if_sk.c revision 1.3 1 /* $NetBSD: if_sk.c,v 1.3 2003/10/15 02:18:52 briggs Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the NetBSD
18 * Foundation, Inc. and its contributors.
19 * 4. Neither the name of The NetBSD Foundation nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /* $OpenBSD: if_sk.c,v 1.33 2003/08/12 05:23:06 nate Exp $ */
37
38 /*
39 * Copyright (c) 1997, 1998, 1999, 2000
40 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Bill Paul.
53 * 4. Neither the name of the author nor the names of any co-contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67 * THE POSSIBILITY OF SUCH DAMAGE.
68 *
69 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70 */
71
72 /*
73 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
74 *
75 * Permission to use, copy, modify, and distribute this software for any
76 * purpose with or without fee is hereby granted, provided that the above
77 * copyright notice and this permission notice appear in all copies.
78 *
79 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86 */
87
88 /*
89 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90 * the SK-984x series adapters, both single port and dual port.
91 * References:
92 * The XaQti XMAC II datasheet,
93 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 * The SysKonnect GEnesis manual, http://www.syskonnect.com
95 *
96 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98 * convenience to others until Vitesse corrects this problem:
99 *
100 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101 *
102 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
103 * Department of Electrical Engineering
104 * Columbia University, New York City
105 */
106
107 /*
108 * The SysKonnect gigabit ethernet adapters consist of two main
109 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111 * components and a PHY while the GEnesis controller provides a PCI
112 * interface with DMA support. Each card may have between 512K and
113 * 2MB of SRAM on board depending on the configuration.
114 *
115 * The SysKonnect GEnesis controller can have either one or two XMAC
116 * chips connected to it, allowing single or dual port NIC configurations.
117 * SysKonnect has the distinction of being the only vendor on the market
118 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120 * XMAC registers. This driver takes advantage of these features to allow
121 * both XMACs to operate as independent interfaces.
122 */
123
124 #include "bpfilter.h"
125
126 #include <sys/param.h>
127 #include <sys/systm.h>
128 #include <sys/sockio.h>
129 #include <sys/mbuf.h>
130 #include <sys/malloc.h>
131 #include <sys/kernel.h>
132 #include <sys/socket.h>
133 #include <sys/device.h>
134 #include <sys/queue.h>
135 #include <sys/callout.h>
136
137 #include <net/if.h>
138 #include <net/if_dl.h>
139 #include <net/if_types.h>
140
141 #ifdef INET
142 #include <netinet/in.h>
143 #include <netinet/in_systm.h>
144 #include <netinet/in_var.h>
145 #include <netinet/ip.h>
146 #include <netinet/if_ether.h>
147 #endif
148
149 #include <net/if_media.h>
150
151 #if NBPFILTER > 0
152 #include <net/bpf.h>
153 #endif
154
155 #include <dev/mii/mii.h>
156 #include <dev/mii/miivar.h>
157 #include <dev/mii/brgphyreg.h>
158
159 #include <dev/pci/pcireg.h>
160 #include <dev/pci/pcivar.h>
161 #include <dev/pci/pcidevs.h>
162
163 #define SK_VERBOSE
164 /* #define SK_USEIOSPACE */
165
166 #include <dev/pci/if_skreg.h>
167 #include <dev/pci/if_skvar.h>
168
169 int skc_probe(struct device *, struct cfdata *, void *);
170 void skc_attach(struct device *, struct device *self, void *aux);
171 int sk_probe(struct device *, struct cfdata *, void *);
172 void sk_attach(struct device *, struct device *self, void *aux);
173 int skcprint(void *, const char *);
174 int sk_intr(void *);
175 void sk_intr_bcom(struct sk_if_softc *);
176 void sk_intr_xmac(struct sk_if_softc *);
177 void sk_intr_yukon(struct sk_if_softc *);
178 void sk_rxeof(struct sk_if_softc *);
179 void sk_txeof(struct sk_if_softc *);
180 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
181 void sk_start(struct ifnet *);
182 int sk_ioctl(struct ifnet *, u_long, caddr_t);
183 int sk_init(struct ifnet *);
184 void sk_init_xmac(struct sk_if_softc *);
185 void sk_init_yukon(struct sk_if_softc *);
186 void sk_stop(struct ifnet *, int);
187 void sk_watchdog(struct ifnet *);
188 void sk_shutdown(void *);
189 int sk_ifmedia_upd(struct ifnet *);
190 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
191 void sk_reset(struct sk_softc *);
192 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
193 int sk_init_rx_ring(struct sk_if_softc *);
194 int sk_init_tx_ring(struct sk_if_softc *);
195 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
196 void sk_vpd_read_res(struct sk_softc *,
197 struct vpd_res *, int);
198 void sk_vpd_read(struct sk_softc *);
199
200 int sk_xmac_miibus_readreg(struct device *, int, int);
201 void sk_xmac_miibus_writereg(struct device *, int, int, int);
202 void sk_xmac_miibus_statchg(struct device *);
203
204 int sk_marv_miibus_readreg(struct device *, int, int);
205 void sk_marv_miibus_writereg(struct device *, int, int, int);
206 void sk_marv_miibus_statchg(struct device *);
207
208 u_int32_t sk_calchash(caddr_t);
209 void sk_setfilt(struct sk_if_softc *, caddr_t, int);
210 void sk_setmulti(struct sk_if_softc *);
211 void sk_tick(void *);
212
213 /* #define SK_DEBUG 2 */
214 #ifdef SK_DEBUG
215 #define DPRINTF(x) if (skdebug) printf x
216 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
217 int skdebug = SK_DEBUG;
218
219 void sk_dump_txdesc(struct sk_tx_desc *, int);
220 void sk_dump_mbuf(struct mbuf *);
221 void sk_dump_bytes(const char *, int);
222 #else
223 #define DPRINTF(x)
224 #define DPRINTFN(n,x)
225 #endif
226
227 #define SK_SETBIT(sc, reg, x) \
228 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
229
230 #define SK_CLRBIT(sc, reg, x) \
231 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
232
233 #define SK_WIN_SETBIT_4(sc, reg, x) \
234 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
235
236 #define SK_WIN_CLRBIT_4(sc, reg, x) \
237 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
238
239 #define SK_WIN_SETBIT_2(sc, reg, x) \
240 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
241
242 #define SK_WIN_CLRBIT_2(sc, reg, x) \
243 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
244
245 /* supported device vendors */
246 static const struct sk_product {
247 pci_vendor_id_t sk_vendor;
248 pci_product_id_t sk_product;
249 } sk_products[] = {
250 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
251 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
252 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
253 { 0, 0, }
254 };
255
256 static inline u_int32_t
257 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
258 {
259 #ifdef SK_USEIOSPACE
260 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
261 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
262 #else
263 return CSR_READ_4(sc, reg);
264 #endif
265 }
266
267 static inline u_int16_t
268 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
269 {
270 #ifdef SK_USEIOSPACE
271 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
272 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
273 #else
274 return CSR_READ_2(sc, reg);
275 #endif
276 }
277
278 static inline u_int8_t
279 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
280 {
281 #ifdef SK_USEIOSPACE
282 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
283 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
284 #else
285 return CSR_READ_1(sc, reg);
286 #endif
287 }
288
289 static inline void
290 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
291 {
292 #ifdef SK_USEIOSPACE
293 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
294 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
295 #else
296 CSR_WRITE_4(sc, reg, x);
297 #endif
298 }
299
300 static inline void
301 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
302 {
303 #ifdef SK_USEIOSPACE
304 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
305 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
306 #else
307 CSR_WRITE_2(sc, reg, x);
308 #endif
309 }
310
311 static inline void
312 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
313 {
314 #ifdef SK_USEIOSPACE
315 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
316 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
317 #else
318 CSR_WRITE_1(sc, reg, x);
319 #endif
320 }
321
322 /*
323 * The VPD EEPROM contains Vital Product Data, as suggested in
324 * the PCI 2.1 specification. The VPD data is separared into areas
325 * denoted by resource IDs. The SysKonnect VPD contains an ID string
326 * resource (the name of the adapter), a read-only area resource
327 * containing various key/data fields and a read/write area which
328 * can be used to store asset management information or log messages.
329 * We read the ID string and read-only into buffers attached to
330 * the controller softc structure for later use. At the moment,
331 * we only use the ID string during sk_attach().
332 */
333 u_int8_t
334 sk_vpd_readbyte(struct sk_softc *sc, int addr)
335 {
336 int i;
337
338 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
339 for (i = 0; i < SK_TIMEOUT; i++) {
340 DELAY(1);
341 if (sk_win_read_2(sc,
342 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
343 break;
344 }
345
346 if (i == SK_TIMEOUT)
347 return(0);
348
349 return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
350 }
351
352 void
353 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
354 {
355 int i;
356 u_int8_t *ptr;
357
358 ptr = (u_int8_t *)res;
359 for (i = 0; i < sizeof(struct vpd_res); i++)
360 ptr[i] = sk_vpd_readbyte(sc, i + addr);
361 }
362
363 void
364 sk_vpd_read(struct sk_softc *sc)
365 {
366 int pos = 0, i;
367 struct vpd_res res;
368
369 if (sc->sk_vpd_prodname != NULL)
370 free(sc->sk_vpd_prodname, M_DEVBUF);
371 if (sc->sk_vpd_readonly != NULL)
372 free(sc->sk_vpd_readonly, M_DEVBUF);
373 sc->sk_vpd_prodname = NULL;
374 sc->sk_vpd_readonly = NULL;
375
376 sk_vpd_read_res(sc, &res, pos);
377
378 if (res.vr_id != VPD_RES_ID) {
379 printf("%s: bad VPD resource id: expected %x got %x\n",
380 sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
381 return;
382 }
383
384 pos += sizeof(res);
385 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
386 if (sc->sk_vpd_prodname == NULL)
387 panic("sk_vpd_read");
388 for (i = 0; i < res.vr_len; i++)
389 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
390 sc->sk_vpd_prodname[i] = '\0';
391 pos += i;
392
393 sk_vpd_read_res(sc, &res, pos);
394
395 if (res.vr_id != VPD_RES_READ) {
396 printf("%s: bad VPD resource id: expected %x got %x\n",
397 sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
398 return;
399 }
400
401 pos += sizeof(res);
402 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
403 if (sc->sk_vpd_readonly == NULL)
404 panic("sk_vpd_read");
405 for (i = 0; i < res.vr_len + 1; i++)
406 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
407 }
408
409 int
410 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
411 {
412 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
413 int i;
414
415 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
416
417 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
418 return(0);
419
420 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
421 SK_XM_READ_2(sc_if, XM_PHY_DATA);
422 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
423 for (i = 0; i < SK_TIMEOUT; i++) {
424 DELAY(1);
425 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
426 XM_MMUCMD_PHYDATARDY)
427 break;
428 }
429
430 if (i == SK_TIMEOUT) {
431 printf("%s: phy failed to come ready\n",
432 sc_if->sk_dev.dv_xname);
433 return(0);
434 }
435 }
436 DELAY(1);
437 return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
438 }
439
440 void
441 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
442 {
443 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
444 int i;
445
446 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
447
448 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
449 for (i = 0; i < SK_TIMEOUT; i++) {
450 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
451 break;
452 }
453
454 if (i == SK_TIMEOUT) {
455 printf("%s: phy failed to come ready\n",
456 sc_if->sk_dev.dv_xname);
457 return;
458 }
459
460 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
461 for (i = 0; i < SK_TIMEOUT; i++) {
462 DELAY(1);
463 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
464 break;
465 }
466
467 if (i == SK_TIMEOUT)
468 printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
469 }
470
471 void
472 sk_xmac_miibus_statchg(struct device *dev)
473 {
474 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
475 struct mii_data *mii = &sc_if->sk_mii;
476
477 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
478
479 /*
480 * If this is a GMII PHY, manually set the XMAC's
481 * duplex mode accordingly.
482 */
483 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
484 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
485 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
486 } else {
487 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
488 }
489 }
490 }
491
492 int
493 sk_marv_miibus_readreg(dev, phy, reg)
494 struct device *dev;
495 int phy, reg;
496 {
497 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
498 u_int16_t val;
499 int i;
500
501 if (phy != 0 ||
502 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
503 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
504 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
505 phy, reg));
506 return(0);
507 }
508
509 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
510 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
511
512 for (i = 0; i < SK_TIMEOUT; i++) {
513 DELAY(1);
514 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
515 if (val & YU_SMICR_READ_VALID)
516 break;
517 }
518
519 if (i == SK_TIMEOUT) {
520 printf("%s: phy failed to come ready\n",
521 sc_if->sk_dev.dv_xname);
522 return 0;
523 }
524
525 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
526 SK_TIMEOUT));
527
528 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
529
530 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
531 phy, reg, val));
532
533 return val;
534 }
535
536 void
537 sk_marv_miibus_writereg(dev, phy, reg, val)
538 struct device *dev;
539 int phy, reg, val;
540 {
541 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
542 int i;
543
544 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
545 phy, reg, val));
546
547 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
548 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
549 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
550
551 for (i = 0; i < SK_TIMEOUT; i++) {
552 DELAY(1);
553 if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
554 break;
555 }
556 }
557
558 void
559 sk_marv_miibus_statchg(dev)
560 struct device *dev;
561 {
562 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
563 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
564 }
565
566 #define SK_BITS 6
567 #define SK_POLY 0xEDB88320
568
569 u_int32_t
570 sk_calchash(caddr_t addr)
571 {
572 u_int32_t crc;
573
574 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
575 crc = ~crc & ((1<< SK_BITS) - 1);
576 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
577 return (crc);
578 }
579
580 void
581 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
582 {
583 int base = XM_RXFILT_ENTRY(slot);
584
585 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
586 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
587 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
588 }
589
590 void
591 sk_setmulti(struct sk_if_softc *sc_if)
592 {
593 struct sk_softc *sc = sc_if->sk_softc;
594 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
595 u_int32_t hashes[2] = { 0, 0 };
596 int h, i;
597 struct ethercom *ec = &sc_if->sk_ethercom;
598 struct ether_multi *enm;
599 struct ether_multistep step;
600 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
601
602 /* First, zot all the existing filters. */
603 switch(sc->sk_type) {
604 case SK_GENESIS:
605 for (i = 1; i < XM_RXFILT_MAX; i++)
606 sk_setfilt(sc_if, (caddr_t)&dummy, i);
607
608 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
609 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
610 break;
611 case SK_YUKON:
612 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
613 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
614 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
615 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
616 break;
617 }
618
619 /* Now program new ones. */
620 allmulti:
621 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
622 hashes[0] = 0xFFFFFFFF;
623 hashes[1] = 0xFFFFFFFF;
624 } else {
625 i = 1;
626 /* First find the tail of the list. */
627 ETHER_FIRST_MULTI(step, ec, enm);
628 while (enm != NULL) {
629 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
630 ETHER_ADDR_LEN)) {
631 ifp->if_flags |= IFF_ALLMULTI;
632 goto allmulti;
633 }
634 DPRINTFN(2,("multicast address %s\n",
635 ether_sprintf(enm->enm_addrlo)));
636 /*
637 * Program the first XM_RXFILT_MAX multicast groups
638 * into the perfect filter. For all others,
639 * use the hash table.
640 */
641 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
642 sk_setfilt(sc_if, enm->enm_addrlo, i);
643 i++;
644 }
645 else {
646 h = sk_calchash(enm->enm_addrlo);
647 if (h < 32)
648 hashes[0] |= (1 << h);
649 else
650 hashes[1] |= (1 << (h - 32));
651 }
652
653 ETHER_NEXT_MULTI(step, enm);
654 }
655 }
656
657 switch(sc->sk_type) {
658 case SK_GENESIS:
659 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
660 XM_MODE_RX_USE_PERFECT);
661 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
662 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
663 break;
664 case SK_YUKON:
665 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
666 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
667 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
668 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
669 break;
670 }
671 }
672
673 int
674 sk_init_rx_ring(struct sk_if_softc *sc_if)
675 {
676 struct sk_chain_data *cd = &sc_if->sk_cdata;
677 struct sk_ring_data *rd = sc_if->sk_rdata;
678 int i;
679
680 bzero((char *)rd->sk_rx_ring,
681 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
682
683 for (i = 0; i < SK_RX_RING_CNT; i++) {
684 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
685 if (i == (SK_RX_RING_CNT - 1)) {
686 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
687 rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if, 0);
688 } else {
689 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
690 rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if,i+1);
691 }
692 }
693
694 for (i = 0; i < SK_RX_RING_CNT; i++) {
695 if (sk_newbuf(sc_if, i, NULL, NULL) == ENOBUFS) {
696 printf("%s: failed alloc of %dth mbuf\n",
697 sc_if->sk_dev.dv_xname, i);
698 return(ENOBUFS);
699 }
700 }
701 sc_if->sk_cdata.sk_rx_prod = 0;
702 sc_if->sk_cdata.sk_rx_cons = 0;
703
704 return(0);
705 }
706
707 int
708 sk_init_tx_ring(struct sk_if_softc *sc_if)
709 {
710 struct sk_chain_data *cd = &sc_if->sk_cdata;
711 struct sk_ring_data *rd = sc_if->sk_rdata;
712 int i;
713
714 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
715 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
716
717 for (i = 0; i < SK_TX_RING_CNT; i++) {
718 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
719 if (i == (SK_TX_RING_CNT - 1)) {
720 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
721 rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if, 0);
722 } else {
723 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
724 rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if,i+1);
725 }
726 }
727
728 sc_if->sk_cdata.sk_tx_prod = 0;
729 sc_if->sk_cdata.sk_tx_cons = 0;
730 sc_if->sk_cdata.sk_tx_cnt = 0;
731
732 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
733 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
734
735 return (0);
736 }
737
738 int
739 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
740 bus_dmamap_t dmamap)
741 {
742 struct sk_softc *sc = sc_if->sk_softc;
743 struct mbuf *m_new = NULL;
744 struct sk_chain *c;
745 struct sk_rx_desc *r;
746
747 if (dmamap == NULL) {
748 /* if (m) panic() */
749
750 if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1, MCLBYTES,
751 0, BUS_DMA_NOWAIT, &dmamap)) {
752 printf("%s: can't create recv map\n",
753 sc_if->sk_dev.dv_xname);
754 return(ENOMEM);
755 }
756 } else if (m == NULL)
757 bus_dmamap_unload(sc->sc_dmatag, dmamap);
758
759 sc_if->sk_cdata.sk_rx_map[i] = dmamap;
760
761 if (m == NULL) {
762 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
763 if (m_new == NULL) {
764 printf("%s: no memory for rx list -- "
765 "packet dropped!\n", sc_if->sk_dev.dv_xname);
766 return(ENOBUFS);
767 }
768
769 /* Allocate the jumbo buffer */
770 MCLGET(m_new, M_DONTWAIT);
771 if (!(m_new->m_flags & M_EXT)) {
772 m_freem(m_new);
773 return (ENOBUFS);
774 }
775
776 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
777
778 m_adj(m_new, ETHER_ALIGN);
779
780 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m_new,
781 BUS_DMA_NOWAIT))
782 return(ENOBUFS);
783 } else {
784 /*
785 * We're re-using a previously allocated mbuf;
786 * be sure to re-init pointers and lengths to
787 * default values.
788 */
789 m_new = m;
790 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
791 m_adj(m_new, ETHER_ALIGN);
792 m_new->m_data = m_new->m_ext.ext_buf;
793 }
794
795 c = &sc_if->sk_cdata.sk_rx_chain[i];
796 r = c->sk_desc;
797 c->sk_mbuf = m_new;
798 r->sk_data_lo = dmamap->dm_segs[0].ds_addr;
799 r->sk_ctl = dmamap->dm_segs[0].ds_len | SK_RXSTAT;
800
801 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
802
803 return(0);
804 }
805
806 /*
807 * Set media options.
808 */
809 int
810 sk_ifmedia_upd(struct ifnet *ifp)
811 {
812 struct sk_if_softc *sc_if = ifp->if_softc;
813
814 (void) sk_init(ifp);
815 mii_mediachg(&sc_if->sk_mii);
816 return(0);
817 }
818
819 /*
820 * Report current media status.
821 */
822 void
823 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
824 {
825 struct sk_if_softc *sc_if = ifp->if_softc;
826
827 mii_pollstat(&sc_if->sk_mii);
828 ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
829 ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
830 }
831
832 int
833 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
834 {
835 struct sk_if_softc *sc_if = ifp->if_softc;
836 struct sk_softc *sc = sc_if->sk_softc;
837 struct ifreq *ifr = (struct ifreq *) data;
838 /* struct ifaddr *ifa = (struct ifaddr *) data; */
839 struct mii_data *mii;
840 int s, error = 0;
841
842 /* DPRINTFN(2, ("sk_ioctl\n")); */
843
844 s = splnet();
845
846 switch(command) {
847
848 case SIOCSIFFLAGS:
849 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
850 if (ifp->if_flags & IFF_UP) {
851 if (ifp->if_flags & IFF_RUNNING &&
852 ifp->if_flags & IFF_PROMISC &&
853 !(sc_if->sk_if_flags & IFF_PROMISC)) {
854 switch(sc->sk_type) {
855 case SK_GENESIS:
856 SK_XM_SETBIT_4(sc_if, XM_MODE,
857 XM_MODE_RX_PROMISC);
858 break;
859 case SK_YUKON:
860 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
861 YU_RCR_UFLEN | YU_RCR_MUFLEN);
862 break;
863 }
864 sk_setmulti(sc_if);
865 } else if (ifp->if_flags & IFF_RUNNING &&
866 !(ifp->if_flags & IFF_PROMISC) &&
867 sc_if->sk_if_flags & IFF_PROMISC) {
868 switch(sc->sk_type) {
869 case SK_GENESIS:
870 SK_XM_CLRBIT_4(sc_if, XM_MODE,
871 XM_MODE_RX_PROMISC);
872 break;
873 case SK_YUKON:
874 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
875 YU_RCR_UFLEN | YU_RCR_MUFLEN);
876 break;
877 }
878
879 sk_setmulti(sc_if);
880 } else
881 (void) sk_init(ifp);
882 } else {
883 if (ifp->if_flags & IFF_RUNNING)
884 sk_stop(ifp,0);
885 }
886 sc_if->sk_if_flags = ifp->if_flags;
887 error = 0;
888 break;
889
890 case SIOCGIFMEDIA:
891 case SIOCSIFMEDIA:
892 DPRINTFN(2, ("sk_ioctl MEDIA\n"));
893 mii = &sc_if->sk_mii;
894 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
895 break;
896 default:
897 DPRINTFN(2, ("sk_ioctl ETHER\n"));
898 error = ether_ioctl(ifp, command, data);
899
900 if ( error == ENETRESET) {
901 sk_setmulti(sc_if);
902 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
903 error = 0;
904 } else if ( error ) {
905 splx(s);
906 return error;
907 }
908 break;
909 }
910
911 splx(s);
912 return(error);
913 }
914
915 /*
916 * Lookup: Check the PCI vendor and device, and return a pointer to
917 * The structure if the IDs match against our list.
918 */
919
920 static const struct sk_product *
921 sk_lookup(const struct pci_attach_args *pa)
922 {
923 const struct sk_product *psk;
924
925 for ( psk = &sk_products[0]; psk->sk_vendor != NULL; psk++ ) {
926 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
927 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
928 return (psk);
929 }
930 return (NULL);
931 }
932
933 /*
934 * Probe for a SysKonnect GEnesis chip.
935 */
936
937 int
938 skc_probe(struct device *parent, struct cfdata *match, void *aux)
939 {
940 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
941 const struct sk_product *psk;
942
943 if ((psk = sk_lookup(pa))) {
944 return(1);
945 }
946 return(0);
947 }
948
949 /*
950 * Force the GEnesis into reset, then bring it out of reset.
951 */
952 void sk_reset(struct sk_softc *sc)
953 {
954 DPRINTFN(2, ("sk_reset\n"));
955
956 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
957 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
958 if (sc->sk_type == SK_YUKON)
959 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
960
961 DELAY(1000);
962 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
963 DELAY(2);
964 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
965 if (sc->sk_type == SK_YUKON)
966 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
967
968 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
969 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
970 CSR_READ_2(sc, SK_LINK_CTRL)));
971
972 if (sc->sk_type == SK_GENESIS) {
973 /* Configure packet arbiter */
974 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
975 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
976 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
977 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
978 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
979 }
980
981 /* Enable RAM interface */
982 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
983
984 /*
985 * Configure interrupt moderation. The moderation timer
986 * defers interrupts specified in the interrupt moderation
987 * timer mask based on the timeout specified in the interrupt
988 * moderation timer init register. Each bit in the timer
989 * register represents 18.825ns, so to specify a timeout in
990 * microseconds, we have to multiply by 54.
991 */
992 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
993 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
994 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
995 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
996 }
997
998 int
999 sk_probe(struct device *parent, struct cfdata *match, void *aux)
1000 {
1001 struct skc_attach_args *sa = aux;
1002
1003 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1004 return(0);
1005
1006 return (1);
1007 }
1008
1009 /*
1010 * Each XMAC chip is attached as a separate logical IP interface.
1011 * Single port cards will have only one logical interface of course.
1012 */
1013 void
1014 sk_attach(struct device *parent, struct device *self, void *aux)
1015 {
1016 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1017 struct sk_softc *sc = (struct sk_softc *)parent;
1018 struct skc_attach_args *sa = aux;
1019 struct sk_txmap_entry *entry;
1020 struct ifnet *ifp;
1021 bus_dma_segment_t seg;
1022 bus_dmamap_t dmamap;
1023 caddr_t kva;
1024 int i, rseg;
1025
1026 sc_if->sk_port = sa->skc_port;
1027 sc_if->sk_softc = sc;
1028 sc->sk_if[sa->skc_port] = sc_if;
1029
1030 if (sa->skc_port == SK_PORT_A)
1031 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1032 if (sa->skc_port == SK_PORT_B)
1033 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1034
1035 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1036
1037 /*
1038 * Get station address for this interface. Note that
1039 * dual port cards actually come with three station
1040 * addresses: one for each port, plus an extra. The
1041 * extra one is used by the SysKonnect driver software
1042 * as a 'virtual' station address for when both ports
1043 * are operating in failover mode. Currently we don't
1044 * use this extra address.
1045 */
1046 for (i = 0; i < ETHER_ADDR_LEN; i++)
1047 sc_if->sk_enaddr[i] =
1048 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1049
1050
1051 aprint_normal(": Ethernet address %s\n",
1052 ether_sprintf(sc_if->sk_enaddr));
1053
1054 /*
1055 * Set up RAM buffer addresses. The NIC will have a certain
1056 * amount of SRAM on it, somewhere between 512K and 2MB. We
1057 * need to divide this up a) between the transmitter and
1058 * receiver and b) between the two XMACs, if this is a
1059 * dual port NIC. Our algotithm is to divide up the memory
1060 * evenly so that everyone gets a fair share.
1061 */
1062 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1063 u_int32_t chunk, val;
1064
1065 chunk = sc->sk_ramsize / 2;
1066 val = sc->sk_rboff / sizeof(u_int64_t);
1067 sc_if->sk_rx_ramstart = val;
1068 val += (chunk / sizeof(u_int64_t));
1069 sc_if->sk_rx_ramend = val - 1;
1070 sc_if->sk_tx_ramstart = val;
1071 val += (chunk / sizeof(u_int64_t));
1072 sc_if->sk_tx_ramend = val - 1;
1073 } else {
1074 u_int32_t chunk, val;
1075
1076 chunk = sc->sk_ramsize / 4;
1077 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1078 sizeof(u_int64_t);
1079 sc_if->sk_rx_ramstart = val;
1080 val += (chunk / sizeof(u_int64_t));
1081 sc_if->sk_rx_ramend = val - 1;
1082 sc_if->sk_tx_ramstart = val;
1083 val += (chunk / sizeof(u_int64_t));
1084 sc_if->sk_tx_ramend = val - 1;
1085 }
1086
1087 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1088 " tx_ramstart=%#x tx_ramend=%#x\n",
1089 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1090 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1091
1092 /* Read and save PHY type and set PHY address */
1093 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1094 switch (sc_if->sk_phytype) {
1095 case SK_PHYTYPE_XMAC:
1096 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1097 break;
1098 case SK_PHYTYPE_BCOM:
1099 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1100 break;
1101 case SK_PHYTYPE_MARV_COPPER:
1102 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1103 break;
1104 default:
1105 aprint_error("%s: unsupported PHY type: %d\n",
1106 sc->sk_dev.dv_xname, sc_if->sk_phytype);
1107 return;
1108 }
1109
1110 /* Allocate the descriptor queues. */
1111 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1112 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1113 aprint_error("%s: can't alloc rx buffers\n",
1114 sc->sk_dev.dv_xname);
1115 goto fail;
1116 }
1117 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1118 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1119 aprint_error("%s: can't map dma buffers (%lu bytes)\n",
1120 sc_if->sk_dev.dv_xname,
1121 (u_long) sizeof(struct sk_ring_data));
1122 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1123 goto fail;
1124 }
1125 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1126 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1127 &sc_if->sk_ring_map)) {
1128 aprint_error("%s: can't create dma map\n",
1129 sc_if->sk_dev.dv_xname);
1130 bus_dmamem_unmap(sc->sc_dmatag, kva,
1131 sizeof(struct sk_ring_data));
1132 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1133 goto fail;
1134 }
1135 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1136 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1137 aprint_error("%s: can't load dma map\n",
1138 sc_if->sk_dev.dv_xname);
1139 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1140 bus_dmamem_unmap(sc->sc_dmatag, kva,
1141 sizeof(struct sk_ring_data));
1142 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1143 goto fail;
1144 }
1145
1146 for (i = 0; i < SK_RX_RING_CNT; i++)
1147 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1148
1149 SLIST_INIT(&sc_if->sk_txmap_listhead);
1150 for (i = 0; i < SK_TX_RING_CNT; i++) {
1151 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1152
1153 if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, SK_NTXSEG,
1154 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap)) {
1155 aprint_error("%s: Can't create TX dmamap\n",
1156 sc_if->sk_dev.dv_xname);
1157 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1158 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1159 bus_dmamem_unmap(sc->sc_dmatag, kva,
1160 sizeof(struct sk_ring_data));
1161 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1162 goto fail;
1163 }
1164
1165 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1166 if (!entry) {
1167 aprint_error("%s: Can't alloc txmap entry\n",
1168 sc_if->sk_dev.dv_xname);
1169 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1170 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1171 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1172 bus_dmamem_unmap(sc->sc_dmatag, kva,
1173 sizeof(struct sk_ring_data));
1174 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1175 goto fail;
1176 }
1177 entry->dmamap = dmamap;
1178 SLIST_INSERT_HEAD(&sc_if->sk_txmap_listhead, entry, link);
1179 }
1180
1181 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1182 bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1183
1184 ifp = &sc_if->sk_ethercom.ec_if;
1185 ifp->if_softc = sc_if;
1186 ifp->if_mtu = ETHERMTU;
1187 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1188 ifp->if_ioctl = sk_ioctl;
1189 ifp->if_start = sk_start;
1190 ifp->if_stop = sk_stop;
1191 ifp->if_init = sk_init;
1192 ifp->if_watchdog = sk_watchdog;
1193 ifp->if_baudrate = 1000000000;
1194 ifp->if_capabilities |= ETHERCAP_VLAN_MTU;
1195 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1196 IFQ_SET_READY(&ifp->if_snd);
1197 bcopy(sc_if->sk_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1198
1199 /*
1200 * Do miibus setup.
1201 */
1202 switch (sc->sk_type) {
1203 case SK_GENESIS:
1204 sk_init_xmac(sc_if);
1205 break;
1206 case SK_YUKON:
1207 sk_init_yukon(sc_if);
1208 break;
1209 default:
1210 panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
1211 sc->sk_type);
1212 }
1213
1214 DPRINTFN(2, ("sk_attach: 1\n"));
1215
1216 sc_if->sk_mii.mii_ifp = ifp;
1217 switch (sc->sk_type) {
1218 case SK_GENESIS:
1219 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1220 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1221 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1222 break;
1223 case SK_YUKON:
1224 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1225 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1226 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1227 break;
1228 }
1229
1230 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1231 sk_ifmedia_upd, sk_ifmedia_sts);
1232 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1233 MII_OFFSET_ANY, 0);
1234 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1235 printf("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1236 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1237 0, NULL);
1238 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1239 }
1240 else
1241 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1242
1243 callout_init(&sc_if->sk_tick_ch);
1244 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1245
1246 DPRINTFN(2, ("sk_attach: 1\n"));
1247
1248 /*
1249 * Call MI attach routines.
1250 */
1251 if_attach(ifp);
1252
1253 ether_ifattach(ifp, sc_if->sk_enaddr);
1254
1255 #if NRND > 0
1256 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1257 RND_TYPE_NET, 0);
1258 #endif
1259
1260 DPRINTFN(2, ("sk_attach: end\n"));
1261
1262 return;
1263
1264 fail:
1265 sc->sk_if[sa->skc_port] = NULL;
1266 }
1267
1268 int
1269 skcprint(void *aux, const char *pnp)
1270 {
1271 struct skc_attach_args *sa = aux;
1272
1273 if (pnp)
1274 aprint_normal("sk port %c at %s",
1275 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1276 else
1277 aprint_normal(" port %c",
1278 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1279 return (UNCONF);
1280 }
1281
1282 /*
1283 * Attach the interface. Allocate softc structures, do ifmedia
1284 * setup and ethernet/BPF attach.
1285 */
1286 void
1287 skc_attach(struct device *parent, struct device *self, void *aux)
1288 {
1289 struct sk_softc *sc = (struct sk_softc *)self;
1290 struct pci_attach_args *pa = aux;
1291 struct skc_attach_args skca;
1292 pci_chipset_tag_t pc = pa->pa_pc;
1293 pcireg_t memtype;
1294 pci_intr_handle_t ih;
1295 const char *intrstr = NULL;
1296 bus_addr_t iobase;
1297 bus_size_t iosize;
1298 int s;
1299 u_int32_t command;
1300
1301 DPRINTFN(2, ("begin skc_attach\n"));
1302
1303 s = splnet();
1304
1305 /*
1306 * Handle power management nonsense.
1307 */
1308 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1309
1310 if (command == 0x01) {
1311 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1312 if (command & SK_PSTATE_MASK) {
1313 u_int32_t iobase, membase, irq;
1314
1315 /* Save important PCI config data. */
1316 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1317 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1318 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1319
1320 /* Reset the power state. */
1321 aprint_normal("%s chip is in D%d power mode "
1322 "-- setting to D0\n", sc->sk_dev.dv_xname,
1323 command & SK_PSTATE_MASK);
1324 command &= 0xFFFFFFFC;
1325 pci_conf_write(pc, pa->pa_tag,
1326 SK_PCI_PWRMGMTCTRL, command);
1327
1328 /* Restore PCI config data. */
1329 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1330 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1331 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1332 }
1333 }
1334
1335 /*
1336 * Map control/status registers.
1337 */
1338 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1339 command |= PCI_COMMAND_IO_ENABLE |
1340 PCI_COMMAND_MEM_ENABLE |
1341 PCI_COMMAND_MASTER_ENABLE;
1342 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1343 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1344
1345 switch (PCI_PRODUCT(pa->pa_id)) {
1346 case PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE:
1347 sc->sk_type = SK_GENESIS;
1348 break;
1349 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1350 case PCI_PRODUCT_3COM_3C940:
1351 sc->sk_type = SK_YUKON;
1352 break;
1353 default:
1354 aprint_error(": unknown device!\n");
1355 goto fail;
1356 }
1357
1358 #ifdef SK_USEIOSPACE
1359 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1360 aprint_error(": failed to enable I/O ports!\n");
1361 goto fail;
1362 }
1363 /*
1364 * Map control/status registers.
1365 */
1366 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1367 &iobase, &iosize)) {
1368 aprint_error(": can't find i/o space\n");
1369 goto fail;
1370 }
1371 #else
1372 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1373 aprint_error(": failed to enable memory mapping!\n");
1374 goto fail;
1375 }
1376 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1377 switch (memtype) {
1378 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1379 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1380 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1381 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1382 &iobase, &iosize) == 0)
1383 break;
1384 default:
1385 aprint_error("%s: can't find mem space\n",
1386 sc->sk_dev.dv_xname);
1387 return;
1388 }
1389
1390 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1391 #endif
1392 sc->sc_dmatag = pa->pa_dmat;
1393
1394 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1395
1396 /* Allocate interrupt */
1397 if (pci_intr_map(pa, &ih)) {
1398 aprint_error(": couldn't map interrupt\n");
1399 goto fail;
1400 }
1401
1402 intrstr = pci_intr_string(pc, ih);
1403 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1404 if (sc->sk_intrhand == NULL) {
1405 aprint_error(": couldn't establish interrupt");
1406 if (intrstr != NULL)
1407 aprint_normal(" at %s", intrstr);
1408 goto fail;
1409 }
1410 aprint_normal(": %s\n", intrstr);
1411
1412 /* Reset the adapter. */
1413 sk_reset(sc);
1414
1415 /* Read and save vital product data from EEPROM. */
1416 sk_vpd_read(sc);
1417
1418 if (sc->sk_type == SK_GENESIS) {
1419 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1420 /* Read and save RAM size and RAMbuffer offset */
1421 switch(val) {
1422 case SK_RAMSIZE_512K_64:
1423 sc->sk_ramsize = 0x80000;
1424 sc->sk_rboff = SK_RBOFF_0;
1425 break;
1426 case SK_RAMSIZE_1024K_64:
1427 sc->sk_ramsize = 0x100000;
1428 sc->sk_rboff = SK_RBOFF_80000;
1429 break;
1430 case SK_RAMSIZE_1024K_128:
1431 sc->sk_ramsize = 0x100000;
1432 sc->sk_rboff = SK_RBOFF_0;
1433 break;
1434 case SK_RAMSIZE_2048K_128:
1435 sc->sk_ramsize = 0x200000;
1436 sc->sk_rboff = SK_RBOFF_0;
1437 break;
1438 default:
1439 aprint_error("%s: unknown ram size: %d\n",
1440 sc->sk_dev.dv_xname, val);
1441 goto fail;
1442 break;
1443 }
1444
1445 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1446 sc->sk_ramsize, sc->sk_ramsize / 1024,
1447 sc->sk_rboff));
1448 } else {
1449 sc->sk_ramsize = 0x20000;
1450 sc->sk_rboff = SK_RBOFF_0;
1451
1452 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1453 sc->sk_ramsize / 1024, sc->sk_ramsize,
1454 sc->sk_rboff));
1455 }
1456
1457 /* Read and save physical media type */
1458 switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1459 case SK_PMD_1000BASESX:
1460 sc->sk_pmd = IFM_1000_SX;
1461 break;
1462 case SK_PMD_1000BASELX:
1463 sc->sk_pmd = IFM_1000_LX;
1464 break;
1465 case SK_PMD_1000BASECX:
1466 sc->sk_pmd = IFM_1000_CX;
1467 break;
1468 case SK_PMD_1000BASETX:
1469 sc->sk_pmd = IFM_1000_T;
1470 break;
1471 default:
1472 aprint_error("%s: unknown media type: 0x%x\n",
1473 sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
1474 goto fail;
1475 }
1476
1477 /* Announce the product name. */
1478 aprint_normal("%s: %s\n", sc->sk_dev.dv_xname, sc->sk_vpd_prodname);
1479
1480 skca.skc_port = SK_PORT_A;
1481 (void)config_found(&sc->sk_dev, &skca, skcprint);
1482
1483 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1484 skca.skc_port = SK_PORT_B;
1485 (void)config_found(&sc->sk_dev, &skca, skcprint);
1486 }
1487
1488 /* Turn on the 'driver is loaded' LED. */
1489 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1490
1491 fail:
1492 splx(s);
1493 }
1494
1495 int
1496 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1497 {
1498 struct sk_softc *sc = sc_if->sk_softc;
1499 struct sk_tx_desc *f = NULL;
1500 u_int32_t frag, cur, cnt = 0;
1501 int i;
1502 struct sk_txmap_entry *entry;
1503 bus_dmamap_t txmap;
1504
1505 DPRINTFN(3, ("sk_encap\n"));
1506
1507 entry = SLIST_FIRST(&sc_if->sk_txmap_listhead);
1508 if (entry == NULL) {
1509 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1510 return ENOBUFS;
1511 }
1512 txmap = entry->dmamap;
1513
1514 cur = frag = *txidx;
1515
1516 #ifdef SK_DEBUG
1517 if (skdebug >= 3)
1518 sk_dump_mbuf(m_head);
1519 #endif
1520
1521 /*
1522 * Start packing the mbufs in this chain into
1523 * the fragment pointers. Stop when we run out
1524 * of fragments or hit the end of the mbuf chain.
1525 */
1526 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1527 BUS_DMA_NOWAIT)) {
1528 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1529 return(ENOBUFS);
1530 }
1531
1532 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1533
1534 /* Sync the DMA map. */
1535 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1536 BUS_DMASYNC_PREWRITE);
1537
1538 for (i = 0; i < txmap->dm_nsegs; i++) {
1539 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1540 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1541 return(ENOBUFS);
1542 }
1543 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1544 f->sk_data_lo = txmap->dm_segs[i].ds_addr;
1545 f->sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1546 if (cnt == 0)
1547 f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1548 else
1549 f->sk_ctl |= SK_TXCTL_OWN;
1550
1551 cur = frag;
1552 SK_INC(frag, SK_TX_RING_CNT);
1553 cnt++;
1554 }
1555
1556 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1557 SLIST_REMOVE_HEAD(&sc_if->sk_txmap_listhead, link);
1558 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1559 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1560 SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1561
1562 /* Sync descriptors before handing to chip */
1563 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1564 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1565
1566 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1567
1568 /* Sync first descriptor to hand it off */
1569 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1570
1571 sc_if->sk_cdata.sk_tx_cnt += cnt;
1572
1573 #ifdef SK_DEBUG
1574 if (skdebug >= 3) {
1575 struct sk_tx_desc *desc;
1576 u_int32_t idx;
1577 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1578 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1579 sk_dump_txdesc(desc, idx);
1580 }
1581 }
1582 #endif
1583
1584 *txidx = frag;
1585
1586 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1587
1588 return(0);
1589 }
1590
1591 void
1592 sk_start(struct ifnet *ifp)
1593 {
1594 struct sk_if_softc *sc_if = ifp->if_softc;
1595 struct sk_softc *sc = sc_if->sk_softc;
1596 struct mbuf *m_head = NULL;
1597 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1598 int pkts = 0;
1599
1600 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1601 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1602
1603 while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1604
1605 IFQ_POLL(&ifp->if_snd, m_head);
1606 if (m_head == NULL)
1607 break;
1608
1609 /*
1610 * Pack the data into the transmit ring. If we
1611 * don't have room, set the OACTIVE flag and wait
1612 * for the NIC to drain the ring.
1613 */
1614 if (sk_encap(sc_if, m_head, &idx)) {
1615 ifp->if_flags |= IFF_OACTIVE;
1616 break;
1617 }
1618
1619 /* now we are committed to transmit the packet */
1620 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1621 pkts++;
1622
1623 /*
1624 * If there's a BPF listener, bounce a copy of this frame
1625 * to him.
1626 */
1627 #if NBPFILTER > 0
1628 if (ifp->if_bpf)
1629 bpf_mtap(ifp->if_bpf, m_head);
1630 #endif
1631 }
1632 if (pkts == 0)
1633 return;
1634
1635 /* Transmit */
1636 sc_if->sk_cdata.sk_tx_prod = idx;
1637 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1638
1639 /* Set a timeout in case the chip goes out to lunch. */
1640 ifp->if_timer = 5;
1641 }
1642
1643
1644 void
1645 sk_watchdog(struct ifnet *ifp)
1646 {
1647 struct sk_if_softc *sc_if = ifp->if_softc;
1648
1649 printf("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1650 (void) sk_init(ifp);
1651 }
1652
1653 void
1654 sk_shutdown(void * v)
1655 {
1656 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
1657 struct sk_softc *sc = sc_if->sk_softc;
1658 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1659
1660 DPRINTFN(2, ("sk_shutdown\n"));
1661 sk_stop(ifp,1);
1662
1663 /* Turn off the 'driver is loaded' LED. */
1664 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1665
1666 /*
1667 * Reset the GEnesis controller. Doing this should also
1668 * assert the resets on the attached XMAC(s).
1669 */
1670 sk_reset(sc);
1671 }
1672
1673 void
1674 sk_rxeof(struct sk_if_softc *sc_if)
1675 {
1676 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1677 struct mbuf *m;
1678 struct sk_chain *cur_rx;
1679 struct sk_rx_desc *cur_desc;
1680 int i, cur, total_len = 0;
1681 u_int32_t rxstat;
1682 bus_dmamap_t dmamap;
1683
1684 i = sc_if->sk_cdata.sk_rx_prod;
1685
1686 DPRINTFN(3, ("sk_rxeof %d\n", i));
1687
1688 for (;;) {
1689 cur = i;
1690
1691 /* Sync the descriptor */
1692 SK_CDRXSYNC(sc_if, cur,
1693 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1694
1695 if (sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl & SK_RXCTL_OWN) {
1696 /* Invalidate the descriptor -- it's not ready yet */
1697 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
1698 sc_if->sk_cdata.sk_rx_prod = i;
1699 break;
1700 }
1701
1702 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1703 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
1704 dmamap = sc_if->sk_cdata.sk_rx_map[cur];
1705
1706 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1707 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1708
1709 rxstat = cur_desc->sk_xmac_rxstat;
1710 m = cur_rx->sk_mbuf;
1711 cur_rx->sk_mbuf = NULL;
1712 total_len = SK_RXBYTES(cur_desc->sk_ctl);
1713
1714 sc_if->sk_cdata.sk_rx_map[cur] = 0;
1715
1716 SK_INC(i, SK_RX_RING_CNT);
1717
1718 if (rxstat & XM_RXSTAT_ERRFRAME) {
1719 ifp->if_ierrors++;
1720 sk_newbuf(sc_if, cur, m, dmamap);
1721 continue;
1722 }
1723
1724 /*
1725 * Try to allocate a new jumbo buffer. If that
1726 * fails, copy the packet to mbufs and put the
1727 * jumbo buffer back in the ring so it can be
1728 * re-used. If allocating mbufs fails, then we
1729 * have to drop the packet.
1730 */
1731 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1732 struct mbuf *m0;
1733 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1734 total_len + ETHER_ALIGN, 0, ifp, NULL);
1735 sk_newbuf(sc_if, cur, m, dmamap);
1736 if (m0 == NULL) {
1737 printf("%s: no receive buffers "
1738 "available -- packet dropped!\n",
1739 sc_if->sk_dev.dv_xname);
1740 ifp->if_ierrors++;
1741 continue;
1742 }
1743 m_adj(m0, ETHER_ALIGN);
1744 m = m0;
1745 } else {
1746 m->m_pkthdr.rcvif = ifp;
1747 m->m_pkthdr.len = m->m_len = total_len;
1748 }
1749
1750 ifp->if_ipackets++;
1751
1752 #if NBPFILTER > 0
1753 if (ifp->if_bpf)
1754 bpf_mtap(ifp->if_bpf, m);
1755 #endif
1756 /* pass it on. */
1757 (*ifp->if_input)(ifp, m);
1758 }
1759 }
1760
1761 void
1762 sk_txeof(struct sk_if_softc *sc_if)
1763 {
1764 struct sk_softc *sc = sc_if->sk_softc;
1765 struct sk_tx_desc *cur_tx = NULL;
1766 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1767 u_int32_t idx, nsegs;
1768 struct sk_txmap_entry *entry;
1769
1770 DPRINTFN(3, ("sk_txeof\n"));
1771
1772 /*
1773 * Go through our tx ring and free mbufs for those
1774 * frames that have been sent.
1775 */
1776 idx = sc_if->sk_cdata.sk_tx_cons;
1777 while(idx != sc_if->sk_cdata.sk_tx_prod) {
1778 entry = sc_if->sk_cdata.sk_tx_map[idx];
1779 if (!entry)
1780 break;
1781
1782 nsegs = entry->dmamap->dm_nsegs;
1783 SK_CDTXSYNC(sc_if, idx, nsegs,
1784 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1785
1786 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1787 #ifdef SK_DEBUG
1788 if (skdebug >= 3)
1789 sk_dump_txdesc(cur_tx, idx);
1790 #endif
1791 if (cur_tx->sk_ctl & SK_TXCTL_OWN) {
1792 SK_CDTXSYNC(sc_if, idx, nsegs, BUS_DMASYNC_PREREAD);
1793 break;
1794 }
1795 if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
1796 ifp->if_opackets++;
1797 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1798 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1799 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1800
1801 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1802 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1803
1804 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1805 SLIST_INSERT_HEAD(&sc_if->sk_txmap_listhead, entry,
1806 link);
1807 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
1808 }
1809 sc_if->sk_cdata.sk_tx_cnt--;
1810 SK_INC(idx, SK_TX_RING_CNT);
1811 ifp->if_timer = 0;
1812 }
1813
1814 sc_if->sk_cdata.sk_tx_cons = idx;
1815
1816 if (cur_tx != NULL)
1817 ifp->if_flags &= ~IFF_OACTIVE;
1818 }
1819
1820 void
1821 sk_tick(void *xsc_if)
1822 {
1823 struct sk_if_softc *sc_if = xsc_if;
1824 struct mii_data *mii = &sc_if->sk_mii;
1825 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1826 int i;
1827
1828 DPRINTFN(3, ("sk_tick\n"));
1829
1830 if (!(ifp->if_flags & IFF_UP))
1831 return;
1832
1833 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
1834 sk_intr_bcom(sc_if);
1835 return;
1836 }
1837
1838 /*
1839 * According to SysKonnect, the correct way to verify that
1840 * the link has come back up is to poll bit 0 of the GPIO
1841 * register three times. This pin has the signal from the
1842 * link sync pin connected to it; if we read the same link
1843 * state 3 times in a row, we know the link is up.
1844 */
1845 for (i = 0; i < 3; i++) {
1846 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
1847 break;
1848 }
1849
1850 if (i != 3) {
1851 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1852 return;
1853 }
1854
1855 /* Turn the GP0 interrupt back on. */
1856 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1857 SK_XM_READ_2(sc_if, XM_ISR);
1858 mii_tick(mii);
1859 mii_pollstat(mii);
1860 callout_stop(&sc_if->sk_tick_ch);
1861 }
1862
1863 void
1864 sk_intr_bcom(struct sk_if_softc *sc_if)
1865 {
1866 struct mii_data *mii = &sc_if->sk_mii;
1867 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1868 int status;
1869
1870
1871 DPRINTFN(3, ("sk_intr_bcom\n"));
1872
1873 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1874
1875 /*
1876 * Read the PHY interrupt register to make sure
1877 * we clear any pending interrupts.
1878 */
1879 status = sk_xmac_miibus_readreg((struct device *)sc_if,
1880 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
1881
1882 if (!(ifp->if_flags & IFF_RUNNING)) {
1883 sk_init_xmac(sc_if);
1884 return;
1885 }
1886
1887 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
1888 int lstat;
1889 lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
1890 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
1891
1892 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
1893 mii_mediachg(mii);
1894 /* Turn off the link LED. */
1895 SK_IF_WRITE_1(sc_if, 0,
1896 SK_LINKLED1_CTL, SK_LINKLED_OFF);
1897 sc_if->sk_link = 0;
1898 } else if (status & BRGPHY_ISR_LNK_CHG) {
1899 sk_xmac_miibus_writereg((struct device *)sc_if,
1900 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
1901 mii_tick(mii);
1902 sc_if->sk_link = 1;
1903 /* Turn on the link LED. */
1904 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
1905 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
1906 SK_LINKLED_BLINK_OFF);
1907 mii_pollstat(mii);
1908 } else {
1909 mii_tick(mii);
1910 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
1911 }
1912 }
1913
1914 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1915 }
1916
1917 void
1918 sk_intr_xmac(struct sk_if_softc *sc_if)
1919 {
1920 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
1921
1922 DPRINTFN(3, ("sk_intr_xmac\n"));
1923
1924 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
1925 if (status & XM_ISR_GP0_SET) {
1926 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1927 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1928 }
1929
1930 if (status & XM_ISR_AUTONEG_DONE) {
1931 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1932 }
1933 }
1934
1935 if (status & XM_IMR_TX_UNDERRUN)
1936 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
1937
1938 if (status & XM_IMR_RX_OVERRUN)
1939 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
1940 }
1941
1942 void
1943 sk_intr_yukon(sc_if)
1944 struct sk_if_softc *sc_if;
1945 {
1946 int status;
1947
1948 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
1949
1950 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
1951 }
1952
1953 int
1954 sk_intr(void *xsc)
1955 {
1956 struct sk_softc *sc = xsc;
1957 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
1958 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
1959 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
1960 u_int32_t status;
1961 int claimed = 0;
1962
1963 if (sc_if0 != NULL)
1964 ifp0 = &sc_if0->sk_ethercom.ec_if;
1965 if (sc_if1 != NULL)
1966 ifp1 = &sc_if1->sk_ethercom.ec_if;
1967
1968 for (;;) {
1969 status = CSR_READ_4(sc, SK_ISSR);
1970 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
1971
1972 if (!(status & sc->sk_intrmask))
1973 break;
1974
1975 claimed = 1;
1976
1977 /* Handle receive interrupts first. */
1978 if (status & SK_ISR_RX1_EOF) {
1979 sk_rxeof(sc_if0);
1980 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
1981 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1982 }
1983 if (status & SK_ISR_RX2_EOF) {
1984 sk_rxeof(sc_if1);
1985 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
1986 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1987 }
1988
1989 /* Then transmit interrupts. */
1990 if (status & SK_ISR_TX1_S_EOF) {
1991 sk_txeof(sc_if0);
1992 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
1993 SK_TXBMU_CLR_IRQ_EOF);
1994 }
1995 if (status & SK_ISR_TX2_S_EOF) {
1996 sk_txeof(sc_if1);
1997 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
1998 SK_TXBMU_CLR_IRQ_EOF);
1999 }
2000
2001 /* Then MAC interrupts. */
2002 if (status & SK_ISR_MAC1 && (ifp0->if_flags & IFF_RUNNING)) {
2003 if (sc->sk_type == SK_GENESIS)
2004 sk_intr_xmac(sc_if0);
2005 else
2006 sk_intr_yukon(sc_if0);
2007 }
2008
2009 if (status & SK_ISR_MAC2 && (ifp1->if_flags & IFF_RUNNING)) {
2010 if (sc->sk_type == SK_GENESIS)
2011 sk_intr_xmac(sc_if1);
2012 else
2013 sk_intr_yukon(sc_if1);
2014
2015 }
2016
2017 if (status & SK_ISR_EXTERNAL_REG) {
2018 if (ifp0 != NULL &&
2019 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2020 sk_intr_bcom(sc_if0);
2021
2022 if (ifp1 != NULL &&
2023 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2024 sk_intr_bcom(sc_if1);
2025 }
2026 }
2027
2028 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2029
2030 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2031 sk_start(ifp0);
2032 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2033 sk_start(ifp1);
2034
2035 return (claimed);
2036 }
2037
2038 void
2039 sk_init_xmac(struct sk_if_softc *sc_if)
2040 {
2041 struct sk_softc *sc = sc_if->sk_softc;
2042 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2043 static const struct sk_bcom_hack bhack[] = {
2044 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2045 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2046 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2047 { 0, 0 } };
2048
2049 DPRINTFN(1, ("sk_init_xmac\n"));
2050
2051 /* Unreset the XMAC. */
2052 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2053 DELAY(1000);
2054
2055 /* Reset the XMAC's internal state. */
2056 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2057
2058 /* Save the XMAC II revision */
2059 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2060
2061 /*
2062 * Perform additional initialization for external PHYs,
2063 * namely for the 1000baseTX cards that use the XMAC's
2064 * GMII mode.
2065 */
2066 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2067 int i = 0;
2068 u_int32_t val;
2069
2070 /* Take PHY out of reset. */
2071 val = sk_win_read_4(sc, SK_GPIO);
2072 if (sc_if->sk_port == SK_PORT_A)
2073 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2074 else
2075 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2076 sk_win_write_4(sc, SK_GPIO, val);
2077
2078 /* Enable GMII mode on the XMAC. */
2079 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2080
2081 sk_xmac_miibus_writereg((struct device *)sc_if,
2082 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2083 DELAY(10000);
2084 sk_xmac_miibus_writereg((struct device *)sc_if,
2085 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2086
2087 /*
2088 * Early versions of the BCM5400 apparently have
2089 * a bug that requires them to have their reserved
2090 * registers initialized to some magic values. I don't
2091 * know what the numbers do, I'm just the messenger.
2092 */
2093 if (sk_xmac_miibus_readreg((struct device *)sc_if,
2094 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2095 while(bhack[i].reg) {
2096 sk_xmac_miibus_writereg((struct device *)sc_if,
2097 SK_PHYADDR_BCOM, bhack[i].reg,
2098 bhack[i].val);
2099 i++;
2100 }
2101 }
2102 }
2103
2104 /* Set station address */
2105 SK_XM_WRITE_2(sc_if, XM_PAR0,
2106 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2107 SK_XM_WRITE_2(sc_if, XM_PAR1,
2108 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2109 SK_XM_WRITE_2(sc_if, XM_PAR2,
2110 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2111 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2112
2113 if (ifp->if_flags & IFF_PROMISC) {
2114 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2115 } else {
2116 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2117 }
2118
2119 if (ifp->if_flags & IFF_BROADCAST) {
2120 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2121 } else {
2122 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2123 }
2124
2125 /* We don't need the FCS appended to the packet. */
2126 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2127
2128 /* We want short frames padded to 60 bytes. */
2129 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2130
2131 /*
2132 * Enable the reception of all error frames. This is is
2133 * a necessary evil due to the design of the XMAC. The
2134 * XMAC's receive FIFO is only 8K in size, however jumbo
2135 * frames can be up to 9000 bytes in length. When bad
2136 * frame filtering is enabled, the XMAC's RX FIFO operates
2137 * in 'store and forward' mode. For this to work, the
2138 * entire frame has to fit into the FIFO, but that means
2139 * that jumbo frames larger than 8192 bytes will be
2140 * truncated. Disabling all bad frame filtering causes
2141 * the RX FIFO to operate in streaming mode, in which
2142 * case the XMAC will start transfering frames out of the
2143 * RX FIFO as soon as the FIFO threshold is reached.
2144 */
2145 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2146 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2147 XM_MODE_RX_INRANGELEN);
2148
2149 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2150 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2151 else
2152 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2153
2154 /*
2155 * Bump up the transmit threshold. This helps hold off transmit
2156 * underruns when we're blasting traffic from both ports at once.
2157 */
2158 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2159
2160 /* Set multicast filter */
2161 sk_setmulti(sc_if);
2162
2163 /* Clear and enable interrupts */
2164 SK_XM_READ_2(sc_if, XM_ISR);
2165 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2166 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2167 else
2168 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2169
2170 /* Configure MAC arbiter */
2171 switch(sc_if->sk_xmac_rev) {
2172 case XM_XMAC_REV_B2:
2173 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2174 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2175 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2176 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2177 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2178 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2179 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2180 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2181 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2182 break;
2183 case XM_XMAC_REV_C1:
2184 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2185 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2186 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2187 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2188 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2189 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2190 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2191 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2192 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2193 break;
2194 default:
2195 break;
2196 }
2197 sk_win_write_2(sc, SK_MACARB_CTL,
2198 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2199
2200 sc_if->sk_link = 1;
2201 }
2202
2203 void sk_init_yukon(sc_if)
2204 struct sk_if_softc *sc_if;
2205 {
2206 u_int32_t /*mac, */phy;
2207 u_int16_t reg;
2208 int i;
2209
2210 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2211 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2212
2213 /* GMAC and GPHY Reset */
2214 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2215
2216 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2217
2218 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2219 DELAY(1000);
2220 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2221 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2222 DELAY(1000);
2223
2224
2225 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2226
2227 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2228 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2229
2230 switch(sc_if->sk_softc->sk_pmd) {
2231 case IFM_1000_SX:
2232 case IFM_1000_LX:
2233 phy |= SK_GPHY_FIBER;
2234 break;
2235
2236 case IFM_1000_CX:
2237 case IFM_1000_T:
2238 phy |= SK_GPHY_COPPER;
2239 break;
2240 }
2241
2242 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2243
2244 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2245 DELAY(1000);
2246 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2247 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2248 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2249
2250 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2251 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2252
2253 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2254
2255 /* unused read of the interrupt source register */
2256 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2257 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2258
2259 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2260 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2261 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2262
2263 /* MIB Counter Clear Mode set */
2264 reg |= YU_PAR_MIB_CLR;
2265 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2266 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2267 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2268
2269 /* MIB Counter Clear Mode clear */
2270 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2271 reg &= ~YU_PAR_MIB_CLR;
2272 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2273
2274 /* receive control reg */
2275 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2276 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2277 YU_RCR_CRCR);
2278
2279 /* transmit parameter register */
2280 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2281 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2282 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2283
2284 /* serial mode register */
2285 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2286 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2287 YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e));
2288
2289 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2290 /* Setup Yukon's address */
2291 for (i = 0; i < 3; i++) {
2292 /* Write Source Address 1 (unicast filter) */
2293 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2294 sc_if->sk_enaddr[i * 2] |
2295 sc_if->sk_enaddr[i * 2 + 1] << 8);
2296 }
2297
2298 for (i = 0; i < 3; i++) {
2299 reg = sk_win_read_2(sc_if->sk_softc,
2300 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2301 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2302 }
2303
2304 /* clear all Multicast filter hash registers */
2305 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2306 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
2307 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
2308 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
2309 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
2310
2311 /* enable interrupt mask for counter overflows */
2312 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2313 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2314 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2315 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2316
2317 /* Configure RX MAC FIFO */
2318 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2319 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2320
2321 /* Configure TX MAC FIFO */
2322 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2323 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2324
2325 DPRINTFN(6, ("sk_init_yukon: end\n"));
2326 }
2327
2328 /*
2329 * Note that to properly initialize any part of the GEnesis chip,
2330 * you first have to take it out of reset mode.
2331 */
2332 int
2333 sk_init(struct ifnet *ifp)
2334 {
2335 struct sk_if_softc *sc_if = ifp->if_softc;
2336 struct sk_softc *sc = sc_if->sk_softc;
2337 struct mii_data *mii = &sc_if->sk_mii;
2338 int s;
2339
2340 DPRINTFN(1, ("sk_init\n"));
2341
2342 s = splnet();
2343
2344 /* Cancel pending I/O and free all RX/TX buffers. */
2345 sk_stop(ifp,0);
2346
2347 if (sc->sk_type == SK_GENESIS) {
2348 /* Configure LINK_SYNC LED */
2349 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2350 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2351 SK_LINKLED_LINKSYNC_ON);
2352
2353 /* Configure RX LED */
2354 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2355 SK_RXLEDCTL_COUNTER_START);
2356
2357 /* Configure TX LED */
2358 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2359 SK_TXLEDCTL_COUNTER_START);
2360 }
2361
2362 /* Configure I2C registers */
2363
2364 /* Configure XMAC(s) */
2365 switch (sc->sk_type) {
2366 case SK_GENESIS:
2367 sk_init_xmac(sc_if);
2368 break;
2369 case SK_YUKON:
2370 sk_init_yukon(sc_if);
2371 break;
2372 }
2373 mii_mediachg(mii);
2374
2375 if (sc->sk_type == SK_GENESIS) {
2376 /* Configure MAC FIFOs */
2377 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2378 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2379 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2380
2381 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2382 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2383 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2384 }
2385
2386 /* Configure transmit arbiter(s) */
2387 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2388 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2389
2390 /* Configure RAMbuffers */
2391 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2392 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2393 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2394 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2395 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2396 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2397
2398 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2399 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2400 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2401 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2402 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2403 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2404 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2405
2406 /* Configure BMUs */
2407 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2408 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2409 SK_RX_RING_ADDR(sc_if, 0));
2410 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2411
2412 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2413 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2414 SK_TX_RING_ADDR(sc_if, 0));
2415 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2416
2417 /* Init descriptors */
2418 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2419 printf("%s: initialization failed: no "
2420 "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2421 sk_stop(ifp,0);
2422 splx(s);
2423 return(ENOBUFS);
2424 }
2425
2426 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2427 printf("%s: initialization failed: no "
2428 "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2429 sk_stop(ifp,0);
2430 splx(s);
2431 return(ENOBUFS);
2432 }
2433
2434 /* Configure interrupt handling */
2435 CSR_READ_4(sc, SK_ISSR);
2436 if (sc_if->sk_port == SK_PORT_A)
2437 sc->sk_intrmask |= SK_INTRS1;
2438 else
2439 sc->sk_intrmask |= SK_INTRS2;
2440
2441 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2442
2443 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2444
2445 /* Start BMUs. */
2446 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2447
2448 if (sc->sk_type == SK_GENESIS) {
2449 /* Enable XMACs TX and RX state machines */
2450 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2451 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2452 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2453 }
2454
2455 if (sc->sk_type == SK_YUKON) {
2456 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2457 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2458 reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2459 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2460 }
2461
2462
2463 ifp->if_flags |= IFF_RUNNING;
2464 ifp->if_flags &= ~IFF_OACTIVE;
2465
2466 splx(s);
2467 return(0);
2468 }
2469
2470 void
2471 sk_stop(struct ifnet *ifp, int disable)
2472 {
2473 struct sk_if_softc *sc_if = ifp->if_softc;
2474 struct sk_softc *sc = sc_if->sk_softc;
2475 int i;
2476
2477 DPRINTFN(1, ("sk_stop\n"));
2478
2479 callout_stop(&sc_if->sk_tick_ch);
2480
2481 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2482 u_int32_t val;
2483
2484 /* Put PHY back into reset. */
2485 val = sk_win_read_4(sc, SK_GPIO);
2486 if (sc_if->sk_port == SK_PORT_A) {
2487 val |= SK_GPIO_DIR0;
2488 val &= ~SK_GPIO_DAT0;
2489 } else {
2490 val |= SK_GPIO_DIR2;
2491 val &= ~SK_GPIO_DAT2;
2492 }
2493 sk_win_write_4(sc, SK_GPIO, val);
2494 }
2495
2496 /* Turn off various components of this interface. */
2497 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2498 switch (sc->sk_type) {
2499 case SK_GENESIS:
2500 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2501 SK_TXMACCTL_XMAC_RESET);
2502 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2503 break;
2504 case SK_YUKON:
2505 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2506 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2507 break;
2508 }
2509 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2510 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2511 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2512 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2513 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2514 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2515 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2516 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2517 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2518
2519 /* Disable interrupts */
2520 if (sc_if->sk_port == SK_PORT_A)
2521 sc->sk_intrmask &= ~SK_INTRS1;
2522 else
2523 sc->sk_intrmask &= ~SK_INTRS2;
2524 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2525
2526 SK_XM_READ_2(sc_if, XM_ISR);
2527 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2528
2529 /* Free RX and TX mbufs still in the queues. */
2530 for (i = 0; i < SK_RX_RING_CNT; i++) {
2531 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2532 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2533 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2534 }
2535 }
2536
2537 for (i = 0; i < SK_TX_RING_CNT; i++) {
2538 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2539 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2540 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2541 }
2542 }
2543
2544 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2545 }
2546
2547 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2548
2549 /*
2550 struct cfdriver skc_cd = {
2551 0, "skc", DV_DULL
2552 };
2553 */
2554
2555 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2556
2557 /*
2558 struct cfdriver sk_cd = {
2559 0, "sk", DV_IFNET
2560 };
2561 */
2562
2563 #ifdef SK_DEBUG
2564 void
2565 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2566 {
2567 #define DESC_PRINT(X) \
2568 if (desc->X) \
2569 printf("txdesc[%d]." #X "=%#x\n", \
2570 idx, desc->X);
2571
2572 DESC_PRINT(sk_ctl);
2573 DESC_PRINT(sk_next);
2574 DESC_PRINT(sk_data_lo);
2575 DESC_PRINT(sk_data_hi);
2576 DESC_PRINT(sk_xmac_txstat);
2577 DESC_PRINT(sk_rsvd0);
2578 DESC_PRINT(sk_csum_startval);
2579 DESC_PRINT(sk_csum_startpos);
2580 DESC_PRINT(sk_csum_writepos);
2581 DESC_PRINT(sk_rsvd1);
2582 #undef PRINT
2583 }
2584
2585 void
2586 sk_dump_bytes(const char *data, int len)
2587 {
2588 int c, i, j;
2589
2590 for (i = 0; i < len; i += 16) {
2591 printf("%08x ", i);
2592 c = len - i;
2593 if (c > 16) c = 16;
2594
2595 for (j = 0; j < c; j++) {
2596 printf("%02x ", data[i + j] & 0xff);
2597 if ((j & 0xf) == 7 && j > 0)
2598 printf(" ");
2599 }
2600
2601 for (; j < 16; j++)
2602 printf(" ");
2603 printf(" ");
2604
2605 for (j = 0; j < c; j++) {
2606 int ch = data[i + j] & 0xff;
2607 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2608 }
2609
2610 printf("\n");
2611
2612 if (c < 16)
2613 break;
2614 }
2615 }
2616
2617 void
2618 sk_dump_mbuf(struct mbuf *m)
2619 {
2620 int count = m->m_pkthdr.len;
2621
2622 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2623
2624 while (count > 0 && m) {
2625 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2626 m, m->m_data, m->m_len);
2627 sk_dump_bytes(mtod(m, char *), m->m_len);
2628
2629 count -= m->m_len;
2630 m = m->m_next;
2631 }
2632 }
2633 #endif
2634