if_sk.c revision 1.31 1 /* $NetBSD: if_sk.c,v 1.31 2006/08/25 02:34:30 riz Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the NetBSD
18 * Foundation, Inc. and its contributors.
19 * 4. Neither the name of The NetBSD Foundation nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
37
38 /*
39 * Copyright (c) 1997, 1998, 1999, 2000
40 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Bill Paul.
53 * 4. Neither the name of the author nor the names of any co-contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67 * THE POSSIBILITY OF SUCH DAMAGE.
68 *
69 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70 */
71
72 /*
73 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
74 *
75 * Permission to use, copy, modify, and distribute this software for any
76 * purpose with or without fee is hereby granted, provided that the above
77 * copyright notice and this permission notice appear in all copies.
78 *
79 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86 */
87
88 /*
89 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90 * the SK-984x series adapters, both single port and dual port.
91 * References:
92 * The XaQti XMAC II datasheet,
93 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 * The SysKonnect GEnesis manual, http://www.syskonnect.com
95 *
96 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98 * convenience to others until Vitesse corrects this problem:
99 *
100 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101 *
102 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
103 * Department of Electrical Engineering
104 * Columbia University, New York City
105 */
106
107 /*
108 * The SysKonnect gigabit ethernet adapters consist of two main
109 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111 * components and a PHY while the GEnesis controller provides a PCI
112 * interface with DMA support. Each card may have between 512K and
113 * 2MB of SRAM on board depending on the configuration.
114 *
115 * The SysKonnect GEnesis controller can have either one or two XMAC
116 * chips connected to it, allowing single or dual port NIC configurations.
117 * SysKonnect has the distinction of being the only vendor on the market
118 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120 * XMAC registers. This driver takes advantage of these features to allow
121 * both XMACs to operate as independent interfaces.
122 */
123
124 #include "bpfilter.h"
125 #include "rnd.h"
126
127 #include <sys/param.h>
128 #include <sys/systm.h>
129 #include <sys/sockio.h>
130 #include <sys/mbuf.h>
131 #include <sys/malloc.h>
132 #include <sys/kernel.h>
133 #include <sys/socket.h>
134 #include <sys/device.h>
135 #include <sys/queue.h>
136 #include <sys/callout.h>
137 #include <sys/sysctl.h>
138 #include <sys/endian.h>
139
140 #include <net/if.h>
141 #include <net/if_dl.h>
142 #include <net/if_types.h>
143
144 #include <net/if_media.h>
145
146 #if NBPFILTER > 0
147 #include <net/bpf.h>
148 #endif
149 #if NRND > 0
150 #include <sys/rnd.h>
151 #endif
152
153 #include <dev/mii/mii.h>
154 #include <dev/mii/miivar.h>
155 #include <dev/mii/brgphyreg.h>
156
157 #include <dev/pci/pcireg.h>
158 #include <dev/pci/pcivar.h>
159 #include <dev/pci/pcidevs.h>
160
161 /* #define SK_USEIOSPACE */
162
163 #include <dev/pci/if_skreg.h>
164 #include <dev/pci/if_skvar.h>
165
166 int skc_probe(struct device *, struct cfdata *, void *);
167 void skc_attach(struct device *, struct device *self, void *aux);
168 int sk_probe(struct device *, struct cfdata *, void *);
169 void sk_attach(struct device *, struct device *self, void *aux);
170 int skcprint(void *, const char *);
171 int sk_intr(void *);
172 void sk_intr_bcom(struct sk_if_softc *);
173 void sk_intr_xmac(struct sk_if_softc *);
174 void sk_intr_yukon(struct sk_if_softc *);
175 void sk_rxeof(struct sk_if_softc *);
176 void sk_txeof(struct sk_if_softc *);
177 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
178 void sk_start(struct ifnet *);
179 int sk_ioctl(struct ifnet *, u_long, caddr_t);
180 int sk_init(struct ifnet *);
181 void sk_init_xmac(struct sk_if_softc *);
182 void sk_init_yukon(struct sk_if_softc *);
183 void sk_stop(struct ifnet *, int);
184 void sk_watchdog(struct ifnet *);
185 void sk_shutdown(void *);
186 int sk_ifmedia_upd(struct ifnet *);
187 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
188 void sk_reset(struct sk_softc *);
189 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
190 int sk_alloc_jumbo_mem(struct sk_if_softc *);
191 void sk_free_jumbo_mem(struct sk_if_softc *);
192 void *sk_jalloc(struct sk_if_softc *);
193 void sk_jfree(struct mbuf *, caddr_t, size_t, void *);
194 int sk_init_rx_ring(struct sk_if_softc *);
195 int sk_init_tx_ring(struct sk_if_softc *);
196 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
197 void sk_vpd_read_res(struct sk_softc *,
198 struct vpd_res *, int);
199 void sk_vpd_read(struct sk_softc *);
200
201 void sk_update_int_mod(struct sk_softc *);
202
203 int sk_xmac_miibus_readreg(struct device *, int, int);
204 void sk_xmac_miibus_writereg(struct device *, int, int, int);
205 void sk_xmac_miibus_statchg(struct device *);
206
207 int sk_marv_miibus_readreg(struct device *, int, int);
208 void sk_marv_miibus_writereg(struct device *, int, int, int);
209 void sk_marv_miibus_statchg(struct device *);
210
211 u_int32_t sk_xmac_hash(caddr_t);
212 u_int32_t sk_yukon_hash(caddr_t);
213 void sk_setfilt(struct sk_if_softc *, caddr_t, int);
214 void sk_setmulti(struct sk_if_softc *);
215 void sk_tick(void *);
216
217 /* #define SK_DEBUG 2 */
218 #ifdef SK_DEBUG
219 #define DPRINTF(x) if (skdebug) printf x
220 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
221 int skdebug = SK_DEBUG;
222
223 void sk_dump_txdesc(struct sk_tx_desc *, int);
224 void sk_dump_mbuf(struct mbuf *);
225 void sk_dump_bytes(const char *, int);
226 #else
227 #define DPRINTF(x)
228 #define DPRINTFN(n,x)
229 #endif
230
231 #define SK_SETBIT(sc, reg, x) \
232 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
233
234 #define SK_CLRBIT(sc, reg, x) \
235 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
236
237 #define SK_WIN_SETBIT_4(sc, reg, x) \
238 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
239
240 #define SK_WIN_CLRBIT_4(sc, reg, x) \
241 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
242
243 #define SK_WIN_SETBIT_2(sc, reg, x) \
244 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
245
246 #define SK_WIN_CLRBIT_2(sc, reg, x) \
247 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
248
249 static int sk_sysctl_handler(SYSCTLFN_PROTO);
250 static int sk_root_num;
251
252 /* supported device vendors */
253 static const struct sk_product {
254 pci_vendor_id_t sk_vendor;
255 pci_product_id_t sk_product;
256 } sk_products[] = {
257 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
258 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
259 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T, },
260 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
261 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
262 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
263 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
264 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
265 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
266 { 0, 0, }
267 };
268
269 #define SK_LINKSYS_EG1032_SUBID 0x00151737
270
271 static inline u_int32_t
272 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
273 {
274 #ifdef SK_USEIOSPACE
275 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
276 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
277 #else
278 return CSR_READ_4(sc, reg);
279 #endif
280 }
281
282 static inline u_int16_t
283 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
284 {
285 #ifdef SK_USEIOSPACE
286 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
287 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
288 #else
289 return CSR_READ_2(sc, reg);
290 #endif
291 }
292
293 static inline u_int8_t
294 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
295 {
296 #ifdef SK_USEIOSPACE
297 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
298 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
299 #else
300 return CSR_READ_1(sc, reg);
301 #endif
302 }
303
304 static inline void
305 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
306 {
307 #ifdef SK_USEIOSPACE
308 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
309 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
310 #else
311 CSR_WRITE_4(sc, reg, x);
312 #endif
313 }
314
315 static inline void
316 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
317 {
318 #ifdef SK_USEIOSPACE
319 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
320 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
321 #else
322 CSR_WRITE_2(sc, reg, x);
323 #endif
324 }
325
326 static inline void
327 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
328 {
329 #ifdef SK_USEIOSPACE
330 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
331 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
332 #else
333 CSR_WRITE_1(sc, reg, x);
334 #endif
335 }
336
337 /*
338 * The VPD EEPROM contains Vital Product Data, as suggested in
339 * the PCI 2.1 specification. The VPD data is separared into areas
340 * denoted by resource IDs. The SysKonnect VPD contains an ID string
341 * resource (the name of the adapter), a read-only area resource
342 * containing various key/data fields and a read/write area which
343 * can be used to store asset management information or log messages.
344 * We read the ID string and read-only into buffers attached to
345 * the controller softc structure for later use. At the moment,
346 * we only use the ID string during sk_attach().
347 */
348 u_int8_t
349 sk_vpd_readbyte(struct sk_softc *sc, int addr)
350 {
351 int i;
352
353 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
354 for (i = 0; i < SK_TIMEOUT; i++) {
355 DELAY(1);
356 if (sk_win_read_2(sc,
357 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
358 break;
359 }
360
361 if (i == SK_TIMEOUT)
362 return 0;
363
364 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
365 }
366
367 void
368 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
369 {
370 int i;
371 u_int8_t *ptr;
372
373 ptr = (u_int8_t *)res;
374 for (i = 0; i < sizeof(struct vpd_res); i++)
375 ptr[i] = sk_vpd_readbyte(sc, i + addr);
376 }
377
378 void
379 sk_vpd_read(struct sk_softc *sc)
380 {
381 int pos = 0, i;
382 struct vpd_res res;
383
384 if (sc->sk_vpd_prodname != NULL)
385 free(sc->sk_vpd_prodname, M_DEVBUF);
386 if (sc->sk_vpd_readonly != NULL)
387 free(sc->sk_vpd_readonly, M_DEVBUF);
388 sc->sk_vpd_prodname = NULL;
389 sc->sk_vpd_readonly = NULL;
390
391 sk_vpd_read_res(sc, &res, pos);
392
393 if (res.vr_id != VPD_RES_ID) {
394 aprint_error("%s: bad VPD resource id: expected %x got %x\n",
395 sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
396 return;
397 }
398
399 pos += sizeof(res);
400 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
401 if (sc->sk_vpd_prodname == NULL)
402 panic("sk_vpd_read");
403 for (i = 0; i < res.vr_len; i++)
404 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
405 sc->sk_vpd_prodname[i] = '\0';
406 pos += i;
407
408 sk_vpd_read_res(sc, &res, pos);
409
410 if (res.vr_id != VPD_RES_READ) {
411 aprint_error("%s: bad VPD resource id: expected %x got %x\n",
412 sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
413 return;
414 }
415
416 pos += sizeof(res);
417 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
418 if (sc->sk_vpd_readonly == NULL)
419 panic("sk_vpd_read");
420 for (i = 0; i < res.vr_len ; i++)
421 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
422 }
423
424 int
425 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
426 {
427 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
428 int i;
429
430 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
431
432 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
433 return 0;
434
435 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
436 SK_XM_READ_2(sc_if, XM_PHY_DATA);
437 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
438 for (i = 0; i < SK_TIMEOUT; i++) {
439 DELAY(1);
440 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
441 XM_MMUCMD_PHYDATARDY)
442 break;
443 }
444
445 if (i == SK_TIMEOUT) {
446 aprint_error("%s: phy failed to come ready\n",
447 sc_if->sk_dev.dv_xname);
448 return 0;
449 }
450 }
451 DELAY(1);
452 return SK_XM_READ_2(sc_if, XM_PHY_DATA);
453 }
454
455 void
456 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
457 {
458 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
459 int i;
460
461 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
462
463 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
464 for (i = 0; i < SK_TIMEOUT; i++) {
465 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
466 break;
467 }
468
469 if (i == SK_TIMEOUT) {
470 aprint_error("%s: phy failed to come ready\n",
471 sc_if->sk_dev.dv_xname);
472 return;
473 }
474
475 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
476 for (i = 0; i < SK_TIMEOUT; i++) {
477 DELAY(1);
478 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
479 break;
480 }
481
482 if (i == SK_TIMEOUT)
483 aprint_error("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
484 }
485
486 void
487 sk_xmac_miibus_statchg(struct device *dev)
488 {
489 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
490 struct mii_data *mii = &sc_if->sk_mii;
491
492 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
493
494 /*
495 * If this is a GMII PHY, manually set the XMAC's
496 * duplex mode accordingly.
497 */
498 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
499 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
500 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
501 else
502 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
503 }
504 }
505
506 int
507 sk_marv_miibus_readreg(struct device *dev, int phy, int reg)
508 {
509 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
510 u_int16_t val;
511 int i;
512
513 if (phy != 0 ||
514 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
515 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
516 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
517 phy, reg));
518 return 0;
519 }
520
521 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
522 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
523
524 for (i = 0; i < SK_TIMEOUT; i++) {
525 DELAY(1);
526 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
527 if (val & YU_SMICR_READ_VALID)
528 break;
529 }
530
531 if (i == SK_TIMEOUT) {
532 aprint_error("%s: phy failed to come ready\n",
533 sc_if->sk_dev.dv_xname);
534 return 0;
535 }
536
537 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
538 SK_TIMEOUT));
539
540 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
541
542 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
543 phy, reg, val));
544
545 return val;
546 }
547
548 void
549 sk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
550 {
551 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
552 int i;
553
554 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
555 phy, reg, val));
556
557 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
558 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
559 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
560
561 for (i = 0; i < SK_TIMEOUT; i++) {
562 DELAY(1);
563 if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
564 break;
565 }
566 }
567
568 void
569 sk_marv_miibus_statchg(struct device *dev)
570 {
571 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
572 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
573 }
574
575 #define SK_HASH_BITS 6
576
577 u_int32_t
578 sk_xmac_hash(caddr_t addr)
579 {
580 u_int32_t crc;
581
582 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
583 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
584 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
585 return crc;
586 }
587
588 u_int32_t
589 sk_yukon_hash(caddr_t addr)
590 {
591 u_int32_t crc;
592
593 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
594 crc &= ((1 << SK_HASH_BITS) - 1);
595 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
596 return crc;
597 }
598
599 void
600 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
601 {
602 int base = XM_RXFILT_ENTRY(slot);
603
604 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
605 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
606 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
607 }
608
609 void
610 sk_setmulti(struct sk_if_softc *sc_if)
611 {
612 struct sk_softc *sc = sc_if->sk_softc;
613 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
614 u_int32_t hashes[2] = { 0, 0 };
615 int h = 0, i;
616 struct ethercom *ec = &sc_if->sk_ethercom;
617 struct ether_multi *enm;
618 struct ether_multistep step;
619 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
620
621 /* First, zot all the existing filters. */
622 switch (sc->sk_type) {
623 case SK_GENESIS:
624 for (i = 1; i < XM_RXFILT_MAX; i++)
625 sk_setfilt(sc_if, (caddr_t)&dummy, i);
626
627 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
628 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
629 break;
630 case SK_YUKON:
631 case SK_YUKON_LITE:
632 case SK_YUKON_LP:
633 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
634 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
635 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
636 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
637 break;
638 }
639
640 /* Now program new ones. */
641 allmulti:
642 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
643 hashes[0] = 0xFFFFFFFF;
644 hashes[1] = 0xFFFFFFFF;
645 } else {
646 i = 1;
647 /* First find the tail of the list. */
648 ETHER_FIRST_MULTI(step, ec, enm);
649 while (enm != NULL) {
650 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
651 ETHER_ADDR_LEN)) {
652 ifp->if_flags |= IFF_ALLMULTI;
653 goto allmulti;
654 }
655 DPRINTFN(2,("multicast address %s\n",
656 ether_sprintf(enm->enm_addrlo)));
657 /*
658 * Program the first XM_RXFILT_MAX multicast groups
659 * into the perfect filter. For all others,
660 * use the hash table.
661 */
662 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
663 sk_setfilt(sc_if, enm->enm_addrlo, i);
664 i++;
665 }
666 else {
667 switch (sc->sk_type) {
668 case SK_GENESIS:
669 h = sk_xmac_hash(enm->enm_addrlo);
670 break;
671 case SK_YUKON:
672 case SK_YUKON_LITE:
673 case SK_YUKON_LP:
674 h = sk_yukon_hash(enm->enm_addrlo);
675 break;
676 }
677 if (h < 32)
678 hashes[0] |= (1 << h);
679 else
680 hashes[1] |= (1 << (h - 32));
681 }
682
683 ETHER_NEXT_MULTI(step, enm);
684 }
685 }
686
687 switch (sc->sk_type) {
688 case SK_GENESIS:
689 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
690 XM_MODE_RX_USE_PERFECT);
691 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
692 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
693 break;
694 case SK_YUKON:
695 case SK_YUKON_LITE:
696 case SK_YUKON_LP:
697 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
698 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
699 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
700 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
701 break;
702 }
703 }
704
705 int
706 sk_init_rx_ring(struct sk_if_softc *sc_if)
707 {
708 struct sk_chain_data *cd = &sc_if->sk_cdata;
709 struct sk_ring_data *rd = sc_if->sk_rdata;
710 int i;
711
712 bzero((char *)rd->sk_rx_ring,
713 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
714
715 for (i = 0; i < SK_RX_RING_CNT; i++) {
716 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
717 if (i == (SK_RX_RING_CNT - 1)) {
718 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
719 rd->sk_rx_ring[i].sk_next =
720 htole32(SK_RX_RING_ADDR(sc_if, 0));
721 } else {
722 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
723 rd->sk_rx_ring[i].sk_next =
724 htole32(SK_RX_RING_ADDR(sc_if,i+1));
725 }
726 }
727
728 for (i = 0; i < SK_RX_RING_CNT; i++) {
729 if (sk_newbuf(sc_if, i, NULL,
730 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
731 aprint_error("%s: failed alloc of %dth mbuf\n",
732 sc_if->sk_dev.dv_xname, i);
733 return ENOBUFS;
734 }
735 }
736 sc_if->sk_cdata.sk_rx_prod = 0;
737 sc_if->sk_cdata.sk_rx_cons = 0;
738
739 return 0;
740 }
741
742 int
743 sk_init_tx_ring(struct sk_if_softc *sc_if)
744 {
745 struct sk_chain_data *cd = &sc_if->sk_cdata;
746 struct sk_ring_data *rd = sc_if->sk_rdata;
747 int i;
748
749 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
750 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
751
752 for (i = 0; i < SK_TX_RING_CNT; i++) {
753 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
754 if (i == (SK_TX_RING_CNT - 1)) {
755 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
756 rd->sk_tx_ring[i].sk_next =
757 htole32(SK_TX_RING_ADDR(sc_if, 0));
758 } else {
759 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
760 rd->sk_tx_ring[i].sk_next =
761 htole32(SK_TX_RING_ADDR(sc_if,i+1));
762 }
763 }
764
765 sc_if->sk_cdata.sk_tx_prod = 0;
766 sc_if->sk_cdata.sk_tx_cons = 0;
767 sc_if->sk_cdata.sk_tx_cnt = 0;
768
769 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
770 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
771
772 return 0;
773 }
774
775 int
776 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
777 bus_dmamap_t dmamap)
778 {
779 struct mbuf *m_new = NULL;
780 struct sk_chain *c;
781 struct sk_rx_desc *r;
782
783 if (m == NULL) {
784 caddr_t buf = NULL;
785
786 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
787 if (m_new == NULL) {
788 aprint_error("%s: no memory for rx list -- "
789 "packet dropped!\n", sc_if->sk_dev.dv_xname);
790 return ENOBUFS;
791 }
792
793 /* Allocate the jumbo buffer */
794 buf = sk_jalloc(sc_if);
795 if (buf == NULL) {
796 m_freem(m_new);
797 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
798 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
799 return ENOBUFS;
800 }
801
802 /* Attach the buffer to the mbuf */
803 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
804 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
805
806 } else {
807 /*
808 * We're re-using a previously allocated mbuf;
809 * be sure to re-init pointers and lengths to
810 * default values.
811 */
812 m_new = m;
813 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
814 m_new->m_data = m_new->m_ext.ext_buf;
815 }
816 m_adj(m_new, ETHER_ALIGN);
817
818 c = &sc_if->sk_cdata.sk_rx_chain[i];
819 r = c->sk_desc;
820 c->sk_mbuf = m_new;
821 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
822 (((vaddr_t)m_new->m_data
823 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
824 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
825
826 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
827
828 return 0;
829 }
830
831 /*
832 * Memory management for jumbo frames.
833 */
834
835 int
836 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
837 {
838 struct sk_softc *sc = sc_if->sk_softc;
839 caddr_t ptr, kva;
840 bus_dma_segment_t seg;
841 int i, rseg, state, error;
842 struct sk_jpool_entry *entry;
843
844 state = error = 0;
845
846 /* Grab a big chunk o' storage. */
847 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
848 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
849 aprint_error("%s: can't alloc rx buffers\n", sc->sk_dev.dv_xname);
850 return ENOBUFS;
851 }
852
853 state = 1;
854 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, &kva,
855 BUS_DMA_NOWAIT)) {
856 aprint_error("%s: can't map dma buffers (%d bytes)\n",
857 sc->sk_dev.dv_xname, SK_JMEM);
858 error = ENOBUFS;
859 goto out;
860 }
861
862 state = 2;
863 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
864 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
865 aprint_error("%s: can't create dma map\n", sc->sk_dev.dv_xname);
866 error = ENOBUFS;
867 goto out;
868 }
869
870 state = 3;
871 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
872 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
873 aprint_error("%s: can't load dma map\n", sc->sk_dev.dv_xname);
874 error = ENOBUFS;
875 goto out;
876 }
877
878 state = 4;
879 sc_if->sk_cdata.sk_jumbo_buf = (caddr_t)kva;
880 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
881
882 LIST_INIT(&sc_if->sk_jfree_listhead);
883 LIST_INIT(&sc_if->sk_jinuse_listhead);
884
885 /*
886 * Now divide it up into 9K pieces and save the addresses
887 * in an array.
888 */
889 ptr = sc_if->sk_cdata.sk_jumbo_buf;
890 for (i = 0; i < SK_JSLOTS; i++) {
891 sc_if->sk_cdata.sk_jslots[i] = ptr;
892 ptr += SK_JLEN;
893 entry = malloc(sizeof(struct sk_jpool_entry),
894 M_DEVBUF, M_NOWAIT);
895 if (entry == NULL) {
896 aprint_error("%s: no memory for jumbo buffer queue!\n",
897 sc->sk_dev.dv_xname);
898 error = ENOBUFS;
899 goto out;
900 }
901 entry->slot = i;
902 if (i)
903 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
904 entry, jpool_entries);
905 else
906 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
907 entry, jpool_entries);
908 }
909 out:
910 if (error != 0) {
911 switch (state) {
912 case 4:
913 bus_dmamap_unload(sc->sc_dmatag,
914 sc_if->sk_cdata.sk_rx_jumbo_map);
915 case 3:
916 bus_dmamap_destroy(sc->sc_dmatag,
917 sc_if->sk_cdata.sk_rx_jumbo_map);
918 case 2:
919 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
920 case 1:
921 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
922 break;
923 default:
924 break;
925 }
926 }
927
928 return error;
929 }
930
931 /*
932 * Allocate a jumbo buffer.
933 */
934 void *
935 sk_jalloc(struct sk_if_softc *sc_if)
936 {
937 struct sk_jpool_entry *entry;
938
939 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
940
941 if (entry == NULL)
942 return NULL;
943
944 LIST_REMOVE(entry, jpool_entries);
945 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
946 return sc_if->sk_cdata.sk_jslots[entry->slot];
947 }
948
949 /*
950 * Release a jumbo buffer.
951 */
952 void
953 sk_jfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
954 {
955 struct sk_jpool_entry *entry;
956 struct sk_if_softc *sc;
957 int i, s;
958
959 /* Extract the softc struct pointer. */
960 sc = (struct sk_if_softc *)arg;
961
962 if (sc == NULL)
963 panic("sk_jfree: can't find softc pointer!");
964
965 /* calculate the slot this buffer belongs to */
966
967 i = ((vaddr_t)buf
968 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
969
970 if ((i < 0) || (i >= SK_JSLOTS))
971 panic("sk_jfree: asked to free buffer that we don't manage!");
972
973 s = splvm();
974 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
975 if (entry == NULL)
976 panic("sk_jfree: buffer not in use!");
977 entry->slot = i;
978 LIST_REMOVE(entry, jpool_entries);
979 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
980
981 if (__predict_true(m != NULL))
982 pool_cache_put(&mbpool_cache, m);
983 splx(s);
984 }
985
986 /*
987 * Set media options.
988 */
989 int
990 sk_ifmedia_upd(struct ifnet *ifp)
991 {
992 struct sk_if_softc *sc_if = ifp->if_softc;
993
994 (void) sk_init(ifp);
995 mii_mediachg(&sc_if->sk_mii);
996 return 0;
997 }
998
999 /*
1000 * Report current media status.
1001 */
1002 void
1003 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1004 {
1005 struct sk_if_softc *sc_if = ifp->if_softc;
1006
1007 mii_pollstat(&sc_if->sk_mii);
1008 ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
1009 ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
1010 }
1011
1012 int
1013 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1014 {
1015 struct sk_if_softc *sc_if = ifp->if_softc;
1016 struct sk_softc *sc = sc_if->sk_softc;
1017 struct ifreq *ifr = (struct ifreq *) data;
1018 struct mii_data *mii;
1019 int s, error = 0;
1020
1021 /* DPRINTFN(2, ("sk_ioctl\n")); */
1022
1023 s = splnet();
1024
1025 switch (command) {
1026
1027 case SIOCSIFFLAGS:
1028 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1029 if (ifp->if_flags & IFF_UP) {
1030 if (ifp->if_flags & IFF_RUNNING &&
1031 ifp->if_flags & IFF_PROMISC &&
1032 !(sc_if->sk_if_flags & IFF_PROMISC)) {
1033 switch (sc->sk_type) {
1034 case SK_GENESIS:
1035 SK_XM_SETBIT_4(sc_if, XM_MODE,
1036 XM_MODE_RX_PROMISC);
1037 break;
1038 case SK_YUKON:
1039 case SK_YUKON_LITE:
1040 case SK_YUKON_LP:
1041 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1042 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1043 break;
1044 }
1045 sk_setmulti(sc_if);
1046 } else if (ifp->if_flags & IFF_RUNNING &&
1047 !(ifp->if_flags & IFF_PROMISC) &&
1048 sc_if->sk_if_flags & IFF_PROMISC) {
1049 switch (sc->sk_type) {
1050 case SK_GENESIS:
1051 SK_XM_CLRBIT_4(sc_if, XM_MODE,
1052 XM_MODE_RX_PROMISC);
1053 break;
1054 case SK_YUKON:
1055 case SK_YUKON_LITE:
1056 case SK_YUKON_LP:
1057 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1058 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1059 break;
1060 }
1061
1062 sk_setmulti(sc_if);
1063 } else
1064 (void) sk_init(ifp);
1065 } else {
1066 if (ifp->if_flags & IFF_RUNNING)
1067 sk_stop(ifp,0);
1068 }
1069 sc_if->sk_if_flags = ifp->if_flags;
1070 error = 0;
1071 break;
1072
1073 case SIOCGIFMEDIA:
1074 case SIOCSIFMEDIA:
1075 DPRINTFN(2, ("sk_ioctl MEDIA\n"));
1076 mii = &sc_if->sk_mii;
1077 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1078 break;
1079 default:
1080 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1081 error = ether_ioctl(ifp, command, data);
1082
1083 if ( error == ENETRESET) {
1084 if (ifp->if_flags & IFF_RUNNING) {
1085 sk_setmulti(sc_if);
1086 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1087 }
1088 error = 0;
1089 } else if ( error ) {
1090 splx(s);
1091 return error;
1092 }
1093 break;
1094 }
1095
1096 splx(s);
1097 return error;
1098 }
1099
1100 void
1101 sk_update_int_mod(struct sk_softc *sc)
1102 {
1103 u_int32_t sk_imtimer_ticks;
1104
1105 /*
1106 * Configure interrupt moderation. The moderation timer
1107 * defers interrupts specified in the interrupt moderation
1108 * timer mask based on the timeout specified in the interrupt
1109 * moderation timer init register. Each bit in the timer
1110 * register represents one tick, so to specify a timeout in
1111 * microseconds, we have to multiply by the correct number of
1112 * ticks-per-microsecond.
1113 */
1114 switch (sc->sk_type) {
1115 case SK_GENESIS:
1116 sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1117 break;
1118 case SK_YUKON_EC:
1119 sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1120 break;
1121 default:
1122 sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1123 }
1124 aprint_verbose("%s: interrupt moderation is %d us\n",
1125 sc->sk_dev.dv_xname, sc->sk_int_mod);
1126 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1127 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1128 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1129 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1130 sc->sk_int_mod_pending = 0;
1131 }
1132
1133 /*
1134 * Lookup: Check the PCI vendor and device, and return a pointer to
1135 * The structure if the IDs match against our list.
1136 */
1137
1138 static const struct sk_product *
1139 sk_lookup(const struct pci_attach_args *pa)
1140 {
1141 const struct sk_product *psk;
1142
1143 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1144 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1145 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1146 return psk;
1147 }
1148 return NULL;
1149 }
1150
1151 /*
1152 * Probe for a SysKonnect GEnesis chip.
1153 */
1154
1155 int
1156 skc_probe(struct device *parent, struct cfdata *match, void *aux)
1157 {
1158 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1159 const struct sk_product *psk;
1160 pcireg_t subid;
1161
1162 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1163
1164 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1165 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1166 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1167 subid == SK_LINKSYS_EG1032_SUBID)
1168 return 1;
1169
1170 if ((psk = sk_lookup(pa))) {
1171 return 1;
1172 }
1173 return 0;
1174 }
1175
1176 /*
1177 * Force the GEnesis into reset, then bring it out of reset.
1178 */
1179 void sk_reset(struct sk_softc *sc)
1180 {
1181 DPRINTFN(2, ("sk_reset\n"));
1182
1183 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1184 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1185 if (SK_YUKON_FAMILY(sc->sk_type))
1186 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1187
1188 DELAY(1000);
1189 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1190 DELAY(2);
1191 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1192 if (SK_YUKON_FAMILY(sc->sk_type))
1193 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1194
1195 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1196 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1197 CSR_READ_2(sc, SK_LINK_CTRL)));
1198
1199 if (sc->sk_type == SK_GENESIS) {
1200 /* Configure packet arbiter */
1201 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1202 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1203 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1204 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1205 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1206 }
1207
1208 /* Enable RAM interface */
1209 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1210
1211 sk_update_int_mod(sc);
1212 }
1213
1214 int
1215 sk_probe(struct device *parent, struct cfdata *match, void *aux)
1216 {
1217 struct skc_attach_args *sa = aux;
1218
1219 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1220 return 0;
1221
1222 return 1;
1223 }
1224
1225 /*
1226 * Each XMAC chip is attached as a separate logical IP interface.
1227 * Single port cards will have only one logical interface of course.
1228 */
1229 void
1230 sk_attach(struct device *parent, struct device *self, void *aux)
1231 {
1232 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1233 struct sk_softc *sc = (struct sk_softc *)parent;
1234 struct skc_attach_args *sa = aux;
1235 struct sk_txmap_entry *entry;
1236 struct ifnet *ifp;
1237 bus_dma_segment_t seg;
1238 bus_dmamap_t dmamap;
1239 caddr_t kva;
1240 int i, rseg;
1241
1242 sc_if->sk_port = sa->skc_port;
1243 sc_if->sk_softc = sc;
1244 sc->sk_if[sa->skc_port] = sc_if;
1245
1246 if (sa->skc_port == SK_PORT_A)
1247 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1248 if (sa->skc_port == SK_PORT_B)
1249 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1250
1251 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1252
1253 /*
1254 * Get station address for this interface. Note that
1255 * dual port cards actually come with three station
1256 * addresses: one for each port, plus an extra. The
1257 * extra one is used by the SysKonnect driver software
1258 * as a 'virtual' station address for when both ports
1259 * are operating in failover mode. Currently we don't
1260 * use this extra address.
1261 */
1262 for (i = 0; i < ETHER_ADDR_LEN; i++)
1263 sc_if->sk_enaddr[i] =
1264 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1265
1266
1267 aprint_normal(": Ethernet address %s\n",
1268 ether_sprintf(sc_if->sk_enaddr));
1269
1270 /*
1271 * Set up RAM buffer addresses. The NIC will have a certain
1272 * amount of SRAM on it, somewhere between 512K and 2MB. We
1273 * need to divide this up a) between the transmitter and
1274 * receiver and b) between the two XMACs, if this is a
1275 * dual port NIC. Our algorithm is to divide up the memory
1276 * evenly so that everyone gets a fair share.
1277 */
1278 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1279 u_int32_t chunk, val;
1280
1281 chunk = sc->sk_ramsize / 2;
1282 val = sc->sk_rboff / sizeof(u_int64_t);
1283 sc_if->sk_rx_ramstart = val;
1284 val += (chunk / sizeof(u_int64_t));
1285 sc_if->sk_rx_ramend = val - 1;
1286 sc_if->sk_tx_ramstart = val;
1287 val += (chunk / sizeof(u_int64_t));
1288 sc_if->sk_tx_ramend = val - 1;
1289 } else {
1290 u_int32_t chunk, val;
1291
1292 chunk = sc->sk_ramsize / 4;
1293 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1294 sizeof(u_int64_t);
1295 sc_if->sk_rx_ramstart = val;
1296 val += (chunk / sizeof(u_int64_t));
1297 sc_if->sk_rx_ramend = val - 1;
1298 sc_if->sk_tx_ramstart = val;
1299 val += (chunk / sizeof(u_int64_t));
1300 sc_if->sk_tx_ramend = val - 1;
1301 }
1302
1303 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1304 " tx_ramstart=%#x tx_ramend=%#x\n",
1305 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1306 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1307
1308 /* Read and save PHY type and set PHY address */
1309 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1310 switch (sc_if->sk_phytype) {
1311 case SK_PHYTYPE_XMAC:
1312 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1313 break;
1314 case SK_PHYTYPE_BCOM:
1315 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1316 break;
1317 case SK_PHYTYPE_MARV_COPPER:
1318 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1319 break;
1320 default:
1321 aprint_error("%s: unsupported PHY type: %d\n",
1322 sc->sk_dev.dv_xname, sc_if->sk_phytype);
1323 return;
1324 }
1325
1326 /* Allocate the descriptor queues. */
1327 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1328 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1329 aprint_error("%s: can't alloc rx buffers\n",
1330 sc->sk_dev.dv_xname);
1331 goto fail;
1332 }
1333 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1334 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1335 aprint_error("%s: can't map dma buffers (%lu bytes)\n",
1336 sc_if->sk_dev.dv_xname,
1337 (u_long) sizeof(struct sk_ring_data));
1338 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1339 goto fail;
1340 }
1341 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1342 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1343 &sc_if->sk_ring_map)) {
1344 aprint_error("%s: can't create dma map\n",
1345 sc_if->sk_dev.dv_xname);
1346 bus_dmamem_unmap(sc->sc_dmatag, kva,
1347 sizeof(struct sk_ring_data));
1348 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1349 goto fail;
1350 }
1351 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1352 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1353 aprint_error("%s: can't load dma map\n",
1354 sc_if->sk_dev.dv_xname);
1355 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1356 bus_dmamem_unmap(sc->sc_dmatag, kva,
1357 sizeof(struct sk_ring_data));
1358 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1359 goto fail;
1360 }
1361
1362 for (i = 0; i < SK_RX_RING_CNT; i++)
1363 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1364
1365 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1366 for (i = 0; i < SK_TX_RING_CNT; i++) {
1367 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1368
1369 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1370 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1371 aprint_error("%s: Can't create TX dmamap\n",
1372 sc_if->sk_dev.dv_xname);
1373 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1374 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1375 bus_dmamem_unmap(sc->sc_dmatag, kva,
1376 sizeof(struct sk_ring_data));
1377 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1378 goto fail;
1379 }
1380
1381 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1382 if (!entry) {
1383 aprint_error("%s: Can't alloc txmap entry\n",
1384 sc_if->sk_dev.dv_xname);
1385 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1386 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1387 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1388 bus_dmamem_unmap(sc->sc_dmatag, kva,
1389 sizeof(struct sk_ring_data));
1390 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1391 goto fail;
1392 }
1393 entry->dmamap = dmamap;
1394 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1395 }
1396
1397 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1398 bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1399
1400 ifp = &sc_if->sk_ethercom.ec_if;
1401 /* Try to allocate memory for jumbo buffers. */
1402 if (sk_alloc_jumbo_mem(sc_if)) {
1403 aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1404 goto fail;
1405 }
1406 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1407 | ETHERCAP_JUMBO_MTU;
1408
1409 ifp->if_softc = sc_if;
1410 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1411 ifp->if_ioctl = sk_ioctl;
1412 ifp->if_start = sk_start;
1413 ifp->if_stop = sk_stop;
1414 ifp->if_init = sk_init;
1415 ifp->if_watchdog = sk_watchdog;
1416 ifp->if_capabilities = 0;
1417 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1418 IFQ_SET_READY(&ifp->if_snd);
1419 strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1420
1421 /*
1422 * Do miibus setup.
1423 */
1424 switch (sc->sk_type) {
1425 case SK_GENESIS:
1426 sk_init_xmac(sc_if);
1427 break;
1428 case SK_YUKON:
1429 case SK_YUKON_LITE:
1430 case SK_YUKON_LP:
1431 sk_init_yukon(sc_if);
1432 break;
1433 default:
1434 panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
1435 sc->sk_type);
1436 }
1437
1438 DPRINTFN(2, ("sk_attach: 1\n"));
1439
1440 sc_if->sk_mii.mii_ifp = ifp;
1441 switch (sc->sk_type) {
1442 case SK_GENESIS:
1443 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1444 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1445 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1446 break;
1447 case SK_YUKON:
1448 case SK_YUKON_LITE:
1449 case SK_YUKON_LP:
1450 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1451 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1452 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1453 break;
1454 }
1455
1456 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1457 sk_ifmedia_upd, sk_ifmedia_sts);
1458 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1459 MII_OFFSET_ANY, 0);
1460 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1461 aprint_error("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1462 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1463 0, NULL);
1464 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1465 } else
1466 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1467
1468 callout_init(&sc_if->sk_tick_ch);
1469 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1470
1471 DPRINTFN(2, ("sk_attach: 1\n"));
1472
1473 /*
1474 * Call MI attach routines.
1475 */
1476 if_attach(ifp);
1477
1478 ether_ifattach(ifp, sc_if->sk_enaddr);
1479
1480 #if NRND > 0
1481 rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
1482 RND_TYPE_NET, 0);
1483 #endif
1484
1485 DPRINTFN(2, ("sk_attach: end\n"));
1486
1487 return;
1488
1489 fail:
1490 sc->sk_if[sa->skc_port] = NULL;
1491 }
1492
1493 int
1494 skcprint(void *aux, const char *pnp)
1495 {
1496 struct skc_attach_args *sa = aux;
1497
1498 if (pnp)
1499 aprint_normal("sk port %c at %s",
1500 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1501 else
1502 aprint_normal(" port %c",
1503 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1504 return UNCONF;
1505 }
1506
1507 /*
1508 * Attach the interface. Allocate softc structures, do ifmedia
1509 * setup and ethernet/BPF attach.
1510 */
1511 void
1512 skc_attach(struct device *parent, struct device *self, void *aux)
1513 {
1514 struct sk_softc *sc = (struct sk_softc *)self;
1515 struct pci_attach_args *pa = aux;
1516 struct skc_attach_args skca;
1517 pci_chipset_tag_t pc = pa->pa_pc;
1518 #ifndef SK_USEIOSPACE
1519 pcireg_t memtype;
1520 #endif
1521 pci_intr_handle_t ih;
1522 const char *intrstr = NULL;
1523 bus_addr_t iobase;
1524 bus_size_t iosize;
1525 int rc, sk_nodenum;
1526 u_int32_t command;
1527 const char *revstr;
1528 const struct sysctlnode *node;
1529
1530 DPRINTFN(2, ("begin skc_attach\n"));
1531
1532 /*
1533 * Handle power management nonsense.
1534 */
1535 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1536
1537 if (command == 0x01) {
1538 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1539 if (command & SK_PSTATE_MASK) {
1540 u_int32_t xiobase, membase, irq;
1541
1542 /* Save important PCI config data. */
1543 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1544 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1545 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1546
1547 /* Reset the power state. */
1548 aprint_normal("%s chip is in D%d power mode "
1549 "-- setting to D0\n", sc->sk_dev.dv_xname,
1550 command & SK_PSTATE_MASK);
1551 command &= 0xFFFFFFFC;
1552 pci_conf_write(pc, pa->pa_tag,
1553 SK_PCI_PWRMGMTCTRL, command);
1554
1555 /* Restore PCI config data. */
1556 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1557 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1558 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1559 }
1560 }
1561
1562 /*
1563 * Map control/status registers.
1564 */
1565 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1566 command |= PCI_COMMAND_IO_ENABLE |
1567 PCI_COMMAND_MEM_ENABLE |
1568 PCI_COMMAND_MASTER_ENABLE;
1569 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1570 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1571
1572 #ifdef SK_USEIOSPACE
1573 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1574 aprint_error(": failed to enable I/O ports!\n");
1575 return;
1576 }
1577 /*
1578 * Map control/status registers.
1579 */
1580 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1581 &sc->sk_btag, &sc->sk_bhandle,
1582 &iobase, &iosize)) {
1583 aprint_error(": can't find i/o space\n");
1584 return;
1585 }
1586 #else
1587 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1588 aprint_error(": failed to enable memory mapping!\n");
1589 return;
1590 }
1591 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1592 switch (memtype) {
1593 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1594 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1595 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1596 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1597 &iobase, &iosize) == 0)
1598 break;
1599 default:
1600 aprint_error("%s: can't find mem space\n",
1601 sc->sk_dev.dv_xname);
1602 return;
1603 }
1604
1605 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1606 #endif
1607 sc->sc_dmatag = pa->pa_dmat;
1608
1609 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1610 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1611
1612 /* bail out here if chip is not recognized */
1613 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1614 aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
1615 goto fail;
1616 }
1617 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1618
1619 /* Allocate interrupt */
1620 if (pci_intr_map(pa, &ih)) {
1621 aprint_error(": couldn't map interrupt\n");
1622 goto fail;
1623 }
1624
1625 intrstr = pci_intr_string(pc, ih);
1626 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1627 if (sc->sk_intrhand == NULL) {
1628 aprint_error(": couldn't establish interrupt");
1629 if (intrstr != NULL)
1630 aprint_normal(" at %s", intrstr);
1631 goto fail;
1632 }
1633 aprint_normal(": %s\n", intrstr);
1634
1635 /* Reset the adapter. */
1636 sk_reset(sc);
1637
1638 /* Read and save vital product data from EEPROM. */
1639 sk_vpd_read(sc);
1640
1641 if (sc->sk_type == SK_GENESIS) {
1642 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1643 /* Read and save RAM size and RAMbuffer offset */
1644 switch (val) {
1645 case SK_RAMSIZE_512K_64:
1646 sc->sk_ramsize = 0x80000;
1647 sc->sk_rboff = SK_RBOFF_0;
1648 break;
1649 case SK_RAMSIZE_1024K_64:
1650 sc->sk_ramsize = 0x100000;
1651 sc->sk_rboff = SK_RBOFF_80000;
1652 break;
1653 case SK_RAMSIZE_1024K_128:
1654 sc->sk_ramsize = 0x100000;
1655 sc->sk_rboff = SK_RBOFF_0;
1656 break;
1657 case SK_RAMSIZE_2048K_128:
1658 sc->sk_ramsize = 0x200000;
1659 sc->sk_rboff = SK_RBOFF_0;
1660 break;
1661 default:
1662 aprint_error("%s: unknown ram size: %d\n",
1663 sc->sk_dev.dv_xname, val);
1664 goto fail_1;
1665 break;
1666 }
1667
1668 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1669 sc->sk_ramsize, sc->sk_ramsize / 1024,
1670 sc->sk_rboff));
1671 } else {
1672 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1673 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1674 sc->sk_rboff = SK_RBOFF_0;
1675
1676 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1677 sc->sk_ramsize / 1024, sc->sk_ramsize,
1678 sc->sk_rboff));
1679 }
1680
1681 /* Read and save physical media type */
1682 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1683 case SK_PMD_1000BASESX:
1684 sc->sk_pmd = IFM_1000_SX;
1685 break;
1686 case SK_PMD_1000BASELX:
1687 sc->sk_pmd = IFM_1000_LX;
1688 break;
1689 case SK_PMD_1000BASECX:
1690 sc->sk_pmd = IFM_1000_CX;
1691 break;
1692 case SK_PMD_1000BASETX:
1693 case SK_PMD_1000BASETX_ALT:
1694 sc->sk_pmd = IFM_1000_T;
1695 break;
1696 default:
1697 aprint_error("%s: unknown media type: 0x%x\n",
1698 sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
1699 goto fail_1;
1700 }
1701
1702 /* determine whether to name it with vpd or just make it up */
1703 /* Marvell Yukon VPD's can freqently be bogus */
1704
1705 switch (pa->pa_id) {
1706 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1707 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1708 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1709 case PCI_PRODUCT_3COM_3C940:
1710 case PCI_PRODUCT_DLINK_DGE530T:
1711 case PCI_PRODUCT_DLINK_DGE560T:
1712 case PCI_PRODUCT_DLINK_DGE560T_2:
1713 case PCI_PRODUCT_LINKSYS_EG1032:
1714 case PCI_PRODUCT_LINKSYS_EG1064:
1715 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1716 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1717 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1718 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1719 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1720 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1721 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1722 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1723 sc->sk_name = sc->sk_vpd_prodname;
1724 break;
1725 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1726 /* whoops yukon vpd prodname bears no resemblance to reality */
1727 switch (sc->sk_type) {
1728 case SK_GENESIS:
1729 sc->sk_name = sc->sk_vpd_prodname;
1730 break;
1731 case SK_YUKON:
1732 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1733 break;
1734 case SK_YUKON_LITE:
1735 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1736 break;
1737 case SK_YUKON_LP:
1738 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1739 break;
1740 default:
1741 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1742 }
1743
1744 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1745
1746 if ( sc->sk_type == SK_YUKON ) {
1747 uint32_t flashaddr;
1748 uint8_t testbyte;
1749
1750 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1751
1752 /* test Flash-Address Register */
1753 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1754 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1755
1756 if (testbyte != 0) {
1757 /* this is yukon lite Rev. A0 */
1758 sc->sk_type = SK_YUKON_LITE;
1759 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1760 /* restore Flash-Address Register */
1761 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1762 }
1763 }
1764 break;
1765 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1766 sc->sk_name = sc->sk_vpd_prodname;
1767 break;
1768 default:
1769 sc->sk_name = "Unknown Marvell";
1770 }
1771
1772
1773 if ( sc->sk_type == SK_YUKON_LITE ) {
1774 switch (sc->sk_rev) {
1775 case SK_YUKON_LITE_REV_A0:
1776 revstr = "A0";
1777 break;
1778 case SK_YUKON_LITE_REV_A1:
1779 revstr = "A1";
1780 break;
1781 case SK_YUKON_LITE_REV_A3:
1782 revstr = "A3";
1783 break;
1784 default:
1785 revstr = "";
1786 }
1787 } else {
1788 revstr = "";
1789 }
1790
1791 /* Announce the product name. */
1792 aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
1793 sc->sk_name, revstr, sc->sk_rev);
1794
1795 skca.skc_port = SK_PORT_A;
1796 (void)config_found(&sc->sk_dev, &skca, skcprint);
1797
1798 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1799 skca.skc_port = SK_PORT_B;
1800 (void)config_found(&sc->sk_dev, &skca, skcprint);
1801 }
1802
1803 /* Turn on the 'driver is loaded' LED. */
1804 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1805
1806 /* skc sysctl setup */
1807
1808 sc->sk_int_mod = SK_IM_DEFAULT;
1809 sc->sk_int_mod_pending = 0;
1810
1811 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1812 0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
1813 SYSCTL_DESCR("skc per-controller controls"),
1814 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1815 CTL_EOL)) != 0) {
1816 aprint_normal("%s: couldn't create sysctl node\n",
1817 sc->sk_dev.dv_xname);
1818 goto fail_1;
1819 }
1820
1821 sk_nodenum = node->sysctl_num;
1822
1823 /* interrupt moderation time in usecs */
1824 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1825 CTLFLAG_READWRITE,
1826 CTLTYPE_INT, "int_mod",
1827 SYSCTL_DESCR("sk interrupt moderation timer"),
1828 sk_sysctl_handler, 0, sc,
1829 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1830 CTL_EOL)) != 0) {
1831 aprint_normal("%s: couldn't create int_mod sysctl node\n",
1832 sc->sk_dev.dv_xname);
1833 goto fail_1;
1834 }
1835
1836 return;
1837
1838 fail_1:
1839 pci_intr_disestablish(pc, sc->sk_intrhand);
1840 fail:
1841 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1842 }
1843
1844 int
1845 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1846 {
1847 struct sk_softc *sc = sc_if->sk_softc;
1848 struct sk_tx_desc *f = NULL;
1849 u_int32_t frag, cur, cnt = 0, sk_ctl;
1850 int i;
1851 struct sk_txmap_entry *entry;
1852 bus_dmamap_t txmap;
1853
1854 DPRINTFN(3, ("sk_encap\n"));
1855
1856 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1857 if (entry == NULL) {
1858 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1859 return ENOBUFS;
1860 }
1861 txmap = entry->dmamap;
1862
1863 cur = frag = *txidx;
1864
1865 #ifdef SK_DEBUG
1866 if (skdebug >= 3)
1867 sk_dump_mbuf(m_head);
1868 #endif
1869
1870 /*
1871 * Start packing the mbufs in this chain into
1872 * the fragment pointers. Stop when we run out
1873 * of fragments or hit the end of the mbuf chain.
1874 */
1875 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1876 BUS_DMA_NOWAIT)) {
1877 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1878 return ENOBUFS;
1879 }
1880
1881 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1882
1883 /* Sync the DMA map. */
1884 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1885 BUS_DMASYNC_PREWRITE);
1886
1887 for (i = 0; i < txmap->dm_nsegs; i++) {
1888 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1889 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1890 return ENOBUFS;
1891 }
1892 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1893 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1894 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1895 if (cnt == 0)
1896 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1897 else
1898 sk_ctl |= SK_TXCTL_OWN;
1899 f->sk_ctl = htole32(sk_ctl);
1900 cur = frag;
1901 SK_INC(frag, SK_TX_RING_CNT);
1902 cnt++;
1903 }
1904
1905 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1906 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1907
1908 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1909 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1910 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1911
1912 /* Sync descriptors before handing to chip */
1913 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1914 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1915
1916 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1917 htole32(SK_TXCTL_OWN);
1918
1919 /* Sync first descriptor to hand it off */
1920 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1921
1922 sc_if->sk_cdata.sk_tx_cnt += cnt;
1923
1924 #ifdef SK_DEBUG
1925 if (skdebug >= 3) {
1926 struct sk_tx_desc *desc;
1927 u_int32_t idx;
1928 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1929 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1930 sk_dump_txdesc(desc, idx);
1931 }
1932 }
1933 #endif
1934
1935 *txidx = frag;
1936
1937 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1938
1939 return 0;
1940 }
1941
1942 void
1943 sk_start(struct ifnet *ifp)
1944 {
1945 struct sk_if_softc *sc_if = ifp->if_softc;
1946 struct sk_softc *sc = sc_if->sk_softc;
1947 struct mbuf *m_head = NULL;
1948 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1949 int pkts = 0;
1950
1951 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1952 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1953
1954 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1955 IFQ_POLL(&ifp->if_snd, m_head);
1956 if (m_head == NULL)
1957 break;
1958
1959 /*
1960 * Pack the data into the transmit ring. If we
1961 * don't have room, set the OACTIVE flag and wait
1962 * for the NIC to drain the ring.
1963 */
1964 if (sk_encap(sc_if, m_head, &idx)) {
1965 ifp->if_flags |= IFF_OACTIVE;
1966 break;
1967 }
1968
1969 /* now we are committed to transmit the packet */
1970 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1971 pkts++;
1972
1973 /*
1974 * If there's a BPF listener, bounce a copy of this frame
1975 * to him.
1976 */
1977 #if NBPFILTER > 0
1978 if (ifp->if_bpf)
1979 bpf_mtap(ifp->if_bpf, m_head);
1980 #endif
1981 }
1982 if (pkts == 0)
1983 return;
1984
1985 /* Transmit */
1986 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1987 sc_if->sk_cdata.sk_tx_prod = idx;
1988 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1989
1990 /* Set a timeout in case the chip goes out to lunch. */
1991 ifp->if_timer = 5;
1992 }
1993 }
1994
1995
1996 void
1997 sk_watchdog(struct ifnet *ifp)
1998 {
1999 struct sk_if_softc *sc_if = ifp->if_softc;
2000
2001 aprint_error("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
2002 (void) sk_init(ifp);
2003 }
2004
2005 void
2006 sk_shutdown(void * v)
2007 {
2008 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
2009 struct sk_softc *sc = sc_if->sk_softc;
2010 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2011
2012 DPRINTFN(2, ("sk_shutdown\n"));
2013 sk_stop(ifp,1);
2014
2015 /* Turn off the 'driver is loaded' LED. */
2016 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2017
2018 /*
2019 * Reset the GEnesis controller. Doing this should also
2020 * assert the resets on the attached XMAC(s).
2021 */
2022 sk_reset(sc);
2023 }
2024
2025 void
2026 sk_rxeof(struct sk_if_softc *sc_if)
2027 {
2028 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2029 struct mbuf *m;
2030 struct sk_chain *cur_rx;
2031 struct sk_rx_desc *cur_desc;
2032 int i, cur, total_len = 0;
2033 u_int32_t rxstat, sk_ctl;
2034 bus_dmamap_t dmamap;
2035
2036 i = sc_if->sk_cdata.sk_rx_prod;
2037
2038 DPRINTFN(3, ("sk_rxeof %d\n", i));
2039
2040 for (;;) {
2041 cur = i;
2042
2043 /* Sync the descriptor */
2044 SK_CDRXSYNC(sc_if, cur,
2045 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2046
2047 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2048 if (sk_ctl & SK_RXCTL_OWN) {
2049 /* Invalidate the descriptor -- it's not ready yet */
2050 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2051 sc_if->sk_cdata.sk_rx_prod = i;
2052 break;
2053 }
2054
2055 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2056 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2057 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2058
2059 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2060 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2061
2062 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2063 m = cur_rx->sk_mbuf;
2064 cur_rx->sk_mbuf = NULL;
2065 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2066
2067 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2068
2069 SK_INC(i, SK_RX_RING_CNT);
2070
2071 if (rxstat & XM_RXSTAT_ERRFRAME) {
2072 ifp->if_ierrors++;
2073 sk_newbuf(sc_if, cur, m, dmamap);
2074 continue;
2075 }
2076
2077 /*
2078 * Try to allocate a new jumbo buffer. If that
2079 * fails, copy the packet to mbufs and put the
2080 * jumbo buffer back in the ring so it can be
2081 * re-used. If allocating mbufs fails, then we
2082 * have to drop the packet.
2083 */
2084 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2085 struct mbuf *m0;
2086 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2087 total_len + ETHER_ALIGN, 0, ifp, NULL);
2088 sk_newbuf(sc_if, cur, m, dmamap);
2089 if (m0 == NULL) {
2090 aprint_error("%s: no receive buffers "
2091 "available -- packet dropped!\n",
2092 sc_if->sk_dev.dv_xname);
2093 ifp->if_ierrors++;
2094 continue;
2095 }
2096 m_adj(m0, ETHER_ALIGN);
2097 m = m0;
2098 } else {
2099 m->m_pkthdr.rcvif = ifp;
2100 m->m_pkthdr.len = m->m_len = total_len;
2101 }
2102
2103 ifp->if_ipackets++;
2104
2105 #if NBPFILTER > 0
2106 if (ifp->if_bpf)
2107 bpf_mtap(ifp->if_bpf, m);
2108 #endif
2109 /* pass it on. */
2110 (*ifp->if_input)(ifp, m);
2111 }
2112 }
2113
2114 void
2115 sk_txeof(struct sk_if_softc *sc_if)
2116 {
2117 struct sk_softc *sc = sc_if->sk_softc;
2118 struct sk_tx_desc *cur_tx;
2119 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2120 u_int32_t idx, sk_ctl;
2121 struct sk_txmap_entry *entry;
2122
2123 DPRINTFN(3, ("sk_txeof\n"));
2124
2125 /*
2126 * Go through our tx ring and free mbufs for those
2127 * frames that have been sent.
2128 */
2129 idx = sc_if->sk_cdata.sk_tx_cons;
2130 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2131 SK_CDTXSYNC(sc_if, idx, 1,
2132 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2133
2134 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2135 sk_ctl = le32toh(cur_tx->sk_ctl);
2136 #ifdef SK_DEBUG
2137 if (skdebug >= 3)
2138 sk_dump_txdesc(cur_tx, idx);
2139 #endif
2140 if (sk_ctl & SK_TXCTL_OWN) {
2141 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2142 break;
2143 }
2144 if (sk_ctl & SK_TXCTL_LASTFRAG)
2145 ifp->if_opackets++;
2146 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2147 entry = sc_if->sk_cdata.sk_tx_map[idx];
2148
2149 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2150 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2151
2152 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2153 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2154
2155 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2156 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2157 link);
2158 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2159 }
2160 sc_if->sk_cdata.sk_tx_cnt--;
2161 SK_INC(idx, SK_TX_RING_CNT);
2162 }
2163 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2164 ifp->if_timer = 0;
2165 else /* nudge chip to keep tx ring moving */
2166 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2167
2168 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2169 ifp->if_flags &= ~IFF_OACTIVE;
2170
2171 sc_if->sk_cdata.sk_tx_cons = idx;
2172 }
2173
2174 void
2175 sk_tick(void *xsc_if)
2176 {
2177 struct sk_if_softc *sc_if = xsc_if;
2178 struct mii_data *mii = &sc_if->sk_mii;
2179 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2180 int i;
2181
2182 DPRINTFN(3, ("sk_tick\n"));
2183
2184 if (!(ifp->if_flags & IFF_UP))
2185 return;
2186
2187 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2188 sk_intr_bcom(sc_if);
2189 return;
2190 }
2191
2192 /*
2193 * According to SysKonnect, the correct way to verify that
2194 * the link has come back up is to poll bit 0 of the GPIO
2195 * register three times. This pin has the signal from the
2196 * link sync pin connected to it; if we read the same link
2197 * state 3 times in a row, we know the link is up.
2198 */
2199 for (i = 0; i < 3; i++) {
2200 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2201 break;
2202 }
2203
2204 if (i != 3) {
2205 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2206 return;
2207 }
2208
2209 /* Turn the GP0 interrupt back on. */
2210 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2211 SK_XM_READ_2(sc_if, XM_ISR);
2212 mii_tick(mii);
2213 mii_pollstat(mii);
2214 callout_stop(&sc_if->sk_tick_ch);
2215 }
2216
2217 void
2218 sk_intr_bcom(struct sk_if_softc *sc_if)
2219 {
2220 struct mii_data *mii = &sc_if->sk_mii;
2221 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2222 int status;
2223
2224
2225 DPRINTFN(3, ("sk_intr_bcom\n"));
2226
2227 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2228
2229 /*
2230 * Read the PHY interrupt register to make sure
2231 * we clear any pending interrupts.
2232 */
2233 status = sk_xmac_miibus_readreg((struct device *)sc_if,
2234 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2235
2236 if (!(ifp->if_flags & IFF_RUNNING)) {
2237 sk_init_xmac(sc_if);
2238 return;
2239 }
2240
2241 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2242 int lstat;
2243 lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
2244 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2245
2246 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2247 mii_mediachg(mii);
2248 /* Turn off the link LED. */
2249 SK_IF_WRITE_1(sc_if, 0,
2250 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2251 sc_if->sk_link = 0;
2252 } else if (status & BRGPHY_ISR_LNK_CHG) {
2253 sk_xmac_miibus_writereg((struct device *)sc_if,
2254 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2255 mii_tick(mii);
2256 sc_if->sk_link = 1;
2257 /* Turn on the link LED. */
2258 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2259 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2260 SK_LINKLED_BLINK_OFF);
2261 mii_pollstat(mii);
2262 } else {
2263 mii_tick(mii);
2264 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2265 }
2266 }
2267
2268 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2269 }
2270
2271 void
2272 sk_intr_xmac(struct sk_if_softc *sc_if)
2273 {
2274 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2275
2276 DPRINTFN(3, ("sk_intr_xmac\n"));
2277
2278 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2279 if (status & XM_ISR_GP0_SET) {
2280 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2281 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2282 }
2283
2284 if (status & XM_ISR_AUTONEG_DONE) {
2285 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2286 }
2287 }
2288
2289 if (status & XM_IMR_TX_UNDERRUN)
2290 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2291
2292 if (status & XM_IMR_RX_OVERRUN)
2293 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2294 }
2295
2296 void
2297 sk_intr_yukon(struct sk_if_softc *sc_if)
2298 {
2299 int status;
2300
2301 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2302
2303 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2304 }
2305
2306 int
2307 sk_intr(void *xsc)
2308 {
2309 struct sk_softc *sc = xsc;
2310 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2311 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2312 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2313 u_int32_t status;
2314 int claimed = 0;
2315
2316 if (sc_if0 != NULL)
2317 ifp0 = &sc_if0->sk_ethercom.ec_if;
2318 if (sc_if1 != NULL)
2319 ifp1 = &sc_if1->sk_ethercom.ec_if;
2320
2321 for (;;) {
2322 status = CSR_READ_4(sc, SK_ISSR);
2323 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2324
2325 if (!(status & sc->sk_intrmask))
2326 break;
2327
2328 claimed = 1;
2329
2330 /* Handle receive interrupts first. */
2331 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2332 sk_rxeof(sc_if0);
2333 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2334 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2335 }
2336 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2337 sk_rxeof(sc_if1);
2338 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2339 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2340 }
2341
2342 /* Then transmit interrupts. */
2343 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2344 sk_txeof(sc_if0);
2345 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2346 SK_TXBMU_CLR_IRQ_EOF);
2347 }
2348 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2349 sk_txeof(sc_if1);
2350 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2351 SK_TXBMU_CLR_IRQ_EOF);
2352 }
2353
2354 /* Then MAC interrupts. */
2355 if (sc_if0 && (status & SK_ISR_MAC1) &&
2356 (ifp0->if_flags & IFF_RUNNING)) {
2357 if (sc->sk_type == SK_GENESIS)
2358 sk_intr_xmac(sc_if0);
2359 else
2360 sk_intr_yukon(sc_if0);
2361 }
2362
2363 if (sc_if1 && (status & SK_ISR_MAC2) &&
2364 (ifp1->if_flags & IFF_RUNNING)) {
2365 if (sc->sk_type == SK_GENESIS)
2366 sk_intr_xmac(sc_if1);
2367 else
2368 sk_intr_yukon(sc_if1);
2369
2370 }
2371
2372 if (status & SK_ISR_EXTERNAL_REG) {
2373 if (sc_if0 != NULL &&
2374 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2375 sk_intr_bcom(sc_if0);
2376
2377 if (sc_if1 != NULL &&
2378 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2379 sk_intr_bcom(sc_if1);
2380 }
2381 }
2382
2383 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2384
2385 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2386 sk_start(ifp0);
2387 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2388 sk_start(ifp1);
2389
2390 #if NRND > 0
2391 if (RND_ENABLED(&sc->rnd_source))
2392 rnd_add_uint32(&sc->rnd_source, status);
2393 #endif
2394
2395 if (sc->sk_int_mod_pending)
2396 sk_update_int_mod(sc);
2397
2398 return claimed;
2399 }
2400
2401 void
2402 sk_init_xmac(struct sk_if_softc *sc_if)
2403 {
2404 struct sk_softc *sc = sc_if->sk_softc;
2405 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2406 static const struct sk_bcom_hack bhack[] = {
2407 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2408 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2409 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2410 { 0, 0 } };
2411
2412 DPRINTFN(1, ("sk_init_xmac\n"));
2413
2414 /* Unreset the XMAC. */
2415 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2416 DELAY(1000);
2417
2418 /* Reset the XMAC's internal state. */
2419 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2420
2421 /* Save the XMAC II revision */
2422 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2423
2424 /*
2425 * Perform additional initialization for external PHYs,
2426 * namely for the 1000baseTX cards that use the XMAC's
2427 * GMII mode.
2428 */
2429 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2430 int i = 0;
2431 u_int32_t val;
2432
2433 /* Take PHY out of reset. */
2434 val = sk_win_read_4(sc, SK_GPIO);
2435 if (sc_if->sk_port == SK_PORT_A)
2436 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2437 else
2438 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2439 sk_win_write_4(sc, SK_GPIO, val);
2440
2441 /* Enable GMII mode on the XMAC. */
2442 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2443
2444 sk_xmac_miibus_writereg((struct device *)sc_if,
2445 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2446 DELAY(10000);
2447 sk_xmac_miibus_writereg((struct device *)sc_if,
2448 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2449
2450 /*
2451 * Early versions of the BCM5400 apparently have
2452 * a bug that requires them to have their reserved
2453 * registers initialized to some magic values. I don't
2454 * know what the numbers do, I'm just the messenger.
2455 */
2456 if (sk_xmac_miibus_readreg((struct device *)sc_if,
2457 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2458 while (bhack[i].reg) {
2459 sk_xmac_miibus_writereg((struct device *)sc_if,
2460 SK_PHYADDR_BCOM, bhack[i].reg,
2461 bhack[i].val);
2462 i++;
2463 }
2464 }
2465 }
2466
2467 /* Set station address */
2468 SK_XM_WRITE_2(sc_if, XM_PAR0,
2469 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2470 SK_XM_WRITE_2(sc_if, XM_PAR1,
2471 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2472 SK_XM_WRITE_2(sc_if, XM_PAR2,
2473 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2474 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2475
2476 if (ifp->if_flags & IFF_PROMISC)
2477 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2478 else
2479 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2480
2481 if (ifp->if_flags & IFF_BROADCAST)
2482 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2483 else
2484 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2485
2486 /* We don't need the FCS appended to the packet. */
2487 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2488
2489 /* We want short frames padded to 60 bytes. */
2490 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2491
2492 /*
2493 * Enable the reception of all error frames. This is is
2494 * a necessary evil due to the design of the XMAC. The
2495 * XMAC's receive FIFO is only 8K in size, however jumbo
2496 * frames can be up to 9000 bytes in length. When bad
2497 * frame filtering is enabled, the XMAC's RX FIFO operates
2498 * in 'store and forward' mode. For this to work, the
2499 * entire frame has to fit into the FIFO, but that means
2500 * that jumbo frames larger than 8192 bytes will be
2501 * truncated. Disabling all bad frame filtering causes
2502 * the RX FIFO to operate in streaming mode, in which
2503 * case the XMAC will start transfering frames out of the
2504 * RX FIFO as soon as the FIFO threshold is reached.
2505 */
2506 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2507 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2508 XM_MODE_RX_INRANGELEN);
2509
2510 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2511 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2512 else
2513 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2514
2515 /*
2516 * Bump up the transmit threshold. This helps hold off transmit
2517 * underruns when we're blasting traffic from both ports at once.
2518 */
2519 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2520
2521 /* Set multicast filter */
2522 sk_setmulti(sc_if);
2523
2524 /* Clear and enable interrupts */
2525 SK_XM_READ_2(sc_if, XM_ISR);
2526 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2527 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2528 else
2529 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2530
2531 /* Configure MAC arbiter */
2532 switch (sc_if->sk_xmac_rev) {
2533 case XM_XMAC_REV_B2:
2534 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2535 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2536 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2537 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2538 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2539 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2540 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2541 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2542 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2543 break;
2544 case XM_XMAC_REV_C1:
2545 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2546 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2547 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2548 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2549 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2550 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2551 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2552 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2553 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2554 break;
2555 default:
2556 break;
2557 }
2558 sk_win_write_2(sc, SK_MACARB_CTL,
2559 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2560
2561 sc_if->sk_link = 1;
2562 }
2563
2564 void sk_init_yukon(struct sk_if_softc *sc_if)
2565 {
2566 u_int32_t /*mac, */phy;
2567 u_int16_t reg;
2568 struct sk_softc *sc;
2569 int i;
2570
2571 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2572 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2573
2574 sc = sc_if->sk_softc;
2575 if (sc->sk_type == SK_YUKON_LITE &&
2576 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2577 /* Take PHY out of reset. */
2578 sk_win_write_4(sc, SK_GPIO,
2579 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2580 }
2581
2582
2583 /* GMAC and GPHY Reset */
2584 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2585
2586 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2587
2588 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2589 DELAY(1000);
2590 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2591 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2592 DELAY(1000);
2593
2594
2595 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2596
2597 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2598 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2599
2600 switch (sc_if->sk_softc->sk_pmd) {
2601 case IFM_1000_SX:
2602 case IFM_1000_LX:
2603 phy |= SK_GPHY_FIBER;
2604 break;
2605
2606 case IFM_1000_CX:
2607 case IFM_1000_T:
2608 phy |= SK_GPHY_COPPER;
2609 break;
2610 }
2611
2612 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2613
2614 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2615 DELAY(1000);
2616 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2617 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2618 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2619
2620 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2621 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2622
2623 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2624
2625 /* unused read of the interrupt source register */
2626 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2627 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2628
2629 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2630 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2631 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2632
2633 /* MIB Counter Clear Mode set */
2634 reg |= YU_PAR_MIB_CLR;
2635 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2636 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2637 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2638
2639 /* MIB Counter Clear Mode clear */
2640 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2641 reg &= ~YU_PAR_MIB_CLR;
2642 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2643
2644 /* receive control reg */
2645 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2646 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2647 YU_RCR_CRCR);
2648
2649 /* transmit parameter register */
2650 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2651 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2652 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2653
2654 /* serial mode register */
2655 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2656 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2657 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2658 YU_SMR_IPG_DATA(0x1e));
2659
2660 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2661 /* Setup Yukon's address */
2662 for (i = 0; i < 3; i++) {
2663 /* Write Source Address 1 (unicast filter) */
2664 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2665 sc_if->sk_enaddr[i * 2] |
2666 sc_if->sk_enaddr[i * 2 + 1] << 8);
2667 }
2668
2669 for (i = 0; i < 3; i++) {
2670 reg = sk_win_read_2(sc_if->sk_softc,
2671 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2672 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2673 }
2674
2675 /* Set multicast filter */
2676 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2677 sk_setmulti(sc_if);
2678
2679 /* enable interrupt mask for counter overflows */
2680 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2681 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2682 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2683 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2684
2685 /* Configure RX MAC FIFO */
2686 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2687 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2688
2689 /* Configure TX MAC FIFO */
2690 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2691 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2692
2693 DPRINTFN(6, ("sk_init_yukon: end\n"));
2694 }
2695
2696 /*
2697 * Note that to properly initialize any part of the GEnesis chip,
2698 * you first have to take it out of reset mode.
2699 */
2700 int
2701 sk_init(struct ifnet *ifp)
2702 {
2703 struct sk_if_softc *sc_if = ifp->if_softc;
2704 struct sk_softc *sc = sc_if->sk_softc;
2705 struct mii_data *mii = &sc_if->sk_mii;
2706 int s;
2707 u_int32_t imr, sk_imtimer_ticks;
2708
2709 DPRINTFN(1, ("sk_init\n"));
2710
2711 s = splnet();
2712
2713 if (ifp->if_flags & IFF_RUNNING) {
2714 splx(s);
2715 return 0;
2716 }
2717
2718 /* Cancel pending I/O and free all RX/TX buffers. */
2719 sk_stop(ifp,0);
2720
2721 if (sc->sk_type == SK_GENESIS) {
2722 /* Configure LINK_SYNC LED */
2723 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2724 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2725 SK_LINKLED_LINKSYNC_ON);
2726
2727 /* Configure RX LED */
2728 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2729 SK_RXLEDCTL_COUNTER_START);
2730
2731 /* Configure TX LED */
2732 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2733 SK_TXLEDCTL_COUNTER_START);
2734 }
2735
2736 /* Configure I2C registers */
2737
2738 /* Configure XMAC(s) */
2739 switch (sc->sk_type) {
2740 case SK_GENESIS:
2741 sk_init_xmac(sc_if);
2742 break;
2743 case SK_YUKON:
2744 case SK_YUKON_LITE:
2745 case SK_YUKON_LP:
2746 sk_init_yukon(sc_if);
2747 break;
2748 }
2749 mii_mediachg(mii);
2750
2751 if (sc->sk_type == SK_GENESIS) {
2752 /* Configure MAC FIFOs */
2753 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2754 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2755 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2756
2757 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2758 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2759 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2760 }
2761
2762 /* Configure transmit arbiter(s) */
2763 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2764 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2765
2766 /* Configure RAMbuffers */
2767 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2768 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2769 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2770 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2771 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2772 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2773
2774 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2775 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2776 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2777 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2778 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2779 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2780 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2781
2782 /* Configure BMUs */
2783 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2784 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2785 SK_RX_RING_ADDR(sc_if, 0));
2786 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2787
2788 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2789 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2790 SK_TX_RING_ADDR(sc_if, 0));
2791 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2792
2793 /* Init descriptors */
2794 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2795 aprint_error("%s: initialization failed: no "
2796 "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2797 sk_stop(ifp,0);
2798 splx(s);
2799 return ENOBUFS;
2800 }
2801
2802 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2803 aprint_error("%s: initialization failed: no "
2804 "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2805 sk_stop(ifp,0);
2806 splx(s);
2807 return ENOBUFS;
2808 }
2809
2810 /* Set interrupt moderation if changed via sysctl. */
2811 switch (sc->sk_type) {
2812 case SK_GENESIS:
2813 sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2814 break;
2815 case SK_YUKON_EC:
2816 sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2817 break;
2818 default:
2819 sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2820 }
2821 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2822 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2823 sk_win_write_4(sc, SK_IMTIMERINIT,
2824 SK_IM_USECS(sc->sk_int_mod));
2825 aprint_verbose("%s: interrupt moderation is %d us\n",
2826 sc->sk_dev.dv_xname, sc->sk_int_mod);
2827 }
2828
2829 /* Configure interrupt handling */
2830 CSR_READ_4(sc, SK_ISSR);
2831 if (sc_if->sk_port == SK_PORT_A)
2832 sc->sk_intrmask |= SK_INTRS1;
2833 else
2834 sc->sk_intrmask |= SK_INTRS2;
2835
2836 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2837
2838 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2839
2840 /* Start BMUs. */
2841 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2842
2843 if (sc->sk_type == SK_GENESIS) {
2844 /* Enable XMACs TX and RX state machines */
2845 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2846 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2847 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2848 }
2849
2850 if (SK_YUKON_FAMILY(sc->sk_type)) {
2851 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2852 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2853 reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2854 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2855 }
2856
2857
2858 ifp->if_flags |= IFF_RUNNING;
2859 ifp->if_flags &= ~IFF_OACTIVE;
2860
2861 splx(s);
2862 return 0;
2863 }
2864
2865 void
2866 sk_stop(struct ifnet *ifp, int disable)
2867 {
2868 struct sk_if_softc *sc_if = ifp->if_softc;
2869 struct sk_softc *sc = sc_if->sk_softc;
2870 int i;
2871
2872 DPRINTFN(1, ("sk_stop\n"));
2873
2874 callout_stop(&sc_if->sk_tick_ch);
2875
2876 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2877 u_int32_t val;
2878
2879 /* Put PHY back into reset. */
2880 val = sk_win_read_4(sc, SK_GPIO);
2881 if (sc_if->sk_port == SK_PORT_A) {
2882 val |= SK_GPIO_DIR0;
2883 val &= ~SK_GPIO_DAT0;
2884 } else {
2885 val |= SK_GPIO_DIR2;
2886 val &= ~SK_GPIO_DAT2;
2887 }
2888 sk_win_write_4(sc, SK_GPIO, val);
2889 }
2890
2891 /* Turn off various components of this interface. */
2892 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2893 switch (sc->sk_type) {
2894 case SK_GENESIS:
2895 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2896 SK_TXMACCTL_XMAC_RESET);
2897 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2898 break;
2899 case SK_YUKON:
2900 case SK_YUKON_LITE:
2901 case SK_YUKON_LP:
2902 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2903 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2904 break;
2905 }
2906 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2907 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2908 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2909 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2910 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2911 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2912 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2913 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2914 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2915
2916 /* Disable interrupts */
2917 if (sc_if->sk_port == SK_PORT_A)
2918 sc->sk_intrmask &= ~SK_INTRS1;
2919 else
2920 sc->sk_intrmask &= ~SK_INTRS2;
2921 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2922
2923 SK_XM_READ_2(sc_if, XM_ISR);
2924 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2925
2926 /* Free RX and TX mbufs still in the queues. */
2927 for (i = 0; i < SK_RX_RING_CNT; i++) {
2928 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2929 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2930 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2931 }
2932 }
2933
2934 for (i = 0; i < SK_TX_RING_CNT; i++) {
2935 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2936 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2937 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2938 }
2939 }
2940
2941 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2942 }
2943
2944 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2945
2946 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2947
2948 #ifdef SK_DEBUG
2949 void
2950 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2951 {
2952 #define DESC_PRINT(X) \
2953 if (X) \
2954 printf("txdesc[%d]." #X "=%#x\n", \
2955 idx, X);
2956
2957 DESC_PRINT(le32toh(desc->sk_ctl));
2958 DESC_PRINT(le32toh(desc->sk_next));
2959 DESC_PRINT(le32toh(desc->sk_data_lo));
2960 DESC_PRINT(le32toh(desc->sk_data_hi));
2961 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2962 DESC_PRINT(le16toh(desc->sk_rsvd0));
2963 DESC_PRINT(le16toh(desc->sk_csum_startval));
2964 DESC_PRINT(le16toh(desc->sk_csum_startpos));
2965 DESC_PRINT(le16toh(desc->sk_csum_writepos));
2966 DESC_PRINT(le16toh(desc->sk_rsvd1));
2967 #undef PRINT
2968 }
2969
2970 void
2971 sk_dump_bytes(const char *data, int len)
2972 {
2973 int c, i, j;
2974
2975 for (i = 0; i < len; i += 16) {
2976 printf("%08x ", i);
2977 c = len - i;
2978 if (c > 16) c = 16;
2979
2980 for (j = 0; j < c; j++) {
2981 printf("%02x ", data[i + j] & 0xff);
2982 if ((j & 0xf) == 7 && j > 0)
2983 printf(" ");
2984 }
2985
2986 for (; j < 16; j++)
2987 printf(" ");
2988 printf(" ");
2989
2990 for (j = 0; j < c; j++) {
2991 int ch = data[i + j] & 0xff;
2992 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2993 }
2994
2995 printf("\n");
2996
2997 if (c < 16)
2998 break;
2999 }
3000 }
3001
3002 void
3003 sk_dump_mbuf(struct mbuf *m)
3004 {
3005 int count = m->m_pkthdr.len;
3006
3007 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3008
3009 while (count > 0 && m) {
3010 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3011 m, m->m_data, m->m_len);
3012 sk_dump_bytes(mtod(m, char *), m->m_len);
3013
3014 count -= m->m_len;
3015 m = m->m_next;
3016 }
3017 }
3018 #endif
3019
3020 static int
3021 sk_sysctl_handler(SYSCTLFN_ARGS)
3022 {
3023 int error, t;
3024 struct sysctlnode node;
3025 struct sk_softc *sc;
3026
3027 node = *rnode;
3028 sc = node.sysctl_data;
3029 t = sc->sk_int_mod;
3030 node.sysctl_data = &t;
3031 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3032 if (error || newp == NULL)
3033 return error;
3034
3035 if (t < SK_IM_MIN || t > SK_IM_MAX)
3036 return EINVAL;
3037
3038 /* update the softc with sysctl-changed value, and mark
3039 for hardware update */
3040 sc->sk_int_mod = t;
3041 sc->sk_int_mod_pending = 1;
3042 return 0;
3043 }
3044
3045 /*
3046 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3047 * set up in skc_attach()
3048 */
3049 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3050 {
3051 int rc;
3052 const struct sysctlnode *node;
3053
3054 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3055 0, CTLTYPE_NODE, "hw", NULL,
3056 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3057 goto err;
3058 }
3059
3060 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3061 0, CTLTYPE_NODE, "sk",
3062 SYSCTL_DESCR("sk interface controls"),
3063 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3064 goto err;
3065 }
3066
3067 sk_root_num = node->sysctl_num;
3068 return;
3069
3070 err:
3071 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3072 }
3073