Home | History | Annotate | Line # | Download | only in pci
if_sk.c revision 1.31
      1 /*	$NetBSD: if_sk.c,v 1.31 2006/08/25 02:34:30 riz Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the NetBSD
     18  *	Foundation, Inc. and its contributors.
     19  * 4. Neither the name of The NetBSD Foundation nor the names of its
     20  *    contributors may be used to endorse or promote products derived
     21  *    from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
     37 
     38 /*
     39  * Copyright (c) 1997, 1998, 1999, 2000
     40  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by Bill Paul.
     53  * 4. Neither the name of the author nor the names of any co-contributors
     54  *    may be used to endorse or promote products derived from this software
     55  *    without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     61  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     62  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     63  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     64  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     65  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     66  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     67  * THE POSSIBILITY OF SUCH DAMAGE.
     68  *
     69  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
     70  */
     71 
     72 /*
     73  * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
     74  *
     75  * Permission to use, copy, modify, and distribute this software for any
     76  * purpose with or without fee is hereby granted, provided that the above
     77  * copyright notice and this permission notice appear in all copies.
     78  *
     79  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     80  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     81  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     82  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     83  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     84  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     85  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     86  */
     87 
     88 /*
     89  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
     90  * the SK-984x series adapters, both single port and dual port.
     91  * References:
     92  * 	The XaQti XMAC II datasheet,
     93  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     94  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
     95  *
     96  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
     97  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
     98  * convenience to others until Vitesse corrects this problem:
     99  *
    100  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
    101  *
    102  * Written by Bill Paul <wpaul (at) ee.columbia.edu>
    103  * Department of Electrical Engineering
    104  * Columbia University, New York City
    105  */
    106 
    107 /*
    108  * The SysKonnect gigabit ethernet adapters consist of two main
    109  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
    110  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
    111  * components and a PHY while the GEnesis controller provides a PCI
    112  * interface with DMA support. Each card may have between 512K and
    113  * 2MB of SRAM on board depending on the configuration.
    114  *
    115  * The SysKonnect GEnesis controller can have either one or two XMAC
    116  * chips connected to it, allowing single or dual port NIC configurations.
    117  * SysKonnect has the distinction of being the only vendor on the market
    118  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
    119  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
    120  * XMAC registers. This driver takes advantage of these features to allow
    121  * both XMACs to operate as independent interfaces.
    122  */
    123 
    124 #include "bpfilter.h"
    125 #include "rnd.h"
    126 
    127 #include <sys/param.h>
    128 #include <sys/systm.h>
    129 #include <sys/sockio.h>
    130 #include <sys/mbuf.h>
    131 #include <sys/malloc.h>
    132 #include <sys/kernel.h>
    133 #include <sys/socket.h>
    134 #include <sys/device.h>
    135 #include <sys/queue.h>
    136 #include <sys/callout.h>
    137 #include <sys/sysctl.h>
    138 #include <sys/endian.h>
    139 
    140 #include <net/if.h>
    141 #include <net/if_dl.h>
    142 #include <net/if_types.h>
    143 
    144 #include <net/if_media.h>
    145 
    146 #if NBPFILTER > 0
    147 #include <net/bpf.h>
    148 #endif
    149 #if NRND > 0
    150 #include <sys/rnd.h>
    151 #endif
    152 
    153 #include <dev/mii/mii.h>
    154 #include <dev/mii/miivar.h>
    155 #include <dev/mii/brgphyreg.h>
    156 
    157 #include <dev/pci/pcireg.h>
    158 #include <dev/pci/pcivar.h>
    159 #include <dev/pci/pcidevs.h>
    160 
    161 /* #define SK_USEIOSPACE */
    162 
    163 #include <dev/pci/if_skreg.h>
    164 #include <dev/pci/if_skvar.h>
    165 
    166 int skc_probe(struct device *, struct cfdata *, void *);
    167 void skc_attach(struct device *, struct device *self, void *aux);
    168 int sk_probe(struct device *, struct cfdata *, void *);
    169 void sk_attach(struct device *, struct device *self, void *aux);
    170 int skcprint(void *, const char *);
    171 int sk_intr(void *);
    172 void sk_intr_bcom(struct sk_if_softc *);
    173 void sk_intr_xmac(struct sk_if_softc *);
    174 void sk_intr_yukon(struct sk_if_softc *);
    175 void sk_rxeof(struct sk_if_softc *);
    176 void sk_txeof(struct sk_if_softc *);
    177 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
    178 void sk_start(struct ifnet *);
    179 int sk_ioctl(struct ifnet *, u_long, caddr_t);
    180 int sk_init(struct ifnet *);
    181 void sk_init_xmac(struct sk_if_softc *);
    182 void sk_init_yukon(struct sk_if_softc *);
    183 void sk_stop(struct ifnet *, int);
    184 void sk_watchdog(struct ifnet *);
    185 void sk_shutdown(void *);
    186 int sk_ifmedia_upd(struct ifnet *);
    187 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    188 void sk_reset(struct sk_softc *);
    189 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
    190 int sk_alloc_jumbo_mem(struct sk_if_softc *);
    191 void sk_free_jumbo_mem(struct sk_if_softc *);
    192 void *sk_jalloc(struct sk_if_softc *);
    193 void sk_jfree(struct mbuf *, caddr_t, size_t, void *);
    194 int sk_init_rx_ring(struct sk_if_softc *);
    195 int sk_init_tx_ring(struct sk_if_softc *);
    196 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
    197 void sk_vpd_read_res(struct sk_softc *,
    198 					struct vpd_res *, int);
    199 void sk_vpd_read(struct sk_softc *);
    200 
    201 void sk_update_int_mod(struct sk_softc *);
    202 
    203 int sk_xmac_miibus_readreg(struct device *, int, int);
    204 void sk_xmac_miibus_writereg(struct device *, int, int, int);
    205 void sk_xmac_miibus_statchg(struct device *);
    206 
    207 int sk_marv_miibus_readreg(struct device *, int, int);
    208 void sk_marv_miibus_writereg(struct device *, int, int, int);
    209 void sk_marv_miibus_statchg(struct device *);
    210 
    211 u_int32_t sk_xmac_hash(caddr_t);
    212 u_int32_t sk_yukon_hash(caddr_t);
    213 void sk_setfilt(struct sk_if_softc *, caddr_t, int);
    214 void sk_setmulti(struct sk_if_softc *);
    215 void sk_tick(void *);
    216 
    217 /* #define SK_DEBUG 2 */
    218 #ifdef SK_DEBUG
    219 #define DPRINTF(x)	if (skdebug) printf x
    220 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
    221 int	skdebug = SK_DEBUG;
    222 
    223 void sk_dump_txdesc(struct sk_tx_desc *, int);
    224 void sk_dump_mbuf(struct mbuf *);
    225 void sk_dump_bytes(const char *, int);
    226 #else
    227 #define DPRINTF(x)
    228 #define DPRINTFN(n,x)
    229 #endif
    230 
    231 #define SK_SETBIT(sc, reg, x)		\
    232 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
    233 
    234 #define SK_CLRBIT(sc, reg, x)		\
    235 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
    236 
    237 #define SK_WIN_SETBIT_4(sc, reg, x)	\
    238 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
    239 
    240 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
    241 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
    242 
    243 #define SK_WIN_SETBIT_2(sc, reg, x)	\
    244 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
    245 
    246 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
    247 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
    248 
    249 static int sk_sysctl_handler(SYSCTLFN_PROTO);
    250 static int sk_root_num;
    251 
    252 /* supported device vendors */
    253 static const struct sk_product {
    254 	pci_vendor_id_t		sk_vendor;
    255 	pci_product_id_t	sk_product;
    256 } sk_products[] = {
    257 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
    258 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
    259 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T, },
    260 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
    261 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
    262 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
    263 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
    264 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
    265 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
    266 	{ 0, 0, }
    267 };
    268 
    269 #define SK_LINKSYS_EG1032_SUBID	0x00151737
    270 
    271 static inline u_int32_t
    272 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
    273 {
    274 #ifdef SK_USEIOSPACE
    275 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    276 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
    277 #else
    278 	return CSR_READ_4(sc, reg);
    279 #endif
    280 }
    281 
    282 static inline u_int16_t
    283 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
    284 {
    285 #ifdef SK_USEIOSPACE
    286 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    287 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
    288 #else
    289 	return CSR_READ_2(sc, reg);
    290 #endif
    291 }
    292 
    293 static inline u_int8_t
    294 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
    295 {
    296 #ifdef SK_USEIOSPACE
    297 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    298 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
    299 #else
    300 	return CSR_READ_1(sc, reg);
    301 #endif
    302 }
    303 
    304 static inline void
    305 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
    306 {
    307 #ifdef SK_USEIOSPACE
    308 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    309 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
    310 #else
    311 	CSR_WRITE_4(sc, reg, x);
    312 #endif
    313 }
    314 
    315 static inline void
    316 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
    317 {
    318 #ifdef SK_USEIOSPACE
    319 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    320 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
    321 #else
    322 	CSR_WRITE_2(sc, reg, x);
    323 #endif
    324 }
    325 
    326 static inline void
    327 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
    328 {
    329 #ifdef SK_USEIOSPACE
    330 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    331 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
    332 #else
    333 	CSR_WRITE_1(sc, reg, x);
    334 #endif
    335 }
    336 
    337 /*
    338  * The VPD EEPROM contains Vital Product Data, as suggested in
    339  * the PCI 2.1 specification. The VPD data is separared into areas
    340  * denoted by resource IDs. The SysKonnect VPD contains an ID string
    341  * resource (the name of the adapter), a read-only area resource
    342  * containing various key/data fields and a read/write area which
    343  * can be used to store asset management information or log messages.
    344  * We read the ID string and read-only into buffers attached to
    345  * the controller softc structure for later use. At the moment,
    346  * we only use the ID string during sk_attach().
    347  */
    348 u_int8_t
    349 sk_vpd_readbyte(struct sk_softc *sc, int addr)
    350 {
    351 	int			i;
    352 
    353 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
    354 	for (i = 0; i < SK_TIMEOUT; i++) {
    355 		DELAY(1);
    356 		if (sk_win_read_2(sc,
    357 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
    358 			break;
    359 	}
    360 
    361 	if (i == SK_TIMEOUT)
    362 		return 0;
    363 
    364 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
    365 }
    366 
    367 void
    368 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
    369 {
    370 	int			i;
    371 	u_int8_t		*ptr;
    372 
    373 	ptr = (u_int8_t *)res;
    374 	for (i = 0; i < sizeof(struct vpd_res); i++)
    375 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
    376 }
    377 
    378 void
    379 sk_vpd_read(struct sk_softc *sc)
    380 {
    381 	int			pos = 0, i;
    382 	struct vpd_res		res;
    383 
    384 	if (sc->sk_vpd_prodname != NULL)
    385 		free(sc->sk_vpd_prodname, M_DEVBUF);
    386 	if (sc->sk_vpd_readonly != NULL)
    387 		free(sc->sk_vpd_readonly, M_DEVBUF);
    388 	sc->sk_vpd_prodname = NULL;
    389 	sc->sk_vpd_readonly = NULL;
    390 
    391 	sk_vpd_read_res(sc, &res, pos);
    392 
    393 	if (res.vr_id != VPD_RES_ID) {
    394 		aprint_error("%s: bad VPD resource id: expected %x got %x\n",
    395 		    sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
    396 		return;
    397 	}
    398 
    399 	pos += sizeof(res);
    400 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    401 	if (sc->sk_vpd_prodname == NULL)
    402 		panic("sk_vpd_read");
    403 	for (i = 0; i < res.vr_len; i++)
    404 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
    405 	sc->sk_vpd_prodname[i] = '\0';
    406 	pos += i;
    407 
    408 	sk_vpd_read_res(sc, &res, pos);
    409 
    410 	if (res.vr_id != VPD_RES_READ) {
    411 		aprint_error("%s: bad VPD resource id: expected %x got %x\n",
    412 		    sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
    413 		return;
    414 	}
    415 
    416 	pos += sizeof(res);
    417 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    418 	if (sc->sk_vpd_readonly == NULL)
    419 		panic("sk_vpd_read");
    420 	for (i = 0; i < res.vr_len ; i++)
    421 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
    422 }
    423 
    424 int
    425 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
    426 {
    427 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    428 	int i;
    429 
    430 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
    431 
    432 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
    433 		return 0;
    434 
    435 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    436 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
    437 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    438 		for (i = 0; i < SK_TIMEOUT; i++) {
    439 			DELAY(1);
    440 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
    441 			    XM_MMUCMD_PHYDATARDY)
    442 				break;
    443 		}
    444 
    445 		if (i == SK_TIMEOUT) {
    446 			aprint_error("%s: phy failed to come ready\n",
    447 			    sc_if->sk_dev.dv_xname);
    448 			return 0;
    449 		}
    450 	}
    451 	DELAY(1);
    452 	return SK_XM_READ_2(sc_if, XM_PHY_DATA);
    453 }
    454 
    455 void
    456 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
    457 {
    458 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    459 	int i;
    460 
    461 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
    462 
    463 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    464 	for (i = 0; i < SK_TIMEOUT; i++) {
    465 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    466 			break;
    467 	}
    468 
    469 	if (i == SK_TIMEOUT) {
    470 		aprint_error("%s: phy failed to come ready\n",
    471 		    sc_if->sk_dev.dv_xname);
    472 		return;
    473 	}
    474 
    475 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
    476 	for (i = 0; i < SK_TIMEOUT; i++) {
    477 		DELAY(1);
    478 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    479 			break;
    480 	}
    481 
    482 	if (i == SK_TIMEOUT)
    483 		aprint_error("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
    484 }
    485 
    486 void
    487 sk_xmac_miibus_statchg(struct device *dev)
    488 {
    489 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    490 	struct mii_data *mii = &sc_if->sk_mii;
    491 
    492 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
    493 
    494 	/*
    495 	 * If this is a GMII PHY, manually set the XMAC's
    496 	 * duplex mode accordingly.
    497 	 */
    498 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    499 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
    500 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    501 		else
    502 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    503 	}
    504 }
    505 
    506 int
    507 sk_marv_miibus_readreg(struct device *dev, int phy, int reg)
    508 {
    509 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    510 	u_int16_t val;
    511 	int i;
    512 
    513 	if (phy != 0 ||
    514 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
    515 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
    516 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
    517 			     phy, reg));
    518 		return 0;
    519 	}
    520 
    521         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    522 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
    523 
    524 	for (i = 0; i < SK_TIMEOUT; i++) {
    525 		DELAY(1);
    526 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
    527 		if (val & YU_SMICR_READ_VALID)
    528 			break;
    529 	}
    530 
    531 	if (i == SK_TIMEOUT) {
    532 		aprint_error("%s: phy failed to come ready\n",
    533 		       sc_if->sk_dev.dv_xname);
    534 		return 0;
    535 	}
    536 
    537  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
    538 		     SK_TIMEOUT));
    539 
    540         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
    541 
    542 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
    543 		     phy, reg, val));
    544 
    545 	return val;
    546 }
    547 
    548 void
    549 sk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
    550 {
    551 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    552 	int i;
    553 
    554 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
    555 		     phy, reg, val));
    556 
    557 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
    558 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    559 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
    560 
    561 	for (i = 0; i < SK_TIMEOUT; i++) {
    562 		DELAY(1);
    563 		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
    564 			break;
    565 	}
    566 }
    567 
    568 void
    569 sk_marv_miibus_statchg(struct device *dev)
    570 {
    571 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
    572 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
    573 }
    574 
    575 #define SK_HASH_BITS		6
    576 
    577 u_int32_t
    578 sk_xmac_hash(caddr_t addr)
    579 {
    580 	u_int32_t		crc;
    581 
    582 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
    583 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
    584 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    585 	return crc;
    586 }
    587 
    588 u_int32_t
    589 sk_yukon_hash(caddr_t addr)
    590 {
    591 	u_int32_t		crc;
    592 
    593 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
    594 	crc &= ((1 << SK_HASH_BITS) - 1);
    595 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    596 	return crc;
    597 }
    598 
    599 void
    600 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
    601 {
    602 	int base = XM_RXFILT_ENTRY(slot);
    603 
    604 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
    605 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
    606 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
    607 }
    608 
    609 void
    610 sk_setmulti(struct sk_if_softc *sc_if)
    611 {
    612 	struct sk_softc *sc = sc_if->sk_softc;
    613 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
    614 	u_int32_t hashes[2] = { 0, 0 };
    615 	int h = 0, i;
    616 	struct ethercom *ec = &sc_if->sk_ethercom;
    617 	struct ether_multi *enm;
    618 	struct ether_multistep step;
    619 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
    620 
    621 	/* First, zot all the existing filters. */
    622 	switch (sc->sk_type) {
    623 	case SK_GENESIS:
    624 		for (i = 1; i < XM_RXFILT_MAX; i++)
    625 			sk_setfilt(sc_if, (caddr_t)&dummy, i);
    626 
    627 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
    628 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
    629 		break;
    630 	case SK_YUKON:
    631 	case SK_YUKON_LITE:
    632 	case SK_YUKON_LP:
    633 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
    634 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
    635 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
    636 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
    637 		break;
    638 	}
    639 
    640 	/* Now program new ones. */
    641 allmulti:
    642 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    643 		hashes[0] = 0xFFFFFFFF;
    644 		hashes[1] = 0xFFFFFFFF;
    645 	} else {
    646 		i = 1;
    647 		/* First find the tail of the list. */
    648 		ETHER_FIRST_MULTI(step, ec, enm);
    649 		while (enm != NULL) {
    650 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
    651 				 ETHER_ADDR_LEN)) {
    652 				ifp->if_flags |= IFF_ALLMULTI;
    653 				goto allmulti;
    654 			}
    655 			DPRINTFN(2,("multicast address %s\n",
    656 	    			ether_sprintf(enm->enm_addrlo)));
    657 			/*
    658 			 * Program the first XM_RXFILT_MAX multicast groups
    659 			 * into the perfect filter. For all others,
    660 			 * use the hash table.
    661 			 */
    662 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
    663 				sk_setfilt(sc_if, enm->enm_addrlo, i);
    664 				i++;
    665 			}
    666 			else {
    667 				switch (sc->sk_type) {
    668 				case SK_GENESIS:
    669 					h = sk_xmac_hash(enm->enm_addrlo);
    670 					break;
    671 				case SK_YUKON:
    672 				case SK_YUKON_LITE:
    673 				case SK_YUKON_LP:
    674 					h = sk_yukon_hash(enm->enm_addrlo);
    675 					break;
    676 				}
    677 				if (h < 32)
    678 					hashes[0] |= (1 << h);
    679 				else
    680 					hashes[1] |= (1 << (h - 32));
    681 			}
    682 
    683 			ETHER_NEXT_MULTI(step, enm);
    684 		}
    685 	}
    686 
    687 	switch (sc->sk_type) {
    688 	case SK_GENESIS:
    689 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
    690 			       XM_MODE_RX_USE_PERFECT);
    691 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
    692 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
    693 		break;
    694 	case SK_YUKON:
    695 	case SK_YUKON_LITE:
    696 	case SK_YUKON_LP:
    697 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
    698 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
    699 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
    700 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
    701 		break;
    702 	}
    703 }
    704 
    705 int
    706 sk_init_rx_ring(struct sk_if_softc *sc_if)
    707 {
    708 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    709 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    710 	int			i;
    711 
    712 	bzero((char *)rd->sk_rx_ring,
    713 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
    714 
    715 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    716 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
    717 		if (i == (SK_RX_RING_CNT - 1)) {
    718 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
    719 			rd->sk_rx_ring[i].sk_next =
    720 				htole32(SK_RX_RING_ADDR(sc_if, 0));
    721 		} else {
    722 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
    723 			rd->sk_rx_ring[i].sk_next =
    724 				htole32(SK_RX_RING_ADDR(sc_if,i+1));
    725 		}
    726 	}
    727 
    728 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    729 		if (sk_newbuf(sc_if, i, NULL,
    730 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
    731 			aprint_error("%s: failed alloc of %dth mbuf\n",
    732 			    sc_if->sk_dev.dv_xname, i);
    733 			return ENOBUFS;
    734 		}
    735 	}
    736 	sc_if->sk_cdata.sk_rx_prod = 0;
    737 	sc_if->sk_cdata.sk_rx_cons = 0;
    738 
    739 	return 0;
    740 }
    741 
    742 int
    743 sk_init_tx_ring(struct sk_if_softc *sc_if)
    744 {
    745 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    746 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    747 	int			i;
    748 
    749 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
    750 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
    751 
    752 	for (i = 0; i < SK_TX_RING_CNT; i++) {
    753 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
    754 		if (i == (SK_TX_RING_CNT - 1)) {
    755 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
    756 			rd->sk_tx_ring[i].sk_next =
    757 				htole32(SK_TX_RING_ADDR(sc_if, 0));
    758 		} else {
    759 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
    760 			rd->sk_tx_ring[i].sk_next =
    761 				htole32(SK_TX_RING_ADDR(sc_if,i+1));
    762 		}
    763 	}
    764 
    765 	sc_if->sk_cdata.sk_tx_prod = 0;
    766 	sc_if->sk_cdata.sk_tx_cons = 0;
    767 	sc_if->sk_cdata.sk_tx_cnt = 0;
    768 
    769 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
    770 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    771 
    772 	return 0;
    773 }
    774 
    775 int
    776 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
    777 	  bus_dmamap_t dmamap)
    778 {
    779 	struct mbuf		*m_new = NULL;
    780 	struct sk_chain		*c;
    781 	struct sk_rx_desc	*r;
    782 
    783 	if (m == NULL) {
    784 		caddr_t buf = NULL;
    785 
    786 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    787 		if (m_new == NULL) {
    788 			aprint_error("%s: no memory for rx list -- "
    789 			    "packet dropped!\n", sc_if->sk_dev.dv_xname);
    790 			return ENOBUFS;
    791 		}
    792 
    793 		/* Allocate the jumbo buffer */
    794 		buf = sk_jalloc(sc_if);
    795 		if (buf == NULL) {
    796 			m_freem(m_new);
    797 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
    798 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
    799 			return ENOBUFS;
    800 		}
    801 
    802 		/* Attach the buffer to the mbuf */
    803 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    804 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
    805 
    806 	} else {
    807 		/*
    808 	 	 * We're re-using a previously allocated mbuf;
    809 		 * be sure to re-init pointers and lengths to
    810 		 * default values.
    811 		 */
    812 		m_new = m;
    813 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    814 		m_new->m_data = m_new->m_ext.ext_buf;
    815 	}
    816 	m_adj(m_new, ETHER_ALIGN);
    817 
    818 	c = &sc_if->sk_cdata.sk_rx_chain[i];
    819 	r = c->sk_desc;
    820 	c->sk_mbuf = m_new;
    821 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
    822 	    (((vaddr_t)m_new->m_data
    823 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
    824 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
    825 
    826 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    827 
    828 	return 0;
    829 }
    830 
    831 /*
    832  * Memory management for jumbo frames.
    833  */
    834 
    835 int
    836 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
    837 {
    838 	struct sk_softc		*sc = sc_if->sk_softc;
    839 	caddr_t			ptr, kva;
    840 	bus_dma_segment_t	seg;
    841 	int		i, rseg, state, error;
    842 	struct sk_jpool_entry   *entry;
    843 
    844 	state = error = 0;
    845 
    846 	/* Grab a big chunk o' storage. */
    847 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
    848 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    849 		aprint_error("%s: can't alloc rx buffers\n", sc->sk_dev.dv_xname);
    850 		return ENOBUFS;
    851 	}
    852 
    853 	state = 1;
    854 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, &kva,
    855 			   BUS_DMA_NOWAIT)) {
    856 		aprint_error("%s: can't map dma buffers (%d bytes)\n",
    857 		    sc->sk_dev.dv_xname, SK_JMEM);
    858 		error = ENOBUFS;
    859 		goto out;
    860 	}
    861 
    862 	state = 2;
    863 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
    864 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
    865 		aprint_error("%s: can't create dma map\n", sc->sk_dev.dv_xname);
    866 		error = ENOBUFS;
    867 		goto out;
    868 	}
    869 
    870 	state = 3;
    871 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
    872 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
    873 		aprint_error("%s: can't load dma map\n", sc->sk_dev.dv_xname);
    874 		error = ENOBUFS;
    875 		goto out;
    876 	}
    877 
    878 	state = 4;
    879 	sc_if->sk_cdata.sk_jumbo_buf = (caddr_t)kva;
    880 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
    881 
    882 	LIST_INIT(&sc_if->sk_jfree_listhead);
    883 	LIST_INIT(&sc_if->sk_jinuse_listhead);
    884 
    885 	/*
    886 	 * Now divide it up into 9K pieces and save the addresses
    887 	 * in an array.
    888 	 */
    889 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
    890 	for (i = 0; i < SK_JSLOTS; i++) {
    891 		sc_if->sk_cdata.sk_jslots[i] = ptr;
    892 		ptr += SK_JLEN;
    893 		entry = malloc(sizeof(struct sk_jpool_entry),
    894 		    M_DEVBUF, M_NOWAIT);
    895 		if (entry == NULL) {
    896 			aprint_error("%s: no memory for jumbo buffer queue!\n",
    897 			    sc->sk_dev.dv_xname);
    898 			error = ENOBUFS;
    899 			goto out;
    900 		}
    901 		entry->slot = i;
    902 		if (i)
    903 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
    904 				 entry, jpool_entries);
    905 		else
    906 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
    907 				 entry, jpool_entries);
    908 	}
    909 out:
    910 	if (error != 0) {
    911 		switch (state) {
    912 		case 4:
    913 			bus_dmamap_unload(sc->sc_dmatag,
    914 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    915 		case 3:
    916 			bus_dmamap_destroy(sc->sc_dmatag,
    917 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    918 		case 2:
    919 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
    920 		case 1:
    921 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
    922 			break;
    923 		default:
    924 			break;
    925 		}
    926 	}
    927 
    928 	return error;
    929 }
    930 
    931 /*
    932  * Allocate a jumbo buffer.
    933  */
    934 void *
    935 sk_jalloc(struct sk_if_softc *sc_if)
    936 {
    937 	struct sk_jpool_entry   *entry;
    938 
    939 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
    940 
    941 	if (entry == NULL)
    942 		return NULL;
    943 
    944 	LIST_REMOVE(entry, jpool_entries);
    945 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
    946 	return sc_if->sk_cdata.sk_jslots[entry->slot];
    947 }
    948 
    949 /*
    950  * Release a jumbo buffer.
    951  */
    952 void
    953 sk_jfree(struct mbuf *m, caddr_t buf, size_t size, void	*arg)
    954 {
    955 	struct sk_jpool_entry *entry;
    956 	struct sk_if_softc *sc;
    957 	int i, s;
    958 
    959 	/* Extract the softc struct pointer. */
    960 	sc = (struct sk_if_softc *)arg;
    961 
    962 	if (sc == NULL)
    963 		panic("sk_jfree: can't find softc pointer!");
    964 
    965 	/* calculate the slot this buffer belongs to */
    966 
    967 	i = ((vaddr_t)buf
    968 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
    969 
    970 	if ((i < 0) || (i >= SK_JSLOTS))
    971 		panic("sk_jfree: asked to free buffer that we don't manage!");
    972 
    973 	s = splvm();
    974 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
    975 	if (entry == NULL)
    976 		panic("sk_jfree: buffer not in use!");
    977 	entry->slot = i;
    978 	LIST_REMOVE(entry, jpool_entries);
    979 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
    980 
    981 	if (__predict_true(m != NULL))
    982 		pool_cache_put(&mbpool_cache, m);
    983 	splx(s);
    984 }
    985 
    986 /*
    987  * Set media options.
    988  */
    989 int
    990 sk_ifmedia_upd(struct ifnet *ifp)
    991 {
    992 	struct sk_if_softc *sc_if = ifp->if_softc;
    993 
    994 	(void) sk_init(ifp);
    995 	mii_mediachg(&sc_if->sk_mii);
    996 	return 0;
    997 }
    998 
    999 /*
   1000  * Report current media status.
   1001  */
   1002 void
   1003 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1004 {
   1005 	struct sk_if_softc *sc_if = ifp->if_softc;
   1006 
   1007 	mii_pollstat(&sc_if->sk_mii);
   1008 	ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
   1009 	ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
   1010 }
   1011 
   1012 int
   1013 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
   1014 {
   1015 	struct sk_if_softc *sc_if = ifp->if_softc;
   1016 	struct sk_softc *sc = sc_if->sk_softc;
   1017 	struct ifreq *ifr = (struct ifreq *) data;
   1018 	struct mii_data *mii;
   1019 	int s, error = 0;
   1020 
   1021 	/* DPRINTFN(2, ("sk_ioctl\n")); */
   1022 
   1023 	s = splnet();
   1024 
   1025 	switch (command) {
   1026 
   1027 	case SIOCSIFFLAGS:
   1028 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
   1029 		if (ifp->if_flags & IFF_UP) {
   1030 			if (ifp->if_flags & IFF_RUNNING &&
   1031 			    ifp->if_flags & IFF_PROMISC &&
   1032 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
   1033 				switch (sc->sk_type) {
   1034 				case SK_GENESIS:
   1035 					SK_XM_SETBIT_4(sc_if, XM_MODE,
   1036 					    XM_MODE_RX_PROMISC);
   1037 					break;
   1038 				case SK_YUKON:
   1039 				case SK_YUKON_LITE:
   1040 				case SK_YUKON_LP:
   1041 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
   1042 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1043 					break;
   1044 				}
   1045 				sk_setmulti(sc_if);
   1046 			} else if (ifp->if_flags & IFF_RUNNING &&
   1047 			    !(ifp->if_flags & IFF_PROMISC) &&
   1048 			    sc_if->sk_if_flags & IFF_PROMISC) {
   1049 				switch (sc->sk_type) {
   1050 				case SK_GENESIS:
   1051 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
   1052 					    XM_MODE_RX_PROMISC);
   1053 					break;
   1054 				case SK_YUKON:
   1055 				case SK_YUKON_LITE:
   1056 				case SK_YUKON_LP:
   1057 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
   1058 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1059 					break;
   1060 				}
   1061 
   1062 				sk_setmulti(sc_if);
   1063 			} else
   1064 				(void) sk_init(ifp);
   1065 		} else {
   1066 			if (ifp->if_flags & IFF_RUNNING)
   1067 				sk_stop(ifp,0);
   1068 		}
   1069 		sc_if->sk_if_flags = ifp->if_flags;
   1070 		error = 0;
   1071 		break;
   1072 
   1073 	case SIOCGIFMEDIA:
   1074 	case SIOCSIFMEDIA:
   1075 	        DPRINTFN(2, ("sk_ioctl MEDIA\n"));
   1076 		mii = &sc_if->sk_mii;
   1077 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   1078 		break;
   1079 	default:
   1080 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
   1081 		error = ether_ioctl(ifp, command, data);
   1082 
   1083 		if ( error == ENETRESET) {
   1084 			if (ifp->if_flags & IFF_RUNNING) {
   1085 				sk_setmulti(sc_if);
   1086 				DPRINTFN(2, ("sk_ioctl setmulti called\n"));
   1087 			}
   1088 			error = 0;
   1089 		} else if ( error ) {
   1090 			splx(s);
   1091 			return error;
   1092 		}
   1093 		break;
   1094 	}
   1095 
   1096 	splx(s);
   1097 	return error;
   1098 }
   1099 
   1100 void
   1101 sk_update_int_mod(struct sk_softc *sc)
   1102 {
   1103 	u_int32_t sk_imtimer_ticks;
   1104 
   1105 	/*
   1106          * Configure interrupt moderation. The moderation timer
   1107 	 * defers interrupts specified in the interrupt moderation
   1108 	 * timer mask based on the timeout specified in the interrupt
   1109 	 * moderation timer init register. Each bit in the timer
   1110 	 * register represents one tick, so to specify a timeout in
   1111 	 * microseconds, we have to multiply by the correct number of
   1112 	 * ticks-per-microsecond.
   1113 	 */
   1114 	switch (sc->sk_type) {
   1115 	case SK_GENESIS:
   1116 		sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   1117 		break;
   1118 	case SK_YUKON_EC:
   1119 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   1120 		break;
   1121 	default:
   1122 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   1123 	}
   1124 	aprint_verbose("%s: interrupt moderation is %d us\n",
   1125 	    sc->sk_dev.dv_xname, sc->sk_int_mod);
   1126         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
   1127         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
   1128 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
   1129         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
   1130 	sc->sk_int_mod_pending = 0;
   1131 }
   1132 
   1133 /*
   1134  * Lookup: Check the PCI vendor and device, and return a pointer to
   1135  * The structure if the IDs match against our list.
   1136  */
   1137 
   1138 static const struct sk_product *
   1139 sk_lookup(const struct pci_attach_args *pa)
   1140 {
   1141 	const struct sk_product *psk;
   1142 
   1143 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
   1144 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
   1145 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
   1146 			return psk;
   1147 	}
   1148 	return NULL;
   1149 }
   1150 
   1151 /*
   1152  * Probe for a SysKonnect GEnesis chip.
   1153  */
   1154 
   1155 int
   1156 skc_probe(struct device *parent, struct cfdata *match, void *aux)
   1157 {
   1158 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1159 	const struct sk_product *psk;
   1160 	pcireg_t subid;
   1161 
   1162 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
   1163 
   1164 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
   1165 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
   1166 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
   1167 	    subid == SK_LINKSYS_EG1032_SUBID)
   1168 		return 1;
   1169 
   1170 	if ((psk = sk_lookup(pa))) {
   1171 		return 1;
   1172 	}
   1173 	return 0;
   1174 }
   1175 
   1176 /*
   1177  * Force the GEnesis into reset, then bring it out of reset.
   1178  */
   1179 void sk_reset(struct sk_softc *sc)
   1180 {
   1181 	DPRINTFN(2, ("sk_reset\n"));
   1182 
   1183 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
   1184 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
   1185 	if (SK_YUKON_FAMILY(sc->sk_type))
   1186 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
   1187 
   1188 	DELAY(1000);
   1189 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
   1190 	DELAY(2);
   1191 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
   1192 	if (SK_YUKON_FAMILY(sc->sk_type))
   1193 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
   1194 
   1195 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
   1196 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
   1197 		     CSR_READ_2(sc, SK_LINK_CTRL)));
   1198 
   1199 	if (sc->sk_type == SK_GENESIS) {
   1200 		/* Configure packet arbiter */
   1201 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
   1202 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1203 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1204 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1205 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1206 	}
   1207 
   1208 	/* Enable RAM interface */
   1209 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
   1210 
   1211 	sk_update_int_mod(sc);
   1212 }
   1213 
   1214 int
   1215 sk_probe(struct device *parent, struct cfdata *match, void *aux)
   1216 {
   1217 	struct skc_attach_args *sa = aux;
   1218 
   1219 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
   1220 		return 0;
   1221 
   1222 	return 1;
   1223 }
   1224 
   1225 /*
   1226  * Each XMAC chip is attached as a separate logical IP interface.
   1227  * Single port cards will have only one logical interface of course.
   1228  */
   1229 void
   1230 sk_attach(struct device *parent, struct device *self, void *aux)
   1231 {
   1232 	struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
   1233 	struct sk_softc *sc = (struct sk_softc *)parent;
   1234 	struct skc_attach_args *sa = aux;
   1235 	struct sk_txmap_entry	*entry;
   1236 	struct ifnet *ifp;
   1237 	bus_dma_segment_t seg;
   1238 	bus_dmamap_t dmamap;
   1239 	caddr_t kva;
   1240 	int i, rseg;
   1241 
   1242 	sc_if->sk_port = sa->skc_port;
   1243 	sc_if->sk_softc = sc;
   1244 	sc->sk_if[sa->skc_port] = sc_if;
   1245 
   1246 	if (sa->skc_port == SK_PORT_A)
   1247 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
   1248 	if (sa->skc_port == SK_PORT_B)
   1249 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
   1250 
   1251 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
   1252 
   1253 	/*
   1254 	 * Get station address for this interface. Note that
   1255 	 * dual port cards actually come with three station
   1256 	 * addresses: one for each port, plus an extra. The
   1257 	 * extra one is used by the SysKonnect driver software
   1258 	 * as a 'virtual' station address for when both ports
   1259 	 * are operating in failover mode. Currently we don't
   1260 	 * use this extra address.
   1261 	 */
   1262 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1263 		sc_if->sk_enaddr[i] =
   1264 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
   1265 
   1266 
   1267 	aprint_normal(": Ethernet address %s\n",
   1268 	    ether_sprintf(sc_if->sk_enaddr));
   1269 
   1270 	/*
   1271 	 * Set up RAM buffer addresses. The NIC will have a certain
   1272 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
   1273 	 * need to divide this up a) between the transmitter and
   1274  	 * receiver and b) between the two XMACs, if this is a
   1275 	 * dual port NIC. Our algorithm is to divide up the memory
   1276 	 * evenly so that everyone gets a fair share.
   1277 	 */
   1278 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
   1279 		u_int32_t		chunk, val;
   1280 
   1281 		chunk = sc->sk_ramsize / 2;
   1282 		val = sc->sk_rboff / sizeof(u_int64_t);
   1283 		sc_if->sk_rx_ramstart = val;
   1284 		val += (chunk / sizeof(u_int64_t));
   1285 		sc_if->sk_rx_ramend = val - 1;
   1286 		sc_if->sk_tx_ramstart = val;
   1287 		val += (chunk / sizeof(u_int64_t));
   1288 		sc_if->sk_tx_ramend = val - 1;
   1289 	} else {
   1290 		u_int32_t		chunk, val;
   1291 
   1292 		chunk = sc->sk_ramsize / 4;
   1293 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
   1294 		    sizeof(u_int64_t);
   1295 		sc_if->sk_rx_ramstart = val;
   1296 		val += (chunk / sizeof(u_int64_t));
   1297 		sc_if->sk_rx_ramend = val - 1;
   1298 		sc_if->sk_tx_ramstart = val;
   1299 		val += (chunk / sizeof(u_int64_t));
   1300 		sc_if->sk_tx_ramend = val - 1;
   1301 	}
   1302 
   1303 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
   1304 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
   1305 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
   1306 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
   1307 
   1308 	/* Read and save PHY type and set PHY address */
   1309 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
   1310 	switch (sc_if->sk_phytype) {
   1311 	case SK_PHYTYPE_XMAC:
   1312 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
   1313 		break;
   1314 	case SK_PHYTYPE_BCOM:
   1315 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
   1316 		break;
   1317 	case SK_PHYTYPE_MARV_COPPER:
   1318 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
   1319 		break;
   1320 	default:
   1321 		aprint_error("%s: unsupported PHY type: %d\n",
   1322 		    sc->sk_dev.dv_xname, sc_if->sk_phytype);
   1323 		return;
   1324 	}
   1325 
   1326 	/* Allocate the descriptor queues. */
   1327 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
   1328 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1329 		aprint_error("%s: can't alloc rx buffers\n",
   1330 		    sc->sk_dev.dv_xname);
   1331 		goto fail;
   1332 	}
   1333 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
   1334 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
   1335 		aprint_error("%s: can't map dma buffers (%lu bytes)\n",
   1336 		       sc_if->sk_dev.dv_xname,
   1337 		       (u_long) sizeof(struct sk_ring_data));
   1338 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1339 		goto fail;
   1340 	}
   1341 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
   1342 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
   1343             &sc_if->sk_ring_map)) {
   1344 		aprint_error("%s: can't create dma map\n",
   1345 		    sc_if->sk_dev.dv_xname);
   1346 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1347 		    sizeof(struct sk_ring_data));
   1348 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1349 		goto fail;
   1350 	}
   1351 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
   1352 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
   1353 		aprint_error("%s: can't load dma map\n",
   1354 		    sc_if->sk_dev.dv_xname);
   1355 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1356 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1357 		    sizeof(struct sk_ring_data));
   1358 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1359 		goto fail;
   1360 	}
   1361 
   1362 	for (i = 0; i < SK_RX_RING_CNT; i++)
   1363 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   1364 
   1365 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
   1366 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   1367 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   1368 
   1369 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
   1370 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
   1371 			aprint_error("%s: Can't create TX dmamap\n",
   1372 				sc_if->sk_dev.dv_xname);
   1373 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1374 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1375 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1376 			    sizeof(struct sk_ring_data));
   1377 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1378 			goto fail;
   1379 		}
   1380 
   1381 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
   1382 		if (!entry) {
   1383 			aprint_error("%s: Can't alloc txmap entry\n",
   1384 				sc_if->sk_dev.dv_xname);
   1385 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
   1386 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1387 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1388 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1389 			    sizeof(struct sk_ring_data));
   1390 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1391 			goto fail;
   1392 		}
   1393 		entry->dmamap = dmamap;
   1394 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
   1395 	}
   1396 
   1397         sc_if->sk_rdata = (struct sk_ring_data *)kva;
   1398 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
   1399 
   1400 	ifp = &sc_if->sk_ethercom.ec_if;
   1401 	/* Try to allocate memory for jumbo buffers. */
   1402 	if (sk_alloc_jumbo_mem(sc_if)) {
   1403 		aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
   1404 		goto fail;
   1405 	}
   1406 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
   1407 		| ETHERCAP_JUMBO_MTU;
   1408 
   1409 	ifp->if_softc = sc_if;
   1410 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1411 	ifp->if_ioctl = sk_ioctl;
   1412 	ifp->if_start = sk_start;
   1413 	ifp->if_stop = sk_stop;
   1414 	ifp->if_init = sk_init;
   1415 	ifp->if_watchdog = sk_watchdog;
   1416 	ifp->if_capabilities = 0;
   1417 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
   1418 	IFQ_SET_READY(&ifp->if_snd);
   1419 	strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
   1420 
   1421 	/*
   1422 	 * Do miibus setup.
   1423 	 */
   1424 	switch (sc->sk_type) {
   1425 	case SK_GENESIS:
   1426 		sk_init_xmac(sc_if);
   1427 		break;
   1428 	case SK_YUKON:
   1429 	case SK_YUKON_LITE:
   1430 	case SK_YUKON_LP:
   1431 		sk_init_yukon(sc_if);
   1432 		break;
   1433 	default:
   1434 		panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
   1435 		      sc->sk_type);
   1436 	}
   1437 
   1438  	DPRINTFN(2, ("sk_attach: 1\n"));
   1439 
   1440 	sc_if->sk_mii.mii_ifp = ifp;
   1441 	switch (sc->sk_type) {
   1442 	case SK_GENESIS:
   1443 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
   1444 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
   1445 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
   1446 		break;
   1447 	case SK_YUKON:
   1448 	case SK_YUKON_LITE:
   1449 	case SK_YUKON_LP:
   1450 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
   1451 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
   1452 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
   1453 		break;
   1454 	}
   1455 
   1456 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
   1457 	    sk_ifmedia_upd, sk_ifmedia_sts);
   1458 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
   1459 	    MII_OFFSET_ANY, 0);
   1460 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
   1461 		aprint_error("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
   1462 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
   1463 			    0, NULL);
   1464 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
   1465 	} else
   1466 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1467 
   1468 	callout_init(&sc_if->sk_tick_ch);
   1469 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
   1470 
   1471 	DPRINTFN(2, ("sk_attach: 1\n"));
   1472 
   1473 	/*
   1474 	 * Call MI attach routines.
   1475 	 */
   1476 	if_attach(ifp);
   1477 
   1478 	ether_ifattach(ifp, sc_if->sk_enaddr);
   1479 
   1480 #if NRND > 0
   1481         rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
   1482             RND_TYPE_NET, 0);
   1483 #endif
   1484 
   1485 	DPRINTFN(2, ("sk_attach: end\n"));
   1486 
   1487 	return;
   1488 
   1489 fail:
   1490 	sc->sk_if[sa->skc_port] = NULL;
   1491 }
   1492 
   1493 int
   1494 skcprint(void *aux, const char *pnp)
   1495 {
   1496 	struct skc_attach_args *sa = aux;
   1497 
   1498 	if (pnp)
   1499 		aprint_normal("sk port %c at %s",
   1500 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
   1501 	else
   1502 		aprint_normal(" port %c",
   1503 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
   1504 	return UNCONF;
   1505 }
   1506 
   1507 /*
   1508  * Attach the interface. Allocate softc structures, do ifmedia
   1509  * setup and ethernet/BPF attach.
   1510  */
   1511 void
   1512 skc_attach(struct device *parent, struct device *self, void *aux)
   1513 {
   1514 	struct sk_softc *sc = (struct sk_softc *)self;
   1515 	struct pci_attach_args *pa = aux;
   1516 	struct skc_attach_args skca;
   1517 	pci_chipset_tag_t pc = pa->pa_pc;
   1518 #ifndef SK_USEIOSPACE
   1519 	pcireg_t memtype;
   1520 #endif
   1521 	pci_intr_handle_t ih;
   1522 	const char *intrstr = NULL;
   1523 	bus_addr_t iobase;
   1524 	bus_size_t iosize;
   1525 	int rc, sk_nodenum;
   1526 	u_int32_t command;
   1527 	const char *revstr;
   1528 	const struct sysctlnode *node;
   1529 
   1530 	DPRINTFN(2, ("begin skc_attach\n"));
   1531 
   1532 	/*
   1533 	 * Handle power management nonsense.
   1534 	 */
   1535 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
   1536 
   1537 	if (command == 0x01) {
   1538 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
   1539 		if (command & SK_PSTATE_MASK) {
   1540 			u_int32_t		xiobase, membase, irq;
   1541 
   1542 			/* Save important PCI config data. */
   1543 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
   1544 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
   1545 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
   1546 
   1547 			/* Reset the power state. */
   1548 			aprint_normal("%s chip is in D%d power mode "
   1549 			    "-- setting to D0\n", sc->sk_dev.dv_xname,
   1550 			    command & SK_PSTATE_MASK);
   1551 			command &= 0xFFFFFFFC;
   1552 			pci_conf_write(pc, pa->pa_tag,
   1553 			    SK_PCI_PWRMGMTCTRL, command);
   1554 
   1555 			/* Restore PCI config data. */
   1556 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
   1557 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
   1558 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
   1559 		}
   1560 	}
   1561 
   1562 	/*
   1563 	 * Map control/status registers.
   1564 	 */
   1565 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1566 	command |= PCI_COMMAND_IO_ENABLE |
   1567 	    PCI_COMMAND_MEM_ENABLE |
   1568 	    PCI_COMMAND_MASTER_ENABLE;
   1569 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1570 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1571 
   1572 #ifdef SK_USEIOSPACE
   1573 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
   1574 		aprint_error(": failed to enable I/O ports!\n");
   1575 		return;
   1576 	}
   1577 	/*
   1578 	 * Map control/status registers.
   1579 	 */
   1580 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
   1581 			&sc->sk_btag, &sc->sk_bhandle,
   1582 			&iobase, &iosize)) {
   1583 		aprint_error(": can't find i/o space\n");
   1584 		return;
   1585 	}
   1586 #else
   1587 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1588 		aprint_error(": failed to enable memory mapping!\n");
   1589 		return;
   1590 	}
   1591 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
   1592 	switch (memtype) {
   1593         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1594         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1595                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
   1596 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
   1597 				   &iobase, &iosize) == 0)
   1598                         break;
   1599         default:
   1600                 aprint_error("%s: can't find mem space\n",
   1601 		       sc->sk_dev.dv_xname);
   1602                 return;
   1603 	}
   1604 
   1605 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
   1606 #endif
   1607 	sc->sc_dmatag = pa->pa_dmat;
   1608 
   1609 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
   1610 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
   1611 
   1612 	/* bail out here if chip is not recognized */
   1613 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
   1614 		aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
   1615 		goto fail;
   1616 	}
   1617 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
   1618 
   1619 	/* Allocate interrupt */
   1620 	if (pci_intr_map(pa, &ih)) {
   1621 		aprint_error(": couldn't map interrupt\n");
   1622 		goto fail;
   1623 	}
   1624 
   1625 	intrstr = pci_intr_string(pc, ih);
   1626 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
   1627 	if (sc->sk_intrhand == NULL) {
   1628 		aprint_error(": couldn't establish interrupt");
   1629 		if (intrstr != NULL)
   1630 			aprint_normal(" at %s", intrstr);
   1631 		goto fail;
   1632 	}
   1633 	aprint_normal(": %s\n", intrstr);
   1634 
   1635 	/* Reset the adapter. */
   1636 	sk_reset(sc);
   1637 
   1638 	/* Read and save vital product data from EEPROM. */
   1639 	sk_vpd_read(sc);
   1640 
   1641 	if (sc->sk_type == SK_GENESIS) {
   1642 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1643 		/* Read and save RAM size and RAMbuffer offset */
   1644 		switch (val) {
   1645 		case SK_RAMSIZE_512K_64:
   1646 			sc->sk_ramsize = 0x80000;
   1647 			sc->sk_rboff = SK_RBOFF_0;
   1648 			break;
   1649 		case SK_RAMSIZE_1024K_64:
   1650 			sc->sk_ramsize = 0x100000;
   1651 			sc->sk_rboff = SK_RBOFF_80000;
   1652 			break;
   1653 		case SK_RAMSIZE_1024K_128:
   1654 			sc->sk_ramsize = 0x100000;
   1655 			sc->sk_rboff = SK_RBOFF_0;
   1656 			break;
   1657 		case SK_RAMSIZE_2048K_128:
   1658 			sc->sk_ramsize = 0x200000;
   1659 			sc->sk_rboff = SK_RBOFF_0;
   1660 			break;
   1661 		default:
   1662 			aprint_error("%s: unknown ram size: %d\n",
   1663 			       sc->sk_dev.dv_xname, val);
   1664 			goto fail_1;
   1665 			break;
   1666 		}
   1667 
   1668 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
   1669 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
   1670 			     sc->sk_rboff));
   1671 	} else {
   1672 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1673 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
   1674 		sc->sk_rboff = SK_RBOFF_0;
   1675 
   1676 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
   1677 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
   1678 			     sc->sk_rboff));
   1679 	}
   1680 
   1681 	/* Read and save physical media type */
   1682 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
   1683 	case SK_PMD_1000BASESX:
   1684 		sc->sk_pmd = IFM_1000_SX;
   1685 		break;
   1686 	case SK_PMD_1000BASELX:
   1687 		sc->sk_pmd = IFM_1000_LX;
   1688 		break;
   1689 	case SK_PMD_1000BASECX:
   1690 		sc->sk_pmd = IFM_1000_CX;
   1691 		break;
   1692 	case SK_PMD_1000BASETX:
   1693 	case SK_PMD_1000BASETX_ALT:
   1694 		sc->sk_pmd = IFM_1000_T;
   1695 		break;
   1696 	default:
   1697 		aprint_error("%s: unknown media type: 0x%x\n",
   1698 		    sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
   1699 		goto fail_1;
   1700 	}
   1701 
   1702 	/* determine whether to name it with vpd or just make it up */
   1703 	/* Marvell Yukon VPD's can freqently be bogus */
   1704 
   1705 	switch (pa->pa_id) {
   1706 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1707 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
   1708 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
   1709 	case PCI_PRODUCT_3COM_3C940:
   1710 	case PCI_PRODUCT_DLINK_DGE530T:
   1711 	case PCI_PRODUCT_DLINK_DGE560T:
   1712 	case PCI_PRODUCT_DLINK_DGE560T_2:
   1713 	case PCI_PRODUCT_LINKSYS_EG1032:
   1714 	case PCI_PRODUCT_LINKSYS_EG1064:
   1715 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1716 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
   1717 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
   1718 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
   1719 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
   1720 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
   1721 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
   1722 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
   1723  		sc->sk_name = sc->sk_vpd_prodname;
   1724  		break;
   1725 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
   1726 	/* whoops yukon vpd prodname bears no resemblance to reality */
   1727 		switch (sc->sk_type) {
   1728 		case SK_GENESIS:
   1729 			sc->sk_name = sc->sk_vpd_prodname;
   1730 			break;
   1731 		case SK_YUKON:
   1732 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
   1733 			break;
   1734 		case SK_YUKON_LITE:
   1735 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
   1736 			break;
   1737 		case SK_YUKON_LP:
   1738 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
   1739 			break;
   1740 		default:
   1741 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
   1742 		}
   1743 
   1744 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
   1745 
   1746 		if ( sc->sk_type == SK_YUKON ) {
   1747 			uint32_t flashaddr;
   1748 			uint8_t testbyte;
   1749 
   1750 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
   1751 
   1752 			/* test Flash-Address Register */
   1753 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
   1754 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
   1755 
   1756 			if (testbyte != 0) {
   1757 				/* this is yukon lite Rev. A0 */
   1758 				sc->sk_type = SK_YUKON_LITE;
   1759 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
   1760 				/* restore Flash-Address Register */
   1761 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
   1762 			}
   1763 		}
   1764 		break;
   1765 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
   1766 		sc->sk_name = sc->sk_vpd_prodname;
   1767 		break;
   1768  	default:
   1769 		sc->sk_name = "Unknown Marvell";
   1770 	}
   1771 
   1772 
   1773 	if ( sc->sk_type == SK_YUKON_LITE ) {
   1774 		switch (sc->sk_rev) {
   1775 		case SK_YUKON_LITE_REV_A0:
   1776 			revstr = "A0";
   1777 			break;
   1778 		case SK_YUKON_LITE_REV_A1:
   1779 			revstr = "A1";
   1780 			break;
   1781 		case SK_YUKON_LITE_REV_A3:
   1782 			revstr = "A3";
   1783 			break;
   1784 		default:
   1785 			revstr = "";
   1786 		}
   1787 	} else {
   1788 		revstr = "";
   1789 	}
   1790 
   1791 	/* Announce the product name. */
   1792 	aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
   1793 			      sc->sk_name, revstr, sc->sk_rev);
   1794 
   1795 	skca.skc_port = SK_PORT_A;
   1796 	(void)config_found(&sc->sk_dev, &skca, skcprint);
   1797 
   1798 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
   1799 		skca.skc_port = SK_PORT_B;
   1800 		(void)config_found(&sc->sk_dev, &skca, skcprint);
   1801 	}
   1802 
   1803 	/* Turn on the 'driver is loaded' LED. */
   1804 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   1805 
   1806 	/* skc sysctl setup */
   1807 
   1808 	sc->sk_int_mod = SK_IM_DEFAULT;
   1809 	sc->sk_int_mod_pending = 0;
   1810 
   1811 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1812 	    0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
   1813 	    SYSCTL_DESCR("skc per-controller controls"),
   1814 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
   1815 	    CTL_EOL)) != 0) {
   1816 		aprint_normal("%s: couldn't create sysctl node\n",
   1817 		    sc->sk_dev.dv_xname);
   1818 		goto fail_1;
   1819 	}
   1820 
   1821 	sk_nodenum = node->sysctl_num;
   1822 
   1823 	/* interrupt moderation time in usecs */
   1824 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1825 	    CTLFLAG_READWRITE,
   1826 	    CTLTYPE_INT, "int_mod",
   1827 	    SYSCTL_DESCR("sk interrupt moderation timer"),
   1828 	    sk_sysctl_handler, 0, sc,
   1829 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
   1830 	    CTL_EOL)) != 0) {
   1831 		aprint_normal("%s: couldn't create int_mod sysctl node\n",
   1832 		    sc->sk_dev.dv_xname);
   1833 		goto fail_1;
   1834 	}
   1835 
   1836 	return;
   1837 
   1838 fail_1:
   1839 	pci_intr_disestablish(pc, sc->sk_intrhand);
   1840 fail:
   1841 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
   1842 }
   1843 
   1844 int
   1845 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
   1846 {
   1847 	struct sk_softc		*sc = sc_if->sk_softc;
   1848 	struct sk_tx_desc	*f = NULL;
   1849 	u_int32_t		frag, cur, cnt = 0, sk_ctl;
   1850 	int			i;
   1851 	struct sk_txmap_entry	*entry;
   1852 	bus_dmamap_t		txmap;
   1853 
   1854 	DPRINTFN(3, ("sk_encap\n"));
   1855 
   1856 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
   1857 	if (entry == NULL) {
   1858 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
   1859 		return ENOBUFS;
   1860 	}
   1861 	txmap = entry->dmamap;
   1862 
   1863 	cur = frag = *txidx;
   1864 
   1865 #ifdef SK_DEBUG
   1866 	if (skdebug >= 3)
   1867 		sk_dump_mbuf(m_head);
   1868 #endif
   1869 
   1870 	/*
   1871 	 * Start packing the mbufs in this chain into
   1872 	 * the fragment pointers. Stop when we run out
   1873 	 * of fragments or hit the end of the mbuf chain.
   1874 	 */
   1875 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
   1876 	    BUS_DMA_NOWAIT)) {
   1877 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
   1878 		return ENOBUFS;
   1879 	}
   1880 
   1881 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
   1882 
   1883 	/* Sync the DMA map. */
   1884 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
   1885 	    BUS_DMASYNC_PREWRITE);
   1886 
   1887 	for (i = 0; i < txmap->dm_nsegs; i++) {
   1888 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
   1889 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
   1890 			return ENOBUFS;
   1891 		}
   1892 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
   1893 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
   1894 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
   1895 		if (cnt == 0)
   1896 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
   1897 		else
   1898 			sk_ctl |= SK_TXCTL_OWN;
   1899 		f->sk_ctl = htole32(sk_ctl);
   1900 		cur = frag;
   1901 		SK_INC(frag, SK_TX_RING_CNT);
   1902 		cnt++;
   1903 	}
   1904 
   1905 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
   1906 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
   1907 
   1908 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
   1909 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
   1910 		htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
   1911 
   1912 	/* Sync descriptors before handing to chip */
   1913 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
   1914 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1915 
   1916 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
   1917 		htole32(SK_TXCTL_OWN);
   1918 
   1919 	/* Sync first descriptor to hand it off */
   1920 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1921 
   1922 	sc_if->sk_cdata.sk_tx_cnt += cnt;
   1923 
   1924 #ifdef SK_DEBUG
   1925 	if (skdebug >= 3) {
   1926 		struct sk_tx_desc *desc;
   1927 		u_int32_t idx;
   1928 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
   1929 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
   1930 			sk_dump_txdesc(desc, idx);
   1931 		}
   1932 	}
   1933 #endif
   1934 
   1935 	*txidx = frag;
   1936 
   1937 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
   1938 
   1939 	return 0;
   1940 }
   1941 
   1942 void
   1943 sk_start(struct ifnet *ifp)
   1944 {
   1945         struct sk_if_softc	*sc_if = ifp->if_softc;
   1946         struct sk_softc		*sc = sc_if->sk_softc;
   1947         struct mbuf		*m_head = NULL;
   1948         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
   1949 	int			pkts = 0;
   1950 
   1951 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
   1952 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
   1953 
   1954 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
   1955 		IFQ_POLL(&ifp->if_snd, m_head);
   1956 		if (m_head == NULL)
   1957 			break;
   1958 
   1959 		/*
   1960 		 * Pack the data into the transmit ring. If we
   1961 		 * don't have room, set the OACTIVE flag and wait
   1962 		 * for the NIC to drain the ring.
   1963 		 */
   1964 		if (sk_encap(sc_if, m_head, &idx)) {
   1965 			ifp->if_flags |= IFF_OACTIVE;
   1966 			break;
   1967 		}
   1968 
   1969 		/* now we are committed to transmit the packet */
   1970 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1971 		pkts++;
   1972 
   1973 		/*
   1974 		 * If there's a BPF listener, bounce a copy of this frame
   1975 		 * to him.
   1976 		 */
   1977 #if NBPFILTER > 0
   1978 		if (ifp->if_bpf)
   1979 			bpf_mtap(ifp->if_bpf, m_head);
   1980 #endif
   1981 	}
   1982 	if (pkts == 0)
   1983 		return;
   1984 
   1985 	/* Transmit */
   1986 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
   1987 		sc_if->sk_cdata.sk_tx_prod = idx;
   1988 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   1989 
   1990 		/* Set a timeout in case the chip goes out to lunch. */
   1991 		ifp->if_timer = 5;
   1992 	}
   1993 }
   1994 
   1995 
   1996 void
   1997 sk_watchdog(struct ifnet *ifp)
   1998 {
   1999 	struct sk_if_softc *sc_if = ifp->if_softc;
   2000 
   2001 	aprint_error("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
   2002 	(void) sk_init(ifp);
   2003 }
   2004 
   2005 void
   2006 sk_shutdown(void * v)
   2007 {
   2008 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
   2009 	struct sk_softc		*sc = sc_if->sk_softc;
   2010 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
   2011 
   2012 	DPRINTFN(2, ("sk_shutdown\n"));
   2013 	sk_stop(ifp,1);
   2014 
   2015 	/* Turn off the 'driver is loaded' LED. */
   2016 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   2017 
   2018 	/*
   2019 	 * Reset the GEnesis controller. Doing this should also
   2020 	 * assert the resets on the attached XMAC(s).
   2021 	 */
   2022 	sk_reset(sc);
   2023 }
   2024 
   2025 void
   2026 sk_rxeof(struct sk_if_softc *sc_if)
   2027 {
   2028 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2029 	struct mbuf		*m;
   2030 	struct sk_chain		*cur_rx;
   2031 	struct sk_rx_desc	*cur_desc;
   2032 	int			i, cur, total_len = 0;
   2033 	u_int32_t		rxstat, sk_ctl;
   2034 	bus_dmamap_t		dmamap;
   2035 
   2036 	i = sc_if->sk_cdata.sk_rx_prod;
   2037 
   2038 	DPRINTFN(3, ("sk_rxeof %d\n", i));
   2039 
   2040 	for (;;) {
   2041 		cur = i;
   2042 
   2043 		/* Sync the descriptor */
   2044 		SK_CDRXSYNC(sc_if, cur,
   2045 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2046 
   2047 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
   2048 		if (sk_ctl & SK_RXCTL_OWN) {
   2049 			/* Invalidate the descriptor -- it's not ready yet */
   2050 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
   2051 			sc_if->sk_cdata.sk_rx_prod = i;
   2052 			break;
   2053 		}
   2054 
   2055 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
   2056 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
   2057 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
   2058 
   2059 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
   2060 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2061 
   2062 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
   2063 		m = cur_rx->sk_mbuf;
   2064 		cur_rx->sk_mbuf = NULL;
   2065 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
   2066 
   2067 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
   2068 
   2069 		SK_INC(i, SK_RX_RING_CNT);
   2070 
   2071 		if (rxstat & XM_RXSTAT_ERRFRAME) {
   2072 			ifp->if_ierrors++;
   2073 			sk_newbuf(sc_if, cur, m, dmamap);
   2074 			continue;
   2075 		}
   2076 
   2077 		/*
   2078 		 * Try to allocate a new jumbo buffer. If that
   2079 		 * fails, copy the packet to mbufs and put the
   2080 		 * jumbo buffer back in the ring so it can be
   2081 		 * re-used. If allocating mbufs fails, then we
   2082 		 * have to drop the packet.
   2083 		 */
   2084 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
   2085 			struct mbuf		*m0;
   2086 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
   2087 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
   2088 			sk_newbuf(sc_if, cur, m, dmamap);
   2089 			if (m0 == NULL) {
   2090 				aprint_error("%s: no receive buffers "
   2091 				    "available -- packet dropped!\n",
   2092 				    sc_if->sk_dev.dv_xname);
   2093 				ifp->if_ierrors++;
   2094 				continue;
   2095 			}
   2096 			m_adj(m0, ETHER_ALIGN);
   2097 			m = m0;
   2098 		} else {
   2099 			m->m_pkthdr.rcvif = ifp;
   2100 			m->m_pkthdr.len = m->m_len = total_len;
   2101 		}
   2102 
   2103 		ifp->if_ipackets++;
   2104 
   2105 #if NBPFILTER > 0
   2106 		if (ifp->if_bpf)
   2107 			bpf_mtap(ifp->if_bpf, m);
   2108 #endif
   2109 		/* pass it on. */
   2110 		(*ifp->if_input)(ifp, m);
   2111 	}
   2112 }
   2113 
   2114 void
   2115 sk_txeof(struct sk_if_softc *sc_if)
   2116 {
   2117 	struct sk_softc		*sc = sc_if->sk_softc;
   2118 	struct sk_tx_desc	*cur_tx;
   2119 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2120 	u_int32_t		idx, sk_ctl;
   2121 	struct sk_txmap_entry	*entry;
   2122 
   2123 	DPRINTFN(3, ("sk_txeof\n"));
   2124 
   2125 	/*
   2126 	 * Go through our tx ring and free mbufs for those
   2127 	 * frames that have been sent.
   2128 	 */
   2129 	idx = sc_if->sk_cdata.sk_tx_cons;
   2130 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
   2131 		SK_CDTXSYNC(sc_if, idx, 1,
   2132 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2133 
   2134 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
   2135 		sk_ctl = le32toh(cur_tx->sk_ctl);
   2136 #ifdef SK_DEBUG
   2137 		if (skdebug >= 3)
   2138 			sk_dump_txdesc(cur_tx, idx);
   2139 #endif
   2140 		if (sk_ctl & SK_TXCTL_OWN) {
   2141 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
   2142 			break;
   2143 		}
   2144 		if (sk_ctl & SK_TXCTL_LASTFRAG)
   2145 			ifp->if_opackets++;
   2146 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
   2147 			entry = sc_if->sk_cdata.sk_tx_map[idx];
   2148 
   2149 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
   2150 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
   2151 
   2152 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
   2153 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2154 
   2155 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
   2156 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
   2157 					  link);
   2158 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
   2159 		}
   2160 		sc_if->sk_cdata.sk_tx_cnt--;
   2161 		SK_INC(idx, SK_TX_RING_CNT);
   2162 	}
   2163 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
   2164 		ifp->if_timer = 0;
   2165 	else /* nudge chip to keep tx ring moving */
   2166 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   2167 
   2168 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
   2169 		ifp->if_flags &= ~IFF_OACTIVE;
   2170 
   2171 	sc_if->sk_cdata.sk_tx_cons = idx;
   2172 }
   2173 
   2174 void
   2175 sk_tick(void *xsc_if)
   2176 {
   2177 	struct sk_if_softc *sc_if = xsc_if;
   2178 	struct mii_data *mii = &sc_if->sk_mii;
   2179 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2180 	int i;
   2181 
   2182 	DPRINTFN(3, ("sk_tick\n"));
   2183 
   2184 	if (!(ifp->if_flags & IFF_UP))
   2185 		return;
   2186 
   2187 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2188 		sk_intr_bcom(sc_if);
   2189 		return;
   2190 	}
   2191 
   2192 	/*
   2193 	 * According to SysKonnect, the correct way to verify that
   2194 	 * the link has come back up is to poll bit 0 of the GPIO
   2195 	 * register three times. This pin has the signal from the
   2196 	 * link sync pin connected to it; if we read the same link
   2197 	 * state 3 times in a row, we know the link is up.
   2198 	 */
   2199 	for (i = 0; i < 3; i++) {
   2200 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
   2201 			break;
   2202 	}
   2203 
   2204 	if (i != 3) {
   2205 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2206 		return;
   2207 	}
   2208 
   2209 	/* Turn the GP0 interrupt back on. */
   2210 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2211 	SK_XM_READ_2(sc_if, XM_ISR);
   2212 	mii_tick(mii);
   2213 	mii_pollstat(mii);
   2214 	callout_stop(&sc_if->sk_tick_ch);
   2215 }
   2216 
   2217 void
   2218 sk_intr_bcom(struct sk_if_softc *sc_if)
   2219 {
   2220 	struct mii_data *mii = &sc_if->sk_mii;
   2221 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2222 	int status;
   2223 
   2224 
   2225 	DPRINTFN(3, ("sk_intr_bcom\n"));
   2226 
   2227 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2228 
   2229 	/*
   2230 	 * Read the PHY interrupt register to make sure
   2231 	 * we clear any pending interrupts.
   2232 	 */
   2233 	status = sk_xmac_miibus_readreg((struct device *)sc_if,
   2234 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
   2235 
   2236 	if (!(ifp->if_flags & IFF_RUNNING)) {
   2237 		sk_init_xmac(sc_if);
   2238 		return;
   2239 	}
   2240 
   2241 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
   2242 		int lstat;
   2243 		lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
   2244 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
   2245 
   2246 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
   2247 			mii_mediachg(mii);
   2248 			/* Turn off the link LED. */
   2249 			SK_IF_WRITE_1(sc_if, 0,
   2250 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2251 			sc_if->sk_link = 0;
   2252 		} else if (status & BRGPHY_ISR_LNK_CHG) {
   2253 			sk_xmac_miibus_writereg((struct device *)sc_if,
   2254 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
   2255 			mii_tick(mii);
   2256 			sc_if->sk_link = 1;
   2257 			/* Turn on the link LED. */
   2258 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2259 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
   2260 			    SK_LINKLED_BLINK_OFF);
   2261 			mii_pollstat(mii);
   2262 		} else {
   2263 			mii_tick(mii);
   2264 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
   2265 		}
   2266 	}
   2267 
   2268 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2269 }
   2270 
   2271 void
   2272 sk_intr_xmac(struct sk_if_softc	*sc_if)
   2273 {
   2274 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
   2275 
   2276 	DPRINTFN(3, ("sk_intr_xmac\n"));
   2277 
   2278 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
   2279 		if (status & XM_ISR_GP0_SET) {
   2280 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2281 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2282 		}
   2283 
   2284 		if (status & XM_ISR_AUTONEG_DONE) {
   2285 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2286 		}
   2287 	}
   2288 
   2289 	if (status & XM_IMR_TX_UNDERRUN)
   2290 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
   2291 
   2292 	if (status & XM_IMR_RX_OVERRUN)
   2293 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
   2294 }
   2295 
   2296 void
   2297 sk_intr_yukon(struct sk_if_softc *sc_if)
   2298 {
   2299 	int status;
   2300 
   2301 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2302 
   2303 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
   2304 }
   2305 
   2306 int
   2307 sk_intr(void *xsc)
   2308 {
   2309 	struct sk_softc		*sc = xsc;
   2310 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
   2311 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
   2312 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
   2313 	u_int32_t		status;
   2314 	int			claimed = 0;
   2315 
   2316 	if (sc_if0 != NULL)
   2317 		ifp0 = &sc_if0->sk_ethercom.ec_if;
   2318 	if (sc_if1 != NULL)
   2319 		ifp1 = &sc_if1->sk_ethercom.ec_if;
   2320 
   2321 	for (;;) {
   2322 		status = CSR_READ_4(sc, SK_ISSR);
   2323 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
   2324 
   2325 		if (!(status & sc->sk_intrmask))
   2326 			break;
   2327 
   2328 		claimed = 1;
   2329 
   2330 		/* Handle receive interrupts first. */
   2331 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
   2332 			sk_rxeof(sc_if0);
   2333 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
   2334 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2335 		}
   2336 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
   2337 			sk_rxeof(sc_if1);
   2338 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
   2339 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2340 		}
   2341 
   2342 		/* Then transmit interrupts. */
   2343 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
   2344 			sk_txeof(sc_if0);
   2345 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
   2346 			    SK_TXBMU_CLR_IRQ_EOF);
   2347 		}
   2348 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
   2349 			sk_txeof(sc_if1);
   2350 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
   2351 			    SK_TXBMU_CLR_IRQ_EOF);
   2352 		}
   2353 
   2354 		/* Then MAC interrupts. */
   2355 		if (sc_if0 && (status & SK_ISR_MAC1) &&
   2356 		    (ifp0->if_flags & IFF_RUNNING)) {
   2357 			if (sc->sk_type == SK_GENESIS)
   2358 				sk_intr_xmac(sc_if0);
   2359 			else
   2360 				sk_intr_yukon(sc_if0);
   2361 		}
   2362 
   2363 		if (sc_if1 && (status & SK_ISR_MAC2) &&
   2364 		    (ifp1->if_flags & IFF_RUNNING)) {
   2365 			if (sc->sk_type == SK_GENESIS)
   2366 				sk_intr_xmac(sc_if1);
   2367 			else
   2368 				sk_intr_yukon(sc_if1);
   2369 
   2370 		}
   2371 
   2372 		if (status & SK_ISR_EXTERNAL_REG) {
   2373 			if (sc_if0 != NULL &&
   2374 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
   2375 				sk_intr_bcom(sc_if0);
   2376 
   2377 			if (sc_if1 != NULL &&
   2378 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
   2379 				sk_intr_bcom(sc_if1);
   2380 		}
   2381 	}
   2382 
   2383 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2384 
   2385 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
   2386 		sk_start(ifp0);
   2387 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
   2388 		sk_start(ifp1);
   2389 
   2390 #if NRND > 0
   2391 	if (RND_ENABLED(&sc->rnd_source))
   2392 		rnd_add_uint32(&sc->rnd_source, status);
   2393 #endif
   2394 
   2395 	if (sc->sk_int_mod_pending)
   2396 		sk_update_int_mod(sc);
   2397 
   2398 	return claimed;
   2399 }
   2400 
   2401 void
   2402 sk_init_xmac(struct sk_if_softc	*sc_if)
   2403 {
   2404 	struct sk_softc		*sc = sc_if->sk_softc;
   2405 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2406 	static const struct sk_bcom_hack     bhack[] = {
   2407 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
   2408 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
   2409 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
   2410 	{ 0, 0 } };
   2411 
   2412 	DPRINTFN(1, ("sk_init_xmac\n"));
   2413 
   2414 	/* Unreset the XMAC. */
   2415 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
   2416 	DELAY(1000);
   2417 
   2418 	/* Reset the XMAC's internal state. */
   2419 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2420 
   2421 	/* Save the XMAC II revision */
   2422 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
   2423 
   2424 	/*
   2425 	 * Perform additional initialization for external PHYs,
   2426 	 * namely for the 1000baseTX cards that use the XMAC's
   2427 	 * GMII mode.
   2428 	 */
   2429 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2430 		int			i = 0;
   2431 		u_int32_t		val;
   2432 
   2433 		/* Take PHY out of reset. */
   2434 		val = sk_win_read_4(sc, SK_GPIO);
   2435 		if (sc_if->sk_port == SK_PORT_A)
   2436 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
   2437 		else
   2438 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
   2439 		sk_win_write_4(sc, SK_GPIO, val);
   2440 
   2441 		/* Enable GMII mode on the XMAC. */
   2442 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
   2443 
   2444 		sk_xmac_miibus_writereg((struct device *)sc_if,
   2445 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
   2446 		DELAY(10000);
   2447 		sk_xmac_miibus_writereg((struct device *)sc_if,
   2448 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
   2449 
   2450 		/*
   2451 		 * Early versions of the BCM5400 apparently have
   2452 		 * a bug that requires them to have their reserved
   2453 		 * registers initialized to some magic values. I don't
   2454 		 * know what the numbers do, I'm just the messenger.
   2455 		 */
   2456 		if (sk_xmac_miibus_readreg((struct device *)sc_if,
   2457 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
   2458 			while (bhack[i].reg) {
   2459 				sk_xmac_miibus_writereg((struct device *)sc_if,
   2460 				    SK_PHYADDR_BCOM, bhack[i].reg,
   2461 				    bhack[i].val);
   2462 				i++;
   2463 			}
   2464 		}
   2465 	}
   2466 
   2467 	/* Set station address */
   2468 	SK_XM_WRITE_2(sc_if, XM_PAR0,
   2469 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
   2470 	SK_XM_WRITE_2(sc_if, XM_PAR1,
   2471 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
   2472 	SK_XM_WRITE_2(sc_if, XM_PAR2,
   2473 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
   2474 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
   2475 
   2476 	if (ifp->if_flags & IFF_PROMISC)
   2477 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2478 	else
   2479 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2480 
   2481 	if (ifp->if_flags & IFF_BROADCAST)
   2482 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2483 	else
   2484 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2485 
   2486 	/* We don't need the FCS appended to the packet. */
   2487 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
   2488 
   2489 	/* We want short frames padded to 60 bytes. */
   2490 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
   2491 
   2492 	/*
   2493 	 * Enable the reception of all error frames. This is is
   2494 	 * a necessary evil due to the design of the XMAC. The
   2495 	 * XMAC's receive FIFO is only 8K in size, however jumbo
   2496 	 * frames can be up to 9000 bytes in length. When bad
   2497 	 * frame filtering is enabled, the XMAC's RX FIFO operates
   2498 	 * in 'store and forward' mode. For this to work, the
   2499 	 * entire frame has to fit into the FIFO, but that means
   2500 	 * that jumbo frames larger than 8192 bytes will be
   2501 	 * truncated. Disabling all bad frame filtering causes
   2502 	 * the RX FIFO to operate in streaming mode, in which
   2503 	 * case the XMAC will start transfering frames out of the
   2504 	 * RX FIFO as soon as the FIFO threshold is reached.
   2505 	 */
   2506 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
   2507 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
   2508 	    XM_MODE_RX_INRANGELEN);
   2509 
   2510 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2511 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2512 	else
   2513 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2514 
   2515 	/*
   2516 	 * Bump up the transmit threshold. This helps hold off transmit
   2517 	 * underruns when we're blasting traffic from both ports at once.
   2518 	 */
   2519 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
   2520 
   2521 	/* Set multicast filter */
   2522 	sk_setmulti(sc_if);
   2523 
   2524 	/* Clear and enable interrupts */
   2525 	SK_XM_READ_2(sc_if, XM_ISR);
   2526 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
   2527 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
   2528 	else
   2529 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2530 
   2531 	/* Configure MAC arbiter */
   2532 	switch (sc_if->sk_xmac_rev) {
   2533 	case XM_XMAC_REV_B2:
   2534 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
   2535 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
   2536 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
   2537 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
   2538 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
   2539 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
   2540 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
   2541 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
   2542 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2543 		break;
   2544 	case XM_XMAC_REV_C1:
   2545 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
   2546 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
   2547 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
   2548 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
   2549 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
   2550 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
   2551 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
   2552 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
   2553 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2554 		break;
   2555 	default:
   2556 		break;
   2557 	}
   2558 	sk_win_write_2(sc, SK_MACARB_CTL,
   2559 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
   2560 
   2561 	sc_if->sk_link = 1;
   2562 }
   2563 
   2564 void sk_init_yukon(struct sk_if_softc *sc_if)
   2565 {
   2566 	u_int32_t		/*mac, */phy;
   2567 	u_int16_t		reg;
   2568 	struct sk_softc		*sc;
   2569 	int			i;
   2570 
   2571 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
   2572 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
   2573 
   2574 	sc = sc_if->sk_softc;
   2575 	if (sc->sk_type == SK_YUKON_LITE &&
   2576 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
   2577 		/* Take PHY out of reset. */
   2578 		sk_win_write_4(sc, SK_GPIO,
   2579 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
   2580 	}
   2581 
   2582 
   2583 	/* GMAC and GPHY Reset */
   2584 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
   2585 
   2586 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
   2587 
   2588 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2589 	DELAY(1000);
   2590 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
   2591 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2592 	DELAY(1000);
   2593 
   2594 
   2595 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
   2596 
   2597 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
   2598 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
   2599 
   2600 	switch (sc_if->sk_softc->sk_pmd) {
   2601 	case IFM_1000_SX:
   2602 	case IFM_1000_LX:
   2603 		phy |= SK_GPHY_FIBER;
   2604 		break;
   2605 
   2606 	case IFM_1000_CX:
   2607 	case IFM_1000_T:
   2608 		phy |= SK_GPHY_COPPER;
   2609 		break;
   2610 	}
   2611 
   2612 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
   2613 
   2614 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
   2615 	DELAY(1000);
   2616 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
   2617 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
   2618 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
   2619 
   2620 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
   2621 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
   2622 
   2623 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
   2624 
   2625 	/* unused read of the interrupt source register */
   2626 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
   2627 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2628 
   2629 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
   2630 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
   2631 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2632 
   2633 	/* MIB Counter Clear Mode set */
   2634         reg |= YU_PAR_MIB_CLR;
   2635 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2636 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
   2637 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2638 
   2639 	/* MIB Counter Clear Mode clear */
   2640 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
   2641         reg &= ~YU_PAR_MIB_CLR;
   2642 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2643 
   2644 	/* receive control reg */
   2645 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
   2646 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
   2647 		      YU_RCR_CRCR);
   2648 
   2649 	/* transmit parameter register */
   2650 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
   2651 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
   2652 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
   2653 
   2654 	/* serial mode register */
   2655 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
   2656 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
   2657 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
   2658 		      YU_SMR_IPG_DATA(0x1e));
   2659 
   2660 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
   2661 	/* Setup Yukon's address */
   2662 	for (i = 0; i < 3; i++) {
   2663 		/* Write Source Address 1 (unicast filter) */
   2664 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
   2665 			      sc_if->sk_enaddr[i * 2] |
   2666 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
   2667 	}
   2668 
   2669 	for (i = 0; i < 3; i++) {
   2670 		reg = sk_win_read_2(sc_if->sk_softc,
   2671 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
   2672 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
   2673 	}
   2674 
   2675 	/* Set multicast filter */
   2676 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
   2677 	sk_setmulti(sc_if);
   2678 
   2679 	/* enable interrupt mask for counter overflows */
   2680 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
   2681 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
   2682 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
   2683 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
   2684 
   2685 	/* Configure RX MAC FIFO */
   2686 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
   2687 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
   2688 
   2689 	/* Configure TX MAC FIFO */
   2690 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
   2691 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
   2692 
   2693 	DPRINTFN(6, ("sk_init_yukon: end\n"));
   2694 }
   2695 
   2696 /*
   2697  * Note that to properly initialize any part of the GEnesis chip,
   2698  * you first have to take it out of reset mode.
   2699  */
   2700 int
   2701 sk_init(struct ifnet *ifp)
   2702 {
   2703 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2704 	struct sk_softc		*sc = sc_if->sk_softc;
   2705 	struct mii_data		*mii = &sc_if->sk_mii;
   2706 	int			s;
   2707 	u_int32_t		imr, sk_imtimer_ticks;
   2708 
   2709 	DPRINTFN(1, ("sk_init\n"));
   2710 
   2711 	s = splnet();
   2712 
   2713 	if (ifp->if_flags & IFF_RUNNING) {
   2714 		splx(s);
   2715 		return 0;
   2716 	}
   2717 
   2718 	/* Cancel pending I/O and free all RX/TX buffers. */
   2719 	sk_stop(ifp,0);
   2720 
   2721 	if (sc->sk_type == SK_GENESIS) {
   2722 		/* Configure LINK_SYNC LED */
   2723 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
   2724 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2725 			      SK_LINKLED_LINKSYNC_ON);
   2726 
   2727 		/* Configure RX LED */
   2728 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
   2729 			      SK_RXLEDCTL_COUNTER_START);
   2730 
   2731 		/* Configure TX LED */
   2732 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
   2733 			      SK_TXLEDCTL_COUNTER_START);
   2734 	}
   2735 
   2736 	/* Configure I2C registers */
   2737 
   2738 	/* Configure XMAC(s) */
   2739 	switch (sc->sk_type) {
   2740 	case SK_GENESIS:
   2741 		sk_init_xmac(sc_if);
   2742 		break;
   2743 	case SK_YUKON:
   2744 	case SK_YUKON_LITE:
   2745 	case SK_YUKON_LP:
   2746 		sk_init_yukon(sc_if);
   2747 		break;
   2748 	}
   2749 	mii_mediachg(mii);
   2750 
   2751 	if (sc->sk_type == SK_GENESIS) {
   2752 		/* Configure MAC FIFOs */
   2753 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
   2754 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
   2755 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
   2756 
   2757 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
   2758 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
   2759 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
   2760 	}
   2761 
   2762 	/* Configure transmit arbiter(s) */
   2763 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
   2764 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
   2765 
   2766 	/* Configure RAMbuffers */
   2767 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
   2768 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
   2769 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
   2770 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
   2771 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
   2772 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
   2773 
   2774 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
   2775 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
   2776 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
   2777 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
   2778 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
   2779 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
   2780 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
   2781 
   2782 	/* Configure BMUs */
   2783 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
   2784 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
   2785 	    SK_RX_RING_ADDR(sc_if, 0));
   2786 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
   2787 
   2788 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
   2789 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
   2790             SK_TX_RING_ADDR(sc_if, 0));
   2791 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
   2792 
   2793 	/* Init descriptors */
   2794 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
   2795 		aprint_error("%s: initialization failed: no "
   2796 		    "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
   2797 		sk_stop(ifp,0);
   2798 		splx(s);
   2799 		return ENOBUFS;
   2800 	}
   2801 
   2802 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
   2803 		aprint_error("%s: initialization failed: no "
   2804 		    "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
   2805 		sk_stop(ifp,0);
   2806 		splx(s);
   2807 		return ENOBUFS;
   2808 	}
   2809 
   2810 	/* Set interrupt moderation if changed via sysctl. */
   2811 	switch (sc->sk_type) {
   2812 	case SK_GENESIS:
   2813 		sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   2814 		break;
   2815 	case SK_YUKON_EC:
   2816 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   2817 		break;
   2818 	default:
   2819 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   2820 	}
   2821 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
   2822 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
   2823 		sk_win_write_4(sc, SK_IMTIMERINIT,
   2824 		    SK_IM_USECS(sc->sk_int_mod));
   2825 		aprint_verbose("%s: interrupt moderation is %d us\n",
   2826 		    sc->sk_dev.dv_xname, sc->sk_int_mod);
   2827 	}
   2828 
   2829 	/* Configure interrupt handling */
   2830 	CSR_READ_4(sc, SK_ISSR);
   2831 	if (sc_if->sk_port == SK_PORT_A)
   2832 		sc->sk_intrmask |= SK_INTRS1;
   2833 	else
   2834 		sc->sk_intrmask |= SK_INTRS2;
   2835 
   2836 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
   2837 
   2838 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2839 
   2840 	/* Start BMUs. */
   2841 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
   2842 
   2843 	if (sc->sk_type == SK_GENESIS) {
   2844 		/* Enable XMACs TX and RX state machines */
   2845 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
   2846 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
   2847 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2848 	}
   2849 
   2850 	if (SK_YUKON_FAMILY(sc->sk_type)) {
   2851 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
   2852 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
   2853 		reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
   2854 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
   2855 	}
   2856 
   2857 
   2858 	ifp->if_flags |= IFF_RUNNING;
   2859 	ifp->if_flags &= ~IFF_OACTIVE;
   2860 
   2861 	splx(s);
   2862 	return 0;
   2863 }
   2864 
   2865 void
   2866 sk_stop(struct ifnet *ifp, int disable)
   2867 {
   2868         struct sk_if_softc	*sc_if = ifp->if_softc;
   2869 	struct sk_softc		*sc = sc_if->sk_softc;
   2870 	int			i;
   2871 
   2872 	DPRINTFN(1, ("sk_stop\n"));
   2873 
   2874 	callout_stop(&sc_if->sk_tick_ch);
   2875 
   2876 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2877 		u_int32_t		val;
   2878 
   2879 		/* Put PHY back into reset. */
   2880 		val = sk_win_read_4(sc, SK_GPIO);
   2881 		if (sc_if->sk_port == SK_PORT_A) {
   2882 			val |= SK_GPIO_DIR0;
   2883 			val &= ~SK_GPIO_DAT0;
   2884 		} else {
   2885 			val |= SK_GPIO_DIR2;
   2886 			val &= ~SK_GPIO_DAT2;
   2887 		}
   2888 		sk_win_write_4(sc, SK_GPIO, val);
   2889 	}
   2890 
   2891 	/* Turn off various components of this interface. */
   2892 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2893 	switch (sc->sk_type) {
   2894 	case SK_GENESIS:
   2895 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
   2896 			      SK_TXMACCTL_XMAC_RESET);
   2897 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
   2898 		break;
   2899 	case SK_YUKON:
   2900 	case SK_YUKON_LITE:
   2901 	case SK_YUKON_LP:
   2902 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
   2903 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
   2904 		break;
   2905 	}
   2906 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
   2907 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2908 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
   2909 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2910 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
   2911 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2912 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2913 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2914 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
   2915 
   2916 	/* Disable interrupts */
   2917 	if (sc_if->sk_port == SK_PORT_A)
   2918 		sc->sk_intrmask &= ~SK_INTRS1;
   2919 	else
   2920 		sc->sk_intrmask &= ~SK_INTRS2;
   2921 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2922 
   2923 	SK_XM_READ_2(sc_if, XM_ISR);
   2924 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2925 
   2926 	/* Free RX and TX mbufs still in the queues. */
   2927 	for (i = 0; i < SK_RX_RING_CNT; i++) {
   2928 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
   2929 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
   2930 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   2931 		}
   2932 	}
   2933 
   2934 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   2935 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
   2936 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
   2937 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   2938 		}
   2939 	}
   2940 
   2941 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
   2942 }
   2943 
   2944 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
   2945 
   2946 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
   2947 
   2948 #ifdef SK_DEBUG
   2949 void
   2950 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
   2951 {
   2952 #define DESC_PRINT(X)					\
   2953 	if (X)					\
   2954 		printf("txdesc[%d]." #X "=%#x\n",	\
   2955 		       idx, X);
   2956 
   2957 	DESC_PRINT(le32toh(desc->sk_ctl));
   2958 	DESC_PRINT(le32toh(desc->sk_next));
   2959 	DESC_PRINT(le32toh(desc->sk_data_lo));
   2960 	DESC_PRINT(le32toh(desc->sk_data_hi));
   2961 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
   2962 	DESC_PRINT(le16toh(desc->sk_rsvd0));
   2963 	DESC_PRINT(le16toh(desc->sk_csum_startval));
   2964 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
   2965 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
   2966 	DESC_PRINT(le16toh(desc->sk_rsvd1));
   2967 #undef PRINT
   2968 }
   2969 
   2970 void
   2971 sk_dump_bytes(const char *data, int len)
   2972 {
   2973 	int c, i, j;
   2974 
   2975 	for (i = 0; i < len; i += 16) {
   2976 		printf("%08x  ", i);
   2977 		c = len - i;
   2978 		if (c > 16) c = 16;
   2979 
   2980 		for (j = 0; j < c; j++) {
   2981 			printf("%02x ", data[i + j] & 0xff);
   2982 			if ((j & 0xf) == 7 && j > 0)
   2983 				printf(" ");
   2984 		}
   2985 
   2986 		for (; j < 16; j++)
   2987 			printf("   ");
   2988 		printf("  ");
   2989 
   2990 		for (j = 0; j < c; j++) {
   2991 			int ch = data[i + j] & 0xff;
   2992 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
   2993 		}
   2994 
   2995 		printf("\n");
   2996 
   2997 		if (c < 16)
   2998 			break;
   2999 	}
   3000 }
   3001 
   3002 void
   3003 sk_dump_mbuf(struct mbuf *m)
   3004 {
   3005 	int count = m->m_pkthdr.len;
   3006 
   3007 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
   3008 
   3009 	while (count > 0 && m) {
   3010 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
   3011 		       m, m->m_data, m->m_len);
   3012 		sk_dump_bytes(mtod(m, char *), m->m_len);
   3013 
   3014 		count -= m->m_len;
   3015 		m = m->m_next;
   3016 	}
   3017 }
   3018 #endif
   3019 
   3020 static int
   3021 sk_sysctl_handler(SYSCTLFN_ARGS)
   3022 {
   3023 	int error, t;
   3024 	struct sysctlnode node;
   3025 	struct sk_softc *sc;
   3026 
   3027 	node = *rnode;
   3028 	sc = node.sysctl_data;
   3029 	t = sc->sk_int_mod;
   3030 	node.sysctl_data = &t;
   3031 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3032 	if (error || newp == NULL)
   3033 		return error;
   3034 
   3035 	if (t < SK_IM_MIN || t > SK_IM_MAX)
   3036 		return EINVAL;
   3037 
   3038 	/* update the softc with sysctl-changed value, and mark
   3039 	   for hardware update */
   3040 	sc->sk_int_mod = t;
   3041 	sc->sk_int_mod_pending = 1;
   3042 	return 0;
   3043 }
   3044 
   3045 /*
   3046  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
   3047  * set up in skc_attach()
   3048  */
   3049 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
   3050 {
   3051 	int rc;
   3052 	const struct sysctlnode *node;
   3053 
   3054 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   3055 	    0, CTLTYPE_NODE, "hw", NULL,
   3056 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   3057 		goto err;
   3058 	}
   3059 
   3060 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   3061 	    0, CTLTYPE_NODE, "sk",
   3062 	    SYSCTL_DESCR("sk interface controls"),
   3063 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   3064 		goto err;
   3065 	}
   3066 
   3067 	sk_root_num = node->sysctl_num;
   3068 	return;
   3069 
   3070 err:
   3071 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
   3072 }
   3073