if_sk.c revision 1.35.2.2 1 /* $NetBSD: if_sk.c,v 1.35.2.2 2007/08/26 12:01:20 liamjfoy Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the NetBSD
18 * Foundation, Inc. and its contributors.
19 * 4. Neither the name of The NetBSD Foundation nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
37
38 /*
39 * Copyright (c) 1997, 1998, 1999, 2000
40 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Bill Paul.
53 * 4. Neither the name of the author nor the names of any co-contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67 * THE POSSIBILITY OF SUCH DAMAGE.
68 *
69 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70 */
71
72 /*
73 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
74 *
75 * Permission to use, copy, modify, and distribute this software for any
76 * purpose with or without fee is hereby granted, provided that the above
77 * copyright notice and this permission notice appear in all copies.
78 *
79 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86 */
87
88 /*
89 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90 * the SK-984x series adapters, both single port and dual port.
91 * References:
92 * The XaQti XMAC II datasheet,
93 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 * The SysKonnect GEnesis manual, http://www.syskonnect.com
95 *
96 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98 * convenience to others until Vitesse corrects this problem:
99 *
100 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101 *
102 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
103 * Department of Electrical Engineering
104 * Columbia University, New York City
105 */
106
107 /*
108 * The SysKonnect gigabit ethernet adapters consist of two main
109 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111 * components and a PHY while the GEnesis controller provides a PCI
112 * interface with DMA support. Each card may have between 512K and
113 * 2MB of SRAM on board depending on the configuration.
114 *
115 * The SysKonnect GEnesis controller can have either one or two XMAC
116 * chips connected to it, allowing single or dual port NIC configurations.
117 * SysKonnect has the distinction of being the only vendor on the market
118 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120 * XMAC registers. This driver takes advantage of these features to allow
121 * both XMACs to operate as independent interfaces.
122 */
123
124 #include "bpfilter.h"
125 #include "rnd.h"
126
127 #include <sys/param.h>
128 #include <sys/systm.h>
129 #include <sys/sockio.h>
130 #include <sys/mbuf.h>
131 #include <sys/malloc.h>
132 #include <sys/kernel.h>
133 #include <sys/socket.h>
134 #include <sys/device.h>
135 #include <sys/queue.h>
136 #include <sys/callout.h>
137 #include <sys/sysctl.h>
138 #include <sys/endian.h>
139
140 #include <net/if.h>
141 #include <net/if_dl.h>
142 #include <net/if_types.h>
143
144 #include <net/if_media.h>
145
146 #if NBPFILTER > 0
147 #include <net/bpf.h>
148 #endif
149 #if NRND > 0
150 #include <sys/rnd.h>
151 #endif
152
153 #include <dev/mii/mii.h>
154 #include <dev/mii/miivar.h>
155 #include <dev/mii/brgphyreg.h>
156
157 #include <dev/pci/pcireg.h>
158 #include <dev/pci/pcivar.h>
159 #include <dev/pci/pcidevs.h>
160
161 /* #define SK_USEIOSPACE */
162
163 #include <dev/pci/if_skreg.h>
164 #include <dev/pci/if_skvar.h>
165
166 int skc_probe(struct device *, struct cfdata *, void *);
167 void skc_attach(struct device *, struct device *self, void *aux);
168 int sk_probe(struct device *, struct cfdata *, void *);
169 void sk_attach(struct device *, struct device *self, void *aux);
170 int skcprint(void *, const char *);
171 int sk_intr(void *);
172 void sk_intr_bcom(struct sk_if_softc *);
173 void sk_intr_xmac(struct sk_if_softc *);
174 void sk_intr_yukon(struct sk_if_softc *);
175 void sk_rxeof(struct sk_if_softc *);
176 void sk_txeof(struct sk_if_softc *);
177 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
178 void sk_start(struct ifnet *);
179 int sk_ioctl(struct ifnet *, u_long, caddr_t);
180 int sk_init(struct ifnet *);
181 void sk_init_xmac(struct sk_if_softc *);
182 void sk_init_yukon(struct sk_if_softc *);
183 void sk_stop(struct ifnet *, int);
184 void sk_watchdog(struct ifnet *);
185 void sk_shutdown(void *);
186 int sk_ifmedia_upd(struct ifnet *);
187 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
188 void sk_reset(struct sk_softc *);
189 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
190 int sk_alloc_jumbo_mem(struct sk_if_softc *);
191 void sk_free_jumbo_mem(struct sk_if_softc *);
192 void *sk_jalloc(struct sk_if_softc *);
193 void sk_jfree(struct mbuf *, caddr_t, size_t, void *);
194 int sk_init_rx_ring(struct sk_if_softc *);
195 int sk_init_tx_ring(struct sk_if_softc *);
196 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
197 void sk_vpd_read_res(struct sk_softc *,
198 struct vpd_res *, int);
199 void sk_vpd_read(struct sk_softc *);
200
201 void sk_update_int_mod(struct sk_softc *);
202
203 int sk_xmac_miibus_readreg(struct device *, int, int);
204 void sk_xmac_miibus_writereg(struct device *, int, int, int);
205 void sk_xmac_miibus_statchg(struct device *);
206
207 int sk_marv_miibus_readreg(struct device *, int, int);
208 void sk_marv_miibus_writereg(struct device *, int, int, int);
209 void sk_marv_miibus_statchg(struct device *);
210
211 u_int32_t sk_xmac_hash(caddr_t);
212 u_int32_t sk_yukon_hash(caddr_t);
213 void sk_setfilt(struct sk_if_softc *, caddr_t, int);
214 void sk_setmulti(struct sk_if_softc *);
215 void sk_tick(void *);
216
217 /* #define SK_DEBUG 2 */
218 #ifdef SK_DEBUG
219 #define DPRINTF(x) if (skdebug) printf x
220 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
221 int skdebug = SK_DEBUG;
222
223 void sk_dump_txdesc(struct sk_tx_desc *, int);
224 void sk_dump_mbuf(struct mbuf *);
225 void sk_dump_bytes(const char *, int);
226 #else
227 #define DPRINTF(x)
228 #define DPRINTFN(n,x)
229 #endif
230
231 static int sk_sysctl_handler(SYSCTLFN_PROTO);
232 static int sk_root_num;
233
234 /* supported device vendors */
235 static const struct sk_product {
236 pci_vendor_id_t sk_vendor;
237 pci_product_id_t sk_product;
238 } sk_products[] = {
239 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
240 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
241 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T, },
242 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
243 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
244 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
245 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
246 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
247 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
248 { 0, 0, }
249 };
250
251 #define SK_LINKSYS_EG1032_SUBID 0x00151737
252
253 static inline u_int32_t
254 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
255 {
256 #ifdef SK_USEIOSPACE
257 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
258 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
259 #else
260 return CSR_READ_4(sc, reg);
261 #endif
262 }
263
264 static inline u_int16_t
265 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
266 {
267 #ifdef SK_USEIOSPACE
268 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
269 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
270 #else
271 return CSR_READ_2(sc, reg);
272 #endif
273 }
274
275 static inline u_int8_t
276 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
277 {
278 #ifdef SK_USEIOSPACE
279 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
280 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
281 #else
282 return CSR_READ_1(sc, reg);
283 #endif
284 }
285
286 static inline void
287 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
288 {
289 #ifdef SK_USEIOSPACE
290 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
291 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
292 #else
293 CSR_WRITE_4(sc, reg, x);
294 #endif
295 }
296
297 static inline void
298 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
299 {
300 #ifdef SK_USEIOSPACE
301 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
302 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
303 #else
304 CSR_WRITE_2(sc, reg, x);
305 #endif
306 }
307
308 static inline void
309 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
310 {
311 #ifdef SK_USEIOSPACE
312 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
313 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
314 #else
315 CSR_WRITE_1(sc, reg, x);
316 #endif
317 }
318
319 /*
320 * The VPD EEPROM contains Vital Product Data, as suggested in
321 * the PCI 2.1 specification. The VPD data is separared into areas
322 * denoted by resource IDs. The SysKonnect VPD contains an ID string
323 * resource (the name of the adapter), a read-only area resource
324 * containing various key/data fields and a read/write area which
325 * can be used to store asset management information or log messages.
326 * We read the ID string and read-only into buffers attached to
327 * the controller softc structure for later use. At the moment,
328 * we only use the ID string during sk_attach().
329 */
330 u_int8_t
331 sk_vpd_readbyte(struct sk_softc *sc, int addr)
332 {
333 int i;
334
335 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
336 for (i = 0; i < SK_TIMEOUT; i++) {
337 DELAY(1);
338 if (sk_win_read_2(sc,
339 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
340 break;
341 }
342
343 if (i == SK_TIMEOUT)
344 return 0;
345
346 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
347 }
348
349 void
350 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
351 {
352 int i;
353 u_int8_t *ptr;
354
355 ptr = (u_int8_t *)res;
356 for (i = 0; i < sizeof(struct vpd_res); i++)
357 ptr[i] = sk_vpd_readbyte(sc, i + addr);
358 }
359
360 void
361 sk_vpd_read(struct sk_softc *sc)
362 {
363 int pos = 0, i;
364 struct vpd_res res;
365
366 if (sc->sk_vpd_prodname != NULL)
367 free(sc->sk_vpd_prodname, M_DEVBUF);
368 if (sc->sk_vpd_readonly != NULL)
369 free(sc->sk_vpd_readonly, M_DEVBUF);
370 sc->sk_vpd_prodname = NULL;
371 sc->sk_vpd_readonly = NULL;
372
373 sk_vpd_read_res(sc, &res, pos);
374
375 if (res.vr_id != VPD_RES_ID) {
376 aprint_error("%s: bad VPD resource id: expected %x got %x\n",
377 sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
378 return;
379 }
380
381 pos += sizeof(res);
382 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
383 if (sc->sk_vpd_prodname == NULL)
384 panic("sk_vpd_read");
385 for (i = 0; i < res.vr_len; i++)
386 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
387 sc->sk_vpd_prodname[i] = '\0';
388 pos += i;
389
390 sk_vpd_read_res(sc, &res, pos);
391
392 if (res.vr_id != VPD_RES_READ) {
393 aprint_error("%s: bad VPD resource id: expected %x got %x\n",
394 sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
395 return;
396 }
397
398 pos += sizeof(res);
399 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
400 if (sc->sk_vpd_readonly == NULL)
401 panic("sk_vpd_read");
402 for (i = 0; i < res.vr_len ; i++)
403 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
404 }
405
406 int
407 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
408 {
409 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
410 int i;
411
412 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
413
414 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
415 return 0;
416
417 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
418 SK_XM_READ_2(sc_if, XM_PHY_DATA);
419 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
420 for (i = 0; i < SK_TIMEOUT; i++) {
421 DELAY(1);
422 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
423 XM_MMUCMD_PHYDATARDY)
424 break;
425 }
426
427 if (i == SK_TIMEOUT) {
428 aprint_error("%s: phy failed to come ready\n",
429 sc_if->sk_dev.dv_xname);
430 return 0;
431 }
432 }
433 DELAY(1);
434 return SK_XM_READ_2(sc_if, XM_PHY_DATA);
435 }
436
437 void
438 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
439 {
440 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
441 int i;
442
443 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
444
445 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
446 for (i = 0; i < SK_TIMEOUT; i++) {
447 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
448 break;
449 }
450
451 if (i == SK_TIMEOUT) {
452 aprint_error("%s: phy failed to come ready\n",
453 sc_if->sk_dev.dv_xname);
454 return;
455 }
456
457 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
458 for (i = 0; i < SK_TIMEOUT; i++) {
459 DELAY(1);
460 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
461 break;
462 }
463
464 if (i == SK_TIMEOUT)
465 aprint_error("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
466 }
467
468 void
469 sk_xmac_miibus_statchg(struct device *dev)
470 {
471 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
472 struct mii_data *mii = &sc_if->sk_mii;
473
474 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
475
476 /*
477 * If this is a GMII PHY, manually set the XMAC's
478 * duplex mode accordingly.
479 */
480 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
481 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
482 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
483 else
484 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
485 }
486 }
487
488 int
489 sk_marv_miibus_readreg(struct device *dev, int phy, int reg)
490 {
491 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
492 u_int16_t val;
493 int i;
494
495 if (phy != 0 ||
496 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
497 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
498 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
499 phy, reg));
500 return 0;
501 }
502
503 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
504 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
505
506 for (i = 0; i < SK_TIMEOUT; i++) {
507 DELAY(1);
508 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
509 if (val & YU_SMICR_READ_VALID)
510 break;
511 }
512
513 if (i == SK_TIMEOUT) {
514 aprint_error("%s: phy failed to come ready\n",
515 sc_if->sk_dev.dv_xname);
516 return 0;
517 }
518
519 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
520 SK_TIMEOUT));
521
522 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
523
524 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
525 phy, reg, val));
526
527 return val;
528 }
529
530 void
531 sk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
532 {
533 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
534 int i;
535
536 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
537 phy, reg, val));
538
539 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
540 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
541 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
542
543 for (i = 0; i < SK_TIMEOUT; i++) {
544 DELAY(1);
545 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
546 break;
547 }
548
549 if (i == SK_TIMEOUT)
550 printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
551 }
552
553 void
554 sk_marv_miibus_statchg(struct device *dev)
555 {
556 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
557 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
558 }
559
560 #define SK_HASH_BITS 6
561
562 u_int32_t
563 sk_xmac_hash(caddr_t addr)
564 {
565 u_int32_t crc;
566
567 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
568 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
569 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
570 return crc;
571 }
572
573 u_int32_t
574 sk_yukon_hash(caddr_t addr)
575 {
576 u_int32_t crc;
577
578 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
579 crc &= ((1 << SK_HASH_BITS) - 1);
580 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
581 return crc;
582 }
583
584 void
585 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
586 {
587 int base = XM_RXFILT_ENTRY(slot);
588
589 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
590 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
591 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
592 }
593
594 void
595 sk_setmulti(struct sk_if_softc *sc_if)
596 {
597 struct sk_softc *sc = sc_if->sk_softc;
598 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
599 u_int32_t hashes[2] = { 0, 0 };
600 int h = 0, i;
601 struct ethercom *ec = &sc_if->sk_ethercom;
602 struct ether_multi *enm;
603 struct ether_multistep step;
604 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
605
606 /* First, zot all the existing filters. */
607 switch (sc->sk_type) {
608 case SK_GENESIS:
609 for (i = 1; i < XM_RXFILT_MAX; i++)
610 sk_setfilt(sc_if, (caddr_t)&dummy, i);
611
612 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
613 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
614 break;
615 case SK_YUKON:
616 case SK_YUKON_LITE:
617 case SK_YUKON_LP:
618 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
619 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
620 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
621 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
622 break;
623 }
624
625 /* Now program new ones. */
626 allmulti:
627 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
628 hashes[0] = 0xFFFFFFFF;
629 hashes[1] = 0xFFFFFFFF;
630 } else {
631 i = 1;
632 /* First find the tail of the list. */
633 ETHER_FIRST_MULTI(step, ec, enm);
634 while (enm != NULL) {
635 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
636 ETHER_ADDR_LEN)) {
637 ifp->if_flags |= IFF_ALLMULTI;
638 goto allmulti;
639 }
640 DPRINTFN(2,("multicast address %s\n",
641 ether_sprintf(enm->enm_addrlo)));
642 /*
643 * Program the first XM_RXFILT_MAX multicast groups
644 * into the perfect filter. For all others,
645 * use the hash table.
646 */
647 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
648 sk_setfilt(sc_if, enm->enm_addrlo, i);
649 i++;
650 }
651 else {
652 switch (sc->sk_type) {
653 case SK_GENESIS:
654 h = sk_xmac_hash(enm->enm_addrlo);
655 break;
656 case SK_YUKON:
657 case SK_YUKON_LITE:
658 case SK_YUKON_LP:
659 h = sk_yukon_hash(enm->enm_addrlo);
660 break;
661 }
662 if (h < 32)
663 hashes[0] |= (1 << h);
664 else
665 hashes[1] |= (1 << (h - 32));
666 }
667
668 ETHER_NEXT_MULTI(step, enm);
669 }
670 }
671
672 switch (sc->sk_type) {
673 case SK_GENESIS:
674 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
675 XM_MODE_RX_USE_PERFECT);
676 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
677 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
678 break;
679 case SK_YUKON:
680 case SK_YUKON_LITE:
681 case SK_YUKON_LP:
682 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
683 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
684 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
685 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
686 break;
687 }
688 }
689
690 int
691 sk_init_rx_ring(struct sk_if_softc *sc_if)
692 {
693 struct sk_chain_data *cd = &sc_if->sk_cdata;
694 struct sk_ring_data *rd = sc_if->sk_rdata;
695 int i;
696
697 bzero((char *)rd->sk_rx_ring,
698 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
699
700 for (i = 0; i < SK_RX_RING_CNT; i++) {
701 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
702 if (i == (SK_RX_RING_CNT - 1)) {
703 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
704 rd->sk_rx_ring[i].sk_next =
705 htole32(SK_RX_RING_ADDR(sc_if, 0));
706 } else {
707 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
708 rd->sk_rx_ring[i].sk_next =
709 htole32(SK_RX_RING_ADDR(sc_if,i+1));
710 }
711 }
712
713 for (i = 0; i < SK_RX_RING_CNT; i++) {
714 if (sk_newbuf(sc_if, i, NULL,
715 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
716 aprint_error("%s: failed alloc of %dth mbuf\n",
717 sc_if->sk_dev.dv_xname, i);
718 return ENOBUFS;
719 }
720 }
721 sc_if->sk_cdata.sk_rx_prod = 0;
722 sc_if->sk_cdata.sk_rx_cons = 0;
723
724 return 0;
725 }
726
727 int
728 sk_init_tx_ring(struct sk_if_softc *sc_if)
729 {
730 struct sk_chain_data *cd = &sc_if->sk_cdata;
731 struct sk_ring_data *rd = sc_if->sk_rdata;
732 int i;
733
734 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
735 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
736
737 for (i = 0; i < SK_TX_RING_CNT; i++) {
738 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
739 if (i == (SK_TX_RING_CNT - 1)) {
740 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
741 rd->sk_tx_ring[i].sk_next =
742 htole32(SK_TX_RING_ADDR(sc_if, 0));
743 } else {
744 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
745 rd->sk_tx_ring[i].sk_next =
746 htole32(SK_TX_RING_ADDR(sc_if,i+1));
747 }
748 }
749
750 sc_if->sk_cdata.sk_tx_prod = 0;
751 sc_if->sk_cdata.sk_tx_cons = 0;
752 sc_if->sk_cdata.sk_tx_cnt = 0;
753
754 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
755 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
756
757 return 0;
758 }
759
760 int
761 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
762 bus_dmamap_t dmamap)
763 {
764 struct mbuf *m_new = NULL;
765 struct sk_chain *c;
766 struct sk_rx_desc *r;
767
768 if (m == NULL) {
769 caddr_t buf = NULL;
770
771 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
772 if (m_new == NULL) {
773 aprint_error("%s: no memory for rx list -- "
774 "packet dropped!\n", sc_if->sk_dev.dv_xname);
775 return ENOBUFS;
776 }
777
778 /* Allocate the jumbo buffer */
779 buf = sk_jalloc(sc_if);
780 if (buf == NULL) {
781 m_freem(m_new);
782 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
783 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
784 return ENOBUFS;
785 }
786
787 /* Attach the buffer to the mbuf */
788 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
789 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
790
791 } else {
792 /*
793 * We're re-using a previously allocated mbuf;
794 * be sure to re-init pointers and lengths to
795 * default values.
796 */
797 m_new = m;
798 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
799 m_new->m_data = m_new->m_ext.ext_buf;
800 }
801 m_adj(m_new, ETHER_ALIGN);
802
803 c = &sc_if->sk_cdata.sk_rx_chain[i];
804 r = c->sk_desc;
805 c->sk_mbuf = m_new;
806 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
807 (((vaddr_t)m_new->m_data
808 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
809 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
810
811 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
812
813 return 0;
814 }
815
816 /*
817 * Memory management for jumbo frames.
818 */
819
820 int
821 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
822 {
823 struct sk_softc *sc = sc_if->sk_softc;
824 caddr_t ptr, kva;
825 bus_dma_segment_t seg;
826 int i, rseg, state, error;
827 struct sk_jpool_entry *entry;
828
829 state = error = 0;
830
831 /* Grab a big chunk o' storage. */
832 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
833 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
834 aprint_error("%s: can't alloc rx buffers\n", sc->sk_dev.dv_xname);
835 return ENOBUFS;
836 }
837
838 state = 1;
839 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, &kva,
840 BUS_DMA_NOWAIT)) {
841 aprint_error("%s: can't map dma buffers (%d bytes)\n",
842 sc->sk_dev.dv_xname, SK_JMEM);
843 error = ENOBUFS;
844 goto out;
845 }
846
847 state = 2;
848 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
849 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
850 aprint_error("%s: can't create dma map\n", sc->sk_dev.dv_xname);
851 error = ENOBUFS;
852 goto out;
853 }
854
855 state = 3;
856 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
857 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
858 aprint_error("%s: can't load dma map\n", sc->sk_dev.dv_xname);
859 error = ENOBUFS;
860 goto out;
861 }
862
863 state = 4;
864 sc_if->sk_cdata.sk_jumbo_buf = (caddr_t)kva;
865 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
866
867 LIST_INIT(&sc_if->sk_jfree_listhead);
868 LIST_INIT(&sc_if->sk_jinuse_listhead);
869
870 /*
871 * Now divide it up into 9K pieces and save the addresses
872 * in an array.
873 */
874 ptr = sc_if->sk_cdata.sk_jumbo_buf;
875 for (i = 0; i < SK_JSLOTS; i++) {
876 sc_if->sk_cdata.sk_jslots[i] = ptr;
877 ptr += SK_JLEN;
878 entry = malloc(sizeof(struct sk_jpool_entry),
879 M_DEVBUF, M_NOWAIT);
880 if (entry == NULL) {
881 aprint_error("%s: no memory for jumbo buffer queue!\n",
882 sc->sk_dev.dv_xname);
883 error = ENOBUFS;
884 goto out;
885 }
886 entry->slot = i;
887 if (i)
888 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
889 entry, jpool_entries);
890 else
891 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
892 entry, jpool_entries);
893 }
894 out:
895 if (error != 0) {
896 switch (state) {
897 case 4:
898 bus_dmamap_unload(sc->sc_dmatag,
899 sc_if->sk_cdata.sk_rx_jumbo_map);
900 case 3:
901 bus_dmamap_destroy(sc->sc_dmatag,
902 sc_if->sk_cdata.sk_rx_jumbo_map);
903 case 2:
904 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
905 case 1:
906 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
907 break;
908 default:
909 break;
910 }
911 }
912
913 return error;
914 }
915
916 /*
917 * Allocate a jumbo buffer.
918 */
919 void *
920 sk_jalloc(struct sk_if_softc *sc_if)
921 {
922 struct sk_jpool_entry *entry;
923
924 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
925
926 if (entry == NULL)
927 return NULL;
928
929 LIST_REMOVE(entry, jpool_entries);
930 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
931 return sc_if->sk_cdata.sk_jslots[entry->slot];
932 }
933
934 /*
935 * Release a jumbo buffer.
936 */
937 void
938 sk_jfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
939 {
940 struct sk_jpool_entry *entry;
941 struct sk_if_softc *sc;
942 int i, s;
943
944 /* Extract the softc struct pointer. */
945 sc = (struct sk_if_softc *)arg;
946
947 if (sc == NULL)
948 panic("sk_jfree: can't find softc pointer!");
949
950 /* calculate the slot this buffer belongs to */
951
952 i = ((vaddr_t)buf
953 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
954
955 if ((i < 0) || (i >= SK_JSLOTS))
956 panic("sk_jfree: asked to free buffer that we don't manage!");
957
958 s = splvm();
959 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
960 if (entry == NULL)
961 panic("sk_jfree: buffer not in use!");
962 entry->slot = i;
963 LIST_REMOVE(entry, jpool_entries);
964 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
965
966 if (__predict_true(m != NULL))
967 pool_cache_put(&mbpool_cache, m);
968 splx(s);
969 }
970
971 /*
972 * Set media options.
973 */
974 int
975 sk_ifmedia_upd(struct ifnet *ifp)
976 {
977 struct sk_if_softc *sc_if = ifp->if_softc;
978
979 (void) sk_init(ifp);
980 mii_mediachg(&sc_if->sk_mii);
981 return 0;
982 }
983
984 /*
985 * Report current media status.
986 */
987 void
988 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
989 {
990 struct sk_if_softc *sc_if = ifp->if_softc;
991
992 mii_pollstat(&sc_if->sk_mii);
993 ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
994 ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
995 }
996
997 int
998 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
999 {
1000 struct sk_if_softc *sc_if = ifp->if_softc;
1001 struct sk_softc *sc = sc_if->sk_softc;
1002 struct ifreq *ifr = (struct ifreq *) data;
1003 struct mii_data *mii;
1004 int s, error = 0;
1005
1006 /* DPRINTFN(2, ("sk_ioctl\n")); */
1007
1008 s = splnet();
1009
1010 switch (command) {
1011
1012 case SIOCSIFFLAGS:
1013 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1014 if (ifp->if_flags & IFF_UP) {
1015 if (ifp->if_flags & IFF_RUNNING &&
1016 ifp->if_flags & IFF_PROMISC &&
1017 !(sc_if->sk_if_flags & IFF_PROMISC)) {
1018 switch (sc->sk_type) {
1019 case SK_GENESIS:
1020 SK_XM_SETBIT_4(sc_if, XM_MODE,
1021 XM_MODE_RX_PROMISC);
1022 break;
1023 case SK_YUKON:
1024 case SK_YUKON_LITE:
1025 case SK_YUKON_LP:
1026 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1027 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1028 break;
1029 }
1030 sk_setmulti(sc_if);
1031 } else if (ifp->if_flags & IFF_RUNNING &&
1032 !(ifp->if_flags & IFF_PROMISC) &&
1033 sc_if->sk_if_flags & IFF_PROMISC) {
1034 switch (sc->sk_type) {
1035 case SK_GENESIS:
1036 SK_XM_CLRBIT_4(sc_if, XM_MODE,
1037 XM_MODE_RX_PROMISC);
1038 break;
1039 case SK_YUKON:
1040 case SK_YUKON_LITE:
1041 case SK_YUKON_LP:
1042 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1043 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1044 break;
1045 }
1046
1047 sk_setmulti(sc_if);
1048 } else
1049 (void) sk_init(ifp);
1050 } else {
1051 if (ifp->if_flags & IFF_RUNNING)
1052 sk_stop(ifp,0);
1053 }
1054 sc_if->sk_if_flags = ifp->if_flags;
1055 error = 0;
1056 break;
1057
1058 case SIOCGIFMEDIA:
1059 case SIOCSIFMEDIA:
1060 DPRINTFN(2, ("sk_ioctl MEDIA\n"));
1061 mii = &sc_if->sk_mii;
1062 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1063 break;
1064 default:
1065 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1066 error = ether_ioctl(ifp, command, data);
1067
1068 if ( error == ENETRESET) {
1069 if (ifp->if_flags & IFF_RUNNING) {
1070 sk_setmulti(sc_if);
1071 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1072 }
1073 error = 0;
1074 } else if ( error ) {
1075 splx(s);
1076 return error;
1077 }
1078 break;
1079 }
1080
1081 splx(s);
1082 return error;
1083 }
1084
1085 void
1086 sk_update_int_mod(struct sk_softc *sc)
1087 {
1088 u_int32_t imtimer_ticks;
1089
1090 /*
1091 * Configure interrupt moderation. The moderation timer
1092 * defers interrupts specified in the interrupt moderation
1093 * timer mask based on the timeout specified in the interrupt
1094 * moderation timer init register. Each bit in the timer
1095 * register represents one tick, so to specify a timeout in
1096 * microseconds, we have to multiply by the correct number of
1097 * ticks-per-microsecond.
1098 */
1099 switch (sc->sk_type) {
1100 case SK_GENESIS:
1101 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1102 break;
1103 case SK_YUKON_EC:
1104 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1105 break;
1106 default:
1107 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1108 }
1109 aprint_verbose("%s: interrupt moderation is %d us\n",
1110 sc->sk_dev.dv_xname, sc->sk_int_mod);
1111 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1112 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1113 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1114 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1115 sc->sk_int_mod_pending = 0;
1116 }
1117
1118 /*
1119 * Lookup: Check the PCI vendor and device, and return a pointer to
1120 * The structure if the IDs match against our list.
1121 */
1122
1123 static const struct sk_product *
1124 sk_lookup(const struct pci_attach_args *pa)
1125 {
1126 const struct sk_product *psk;
1127
1128 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1129 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1130 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1131 return psk;
1132 }
1133 return NULL;
1134 }
1135
1136 /*
1137 * Probe for a SysKonnect GEnesis chip.
1138 */
1139
1140 int
1141 skc_probe(struct device *parent, struct cfdata *match,
1142 void *aux)
1143 {
1144 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1145 const struct sk_product *psk;
1146 pcireg_t subid;
1147
1148 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1149
1150 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1151 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1152 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1153 subid == SK_LINKSYS_EG1032_SUBID)
1154 return 1;
1155
1156 if ((psk = sk_lookup(pa))) {
1157 return 1;
1158 }
1159 return 0;
1160 }
1161
1162 /*
1163 * Force the GEnesis into reset, then bring it out of reset.
1164 */
1165 void sk_reset(struct sk_softc *sc)
1166 {
1167 DPRINTFN(2, ("sk_reset\n"));
1168
1169 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1170 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1171 if (SK_YUKON_FAMILY(sc->sk_type))
1172 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1173
1174 DELAY(1000);
1175 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1176 DELAY(2);
1177 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1178 if (SK_YUKON_FAMILY(sc->sk_type))
1179 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1180
1181 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1182 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1183 CSR_READ_2(sc, SK_LINK_CTRL)));
1184
1185 if (sc->sk_type == SK_GENESIS) {
1186 /* Configure packet arbiter */
1187 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1188 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1189 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1190 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1191 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1192 }
1193
1194 /* Enable RAM interface */
1195 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1196
1197 sk_update_int_mod(sc);
1198 }
1199
1200 int
1201 sk_probe(struct device *parent, struct cfdata *match,
1202 void *aux)
1203 {
1204 struct skc_attach_args *sa = aux;
1205
1206 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1207 return 0;
1208
1209 return 1;
1210 }
1211
1212 /*
1213 * Each XMAC chip is attached as a separate logical IP interface.
1214 * Single port cards will have only one logical interface of course.
1215 */
1216 void
1217 sk_attach(struct device *parent, struct device *self, void *aux)
1218 {
1219 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1220 struct sk_softc *sc = (struct sk_softc *)parent;
1221 struct skc_attach_args *sa = aux;
1222 struct sk_txmap_entry *entry;
1223 struct ifnet *ifp;
1224 bus_dma_segment_t seg;
1225 bus_dmamap_t dmamap;
1226 caddr_t kva;
1227 int i, rseg;
1228
1229 sc_if->sk_port = sa->skc_port;
1230 sc_if->sk_softc = sc;
1231 sc->sk_if[sa->skc_port] = sc_if;
1232
1233 if (sa->skc_port == SK_PORT_A)
1234 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1235 if (sa->skc_port == SK_PORT_B)
1236 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1237
1238 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1239
1240 /*
1241 * Get station address for this interface. Note that
1242 * dual port cards actually come with three station
1243 * addresses: one for each port, plus an extra. The
1244 * extra one is used by the SysKonnect driver software
1245 * as a 'virtual' station address for when both ports
1246 * are operating in failover mode. Currently we don't
1247 * use this extra address.
1248 */
1249 for (i = 0; i < ETHER_ADDR_LEN; i++)
1250 sc_if->sk_enaddr[i] =
1251 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1252
1253
1254 aprint_normal(": Ethernet address %s\n",
1255 ether_sprintf(sc_if->sk_enaddr));
1256
1257 /*
1258 * Set up RAM buffer addresses. The NIC will have a certain
1259 * amount of SRAM on it, somewhere between 512K and 2MB. We
1260 * need to divide this up a) between the transmitter and
1261 * receiver and b) between the two XMACs, if this is a
1262 * dual port NIC. Our algorithm is to divide up the memory
1263 * evenly so that everyone gets a fair share.
1264 */
1265 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1266 u_int32_t chunk, val;
1267
1268 chunk = sc->sk_ramsize / 2;
1269 val = sc->sk_rboff / sizeof(u_int64_t);
1270 sc_if->sk_rx_ramstart = val;
1271 val += (chunk / sizeof(u_int64_t));
1272 sc_if->sk_rx_ramend = val - 1;
1273 sc_if->sk_tx_ramstart = val;
1274 val += (chunk / sizeof(u_int64_t));
1275 sc_if->sk_tx_ramend = val - 1;
1276 } else {
1277 u_int32_t chunk, val;
1278
1279 chunk = sc->sk_ramsize / 4;
1280 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1281 sizeof(u_int64_t);
1282 sc_if->sk_rx_ramstart = val;
1283 val += (chunk / sizeof(u_int64_t));
1284 sc_if->sk_rx_ramend = val - 1;
1285 sc_if->sk_tx_ramstart = val;
1286 val += (chunk / sizeof(u_int64_t));
1287 sc_if->sk_tx_ramend = val - 1;
1288 }
1289
1290 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1291 " tx_ramstart=%#x tx_ramend=%#x\n",
1292 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1293 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1294
1295 /* Read and save PHY type and set PHY address */
1296 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1297 switch (sc_if->sk_phytype) {
1298 case SK_PHYTYPE_XMAC:
1299 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1300 break;
1301 case SK_PHYTYPE_BCOM:
1302 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1303 break;
1304 case SK_PHYTYPE_MARV_COPPER:
1305 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1306 break;
1307 default:
1308 aprint_error("%s: unsupported PHY type: %d\n",
1309 sc->sk_dev.dv_xname, sc_if->sk_phytype);
1310 return;
1311 }
1312
1313 /* Allocate the descriptor queues. */
1314 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1315 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1316 aprint_error("%s: can't alloc rx buffers\n",
1317 sc->sk_dev.dv_xname);
1318 goto fail;
1319 }
1320 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1321 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1322 aprint_error("%s: can't map dma buffers (%lu bytes)\n",
1323 sc_if->sk_dev.dv_xname,
1324 (u_long) sizeof(struct sk_ring_data));
1325 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1326 goto fail;
1327 }
1328 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1329 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1330 &sc_if->sk_ring_map)) {
1331 aprint_error("%s: can't create dma map\n",
1332 sc_if->sk_dev.dv_xname);
1333 bus_dmamem_unmap(sc->sc_dmatag, kva,
1334 sizeof(struct sk_ring_data));
1335 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1336 goto fail;
1337 }
1338 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1339 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1340 aprint_error("%s: can't load dma map\n",
1341 sc_if->sk_dev.dv_xname);
1342 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1343 bus_dmamem_unmap(sc->sc_dmatag, kva,
1344 sizeof(struct sk_ring_data));
1345 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1346 goto fail;
1347 }
1348
1349 for (i = 0; i < SK_RX_RING_CNT; i++)
1350 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1351
1352 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1353 for (i = 0; i < SK_TX_RING_CNT; i++) {
1354 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1355
1356 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1357 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1358 aprint_error("%s: Can't create TX dmamap\n",
1359 sc_if->sk_dev.dv_xname);
1360 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1361 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1362 bus_dmamem_unmap(sc->sc_dmatag, kva,
1363 sizeof(struct sk_ring_data));
1364 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1365 goto fail;
1366 }
1367
1368 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1369 if (!entry) {
1370 aprint_error("%s: Can't alloc txmap entry\n",
1371 sc_if->sk_dev.dv_xname);
1372 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1373 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1374 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1375 bus_dmamem_unmap(sc->sc_dmatag, kva,
1376 sizeof(struct sk_ring_data));
1377 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1378 goto fail;
1379 }
1380 entry->dmamap = dmamap;
1381 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1382 }
1383
1384 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1385 bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1386
1387 ifp = &sc_if->sk_ethercom.ec_if;
1388 /* Try to allocate memory for jumbo buffers. */
1389 if (sk_alloc_jumbo_mem(sc_if)) {
1390 aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1391 goto fail;
1392 }
1393 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1394 | ETHERCAP_JUMBO_MTU;
1395
1396 ifp->if_softc = sc_if;
1397 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1398 ifp->if_ioctl = sk_ioctl;
1399 ifp->if_start = sk_start;
1400 ifp->if_stop = sk_stop;
1401 ifp->if_init = sk_init;
1402 ifp->if_watchdog = sk_watchdog;
1403 ifp->if_capabilities = 0;
1404 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1405 IFQ_SET_READY(&ifp->if_snd);
1406 strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1407
1408 /*
1409 * Do miibus setup.
1410 */
1411 switch (sc->sk_type) {
1412 case SK_GENESIS:
1413 sk_init_xmac(sc_if);
1414 break;
1415 case SK_YUKON:
1416 case SK_YUKON_LITE:
1417 case SK_YUKON_LP:
1418 sk_init_yukon(sc_if);
1419 break;
1420 default:
1421 panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
1422 sc->sk_type);
1423 }
1424
1425 DPRINTFN(2, ("sk_attach: 1\n"));
1426
1427 sc_if->sk_mii.mii_ifp = ifp;
1428 switch (sc->sk_type) {
1429 case SK_GENESIS:
1430 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1431 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1432 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1433 break;
1434 case SK_YUKON:
1435 case SK_YUKON_LITE:
1436 case SK_YUKON_LP:
1437 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1438 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1439 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1440 break;
1441 }
1442
1443 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1444 sk_ifmedia_upd, sk_ifmedia_sts);
1445 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1446 MII_OFFSET_ANY, 0);
1447 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1448 aprint_error("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1449 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1450 0, NULL);
1451 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1452 } else
1453 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1454
1455 callout_init(&sc_if->sk_tick_ch);
1456 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1457
1458 DPRINTFN(2, ("sk_attach: 1\n"));
1459
1460 /*
1461 * Call MI attach routines.
1462 */
1463 if_attach(ifp);
1464
1465 ether_ifattach(ifp, sc_if->sk_enaddr);
1466
1467 #if NRND > 0
1468 rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
1469 RND_TYPE_NET, 0);
1470 #endif
1471
1472 DPRINTFN(2, ("sk_attach: end\n"));
1473
1474 return;
1475
1476 fail:
1477 sc->sk_if[sa->skc_port] = NULL;
1478 }
1479
1480 int
1481 skcprint(void *aux, const char *pnp)
1482 {
1483 struct skc_attach_args *sa = aux;
1484
1485 if (pnp)
1486 aprint_normal("sk port %c at %s",
1487 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1488 else
1489 aprint_normal(" port %c",
1490 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1491 return UNCONF;
1492 }
1493
1494 /*
1495 * Attach the interface. Allocate softc structures, do ifmedia
1496 * setup and ethernet/BPF attach.
1497 */
1498 void
1499 skc_attach(struct device *parent, struct device *self, void *aux)
1500 {
1501 struct sk_softc *sc = (struct sk_softc *)self;
1502 struct pci_attach_args *pa = aux;
1503 struct skc_attach_args skca;
1504 pci_chipset_tag_t pc = pa->pa_pc;
1505 #ifndef SK_USEIOSPACE
1506 pcireg_t memtype;
1507 #endif
1508 pci_intr_handle_t ih;
1509 const char *intrstr = NULL;
1510 bus_addr_t iobase;
1511 bus_size_t iosize;
1512 int rc, sk_nodenum;
1513 u_int32_t command;
1514 const char *revstr;
1515 const struct sysctlnode *node;
1516
1517 DPRINTFN(2, ("begin skc_attach\n"));
1518
1519 /*
1520 * Handle power management nonsense.
1521 */
1522 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1523
1524 if (command == 0x01) {
1525 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1526 if (command & SK_PSTATE_MASK) {
1527 u_int32_t xiobase, membase, irq;
1528
1529 /* Save important PCI config data. */
1530 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1531 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1532 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1533
1534 /* Reset the power state. */
1535 aprint_normal("%s chip is in D%d power mode "
1536 "-- setting to D0\n", sc->sk_dev.dv_xname,
1537 command & SK_PSTATE_MASK);
1538 command &= 0xFFFFFFFC;
1539 pci_conf_write(pc, pa->pa_tag,
1540 SK_PCI_PWRMGMTCTRL, command);
1541
1542 /* Restore PCI config data. */
1543 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1544 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1545 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1546 }
1547 }
1548
1549 /*
1550 * Map control/status registers.
1551 */
1552 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1553 command |= PCI_COMMAND_IO_ENABLE |
1554 PCI_COMMAND_MEM_ENABLE |
1555 PCI_COMMAND_MASTER_ENABLE;
1556 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1557 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1558
1559 #ifdef SK_USEIOSPACE
1560 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1561 aprint_error(": failed to enable I/O ports!\n");
1562 return;
1563 }
1564 /*
1565 * Map control/status registers.
1566 */
1567 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1568 &sc->sk_btag, &sc->sk_bhandle,
1569 &iobase, &iosize)) {
1570 aprint_error(": can't find i/o space\n");
1571 return;
1572 }
1573 #else
1574 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1575 aprint_error(": failed to enable memory mapping!\n");
1576 return;
1577 }
1578 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1579 switch (memtype) {
1580 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1581 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1582 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1583 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1584 &iobase, &iosize) == 0)
1585 break;
1586 default:
1587 aprint_error("%s: can't find mem space\n",
1588 sc->sk_dev.dv_xname);
1589 return;
1590 }
1591
1592 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1593 #endif
1594 sc->sc_dmatag = pa->pa_dmat;
1595
1596 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1597 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1598
1599 /* bail out here if chip is not recognized */
1600 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1601 aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
1602 goto fail;
1603 }
1604 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1605
1606 /* Allocate interrupt */
1607 if (pci_intr_map(pa, &ih)) {
1608 aprint_error(": couldn't map interrupt\n");
1609 goto fail;
1610 }
1611
1612 intrstr = pci_intr_string(pc, ih);
1613 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1614 if (sc->sk_intrhand == NULL) {
1615 aprint_error(": couldn't establish interrupt");
1616 if (intrstr != NULL)
1617 aprint_normal(" at %s", intrstr);
1618 goto fail;
1619 }
1620 aprint_normal(": %s\n", intrstr);
1621
1622 /* Reset the adapter. */
1623 sk_reset(sc);
1624
1625 /* Read and save vital product data from EEPROM. */
1626 sk_vpd_read(sc);
1627
1628 if (sc->sk_type == SK_GENESIS) {
1629 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1630 /* Read and save RAM size and RAMbuffer offset */
1631 switch (val) {
1632 case SK_RAMSIZE_512K_64:
1633 sc->sk_ramsize = 0x80000;
1634 sc->sk_rboff = SK_RBOFF_0;
1635 break;
1636 case SK_RAMSIZE_1024K_64:
1637 sc->sk_ramsize = 0x100000;
1638 sc->sk_rboff = SK_RBOFF_80000;
1639 break;
1640 case SK_RAMSIZE_1024K_128:
1641 sc->sk_ramsize = 0x100000;
1642 sc->sk_rboff = SK_RBOFF_0;
1643 break;
1644 case SK_RAMSIZE_2048K_128:
1645 sc->sk_ramsize = 0x200000;
1646 sc->sk_rboff = SK_RBOFF_0;
1647 break;
1648 default:
1649 aprint_error("%s: unknown ram size: %d\n",
1650 sc->sk_dev.dv_xname, val);
1651 goto fail_1;
1652 break;
1653 }
1654
1655 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1656 sc->sk_ramsize, sc->sk_ramsize / 1024,
1657 sc->sk_rboff));
1658 } else {
1659 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1660 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1661 sc->sk_rboff = SK_RBOFF_0;
1662
1663 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1664 sc->sk_ramsize / 1024, sc->sk_ramsize,
1665 sc->sk_rboff));
1666 }
1667
1668 /* Read and save physical media type */
1669 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1670 case SK_PMD_1000BASESX:
1671 sc->sk_pmd = IFM_1000_SX;
1672 break;
1673 case SK_PMD_1000BASELX:
1674 sc->sk_pmd = IFM_1000_LX;
1675 break;
1676 case SK_PMD_1000BASECX:
1677 sc->sk_pmd = IFM_1000_CX;
1678 break;
1679 case SK_PMD_1000BASETX:
1680 case SK_PMD_1000BASETX_ALT:
1681 sc->sk_pmd = IFM_1000_T;
1682 break;
1683 default:
1684 aprint_error("%s: unknown media type: 0x%x\n",
1685 sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
1686 goto fail_1;
1687 }
1688
1689 /* determine whether to name it with vpd or just make it up */
1690 /* Marvell Yukon VPD's can freqently be bogus */
1691
1692 switch (pa->pa_id) {
1693 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1694 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1695 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1696 case PCI_PRODUCT_3COM_3C940:
1697 case PCI_PRODUCT_DLINK_DGE530T:
1698 case PCI_PRODUCT_DLINK_DGE560T:
1699 case PCI_PRODUCT_DLINK_DGE560T_2:
1700 case PCI_PRODUCT_LINKSYS_EG1032:
1701 case PCI_PRODUCT_LINKSYS_EG1064:
1702 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1703 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1704 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1705 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1706 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1707 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1708 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1709 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1710 sc->sk_name = sc->sk_vpd_prodname;
1711 break;
1712 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1713 /* whoops yukon vpd prodname bears no resemblance to reality */
1714 switch (sc->sk_type) {
1715 case SK_GENESIS:
1716 sc->sk_name = sc->sk_vpd_prodname;
1717 break;
1718 case SK_YUKON:
1719 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1720 break;
1721 case SK_YUKON_LITE:
1722 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1723 break;
1724 case SK_YUKON_LP:
1725 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1726 break;
1727 default:
1728 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1729 }
1730
1731 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1732
1733 if ( sc->sk_type == SK_YUKON ) {
1734 uint32_t flashaddr;
1735 uint8_t testbyte;
1736
1737 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1738
1739 /* test Flash-Address Register */
1740 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1741 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1742
1743 if (testbyte != 0) {
1744 /* this is yukon lite Rev. A0 */
1745 sc->sk_type = SK_YUKON_LITE;
1746 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1747 /* restore Flash-Address Register */
1748 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1749 }
1750 }
1751 break;
1752 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1753 sc->sk_name = sc->sk_vpd_prodname;
1754 break;
1755 default:
1756 sc->sk_name = "Unknown Marvell";
1757 }
1758
1759
1760 if ( sc->sk_type == SK_YUKON_LITE ) {
1761 switch (sc->sk_rev) {
1762 case SK_YUKON_LITE_REV_A0:
1763 revstr = "A0";
1764 break;
1765 case SK_YUKON_LITE_REV_A1:
1766 revstr = "A1";
1767 break;
1768 case SK_YUKON_LITE_REV_A3:
1769 revstr = "A3";
1770 break;
1771 default:
1772 revstr = "";
1773 }
1774 } else {
1775 revstr = "";
1776 }
1777
1778 /* Announce the product name. */
1779 aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
1780 sc->sk_name, revstr, sc->sk_rev);
1781
1782 skca.skc_port = SK_PORT_A;
1783 (void)config_found(&sc->sk_dev, &skca, skcprint);
1784
1785 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1786 skca.skc_port = SK_PORT_B;
1787 (void)config_found(&sc->sk_dev, &skca, skcprint);
1788 }
1789
1790 /* Turn on the 'driver is loaded' LED. */
1791 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1792
1793 /* skc sysctl setup */
1794
1795 sc->sk_int_mod = SK_IM_DEFAULT;
1796 sc->sk_int_mod_pending = 0;
1797
1798 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1799 0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
1800 SYSCTL_DESCR("skc per-controller controls"),
1801 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1802 CTL_EOL)) != 0) {
1803 aprint_normal("%s: couldn't create sysctl node\n",
1804 sc->sk_dev.dv_xname);
1805 goto fail_1;
1806 }
1807
1808 sk_nodenum = node->sysctl_num;
1809
1810 /* interrupt moderation time in usecs */
1811 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1812 CTLFLAG_READWRITE,
1813 CTLTYPE_INT, "int_mod",
1814 SYSCTL_DESCR("sk interrupt moderation timer"),
1815 sk_sysctl_handler, 0, sc,
1816 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1817 CTL_EOL)) != 0) {
1818 aprint_normal("%s: couldn't create int_mod sysctl node\n",
1819 sc->sk_dev.dv_xname);
1820 goto fail_1;
1821 }
1822
1823 return;
1824
1825 fail_1:
1826 pci_intr_disestablish(pc, sc->sk_intrhand);
1827 fail:
1828 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1829 }
1830
1831 int
1832 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1833 {
1834 struct sk_softc *sc = sc_if->sk_softc;
1835 struct sk_tx_desc *f = NULL;
1836 u_int32_t frag, cur, cnt = 0, sk_ctl;
1837 int i;
1838 struct sk_txmap_entry *entry;
1839 bus_dmamap_t txmap;
1840
1841 DPRINTFN(3, ("sk_encap\n"));
1842
1843 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1844 if (entry == NULL) {
1845 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1846 return ENOBUFS;
1847 }
1848 txmap = entry->dmamap;
1849
1850 cur = frag = *txidx;
1851
1852 #ifdef SK_DEBUG
1853 if (skdebug >= 3)
1854 sk_dump_mbuf(m_head);
1855 #endif
1856
1857 /*
1858 * Start packing the mbufs in this chain into
1859 * the fragment pointers. Stop when we run out
1860 * of fragments or hit the end of the mbuf chain.
1861 */
1862 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1863 BUS_DMA_NOWAIT)) {
1864 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1865 return ENOBUFS;
1866 }
1867
1868 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1869
1870 /* Sync the DMA map. */
1871 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1872 BUS_DMASYNC_PREWRITE);
1873
1874 for (i = 0; i < txmap->dm_nsegs; i++) {
1875 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1876 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1877 return ENOBUFS;
1878 }
1879 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1880 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1881 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1882 if (cnt == 0)
1883 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1884 else
1885 sk_ctl |= SK_TXCTL_OWN;
1886 f->sk_ctl = htole32(sk_ctl);
1887 cur = frag;
1888 SK_INC(frag, SK_TX_RING_CNT);
1889 cnt++;
1890 }
1891
1892 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1893 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1894
1895 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1896 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1897 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1898
1899 /* Sync descriptors before handing to chip */
1900 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1901 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1902
1903 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1904 htole32(SK_TXCTL_OWN);
1905
1906 /* Sync first descriptor to hand it off */
1907 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1908
1909 sc_if->sk_cdata.sk_tx_cnt += cnt;
1910
1911 #ifdef SK_DEBUG
1912 if (skdebug >= 3) {
1913 struct sk_tx_desc *desc;
1914 u_int32_t idx;
1915 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1916 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1917 sk_dump_txdesc(desc, idx);
1918 }
1919 }
1920 #endif
1921
1922 *txidx = frag;
1923
1924 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1925
1926 return 0;
1927 }
1928
1929 void
1930 sk_start(struct ifnet *ifp)
1931 {
1932 struct sk_if_softc *sc_if = ifp->if_softc;
1933 struct sk_softc *sc = sc_if->sk_softc;
1934 struct mbuf *m_head = NULL;
1935 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1936 int pkts = 0;
1937
1938 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1939 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1940
1941 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1942 IFQ_POLL(&ifp->if_snd, m_head);
1943 if (m_head == NULL)
1944 break;
1945
1946 /*
1947 * Pack the data into the transmit ring. If we
1948 * don't have room, set the OACTIVE flag and wait
1949 * for the NIC to drain the ring.
1950 */
1951 if (sk_encap(sc_if, m_head, &idx)) {
1952 ifp->if_flags |= IFF_OACTIVE;
1953 break;
1954 }
1955
1956 /* now we are committed to transmit the packet */
1957 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1958 pkts++;
1959
1960 /*
1961 * If there's a BPF listener, bounce a copy of this frame
1962 * to him.
1963 */
1964 #if NBPFILTER > 0
1965 if (ifp->if_bpf)
1966 bpf_mtap(ifp->if_bpf, m_head);
1967 #endif
1968 }
1969 if (pkts == 0)
1970 return;
1971
1972 /* Transmit */
1973 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1974 sc_if->sk_cdata.sk_tx_prod = idx;
1975 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1976
1977 /* Set a timeout in case the chip goes out to lunch. */
1978 ifp->if_timer = 5;
1979 }
1980 }
1981
1982
1983 void
1984 sk_watchdog(struct ifnet *ifp)
1985 {
1986 struct sk_if_softc *sc_if = ifp->if_softc;
1987
1988 /*
1989 * Reclaim first as there is a possibility of losing Tx completion
1990 * interrupts.
1991 */
1992 sk_txeof(sc_if);
1993 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1994 aprint_error("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1995
1996 ifp->if_oerrors++;
1997
1998 sk_init(ifp);
1999 }
2000 }
2001
2002 void
2003 sk_shutdown(void * v)
2004 {
2005 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
2006 struct sk_softc *sc = sc_if->sk_softc;
2007 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2008
2009 DPRINTFN(2, ("sk_shutdown\n"));
2010 sk_stop(ifp,1);
2011
2012 /* Turn off the 'driver is loaded' LED. */
2013 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2014
2015 /*
2016 * Reset the GEnesis controller. Doing this should also
2017 * assert the resets on the attached XMAC(s).
2018 */
2019 sk_reset(sc);
2020 }
2021
2022 void
2023 sk_rxeof(struct sk_if_softc *sc_if)
2024 {
2025 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2026 struct mbuf *m;
2027 struct sk_chain *cur_rx;
2028 struct sk_rx_desc *cur_desc;
2029 int i, cur, total_len = 0;
2030 u_int32_t rxstat, sk_ctl;
2031 bus_dmamap_t dmamap;
2032
2033 i = sc_if->sk_cdata.sk_rx_prod;
2034
2035 DPRINTFN(3, ("sk_rxeof %d\n", i));
2036
2037 for (;;) {
2038 cur = i;
2039
2040 /* Sync the descriptor */
2041 SK_CDRXSYNC(sc_if, cur,
2042 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2043
2044 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2045 if (sk_ctl & SK_RXCTL_OWN) {
2046 /* Invalidate the descriptor -- it's not ready yet */
2047 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2048 sc_if->sk_cdata.sk_rx_prod = i;
2049 break;
2050 }
2051
2052 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2053 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2054 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2055
2056 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2057 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2058
2059 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2060 m = cur_rx->sk_mbuf;
2061 cur_rx->sk_mbuf = NULL;
2062 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2063
2064 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2065
2066 SK_INC(i, SK_RX_RING_CNT);
2067
2068 if (rxstat & XM_RXSTAT_ERRFRAME) {
2069 ifp->if_ierrors++;
2070 sk_newbuf(sc_if, cur, m, dmamap);
2071 continue;
2072 }
2073
2074 /*
2075 * Try to allocate a new jumbo buffer. If that
2076 * fails, copy the packet to mbufs and put the
2077 * jumbo buffer back in the ring so it can be
2078 * re-used. If allocating mbufs fails, then we
2079 * have to drop the packet.
2080 */
2081 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2082 struct mbuf *m0;
2083 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2084 total_len + ETHER_ALIGN, 0, ifp, NULL);
2085 sk_newbuf(sc_if, cur, m, dmamap);
2086 if (m0 == NULL) {
2087 aprint_error("%s: no receive buffers "
2088 "available -- packet dropped!\n",
2089 sc_if->sk_dev.dv_xname);
2090 ifp->if_ierrors++;
2091 continue;
2092 }
2093 m_adj(m0, ETHER_ALIGN);
2094 m = m0;
2095 } else {
2096 m->m_pkthdr.rcvif = ifp;
2097 m->m_pkthdr.len = m->m_len = total_len;
2098 }
2099
2100 ifp->if_ipackets++;
2101
2102 #if NBPFILTER > 0
2103 if (ifp->if_bpf)
2104 bpf_mtap(ifp->if_bpf, m);
2105 #endif
2106 /* pass it on. */
2107 (*ifp->if_input)(ifp, m);
2108 }
2109 }
2110
2111 void
2112 sk_txeof(struct sk_if_softc *sc_if)
2113 {
2114 struct sk_softc *sc = sc_if->sk_softc;
2115 struct sk_tx_desc *cur_tx;
2116 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2117 u_int32_t idx, sk_ctl;
2118 struct sk_txmap_entry *entry;
2119
2120 DPRINTFN(3, ("sk_txeof\n"));
2121
2122 /*
2123 * Go through our tx ring and free mbufs for those
2124 * frames that have been sent.
2125 */
2126 idx = sc_if->sk_cdata.sk_tx_cons;
2127 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2128 SK_CDTXSYNC(sc_if, idx, 1,
2129 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2130
2131 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2132 sk_ctl = le32toh(cur_tx->sk_ctl);
2133 #ifdef SK_DEBUG
2134 if (skdebug >= 3)
2135 sk_dump_txdesc(cur_tx, idx);
2136 #endif
2137 if (sk_ctl & SK_TXCTL_OWN) {
2138 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2139 break;
2140 }
2141 if (sk_ctl & SK_TXCTL_LASTFRAG)
2142 ifp->if_opackets++;
2143 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2144 entry = sc_if->sk_cdata.sk_tx_map[idx];
2145
2146 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2147 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2148
2149 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2150 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2151
2152 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2153 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2154 link);
2155 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2156 }
2157 sc_if->sk_cdata.sk_tx_cnt--;
2158 SK_INC(idx, SK_TX_RING_CNT);
2159 }
2160 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2161 ifp->if_timer = 0;
2162 else /* nudge chip to keep tx ring moving */
2163 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2164
2165 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2166 ifp->if_flags &= ~IFF_OACTIVE;
2167
2168 sc_if->sk_cdata.sk_tx_cons = idx;
2169 }
2170
2171 void
2172 sk_tick(void *xsc_if)
2173 {
2174 struct sk_if_softc *sc_if = xsc_if;
2175 struct mii_data *mii = &sc_if->sk_mii;
2176 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2177 int i;
2178
2179 DPRINTFN(3, ("sk_tick\n"));
2180
2181 if (!(ifp->if_flags & IFF_UP))
2182 return;
2183
2184 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2185 sk_intr_bcom(sc_if);
2186 return;
2187 }
2188
2189 /*
2190 * According to SysKonnect, the correct way to verify that
2191 * the link has come back up is to poll bit 0 of the GPIO
2192 * register three times. This pin has the signal from the
2193 * link sync pin connected to it; if we read the same link
2194 * state 3 times in a row, we know the link is up.
2195 */
2196 for (i = 0; i < 3; i++) {
2197 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2198 break;
2199 }
2200
2201 if (i != 3) {
2202 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2203 return;
2204 }
2205
2206 /* Turn the GP0 interrupt back on. */
2207 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2208 SK_XM_READ_2(sc_if, XM_ISR);
2209 mii_tick(mii);
2210 mii_pollstat(mii);
2211 callout_stop(&sc_if->sk_tick_ch);
2212 }
2213
2214 void
2215 sk_intr_bcom(struct sk_if_softc *sc_if)
2216 {
2217 struct mii_data *mii = &sc_if->sk_mii;
2218 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2219 int status;
2220
2221
2222 DPRINTFN(3, ("sk_intr_bcom\n"));
2223
2224 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2225
2226 /*
2227 * Read the PHY interrupt register to make sure
2228 * we clear any pending interrupts.
2229 */
2230 status = sk_xmac_miibus_readreg((struct device *)sc_if,
2231 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2232
2233 if (!(ifp->if_flags & IFF_RUNNING)) {
2234 sk_init_xmac(sc_if);
2235 return;
2236 }
2237
2238 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2239 int lstat;
2240 lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
2241 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2242
2243 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2244 mii_mediachg(mii);
2245 /* Turn off the link LED. */
2246 SK_IF_WRITE_1(sc_if, 0,
2247 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2248 sc_if->sk_link = 0;
2249 } else if (status & BRGPHY_ISR_LNK_CHG) {
2250 sk_xmac_miibus_writereg((struct device *)sc_if,
2251 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2252 mii_tick(mii);
2253 sc_if->sk_link = 1;
2254 /* Turn on the link LED. */
2255 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2256 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2257 SK_LINKLED_BLINK_OFF);
2258 mii_pollstat(mii);
2259 } else {
2260 mii_tick(mii);
2261 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2262 }
2263 }
2264
2265 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2266 }
2267
2268 void
2269 sk_intr_xmac(struct sk_if_softc *sc_if)
2270 {
2271 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2272
2273 DPRINTFN(3, ("sk_intr_xmac\n"));
2274
2275 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2276 if (status & XM_ISR_GP0_SET) {
2277 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2278 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2279 }
2280
2281 if (status & XM_ISR_AUTONEG_DONE) {
2282 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2283 }
2284 }
2285
2286 if (status & XM_IMR_TX_UNDERRUN)
2287 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2288
2289 if (status & XM_IMR_RX_OVERRUN)
2290 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2291 }
2292
2293 void
2294 sk_intr_yukon(struct sk_if_softc *sc_if)
2295 {
2296 int status;
2297
2298 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2299
2300 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2301 }
2302
2303 int
2304 sk_intr(void *xsc)
2305 {
2306 struct sk_softc *sc = xsc;
2307 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2308 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2309 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2310 u_int32_t status;
2311 int claimed = 0;
2312
2313 if (sc_if0 != NULL)
2314 ifp0 = &sc_if0->sk_ethercom.ec_if;
2315 if (sc_if1 != NULL)
2316 ifp1 = &sc_if1->sk_ethercom.ec_if;
2317
2318 for (;;) {
2319 status = CSR_READ_4(sc, SK_ISSR);
2320 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2321
2322 if (!(status & sc->sk_intrmask))
2323 break;
2324
2325 claimed = 1;
2326
2327 /* Handle receive interrupts first. */
2328 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2329 sk_rxeof(sc_if0);
2330 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2331 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2332 }
2333 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2334 sk_rxeof(sc_if1);
2335 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2336 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2337 }
2338
2339 /* Then transmit interrupts. */
2340 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2341 sk_txeof(sc_if0);
2342 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2343 SK_TXBMU_CLR_IRQ_EOF);
2344 }
2345 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2346 sk_txeof(sc_if1);
2347 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2348 SK_TXBMU_CLR_IRQ_EOF);
2349 }
2350
2351 /* Then MAC interrupts. */
2352 if (sc_if0 && (status & SK_ISR_MAC1) &&
2353 (ifp0->if_flags & IFF_RUNNING)) {
2354 if (sc->sk_type == SK_GENESIS)
2355 sk_intr_xmac(sc_if0);
2356 else
2357 sk_intr_yukon(sc_if0);
2358 }
2359
2360 if (sc_if1 && (status & SK_ISR_MAC2) &&
2361 (ifp1->if_flags & IFF_RUNNING)) {
2362 if (sc->sk_type == SK_GENESIS)
2363 sk_intr_xmac(sc_if1);
2364 else
2365 sk_intr_yukon(sc_if1);
2366
2367 }
2368
2369 if (status & SK_ISR_EXTERNAL_REG) {
2370 if (sc_if0 != NULL &&
2371 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2372 sk_intr_bcom(sc_if0);
2373
2374 if (sc_if1 != NULL &&
2375 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2376 sk_intr_bcom(sc_if1);
2377 }
2378 }
2379
2380 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2381
2382 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2383 sk_start(ifp0);
2384 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2385 sk_start(ifp1);
2386
2387 #if NRND > 0
2388 if (RND_ENABLED(&sc->rnd_source))
2389 rnd_add_uint32(&sc->rnd_source, status);
2390 #endif
2391
2392 if (sc->sk_int_mod_pending)
2393 sk_update_int_mod(sc);
2394
2395 return claimed;
2396 }
2397
2398 void
2399 sk_init_xmac(struct sk_if_softc *sc_if)
2400 {
2401 struct sk_softc *sc = sc_if->sk_softc;
2402 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2403 static const struct sk_bcom_hack bhack[] = {
2404 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2405 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2406 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2407 { 0, 0 } };
2408
2409 DPRINTFN(1, ("sk_init_xmac\n"));
2410
2411 /* Unreset the XMAC. */
2412 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2413 DELAY(1000);
2414
2415 /* Reset the XMAC's internal state. */
2416 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2417
2418 /* Save the XMAC II revision */
2419 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2420
2421 /*
2422 * Perform additional initialization for external PHYs,
2423 * namely for the 1000baseTX cards that use the XMAC's
2424 * GMII mode.
2425 */
2426 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2427 int i = 0;
2428 u_int32_t val;
2429
2430 /* Take PHY out of reset. */
2431 val = sk_win_read_4(sc, SK_GPIO);
2432 if (sc_if->sk_port == SK_PORT_A)
2433 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2434 else
2435 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2436 sk_win_write_4(sc, SK_GPIO, val);
2437
2438 /* Enable GMII mode on the XMAC. */
2439 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2440
2441 sk_xmac_miibus_writereg((struct device *)sc_if,
2442 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2443 DELAY(10000);
2444 sk_xmac_miibus_writereg((struct device *)sc_if,
2445 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2446
2447 /*
2448 * Early versions of the BCM5400 apparently have
2449 * a bug that requires them to have their reserved
2450 * registers initialized to some magic values. I don't
2451 * know what the numbers do, I'm just the messenger.
2452 */
2453 if (sk_xmac_miibus_readreg((struct device *)sc_if,
2454 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2455 while (bhack[i].reg) {
2456 sk_xmac_miibus_writereg((struct device *)sc_if,
2457 SK_PHYADDR_BCOM, bhack[i].reg,
2458 bhack[i].val);
2459 i++;
2460 }
2461 }
2462 }
2463
2464 /* Set station address */
2465 SK_XM_WRITE_2(sc_if, XM_PAR0,
2466 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2467 SK_XM_WRITE_2(sc_if, XM_PAR1,
2468 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2469 SK_XM_WRITE_2(sc_if, XM_PAR2,
2470 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2471 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2472
2473 if (ifp->if_flags & IFF_PROMISC)
2474 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2475 else
2476 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2477
2478 if (ifp->if_flags & IFF_BROADCAST)
2479 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2480 else
2481 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2482
2483 /* We don't need the FCS appended to the packet. */
2484 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2485
2486 /* We want short frames padded to 60 bytes. */
2487 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2488
2489 /*
2490 * Enable the reception of all error frames. This is is
2491 * a necessary evil due to the design of the XMAC. The
2492 * XMAC's receive FIFO is only 8K in size, however jumbo
2493 * frames can be up to 9000 bytes in length. When bad
2494 * frame filtering is enabled, the XMAC's RX FIFO operates
2495 * in 'store and forward' mode. For this to work, the
2496 * entire frame has to fit into the FIFO, but that means
2497 * that jumbo frames larger than 8192 bytes will be
2498 * truncated. Disabling all bad frame filtering causes
2499 * the RX FIFO to operate in streaming mode, in which
2500 * case the XMAC will start transfering frames out of the
2501 * RX FIFO as soon as the FIFO threshold is reached.
2502 */
2503 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2504 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2505 XM_MODE_RX_INRANGELEN);
2506
2507 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2508 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2509 else
2510 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2511
2512 /*
2513 * Bump up the transmit threshold. This helps hold off transmit
2514 * underruns when we're blasting traffic from both ports at once.
2515 */
2516 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2517
2518 /* Set multicast filter */
2519 sk_setmulti(sc_if);
2520
2521 /* Clear and enable interrupts */
2522 SK_XM_READ_2(sc_if, XM_ISR);
2523 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2524 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2525 else
2526 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2527
2528 /* Configure MAC arbiter */
2529 switch (sc_if->sk_xmac_rev) {
2530 case XM_XMAC_REV_B2:
2531 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2532 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2533 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2534 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2535 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2536 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2537 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2538 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2539 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2540 break;
2541 case XM_XMAC_REV_C1:
2542 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2543 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2544 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2545 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2546 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2547 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2548 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2549 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2550 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2551 break;
2552 default:
2553 break;
2554 }
2555 sk_win_write_2(sc, SK_MACARB_CTL,
2556 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2557
2558 sc_if->sk_link = 1;
2559 }
2560
2561 void sk_init_yukon(struct sk_if_softc *sc_if)
2562 {
2563 u_int32_t /*mac, */phy;
2564 u_int16_t reg;
2565 struct sk_softc *sc;
2566 int i;
2567
2568 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2569 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2570
2571 sc = sc_if->sk_softc;
2572 if (sc->sk_type == SK_YUKON_LITE &&
2573 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2574 /* Take PHY out of reset. */
2575 sk_win_write_4(sc, SK_GPIO,
2576 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2577 }
2578
2579
2580 /* GMAC and GPHY Reset */
2581 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2582
2583 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2584
2585 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2586 DELAY(1000);
2587 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2588 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2589 DELAY(1000);
2590
2591
2592 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2593
2594 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2595 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2596
2597 switch (sc_if->sk_softc->sk_pmd) {
2598 case IFM_1000_SX:
2599 case IFM_1000_LX:
2600 phy |= SK_GPHY_FIBER;
2601 break;
2602
2603 case IFM_1000_CX:
2604 case IFM_1000_T:
2605 phy |= SK_GPHY_COPPER;
2606 break;
2607 }
2608
2609 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2610
2611 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2612 DELAY(1000);
2613 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2614 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2615 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2616
2617 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2618 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2619
2620 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2621
2622 /* unused read of the interrupt source register */
2623 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2624 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2625
2626 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2627 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2628 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2629
2630 /* MIB Counter Clear Mode set */
2631 reg |= YU_PAR_MIB_CLR;
2632 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2633 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2634 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2635
2636 /* MIB Counter Clear Mode clear */
2637 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2638 reg &= ~YU_PAR_MIB_CLR;
2639 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2640
2641 /* receive control reg */
2642 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2643 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2644 YU_RCR_CRCR);
2645
2646 /* transmit parameter register */
2647 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2648 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2649 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2650
2651 /* serial mode register */
2652 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2653 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2654 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2655 YU_SMR_IPG_DATA(0x1e));
2656
2657 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2658 /* Setup Yukon's address */
2659 for (i = 0; i < 3; i++) {
2660 /* Write Source Address 1 (unicast filter) */
2661 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2662 sc_if->sk_enaddr[i * 2] |
2663 sc_if->sk_enaddr[i * 2 + 1] << 8);
2664 }
2665
2666 for (i = 0; i < 3; i++) {
2667 reg = sk_win_read_2(sc_if->sk_softc,
2668 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2669 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2670 }
2671
2672 /* Set multicast filter */
2673 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2674 sk_setmulti(sc_if);
2675
2676 /* enable interrupt mask for counter overflows */
2677 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2678 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2679 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2680 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2681
2682 /* Configure RX MAC FIFO */
2683 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2684 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2685
2686 /* Configure TX MAC FIFO */
2687 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2688 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2689
2690 DPRINTFN(6, ("sk_init_yukon: end\n"));
2691 }
2692
2693 /*
2694 * Note that to properly initialize any part of the GEnesis chip,
2695 * you first have to take it out of reset mode.
2696 */
2697 int
2698 sk_init(struct ifnet *ifp)
2699 {
2700 struct sk_if_softc *sc_if = ifp->if_softc;
2701 struct sk_softc *sc = sc_if->sk_softc;
2702 struct mii_data *mii = &sc_if->sk_mii;
2703 int s;
2704 u_int32_t imr, imtimer_ticks;
2705
2706 DPRINTFN(1, ("sk_init\n"));
2707
2708 s = splnet();
2709
2710 if (ifp->if_flags & IFF_RUNNING) {
2711 splx(s);
2712 return 0;
2713 }
2714
2715 /* Cancel pending I/O and free all RX/TX buffers. */
2716 sk_stop(ifp,0);
2717
2718 if (sc->sk_type == SK_GENESIS) {
2719 /* Configure LINK_SYNC LED */
2720 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2721 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2722 SK_LINKLED_LINKSYNC_ON);
2723
2724 /* Configure RX LED */
2725 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2726 SK_RXLEDCTL_COUNTER_START);
2727
2728 /* Configure TX LED */
2729 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2730 SK_TXLEDCTL_COUNTER_START);
2731 }
2732
2733 /* Configure I2C registers */
2734
2735 /* Configure XMAC(s) */
2736 switch (sc->sk_type) {
2737 case SK_GENESIS:
2738 sk_init_xmac(sc_if);
2739 break;
2740 case SK_YUKON:
2741 case SK_YUKON_LITE:
2742 case SK_YUKON_LP:
2743 sk_init_yukon(sc_if);
2744 break;
2745 }
2746 mii_mediachg(mii);
2747
2748 if (sc->sk_type == SK_GENESIS) {
2749 /* Configure MAC FIFOs */
2750 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2751 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2752 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2753
2754 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2755 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2756 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2757 }
2758
2759 /* Configure transmit arbiter(s) */
2760 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2761 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2762
2763 /* Configure RAMbuffers */
2764 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2765 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2766 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2767 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2768 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2769 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2770
2771 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2772 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2773 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2774 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2775 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2776 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2777 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2778
2779 /* Configure BMUs */
2780 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2781 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2782 SK_RX_RING_ADDR(sc_if, 0));
2783 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2784
2785 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2786 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2787 SK_TX_RING_ADDR(sc_if, 0));
2788 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2789
2790 /* Init descriptors */
2791 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2792 aprint_error("%s: initialization failed: no "
2793 "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2794 sk_stop(ifp,0);
2795 splx(s);
2796 return ENOBUFS;
2797 }
2798
2799 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2800 aprint_error("%s: initialization failed: no "
2801 "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2802 sk_stop(ifp,0);
2803 splx(s);
2804 return ENOBUFS;
2805 }
2806
2807 /* Set interrupt moderation if changed via sysctl. */
2808 switch (sc->sk_type) {
2809 case SK_GENESIS:
2810 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2811 break;
2812 case SK_YUKON_EC:
2813 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2814 break;
2815 default:
2816 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2817 }
2818 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2819 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2820 sk_win_write_4(sc, SK_IMTIMERINIT,
2821 SK_IM_USECS(sc->sk_int_mod));
2822 aprint_verbose("%s: interrupt moderation is %d us\n",
2823 sc->sk_dev.dv_xname, sc->sk_int_mod);
2824 }
2825
2826 /* Configure interrupt handling */
2827 CSR_READ_4(sc, SK_ISSR);
2828 if (sc_if->sk_port == SK_PORT_A)
2829 sc->sk_intrmask |= SK_INTRS1;
2830 else
2831 sc->sk_intrmask |= SK_INTRS2;
2832
2833 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2834
2835 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2836
2837 /* Start BMUs. */
2838 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2839
2840 if (sc->sk_type == SK_GENESIS) {
2841 /* Enable XMACs TX and RX state machines */
2842 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2843 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2844 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2845 }
2846
2847 if (SK_YUKON_FAMILY(sc->sk_type)) {
2848 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2849 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2850 #if 0
2851 /* XXX disable 100Mbps and full duplex mode? */
2852 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2853 #endif
2854 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2855 }
2856
2857
2858 ifp->if_flags |= IFF_RUNNING;
2859 ifp->if_flags &= ~IFF_OACTIVE;
2860
2861 splx(s);
2862 return 0;
2863 }
2864
2865 void
2866 sk_stop(struct ifnet *ifp, int disable)
2867 {
2868 struct sk_if_softc *sc_if = ifp->if_softc;
2869 struct sk_softc *sc = sc_if->sk_softc;
2870 int i;
2871
2872 DPRINTFN(1, ("sk_stop\n"));
2873
2874 callout_stop(&sc_if->sk_tick_ch);
2875
2876 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2877 u_int32_t val;
2878
2879 /* Put PHY back into reset. */
2880 val = sk_win_read_4(sc, SK_GPIO);
2881 if (sc_if->sk_port == SK_PORT_A) {
2882 val |= SK_GPIO_DIR0;
2883 val &= ~SK_GPIO_DAT0;
2884 } else {
2885 val |= SK_GPIO_DIR2;
2886 val &= ~SK_GPIO_DAT2;
2887 }
2888 sk_win_write_4(sc, SK_GPIO, val);
2889 }
2890
2891 /* Turn off various components of this interface. */
2892 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2893 switch (sc->sk_type) {
2894 case SK_GENESIS:
2895 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2896 SK_TXMACCTL_XMAC_RESET);
2897 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2898 break;
2899 case SK_YUKON:
2900 case SK_YUKON_LITE:
2901 case SK_YUKON_LP:
2902 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2903 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2904 break;
2905 }
2906 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2907 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2908 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2909 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2910 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2911 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2912 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2913 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2914 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2915
2916 /* Disable interrupts */
2917 if (sc_if->sk_port == SK_PORT_A)
2918 sc->sk_intrmask &= ~SK_INTRS1;
2919 else
2920 sc->sk_intrmask &= ~SK_INTRS2;
2921 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2922
2923 SK_XM_READ_2(sc_if, XM_ISR);
2924 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2925
2926 /* Free RX and TX mbufs still in the queues. */
2927 for (i = 0; i < SK_RX_RING_CNT; i++) {
2928 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2929 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2930 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2931 }
2932 }
2933
2934 for (i = 0; i < SK_TX_RING_CNT; i++) {
2935 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2936 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2937 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2938 }
2939 }
2940
2941 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2942 }
2943
2944 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2945
2946 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2947
2948 #ifdef SK_DEBUG
2949 void
2950 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2951 {
2952 #define DESC_PRINT(X) \
2953 if (X) \
2954 printf("txdesc[%d]." #X "=%#x\n", \
2955 idx, X);
2956
2957 DESC_PRINT(le32toh(desc->sk_ctl));
2958 DESC_PRINT(le32toh(desc->sk_next));
2959 DESC_PRINT(le32toh(desc->sk_data_lo));
2960 DESC_PRINT(le32toh(desc->sk_data_hi));
2961 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2962 DESC_PRINT(le16toh(desc->sk_rsvd0));
2963 DESC_PRINT(le16toh(desc->sk_csum_startval));
2964 DESC_PRINT(le16toh(desc->sk_csum_startpos));
2965 DESC_PRINT(le16toh(desc->sk_csum_writepos));
2966 DESC_PRINT(le16toh(desc->sk_rsvd1));
2967 #undef PRINT
2968 }
2969
2970 void
2971 sk_dump_bytes(const char *data, int len)
2972 {
2973 int c, i, j;
2974
2975 for (i = 0; i < len; i += 16) {
2976 printf("%08x ", i);
2977 c = len - i;
2978 if (c > 16) c = 16;
2979
2980 for (j = 0; j < c; j++) {
2981 printf("%02x ", data[i + j] & 0xff);
2982 if ((j & 0xf) == 7 && j > 0)
2983 printf(" ");
2984 }
2985
2986 for (; j < 16; j++)
2987 printf(" ");
2988 printf(" ");
2989
2990 for (j = 0; j < c; j++) {
2991 int ch = data[i + j] & 0xff;
2992 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2993 }
2994
2995 printf("\n");
2996
2997 if (c < 16)
2998 break;
2999 }
3000 }
3001
3002 void
3003 sk_dump_mbuf(struct mbuf *m)
3004 {
3005 int count = m->m_pkthdr.len;
3006
3007 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3008
3009 while (count > 0 && m) {
3010 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3011 m, m->m_data, m->m_len);
3012 sk_dump_bytes(mtod(m, char *), m->m_len);
3013
3014 count -= m->m_len;
3015 m = m->m_next;
3016 }
3017 }
3018 #endif
3019
3020 static int
3021 sk_sysctl_handler(SYSCTLFN_ARGS)
3022 {
3023 int error, t;
3024 struct sysctlnode node;
3025 struct sk_softc *sc;
3026
3027 node = *rnode;
3028 sc = node.sysctl_data;
3029 t = sc->sk_int_mod;
3030 node.sysctl_data = &t;
3031 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3032 if (error || newp == NULL)
3033 return error;
3034
3035 if (t < SK_IM_MIN || t > SK_IM_MAX)
3036 return EINVAL;
3037
3038 /* update the softc with sysctl-changed value, and mark
3039 for hardware update */
3040 sc->sk_int_mod = t;
3041 sc->sk_int_mod_pending = 1;
3042 return 0;
3043 }
3044
3045 /*
3046 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3047 * set up in skc_attach()
3048 */
3049 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3050 {
3051 int rc;
3052 const struct sysctlnode *node;
3053
3054 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3055 0, CTLTYPE_NODE, "hw", NULL,
3056 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3057 goto err;
3058 }
3059
3060 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3061 0, CTLTYPE_NODE, "sk",
3062 SYSCTL_DESCR("sk interface controls"),
3063 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3064 goto err;
3065 }
3066
3067 sk_root_num = node->sysctl_num;
3068 return;
3069
3070 err:
3071 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3072 }
3073