if_sk.c revision 1.36 1 /* $NetBSD: if_sk.c,v 1.36 2007/01/30 11:42:06 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the NetBSD
18 * Foundation, Inc. and its contributors.
19 * 4. Neither the name of The NetBSD Foundation nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
37
38 /*
39 * Copyright (c) 1997, 1998, 1999, 2000
40 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Bill Paul.
53 * 4. Neither the name of the author nor the names of any co-contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67 * THE POSSIBILITY OF SUCH DAMAGE.
68 *
69 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70 */
71
72 /*
73 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
74 *
75 * Permission to use, copy, modify, and distribute this software for any
76 * purpose with or without fee is hereby granted, provided that the above
77 * copyright notice and this permission notice appear in all copies.
78 *
79 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86 */
87
88 /*
89 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90 * the SK-984x series adapters, both single port and dual port.
91 * References:
92 * The XaQti XMAC II datasheet,
93 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 * The SysKonnect GEnesis manual, http://www.syskonnect.com
95 *
96 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98 * convenience to others until Vitesse corrects this problem:
99 *
100 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101 *
102 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
103 * Department of Electrical Engineering
104 * Columbia University, New York City
105 */
106
107 /*
108 * The SysKonnect gigabit ethernet adapters consist of two main
109 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111 * components and a PHY while the GEnesis controller provides a PCI
112 * interface with DMA support. Each card may have between 512K and
113 * 2MB of SRAM on board depending on the configuration.
114 *
115 * The SysKonnect GEnesis controller can have either one or two XMAC
116 * chips connected to it, allowing single or dual port NIC configurations.
117 * SysKonnect has the distinction of being the only vendor on the market
118 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120 * XMAC registers. This driver takes advantage of these features to allow
121 * both XMACs to operate as independent interfaces.
122 */
123
124 #include "bpfilter.h"
125 #include "rnd.h"
126
127 #include <sys/param.h>
128 #include <sys/systm.h>
129 #include <sys/sockio.h>
130 #include <sys/mbuf.h>
131 #include <sys/malloc.h>
132 #include <sys/kernel.h>
133 #include <sys/socket.h>
134 #include <sys/device.h>
135 #include <sys/queue.h>
136 #include <sys/callout.h>
137 #include <sys/sysctl.h>
138 #include <sys/endian.h>
139
140 #include <net/if.h>
141 #include <net/if_dl.h>
142 #include <net/if_types.h>
143
144 #include <net/if_media.h>
145
146 #if NBPFILTER > 0
147 #include <net/bpf.h>
148 #endif
149 #if NRND > 0
150 #include <sys/rnd.h>
151 #endif
152
153 #include <dev/mii/mii.h>
154 #include <dev/mii/miivar.h>
155 #include <dev/mii/brgphyreg.h>
156
157 #include <dev/pci/pcireg.h>
158 #include <dev/pci/pcivar.h>
159 #include <dev/pci/pcidevs.h>
160
161 /* #define SK_USEIOSPACE */
162
163 #include <dev/pci/if_skreg.h>
164 #include <dev/pci/if_skvar.h>
165
166 int skc_probe(struct device *, struct cfdata *, void *);
167 void skc_attach(struct device *, struct device *self, void *aux);
168 int sk_probe(struct device *, struct cfdata *, void *);
169 void sk_attach(struct device *, struct device *self, void *aux);
170 int skcprint(void *, const char *);
171 int sk_intr(void *);
172 void sk_intr_bcom(struct sk_if_softc *);
173 void sk_intr_xmac(struct sk_if_softc *);
174 void sk_intr_yukon(struct sk_if_softc *);
175 void sk_rxeof(struct sk_if_softc *);
176 void sk_txeof(struct sk_if_softc *);
177 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
178 void sk_start(struct ifnet *);
179 int sk_ioctl(struct ifnet *, u_long, caddr_t);
180 int sk_init(struct ifnet *);
181 void sk_init_xmac(struct sk_if_softc *);
182 void sk_init_yukon(struct sk_if_softc *);
183 void sk_stop(struct ifnet *, int);
184 void sk_watchdog(struct ifnet *);
185 void sk_shutdown(void *);
186 int sk_ifmedia_upd(struct ifnet *);
187 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
188 void sk_reset(struct sk_softc *);
189 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
190 int sk_alloc_jumbo_mem(struct sk_if_softc *);
191 void sk_free_jumbo_mem(struct sk_if_softc *);
192 void *sk_jalloc(struct sk_if_softc *);
193 void sk_jfree(struct mbuf *, caddr_t, size_t, void *);
194 int sk_init_rx_ring(struct sk_if_softc *);
195 int sk_init_tx_ring(struct sk_if_softc *);
196 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
197 void sk_vpd_read_res(struct sk_softc *,
198 struct vpd_res *, int);
199 void sk_vpd_read(struct sk_softc *);
200
201 void sk_update_int_mod(struct sk_softc *);
202
203 int sk_xmac_miibus_readreg(struct device *, int, int);
204 void sk_xmac_miibus_writereg(struct device *, int, int, int);
205 void sk_xmac_miibus_statchg(struct device *);
206
207 int sk_marv_miibus_readreg(struct device *, int, int);
208 void sk_marv_miibus_writereg(struct device *, int, int, int);
209 void sk_marv_miibus_statchg(struct device *);
210
211 u_int32_t sk_xmac_hash(caddr_t);
212 u_int32_t sk_yukon_hash(caddr_t);
213 void sk_setfilt(struct sk_if_softc *, caddr_t, int);
214 void sk_setmulti(struct sk_if_softc *);
215 void sk_tick(void *);
216
217 /* #define SK_DEBUG 2 */
218 #ifdef SK_DEBUG
219 #define DPRINTF(x) if (skdebug) printf x
220 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
221 int skdebug = SK_DEBUG;
222
223 void sk_dump_txdesc(struct sk_tx_desc *, int);
224 void sk_dump_mbuf(struct mbuf *);
225 void sk_dump_bytes(const char *, int);
226 #else
227 #define DPRINTF(x)
228 #define DPRINTFN(n,x)
229 #endif
230
231 static int sk_sysctl_handler(SYSCTLFN_PROTO);
232 static int sk_root_num;
233
234 /* supported device vendors */
235 static const struct sk_product {
236 pci_vendor_id_t sk_vendor;
237 pci_product_id_t sk_product;
238 } sk_products[] = {
239 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
240 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
241 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T, },
242 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
243 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
244 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
245 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
246 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
247 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
248 { 0, 0, }
249 };
250
251 #define SK_LINKSYS_EG1032_SUBID 0x00151737
252
253 static inline u_int32_t
254 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
255 {
256 #ifdef SK_USEIOSPACE
257 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
258 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
259 #else
260 return CSR_READ_4(sc, reg);
261 #endif
262 }
263
264 static inline u_int16_t
265 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
266 {
267 #ifdef SK_USEIOSPACE
268 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
269 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
270 #else
271 return CSR_READ_2(sc, reg);
272 #endif
273 }
274
275 static inline u_int8_t
276 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
277 {
278 #ifdef SK_USEIOSPACE
279 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
280 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
281 #else
282 return CSR_READ_1(sc, reg);
283 #endif
284 }
285
286 static inline void
287 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
288 {
289 #ifdef SK_USEIOSPACE
290 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
291 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
292 #else
293 CSR_WRITE_4(sc, reg, x);
294 #endif
295 }
296
297 static inline void
298 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
299 {
300 #ifdef SK_USEIOSPACE
301 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
302 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
303 #else
304 CSR_WRITE_2(sc, reg, x);
305 #endif
306 }
307
308 static inline void
309 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
310 {
311 #ifdef SK_USEIOSPACE
312 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
313 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
314 #else
315 CSR_WRITE_1(sc, reg, x);
316 #endif
317 }
318
319 /*
320 * The VPD EEPROM contains Vital Product Data, as suggested in
321 * the PCI 2.1 specification. The VPD data is separared into areas
322 * denoted by resource IDs. The SysKonnect VPD contains an ID string
323 * resource (the name of the adapter), a read-only area resource
324 * containing various key/data fields and a read/write area which
325 * can be used to store asset management information or log messages.
326 * We read the ID string and read-only into buffers attached to
327 * the controller softc structure for later use. At the moment,
328 * we only use the ID string during sk_attach().
329 */
330 u_int8_t
331 sk_vpd_readbyte(struct sk_softc *sc, int addr)
332 {
333 int i;
334
335 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
336 for (i = 0; i < SK_TIMEOUT; i++) {
337 DELAY(1);
338 if (sk_win_read_2(sc,
339 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
340 break;
341 }
342
343 if (i == SK_TIMEOUT)
344 return 0;
345
346 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
347 }
348
349 void
350 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
351 {
352 int i;
353 u_int8_t *ptr;
354
355 ptr = (u_int8_t *)res;
356 for (i = 0; i < sizeof(struct vpd_res); i++)
357 ptr[i] = sk_vpd_readbyte(sc, i + addr);
358 }
359
360 void
361 sk_vpd_read(struct sk_softc *sc)
362 {
363 int pos = 0, i;
364 struct vpd_res res;
365
366 if (sc->sk_vpd_prodname != NULL)
367 free(sc->sk_vpd_prodname, M_DEVBUF);
368 if (sc->sk_vpd_readonly != NULL)
369 free(sc->sk_vpd_readonly, M_DEVBUF);
370 sc->sk_vpd_prodname = NULL;
371 sc->sk_vpd_readonly = NULL;
372
373 sk_vpd_read_res(sc, &res, pos);
374
375 if (res.vr_id != VPD_RES_ID) {
376 aprint_error("%s: bad VPD resource id: expected %x got %x\n",
377 sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
378 return;
379 }
380
381 pos += sizeof(res);
382 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
383 if (sc->sk_vpd_prodname == NULL)
384 panic("sk_vpd_read");
385 for (i = 0; i < res.vr_len; i++)
386 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
387 sc->sk_vpd_prodname[i] = '\0';
388 pos += i;
389
390 sk_vpd_read_res(sc, &res, pos);
391
392 if (res.vr_id != VPD_RES_READ) {
393 aprint_error("%s: bad VPD resource id: expected %x got %x\n",
394 sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
395 return;
396 }
397
398 pos += sizeof(res);
399 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
400 if (sc->sk_vpd_readonly == NULL)
401 panic("sk_vpd_read");
402 for (i = 0; i < res.vr_len ; i++)
403 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
404 }
405
406 int
407 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
408 {
409 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
410 int i;
411
412 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
413
414 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
415 return 0;
416
417 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
418 SK_XM_READ_2(sc_if, XM_PHY_DATA);
419 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
420 for (i = 0; i < SK_TIMEOUT; i++) {
421 DELAY(1);
422 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
423 XM_MMUCMD_PHYDATARDY)
424 break;
425 }
426
427 if (i == SK_TIMEOUT) {
428 aprint_error("%s: phy failed to come ready\n",
429 sc_if->sk_dev.dv_xname);
430 return 0;
431 }
432 }
433 DELAY(1);
434 return SK_XM_READ_2(sc_if, XM_PHY_DATA);
435 }
436
437 void
438 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
439 {
440 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
441 int i;
442
443 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
444
445 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
446 for (i = 0; i < SK_TIMEOUT; i++) {
447 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
448 break;
449 }
450
451 if (i == SK_TIMEOUT) {
452 aprint_error("%s: phy failed to come ready\n",
453 sc_if->sk_dev.dv_xname);
454 return;
455 }
456
457 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
458 for (i = 0; i < SK_TIMEOUT; i++) {
459 DELAY(1);
460 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
461 break;
462 }
463
464 if (i == SK_TIMEOUT)
465 aprint_error("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
466 }
467
468 void
469 sk_xmac_miibus_statchg(struct device *dev)
470 {
471 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
472 struct mii_data *mii = &sc_if->sk_mii;
473
474 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
475
476 /*
477 * If this is a GMII PHY, manually set the XMAC's
478 * duplex mode accordingly.
479 */
480 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
481 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
482 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
483 else
484 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
485 }
486 }
487
488 int
489 sk_marv_miibus_readreg(struct device *dev, int phy, int reg)
490 {
491 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
492 u_int16_t val;
493 int i;
494
495 if (phy != 0 ||
496 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
497 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
498 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
499 phy, reg));
500 return 0;
501 }
502
503 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
504 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
505
506 for (i = 0; i < SK_TIMEOUT; i++) {
507 DELAY(1);
508 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
509 if (val & YU_SMICR_READ_VALID)
510 break;
511 }
512
513 if (i == SK_TIMEOUT) {
514 aprint_error("%s: phy failed to come ready\n",
515 sc_if->sk_dev.dv_xname);
516 return 0;
517 }
518
519 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
520 SK_TIMEOUT));
521
522 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
523
524 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
525 phy, reg, val));
526
527 return val;
528 }
529
530 void
531 sk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
532 {
533 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
534 int i;
535
536 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
537 phy, reg, val));
538
539 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
540 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
541 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
542
543 for (i = 0; i < SK_TIMEOUT; i++) {
544 DELAY(1);
545 if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
546 break;
547 }
548 }
549
550 void
551 sk_marv_miibus_statchg(struct device *dev)
552 {
553 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
554 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
555 }
556
557 #define SK_HASH_BITS 6
558
559 u_int32_t
560 sk_xmac_hash(caddr_t addr)
561 {
562 u_int32_t crc;
563
564 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
565 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
566 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
567 return crc;
568 }
569
570 u_int32_t
571 sk_yukon_hash(caddr_t addr)
572 {
573 u_int32_t crc;
574
575 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
576 crc &= ((1 << SK_HASH_BITS) - 1);
577 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
578 return crc;
579 }
580
581 void
582 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
583 {
584 int base = XM_RXFILT_ENTRY(slot);
585
586 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
587 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
588 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
589 }
590
591 void
592 sk_setmulti(struct sk_if_softc *sc_if)
593 {
594 struct sk_softc *sc = sc_if->sk_softc;
595 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
596 u_int32_t hashes[2] = { 0, 0 };
597 int h = 0, i;
598 struct ethercom *ec = &sc_if->sk_ethercom;
599 struct ether_multi *enm;
600 struct ether_multistep step;
601 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
602
603 /* First, zot all the existing filters. */
604 switch (sc->sk_type) {
605 case SK_GENESIS:
606 for (i = 1; i < XM_RXFILT_MAX; i++)
607 sk_setfilt(sc_if, (caddr_t)&dummy, i);
608
609 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
610 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
611 break;
612 case SK_YUKON:
613 case SK_YUKON_LITE:
614 case SK_YUKON_LP:
615 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
616 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
617 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
618 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
619 break;
620 }
621
622 /* Now program new ones. */
623 allmulti:
624 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
625 hashes[0] = 0xFFFFFFFF;
626 hashes[1] = 0xFFFFFFFF;
627 } else {
628 i = 1;
629 /* First find the tail of the list. */
630 ETHER_FIRST_MULTI(step, ec, enm);
631 while (enm != NULL) {
632 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
633 ETHER_ADDR_LEN)) {
634 ifp->if_flags |= IFF_ALLMULTI;
635 goto allmulti;
636 }
637 DPRINTFN(2,("multicast address %s\n",
638 ether_sprintf(enm->enm_addrlo)));
639 /*
640 * Program the first XM_RXFILT_MAX multicast groups
641 * into the perfect filter. For all others,
642 * use the hash table.
643 */
644 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
645 sk_setfilt(sc_if, enm->enm_addrlo, i);
646 i++;
647 }
648 else {
649 switch (sc->sk_type) {
650 case SK_GENESIS:
651 h = sk_xmac_hash(enm->enm_addrlo);
652 break;
653 case SK_YUKON:
654 case SK_YUKON_LITE:
655 case SK_YUKON_LP:
656 h = sk_yukon_hash(enm->enm_addrlo);
657 break;
658 }
659 if (h < 32)
660 hashes[0] |= (1 << h);
661 else
662 hashes[1] |= (1 << (h - 32));
663 }
664
665 ETHER_NEXT_MULTI(step, enm);
666 }
667 }
668
669 switch (sc->sk_type) {
670 case SK_GENESIS:
671 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
672 XM_MODE_RX_USE_PERFECT);
673 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
674 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
675 break;
676 case SK_YUKON:
677 case SK_YUKON_LITE:
678 case SK_YUKON_LP:
679 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
680 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
681 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
682 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
683 break;
684 }
685 }
686
687 int
688 sk_init_rx_ring(struct sk_if_softc *sc_if)
689 {
690 struct sk_chain_data *cd = &sc_if->sk_cdata;
691 struct sk_ring_data *rd = sc_if->sk_rdata;
692 int i;
693
694 bzero((char *)rd->sk_rx_ring,
695 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
696
697 for (i = 0; i < SK_RX_RING_CNT; i++) {
698 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
699 if (i == (SK_RX_RING_CNT - 1)) {
700 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
701 rd->sk_rx_ring[i].sk_next =
702 htole32(SK_RX_RING_ADDR(sc_if, 0));
703 } else {
704 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
705 rd->sk_rx_ring[i].sk_next =
706 htole32(SK_RX_RING_ADDR(sc_if,i+1));
707 }
708 }
709
710 for (i = 0; i < SK_RX_RING_CNT; i++) {
711 if (sk_newbuf(sc_if, i, NULL,
712 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
713 aprint_error("%s: failed alloc of %dth mbuf\n",
714 sc_if->sk_dev.dv_xname, i);
715 return ENOBUFS;
716 }
717 }
718 sc_if->sk_cdata.sk_rx_prod = 0;
719 sc_if->sk_cdata.sk_rx_cons = 0;
720
721 return 0;
722 }
723
724 int
725 sk_init_tx_ring(struct sk_if_softc *sc_if)
726 {
727 struct sk_chain_data *cd = &sc_if->sk_cdata;
728 struct sk_ring_data *rd = sc_if->sk_rdata;
729 int i;
730
731 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
732 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
733
734 for (i = 0; i < SK_TX_RING_CNT; i++) {
735 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
736 if (i == (SK_TX_RING_CNT - 1)) {
737 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
738 rd->sk_tx_ring[i].sk_next =
739 htole32(SK_TX_RING_ADDR(sc_if, 0));
740 } else {
741 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
742 rd->sk_tx_ring[i].sk_next =
743 htole32(SK_TX_RING_ADDR(sc_if,i+1));
744 }
745 }
746
747 sc_if->sk_cdata.sk_tx_prod = 0;
748 sc_if->sk_cdata.sk_tx_cons = 0;
749 sc_if->sk_cdata.sk_tx_cnt = 0;
750
751 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
752 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
753
754 return 0;
755 }
756
757 int
758 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
759 bus_dmamap_t dmamap)
760 {
761 struct mbuf *m_new = NULL;
762 struct sk_chain *c;
763 struct sk_rx_desc *r;
764
765 if (m == NULL) {
766 caddr_t buf = NULL;
767
768 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
769 if (m_new == NULL) {
770 aprint_error("%s: no memory for rx list -- "
771 "packet dropped!\n", sc_if->sk_dev.dv_xname);
772 return ENOBUFS;
773 }
774
775 /* Allocate the jumbo buffer */
776 buf = sk_jalloc(sc_if);
777 if (buf == NULL) {
778 m_freem(m_new);
779 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
780 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
781 return ENOBUFS;
782 }
783
784 /* Attach the buffer to the mbuf */
785 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
786 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
787
788 } else {
789 /*
790 * We're re-using a previously allocated mbuf;
791 * be sure to re-init pointers and lengths to
792 * default values.
793 */
794 m_new = m;
795 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
796 m_new->m_data = m_new->m_ext.ext_buf;
797 }
798 m_adj(m_new, ETHER_ALIGN);
799
800 c = &sc_if->sk_cdata.sk_rx_chain[i];
801 r = c->sk_desc;
802 c->sk_mbuf = m_new;
803 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
804 (((vaddr_t)m_new->m_data
805 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
806 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
807
808 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
809
810 return 0;
811 }
812
813 /*
814 * Memory management for jumbo frames.
815 */
816
817 int
818 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
819 {
820 struct sk_softc *sc = sc_if->sk_softc;
821 caddr_t ptr, kva;
822 bus_dma_segment_t seg;
823 int i, rseg, state, error;
824 struct sk_jpool_entry *entry;
825
826 state = error = 0;
827
828 /* Grab a big chunk o' storage. */
829 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
830 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
831 aprint_error("%s: can't alloc rx buffers\n", sc->sk_dev.dv_xname);
832 return ENOBUFS;
833 }
834
835 state = 1;
836 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, &kva,
837 BUS_DMA_NOWAIT)) {
838 aprint_error("%s: can't map dma buffers (%d bytes)\n",
839 sc->sk_dev.dv_xname, SK_JMEM);
840 error = ENOBUFS;
841 goto out;
842 }
843
844 state = 2;
845 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
846 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
847 aprint_error("%s: can't create dma map\n", sc->sk_dev.dv_xname);
848 error = ENOBUFS;
849 goto out;
850 }
851
852 state = 3;
853 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
854 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
855 aprint_error("%s: can't load dma map\n", sc->sk_dev.dv_xname);
856 error = ENOBUFS;
857 goto out;
858 }
859
860 state = 4;
861 sc_if->sk_cdata.sk_jumbo_buf = (caddr_t)kva;
862 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
863
864 LIST_INIT(&sc_if->sk_jfree_listhead);
865 LIST_INIT(&sc_if->sk_jinuse_listhead);
866
867 /*
868 * Now divide it up into 9K pieces and save the addresses
869 * in an array.
870 */
871 ptr = sc_if->sk_cdata.sk_jumbo_buf;
872 for (i = 0; i < SK_JSLOTS; i++) {
873 sc_if->sk_cdata.sk_jslots[i] = ptr;
874 ptr += SK_JLEN;
875 entry = malloc(sizeof(struct sk_jpool_entry),
876 M_DEVBUF, M_NOWAIT);
877 if (entry == NULL) {
878 aprint_error("%s: no memory for jumbo buffer queue!\n",
879 sc->sk_dev.dv_xname);
880 error = ENOBUFS;
881 goto out;
882 }
883 entry->slot = i;
884 if (i)
885 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
886 entry, jpool_entries);
887 else
888 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
889 entry, jpool_entries);
890 }
891 out:
892 if (error != 0) {
893 switch (state) {
894 case 4:
895 bus_dmamap_unload(sc->sc_dmatag,
896 sc_if->sk_cdata.sk_rx_jumbo_map);
897 case 3:
898 bus_dmamap_destroy(sc->sc_dmatag,
899 sc_if->sk_cdata.sk_rx_jumbo_map);
900 case 2:
901 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
902 case 1:
903 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
904 break;
905 default:
906 break;
907 }
908 }
909
910 return error;
911 }
912
913 /*
914 * Allocate a jumbo buffer.
915 */
916 void *
917 sk_jalloc(struct sk_if_softc *sc_if)
918 {
919 struct sk_jpool_entry *entry;
920
921 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
922
923 if (entry == NULL)
924 return NULL;
925
926 LIST_REMOVE(entry, jpool_entries);
927 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
928 return sc_if->sk_cdata.sk_jslots[entry->slot];
929 }
930
931 /*
932 * Release a jumbo buffer.
933 */
934 void
935 sk_jfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
936 {
937 struct sk_jpool_entry *entry;
938 struct sk_if_softc *sc;
939 int i, s;
940
941 /* Extract the softc struct pointer. */
942 sc = (struct sk_if_softc *)arg;
943
944 if (sc == NULL)
945 panic("sk_jfree: can't find softc pointer!");
946
947 /* calculate the slot this buffer belongs to */
948
949 i = ((vaddr_t)buf
950 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
951
952 if ((i < 0) || (i >= SK_JSLOTS))
953 panic("sk_jfree: asked to free buffer that we don't manage!");
954
955 s = splvm();
956 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
957 if (entry == NULL)
958 panic("sk_jfree: buffer not in use!");
959 entry->slot = i;
960 LIST_REMOVE(entry, jpool_entries);
961 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
962
963 if (__predict_true(m != NULL))
964 pool_cache_put(&mbpool_cache, m);
965 splx(s);
966 }
967
968 /*
969 * Set media options.
970 */
971 int
972 sk_ifmedia_upd(struct ifnet *ifp)
973 {
974 struct sk_if_softc *sc_if = ifp->if_softc;
975
976 (void) sk_init(ifp);
977 mii_mediachg(&sc_if->sk_mii);
978 return 0;
979 }
980
981 /*
982 * Report current media status.
983 */
984 void
985 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
986 {
987 struct sk_if_softc *sc_if = ifp->if_softc;
988
989 mii_pollstat(&sc_if->sk_mii);
990 ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
991 ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
992 }
993
994 int
995 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
996 {
997 struct sk_if_softc *sc_if = ifp->if_softc;
998 struct sk_softc *sc = sc_if->sk_softc;
999 struct ifreq *ifr = (struct ifreq *) data;
1000 struct mii_data *mii;
1001 int s, error = 0;
1002
1003 /* DPRINTFN(2, ("sk_ioctl\n")); */
1004
1005 s = splnet();
1006
1007 switch (command) {
1008
1009 case SIOCSIFFLAGS:
1010 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1011 if (ifp->if_flags & IFF_UP) {
1012 if (ifp->if_flags & IFF_RUNNING &&
1013 ifp->if_flags & IFF_PROMISC &&
1014 !(sc_if->sk_if_flags & IFF_PROMISC)) {
1015 switch (sc->sk_type) {
1016 case SK_GENESIS:
1017 SK_XM_SETBIT_4(sc_if, XM_MODE,
1018 XM_MODE_RX_PROMISC);
1019 break;
1020 case SK_YUKON:
1021 case SK_YUKON_LITE:
1022 case SK_YUKON_LP:
1023 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1024 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1025 break;
1026 }
1027 sk_setmulti(sc_if);
1028 } else if (ifp->if_flags & IFF_RUNNING &&
1029 !(ifp->if_flags & IFF_PROMISC) &&
1030 sc_if->sk_if_flags & IFF_PROMISC) {
1031 switch (sc->sk_type) {
1032 case SK_GENESIS:
1033 SK_XM_CLRBIT_4(sc_if, XM_MODE,
1034 XM_MODE_RX_PROMISC);
1035 break;
1036 case SK_YUKON:
1037 case SK_YUKON_LITE:
1038 case SK_YUKON_LP:
1039 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1040 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1041 break;
1042 }
1043
1044 sk_setmulti(sc_if);
1045 } else
1046 (void) sk_init(ifp);
1047 } else {
1048 if (ifp->if_flags & IFF_RUNNING)
1049 sk_stop(ifp,0);
1050 }
1051 sc_if->sk_if_flags = ifp->if_flags;
1052 error = 0;
1053 break;
1054
1055 case SIOCGIFMEDIA:
1056 case SIOCSIFMEDIA:
1057 DPRINTFN(2, ("sk_ioctl MEDIA\n"));
1058 mii = &sc_if->sk_mii;
1059 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1060 break;
1061 default:
1062 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1063 error = ether_ioctl(ifp, command, data);
1064
1065 if ( error == ENETRESET) {
1066 if (ifp->if_flags & IFF_RUNNING) {
1067 sk_setmulti(sc_if);
1068 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1069 }
1070 error = 0;
1071 } else if ( error ) {
1072 splx(s);
1073 return error;
1074 }
1075 break;
1076 }
1077
1078 splx(s);
1079 return error;
1080 }
1081
1082 void
1083 sk_update_int_mod(struct sk_softc *sc)
1084 {
1085 u_int32_t imtimer_ticks;
1086
1087 /*
1088 * Configure interrupt moderation. The moderation timer
1089 * defers interrupts specified in the interrupt moderation
1090 * timer mask based on the timeout specified in the interrupt
1091 * moderation timer init register. Each bit in the timer
1092 * register represents one tick, so to specify a timeout in
1093 * microseconds, we have to multiply by the correct number of
1094 * ticks-per-microsecond.
1095 */
1096 switch (sc->sk_type) {
1097 case SK_GENESIS:
1098 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1099 break;
1100 case SK_YUKON_EC:
1101 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1102 break;
1103 default:
1104 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1105 }
1106 aprint_verbose("%s: interrupt moderation is %d us\n",
1107 sc->sk_dev.dv_xname, sc->sk_int_mod);
1108 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1109 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1110 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1111 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1112 sc->sk_int_mod_pending = 0;
1113 }
1114
1115 /*
1116 * Lookup: Check the PCI vendor and device, and return a pointer to
1117 * The structure if the IDs match against our list.
1118 */
1119
1120 static const struct sk_product *
1121 sk_lookup(const struct pci_attach_args *pa)
1122 {
1123 const struct sk_product *psk;
1124
1125 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1126 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1127 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1128 return psk;
1129 }
1130 return NULL;
1131 }
1132
1133 /*
1134 * Probe for a SysKonnect GEnesis chip.
1135 */
1136
1137 int
1138 skc_probe(struct device *parent, struct cfdata *match,
1139 void *aux)
1140 {
1141 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1142 const struct sk_product *psk;
1143 pcireg_t subid;
1144
1145 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1146
1147 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1148 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1149 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1150 subid == SK_LINKSYS_EG1032_SUBID)
1151 return 1;
1152
1153 if ((psk = sk_lookup(pa))) {
1154 return 1;
1155 }
1156 return 0;
1157 }
1158
1159 /*
1160 * Force the GEnesis into reset, then bring it out of reset.
1161 */
1162 void sk_reset(struct sk_softc *sc)
1163 {
1164 DPRINTFN(2, ("sk_reset\n"));
1165
1166 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1167 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1168 if (SK_YUKON_FAMILY(sc->sk_type))
1169 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1170
1171 DELAY(1000);
1172 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1173 DELAY(2);
1174 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1175 if (SK_YUKON_FAMILY(sc->sk_type))
1176 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1177
1178 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1179 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1180 CSR_READ_2(sc, SK_LINK_CTRL)));
1181
1182 if (sc->sk_type == SK_GENESIS) {
1183 /* Configure packet arbiter */
1184 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1185 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1186 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1187 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1188 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1189 }
1190
1191 /* Enable RAM interface */
1192 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1193
1194 sk_update_int_mod(sc);
1195 }
1196
1197 int
1198 sk_probe(struct device *parent, struct cfdata *match,
1199 void *aux)
1200 {
1201 struct skc_attach_args *sa = aux;
1202
1203 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1204 return 0;
1205
1206 return 1;
1207 }
1208
1209 /*
1210 * Each XMAC chip is attached as a separate logical IP interface.
1211 * Single port cards will have only one logical interface of course.
1212 */
1213 void
1214 sk_attach(struct device *parent, struct device *self, void *aux)
1215 {
1216 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1217 struct sk_softc *sc = (struct sk_softc *)parent;
1218 struct skc_attach_args *sa = aux;
1219 struct sk_txmap_entry *entry;
1220 struct ifnet *ifp;
1221 bus_dma_segment_t seg;
1222 bus_dmamap_t dmamap;
1223 caddr_t kva;
1224 int i, rseg;
1225
1226 sc_if->sk_port = sa->skc_port;
1227 sc_if->sk_softc = sc;
1228 sc->sk_if[sa->skc_port] = sc_if;
1229
1230 if (sa->skc_port == SK_PORT_A)
1231 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1232 if (sa->skc_port == SK_PORT_B)
1233 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1234
1235 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1236
1237 /*
1238 * Get station address for this interface. Note that
1239 * dual port cards actually come with three station
1240 * addresses: one for each port, plus an extra. The
1241 * extra one is used by the SysKonnect driver software
1242 * as a 'virtual' station address for when both ports
1243 * are operating in failover mode. Currently we don't
1244 * use this extra address.
1245 */
1246 for (i = 0; i < ETHER_ADDR_LEN; i++)
1247 sc_if->sk_enaddr[i] =
1248 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1249
1250
1251 aprint_normal(": Ethernet address %s\n",
1252 ether_sprintf(sc_if->sk_enaddr));
1253
1254 /*
1255 * Set up RAM buffer addresses. The NIC will have a certain
1256 * amount of SRAM on it, somewhere between 512K and 2MB. We
1257 * need to divide this up a) between the transmitter and
1258 * receiver and b) between the two XMACs, if this is a
1259 * dual port NIC. Our algorithm is to divide up the memory
1260 * evenly so that everyone gets a fair share.
1261 */
1262 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1263 u_int32_t chunk, val;
1264
1265 chunk = sc->sk_ramsize / 2;
1266 val = sc->sk_rboff / sizeof(u_int64_t);
1267 sc_if->sk_rx_ramstart = val;
1268 val += (chunk / sizeof(u_int64_t));
1269 sc_if->sk_rx_ramend = val - 1;
1270 sc_if->sk_tx_ramstart = val;
1271 val += (chunk / sizeof(u_int64_t));
1272 sc_if->sk_tx_ramend = val - 1;
1273 } else {
1274 u_int32_t chunk, val;
1275
1276 chunk = sc->sk_ramsize / 4;
1277 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1278 sizeof(u_int64_t);
1279 sc_if->sk_rx_ramstart = val;
1280 val += (chunk / sizeof(u_int64_t));
1281 sc_if->sk_rx_ramend = val - 1;
1282 sc_if->sk_tx_ramstart = val;
1283 val += (chunk / sizeof(u_int64_t));
1284 sc_if->sk_tx_ramend = val - 1;
1285 }
1286
1287 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1288 " tx_ramstart=%#x tx_ramend=%#x\n",
1289 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1290 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1291
1292 /* Read and save PHY type and set PHY address */
1293 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1294 switch (sc_if->sk_phytype) {
1295 case SK_PHYTYPE_XMAC:
1296 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1297 break;
1298 case SK_PHYTYPE_BCOM:
1299 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1300 break;
1301 case SK_PHYTYPE_MARV_COPPER:
1302 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1303 break;
1304 default:
1305 aprint_error("%s: unsupported PHY type: %d\n",
1306 sc->sk_dev.dv_xname, sc_if->sk_phytype);
1307 return;
1308 }
1309
1310 /* Allocate the descriptor queues. */
1311 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1312 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1313 aprint_error("%s: can't alloc rx buffers\n",
1314 sc->sk_dev.dv_xname);
1315 goto fail;
1316 }
1317 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1318 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1319 aprint_error("%s: can't map dma buffers (%lu bytes)\n",
1320 sc_if->sk_dev.dv_xname,
1321 (u_long) sizeof(struct sk_ring_data));
1322 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1323 goto fail;
1324 }
1325 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1326 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1327 &sc_if->sk_ring_map)) {
1328 aprint_error("%s: can't create dma map\n",
1329 sc_if->sk_dev.dv_xname);
1330 bus_dmamem_unmap(sc->sc_dmatag, kva,
1331 sizeof(struct sk_ring_data));
1332 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1333 goto fail;
1334 }
1335 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1336 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1337 aprint_error("%s: can't load dma map\n",
1338 sc_if->sk_dev.dv_xname);
1339 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1340 bus_dmamem_unmap(sc->sc_dmatag, kva,
1341 sizeof(struct sk_ring_data));
1342 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1343 goto fail;
1344 }
1345
1346 for (i = 0; i < SK_RX_RING_CNT; i++)
1347 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1348
1349 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1350 for (i = 0; i < SK_TX_RING_CNT; i++) {
1351 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1352
1353 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1354 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1355 aprint_error("%s: Can't create TX dmamap\n",
1356 sc_if->sk_dev.dv_xname);
1357 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1358 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1359 bus_dmamem_unmap(sc->sc_dmatag, kva,
1360 sizeof(struct sk_ring_data));
1361 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1362 goto fail;
1363 }
1364
1365 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1366 if (!entry) {
1367 aprint_error("%s: Can't alloc txmap entry\n",
1368 sc_if->sk_dev.dv_xname);
1369 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1370 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1371 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1372 bus_dmamem_unmap(sc->sc_dmatag, kva,
1373 sizeof(struct sk_ring_data));
1374 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1375 goto fail;
1376 }
1377 entry->dmamap = dmamap;
1378 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1379 }
1380
1381 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1382 bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1383
1384 ifp = &sc_if->sk_ethercom.ec_if;
1385 /* Try to allocate memory for jumbo buffers. */
1386 if (sk_alloc_jumbo_mem(sc_if)) {
1387 aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1388 goto fail;
1389 }
1390 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1391 | ETHERCAP_JUMBO_MTU;
1392
1393 ifp->if_softc = sc_if;
1394 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1395 ifp->if_ioctl = sk_ioctl;
1396 ifp->if_start = sk_start;
1397 ifp->if_stop = sk_stop;
1398 ifp->if_init = sk_init;
1399 ifp->if_watchdog = sk_watchdog;
1400 ifp->if_capabilities = 0;
1401 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1402 IFQ_SET_READY(&ifp->if_snd);
1403 strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1404
1405 /*
1406 * Do miibus setup.
1407 */
1408 switch (sc->sk_type) {
1409 case SK_GENESIS:
1410 sk_init_xmac(sc_if);
1411 break;
1412 case SK_YUKON:
1413 case SK_YUKON_LITE:
1414 case SK_YUKON_LP:
1415 sk_init_yukon(sc_if);
1416 break;
1417 default:
1418 panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
1419 sc->sk_type);
1420 }
1421
1422 DPRINTFN(2, ("sk_attach: 1\n"));
1423
1424 sc_if->sk_mii.mii_ifp = ifp;
1425 switch (sc->sk_type) {
1426 case SK_GENESIS:
1427 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1428 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1429 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1430 break;
1431 case SK_YUKON:
1432 case SK_YUKON_LITE:
1433 case SK_YUKON_LP:
1434 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1435 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1436 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1437 break;
1438 }
1439
1440 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1441 sk_ifmedia_upd, sk_ifmedia_sts);
1442 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1443 MII_OFFSET_ANY, 0);
1444 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1445 aprint_error("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1446 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1447 0, NULL);
1448 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1449 } else
1450 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1451
1452 callout_init(&sc_if->sk_tick_ch);
1453 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1454
1455 DPRINTFN(2, ("sk_attach: 1\n"));
1456
1457 /*
1458 * Call MI attach routines.
1459 */
1460 if_attach(ifp);
1461
1462 ether_ifattach(ifp, sc_if->sk_enaddr);
1463
1464 #if NRND > 0
1465 rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
1466 RND_TYPE_NET, 0);
1467 #endif
1468
1469 DPRINTFN(2, ("sk_attach: end\n"));
1470
1471 return;
1472
1473 fail:
1474 sc->sk_if[sa->skc_port] = NULL;
1475 }
1476
1477 int
1478 skcprint(void *aux, const char *pnp)
1479 {
1480 struct skc_attach_args *sa = aux;
1481
1482 if (pnp)
1483 aprint_normal("sk port %c at %s",
1484 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1485 else
1486 aprint_normal(" port %c",
1487 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1488 return UNCONF;
1489 }
1490
1491 /*
1492 * Attach the interface. Allocate softc structures, do ifmedia
1493 * setup and ethernet/BPF attach.
1494 */
1495 void
1496 skc_attach(struct device *parent, struct device *self, void *aux)
1497 {
1498 struct sk_softc *sc = (struct sk_softc *)self;
1499 struct pci_attach_args *pa = aux;
1500 struct skc_attach_args skca;
1501 pci_chipset_tag_t pc = pa->pa_pc;
1502 #ifndef SK_USEIOSPACE
1503 pcireg_t memtype;
1504 #endif
1505 pci_intr_handle_t ih;
1506 const char *intrstr = NULL;
1507 bus_addr_t iobase;
1508 bus_size_t iosize;
1509 int rc, sk_nodenum;
1510 u_int32_t command;
1511 const char *revstr;
1512 const struct sysctlnode *node;
1513
1514 DPRINTFN(2, ("begin skc_attach\n"));
1515
1516 /*
1517 * Handle power management nonsense.
1518 */
1519 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1520
1521 if (command == 0x01) {
1522 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1523 if (command & SK_PSTATE_MASK) {
1524 u_int32_t xiobase, membase, irq;
1525
1526 /* Save important PCI config data. */
1527 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1528 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1529 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1530
1531 /* Reset the power state. */
1532 aprint_normal("%s chip is in D%d power mode "
1533 "-- setting to D0\n", sc->sk_dev.dv_xname,
1534 command & SK_PSTATE_MASK);
1535 command &= 0xFFFFFFFC;
1536 pci_conf_write(pc, pa->pa_tag,
1537 SK_PCI_PWRMGMTCTRL, command);
1538
1539 /* Restore PCI config data. */
1540 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1541 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1542 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1543 }
1544 }
1545
1546 /*
1547 * Map control/status registers.
1548 */
1549 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1550 command |= PCI_COMMAND_IO_ENABLE |
1551 PCI_COMMAND_MEM_ENABLE |
1552 PCI_COMMAND_MASTER_ENABLE;
1553 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1554 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1555
1556 #ifdef SK_USEIOSPACE
1557 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1558 aprint_error(": failed to enable I/O ports!\n");
1559 return;
1560 }
1561 /*
1562 * Map control/status registers.
1563 */
1564 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1565 &sc->sk_btag, &sc->sk_bhandle,
1566 &iobase, &iosize)) {
1567 aprint_error(": can't find i/o space\n");
1568 return;
1569 }
1570 #else
1571 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1572 aprint_error(": failed to enable memory mapping!\n");
1573 return;
1574 }
1575 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1576 switch (memtype) {
1577 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1578 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1579 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1580 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1581 &iobase, &iosize) == 0)
1582 break;
1583 default:
1584 aprint_error("%s: can't find mem space\n",
1585 sc->sk_dev.dv_xname);
1586 return;
1587 }
1588
1589 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1590 #endif
1591 sc->sc_dmatag = pa->pa_dmat;
1592
1593 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1594 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1595
1596 /* bail out here if chip is not recognized */
1597 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1598 aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
1599 goto fail;
1600 }
1601 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1602
1603 /* Allocate interrupt */
1604 if (pci_intr_map(pa, &ih)) {
1605 aprint_error(": couldn't map interrupt\n");
1606 goto fail;
1607 }
1608
1609 intrstr = pci_intr_string(pc, ih);
1610 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1611 if (sc->sk_intrhand == NULL) {
1612 aprint_error(": couldn't establish interrupt");
1613 if (intrstr != NULL)
1614 aprint_normal(" at %s", intrstr);
1615 goto fail;
1616 }
1617 aprint_normal(": %s\n", intrstr);
1618
1619 /* Reset the adapter. */
1620 sk_reset(sc);
1621
1622 /* Read and save vital product data from EEPROM. */
1623 sk_vpd_read(sc);
1624
1625 if (sc->sk_type == SK_GENESIS) {
1626 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1627 /* Read and save RAM size and RAMbuffer offset */
1628 switch (val) {
1629 case SK_RAMSIZE_512K_64:
1630 sc->sk_ramsize = 0x80000;
1631 sc->sk_rboff = SK_RBOFF_0;
1632 break;
1633 case SK_RAMSIZE_1024K_64:
1634 sc->sk_ramsize = 0x100000;
1635 sc->sk_rboff = SK_RBOFF_80000;
1636 break;
1637 case SK_RAMSIZE_1024K_128:
1638 sc->sk_ramsize = 0x100000;
1639 sc->sk_rboff = SK_RBOFF_0;
1640 break;
1641 case SK_RAMSIZE_2048K_128:
1642 sc->sk_ramsize = 0x200000;
1643 sc->sk_rboff = SK_RBOFF_0;
1644 break;
1645 default:
1646 aprint_error("%s: unknown ram size: %d\n",
1647 sc->sk_dev.dv_xname, val);
1648 goto fail_1;
1649 break;
1650 }
1651
1652 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1653 sc->sk_ramsize, sc->sk_ramsize / 1024,
1654 sc->sk_rboff));
1655 } else {
1656 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1657 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1658 sc->sk_rboff = SK_RBOFF_0;
1659
1660 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1661 sc->sk_ramsize / 1024, sc->sk_ramsize,
1662 sc->sk_rboff));
1663 }
1664
1665 /* Read and save physical media type */
1666 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1667 case SK_PMD_1000BASESX:
1668 sc->sk_pmd = IFM_1000_SX;
1669 break;
1670 case SK_PMD_1000BASELX:
1671 sc->sk_pmd = IFM_1000_LX;
1672 break;
1673 case SK_PMD_1000BASECX:
1674 sc->sk_pmd = IFM_1000_CX;
1675 break;
1676 case SK_PMD_1000BASETX:
1677 case SK_PMD_1000BASETX_ALT:
1678 sc->sk_pmd = IFM_1000_T;
1679 break;
1680 default:
1681 aprint_error("%s: unknown media type: 0x%x\n",
1682 sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
1683 goto fail_1;
1684 }
1685
1686 /* determine whether to name it with vpd or just make it up */
1687 /* Marvell Yukon VPD's can freqently be bogus */
1688
1689 switch (pa->pa_id) {
1690 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1691 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1692 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1693 case PCI_PRODUCT_3COM_3C940:
1694 case PCI_PRODUCT_DLINK_DGE530T:
1695 case PCI_PRODUCT_DLINK_DGE560T:
1696 case PCI_PRODUCT_DLINK_DGE560T_2:
1697 case PCI_PRODUCT_LINKSYS_EG1032:
1698 case PCI_PRODUCT_LINKSYS_EG1064:
1699 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1700 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1701 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1702 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1703 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1704 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1705 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1706 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1707 sc->sk_name = sc->sk_vpd_prodname;
1708 break;
1709 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1710 /* whoops yukon vpd prodname bears no resemblance to reality */
1711 switch (sc->sk_type) {
1712 case SK_GENESIS:
1713 sc->sk_name = sc->sk_vpd_prodname;
1714 break;
1715 case SK_YUKON:
1716 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1717 break;
1718 case SK_YUKON_LITE:
1719 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1720 break;
1721 case SK_YUKON_LP:
1722 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1723 break;
1724 default:
1725 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1726 }
1727
1728 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1729
1730 if ( sc->sk_type == SK_YUKON ) {
1731 uint32_t flashaddr;
1732 uint8_t testbyte;
1733
1734 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1735
1736 /* test Flash-Address Register */
1737 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1738 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1739
1740 if (testbyte != 0) {
1741 /* this is yukon lite Rev. A0 */
1742 sc->sk_type = SK_YUKON_LITE;
1743 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1744 /* restore Flash-Address Register */
1745 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1746 }
1747 }
1748 break;
1749 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1750 sc->sk_name = sc->sk_vpd_prodname;
1751 break;
1752 default:
1753 sc->sk_name = "Unknown Marvell";
1754 }
1755
1756
1757 if ( sc->sk_type == SK_YUKON_LITE ) {
1758 switch (sc->sk_rev) {
1759 case SK_YUKON_LITE_REV_A0:
1760 revstr = "A0";
1761 break;
1762 case SK_YUKON_LITE_REV_A1:
1763 revstr = "A1";
1764 break;
1765 case SK_YUKON_LITE_REV_A3:
1766 revstr = "A3";
1767 break;
1768 default:
1769 revstr = "";
1770 }
1771 } else {
1772 revstr = "";
1773 }
1774
1775 /* Announce the product name. */
1776 aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
1777 sc->sk_name, revstr, sc->sk_rev);
1778
1779 skca.skc_port = SK_PORT_A;
1780 (void)config_found(&sc->sk_dev, &skca, skcprint);
1781
1782 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1783 skca.skc_port = SK_PORT_B;
1784 (void)config_found(&sc->sk_dev, &skca, skcprint);
1785 }
1786
1787 /* Turn on the 'driver is loaded' LED. */
1788 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1789
1790 /* skc sysctl setup */
1791
1792 sc->sk_int_mod = SK_IM_DEFAULT;
1793 sc->sk_int_mod_pending = 0;
1794
1795 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1796 0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
1797 SYSCTL_DESCR("skc per-controller controls"),
1798 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1799 CTL_EOL)) != 0) {
1800 aprint_normal("%s: couldn't create sysctl node\n",
1801 sc->sk_dev.dv_xname);
1802 goto fail_1;
1803 }
1804
1805 sk_nodenum = node->sysctl_num;
1806
1807 /* interrupt moderation time in usecs */
1808 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1809 CTLFLAG_READWRITE,
1810 CTLTYPE_INT, "int_mod",
1811 SYSCTL_DESCR("sk interrupt moderation timer"),
1812 sk_sysctl_handler, 0, sc,
1813 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1814 CTL_EOL)) != 0) {
1815 aprint_normal("%s: couldn't create int_mod sysctl node\n",
1816 sc->sk_dev.dv_xname);
1817 goto fail_1;
1818 }
1819
1820 return;
1821
1822 fail_1:
1823 pci_intr_disestablish(pc, sc->sk_intrhand);
1824 fail:
1825 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1826 }
1827
1828 int
1829 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1830 {
1831 struct sk_softc *sc = sc_if->sk_softc;
1832 struct sk_tx_desc *f = NULL;
1833 u_int32_t frag, cur, cnt = 0, sk_ctl;
1834 int i;
1835 struct sk_txmap_entry *entry;
1836 bus_dmamap_t txmap;
1837
1838 DPRINTFN(3, ("sk_encap\n"));
1839
1840 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1841 if (entry == NULL) {
1842 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1843 return ENOBUFS;
1844 }
1845 txmap = entry->dmamap;
1846
1847 cur = frag = *txidx;
1848
1849 #ifdef SK_DEBUG
1850 if (skdebug >= 3)
1851 sk_dump_mbuf(m_head);
1852 #endif
1853
1854 /*
1855 * Start packing the mbufs in this chain into
1856 * the fragment pointers. Stop when we run out
1857 * of fragments or hit the end of the mbuf chain.
1858 */
1859 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1860 BUS_DMA_NOWAIT)) {
1861 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1862 return ENOBUFS;
1863 }
1864
1865 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1866
1867 /* Sync the DMA map. */
1868 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1869 BUS_DMASYNC_PREWRITE);
1870
1871 for (i = 0; i < txmap->dm_nsegs; i++) {
1872 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1873 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1874 return ENOBUFS;
1875 }
1876 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1877 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1878 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1879 if (cnt == 0)
1880 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1881 else
1882 sk_ctl |= SK_TXCTL_OWN;
1883 f->sk_ctl = htole32(sk_ctl);
1884 cur = frag;
1885 SK_INC(frag, SK_TX_RING_CNT);
1886 cnt++;
1887 }
1888
1889 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1890 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1891
1892 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1893 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1894 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1895
1896 /* Sync descriptors before handing to chip */
1897 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1898 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1899
1900 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1901 htole32(SK_TXCTL_OWN);
1902
1903 /* Sync first descriptor to hand it off */
1904 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1905
1906 sc_if->sk_cdata.sk_tx_cnt += cnt;
1907
1908 #ifdef SK_DEBUG
1909 if (skdebug >= 3) {
1910 struct sk_tx_desc *desc;
1911 u_int32_t idx;
1912 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1913 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1914 sk_dump_txdesc(desc, idx);
1915 }
1916 }
1917 #endif
1918
1919 *txidx = frag;
1920
1921 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1922
1923 return 0;
1924 }
1925
1926 void
1927 sk_start(struct ifnet *ifp)
1928 {
1929 struct sk_if_softc *sc_if = ifp->if_softc;
1930 struct sk_softc *sc = sc_if->sk_softc;
1931 struct mbuf *m_head = NULL;
1932 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1933 int pkts = 0;
1934
1935 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1936 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1937
1938 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1939 IFQ_POLL(&ifp->if_snd, m_head);
1940 if (m_head == NULL)
1941 break;
1942
1943 /*
1944 * Pack the data into the transmit ring. If we
1945 * don't have room, set the OACTIVE flag and wait
1946 * for the NIC to drain the ring.
1947 */
1948 if (sk_encap(sc_if, m_head, &idx)) {
1949 ifp->if_flags |= IFF_OACTIVE;
1950 break;
1951 }
1952
1953 /* now we are committed to transmit the packet */
1954 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1955 pkts++;
1956
1957 /*
1958 * If there's a BPF listener, bounce a copy of this frame
1959 * to him.
1960 */
1961 #if NBPFILTER > 0
1962 if (ifp->if_bpf)
1963 bpf_mtap(ifp->if_bpf, m_head);
1964 #endif
1965 }
1966 if (pkts == 0)
1967 return;
1968
1969 /* Transmit */
1970 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1971 sc_if->sk_cdata.sk_tx_prod = idx;
1972 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1973
1974 /* Set a timeout in case the chip goes out to lunch. */
1975 ifp->if_timer = 5;
1976 }
1977 }
1978
1979
1980 void
1981 sk_watchdog(struct ifnet *ifp)
1982 {
1983 struct sk_if_softc *sc_if = ifp->if_softc;
1984
1985 /*
1986 * Reclaim first as there is a possibility of losing Tx completion
1987 * interrupts.
1988 */
1989 sk_txeof(sc_if);
1990 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1991 aprint_error("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1992
1993 ifp->if_oerrors++;
1994
1995 sk_init(ifp);
1996 }
1997 }
1998
1999 void
2000 sk_shutdown(void * v)
2001 {
2002 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
2003 struct sk_softc *sc = sc_if->sk_softc;
2004 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2005
2006 DPRINTFN(2, ("sk_shutdown\n"));
2007 sk_stop(ifp,1);
2008
2009 /* Turn off the 'driver is loaded' LED. */
2010 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2011
2012 /*
2013 * Reset the GEnesis controller. Doing this should also
2014 * assert the resets on the attached XMAC(s).
2015 */
2016 sk_reset(sc);
2017 }
2018
2019 void
2020 sk_rxeof(struct sk_if_softc *sc_if)
2021 {
2022 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2023 struct mbuf *m;
2024 struct sk_chain *cur_rx;
2025 struct sk_rx_desc *cur_desc;
2026 int i, cur, total_len = 0;
2027 u_int32_t rxstat, sk_ctl;
2028 bus_dmamap_t dmamap;
2029
2030 i = sc_if->sk_cdata.sk_rx_prod;
2031
2032 DPRINTFN(3, ("sk_rxeof %d\n", i));
2033
2034 for (;;) {
2035 cur = i;
2036
2037 /* Sync the descriptor */
2038 SK_CDRXSYNC(sc_if, cur,
2039 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2040
2041 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2042 if (sk_ctl & SK_RXCTL_OWN) {
2043 /* Invalidate the descriptor -- it's not ready yet */
2044 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2045 sc_if->sk_cdata.sk_rx_prod = i;
2046 break;
2047 }
2048
2049 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2050 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2051 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2052
2053 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2054 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2055
2056 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2057 m = cur_rx->sk_mbuf;
2058 cur_rx->sk_mbuf = NULL;
2059 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2060
2061 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2062
2063 SK_INC(i, SK_RX_RING_CNT);
2064
2065 if (rxstat & XM_RXSTAT_ERRFRAME) {
2066 ifp->if_ierrors++;
2067 sk_newbuf(sc_if, cur, m, dmamap);
2068 continue;
2069 }
2070
2071 /*
2072 * Try to allocate a new jumbo buffer. If that
2073 * fails, copy the packet to mbufs and put the
2074 * jumbo buffer back in the ring so it can be
2075 * re-used. If allocating mbufs fails, then we
2076 * have to drop the packet.
2077 */
2078 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2079 struct mbuf *m0;
2080 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2081 total_len + ETHER_ALIGN, 0, ifp, NULL);
2082 sk_newbuf(sc_if, cur, m, dmamap);
2083 if (m0 == NULL) {
2084 aprint_error("%s: no receive buffers "
2085 "available -- packet dropped!\n",
2086 sc_if->sk_dev.dv_xname);
2087 ifp->if_ierrors++;
2088 continue;
2089 }
2090 m_adj(m0, ETHER_ALIGN);
2091 m = m0;
2092 } else {
2093 m->m_pkthdr.rcvif = ifp;
2094 m->m_pkthdr.len = m->m_len = total_len;
2095 }
2096
2097 ifp->if_ipackets++;
2098
2099 #if NBPFILTER > 0
2100 if (ifp->if_bpf)
2101 bpf_mtap(ifp->if_bpf, m);
2102 #endif
2103 /* pass it on. */
2104 (*ifp->if_input)(ifp, m);
2105 }
2106 }
2107
2108 void
2109 sk_txeof(struct sk_if_softc *sc_if)
2110 {
2111 struct sk_softc *sc = sc_if->sk_softc;
2112 struct sk_tx_desc *cur_tx;
2113 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2114 u_int32_t idx, sk_ctl;
2115 struct sk_txmap_entry *entry;
2116
2117 DPRINTFN(3, ("sk_txeof\n"));
2118
2119 /*
2120 * Go through our tx ring and free mbufs for those
2121 * frames that have been sent.
2122 */
2123 idx = sc_if->sk_cdata.sk_tx_cons;
2124 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2125 SK_CDTXSYNC(sc_if, idx, 1,
2126 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2127
2128 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2129 sk_ctl = le32toh(cur_tx->sk_ctl);
2130 #ifdef SK_DEBUG
2131 if (skdebug >= 3)
2132 sk_dump_txdesc(cur_tx, idx);
2133 #endif
2134 if (sk_ctl & SK_TXCTL_OWN) {
2135 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2136 break;
2137 }
2138 if (sk_ctl & SK_TXCTL_LASTFRAG)
2139 ifp->if_opackets++;
2140 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2141 entry = sc_if->sk_cdata.sk_tx_map[idx];
2142
2143 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2144 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2145
2146 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2147 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2148
2149 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2150 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2151 link);
2152 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2153 }
2154 sc_if->sk_cdata.sk_tx_cnt--;
2155 SK_INC(idx, SK_TX_RING_CNT);
2156 }
2157 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2158 ifp->if_timer = 0;
2159 else /* nudge chip to keep tx ring moving */
2160 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2161
2162 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2163 ifp->if_flags &= ~IFF_OACTIVE;
2164
2165 sc_if->sk_cdata.sk_tx_cons = idx;
2166 }
2167
2168 void
2169 sk_tick(void *xsc_if)
2170 {
2171 struct sk_if_softc *sc_if = xsc_if;
2172 struct mii_data *mii = &sc_if->sk_mii;
2173 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2174 int i;
2175
2176 DPRINTFN(3, ("sk_tick\n"));
2177
2178 if (!(ifp->if_flags & IFF_UP))
2179 return;
2180
2181 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2182 sk_intr_bcom(sc_if);
2183 return;
2184 }
2185
2186 /*
2187 * According to SysKonnect, the correct way to verify that
2188 * the link has come back up is to poll bit 0 of the GPIO
2189 * register three times. This pin has the signal from the
2190 * link sync pin connected to it; if we read the same link
2191 * state 3 times in a row, we know the link is up.
2192 */
2193 for (i = 0; i < 3; i++) {
2194 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2195 break;
2196 }
2197
2198 if (i != 3) {
2199 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2200 return;
2201 }
2202
2203 /* Turn the GP0 interrupt back on. */
2204 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2205 SK_XM_READ_2(sc_if, XM_ISR);
2206 mii_tick(mii);
2207 mii_pollstat(mii);
2208 callout_stop(&sc_if->sk_tick_ch);
2209 }
2210
2211 void
2212 sk_intr_bcom(struct sk_if_softc *sc_if)
2213 {
2214 struct mii_data *mii = &sc_if->sk_mii;
2215 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2216 int status;
2217
2218
2219 DPRINTFN(3, ("sk_intr_bcom\n"));
2220
2221 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2222
2223 /*
2224 * Read the PHY interrupt register to make sure
2225 * we clear any pending interrupts.
2226 */
2227 status = sk_xmac_miibus_readreg((struct device *)sc_if,
2228 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2229
2230 if (!(ifp->if_flags & IFF_RUNNING)) {
2231 sk_init_xmac(sc_if);
2232 return;
2233 }
2234
2235 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2236 int lstat;
2237 lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
2238 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2239
2240 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2241 mii_mediachg(mii);
2242 /* Turn off the link LED. */
2243 SK_IF_WRITE_1(sc_if, 0,
2244 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2245 sc_if->sk_link = 0;
2246 } else if (status & BRGPHY_ISR_LNK_CHG) {
2247 sk_xmac_miibus_writereg((struct device *)sc_if,
2248 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2249 mii_tick(mii);
2250 sc_if->sk_link = 1;
2251 /* Turn on the link LED. */
2252 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2253 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2254 SK_LINKLED_BLINK_OFF);
2255 mii_pollstat(mii);
2256 } else {
2257 mii_tick(mii);
2258 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2259 }
2260 }
2261
2262 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2263 }
2264
2265 void
2266 sk_intr_xmac(struct sk_if_softc *sc_if)
2267 {
2268 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2269
2270 DPRINTFN(3, ("sk_intr_xmac\n"));
2271
2272 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2273 if (status & XM_ISR_GP0_SET) {
2274 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2275 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2276 }
2277
2278 if (status & XM_ISR_AUTONEG_DONE) {
2279 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2280 }
2281 }
2282
2283 if (status & XM_IMR_TX_UNDERRUN)
2284 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2285
2286 if (status & XM_IMR_RX_OVERRUN)
2287 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2288 }
2289
2290 void
2291 sk_intr_yukon(struct sk_if_softc *sc_if)
2292 {
2293 int status;
2294
2295 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2296
2297 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2298 }
2299
2300 int
2301 sk_intr(void *xsc)
2302 {
2303 struct sk_softc *sc = xsc;
2304 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2305 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2306 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2307 u_int32_t status;
2308 int claimed = 0;
2309
2310 if (sc_if0 != NULL)
2311 ifp0 = &sc_if0->sk_ethercom.ec_if;
2312 if (sc_if1 != NULL)
2313 ifp1 = &sc_if1->sk_ethercom.ec_if;
2314
2315 for (;;) {
2316 status = CSR_READ_4(sc, SK_ISSR);
2317 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2318
2319 if (!(status & sc->sk_intrmask))
2320 break;
2321
2322 claimed = 1;
2323
2324 /* Handle receive interrupts first. */
2325 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2326 sk_rxeof(sc_if0);
2327 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2328 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2329 }
2330 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2331 sk_rxeof(sc_if1);
2332 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2333 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2334 }
2335
2336 /* Then transmit interrupts. */
2337 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2338 sk_txeof(sc_if0);
2339 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2340 SK_TXBMU_CLR_IRQ_EOF);
2341 }
2342 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2343 sk_txeof(sc_if1);
2344 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2345 SK_TXBMU_CLR_IRQ_EOF);
2346 }
2347
2348 /* Then MAC interrupts. */
2349 if (sc_if0 && (status & SK_ISR_MAC1) &&
2350 (ifp0->if_flags & IFF_RUNNING)) {
2351 if (sc->sk_type == SK_GENESIS)
2352 sk_intr_xmac(sc_if0);
2353 else
2354 sk_intr_yukon(sc_if0);
2355 }
2356
2357 if (sc_if1 && (status & SK_ISR_MAC2) &&
2358 (ifp1->if_flags & IFF_RUNNING)) {
2359 if (sc->sk_type == SK_GENESIS)
2360 sk_intr_xmac(sc_if1);
2361 else
2362 sk_intr_yukon(sc_if1);
2363
2364 }
2365
2366 if (status & SK_ISR_EXTERNAL_REG) {
2367 if (sc_if0 != NULL &&
2368 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2369 sk_intr_bcom(sc_if0);
2370
2371 if (sc_if1 != NULL &&
2372 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2373 sk_intr_bcom(sc_if1);
2374 }
2375 }
2376
2377 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2378
2379 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2380 sk_start(ifp0);
2381 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2382 sk_start(ifp1);
2383
2384 #if NRND > 0
2385 if (RND_ENABLED(&sc->rnd_source))
2386 rnd_add_uint32(&sc->rnd_source, status);
2387 #endif
2388
2389 if (sc->sk_int_mod_pending)
2390 sk_update_int_mod(sc);
2391
2392 return claimed;
2393 }
2394
2395 void
2396 sk_init_xmac(struct sk_if_softc *sc_if)
2397 {
2398 struct sk_softc *sc = sc_if->sk_softc;
2399 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2400 static const struct sk_bcom_hack bhack[] = {
2401 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2402 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2403 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2404 { 0, 0 } };
2405
2406 DPRINTFN(1, ("sk_init_xmac\n"));
2407
2408 /* Unreset the XMAC. */
2409 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2410 DELAY(1000);
2411
2412 /* Reset the XMAC's internal state. */
2413 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2414
2415 /* Save the XMAC II revision */
2416 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2417
2418 /*
2419 * Perform additional initialization for external PHYs,
2420 * namely for the 1000baseTX cards that use the XMAC's
2421 * GMII mode.
2422 */
2423 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2424 int i = 0;
2425 u_int32_t val;
2426
2427 /* Take PHY out of reset. */
2428 val = sk_win_read_4(sc, SK_GPIO);
2429 if (sc_if->sk_port == SK_PORT_A)
2430 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2431 else
2432 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2433 sk_win_write_4(sc, SK_GPIO, val);
2434
2435 /* Enable GMII mode on the XMAC. */
2436 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2437
2438 sk_xmac_miibus_writereg((struct device *)sc_if,
2439 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2440 DELAY(10000);
2441 sk_xmac_miibus_writereg((struct device *)sc_if,
2442 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2443
2444 /*
2445 * Early versions of the BCM5400 apparently have
2446 * a bug that requires them to have their reserved
2447 * registers initialized to some magic values. I don't
2448 * know what the numbers do, I'm just the messenger.
2449 */
2450 if (sk_xmac_miibus_readreg((struct device *)sc_if,
2451 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2452 while (bhack[i].reg) {
2453 sk_xmac_miibus_writereg((struct device *)sc_if,
2454 SK_PHYADDR_BCOM, bhack[i].reg,
2455 bhack[i].val);
2456 i++;
2457 }
2458 }
2459 }
2460
2461 /* Set station address */
2462 SK_XM_WRITE_2(sc_if, XM_PAR0,
2463 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2464 SK_XM_WRITE_2(sc_if, XM_PAR1,
2465 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2466 SK_XM_WRITE_2(sc_if, XM_PAR2,
2467 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2468 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2469
2470 if (ifp->if_flags & IFF_PROMISC)
2471 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2472 else
2473 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2474
2475 if (ifp->if_flags & IFF_BROADCAST)
2476 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2477 else
2478 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2479
2480 /* We don't need the FCS appended to the packet. */
2481 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2482
2483 /* We want short frames padded to 60 bytes. */
2484 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2485
2486 /*
2487 * Enable the reception of all error frames. This is is
2488 * a necessary evil due to the design of the XMAC. The
2489 * XMAC's receive FIFO is only 8K in size, however jumbo
2490 * frames can be up to 9000 bytes in length. When bad
2491 * frame filtering is enabled, the XMAC's RX FIFO operates
2492 * in 'store and forward' mode. For this to work, the
2493 * entire frame has to fit into the FIFO, but that means
2494 * that jumbo frames larger than 8192 bytes will be
2495 * truncated. Disabling all bad frame filtering causes
2496 * the RX FIFO to operate in streaming mode, in which
2497 * case the XMAC will start transfering frames out of the
2498 * RX FIFO as soon as the FIFO threshold is reached.
2499 */
2500 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2501 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2502 XM_MODE_RX_INRANGELEN);
2503
2504 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2505 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2506 else
2507 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2508
2509 /*
2510 * Bump up the transmit threshold. This helps hold off transmit
2511 * underruns when we're blasting traffic from both ports at once.
2512 */
2513 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2514
2515 /* Set multicast filter */
2516 sk_setmulti(sc_if);
2517
2518 /* Clear and enable interrupts */
2519 SK_XM_READ_2(sc_if, XM_ISR);
2520 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2521 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2522 else
2523 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2524
2525 /* Configure MAC arbiter */
2526 switch (sc_if->sk_xmac_rev) {
2527 case XM_XMAC_REV_B2:
2528 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2529 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2530 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2531 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2532 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2533 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2534 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2535 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2536 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2537 break;
2538 case XM_XMAC_REV_C1:
2539 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2540 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2541 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2542 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2543 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2544 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2545 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2546 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2547 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2548 break;
2549 default:
2550 break;
2551 }
2552 sk_win_write_2(sc, SK_MACARB_CTL,
2553 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2554
2555 sc_if->sk_link = 1;
2556 }
2557
2558 void sk_init_yukon(struct sk_if_softc *sc_if)
2559 {
2560 u_int32_t /*mac, */phy;
2561 u_int16_t reg;
2562 struct sk_softc *sc;
2563 int i;
2564
2565 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2566 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2567
2568 sc = sc_if->sk_softc;
2569 if (sc->sk_type == SK_YUKON_LITE &&
2570 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2571 /* Take PHY out of reset. */
2572 sk_win_write_4(sc, SK_GPIO,
2573 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2574 }
2575
2576
2577 /* GMAC and GPHY Reset */
2578 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2579
2580 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2581
2582 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2583 DELAY(1000);
2584 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2585 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2586 DELAY(1000);
2587
2588
2589 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2590
2591 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2592 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2593
2594 switch (sc_if->sk_softc->sk_pmd) {
2595 case IFM_1000_SX:
2596 case IFM_1000_LX:
2597 phy |= SK_GPHY_FIBER;
2598 break;
2599
2600 case IFM_1000_CX:
2601 case IFM_1000_T:
2602 phy |= SK_GPHY_COPPER;
2603 break;
2604 }
2605
2606 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2607
2608 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2609 DELAY(1000);
2610 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2611 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2612 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2613
2614 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2615 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2616
2617 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2618
2619 /* unused read of the interrupt source register */
2620 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2621 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2622
2623 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2624 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2625 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2626
2627 /* MIB Counter Clear Mode set */
2628 reg |= YU_PAR_MIB_CLR;
2629 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2630 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2631 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2632
2633 /* MIB Counter Clear Mode clear */
2634 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2635 reg &= ~YU_PAR_MIB_CLR;
2636 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2637
2638 /* receive control reg */
2639 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2640 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2641 YU_RCR_CRCR);
2642
2643 /* transmit parameter register */
2644 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2645 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2646 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2647
2648 /* serial mode register */
2649 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2650 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2651 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2652 YU_SMR_IPG_DATA(0x1e));
2653
2654 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2655 /* Setup Yukon's address */
2656 for (i = 0; i < 3; i++) {
2657 /* Write Source Address 1 (unicast filter) */
2658 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2659 sc_if->sk_enaddr[i * 2] |
2660 sc_if->sk_enaddr[i * 2 + 1] << 8);
2661 }
2662
2663 for (i = 0; i < 3; i++) {
2664 reg = sk_win_read_2(sc_if->sk_softc,
2665 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2666 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2667 }
2668
2669 /* Set multicast filter */
2670 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2671 sk_setmulti(sc_if);
2672
2673 /* enable interrupt mask for counter overflows */
2674 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2675 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2676 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2677 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2678
2679 /* Configure RX MAC FIFO */
2680 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2681 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2682
2683 /* Configure TX MAC FIFO */
2684 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2685 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2686
2687 DPRINTFN(6, ("sk_init_yukon: end\n"));
2688 }
2689
2690 /*
2691 * Note that to properly initialize any part of the GEnesis chip,
2692 * you first have to take it out of reset mode.
2693 */
2694 int
2695 sk_init(struct ifnet *ifp)
2696 {
2697 struct sk_if_softc *sc_if = ifp->if_softc;
2698 struct sk_softc *sc = sc_if->sk_softc;
2699 struct mii_data *mii = &sc_if->sk_mii;
2700 int s;
2701 u_int32_t imr, imtimer_ticks;
2702
2703 DPRINTFN(1, ("sk_init\n"));
2704
2705 s = splnet();
2706
2707 if (ifp->if_flags & IFF_RUNNING) {
2708 splx(s);
2709 return 0;
2710 }
2711
2712 /* Cancel pending I/O and free all RX/TX buffers. */
2713 sk_stop(ifp,0);
2714
2715 if (sc->sk_type == SK_GENESIS) {
2716 /* Configure LINK_SYNC LED */
2717 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2718 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2719 SK_LINKLED_LINKSYNC_ON);
2720
2721 /* Configure RX LED */
2722 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2723 SK_RXLEDCTL_COUNTER_START);
2724
2725 /* Configure TX LED */
2726 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2727 SK_TXLEDCTL_COUNTER_START);
2728 }
2729
2730 /* Configure I2C registers */
2731
2732 /* Configure XMAC(s) */
2733 switch (sc->sk_type) {
2734 case SK_GENESIS:
2735 sk_init_xmac(sc_if);
2736 break;
2737 case SK_YUKON:
2738 case SK_YUKON_LITE:
2739 case SK_YUKON_LP:
2740 sk_init_yukon(sc_if);
2741 break;
2742 }
2743 mii_mediachg(mii);
2744
2745 if (sc->sk_type == SK_GENESIS) {
2746 /* Configure MAC FIFOs */
2747 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2748 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2749 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2750
2751 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2752 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2753 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2754 }
2755
2756 /* Configure transmit arbiter(s) */
2757 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2758 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2759
2760 /* Configure RAMbuffers */
2761 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2762 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2763 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2764 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2765 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2766 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2767
2768 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2769 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2770 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2771 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2772 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2773 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2774 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2775
2776 /* Configure BMUs */
2777 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2778 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2779 SK_RX_RING_ADDR(sc_if, 0));
2780 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2781
2782 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2783 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2784 SK_TX_RING_ADDR(sc_if, 0));
2785 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2786
2787 /* Init descriptors */
2788 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2789 aprint_error("%s: initialization failed: no "
2790 "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2791 sk_stop(ifp,0);
2792 splx(s);
2793 return ENOBUFS;
2794 }
2795
2796 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2797 aprint_error("%s: initialization failed: no "
2798 "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2799 sk_stop(ifp,0);
2800 splx(s);
2801 return ENOBUFS;
2802 }
2803
2804 /* Set interrupt moderation if changed via sysctl. */
2805 switch (sc->sk_type) {
2806 case SK_GENESIS:
2807 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2808 break;
2809 case SK_YUKON_EC:
2810 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2811 break;
2812 default:
2813 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2814 }
2815 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2816 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2817 sk_win_write_4(sc, SK_IMTIMERINIT,
2818 SK_IM_USECS(sc->sk_int_mod));
2819 aprint_verbose("%s: interrupt moderation is %d us\n",
2820 sc->sk_dev.dv_xname, sc->sk_int_mod);
2821 }
2822
2823 /* Configure interrupt handling */
2824 CSR_READ_4(sc, SK_ISSR);
2825 if (sc_if->sk_port == SK_PORT_A)
2826 sc->sk_intrmask |= SK_INTRS1;
2827 else
2828 sc->sk_intrmask |= SK_INTRS2;
2829
2830 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2831
2832 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2833
2834 /* Start BMUs. */
2835 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2836
2837 if (sc->sk_type == SK_GENESIS) {
2838 /* Enable XMACs TX and RX state machines */
2839 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2840 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2841 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2842 }
2843
2844 if (SK_YUKON_FAMILY(sc->sk_type)) {
2845 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2846 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2847 #if 0
2848 /* XXX disable 100Mbps and full duplex mode? */
2849 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2850 #endif
2851 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2852 }
2853
2854
2855 ifp->if_flags |= IFF_RUNNING;
2856 ifp->if_flags &= ~IFF_OACTIVE;
2857
2858 splx(s);
2859 return 0;
2860 }
2861
2862 void
2863 sk_stop(struct ifnet *ifp, int disable)
2864 {
2865 struct sk_if_softc *sc_if = ifp->if_softc;
2866 struct sk_softc *sc = sc_if->sk_softc;
2867 int i;
2868
2869 DPRINTFN(1, ("sk_stop\n"));
2870
2871 callout_stop(&sc_if->sk_tick_ch);
2872
2873 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2874 u_int32_t val;
2875
2876 /* Put PHY back into reset. */
2877 val = sk_win_read_4(sc, SK_GPIO);
2878 if (sc_if->sk_port == SK_PORT_A) {
2879 val |= SK_GPIO_DIR0;
2880 val &= ~SK_GPIO_DAT0;
2881 } else {
2882 val |= SK_GPIO_DIR2;
2883 val &= ~SK_GPIO_DAT2;
2884 }
2885 sk_win_write_4(sc, SK_GPIO, val);
2886 }
2887
2888 /* Turn off various components of this interface. */
2889 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2890 switch (sc->sk_type) {
2891 case SK_GENESIS:
2892 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2893 SK_TXMACCTL_XMAC_RESET);
2894 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2895 break;
2896 case SK_YUKON:
2897 case SK_YUKON_LITE:
2898 case SK_YUKON_LP:
2899 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2900 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2901 break;
2902 }
2903 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2904 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2905 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2906 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2907 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2908 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2909 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2910 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2911 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2912
2913 /* Disable interrupts */
2914 if (sc_if->sk_port == SK_PORT_A)
2915 sc->sk_intrmask &= ~SK_INTRS1;
2916 else
2917 sc->sk_intrmask &= ~SK_INTRS2;
2918 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2919
2920 SK_XM_READ_2(sc_if, XM_ISR);
2921 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2922
2923 /* Free RX and TX mbufs still in the queues. */
2924 for (i = 0; i < SK_RX_RING_CNT; i++) {
2925 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2926 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2927 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2928 }
2929 }
2930
2931 for (i = 0; i < SK_TX_RING_CNT; i++) {
2932 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2933 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2934 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2935 }
2936 }
2937
2938 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2939 }
2940
2941 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2942
2943 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2944
2945 #ifdef SK_DEBUG
2946 void
2947 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2948 {
2949 #define DESC_PRINT(X) \
2950 if (X) \
2951 printf("txdesc[%d]." #X "=%#x\n", \
2952 idx, X);
2953
2954 DESC_PRINT(le32toh(desc->sk_ctl));
2955 DESC_PRINT(le32toh(desc->sk_next));
2956 DESC_PRINT(le32toh(desc->sk_data_lo));
2957 DESC_PRINT(le32toh(desc->sk_data_hi));
2958 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2959 DESC_PRINT(le16toh(desc->sk_rsvd0));
2960 DESC_PRINT(le16toh(desc->sk_csum_startval));
2961 DESC_PRINT(le16toh(desc->sk_csum_startpos));
2962 DESC_PRINT(le16toh(desc->sk_csum_writepos));
2963 DESC_PRINT(le16toh(desc->sk_rsvd1));
2964 #undef PRINT
2965 }
2966
2967 void
2968 sk_dump_bytes(const char *data, int len)
2969 {
2970 int c, i, j;
2971
2972 for (i = 0; i < len; i += 16) {
2973 printf("%08x ", i);
2974 c = len - i;
2975 if (c > 16) c = 16;
2976
2977 for (j = 0; j < c; j++) {
2978 printf("%02x ", data[i + j] & 0xff);
2979 if ((j & 0xf) == 7 && j > 0)
2980 printf(" ");
2981 }
2982
2983 for (; j < 16; j++)
2984 printf(" ");
2985 printf(" ");
2986
2987 for (j = 0; j < c; j++) {
2988 int ch = data[i + j] & 0xff;
2989 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2990 }
2991
2992 printf("\n");
2993
2994 if (c < 16)
2995 break;
2996 }
2997 }
2998
2999 void
3000 sk_dump_mbuf(struct mbuf *m)
3001 {
3002 int count = m->m_pkthdr.len;
3003
3004 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3005
3006 while (count > 0 && m) {
3007 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3008 m, m->m_data, m->m_len);
3009 sk_dump_bytes(mtod(m, char *), m->m_len);
3010
3011 count -= m->m_len;
3012 m = m->m_next;
3013 }
3014 }
3015 #endif
3016
3017 static int
3018 sk_sysctl_handler(SYSCTLFN_ARGS)
3019 {
3020 int error, t;
3021 struct sysctlnode node;
3022 struct sk_softc *sc;
3023
3024 node = *rnode;
3025 sc = node.sysctl_data;
3026 t = sc->sk_int_mod;
3027 node.sysctl_data = &t;
3028 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3029 if (error || newp == NULL)
3030 return error;
3031
3032 if (t < SK_IM_MIN || t > SK_IM_MAX)
3033 return EINVAL;
3034
3035 /* update the softc with sysctl-changed value, and mark
3036 for hardware update */
3037 sc->sk_int_mod = t;
3038 sc->sk_int_mod_pending = 1;
3039 return 0;
3040 }
3041
3042 /*
3043 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3044 * set up in skc_attach()
3045 */
3046 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3047 {
3048 int rc;
3049 const struct sysctlnode *node;
3050
3051 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3052 0, CTLTYPE_NODE, "hw", NULL,
3053 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3054 goto err;
3055 }
3056
3057 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3058 0, CTLTYPE_NODE, "sk",
3059 SYSCTL_DESCR("sk interface controls"),
3060 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3061 goto err;
3062 }
3063
3064 sk_root_num = node->sysctl_num;
3065 return;
3066
3067 err:
3068 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3069 }
3070