&sc->sk_dev, &skca, skcprint);
1818 }
1819
1820 /* Turn on the 'driver is loaded' LED. */
1821 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1822
1823 /* skc sysctl setup */
1824
1825 sc->sk_int_mod = SK_IM_DEFAULT;
1826 sc->sk_int_mod_pending = 0;
1827
1828 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1829 0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
1830 SYSCTL_DESCR("skc per-controller controls"),
1831 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1832 CTL_EOL)) != 0) {
1833 aprint_normal("%s: couldn't create sysctl node\n",
1834 sc->sk_dev.dv_xname);
1835 goto fail_1;
1836 }
1837
1838 sk_nodenum = node->sysctl_num;
1839
1840 /* interrupt moderation time in usecs */
1841 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1842 CTLFLAG_READWRITE,
1843 CTLTYPE_INT, "int_mod",
1844 SYSCTL_DESCR("sk interrupt moderation timer"),
1845 sk_sysctl_handler, 0, sc,
1846 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1847 CTL_EOL)) != 0) {
1848 aprint_normal("%s: couldn't create int_mod sysctl node\n",
1849 sc->sk_dev.dv_xname);
1850 goto fail_1;
1851 }
1852
1853 return;
1854
1855 fail_1:
1856 pci_intr_disestablish(pc, sc->sk_intrhand);
1857 fail:
1858 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1859 }
1860
1861 int
1862 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1863 {
1864 struct sk_softc *sc = sc_if->sk_softc;
1865 struct sk_tx_desc *f = NULL;
1866 u_int32_t frag, cur, cnt = 0, sk_ctl;
1867 int i;
1868 struct sk_txmap_entry *entry;
1869 bus_dmamap_t txmap;
1870
1871 DPRINTFN(3, ("sk_encap\n"));
1872
1873 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1874 if (entry == NULL) {
1875 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1876 return ENOBUFS;
1877 }
1878 txmap = entry->dmamap;
1879
1880 cur = frag = *txidx;
1881
1882 #ifdef SK_DEBUG
1883 if (skdebug >= 3)
1884 sk_dump_mbuf(m_head);
1885 #endif
1886
1887 /*
1888 * Start packing the mbufs in this chain into
1889 * the fragment pointers. Stop when we run out
1890 * of fragments or hit the end of the mbuf chain.
1891 */
1892 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1893 BUS_DMA_NOWAIT)) {
1894 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1895 return(ENOBUFS);
1896 }
1897
1898 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1899
1900 /* Sync the DMA map. */
1901 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1902 BUS_DMASYNC_PREWRITE);
1903
1904 for (i = 0; i < txmap->dm_nsegs; i++) {
1905 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1906 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1907 return(ENOBUFS);
1908 }
1909 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1910 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1911 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1912 if (cnt == 0)
1913 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1914 else
1915 sk_ctl |= SK_TXCTL_OWN;
1916 f->sk_ctl = htole32(sk_ctl);
1917 cur = frag;
1918 SK_INC(frag, SK_TX_RING_CNT);
1919 cnt++;
1920 }
1921
1922 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1923 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1924
1925 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1926 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1927 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1928
1929 /* Sync descriptors before handing to chip */
1930 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1931 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1932
1933 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1934 htole32(SK_TXCTL_OWN);
1935
1936 /* Sync first descriptor to hand it off */
1937 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1938
1939 sc_if->sk_cdata.sk_tx_cnt += cnt;
1940
1941 #ifdef SK_DEBUG
1942 if (skdebug >= 3) {
1943 struct sk_tx_desc *desc;
1944 u_int32_t idx;
1945 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1946 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1947 sk_dump_txdesc(desc, idx);
1948 }
1949 }
1950 #endif
1951
1952 *txidx = frag;
1953
1954 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1955
1956 return(0);
1957 }
1958
1959 void
1960 sk_start(struct ifnet *ifp)
1961 {
1962 struct sk_if_softc *sc_if = ifp->if_softc;
1963 struct sk_softc *sc = sc_if->sk_softc;
1964 struct mbuf *m_head = NULL;
1965 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1966 int pkts = 0;
1967
1968 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1969 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1970
1971 while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1972
1973 IFQ_POLL(&ifp->if_snd, m_head);
1974 if (m_head == NULL)
1975 break;
1976
1977 /*
1978 * Pack the data into the transmit ring. If we
1979 * don't have room, set the OACTIVE flag and wait
1980 * for the NIC to drain the ring.
1981 */
1982 if (sk_encap(sc_if, m_head, &idx)) {
1983 ifp->if_flags |= IFF_OACTIVE;
1984 break;
1985 }
1986
1987 /* now we are committed to transmit the packet */
1988 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1989 pkts++;
1990
1991 /*
1992 * If there's a BPF listener, bounce a copy of this frame
1993 * to him.
1994 */
1995 #if NBPFILTER > 0
1996 if (ifp->if_bpf)
1997 bpf_mtap(ifp->if_bpf, m_head);
1998 #endif
1999 }
2000 if (pkts == 0)
2001 return;
2002
2003 /* Transmit */
2004 if (idx != sc_if->sk_cdata.sk_tx_prod) {
2005 sc_if->sk_cdata.sk_tx_prod = idx;
2006 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2007
2008 /* Set a timeout in case the chip goes out to lunch. */
2009 ifp->if_timer = 5;
2010 }
2011 }
2012
2013
2014 void
2015 sk_watchdog(struct ifnet *ifp)
2016 {
2017 struct sk_if_softc *sc_if = ifp->if_softc;
2018
2019 printf("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
2020 (void) sk_init(ifp);
2021 }
2022
2023 void
2024 sk_shutdown(void * v)
2025 {
2026 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
2027 struct sk_softc *sc = sc_if->sk_softc;
2028 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2029
2030 DPRINTFN(2, ("sk_shutdown\n"));
2031 sk_stop(ifp,1);
2032
2033 /* Turn off the 'driver is loaded' LED. */
2034 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2035
2036 /*
2037 * Reset the GEnesis controller. Doing this should also
2038 * assert the resets on the attached XMAC(s).
2039 */
2040 sk_reset(sc);
2041 }
2042
2043 void
2044 sk_rxeof(struct sk_if_softc *sc_if)
2045 {
2046 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2047 struct mbuf *m;
2048 struct sk_chain *cur_rx;
2049 struct sk_rx_desc *cur_desc;
2050 int i, cur, total_len = 0;
2051 u_int32_t rxstat, sk_ctl;
2052 bus_dmamap_t dmamap;
2053
2054 i = sc_if->sk_cdata.sk_rx_prod;
2055
2056 DPRINTFN(3, ("sk_rxeof %d\n", i));
2057
2058 for (;;) {
2059 cur = i;
2060
2061 /* Sync the descriptor */
2062 SK_CDRXSYNC(sc_if, cur,
2063 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2064
2065 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2066 if (sk_ctl & SK_RXCTL_OWN) {
2067 /* Invalidate the descriptor -- it's not ready yet */
2068 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2069 sc_if->sk_cdata.sk_rx_prod = i;
2070 break;
2071 }
2072
2073 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2074 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2075 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2076
2077 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2078 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2079
2080 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2081 m = cur_rx->sk_mbuf;
2082 cur_rx->sk_mbuf = NULL;
2083 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2084
2085 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2086
2087 SK_INC(i, SK_RX_RING_CNT);
2088
2089 if (rxstat & XM_RXSTAT_ERRFRAME) {
2090 ifp->if_ierrors++;
2091 sk_newbuf(sc_if, cur, m, dmamap);
2092 continue;
2093 }
2094
2095 /*
2096 * Try to allocate a new jumbo buffer. If that
2097 * fails, copy the packet to mbufs and put the
2098 * jumbo buffer back in the ring so it can be
2099 * re-used. If allocating mbufs fails, then we
2100 * have to drop the packet.
2101 */
2102 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2103 struct mbuf *m0;
2104 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2105 total_len + ETHER_ALIGN, 0, ifp, NULL);
2106 sk_newbuf(sc_if, cur, m, dmamap);
2107 if (m0 == NULL) {
2108 printf("%s: no receive buffers "
2109 "available -- packet dropped!\n",
2110 sc_if->sk_dev.dv_xname);
2111 ifp->if_ierrors++;
2112 continue;
2113 }
2114 m_adj(m0, ETHER_ALIGN);
2115 m = m0;
2116 } else {
2117 m->m_pkthdr.rcvif = ifp;
2118 m->m_pkthdr.len = m->m_len = total_len;
2119 }
2120
2121 ifp->if_ipackets++;
2122
2123 #if NBPFILTER > 0
2124 if (ifp->if_bpf)
2125 bpf_mtap(ifp->if_bpf, m);
2126 #endif
2127 /* pass it on. */
2128 (*ifp->if_input)(ifp, m);
2129 }
2130 }
2131
2132 void
2133 sk_txeof(struct sk_if_softc *sc_if)
2134 {
2135 struct sk_softc *sc = sc_if->sk_softc;
2136 struct sk_tx_desc *cur_tx;
2137 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2138 u_int32_t idx, sk_ctl;
2139 struct sk_txmap_entry *entry;
2140
2141 DPRINTFN(3, ("sk_txeof\n"));
2142
2143 /*
2144 * Go through our tx ring and free mbufs for those
2145 * frames that have been sent.
2146 */
2147 idx = sc_if->sk_cdata.sk_tx_cons;
2148 while(idx != sc_if->sk_cdata.sk_tx_prod) {
2149 SK_CDTXSYNC(sc_if, idx, 1,
2150 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2151
2152 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2153 sk_ctl = le32toh(cur_tx->sk_ctl);
2154 #ifdef SK_DEBUG
2155 if (skdebug >= 3)
2156 sk_dump_txdesc(cur_tx, idx);
2157 #endif
2158 if (sk_ctl & SK_TXCTL_OWN) {
2159 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2160 break;
2161 }
2162 if (sk_ctl & SK_TXCTL_LASTFRAG)
2163 ifp->if_opackets++;
2164 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2165 entry = sc_if->sk_cdata.sk_tx_map[idx];
2166
2167 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2168 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2169
2170 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2171 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2172
2173 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2174 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2175 link);
2176 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2177 }
2178 sc_if->sk_cdata.sk_tx_cnt--;
2179 SK_INC(idx, SK_TX_RING_CNT);
2180 }
2181 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2182 ifp->if_timer = 0;
2183 else /* nudge chip to keep tx ring moving */
2184 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2185
2186 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2187 ifp->if_flags &= ~IFF_OACTIVE;
2188
2189 sc_if->sk_cdata.sk_tx_cons = idx;
2190 }
2191
2192 void
2193 sk_tick(void *xsc_if)
2194 {
2195 struct sk_if_softc *sc_if = xsc_if;
2196 struct mii_data *mii = &sc_if->sk_mii;
2197 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2198 int i;
2199
2200 DPRINTFN(3, ("sk_tick\n"));
2201
2202 if (!(ifp->if_flags & IFF_UP))
2203 return;
2204
2205 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2206 sk_intr_bcom(sc_if);
2207 return;
2208 }
2209
2210 /*
2211 * According to SysKonnect, the correct way to verify that
2212 * the link has come back up is to poll bit 0 of the GPIO
2213 * register three times. This pin has the signal from the
2214 * link sync pin connected to it; if we read the same link
2215 * state 3 times in a row, we know the link is up.
2216 */
2217 for (i = 0; i < 3; i++) {
2218 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2219 break;
2220 }
2221
2222 if (i != 3) {
2223 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2224 return;
2225 }
2226
2227 /* Turn the GP0 interrupt back on. */
2228 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2229 SK_XM_READ_2(sc_if, XM_ISR);
2230 mii_tick(mii);
2231 mii_pollstat(mii);
2232 callout_stop(&sc_if->sk_tick_ch);
2233 }
2234
2235 void
2236 sk_intr_bcom(struct sk_if_softc *sc_if)
2237 {
2238 struct mii_data *mii = &sc_if->sk_mii;
2239 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2240 int status;
2241
2242
2243 DPRINTFN(3, ("sk_intr_bcom\n"));
2244
2245 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2246
2247 /*
2248 * Read the PHY interrupt register to make sure
2249 * we clear any pending interrupts.
2250 */
2251 status = sk_xmac_miibus_readreg((struct device *)sc_if,
2252 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2253
2254 if (!(ifp->if_flags & IFF_RUNNING)) {
2255 sk_init_xmac(sc_if);
2256 return;
2257 }
2258
2259 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2260 int lstat;
2261 lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
2262 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2263
2264 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2265 mii_mediachg(mii);
2266 /* Turn off the link LED. */
2267 SK_IF_WRITE_1(sc_if, 0,
2268 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2269 sc_if->sk_link = 0;
2270 } else if (status & BRGPHY_ISR_LNK_CHG) {
2271 sk_xmac_miibus_writereg((struct device *)sc_if,
2272 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2273 mii_tick(mii);
2274 sc_if->sk_link = 1;
2275 /* Turn on the link LED. */
2276 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2277 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2278 SK_LINKLED_BLINK_OFF);
2279 mii_pollstat(mii);
2280 } else {
2281 mii_tick(mii);
2282 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2283 }
2284 }
2285
2286 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2287 }
2288
2289 void
2290 sk_intr_xmac(struct sk_if_softc *sc_if)
2291 {
2292 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2293
2294 DPRINTFN(3, ("sk_intr_xmac\n"));
2295
2296 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2297 if (status & XM_ISR_GP0_SET) {
2298 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2299 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2300 }
2301
2302 if (status & XM_ISR_AUTONEG_DONE) {
2303 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2304 }
2305 }
2306
2307 if (status & XM_IMR_TX_UNDERRUN)
2308 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2309
2310 if (status & XM_IMR_RX_OVERRUN)
2311 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2312 }
2313
2314 void
2315 sk_intr_yukon(sc_if)
2316 struct sk_if_softc *sc_if;
2317 {
2318 int status;
2319
2320 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2321
2322 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2323 }
2324
2325 int
2326 sk_intr(void *xsc)
2327 {
2328 struct sk_softc *sc = xsc;
2329 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2330 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2331 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2332 u_int32_t status;
2333 int claimed = 0;
2334
2335 if (sc_if0 != NULL)
2336 ifp0 = &sc_if0->sk_ethercom.ec_if;
2337 if (sc_if1 != NULL)
2338 ifp1 = &sc_if1->sk_ethercom.ec_if;
2339
2340 for (;;) {
2341 status = CSR_READ_4(sc, SK_ISSR);
2342 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2343
2344 if (!(status & sc->sk_intrmask))
2345 break;
2346
2347 claimed = 1;
2348
2349 /* Handle receive interrupts first. */
2350 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2351 sk_rxeof(sc_if0);
2352 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2353 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2354 }
2355 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2356 sk_rxeof(sc_if1);
2357 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2358 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2359 }
2360
2361 /* Then transmit interrupts. */
2362 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2363 sk_txeof(sc_if0);
2364 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2365 SK_TXBMU_CLR_IRQ_EOF);
2366 }
2367 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2368 sk_txeof(sc_if1);
2369 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2370 SK_TXBMU_CLR_IRQ_EOF);
2371 }
2372
2373 /* Then MAC interrupts. */
2374 if (sc_if0 && (status & SK_ISR_MAC1) &&
2375 (ifp0->if_flags & IFF_RUNNING)) {
2376 if (sc->sk_type == SK_GENESIS)
2377 sk_intr_xmac(sc_if0);
2378 else
2379 sk_intr_yukon(sc_if0);
2380 }
2381
2382 if (sc_if1 && (status & SK_ISR_MAC2) &&
2383 (ifp1->if_flags & IFF_RUNNING)) {
2384 if (sc->sk_type == SK_GENESIS)
2385 sk_intr_xmac(sc_if1);
2386 else
2387 sk_intr_yukon(sc_if1);
2388
2389 }
2390
2391 if (status & SK_ISR_EXTERNAL_REG) {
2392 if (sc_if0 != NULL &&
2393 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2394 sk_intr_bcom(sc_if0);
2395
2396 if (sc_if1 != NULL &&
2397 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2398 sk_intr_bcom(sc_if1);
2399 }
2400 }
2401
2402 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2403
2404 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2405 sk_start(ifp0);
2406 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2407 sk_start(ifp1);
2408
2409 #if NRND > 0
2410 if (RND_ENABLED(&sc->rnd_source))
2411 rnd_add_uint32(&sc->rnd_source, status);
2412 #endif
2413
2414 if (sc->sk_int_mod_pending)
2415 sk_update_int_mod(sc);
2416
2417 return (claimed);
2418 }
2419
2420 void
2421 sk_init_xmac(struct sk_if_softc *sc_if)
2422 {
2423 struct sk_softc *sc = sc_if->sk_softc;
2424 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2425 static const struct sk_bcom_hack bhack[] = {
2426 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2427 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2428 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2429 { 0, 0 } };
2430
2431 DPRINTFN(1, ("sk_init_xmac\n"));
2432
2433 /* Unreset the XMAC. */
2434 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2435 DELAY(1000);
2436
2437 /* Reset the XMAC's internal state. */
2438 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2439
2440 /* Save the XMAC II revision */
2441 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2442
2443 /*
2444 * Perform additional initialization for external PHYs,
2445 * namely for the 1000baseTX cards that use the XMAC's
2446 * GMII mode.
2447 */
2448 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2449 int i = 0;
2450 u_int32_t val;
2451
2452 /* Take PHY out of reset. */
2453 val = sk_win_read_4(sc, SK_GPIO);
2454 if (sc_if->sk_port == SK_PORT_A)
2455 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2456 else
2457 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2458 sk_win_write_4(sc, SK_GPIO, val);
2459
2460 /* Enable GMII mode on the XMAC. */
2461 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2462
2463 sk_xmac_miibus_writereg((struct device *)sc_if,
2464 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2465 DELAY(10000);
2466 sk_xmac_miibus_writereg((struct device *)sc_if,
2467 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2468
2469 /*
2470 * Early versions of the BCM5400 apparently have
2471 * a bug that requires them to have their reserved
2472 * registers initialized to some magic values. I don't
2473 * know what the numbers do, I'm just the messenger.
2474 */
2475 if (sk_xmac_miibus_readreg((struct device *)sc_if,
2476 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2477 while(bhack[i].reg) {
2478 sk_xmac_miibus_writereg((struct device *)sc_if,
2479 SK_PHYADDR_BCOM, bhack[i].reg,
2480 bhack[i].val);
2481 i++;
2482 }
2483 }
2484 }
2485
2486 /* Set station address */
2487 SK_XM_WRITE_2(sc_if, XM_PAR0,
2488 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2489 SK_XM_WRITE_2(sc_if, XM_PAR1,
2490 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2491 SK_XM_WRITE_2(sc_if, XM_PAR2,
2492 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2493 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2494
2495 if (ifp->if_flags & IFF_PROMISC) {
2496 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2497 } else {
2498 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2499 }
2500
2501 if (ifp->if_flags & IFF_BROADCAST) {
2502 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2503 } else {
2504 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2505 }
2506
2507 /* We don't need the FCS appended to the packet. */
2508 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2509
2510 /* We want short frames padded to 60 bytes. */
2511 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2512
2513 /*
2514 * Enable the reception of all error frames. This is is
2515 * a necessary evil due to the design of the XMAC. The
2516 * XMAC's receive FIFO is only 8K in size, however jumbo
2517 * frames can be up to 9000 bytes in length. When bad
2518 * frame filtering is enabled, the XMAC's RX FIFO operates
2519 * in 'store and forward' mode. For this to work, the
2520 * entire frame has to fit into the FIFO, but that means
2521 * that jumbo frames larger than 8192 bytes will be
2522 * truncated. Disabling all bad frame filtering causes
2523 * the RX FIFO to operate in streaming mode, in which
2524 * case the XMAC will start transfering frames out of the
2525 * RX FIFO as soon as the FIFO threshold is reached.
2526 */
2527 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2528 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2529 XM_MODE_RX_INRANGELEN);
2530
2531 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2532 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2533 else
2534 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2535
2536 /*
2537 * Bump up the transmit threshold. This helps hold off transmit
2538 * underruns when we're blasting traffic from both ports at once.
2539 */
2540 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2541
2542 /* Set multicast filter */
2543 sk_setmulti(sc_if);
2544
2545 /* Clear and enable interrupts */
2546 SK_XM_READ_2(sc_if, XM_ISR);
2547 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2548 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2549 else
2550 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2551
2552 /* Configure MAC arbiter */
2553 switch(sc_if->sk_xmac_rev) {
2554 case XM_XMAC_REV_B2:
2555 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2556 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2557 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2558 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2559 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2560 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2561 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2562 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2563 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2564 break;
2565 case XM_XMAC_REV_C1:
2566 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2567 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2568 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2569 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2570 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2571 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2572 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2573 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2574 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2575 break;
2576 default:
2577 break;
2578 }
2579 sk_win_write_2(sc, SK_MACARB_CTL,
2580 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2581
2582 sc_if->sk_link = 1;
2583 }
2584
2585 void sk_init_yukon(sc_if)
2586 struct sk_if_softc *sc_if;
2587 {
2588 u_int32_t /*mac, */phy;
2589 u_int16_t reg;
2590 struct sk_softc *sc;
2591 int i;
2592
2593 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2594 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2595
2596 sc = sc_if->sk_softc;
2597 if (sc->sk_type == SK_YUKON_LITE &&
2598 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2599 /* Take PHY out of reset. */
2600 sk_win_write_4(sc, SK_GPIO,
2601 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2602 }
2603
2604
2605 /* GMAC and GPHY Reset */
2606 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2607
2608 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2609
2610 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2611 DELAY(1000);
2612 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2613 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2614 DELAY(1000);
2615
2616
2617 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2618
2619 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2620 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2621
2622 switch(sc_if->sk_softc->sk_pmd) {
2623 case IFM_1000_SX:
2624 case IFM_1000_LX:
2625 phy |= SK_GPHY_FIBER;
2626 break;
2627
2628 case IFM_1000_CX:
2629 case IFM_1000_T:
2630 phy |= SK_GPHY_COPPER;
2631 break;
2632 }
2633
2634 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2635
2636 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2637 DELAY(1000);
2638 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2639 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2640 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2641
2642 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2643 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2644
2645 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2646
2647 /* unused read of the interrupt source register */
2648 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2649 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2650
2651 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2652 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2653 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2654
2655 /* MIB Counter Clear Mode set */
2656 reg |= YU_PAR_MIB_CLR;
2657 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2658 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2659 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2660
2661 /* MIB Counter Clear Mode clear */
2662 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2663 reg &= ~YU_PAR_MIB_CLR;
2664 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2665
2666 /* receive control reg */
2667 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2668 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2669 YU_RCR_CRCR);
2670
2671 /* transmit parameter register */
2672 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2673 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2674 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2675
2676 /* serial mode register */
2677 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2678 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2679 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2680 YU_SMR_IPG_DATA(0x1e));
2681
2682 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2683 /* Setup Yukon's address */
2684 for (i = 0; i < 3; i++) {
2685 /* Write Source Address 1 (unicast filter) */
2686 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2687 sc_if->sk_enaddr[i * 2] |
2688 sc_if->sk_enaddr[i * 2 + 1] << 8);
2689 }
2690
2691 for (i = 0; i < 3; i++) {
2692 reg = sk_win_read_2(sc_if->sk_softc,
2693 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2694 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2695 }
2696
2697 /* Set multicast filter */
2698 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2699 sk_setmulti(sc_if);
2700
2701 /* enable interrupt mask for counter overflows */
2702 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2703 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2704 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2705 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2706
2707 /* Configure RX MAC FIFO */
2708 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2709 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2710
2711 /* Configure TX MAC FIFO */
2712 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2713 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2714
2715 DPRINTFN(6, ("sk_init_yukon: end\n"));
2716 }
2717
2718 /*
2719 * Note that to properly initialize any part of the GEnesis chip,
2720 * you first have to take it out of reset mode.
2721 */
2722 int
2723 sk_init(struct ifnet *ifp)
2724 {
2725 struct sk_if_softc *sc_if = ifp->if_softc;
2726 struct sk_softc *sc = sc_if->sk_softc;
2727 struct mii_data *mii = &sc_if->sk_mii;
2728 int s;
2729 u_int32_t imr, sk_imtimer_ticks;
2730
2731 DPRINTFN(1, ("sk_init\n"));
2732
2733 s = splnet();
2734
2735 if (ifp->if_flags & IFF_RUNNING) {
2736 splx(s);
2737 return 0;
2738 }
2739
2740 /* Cancel pending I/O and free all RX/TX buffers. */
2741 sk_stop(ifp,0);
2742
2743 if (sc->sk_type == SK_GENESIS) {
2744 /* Configure LINK_SYNC LED */
2745 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2746 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2747 SK_LINKLED_LINKSYNC_ON);
2748
2749 /* Configure RX LED */
2750 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2751 SK_RXLEDCTL_COUNTER_START);
2752
2753 /* Configure TX LED */
2754 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2755 SK_TXLEDCTL_COUNTER_START);
2756 }
2757
2758 /* Configure I2C registers */
2759
2760 /* Configure XMAC(s) */
2761 switch (sc->sk_type) {
2762 case SK_GENESIS:
2763 sk_init_xmac(sc_if);
2764 break;
2765 case SK_YUKON:
2766 case SK_YUKON_LITE:
2767 case SK_YUKON_LP:
2768 sk_init_yukon(sc_if);
2769 break;
2770 }
2771 mii_mediachg(mii);
2772
2773 if (sc->sk_type == SK_GENESIS) {
2774 /* Configure MAC FIFOs */
2775 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2776 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2777 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2778
2779 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2780 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2781 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2782 }
2783
2784 /* Configure transmit arbiter(s) */
2785 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2786 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2787
2788 /* Configure RAMbuffers */
2789 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2790 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2791 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2792 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2793 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2794 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2795
2796 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2797 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2798 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2799 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2800 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2801 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2802 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2803
2804 /* Configure BMUs */
2805 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2806 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2807 SK_RX_RING_ADDR(sc_if, 0));
2808 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2809
2810 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2811 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2812 SK_TX_RING_ADDR(sc_if, 0));
2813 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2814
2815 /* Init descriptors */
2816 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2817 printf("%s: initialization failed: no "
2818 "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2819 sk_stop(ifp,0);
2820 splx(s);
2821 return(ENOBUFS);
2822 }
2823
2824 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2825 printf("%s: initialization failed: no "
2826 "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2827 sk_stop(ifp,0);
2828 splx(s);
2829 return(ENOBUFS);
2830 }
2831
2832 /* Set interrupt moderation if changed via sysctl. */
2833 switch (sc->sk_type) {
2834 case SK_GENESIS:
2835 sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2836 break;
2837 case SK_YUKON_EC:
2838 sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2839 break;
2840 default:
2841 sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2842 }
2843 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2844 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2845 sk_win_write_4(sc, SK_IMTIMERINIT,
2846 SK_IM_USECS(sc->sk_int_mod));
2847 aprint_verbose("%s: interrupt moderation is %d us\n",
2848 sc->sk_dev.dv_xname, sc->sk_int_mod);
2849 }
2850
2851 /* Configure interrupt handling */
2852 CSR_READ_4(sc, SK_ISSR);
2853 if (sc_if->sk_port == SK_PORT_A)
2854 sc->sk_intrmask |= SK_INTRS1;
2855 else
2856 sc->sk_intrmask |= SK_INTRS2;
2857
2858 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2859
2860 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2861
2862 /* Start BMUs. */
2863 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2864
2865 if (sc->sk_type == SK_GENESIS) {
2866 /* Enable XMACs TX and RX state machines */
2867 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2868 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2869 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2870 }
2871
2872 if (SK_YUKON_FAMILY(sc->sk_type)) {
2873 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2874 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2875 reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2876 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2877 }
2878
2879
2880 ifp->if_flags |= IFF_RUNNING;
2881 ifp->if_flags &= ~IFF_OACTIVE;
2882
2883 splx(s);
2884 return(0);
2885 }
2886
2887 void
2888 sk_stop(struct ifnet *ifp, int disable)
2889 {
2890 struct sk_if_softc *sc_if = ifp->if_softc;
2891 struct sk_softc *sc = sc_if->sk_softc;
2892 //struct sk_txmap_entry *dma;
2893 int i;
2894
2895 DPRINTFN(1, ("sk_stop\n"));
2896
2897 callout_stop(&sc_if->sk_tick_ch);
2898
2899 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2900 u_int32_t val;
2901
2902 /* Put PHY back into reset. */
2903 val = sk_win_read_4(sc, SK_GPIO);
2904 if (sc_if->sk_port == SK_PORT_A) {
2905 val |= SK_GPIO_DIR0;
2906 val &= ~SK_GPIO_DAT0;
2907 } else {
2908 val |= SK_GPIO_DIR2;
2909 val &= ~SK_GPIO_DAT2;
2910 }
2911 sk_win_write_4(sc, SK_GPIO, val);
2912 }
2913
2914 /* Turn off various components of this interface. */
2915 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2916 switch (sc->sk_type) {
2917 case SK_GENESIS:
2918 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2919 SK_TXMACCTL_XMAC_RESET);
2920 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2921 break;
2922 case SK_YUKON:
2923 case SK_YUKON_LITE:
2924 case SK_YUKON_LP:
2925 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2926 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2927 break;
2928 }
2929 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2930 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2931 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2932 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2933 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2934 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2935 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2936 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2937 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2938
2939 /* Disable interrupts */
2940 if (sc_if->sk_port == SK_PORT_A)
2941 sc->sk_intrmask &= ~SK_INTRS1;
2942 else
2943 sc->sk_intrmask &= ~SK_INTRS2;
2944 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2945
2946 SK_XM_READ_2(sc_if, XM_ISR);
2947 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2948
2949 /* Free RX and TX mbufs still in the queues. */
2950 for (i = 0; i < SK_RX_RING_CNT; i++) {
2951 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2952 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2953 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2954 }
2955 }
2956
2957 for (i = 0; i < SK_TX_RING_CNT; i++) {
2958 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2959 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2960 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2961 }
2962 }
2963
2964 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2965 }
2966
2967 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2968
2969 /*
2970 struct cfdriver skc_cd = {
2971 0, "skc", DV_DULL
2972 };
2973 */
2974
2975 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2976
2977 /*
2978 struct cfdriver sk_cd = {
2979 0, "sk", DV_IFNET
2980 };
2981 */
2982
2983 #ifdef SK_DEBUG
2984 void
2985 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2986 {
2987 #define DESC_PRINT(X) \
2988 if (X) \
2989 printf("txdesc[%d]." #X "=%#x\n", \
2990 idx, X);
2991
2992 DESC_PRINT(le32toh(desc->sk_ctl));
2993 DESC_PRINT(le32toh(desc->sk_next));
2994 DESC_PRINT(le32toh(desc->sk_data_lo));
2995 DESC_PRINT(le32toh(desc->sk_data_hi));
2996 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2997 DESC_PRINT(le16toh(desc->sk_rsvd0));
2998 DESC_PRINT(le16toh(desc->sk_csum_startval));
2999 DESC_PRINT(le16toh(desc->sk_csum_startpos));
3000 DESC_PRINT(le16toh(desc->sk_csum_writepos));
3001 DESC_PRINT(le16toh(desc->sk_rsvd1));
3002 #undef PRINT
3003 }
3004
3005 void
3006 sk_dump_bytes(const char *data, int len)
3007 {
3008 int c, i, j;
3009
3010 for (i = 0; i < len; i += 16) {
3011 printf("%08x ", i);
3012 c = len - i;
3013 if (c > 16) c = 16;
3014
3015 for (j = 0; j < c; j++) {
3016 printf("%02x ", data[i + j] & 0xff);
3017 if ((j & 0xf) == 7 && j > 0)
3018 printf(" ");
3019 }
3020
3021 for (; j < 16; j++)
3022 printf(" ");
3023 printf(" ");
3024
3025 for (j = 0; j < c; j++) {
3026 int ch = data[i + j] & 0xff;
3027 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
3028 }
3029
3030 printf("\n");
3031
3032 if (c < 16)
3033 break;
3034 }
3035 }
3036
3037 void
3038 sk_dump_mbuf(struct mbuf *m)
3039 {
3040 int count = m->m_pkthdr.len;
3041
3042 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3043
3044 while (count > 0 && m) {
3045 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3046 m, m->m_data, m->m_len);
3047 sk_dump_bytes(mtod(m, char *), m->m_len);
3048
3049 count -= m->m_len;
3050 m = m->m_next;
3051 }
3052 }
3053 #endif
3054
3055 static int
3056 sk_sysctl_handler(SYSCTLFN_ARGS)
3057 {
3058 int error, t;
3059 struct sysctlnode node;
3060 struct sk_softc *sc;
3061
3062 node = *rnode;
3063 sc = node.sysctl_data;
3064 t = sc->sk_int_mod;
3065 node.sysctl_data = &t;
3066 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3067 if (error || newp == NULL)
3068 return (error);
3069
3070 if (t < SK_IM_MIN || t > SK_IM_MAX)
3071 return (EINVAL);
3072
3073 /* update the softc with sysctl-changed value, and mark
3074 for hardware update */
3075 sc->sk_int_mod = t;
3076 sc->sk_int_mod_pending = 1;
3077 return (0);
3078 }
3079
3080 /*
3081 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3082 * set up in skc_attach()
3083 */
3084 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3085 {
3086 int rc;
3087 const struct sysctlnode *node;
3088
3089 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3090 0, CTLTYPE_NODE, "hw", NULL,
3091 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3092 goto err;
3093 }
3094
3095 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3096 0, CTLTYPE_NODE, "sk",
3097 SYSCTL_DESCR("sk interface controls"),
3098 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3099 goto err;
3100 }
3101
3102 sk_root_num = node->sysctl_num;
3103 return;
3104
3105 err:
3106 printf("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3107 }
3108