Home | History | Annotate | Line # | Download | only in pci
if_sk.c revision 1.37
      1 /*	$NetBSD: if_sk.c,v 1.37 2007/03/04 06:02:22 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the NetBSD
     18  *	Foundation, Inc. and its contributors.
     19  * 4. Neither the name of The NetBSD Foundation nor the names of its
     20  *    contributors may be used to endorse or promote products derived
     21  *    from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
     37 
     38 /*
     39  * Copyright (c) 1997, 1998, 1999, 2000
     40  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by Bill Paul.
     53  * 4. Neither the name of the author nor the names of any co-contributors
     54  *    may be used to endorse or promote products derived from this software
     55  *    without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     61  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     62  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     63  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     64  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     65  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     66  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     67  * THE POSSIBILITY OF SUCH DAMAGE.
     68  *
     69  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
     70  */
     71 
     72 /*
     73  * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
     74  *
     75  * Permission to use, copy, modify, and distribute this software for any
     76  * purpose with or without fee is hereby granted, provided that the above
     77  * copyright notice and this permission notice appear in all copies.
     78  *
     79  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     80  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     81  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     82  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     83  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     84  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     85  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     86  */
     87 
     88 /*
     89  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
     90  * the SK-984x series adapters, both single port and dual port.
     91  * References:
     92  * 	The XaQti XMAC II datasheet,
     93  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     94  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
     95  *
     96  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
     97  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
     98  * convenience to others until Vitesse corrects this problem:
     99  *
    100  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
    101  *
    102  * Written by Bill Paul <wpaul (at) ee.columbia.edu>
    103  * Department of Electrical Engineering
    104  * Columbia University, New York City
    105  */
    106 
    107 /*
    108  * The SysKonnect gigabit ethernet adapters consist of two main
    109  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
    110  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
    111  * components and a PHY while the GEnesis controller provides a PCI
    112  * interface with DMA support. Each card may have between 512K and
    113  * 2MB of SRAM on board depending on the configuration.
    114  *
    115  * The SysKonnect GEnesis controller can have either one or two XMAC
    116  * chips connected to it, allowing single or dual port NIC configurations.
    117  * SysKonnect has the distinction of being the only vendor on the market
    118  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
    119  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
    120  * XMAC registers. This driver takes advantage of these features to allow
    121  * both XMACs to operate as independent interfaces.
    122  */
    123 
    124 #include "bpfilter.h"
    125 #include "rnd.h"
    126 
    127 #include <sys/param.h>
    128 #include <sys/systm.h>
    129 #include <sys/sockio.h>
    130 #include <sys/mbuf.h>
    131 #include <sys/malloc.h>
    132 #include <sys/kernel.h>
    133 #include <sys/socket.h>
    134 #include <sys/device.h>
    135 #include <sys/queue.h>
    136 #include <sys/callout.h>
    137 #include <sys/sysctl.h>
    138 #include <sys/endian.h>
    139 
    140 #include <net/if.h>
    141 #include <net/if_dl.h>
    142 #include <net/if_types.h>
    143 
    144 #include <net/if_media.h>
    145 
    146 #if NBPFILTER > 0
    147 #include <net/bpf.h>
    148 #endif
    149 #if NRND > 0
    150 #include <sys/rnd.h>
    151 #endif
    152 
    153 #include <dev/mii/mii.h>
    154 #include <dev/mii/miivar.h>
    155 #include <dev/mii/brgphyreg.h>
    156 
    157 #include <dev/pci/pcireg.h>
    158 #include <dev/pci/pcivar.h>
    159 #include <dev/pci/pcidevs.h>
    160 
    161 /* #define SK_USEIOSPACE */
    162 
    163 #include <dev/pci/if_skreg.h>
    164 #include <dev/pci/if_skvar.h>
    165 
    166 int skc_probe(struct device *, struct cfdata *, void *);
    167 void skc_attach(struct device *, struct device *self, void *aux);
    168 int sk_probe(struct device *, struct cfdata *, void *);
    169 void sk_attach(struct device *, struct device *self, void *aux);
    170 int skcprint(void *, const char *);
    171 int sk_intr(void *);
    172 void sk_intr_bcom(struct sk_if_softc *);
    173 void sk_intr_xmac(struct sk_if_softc *);
    174 void sk_intr_yukon(struct sk_if_softc *);
    175 void sk_rxeof(struct sk_if_softc *);
    176 void sk_txeof(struct sk_if_softc *);
    177 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
    178 void sk_start(struct ifnet *);
    179 int sk_ioctl(struct ifnet *, u_long, void *);
    180 int sk_init(struct ifnet *);
    181 void sk_init_xmac(struct sk_if_softc *);
    182 void sk_init_yukon(struct sk_if_softc *);
    183 void sk_stop(struct ifnet *, int);
    184 void sk_watchdog(struct ifnet *);
    185 void sk_shutdown(void *);
    186 int sk_ifmedia_upd(struct ifnet *);
    187 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    188 void sk_reset(struct sk_softc *);
    189 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
    190 int sk_alloc_jumbo_mem(struct sk_if_softc *);
    191 void sk_free_jumbo_mem(struct sk_if_softc *);
    192 void *sk_jalloc(struct sk_if_softc *);
    193 void sk_jfree(struct mbuf *, void *, size_t, void *);
    194 int sk_init_rx_ring(struct sk_if_softc *);
    195 int sk_init_tx_ring(struct sk_if_softc *);
    196 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
    197 void sk_vpd_read_res(struct sk_softc *,
    198 					struct vpd_res *, int);
    199 void sk_vpd_read(struct sk_softc *);
    200 
    201 void sk_update_int_mod(struct sk_softc *);
    202 
    203 int sk_xmac_miibus_readreg(struct device *, int, int);
    204 void sk_xmac_miibus_writereg(struct device *, int, int, int);
    205 void sk_xmac_miibus_statchg(struct device *);
    206 
    207 int sk_marv_miibus_readreg(struct device *, int, int);
    208 void sk_marv_miibus_writereg(struct device *, int, int, int);
    209 void sk_marv_miibus_statchg(struct device *);
    210 
    211 u_int32_t sk_xmac_hash(void *);
    212 u_int32_t sk_yukon_hash(void *);
    213 void sk_setfilt(struct sk_if_softc *, void *, int);
    214 void sk_setmulti(struct sk_if_softc *);
    215 void sk_tick(void *);
    216 
    217 /* #define SK_DEBUG 2 */
    218 #ifdef SK_DEBUG
    219 #define DPRINTF(x)	if (skdebug) printf x
    220 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
    221 int	skdebug = SK_DEBUG;
    222 
    223 void sk_dump_txdesc(struct sk_tx_desc *, int);
    224 void sk_dump_mbuf(struct mbuf *);
    225 void sk_dump_bytes(const char *, int);
    226 #else
    227 #define DPRINTF(x)
    228 #define DPRINTFN(n,x)
    229 #endif
    230 
    231 static int sk_sysctl_handler(SYSCTLFN_PROTO);
    232 static int sk_root_num;
    233 
    234 /* supported device vendors */
    235 static const struct sk_product {
    236 	pci_vendor_id_t		sk_vendor;
    237 	pci_product_id_t	sk_product;
    238 } sk_products[] = {
    239 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
    240 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
    241 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T, },
    242 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
    243 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
    244 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
    245 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
    246 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
    247 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
    248 	{ 0, 0, }
    249 };
    250 
    251 #define SK_LINKSYS_EG1032_SUBID	0x00151737
    252 
    253 static inline u_int32_t
    254 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
    255 {
    256 #ifdef SK_USEIOSPACE
    257 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    258 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
    259 #else
    260 	return CSR_READ_4(sc, reg);
    261 #endif
    262 }
    263 
    264 static inline u_int16_t
    265 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
    266 {
    267 #ifdef SK_USEIOSPACE
    268 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    269 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
    270 #else
    271 	return CSR_READ_2(sc, reg);
    272 #endif
    273 }
    274 
    275 static inline u_int8_t
    276 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
    277 {
    278 #ifdef SK_USEIOSPACE
    279 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    280 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
    281 #else
    282 	return CSR_READ_1(sc, reg);
    283 #endif
    284 }
    285 
    286 static inline void
    287 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
    288 {
    289 #ifdef SK_USEIOSPACE
    290 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    291 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
    292 #else
    293 	CSR_WRITE_4(sc, reg, x);
    294 #endif
    295 }
    296 
    297 static inline void
    298 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
    299 {
    300 #ifdef SK_USEIOSPACE
    301 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    302 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
    303 #else
    304 	CSR_WRITE_2(sc, reg, x);
    305 #endif
    306 }
    307 
    308 static inline void
    309 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
    310 {
    311 #ifdef SK_USEIOSPACE
    312 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    313 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
    314 #else
    315 	CSR_WRITE_1(sc, reg, x);
    316 #endif
    317 }
    318 
    319 /*
    320  * The VPD EEPROM contains Vital Product Data, as suggested in
    321  * the PCI 2.1 specification. The VPD data is separared into areas
    322  * denoted by resource IDs. The SysKonnect VPD contains an ID string
    323  * resource (the name of the adapter), a read-only area resource
    324  * containing various key/data fields and a read/write area which
    325  * can be used to store asset management information or log messages.
    326  * We read the ID string and read-only into buffers attached to
    327  * the controller softc structure for later use. At the moment,
    328  * we only use the ID string during sk_attach().
    329  */
    330 u_int8_t
    331 sk_vpd_readbyte(struct sk_softc *sc, int addr)
    332 {
    333 	int			i;
    334 
    335 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
    336 	for (i = 0; i < SK_TIMEOUT; i++) {
    337 		DELAY(1);
    338 		if (sk_win_read_2(sc,
    339 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
    340 			break;
    341 	}
    342 
    343 	if (i == SK_TIMEOUT)
    344 		return 0;
    345 
    346 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
    347 }
    348 
    349 void
    350 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
    351 {
    352 	int			i;
    353 	u_int8_t		*ptr;
    354 
    355 	ptr = (u_int8_t *)res;
    356 	for (i = 0; i < sizeof(struct vpd_res); i++)
    357 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
    358 }
    359 
    360 void
    361 sk_vpd_read(struct sk_softc *sc)
    362 {
    363 	int			pos = 0, i;
    364 	struct vpd_res		res;
    365 
    366 	if (sc->sk_vpd_prodname != NULL)
    367 		free(sc->sk_vpd_prodname, M_DEVBUF);
    368 	if (sc->sk_vpd_readonly != NULL)
    369 		free(sc->sk_vpd_readonly, M_DEVBUF);
    370 	sc->sk_vpd_prodname = NULL;
    371 	sc->sk_vpd_readonly = NULL;
    372 
    373 	sk_vpd_read_res(sc, &res, pos);
    374 
    375 	if (res.vr_id != VPD_RES_ID) {
    376 		aprint_error("%s: bad VPD resource id: expected %x got %x\n",
    377 		    sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
    378 		return;
    379 	}
    380 
    381 	pos += sizeof(res);
    382 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    383 	if (sc->sk_vpd_prodname == NULL)
    384 		panic("sk_vpd_read");
    385 	for (i = 0; i < res.vr_len; i++)
    386 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
    387 	sc->sk_vpd_prodname[i] = '\0';
    388 	pos += i;
    389 
    390 	sk_vpd_read_res(sc, &res, pos);
    391 
    392 	if (res.vr_id != VPD_RES_READ) {
    393 		aprint_error("%s: bad VPD resource id: expected %x got %x\n",
    394 		    sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
    395 		return;
    396 	}
    397 
    398 	pos += sizeof(res);
    399 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    400 	if (sc->sk_vpd_readonly == NULL)
    401 		panic("sk_vpd_read");
    402 	for (i = 0; i < res.vr_len ; i++)
    403 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
    404 }
    405 
    406 int
    407 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
    408 {
    409 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    410 	int i;
    411 
    412 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
    413 
    414 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
    415 		return 0;
    416 
    417 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    418 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
    419 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    420 		for (i = 0; i < SK_TIMEOUT; i++) {
    421 			DELAY(1);
    422 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
    423 			    XM_MMUCMD_PHYDATARDY)
    424 				break;
    425 		}
    426 
    427 		if (i == SK_TIMEOUT) {
    428 			aprint_error("%s: phy failed to come ready\n",
    429 			    sc_if->sk_dev.dv_xname);
    430 			return 0;
    431 		}
    432 	}
    433 	DELAY(1);
    434 	return SK_XM_READ_2(sc_if, XM_PHY_DATA);
    435 }
    436 
    437 void
    438 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
    439 {
    440 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    441 	int i;
    442 
    443 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
    444 
    445 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    446 	for (i = 0; i < SK_TIMEOUT; i++) {
    447 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    448 			break;
    449 	}
    450 
    451 	if (i == SK_TIMEOUT) {
    452 		aprint_error("%s: phy failed to come ready\n",
    453 		    sc_if->sk_dev.dv_xname);
    454 		return;
    455 	}
    456 
    457 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
    458 	for (i = 0; i < SK_TIMEOUT; i++) {
    459 		DELAY(1);
    460 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    461 			break;
    462 	}
    463 
    464 	if (i == SK_TIMEOUT)
    465 		aprint_error("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
    466 }
    467 
    468 void
    469 sk_xmac_miibus_statchg(struct device *dev)
    470 {
    471 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    472 	struct mii_data *mii = &sc_if->sk_mii;
    473 
    474 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
    475 
    476 	/*
    477 	 * If this is a GMII PHY, manually set the XMAC's
    478 	 * duplex mode accordingly.
    479 	 */
    480 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    481 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
    482 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    483 		else
    484 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    485 	}
    486 }
    487 
    488 int
    489 sk_marv_miibus_readreg(struct device *dev, int phy, int reg)
    490 {
    491 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    492 	u_int16_t val;
    493 	int i;
    494 
    495 	if (phy != 0 ||
    496 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
    497 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
    498 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
    499 			     phy, reg));
    500 		return 0;
    501 	}
    502 
    503         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    504 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
    505 
    506 	for (i = 0; i < SK_TIMEOUT; i++) {
    507 		DELAY(1);
    508 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
    509 		if (val & YU_SMICR_READ_VALID)
    510 			break;
    511 	}
    512 
    513 	if (i == SK_TIMEOUT) {
    514 		aprint_error("%s: phy failed to come ready\n",
    515 		       sc_if->sk_dev.dv_xname);
    516 		return 0;
    517 	}
    518 
    519  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
    520 		     SK_TIMEOUT));
    521 
    522         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
    523 
    524 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
    525 		     phy, reg, val));
    526 
    527 	return val;
    528 }
    529 
    530 void
    531 sk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
    532 {
    533 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    534 	int i;
    535 
    536 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
    537 		     phy, reg, val));
    538 
    539 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
    540 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    541 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
    542 
    543 	for (i = 0; i < SK_TIMEOUT; i++) {
    544 		DELAY(1);
    545 		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
    546 			break;
    547 	}
    548 }
    549 
    550 void
    551 sk_marv_miibus_statchg(struct device *dev)
    552 {
    553 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
    554 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
    555 }
    556 
    557 #define SK_HASH_BITS		6
    558 
    559 u_int32_t
    560 sk_xmac_hash(void *addr)
    561 {
    562 	u_int32_t		crc;
    563 
    564 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
    565 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
    566 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    567 	return crc;
    568 }
    569 
    570 u_int32_t
    571 sk_yukon_hash(void *addr)
    572 {
    573 	u_int32_t		crc;
    574 
    575 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
    576 	crc &= ((1 << SK_HASH_BITS) - 1);
    577 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    578 	return crc;
    579 }
    580 
    581 void
    582 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
    583 {
    584 	char *addr = addrv;
    585 	int base = XM_RXFILT_ENTRY(slot);
    586 
    587 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
    588 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
    589 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
    590 }
    591 
    592 void
    593 sk_setmulti(struct sk_if_softc *sc_if)
    594 {
    595 	struct sk_softc *sc = sc_if->sk_softc;
    596 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
    597 	u_int32_t hashes[2] = { 0, 0 };
    598 	int h = 0, i;
    599 	struct ethercom *ec = &sc_if->sk_ethercom;
    600 	struct ether_multi *enm;
    601 	struct ether_multistep step;
    602 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
    603 
    604 	/* First, zot all the existing filters. */
    605 	switch (sc->sk_type) {
    606 	case SK_GENESIS:
    607 		for (i = 1; i < XM_RXFILT_MAX; i++)
    608 			sk_setfilt(sc_if, (void *)&dummy, i);
    609 
    610 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
    611 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
    612 		break;
    613 	case SK_YUKON:
    614 	case SK_YUKON_LITE:
    615 	case SK_YUKON_LP:
    616 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
    617 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
    618 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
    619 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
    620 		break;
    621 	}
    622 
    623 	/* Now program new ones. */
    624 allmulti:
    625 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    626 		hashes[0] = 0xFFFFFFFF;
    627 		hashes[1] = 0xFFFFFFFF;
    628 	} else {
    629 		i = 1;
    630 		/* First find the tail of the list. */
    631 		ETHER_FIRST_MULTI(step, ec, enm);
    632 		while (enm != NULL) {
    633 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
    634 				 ETHER_ADDR_LEN)) {
    635 				ifp->if_flags |= IFF_ALLMULTI;
    636 				goto allmulti;
    637 			}
    638 			DPRINTFN(2,("multicast address %s\n",
    639 	    			ether_sprintf(enm->enm_addrlo)));
    640 			/*
    641 			 * Program the first XM_RXFILT_MAX multicast groups
    642 			 * into the perfect filter. For all others,
    643 			 * use the hash table.
    644 			 */
    645 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
    646 				sk_setfilt(sc_if, enm->enm_addrlo, i);
    647 				i++;
    648 			}
    649 			else {
    650 				switch (sc->sk_type) {
    651 				case SK_GENESIS:
    652 					h = sk_xmac_hash(enm->enm_addrlo);
    653 					break;
    654 				case SK_YUKON:
    655 				case SK_YUKON_LITE:
    656 				case SK_YUKON_LP:
    657 					h = sk_yukon_hash(enm->enm_addrlo);
    658 					break;
    659 				}
    660 				if (h < 32)
    661 					hashes[0] |= (1 << h);
    662 				else
    663 					hashes[1] |= (1 << (h - 32));
    664 			}
    665 
    666 			ETHER_NEXT_MULTI(step, enm);
    667 		}
    668 	}
    669 
    670 	switch (sc->sk_type) {
    671 	case SK_GENESIS:
    672 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
    673 			       XM_MODE_RX_USE_PERFECT);
    674 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
    675 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
    676 		break;
    677 	case SK_YUKON:
    678 	case SK_YUKON_LITE:
    679 	case SK_YUKON_LP:
    680 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
    681 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
    682 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
    683 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
    684 		break;
    685 	}
    686 }
    687 
    688 int
    689 sk_init_rx_ring(struct sk_if_softc *sc_if)
    690 {
    691 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    692 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    693 	int			i;
    694 
    695 	bzero((char *)rd->sk_rx_ring,
    696 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
    697 
    698 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    699 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
    700 		if (i == (SK_RX_RING_CNT - 1)) {
    701 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
    702 			rd->sk_rx_ring[i].sk_next =
    703 				htole32(SK_RX_RING_ADDR(sc_if, 0));
    704 		} else {
    705 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
    706 			rd->sk_rx_ring[i].sk_next =
    707 				htole32(SK_RX_RING_ADDR(sc_if,i+1));
    708 		}
    709 	}
    710 
    711 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    712 		if (sk_newbuf(sc_if, i, NULL,
    713 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
    714 			aprint_error("%s: failed alloc of %dth mbuf\n",
    715 			    sc_if->sk_dev.dv_xname, i);
    716 			return ENOBUFS;
    717 		}
    718 	}
    719 	sc_if->sk_cdata.sk_rx_prod = 0;
    720 	sc_if->sk_cdata.sk_rx_cons = 0;
    721 
    722 	return 0;
    723 }
    724 
    725 int
    726 sk_init_tx_ring(struct sk_if_softc *sc_if)
    727 {
    728 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    729 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    730 	int			i;
    731 
    732 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
    733 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
    734 
    735 	for (i = 0; i < SK_TX_RING_CNT; i++) {
    736 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
    737 		if (i == (SK_TX_RING_CNT - 1)) {
    738 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
    739 			rd->sk_tx_ring[i].sk_next =
    740 				htole32(SK_TX_RING_ADDR(sc_if, 0));
    741 		} else {
    742 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
    743 			rd->sk_tx_ring[i].sk_next =
    744 				htole32(SK_TX_RING_ADDR(sc_if,i+1));
    745 		}
    746 	}
    747 
    748 	sc_if->sk_cdata.sk_tx_prod = 0;
    749 	sc_if->sk_cdata.sk_tx_cons = 0;
    750 	sc_if->sk_cdata.sk_tx_cnt = 0;
    751 
    752 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
    753 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    754 
    755 	return 0;
    756 }
    757 
    758 int
    759 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
    760 	  bus_dmamap_t dmamap)
    761 {
    762 	struct mbuf		*m_new = NULL;
    763 	struct sk_chain		*c;
    764 	struct sk_rx_desc	*r;
    765 
    766 	if (m == NULL) {
    767 		void *buf = NULL;
    768 
    769 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    770 		if (m_new == NULL) {
    771 			aprint_error("%s: no memory for rx list -- "
    772 			    "packet dropped!\n", sc_if->sk_dev.dv_xname);
    773 			return ENOBUFS;
    774 		}
    775 
    776 		/* Allocate the jumbo buffer */
    777 		buf = sk_jalloc(sc_if);
    778 		if (buf == NULL) {
    779 			m_freem(m_new);
    780 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
    781 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
    782 			return ENOBUFS;
    783 		}
    784 
    785 		/* Attach the buffer to the mbuf */
    786 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    787 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
    788 
    789 	} else {
    790 		/*
    791 	 	 * We're re-using a previously allocated mbuf;
    792 		 * be sure to re-init pointers and lengths to
    793 		 * default values.
    794 		 */
    795 		m_new = m;
    796 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    797 		m_new->m_data = m_new->m_ext.ext_buf;
    798 	}
    799 	m_adj(m_new, ETHER_ALIGN);
    800 
    801 	c = &sc_if->sk_cdata.sk_rx_chain[i];
    802 	r = c->sk_desc;
    803 	c->sk_mbuf = m_new;
    804 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
    805 	    (((vaddr_t)m_new->m_data
    806 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
    807 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
    808 
    809 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    810 
    811 	return 0;
    812 }
    813 
    814 /*
    815  * Memory management for jumbo frames.
    816  */
    817 
    818 int
    819 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
    820 {
    821 	struct sk_softc		*sc = sc_if->sk_softc;
    822 	char *ptr, *kva;
    823 	bus_dma_segment_t	seg;
    824 	int		i, rseg, state, error;
    825 	struct sk_jpool_entry   *entry;
    826 
    827 	state = error = 0;
    828 
    829 	/* Grab a big chunk o' storage. */
    830 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
    831 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    832 		aprint_error("%s: can't alloc rx buffers\n", sc->sk_dev.dv_xname);
    833 		return ENOBUFS;
    834 	}
    835 
    836 	state = 1;
    837 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
    838 			   BUS_DMA_NOWAIT)) {
    839 		aprint_error("%s: can't map dma buffers (%d bytes)\n",
    840 		    sc->sk_dev.dv_xname, SK_JMEM);
    841 		error = ENOBUFS;
    842 		goto out;
    843 	}
    844 
    845 	state = 2;
    846 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
    847 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
    848 		aprint_error("%s: can't create dma map\n", sc->sk_dev.dv_xname);
    849 		error = ENOBUFS;
    850 		goto out;
    851 	}
    852 
    853 	state = 3;
    854 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
    855 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
    856 		aprint_error("%s: can't load dma map\n", sc->sk_dev.dv_xname);
    857 		error = ENOBUFS;
    858 		goto out;
    859 	}
    860 
    861 	state = 4;
    862 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
    863 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
    864 
    865 	LIST_INIT(&sc_if->sk_jfree_listhead);
    866 	LIST_INIT(&sc_if->sk_jinuse_listhead);
    867 
    868 	/*
    869 	 * Now divide it up into 9K pieces and save the addresses
    870 	 * in an array.
    871 	 */
    872 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
    873 	for (i = 0; i < SK_JSLOTS; i++) {
    874 		sc_if->sk_cdata.sk_jslots[i] = ptr;
    875 		ptr += SK_JLEN;
    876 		entry = malloc(sizeof(struct sk_jpool_entry),
    877 		    M_DEVBUF, M_NOWAIT);
    878 		if (entry == NULL) {
    879 			aprint_error("%s: no memory for jumbo buffer queue!\n",
    880 			    sc->sk_dev.dv_xname);
    881 			error = ENOBUFS;
    882 			goto out;
    883 		}
    884 		entry->slot = i;
    885 		if (i)
    886 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
    887 				 entry, jpool_entries);
    888 		else
    889 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
    890 				 entry, jpool_entries);
    891 	}
    892 out:
    893 	if (error != 0) {
    894 		switch (state) {
    895 		case 4:
    896 			bus_dmamap_unload(sc->sc_dmatag,
    897 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    898 		case 3:
    899 			bus_dmamap_destroy(sc->sc_dmatag,
    900 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    901 		case 2:
    902 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
    903 		case 1:
    904 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
    905 			break;
    906 		default:
    907 			break;
    908 		}
    909 	}
    910 
    911 	return error;
    912 }
    913 
    914 /*
    915  * Allocate a jumbo buffer.
    916  */
    917 void *
    918 sk_jalloc(struct sk_if_softc *sc_if)
    919 {
    920 	struct sk_jpool_entry   *entry;
    921 
    922 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
    923 
    924 	if (entry == NULL)
    925 		return NULL;
    926 
    927 	LIST_REMOVE(entry, jpool_entries);
    928 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
    929 	return sc_if->sk_cdata.sk_jslots[entry->slot];
    930 }
    931 
    932 /*
    933  * Release a jumbo buffer.
    934  */
    935 void
    936 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
    937 {
    938 	struct sk_jpool_entry *entry;
    939 	struct sk_if_softc *sc;
    940 	int i, s;
    941 
    942 	/* Extract the softc struct pointer. */
    943 	sc = (struct sk_if_softc *)arg;
    944 
    945 	if (sc == NULL)
    946 		panic("sk_jfree: can't find softc pointer!");
    947 
    948 	/* calculate the slot this buffer belongs to */
    949 
    950 	i = ((vaddr_t)buf
    951 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
    952 
    953 	if ((i < 0) || (i >= SK_JSLOTS))
    954 		panic("sk_jfree: asked to free buffer that we don't manage!");
    955 
    956 	s = splvm();
    957 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
    958 	if (entry == NULL)
    959 		panic("sk_jfree: buffer not in use!");
    960 	entry->slot = i;
    961 	LIST_REMOVE(entry, jpool_entries);
    962 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
    963 
    964 	if (__predict_true(m != NULL))
    965 		pool_cache_put(&mbpool_cache, m);
    966 	splx(s);
    967 }
    968 
    969 /*
    970  * Set media options.
    971  */
    972 int
    973 sk_ifmedia_upd(struct ifnet *ifp)
    974 {
    975 	struct sk_if_softc *sc_if = ifp->if_softc;
    976 
    977 	(void) sk_init(ifp);
    978 	mii_mediachg(&sc_if->sk_mii);
    979 	return 0;
    980 }
    981 
    982 /*
    983  * Report current media status.
    984  */
    985 void
    986 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
    987 {
    988 	struct sk_if_softc *sc_if = ifp->if_softc;
    989 
    990 	mii_pollstat(&sc_if->sk_mii);
    991 	ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
    992 	ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
    993 }
    994 
    995 int
    996 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
    997 {
    998 	struct sk_if_softc *sc_if = ifp->if_softc;
    999 	struct sk_softc *sc = sc_if->sk_softc;
   1000 	struct ifreq *ifr = (struct ifreq *) data;
   1001 	struct mii_data *mii;
   1002 	int s, error = 0;
   1003 
   1004 	/* DPRINTFN(2, ("sk_ioctl\n")); */
   1005 
   1006 	s = splnet();
   1007 
   1008 	switch (command) {
   1009 
   1010 	case SIOCSIFFLAGS:
   1011 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
   1012 		if (ifp->if_flags & IFF_UP) {
   1013 			if (ifp->if_flags & IFF_RUNNING &&
   1014 			    ifp->if_flags & IFF_PROMISC &&
   1015 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
   1016 				switch (sc->sk_type) {
   1017 				case SK_GENESIS:
   1018 					SK_XM_SETBIT_4(sc_if, XM_MODE,
   1019 					    XM_MODE_RX_PROMISC);
   1020 					break;
   1021 				case SK_YUKON:
   1022 				case SK_YUKON_LITE:
   1023 				case SK_YUKON_LP:
   1024 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
   1025 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1026 					break;
   1027 				}
   1028 				sk_setmulti(sc_if);
   1029 			} else if (ifp->if_flags & IFF_RUNNING &&
   1030 			    !(ifp->if_flags & IFF_PROMISC) &&
   1031 			    sc_if->sk_if_flags & IFF_PROMISC) {
   1032 				switch (sc->sk_type) {
   1033 				case SK_GENESIS:
   1034 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
   1035 					    XM_MODE_RX_PROMISC);
   1036 					break;
   1037 				case SK_YUKON:
   1038 				case SK_YUKON_LITE:
   1039 				case SK_YUKON_LP:
   1040 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
   1041 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1042 					break;
   1043 				}
   1044 
   1045 				sk_setmulti(sc_if);
   1046 			} else
   1047 				(void) sk_init(ifp);
   1048 		} else {
   1049 			if (ifp->if_flags & IFF_RUNNING)
   1050 				sk_stop(ifp,0);
   1051 		}
   1052 		sc_if->sk_if_flags = ifp->if_flags;
   1053 		error = 0;
   1054 		break;
   1055 
   1056 	case SIOCGIFMEDIA:
   1057 	case SIOCSIFMEDIA:
   1058 	        DPRINTFN(2, ("sk_ioctl MEDIA\n"));
   1059 		mii = &sc_if->sk_mii;
   1060 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   1061 		break;
   1062 	default:
   1063 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
   1064 		error = ether_ioctl(ifp, command, data);
   1065 
   1066 		if ( error == ENETRESET) {
   1067 			if (ifp->if_flags & IFF_RUNNING) {
   1068 				sk_setmulti(sc_if);
   1069 				DPRINTFN(2, ("sk_ioctl setmulti called\n"));
   1070 			}
   1071 			error = 0;
   1072 		} else if ( error ) {
   1073 			splx(s);
   1074 			return error;
   1075 		}
   1076 		break;
   1077 	}
   1078 
   1079 	splx(s);
   1080 	return error;
   1081 }
   1082 
   1083 void
   1084 sk_update_int_mod(struct sk_softc *sc)
   1085 {
   1086 	u_int32_t imtimer_ticks;
   1087 
   1088 	/*
   1089          * Configure interrupt moderation. The moderation timer
   1090 	 * defers interrupts specified in the interrupt moderation
   1091 	 * timer mask based on the timeout specified in the interrupt
   1092 	 * moderation timer init register. Each bit in the timer
   1093 	 * register represents one tick, so to specify a timeout in
   1094 	 * microseconds, we have to multiply by the correct number of
   1095 	 * ticks-per-microsecond.
   1096 	 */
   1097 	switch (sc->sk_type) {
   1098 	case SK_GENESIS:
   1099 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   1100 		break;
   1101 	case SK_YUKON_EC:
   1102 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   1103 		break;
   1104 	default:
   1105 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   1106 	}
   1107 	aprint_verbose("%s: interrupt moderation is %d us\n",
   1108 	    sc->sk_dev.dv_xname, sc->sk_int_mod);
   1109         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
   1110         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
   1111 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
   1112         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
   1113 	sc->sk_int_mod_pending = 0;
   1114 }
   1115 
   1116 /*
   1117  * Lookup: Check the PCI vendor and device, and return a pointer to
   1118  * The structure if the IDs match against our list.
   1119  */
   1120 
   1121 static const struct sk_product *
   1122 sk_lookup(const struct pci_attach_args *pa)
   1123 {
   1124 	const struct sk_product *psk;
   1125 
   1126 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
   1127 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
   1128 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
   1129 			return psk;
   1130 	}
   1131 	return NULL;
   1132 }
   1133 
   1134 /*
   1135  * Probe for a SysKonnect GEnesis chip.
   1136  */
   1137 
   1138 int
   1139 skc_probe(struct device *parent, struct cfdata *match,
   1140     void *aux)
   1141 {
   1142 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1143 	const struct sk_product *psk;
   1144 	pcireg_t subid;
   1145 
   1146 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
   1147 
   1148 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
   1149 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
   1150 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
   1151 	    subid == SK_LINKSYS_EG1032_SUBID)
   1152 		return 1;
   1153 
   1154 	if ((psk = sk_lookup(pa))) {
   1155 		return 1;
   1156 	}
   1157 	return 0;
   1158 }
   1159 
   1160 /*
   1161  * Force the GEnesis into reset, then bring it out of reset.
   1162  */
   1163 void sk_reset(struct sk_softc *sc)
   1164 {
   1165 	DPRINTFN(2, ("sk_reset\n"));
   1166 
   1167 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
   1168 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
   1169 	if (SK_YUKON_FAMILY(sc->sk_type))
   1170 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
   1171 
   1172 	DELAY(1000);
   1173 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
   1174 	DELAY(2);
   1175 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
   1176 	if (SK_YUKON_FAMILY(sc->sk_type))
   1177 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
   1178 
   1179 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
   1180 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
   1181 		     CSR_READ_2(sc, SK_LINK_CTRL)));
   1182 
   1183 	if (sc->sk_type == SK_GENESIS) {
   1184 		/* Configure packet arbiter */
   1185 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
   1186 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1187 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1188 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1189 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1190 	}
   1191 
   1192 	/* Enable RAM interface */
   1193 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
   1194 
   1195 	sk_update_int_mod(sc);
   1196 }
   1197 
   1198 int
   1199 sk_probe(struct device *parent, struct cfdata *match,
   1200     void *aux)
   1201 {
   1202 	struct skc_attach_args *sa = aux;
   1203 
   1204 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
   1205 		return 0;
   1206 
   1207 	return 1;
   1208 }
   1209 
   1210 /*
   1211  * Each XMAC chip is attached as a separate logical IP interface.
   1212  * Single port cards will have only one logical interface of course.
   1213  */
   1214 void
   1215 sk_attach(struct device *parent, struct device *self, void *aux)
   1216 {
   1217 	struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
   1218 	struct sk_softc *sc = (struct sk_softc *)parent;
   1219 	struct skc_attach_args *sa = aux;
   1220 	struct sk_txmap_entry	*entry;
   1221 	struct ifnet *ifp;
   1222 	bus_dma_segment_t seg;
   1223 	bus_dmamap_t dmamap;
   1224 	void *kva;
   1225 	int i, rseg;
   1226 
   1227 	sc_if->sk_port = sa->skc_port;
   1228 	sc_if->sk_softc = sc;
   1229 	sc->sk_if[sa->skc_port] = sc_if;
   1230 
   1231 	if (sa->skc_port == SK_PORT_A)
   1232 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
   1233 	if (sa->skc_port == SK_PORT_B)
   1234 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
   1235 
   1236 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
   1237 
   1238 	/*
   1239 	 * Get station address for this interface. Note that
   1240 	 * dual port cards actually come with three station
   1241 	 * addresses: one for each port, plus an extra. The
   1242 	 * extra one is used by the SysKonnect driver software
   1243 	 * as a 'virtual' station address for when both ports
   1244 	 * are operating in failover mode. Currently we don't
   1245 	 * use this extra address.
   1246 	 */
   1247 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1248 		sc_if->sk_enaddr[i] =
   1249 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
   1250 
   1251 
   1252 	aprint_normal(": Ethernet address %s\n",
   1253 	    ether_sprintf(sc_if->sk_enaddr));
   1254 
   1255 	/*
   1256 	 * Set up RAM buffer addresses. The NIC will have a certain
   1257 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
   1258 	 * need to divide this up a) between the transmitter and
   1259  	 * receiver and b) between the two XMACs, if this is a
   1260 	 * dual port NIC. Our algorithm is to divide up the memory
   1261 	 * evenly so that everyone gets a fair share.
   1262 	 */
   1263 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
   1264 		u_int32_t		chunk, val;
   1265 
   1266 		chunk = sc->sk_ramsize / 2;
   1267 		val = sc->sk_rboff / sizeof(u_int64_t);
   1268 		sc_if->sk_rx_ramstart = val;
   1269 		val += (chunk / sizeof(u_int64_t));
   1270 		sc_if->sk_rx_ramend = val - 1;
   1271 		sc_if->sk_tx_ramstart = val;
   1272 		val += (chunk / sizeof(u_int64_t));
   1273 		sc_if->sk_tx_ramend = val - 1;
   1274 	} else {
   1275 		u_int32_t		chunk, val;
   1276 
   1277 		chunk = sc->sk_ramsize / 4;
   1278 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
   1279 		    sizeof(u_int64_t);
   1280 		sc_if->sk_rx_ramstart = val;
   1281 		val += (chunk / sizeof(u_int64_t));
   1282 		sc_if->sk_rx_ramend = val - 1;
   1283 		sc_if->sk_tx_ramstart = val;
   1284 		val += (chunk / sizeof(u_int64_t));
   1285 		sc_if->sk_tx_ramend = val - 1;
   1286 	}
   1287 
   1288 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
   1289 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
   1290 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
   1291 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
   1292 
   1293 	/* Read and save PHY type and set PHY address */
   1294 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
   1295 	switch (sc_if->sk_phytype) {
   1296 	case SK_PHYTYPE_XMAC:
   1297 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
   1298 		break;
   1299 	case SK_PHYTYPE_BCOM:
   1300 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
   1301 		break;
   1302 	case SK_PHYTYPE_MARV_COPPER:
   1303 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
   1304 		break;
   1305 	default:
   1306 		aprint_error("%s: unsupported PHY type: %d\n",
   1307 		    sc->sk_dev.dv_xname, sc_if->sk_phytype);
   1308 		return;
   1309 	}
   1310 
   1311 	/* Allocate the descriptor queues. */
   1312 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
   1313 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1314 		aprint_error("%s: can't alloc rx buffers\n",
   1315 		    sc->sk_dev.dv_xname);
   1316 		goto fail;
   1317 	}
   1318 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
   1319 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
   1320 		aprint_error("%s: can't map dma buffers (%lu bytes)\n",
   1321 		       sc_if->sk_dev.dv_xname,
   1322 		       (u_long) sizeof(struct sk_ring_data));
   1323 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1324 		goto fail;
   1325 	}
   1326 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
   1327 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
   1328             &sc_if->sk_ring_map)) {
   1329 		aprint_error("%s: can't create dma map\n",
   1330 		    sc_if->sk_dev.dv_xname);
   1331 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1332 		    sizeof(struct sk_ring_data));
   1333 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1334 		goto fail;
   1335 	}
   1336 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
   1337 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
   1338 		aprint_error("%s: can't load dma map\n",
   1339 		    sc_if->sk_dev.dv_xname);
   1340 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1341 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1342 		    sizeof(struct sk_ring_data));
   1343 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1344 		goto fail;
   1345 	}
   1346 
   1347 	for (i = 0; i < SK_RX_RING_CNT; i++)
   1348 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   1349 
   1350 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
   1351 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   1352 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   1353 
   1354 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
   1355 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
   1356 			aprint_error("%s: Can't create TX dmamap\n",
   1357 				sc_if->sk_dev.dv_xname);
   1358 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1359 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1360 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1361 			    sizeof(struct sk_ring_data));
   1362 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1363 			goto fail;
   1364 		}
   1365 
   1366 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
   1367 		if (!entry) {
   1368 			aprint_error("%s: Can't alloc txmap entry\n",
   1369 				sc_if->sk_dev.dv_xname);
   1370 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
   1371 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1372 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1373 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1374 			    sizeof(struct sk_ring_data));
   1375 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1376 			goto fail;
   1377 		}
   1378 		entry->dmamap = dmamap;
   1379 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
   1380 	}
   1381 
   1382         sc_if->sk_rdata = (struct sk_ring_data *)kva;
   1383 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
   1384 
   1385 	ifp = &sc_if->sk_ethercom.ec_if;
   1386 	/* Try to allocate memory for jumbo buffers. */
   1387 	if (sk_alloc_jumbo_mem(sc_if)) {
   1388 		aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
   1389 		goto fail;
   1390 	}
   1391 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
   1392 		| ETHERCAP_JUMBO_MTU;
   1393 
   1394 	ifp->if_softc = sc_if;
   1395 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1396 	ifp->if_ioctl = sk_ioctl;
   1397 	ifp->if_start = sk_start;
   1398 	ifp->if_stop = sk_stop;
   1399 	ifp->if_init = sk_init;
   1400 	ifp->if_watchdog = sk_watchdog;
   1401 	ifp->if_capabilities = 0;
   1402 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
   1403 	IFQ_SET_READY(&ifp->if_snd);
   1404 	strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
   1405 
   1406 	/*
   1407 	 * Do miibus setup.
   1408 	 */
   1409 	switch (sc->sk_type) {
   1410 	case SK_GENESIS:
   1411 		sk_init_xmac(sc_if);
   1412 		break;
   1413 	case SK_YUKON:
   1414 	case SK_YUKON_LITE:
   1415 	case SK_YUKON_LP:
   1416 		sk_init_yukon(sc_if);
   1417 		break;
   1418 	default:
   1419 		panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
   1420 		      sc->sk_type);
   1421 	}
   1422 
   1423  	DPRINTFN(2, ("sk_attach: 1\n"));
   1424 
   1425 	sc_if->sk_mii.mii_ifp = ifp;
   1426 	switch (sc->sk_type) {
   1427 	case SK_GENESIS:
   1428 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
   1429 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
   1430 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
   1431 		break;
   1432 	case SK_YUKON:
   1433 	case SK_YUKON_LITE:
   1434 	case SK_YUKON_LP:
   1435 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
   1436 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
   1437 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
   1438 		break;
   1439 	}
   1440 
   1441 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
   1442 	    sk_ifmedia_upd, sk_ifmedia_sts);
   1443 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
   1444 	    MII_OFFSET_ANY, 0);
   1445 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
   1446 		aprint_error("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
   1447 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
   1448 			    0, NULL);
   1449 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
   1450 	} else
   1451 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1452 
   1453 	callout_init(&sc_if->sk_tick_ch);
   1454 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
   1455 
   1456 	DPRINTFN(2, ("sk_attach: 1\n"));
   1457 
   1458 	/*
   1459 	 * Call MI attach routines.
   1460 	 */
   1461 	if_attach(ifp);
   1462 
   1463 	ether_ifattach(ifp, sc_if->sk_enaddr);
   1464 
   1465 #if NRND > 0
   1466         rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
   1467             RND_TYPE_NET, 0);
   1468 #endif
   1469 
   1470 	DPRINTFN(2, ("sk_attach: end\n"));
   1471 
   1472 	return;
   1473 
   1474 fail:
   1475 	sc->sk_if[sa->skc_port] = NULL;
   1476 }
   1477 
   1478 int
   1479 skcprint(void *aux, const char *pnp)
   1480 {
   1481 	struct skc_attach_args *sa = aux;
   1482 
   1483 	if (pnp)
   1484 		aprint_normal("sk port %c at %s",
   1485 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
   1486 	else
   1487 		aprint_normal(" port %c",
   1488 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
   1489 	return UNCONF;
   1490 }
   1491 
   1492 /*
   1493  * Attach the interface. Allocate softc structures, do ifmedia
   1494  * setup and ethernet/BPF attach.
   1495  */
   1496 void
   1497 skc_attach(struct device *parent, struct device *self, void *aux)
   1498 {
   1499 	struct sk_softc *sc = (struct sk_softc *)self;
   1500 	struct pci_attach_args *pa = aux;
   1501 	struct skc_attach_args skca;
   1502 	pci_chipset_tag_t pc = pa->pa_pc;
   1503 #ifndef SK_USEIOSPACE
   1504 	pcireg_t memtype;
   1505 #endif
   1506 	pci_intr_handle_t ih;
   1507 	const char *intrstr = NULL;
   1508 	bus_addr_t iobase;
   1509 	bus_size_t iosize;
   1510 	int rc, sk_nodenum;
   1511 	u_int32_t command;
   1512 	const char *revstr;
   1513 	const struct sysctlnode *node;
   1514 
   1515 	DPRINTFN(2, ("begin skc_attach\n"));
   1516 
   1517 	/*
   1518 	 * Handle power management nonsense.
   1519 	 */
   1520 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
   1521 
   1522 	if (command == 0x01) {
   1523 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
   1524 		if (command & SK_PSTATE_MASK) {
   1525 			u_int32_t		xiobase, membase, irq;
   1526 
   1527 			/* Save important PCI config data. */
   1528 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
   1529 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
   1530 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
   1531 
   1532 			/* Reset the power state. */
   1533 			aprint_normal("%s chip is in D%d power mode "
   1534 			    "-- setting to D0\n", sc->sk_dev.dv_xname,
   1535 			    command & SK_PSTATE_MASK);
   1536 			command &= 0xFFFFFFFC;
   1537 			pci_conf_write(pc, pa->pa_tag,
   1538 			    SK_PCI_PWRMGMTCTRL, command);
   1539 
   1540 			/* Restore PCI config data. */
   1541 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
   1542 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
   1543 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
   1544 		}
   1545 	}
   1546 
   1547 	/*
   1548 	 * Map control/status registers.
   1549 	 */
   1550 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1551 	command |= PCI_COMMAND_IO_ENABLE |
   1552 	    PCI_COMMAND_MEM_ENABLE |
   1553 	    PCI_COMMAND_MASTER_ENABLE;
   1554 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1555 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1556 
   1557 #ifdef SK_USEIOSPACE
   1558 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
   1559 		aprint_error(": failed to enable I/O ports!\n");
   1560 		return;
   1561 	}
   1562 	/*
   1563 	 * Map control/status registers.
   1564 	 */
   1565 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
   1566 			&sc->sk_btag, &sc->sk_bhandle,
   1567 			&iobase, &iosize)) {
   1568 		aprint_error(": can't find i/o space\n");
   1569 		return;
   1570 	}
   1571 #else
   1572 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1573 		aprint_error(": failed to enable memory mapping!\n");
   1574 		return;
   1575 	}
   1576 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
   1577 	switch (memtype) {
   1578         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1579         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1580                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
   1581 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
   1582 				   &iobase, &iosize) == 0)
   1583                         break;
   1584         default:
   1585                 aprint_error("%s: can't find mem space\n",
   1586 		       sc->sk_dev.dv_xname);
   1587                 return;
   1588 	}
   1589 
   1590 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
   1591 #endif
   1592 	sc->sc_dmatag = pa->pa_dmat;
   1593 
   1594 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
   1595 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
   1596 
   1597 	/* bail out here if chip is not recognized */
   1598 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
   1599 		aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
   1600 		goto fail;
   1601 	}
   1602 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
   1603 
   1604 	/* Allocate interrupt */
   1605 	if (pci_intr_map(pa, &ih)) {
   1606 		aprint_error(": couldn't map interrupt\n");
   1607 		goto fail;
   1608 	}
   1609 
   1610 	intrstr = pci_intr_string(pc, ih);
   1611 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
   1612 	if (sc->sk_intrhand == NULL) {
   1613 		aprint_error(": couldn't establish interrupt");
   1614 		if (intrstr != NULL)
   1615 			aprint_normal(" at %s", intrstr);
   1616 		goto fail;
   1617 	}
   1618 	aprint_normal(": %s\n", intrstr);
   1619 
   1620 	/* Reset the adapter. */
   1621 	sk_reset(sc);
   1622 
   1623 	/* Read and save vital product data from EEPROM. */
   1624 	sk_vpd_read(sc);
   1625 
   1626 	if (sc->sk_type == SK_GENESIS) {
   1627 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1628 		/* Read and save RAM size and RAMbuffer offset */
   1629 		switch (val) {
   1630 		case SK_RAMSIZE_512K_64:
   1631 			sc->sk_ramsize = 0x80000;
   1632 			sc->sk_rboff = SK_RBOFF_0;
   1633 			break;
   1634 		case SK_RAMSIZE_1024K_64:
   1635 			sc->sk_ramsize = 0x100000;
   1636 			sc->sk_rboff = SK_RBOFF_80000;
   1637 			break;
   1638 		case SK_RAMSIZE_1024K_128:
   1639 			sc->sk_ramsize = 0x100000;
   1640 			sc->sk_rboff = SK_RBOFF_0;
   1641 			break;
   1642 		case SK_RAMSIZE_2048K_128:
   1643 			sc->sk_ramsize = 0x200000;
   1644 			sc->sk_rboff = SK_RBOFF_0;
   1645 			break;
   1646 		default:
   1647 			aprint_error("%s: unknown ram size: %d\n",
   1648 			       sc->sk_dev.dv_xname, val);
   1649 			goto fail_1;
   1650 			break;
   1651 		}
   1652 
   1653 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
   1654 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
   1655 			     sc->sk_rboff));
   1656 	} else {
   1657 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1658 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
   1659 		sc->sk_rboff = SK_RBOFF_0;
   1660 
   1661 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
   1662 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
   1663 			     sc->sk_rboff));
   1664 	}
   1665 
   1666 	/* Read and save physical media type */
   1667 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
   1668 	case SK_PMD_1000BASESX:
   1669 		sc->sk_pmd = IFM_1000_SX;
   1670 		break;
   1671 	case SK_PMD_1000BASELX:
   1672 		sc->sk_pmd = IFM_1000_LX;
   1673 		break;
   1674 	case SK_PMD_1000BASECX:
   1675 		sc->sk_pmd = IFM_1000_CX;
   1676 		break;
   1677 	case SK_PMD_1000BASETX:
   1678 	case SK_PMD_1000BASETX_ALT:
   1679 		sc->sk_pmd = IFM_1000_T;
   1680 		break;
   1681 	default:
   1682 		aprint_error("%s: unknown media type: 0x%x\n",
   1683 		    sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
   1684 		goto fail_1;
   1685 	}
   1686 
   1687 	/* determine whether to name it with vpd or just make it up */
   1688 	/* Marvell Yukon VPD's can freqently be bogus */
   1689 
   1690 	switch (pa->pa_id) {
   1691 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1692 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
   1693 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
   1694 	case PCI_PRODUCT_3COM_3C940:
   1695 	case PCI_PRODUCT_DLINK_DGE530T:
   1696 	case PCI_PRODUCT_DLINK_DGE560T:
   1697 	case PCI_PRODUCT_DLINK_DGE560T_2:
   1698 	case PCI_PRODUCT_LINKSYS_EG1032:
   1699 	case PCI_PRODUCT_LINKSYS_EG1064:
   1700 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1701 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
   1702 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
   1703 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
   1704 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
   1705 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
   1706 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
   1707 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
   1708  		sc->sk_name = sc->sk_vpd_prodname;
   1709  		break;
   1710 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
   1711 	/* whoops yukon vpd prodname bears no resemblance to reality */
   1712 		switch (sc->sk_type) {
   1713 		case SK_GENESIS:
   1714 			sc->sk_name = sc->sk_vpd_prodname;
   1715 			break;
   1716 		case SK_YUKON:
   1717 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
   1718 			break;
   1719 		case SK_YUKON_LITE:
   1720 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
   1721 			break;
   1722 		case SK_YUKON_LP:
   1723 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
   1724 			break;
   1725 		default:
   1726 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
   1727 		}
   1728 
   1729 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
   1730 
   1731 		if ( sc->sk_type == SK_YUKON ) {
   1732 			uint32_t flashaddr;
   1733 			uint8_t testbyte;
   1734 
   1735 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
   1736 
   1737 			/* test Flash-Address Register */
   1738 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
   1739 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
   1740 
   1741 			if (testbyte != 0) {
   1742 				/* this is yukon lite Rev. A0 */
   1743 				sc->sk_type = SK_YUKON_LITE;
   1744 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
   1745 				/* restore Flash-Address Register */
   1746 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
   1747 			}
   1748 		}
   1749 		break;
   1750 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
   1751 		sc->sk_name = sc->sk_vpd_prodname;
   1752 		break;
   1753  	default:
   1754 		sc->sk_name = "Unknown Marvell";
   1755 	}
   1756 
   1757 
   1758 	if ( sc->sk_type == SK_YUKON_LITE ) {
   1759 		switch (sc->sk_rev) {
   1760 		case SK_YUKON_LITE_REV_A0:
   1761 			revstr = "A0";
   1762 			break;
   1763 		case SK_YUKON_LITE_REV_A1:
   1764 			revstr = "A1";
   1765 			break;
   1766 		case SK_YUKON_LITE_REV_A3:
   1767 			revstr = "A3";
   1768 			break;
   1769 		default:
   1770 			revstr = "";
   1771 		}
   1772 	} else {
   1773 		revstr = "";
   1774 	}
   1775 
   1776 	/* Announce the product name. */
   1777 	aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
   1778 			      sc->sk_name, revstr, sc->sk_rev);
   1779 
   1780 	skca.skc_port = SK_PORT_A;
   1781 	(void)config_found(&sc->sk_dev, &skca, skcprint);
   1782 
   1783 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
   1784 		skca.skc_port = SK_PORT_B;
   1785 		(void)config_found(&sc->sk_dev, &skca, skcprint);
   1786 	}
   1787 
   1788 	/* Turn on the 'driver is loaded' LED. */
   1789 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   1790 
   1791 	/* skc sysctl setup */
   1792 
   1793 	sc->sk_int_mod = SK_IM_DEFAULT;
   1794 	sc->sk_int_mod_pending = 0;
   1795 
   1796 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1797 	    0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
   1798 	    SYSCTL_DESCR("skc per-controller controls"),
   1799 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
   1800 	    CTL_EOL)) != 0) {
   1801 		aprint_normal("%s: couldn't create sysctl node\n",
   1802 		    sc->sk_dev.dv_xname);
   1803 		goto fail_1;
   1804 	}
   1805 
   1806 	sk_nodenum = node->sysctl_num;
   1807 
   1808 	/* interrupt moderation time in usecs */
   1809 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1810 	    CTLFLAG_READWRITE,
   1811 	    CTLTYPE_INT, "int_mod",
   1812 	    SYSCTL_DESCR("sk interrupt moderation timer"),
   1813 	    sk_sysctl_handler, 0, sc,
   1814 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
   1815 	    CTL_EOL)) != 0) {
   1816 		aprint_normal("%s: couldn't create int_mod sysctl node\n",
   1817 		    sc->sk_dev.dv_xname);
   1818 		goto fail_1;
   1819 	}
   1820 
   1821 	return;
   1822 
   1823 fail_1:
   1824 	pci_intr_disestablish(pc, sc->sk_intrhand);
   1825 fail:
   1826 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
   1827 }
   1828 
   1829 int
   1830 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
   1831 {
   1832 	struct sk_softc		*sc = sc_if->sk_softc;
   1833 	struct sk_tx_desc	*f = NULL;
   1834 	u_int32_t		frag, cur, cnt = 0, sk_ctl;
   1835 	int			i;
   1836 	struct sk_txmap_entry	*entry;
   1837 	bus_dmamap_t		txmap;
   1838 
   1839 	DPRINTFN(3, ("sk_encap\n"));
   1840 
   1841 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
   1842 	if (entry == NULL) {
   1843 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
   1844 		return ENOBUFS;
   1845 	}
   1846 	txmap = entry->dmamap;
   1847 
   1848 	cur = frag = *txidx;
   1849 
   1850 #ifdef SK_DEBUG
   1851 	if (skdebug >= 3)
   1852 		sk_dump_mbuf(m_head);
   1853 #endif
   1854 
   1855 	/*
   1856 	 * Start packing the mbufs in this chain into
   1857 	 * the fragment pointers. Stop when we run out
   1858 	 * of fragments or hit the end of the mbuf chain.
   1859 	 */
   1860 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
   1861 	    BUS_DMA_NOWAIT)) {
   1862 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
   1863 		return ENOBUFS;
   1864 	}
   1865 
   1866 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
   1867 
   1868 	/* Sync the DMA map. */
   1869 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
   1870 	    BUS_DMASYNC_PREWRITE);
   1871 
   1872 	for (i = 0; i < txmap->dm_nsegs; i++) {
   1873 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
   1874 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
   1875 			return ENOBUFS;
   1876 		}
   1877 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
   1878 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
   1879 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
   1880 		if (cnt == 0)
   1881 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
   1882 		else
   1883 			sk_ctl |= SK_TXCTL_OWN;
   1884 		f->sk_ctl = htole32(sk_ctl);
   1885 		cur = frag;
   1886 		SK_INC(frag, SK_TX_RING_CNT);
   1887 		cnt++;
   1888 	}
   1889 
   1890 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
   1891 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
   1892 
   1893 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
   1894 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
   1895 		htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
   1896 
   1897 	/* Sync descriptors before handing to chip */
   1898 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
   1899 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1900 
   1901 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
   1902 		htole32(SK_TXCTL_OWN);
   1903 
   1904 	/* Sync first descriptor to hand it off */
   1905 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1906 
   1907 	sc_if->sk_cdata.sk_tx_cnt += cnt;
   1908 
   1909 #ifdef SK_DEBUG
   1910 	if (skdebug >= 3) {
   1911 		struct sk_tx_desc *desc;
   1912 		u_int32_t idx;
   1913 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
   1914 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
   1915 			sk_dump_txdesc(desc, idx);
   1916 		}
   1917 	}
   1918 #endif
   1919 
   1920 	*txidx = frag;
   1921 
   1922 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
   1923 
   1924 	return 0;
   1925 }
   1926 
   1927 void
   1928 sk_start(struct ifnet *ifp)
   1929 {
   1930         struct sk_if_softc	*sc_if = ifp->if_softc;
   1931         struct sk_softc		*sc = sc_if->sk_softc;
   1932         struct mbuf		*m_head = NULL;
   1933         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
   1934 	int			pkts = 0;
   1935 
   1936 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
   1937 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
   1938 
   1939 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
   1940 		IFQ_POLL(&ifp->if_snd, m_head);
   1941 		if (m_head == NULL)
   1942 			break;
   1943 
   1944 		/*
   1945 		 * Pack the data into the transmit ring. If we
   1946 		 * don't have room, set the OACTIVE flag and wait
   1947 		 * for the NIC to drain the ring.
   1948 		 */
   1949 		if (sk_encap(sc_if, m_head, &idx)) {
   1950 			ifp->if_flags |= IFF_OACTIVE;
   1951 			break;
   1952 		}
   1953 
   1954 		/* now we are committed to transmit the packet */
   1955 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1956 		pkts++;
   1957 
   1958 		/*
   1959 		 * If there's a BPF listener, bounce a copy of this frame
   1960 		 * to him.
   1961 		 */
   1962 #if NBPFILTER > 0
   1963 		if (ifp->if_bpf)
   1964 			bpf_mtap(ifp->if_bpf, m_head);
   1965 #endif
   1966 	}
   1967 	if (pkts == 0)
   1968 		return;
   1969 
   1970 	/* Transmit */
   1971 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
   1972 		sc_if->sk_cdata.sk_tx_prod = idx;
   1973 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   1974 
   1975 		/* Set a timeout in case the chip goes out to lunch. */
   1976 		ifp->if_timer = 5;
   1977 	}
   1978 }
   1979 
   1980 
   1981 void
   1982 sk_watchdog(struct ifnet *ifp)
   1983 {
   1984 	struct sk_if_softc *sc_if = ifp->if_softc;
   1985 
   1986 	/*
   1987 	 * Reclaim first as there is a possibility of losing Tx completion
   1988 	 * interrupts.
   1989 	 */
   1990 	sk_txeof(sc_if);
   1991 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
   1992 		aprint_error("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
   1993 
   1994 		ifp->if_oerrors++;
   1995 
   1996 		sk_init(ifp);
   1997 	}
   1998 }
   1999 
   2000 void
   2001 sk_shutdown(void *v)
   2002 {
   2003 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
   2004 	struct sk_softc		*sc = sc_if->sk_softc;
   2005 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
   2006 
   2007 	DPRINTFN(2, ("sk_shutdown\n"));
   2008 	sk_stop(ifp,1);
   2009 
   2010 	/* Turn off the 'driver is loaded' LED. */
   2011 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   2012 
   2013 	/*
   2014 	 * Reset the GEnesis controller. Doing this should also
   2015 	 * assert the resets on the attached XMAC(s).
   2016 	 */
   2017 	sk_reset(sc);
   2018 }
   2019 
   2020 void
   2021 sk_rxeof(struct sk_if_softc *sc_if)
   2022 {
   2023 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2024 	struct mbuf		*m;
   2025 	struct sk_chain		*cur_rx;
   2026 	struct sk_rx_desc	*cur_desc;
   2027 	int			i, cur, total_len = 0;
   2028 	u_int32_t		rxstat, sk_ctl;
   2029 	bus_dmamap_t		dmamap;
   2030 
   2031 	i = sc_if->sk_cdata.sk_rx_prod;
   2032 
   2033 	DPRINTFN(3, ("sk_rxeof %d\n", i));
   2034 
   2035 	for (;;) {
   2036 		cur = i;
   2037 
   2038 		/* Sync the descriptor */
   2039 		SK_CDRXSYNC(sc_if, cur,
   2040 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2041 
   2042 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
   2043 		if (sk_ctl & SK_RXCTL_OWN) {
   2044 			/* Invalidate the descriptor -- it's not ready yet */
   2045 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
   2046 			sc_if->sk_cdata.sk_rx_prod = i;
   2047 			break;
   2048 		}
   2049 
   2050 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
   2051 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
   2052 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
   2053 
   2054 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
   2055 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2056 
   2057 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
   2058 		m = cur_rx->sk_mbuf;
   2059 		cur_rx->sk_mbuf = NULL;
   2060 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
   2061 
   2062 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
   2063 
   2064 		SK_INC(i, SK_RX_RING_CNT);
   2065 
   2066 		if (rxstat & XM_RXSTAT_ERRFRAME) {
   2067 			ifp->if_ierrors++;
   2068 			sk_newbuf(sc_if, cur, m, dmamap);
   2069 			continue;
   2070 		}
   2071 
   2072 		/*
   2073 		 * Try to allocate a new jumbo buffer. If that
   2074 		 * fails, copy the packet to mbufs and put the
   2075 		 * jumbo buffer back in the ring so it can be
   2076 		 * re-used. If allocating mbufs fails, then we
   2077 		 * have to drop the packet.
   2078 		 */
   2079 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
   2080 			struct mbuf		*m0;
   2081 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
   2082 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
   2083 			sk_newbuf(sc_if, cur, m, dmamap);
   2084 			if (m0 == NULL) {
   2085 				aprint_error("%s: no receive buffers "
   2086 				    "available -- packet dropped!\n",
   2087 				    sc_if->sk_dev.dv_xname);
   2088 				ifp->if_ierrors++;
   2089 				continue;
   2090 			}
   2091 			m_adj(m0, ETHER_ALIGN);
   2092 			m = m0;
   2093 		} else {
   2094 			m->m_pkthdr.rcvif = ifp;
   2095 			m->m_pkthdr.len = m->m_len = total_len;
   2096 		}
   2097 
   2098 		ifp->if_ipackets++;
   2099 
   2100 #if NBPFILTER > 0
   2101 		if (ifp->if_bpf)
   2102 			bpf_mtap(ifp->if_bpf, m);
   2103 #endif
   2104 		/* pass it on. */
   2105 		(*ifp->if_input)(ifp, m);
   2106 	}
   2107 }
   2108 
   2109 void
   2110 sk_txeof(struct sk_if_softc *sc_if)
   2111 {
   2112 	struct sk_softc		*sc = sc_if->sk_softc;
   2113 	struct sk_tx_desc	*cur_tx;
   2114 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2115 	u_int32_t		idx, sk_ctl;
   2116 	struct sk_txmap_entry	*entry;
   2117 
   2118 	DPRINTFN(3, ("sk_txeof\n"));
   2119 
   2120 	/*
   2121 	 * Go through our tx ring and free mbufs for those
   2122 	 * frames that have been sent.
   2123 	 */
   2124 	idx = sc_if->sk_cdata.sk_tx_cons;
   2125 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
   2126 		SK_CDTXSYNC(sc_if, idx, 1,
   2127 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2128 
   2129 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
   2130 		sk_ctl = le32toh(cur_tx->sk_ctl);
   2131 #ifdef SK_DEBUG
   2132 		if (skdebug >= 3)
   2133 			sk_dump_txdesc(cur_tx, idx);
   2134 #endif
   2135 		if (sk_ctl & SK_TXCTL_OWN) {
   2136 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
   2137 			break;
   2138 		}
   2139 		if (sk_ctl & SK_TXCTL_LASTFRAG)
   2140 			ifp->if_opackets++;
   2141 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
   2142 			entry = sc_if->sk_cdata.sk_tx_map[idx];
   2143 
   2144 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
   2145 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
   2146 
   2147 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
   2148 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2149 
   2150 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
   2151 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
   2152 					  link);
   2153 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
   2154 		}
   2155 		sc_if->sk_cdata.sk_tx_cnt--;
   2156 		SK_INC(idx, SK_TX_RING_CNT);
   2157 	}
   2158 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
   2159 		ifp->if_timer = 0;
   2160 	else /* nudge chip to keep tx ring moving */
   2161 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   2162 
   2163 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
   2164 		ifp->if_flags &= ~IFF_OACTIVE;
   2165 
   2166 	sc_if->sk_cdata.sk_tx_cons = idx;
   2167 }
   2168 
   2169 void
   2170 sk_tick(void *xsc_if)
   2171 {
   2172 	struct sk_if_softc *sc_if = xsc_if;
   2173 	struct mii_data *mii = &sc_if->sk_mii;
   2174 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2175 	int i;
   2176 
   2177 	DPRINTFN(3, ("sk_tick\n"));
   2178 
   2179 	if (!(ifp->if_flags & IFF_UP))
   2180 		return;
   2181 
   2182 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2183 		sk_intr_bcom(sc_if);
   2184 		return;
   2185 	}
   2186 
   2187 	/*
   2188 	 * According to SysKonnect, the correct way to verify that
   2189 	 * the link has come back up is to poll bit 0 of the GPIO
   2190 	 * register three times. This pin has the signal from the
   2191 	 * link sync pin connected to it; if we read the same link
   2192 	 * state 3 times in a row, we know the link is up.
   2193 	 */
   2194 	for (i = 0; i < 3; i++) {
   2195 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
   2196 			break;
   2197 	}
   2198 
   2199 	if (i != 3) {
   2200 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2201 		return;
   2202 	}
   2203 
   2204 	/* Turn the GP0 interrupt back on. */
   2205 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2206 	SK_XM_READ_2(sc_if, XM_ISR);
   2207 	mii_tick(mii);
   2208 	mii_pollstat(mii);
   2209 	callout_stop(&sc_if->sk_tick_ch);
   2210 }
   2211 
   2212 void
   2213 sk_intr_bcom(struct sk_if_softc *sc_if)
   2214 {
   2215 	struct mii_data *mii = &sc_if->sk_mii;
   2216 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2217 	int status;
   2218 
   2219 
   2220 	DPRINTFN(3, ("sk_intr_bcom\n"));
   2221 
   2222 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2223 
   2224 	/*
   2225 	 * Read the PHY interrupt register to make sure
   2226 	 * we clear any pending interrupts.
   2227 	 */
   2228 	status = sk_xmac_miibus_readreg((struct device *)sc_if,
   2229 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
   2230 
   2231 	if (!(ifp->if_flags & IFF_RUNNING)) {
   2232 		sk_init_xmac(sc_if);
   2233 		return;
   2234 	}
   2235 
   2236 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
   2237 		int lstat;
   2238 		lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
   2239 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
   2240 
   2241 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
   2242 			mii_mediachg(mii);
   2243 			/* Turn off the link LED. */
   2244 			SK_IF_WRITE_1(sc_if, 0,
   2245 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2246 			sc_if->sk_link = 0;
   2247 		} else if (status & BRGPHY_ISR_LNK_CHG) {
   2248 			sk_xmac_miibus_writereg((struct device *)sc_if,
   2249 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
   2250 			mii_tick(mii);
   2251 			sc_if->sk_link = 1;
   2252 			/* Turn on the link LED. */
   2253 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2254 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
   2255 			    SK_LINKLED_BLINK_OFF);
   2256 			mii_pollstat(mii);
   2257 		} else {
   2258 			mii_tick(mii);
   2259 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
   2260 		}
   2261 	}
   2262 
   2263 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2264 }
   2265 
   2266 void
   2267 sk_intr_xmac(struct sk_if_softc	*sc_if)
   2268 {
   2269 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
   2270 
   2271 	DPRINTFN(3, ("sk_intr_xmac\n"));
   2272 
   2273 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
   2274 		if (status & XM_ISR_GP0_SET) {
   2275 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2276 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2277 		}
   2278 
   2279 		if (status & XM_ISR_AUTONEG_DONE) {
   2280 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2281 		}
   2282 	}
   2283 
   2284 	if (status & XM_IMR_TX_UNDERRUN)
   2285 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
   2286 
   2287 	if (status & XM_IMR_RX_OVERRUN)
   2288 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
   2289 }
   2290 
   2291 void
   2292 sk_intr_yukon(struct sk_if_softc *sc_if)
   2293 {
   2294 	int status;
   2295 
   2296 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2297 
   2298 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
   2299 }
   2300 
   2301 int
   2302 sk_intr(void *xsc)
   2303 {
   2304 	struct sk_softc		*sc = xsc;
   2305 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
   2306 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
   2307 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
   2308 	u_int32_t		status;
   2309 	int			claimed = 0;
   2310 
   2311 	if (sc_if0 != NULL)
   2312 		ifp0 = &sc_if0->sk_ethercom.ec_if;
   2313 	if (sc_if1 != NULL)
   2314 		ifp1 = &sc_if1->sk_ethercom.ec_if;
   2315 
   2316 	for (;;) {
   2317 		status = CSR_READ_4(sc, SK_ISSR);
   2318 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
   2319 
   2320 		if (!(status & sc->sk_intrmask))
   2321 			break;
   2322 
   2323 		claimed = 1;
   2324 
   2325 		/* Handle receive interrupts first. */
   2326 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
   2327 			sk_rxeof(sc_if0);
   2328 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
   2329 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2330 		}
   2331 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
   2332 			sk_rxeof(sc_if1);
   2333 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
   2334 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2335 		}
   2336 
   2337 		/* Then transmit interrupts. */
   2338 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
   2339 			sk_txeof(sc_if0);
   2340 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
   2341 			    SK_TXBMU_CLR_IRQ_EOF);
   2342 		}
   2343 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
   2344 			sk_txeof(sc_if1);
   2345 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
   2346 			    SK_TXBMU_CLR_IRQ_EOF);
   2347 		}
   2348 
   2349 		/* Then MAC interrupts. */
   2350 		if (sc_if0 && (status & SK_ISR_MAC1) &&
   2351 		    (ifp0->if_flags & IFF_RUNNING)) {
   2352 			if (sc->sk_type == SK_GENESIS)
   2353 				sk_intr_xmac(sc_if0);
   2354 			else
   2355 				sk_intr_yukon(sc_if0);
   2356 		}
   2357 
   2358 		if (sc_if1 && (status & SK_ISR_MAC2) &&
   2359 		    (ifp1->if_flags & IFF_RUNNING)) {
   2360 			if (sc->sk_type == SK_GENESIS)
   2361 				sk_intr_xmac(sc_if1);
   2362 			else
   2363 				sk_intr_yukon(sc_if1);
   2364 
   2365 		}
   2366 
   2367 		if (status & SK_ISR_EXTERNAL_REG) {
   2368 			if (sc_if0 != NULL &&
   2369 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
   2370 				sk_intr_bcom(sc_if0);
   2371 
   2372 			if (sc_if1 != NULL &&
   2373 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
   2374 				sk_intr_bcom(sc_if1);
   2375 		}
   2376 	}
   2377 
   2378 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2379 
   2380 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
   2381 		sk_start(ifp0);
   2382 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
   2383 		sk_start(ifp1);
   2384 
   2385 #if NRND > 0
   2386 	if (RND_ENABLED(&sc->rnd_source))
   2387 		rnd_add_uint32(&sc->rnd_source, status);
   2388 #endif
   2389 
   2390 	if (sc->sk_int_mod_pending)
   2391 		sk_update_int_mod(sc);
   2392 
   2393 	return claimed;
   2394 }
   2395 
   2396 void
   2397 sk_init_xmac(struct sk_if_softc	*sc_if)
   2398 {
   2399 	struct sk_softc		*sc = sc_if->sk_softc;
   2400 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2401 	static const struct sk_bcom_hack     bhack[] = {
   2402 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
   2403 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
   2404 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
   2405 	{ 0, 0 } };
   2406 
   2407 	DPRINTFN(1, ("sk_init_xmac\n"));
   2408 
   2409 	/* Unreset the XMAC. */
   2410 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
   2411 	DELAY(1000);
   2412 
   2413 	/* Reset the XMAC's internal state. */
   2414 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2415 
   2416 	/* Save the XMAC II revision */
   2417 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
   2418 
   2419 	/*
   2420 	 * Perform additional initialization for external PHYs,
   2421 	 * namely for the 1000baseTX cards that use the XMAC's
   2422 	 * GMII mode.
   2423 	 */
   2424 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2425 		int			i = 0;
   2426 		u_int32_t		val;
   2427 
   2428 		/* Take PHY out of reset. */
   2429 		val = sk_win_read_4(sc, SK_GPIO);
   2430 		if (sc_if->sk_port == SK_PORT_A)
   2431 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
   2432 		else
   2433 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
   2434 		sk_win_write_4(sc, SK_GPIO, val);
   2435 
   2436 		/* Enable GMII mode on the XMAC. */
   2437 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
   2438 
   2439 		sk_xmac_miibus_writereg((struct device *)sc_if,
   2440 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
   2441 		DELAY(10000);
   2442 		sk_xmac_miibus_writereg((struct device *)sc_if,
   2443 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
   2444 
   2445 		/*
   2446 		 * Early versions of the BCM5400 apparently have
   2447 		 * a bug that requires them to have their reserved
   2448 		 * registers initialized to some magic values. I don't
   2449 		 * know what the numbers do, I'm just the messenger.
   2450 		 */
   2451 		if (sk_xmac_miibus_readreg((struct device *)sc_if,
   2452 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
   2453 			while (bhack[i].reg) {
   2454 				sk_xmac_miibus_writereg((struct device *)sc_if,
   2455 				    SK_PHYADDR_BCOM, bhack[i].reg,
   2456 				    bhack[i].val);
   2457 				i++;
   2458 			}
   2459 		}
   2460 	}
   2461 
   2462 	/* Set station address */
   2463 	SK_XM_WRITE_2(sc_if, XM_PAR0,
   2464 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
   2465 	SK_XM_WRITE_2(sc_if, XM_PAR1,
   2466 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
   2467 	SK_XM_WRITE_2(sc_if, XM_PAR2,
   2468 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
   2469 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
   2470 
   2471 	if (ifp->if_flags & IFF_PROMISC)
   2472 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2473 	else
   2474 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2475 
   2476 	if (ifp->if_flags & IFF_BROADCAST)
   2477 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2478 	else
   2479 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2480 
   2481 	/* We don't need the FCS appended to the packet. */
   2482 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
   2483 
   2484 	/* We want short frames padded to 60 bytes. */
   2485 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
   2486 
   2487 	/*
   2488 	 * Enable the reception of all error frames. This is is
   2489 	 * a necessary evil due to the design of the XMAC. The
   2490 	 * XMAC's receive FIFO is only 8K in size, however jumbo
   2491 	 * frames can be up to 9000 bytes in length. When bad
   2492 	 * frame filtering is enabled, the XMAC's RX FIFO operates
   2493 	 * in 'store and forward' mode. For this to work, the
   2494 	 * entire frame has to fit into the FIFO, but that means
   2495 	 * that jumbo frames larger than 8192 bytes will be
   2496 	 * truncated. Disabling all bad frame filtering causes
   2497 	 * the RX FIFO to operate in streaming mode, in which
   2498 	 * case the XMAC will start transfering frames out of the
   2499 	 * RX FIFO as soon as the FIFO threshold is reached.
   2500 	 */
   2501 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
   2502 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
   2503 	    XM_MODE_RX_INRANGELEN);
   2504 
   2505 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2506 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2507 	else
   2508 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2509 
   2510 	/*
   2511 	 * Bump up the transmit threshold. This helps hold off transmit
   2512 	 * underruns when we're blasting traffic from both ports at once.
   2513 	 */
   2514 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
   2515 
   2516 	/* Set multicast filter */
   2517 	sk_setmulti(sc_if);
   2518 
   2519 	/* Clear and enable interrupts */
   2520 	SK_XM_READ_2(sc_if, XM_ISR);
   2521 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
   2522 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
   2523 	else
   2524 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2525 
   2526 	/* Configure MAC arbiter */
   2527 	switch (sc_if->sk_xmac_rev) {
   2528 	case XM_XMAC_REV_B2:
   2529 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
   2530 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
   2531 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
   2532 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
   2533 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
   2534 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
   2535 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
   2536 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
   2537 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2538 		break;
   2539 	case XM_XMAC_REV_C1:
   2540 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
   2541 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
   2542 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
   2543 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
   2544 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
   2545 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
   2546 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
   2547 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
   2548 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2549 		break;
   2550 	default:
   2551 		break;
   2552 	}
   2553 	sk_win_write_2(sc, SK_MACARB_CTL,
   2554 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
   2555 
   2556 	sc_if->sk_link = 1;
   2557 }
   2558 
   2559 void sk_init_yukon(struct sk_if_softc *sc_if)
   2560 {
   2561 	u_int32_t		/*mac, */phy;
   2562 	u_int16_t		reg;
   2563 	struct sk_softc		*sc;
   2564 	int			i;
   2565 
   2566 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
   2567 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
   2568 
   2569 	sc = sc_if->sk_softc;
   2570 	if (sc->sk_type == SK_YUKON_LITE &&
   2571 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
   2572 		/* Take PHY out of reset. */
   2573 		sk_win_write_4(sc, SK_GPIO,
   2574 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
   2575 	}
   2576 
   2577 
   2578 	/* GMAC and GPHY Reset */
   2579 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
   2580 
   2581 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
   2582 
   2583 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2584 	DELAY(1000);
   2585 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
   2586 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2587 	DELAY(1000);
   2588 
   2589 
   2590 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
   2591 
   2592 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
   2593 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
   2594 
   2595 	switch (sc_if->sk_softc->sk_pmd) {
   2596 	case IFM_1000_SX:
   2597 	case IFM_1000_LX:
   2598 		phy |= SK_GPHY_FIBER;
   2599 		break;
   2600 
   2601 	case IFM_1000_CX:
   2602 	case IFM_1000_T:
   2603 		phy |= SK_GPHY_COPPER;
   2604 		break;
   2605 	}
   2606 
   2607 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
   2608 
   2609 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
   2610 	DELAY(1000);
   2611 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
   2612 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
   2613 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
   2614 
   2615 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
   2616 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
   2617 
   2618 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
   2619 
   2620 	/* unused read of the interrupt source register */
   2621 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
   2622 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2623 
   2624 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
   2625 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
   2626 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2627 
   2628 	/* MIB Counter Clear Mode set */
   2629         reg |= YU_PAR_MIB_CLR;
   2630 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2631 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
   2632 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2633 
   2634 	/* MIB Counter Clear Mode clear */
   2635 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
   2636         reg &= ~YU_PAR_MIB_CLR;
   2637 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2638 
   2639 	/* receive control reg */
   2640 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
   2641 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
   2642 		      YU_RCR_CRCR);
   2643 
   2644 	/* transmit parameter register */
   2645 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
   2646 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
   2647 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
   2648 
   2649 	/* serial mode register */
   2650 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
   2651 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
   2652 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
   2653 		      YU_SMR_IPG_DATA(0x1e));
   2654 
   2655 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
   2656 	/* Setup Yukon's address */
   2657 	for (i = 0; i < 3; i++) {
   2658 		/* Write Source Address 1 (unicast filter) */
   2659 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
   2660 			      sc_if->sk_enaddr[i * 2] |
   2661 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
   2662 	}
   2663 
   2664 	for (i = 0; i < 3; i++) {
   2665 		reg = sk_win_read_2(sc_if->sk_softc,
   2666 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
   2667 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
   2668 	}
   2669 
   2670 	/* Set multicast filter */
   2671 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
   2672 	sk_setmulti(sc_if);
   2673 
   2674 	/* enable interrupt mask for counter overflows */
   2675 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
   2676 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
   2677 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
   2678 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
   2679 
   2680 	/* Configure RX MAC FIFO */
   2681 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
   2682 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
   2683 
   2684 	/* Configure TX MAC FIFO */
   2685 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
   2686 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
   2687 
   2688 	DPRINTFN(6, ("sk_init_yukon: end\n"));
   2689 }
   2690 
   2691 /*
   2692  * Note that to properly initialize any part of the GEnesis chip,
   2693  * you first have to take it out of reset mode.
   2694  */
   2695 int
   2696 sk_init(struct ifnet *ifp)
   2697 {
   2698 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2699 	struct sk_softc		*sc = sc_if->sk_softc;
   2700 	struct mii_data		*mii = &sc_if->sk_mii;
   2701 	int			s;
   2702 	u_int32_t		imr, imtimer_ticks;
   2703 
   2704 	DPRINTFN(1, ("sk_init\n"));
   2705 
   2706 	s = splnet();
   2707 
   2708 	if (ifp->if_flags & IFF_RUNNING) {
   2709 		splx(s);
   2710 		return 0;
   2711 	}
   2712 
   2713 	/* Cancel pending I/O and free all RX/TX buffers. */
   2714 	sk_stop(ifp,0);
   2715 
   2716 	if (sc->sk_type == SK_GENESIS) {
   2717 		/* Configure LINK_SYNC LED */
   2718 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
   2719 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2720 			      SK_LINKLED_LINKSYNC_ON);
   2721 
   2722 		/* Configure RX LED */
   2723 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
   2724 			      SK_RXLEDCTL_COUNTER_START);
   2725 
   2726 		/* Configure TX LED */
   2727 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
   2728 			      SK_TXLEDCTL_COUNTER_START);
   2729 	}
   2730 
   2731 	/* Configure I2C registers */
   2732 
   2733 	/* Configure XMAC(s) */
   2734 	switch (sc->sk_type) {
   2735 	case SK_GENESIS:
   2736 		sk_init_xmac(sc_if);
   2737 		break;
   2738 	case SK_YUKON:
   2739 	case SK_YUKON_LITE:
   2740 	case SK_YUKON_LP:
   2741 		sk_init_yukon(sc_if);
   2742 		break;
   2743 	}
   2744 	mii_mediachg(mii);
   2745 
   2746 	if (sc->sk_type == SK_GENESIS) {
   2747 		/* Configure MAC FIFOs */
   2748 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
   2749 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
   2750 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
   2751 
   2752 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
   2753 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
   2754 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
   2755 	}
   2756 
   2757 	/* Configure transmit arbiter(s) */
   2758 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
   2759 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
   2760 
   2761 	/* Configure RAMbuffers */
   2762 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
   2763 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
   2764 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
   2765 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
   2766 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
   2767 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
   2768 
   2769 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
   2770 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
   2771 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
   2772 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
   2773 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
   2774 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
   2775 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
   2776 
   2777 	/* Configure BMUs */
   2778 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
   2779 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
   2780 	    SK_RX_RING_ADDR(sc_if, 0));
   2781 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
   2782 
   2783 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
   2784 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
   2785             SK_TX_RING_ADDR(sc_if, 0));
   2786 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
   2787 
   2788 	/* Init descriptors */
   2789 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
   2790 		aprint_error("%s: initialization failed: no "
   2791 		    "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
   2792 		sk_stop(ifp,0);
   2793 		splx(s);
   2794 		return ENOBUFS;
   2795 	}
   2796 
   2797 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
   2798 		aprint_error("%s: initialization failed: no "
   2799 		    "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
   2800 		sk_stop(ifp,0);
   2801 		splx(s);
   2802 		return ENOBUFS;
   2803 	}
   2804 
   2805 	/* Set interrupt moderation if changed via sysctl. */
   2806 	switch (sc->sk_type) {
   2807 	case SK_GENESIS:
   2808 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   2809 		break;
   2810 	case SK_YUKON_EC:
   2811 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   2812 		break;
   2813 	default:
   2814 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   2815 	}
   2816 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
   2817 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
   2818 		sk_win_write_4(sc, SK_IMTIMERINIT,
   2819 		    SK_IM_USECS(sc->sk_int_mod));
   2820 		aprint_verbose("%s: interrupt moderation is %d us\n",
   2821 		    sc->sk_dev.dv_xname, sc->sk_int_mod);
   2822 	}
   2823 
   2824 	/* Configure interrupt handling */
   2825 	CSR_READ_4(sc, SK_ISSR);
   2826 	if (sc_if->sk_port == SK_PORT_A)
   2827 		sc->sk_intrmask |= SK_INTRS1;
   2828 	else
   2829 		sc->sk_intrmask |= SK_INTRS2;
   2830 
   2831 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
   2832 
   2833 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2834 
   2835 	/* Start BMUs. */
   2836 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
   2837 
   2838 	if (sc->sk_type == SK_GENESIS) {
   2839 		/* Enable XMACs TX and RX state machines */
   2840 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
   2841 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
   2842 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2843 	}
   2844 
   2845 	if (SK_YUKON_FAMILY(sc->sk_type)) {
   2846 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
   2847 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
   2848 #if 0
   2849 		/* XXX disable 100Mbps and full duplex mode? */
   2850 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
   2851 #endif
   2852 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
   2853 	}
   2854 
   2855 
   2856 	ifp->if_flags |= IFF_RUNNING;
   2857 	ifp->if_flags &= ~IFF_OACTIVE;
   2858 
   2859 	splx(s);
   2860 	return 0;
   2861 }
   2862 
   2863 void
   2864 sk_stop(struct ifnet *ifp, int disable)
   2865 {
   2866         struct sk_if_softc	*sc_if = ifp->if_softc;
   2867 	struct sk_softc		*sc = sc_if->sk_softc;
   2868 	int			i;
   2869 
   2870 	DPRINTFN(1, ("sk_stop\n"));
   2871 
   2872 	callout_stop(&sc_if->sk_tick_ch);
   2873 
   2874 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2875 		u_int32_t		val;
   2876 
   2877 		/* Put PHY back into reset. */
   2878 		val = sk_win_read_4(sc, SK_GPIO);
   2879 		if (sc_if->sk_port == SK_PORT_A) {
   2880 			val |= SK_GPIO_DIR0;
   2881 			val &= ~SK_GPIO_DAT0;
   2882 		} else {
   2883 			val |= SK_GPIO_DIR2;
   2884 			val &= ~SK_GPIO_DAT2;
   2885 		}
   2886 		sk_win_write_4(sc, SK_GPIO, val);
   2887 	}
   2888 
   2889 	/* Turn off various components of this interface. */
   2890 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2891 	switch (sc->sk_type) {
   2892 	case SK_GENESIS:
   2893 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
   2894 			      SK_TXMACCTL_XMAC_RESET);
   2895 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
   2896 		break;
   2897 	case SK_YUKON:
   2898 	case SK_YUKON_LITE:
   2899 	case SK_YUKON_LP:
   2900 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
   2901 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
   2902 		break;
   2903 	}
   2904 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
   2905 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2906 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
   2907 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2908 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
   2909 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2910 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2911 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2912 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
   2913 
   2914 	/* Disable interrupts */
   2915 	if (sc_if->sk_port == SK_PORT_A)
   2916 		sc->sk_intrmask &= ~SK_INTRS1;
   2917 	else
   2918 		sc->sk_intrmask &= ~SK_INTRS2;
   2919 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2920 
   2921 	SK_XM_READ_2(sc_if, XM_ISR);
   2922 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2923 
   2924 	/* Free RX and TX mbufs still in the queues. */
   2925 	for (i = 0; i < SK_RX_RING_CNT; i++) {
   2926 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
   2927 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
   2928 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   2929 		}
   2930 	}
   2931 
   2932 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   2933 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
   2934 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
   2935 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   2936 		}
   2937 	}
   2938 
   2939 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
   2940 }
   2941 
   2942 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
   2943 
   2944 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
   2945 
   2946 #ifdef SK_DEBUG
   2947 void
   2948 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
   2949 {
   2950 #define DESC_PRINT(X)					\
   2951 	if (X)					\
   2952 		printf("txdesc[%d]." #X "=%#x\n",	\
   2953 		       idx, X);
   2954 
   2955 	DESC_PRINT(le32toh(desc->sk_ctl));
   2956 	DESC_PRINT(le32toh(desc->sk_next));
   2957 	DESC_PRINT(le32toh(desc->sk_data_lo));
   2958 	DESC_PRINT(le32toh(desc->sk_data_hi));
   2959 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
   2960 	DESC_PRINT(le16toh(desc->sk_rsvd0));
   2961 	DESC_PRINT(le16toh(desc->sk_csum_startval));
   2962 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
   2963 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
   2964 	DESC_PRINT(le16toh(desc->sk_rsvd1));
   2965 #undef PRINT
   2966 }
   2967 
   2968 void
   2969 sk_dump_bytes(const char *data, int len)
   2970 {
   2971 	int c, i, j;
   2972 
   2973 	for (i = 0; i < len; i += 16) {
   2974 		printf("%08x  ", i);
   2975 		c = len - i;
   2976 		if (c > 16) c = 16;
   2977 
   2978 		for (j = 0; j < c; j++) {
   2979 			printf("%02x ", data[i + j] & 0xff);
   2980 			if ((j & 0xf) == 7 && j > 0)
   2981 				printf(" ");
   2982 		}
   2983 
   2984 		for (; j < 16; j++)
   2985 			printf("   ");
   2986 		printf("  ");
   2987 
   2988 		for (j = 0; j < c; j++) {
   2989 			int ch = data[i + j] & 0xff;
   2990 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
   2991 		}
   2992 
   2993 		printf("\n");
   2994 
   2995 		if (c < 16)
   2996 			break;
   2997 	}
   2998 }
   2999 
   3000 void
   3001 sk_dump_mbuf(struct mbuf *m)
   3002 {
   3003 	int count = m->m_pkthdr.len;
   3004 
   3005 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
   3006 
   3007 	while (count > 0 && m) {
   3008 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
   3009 		       m, m->m_data, m->m_len);
   3010 		sk_dump_bytes(mtod(m, char *), m->m_len);
   3011 
   3012 		count -= m->m_len;
   3013 		m = m->m_next;
   3014 	}
   3015 }
   3016 #endif
   3017 
   3018 static int
   3019 sk_sysctl_handler(SYSCTLFN_ARGS)
   3020 {
   3021 	int error, t;
   3022 	struct sysctlnode node;
   3023 	struct sk_softc *sc;
   3024 
   3025 	node = *rnode;
   3026 	sc = node.sysctl_data;
   3027 	t = sc->sk_int_mod;
   3028 	node.sysctl_data = &t;
   3029 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3030 	if (error || newp == NULL)
   3031 		return error;
   3032 
   3033 	if (t < SK_IM_MIN || t > SK_IM_MAX)
   3034 		return EINVAL;
   3035 
   3036 	/* update the softc with sysctl-changed value, and mark
   3037 	   for hardware update */
   3038 	sc->sk_int_mod = t;
   3039 	sc->sk_int_mod_pending = 1;
   3040 	return 0;
   3041 }
   3042 
   3043 /*
   3044  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
   3045  * set up in skc_attach()
   3046  */
   3047 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
   3048 {
   3049 	int rc;
   3050 	const struct sysctlnode *node;
   3051 
   3052 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   3053 	    0, CTLTYPE_NODE, "hw", NULL,
   3054 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   3055 		goto err;
   3056 	}
   3057 
   3058 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   3059 	    0, CTLTYPE_NODE, "sk",
   3060 	    SYSCTL_DESCR("sk interface controls"),
   3061 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   3062 		goto err;
   3063 	}
   3064 
   3065 	sk_root_num = node->sysctl_num;
   3066 	return;
   3067 
   3068 err:
   3069 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
   3070 }
   3071