if_sk.c revision 1.37 1 /* $NetBSD: if_sk.c,v 1.37 2007/03/04 06:02:22 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the NetBSD
18 * Foundation, Inc. and its contributors.
19 * 4. Neither the name of The NetBSD Foundation nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
37
38 /*
39 * Copyright (c) 1997, 1998, 1999, 2000
40 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Bill Paul.
53 * 4. Neither the name of the author nor the names of any co-contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67 * THE POSSIBILITY OF SUCH DAMAGE.
68 *
69 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70 */
71
72 /*
73 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
74 *
75 * Permission to use, copy, modify, and distribute this software for any
76 * purpose with or without fee is hereby granted, provided that the above
77 * copyright notice and this permission notice appear in all copies.
78 *
79 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86 */
87
88 /*
89 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90 * the SK-984x series adapters, both single port and dual port.
91 * References:
92 * The XaQti XMAC II datasheet,
93 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 * The SysKonnect GEnesis manual, http://www.syskonnect.com
95 *
96 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98 * convenience to others until Vitesse corrects this problem:
99 *
100 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101 *
102 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
103 * Department of Electrical Engineering
104 * Columbia University, New York City
105 */
106
107 /*
108 * The SysKonnect gigabit ethernet adapters consist of two main
109 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111 * components and a PHY while the GEnesis controller provides a PCI
112 * interface with DMA support. Each card may have between 512K and
113 * 2MB of SRAM on board depending on the configuration.
114 *
115 * The SysKonnect GEnesis controller can have either one or two XMAC
116 * chips connected to it, allowing single or dual port NIC configurations.
117 * SysKonnect has the distinction of being the only vendor on the market
118 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120 * XMAC registers. This driver takes advantage of these features to allow
121 * both XMACs to operate as independent interfaces.
122 */
123
124 #include "bpfilter.h"
125 #include "rnd.h"
126
127 #include <sys/param.h>
128 #include <sys/systm.h>
129 #include <sys/sockio.h>
130 #include <sys/mbuf.h>
131 #include <sys/malloc.h>
132 #include <sys/kernel.h>
133 #include <sys/socket.h>
134 #include <sys/device.h>
135 #include <sys/queue.h>
136 #include <sys/callout.h>
137 #include <sys/sysctl.h>
138 #include <sys/endian.h>
139
140 #include <net/if.h>
141 #include <net/if_dl.h>
142 #include <net/if_types.h>
143
144 #include <net/if_media.h>
145
146 #if NBPFILTER > 0
147 #include <net/bpf.h>
148 #endif
149 #if NRND > 0
150 #include <sys/rnd.h>
151 #endif
152
153 #include <dev/mii/mii.h>
154 #include <dev/mii/miivar.h>
155 #include <dev/mii/brgphyreg.h>
156
157 #include <dev/pci/pcireg.h>
158 #include <dev/pci/pcivar.h>
159 #include <dev/pci/pcidevs.h>
160
161 /* #define SK_USEIOSPACE */
162
163 #include <dev/pci/if_skreg.h>
164 #include <dev/pci/if_skvar.h>
165
166 int skc_probe(struct device *, struct cfdata *, void *);
167 void skc_attach(struct device *, struct device *self, void *aux);
168 int sk_probe(struct device *, struct cfdata *, void *);
169 void sk_attach(struct device *, struct device *self, void *aux);
170 int skcprint(void *, const char *);
171 int sk_intr(void *);
172 void sk_intr_bcom(struct sk_if_softc *);
173 void sk_intr_xmac(struct sk_if_softc *);
174 void sk_intr_yukon(struct sk_if_softc *);
175 void sk_rxeof(struct sk_if_softc *);
176 void sk_txeof(struct sk_if_softc *);
177 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
178 void sk_start(struct ifnet *);
179 int sk_ioctl(struct ifnet *, u_long, void *);
180 int sk_init(struct ifnet *);
181 void sk_init_xmac(struct sk_if_softc *);
182 void sk_init_yukon(struct sk_if_softc *);
183 void sk_stop(struct ifnet *, int);
184 void sk_watchdog(struct ifnet *);
185 void sk_shutdown(void *);
186 int sk_ifmedia_upd(struct ifnet *);
187 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
188 void sk_reset(struct sk_softc *);
189 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
190 int sk_alloc_jumbo_mem(struct sk_if_softc *);
191 void sk_free_jumbo_mem(struct sk_if_softc *);
192 void *sk_jalloc(struct sk_if_softc *);
193 void sk_jfree(struct mbuf *, void *, size_t, void *);
194 int sk_init_rx_ring(struct sk_if_softc *);
195 int sk_init_tx_ring(struct sk_if_softc *);
196 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
197 void sk_vpd_read_res(struct sk_softc *,
198 struct vpd_res *, int);
199 void sk_vpd_read(struct sk_softc *);
200
201 void sk_update_int_mod(struct sk_softc *);
202
203 int sk_xmac_miibus_readreg(struct device *, int, int);
204 void sk_xmac_miibus_writereg(struct device *, int, int, int);
205 void sk_xmac_miibus_statchg(struct device *);
206
207 int sk_marv_miibus_readreg(struct device *, int, int);
208 void sk_marv_miibus_writereg(struct device *, int, int, int);
209 void sk_marv_miibus_statchg(struct device *);
210
211 u_int32_t sk_xmac_hash(void *);
212 u_int32_t sk_yukon_hash(void *);
213 void sk_setfilt(struct sk_if_softc *, void *, int);
214 void sk_setmulti(struct sk_if_softc *);
215 void sk_tick(void *);
216
217 /* #define SK_DEBUG 2 */
218 #ifdef SK_DEBUG
219 #define DPRINTF(x) if (skdebug) printf x
220 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
221 int skdebug = SK_DEBUG;
222
223 void sk_dump_txdesc(struct sk_tx_desc *, int);
224 void sk_dump_mbuf(struct mbuf *);
225 void sk_dump_bytes(const char *, int);
226 #else
227 #define DPRINTF(x)
228 #define DPRINTFN(n,x)
229 #endif
230
231 static int sk_sysctl_handler(SYSCTLFN_PROTO);
232 static int sk_root_num;
233
234 /* supported device vendors */
235 static const struct sk_product {
236 pci_vendor_id_t sk_vendor;
237 pci_product_id_t sk_product;
238 } sk_products[] = {
239 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
240 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
241 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T, },
242 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
243 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
244 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
245 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
246 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
247 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
248 { 0, 0, }
249 };
250
251 #define SK_LINKSYS_EG1032_SUBID 0x00151737
252
253 static inline u_int32_t
254 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
255 {
256 #ifdef SK_USEIOSPACE
257 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
258 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
259 #else
260 return CSR_READ_4(sc, reg);
261 #endif
262 }
263
264 static inline u_int16_t
265 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
266 {
267 #ifdef SK_USEIOSPACE
268 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
269 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
270 #else
271 return CSR_READ_2(sc, reg);
272 #endif
273 }
274
275 static inline u_int8_t
276 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
277 {
278 #ifdef SK_USEIOSPACE
279 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
280 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
281 #else
282 return CSR_READ_1(sc, reg);
283 #endif
284 }
285
286 static inline void
287 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
288 {
289 #ifdef SK_USEIOSPACE
290 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
291 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
292 #else
293 CSR_WRITE_4(sc, reg, x);
294 #endif
295 }
296
297 static inline void
298 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
299 {
300 #ifdef SK_USEIOSPACE
301 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
302 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
303 #else
304 CSR_WRITE_2(sc, reg, x);
305 #endif
306 }
307
308 static inline void
309 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
310 {
311 #ifdef SK_USEIOSPACE
312 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
313 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
314 #else
315 CSR_WRITE_1(sc, reg, x);
316 #endif
317 }
318
319 /*
320 * The VPD EEPROM contains Vital Product Data, as suggested in
321 * the PCI 2.1 specification. The VPD data is separared into areas
322 * denoted by resource IDs. The SysKonnect VPD contains an ID string
323 * resource (the name of the adapter), a read-only area resource
324 * containing various key/data fields and a read/write area which
325 * can be used to store asset management information or log messages.
326 * We read the ID string and read-only into buffers attached to
327 * the controller softc structure for later use. At the moment,
328 * we only use the ID string during sk_attach().
329 */
330 u_int8_t
331 sk_vpd_readbyte(struct sk_softc *sc, int addr)
332 {
333 int i;
334
335 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
336 for (i = 0; i < SK_TIMEOUT; i++) {
337 DELAY(1);
338 if (sk_win_read_2(sc,
339 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
340 break;
341 }
342
343 if (i == SK_TIMEOUT)
344 return 0;
345
346 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
347 }
348
349 void
350 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
351 {
352 int i;
353 u_int8_t *ptr;
354
355 ptr = (u_int8_t *)res;
356 for (i = 0; i < sizeof(struct vpd_res); i++)
357 ptr[i] = sk_vpd_readbyte(sc, i + addr);
358 }
359
360 void
361 sk_vpd_read(struct sk_softc *sc)
362 {
363 int pos = 0, i;
364 struct vpd_res res;
365
366 if (sc->sk_vpd_prodname != NULL)
367 free(sc->sk_vpd_prodname, M_DEVBUF);
368 if (sc->sk_vpd_readonly != NULL)
369 free(sc->sk_vpd_readonly, M_DEVBUF);
370 sc->sk_vpd_prodname = NULL;
371 sc->sk_vpd_readonly = NULL;
372
373 sk_vpd_read_res(sc, &res, pos);
374
375 if (res.vr_id != VPD_RES_ID) {
376 aprint_error("%s: bad VPD resource id: expected %x got %x\n",
377 sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
378 return;
379 }
380
381 pos += sizeof(res);
382 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
383 if (sc->sk_vpd_prodname == NULL)
384 panic("sk_vpd_read");
385 for (i = 0; i < res.vr_len; i++)
386 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
387 sc->sk_vpd_prodname[i] = '\0';
388 pos += i;
389
390 sk_vpd_read_res(sc, &res, pos);
391
392 if (res.vr_id != VPD_RES_READ) {
393 aprint_error("%s: bad VPD resource id: expected %x got %x\n",
394 sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
395 return;
396 }
397
398 pos += sizeof(res);
399 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
400 if (sc->sk_vpd_readonly == NULL)
401 panic("sk_vpd_read");
402 for (i = 0; i < res.vr_len ; i++)
403 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
404 }
405
406 int
407 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
408 {
409 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
410 int i;
411
412 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
413
414 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
415 return 0;
416
417 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
418 SK_XM_READ_2(sc_if, XM_PHY_DATA);
419 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
420 for (i = 0; i < SK_TIMEOUT; i++) {
421 DELAY(1);
422 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
423 XM_MMUCMD_PHYDATARDY)
424 break;
425 }
426
427 if (i == SK_TIMEOUT) {
428 aprint_error("%s: phy failed to come ready\n",
429 sc_if->sk_dev.dv_xname);
430 return 0;
431 }
432 }
433 DELAY(1);
434 return SK_XM_READ_2(sc_if, XM_PHY_DATA);
435 }
436
437 void
438 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
439 {
440 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
441 int i;
442
443 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
444
445 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
446 for (i = 0; i < SK_TIMEOUT; i++) {
447 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
448 break;
449 }
450
451 if (i == SK_TIMEOUT) {
452 aprint_error("%s: phy failed to come ready\n",
453 sc_if->sk_dev.dv_xname);
454 return;
455 }
456
457 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
458 for (i = 0; i < SK_TIMEOUT; i++) {
459 DELAY(1);
460 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
461 break;
462 }
463
464 if (i == SK_TIMEOUT)
465 aprint_error("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
466 }
467
468 void
469 sk_xmac_miibus_statchg(struct device *dev)
470 {
471 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
472 struct mii_data *mii = &sc_if->sk_mii;
473
474 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
475
476 /*
477 * If this is a GMII PHY, manually set the XMAC's
478 * duplex mode accordingly.
479 */
480 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
481 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
482 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
483 else
484 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
485 }
486 }
487
488 int
489 sk_marv_miibus_readreg(struct device *dev, int phy, int reg)
490 {
491 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
492 u_int16_t val;
493 int i;
494
495 if (phy != 0 ||
496 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
497 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
498 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
499 phy, reg));
500 return 0;
501 }
502
503 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
504 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
505
506 for (i = 0; i < SK_TIMEOUT; i++) {
507 DELAY(1);
508 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
509 if (val & YU_SMICR_READ_VALID)
510 break;
511 }
512
513 if (i == SK_TIMEOUT) {
514 aprint_error("%s: phy failed to come ready\n",
515 sc_if->sk_dev.dv_xname);
516 return 0;
517 }
518
519 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
520 SK_TIMEOUT));
521
522 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
523
524 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
525 phy, reg, val));
526
527 return val;
528 }
529
530 void
531 sk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
532 {
533 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
534 int i;
535
536 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
537 phy, reg, val));
538
539 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
540 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
541 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
542
543 for (i = 0; i < SK_TIMEOUT; i++) {
544 DELAY(1);
545 if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
546 break;
547 }
548 }
549
550 void
551 sk_marv_miibus_statchg(struct device *dev)
552 {
553 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
554 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
555 }
556
557 #define SK_HASH_BITS 6
558
559 u_int32_t
560 sk_xmac_hash(void *addr)
561 {
562 u_int32_t crc;
563
564 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
565 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
566 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
567 return crc;
568 }
569
570 u_int32_t
571 sk_yukon_hash(void *addr)
572 {
573 u_int32_t crc;
574
575 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
576 crc &= ((1 << SK_HASH_BITS) - 1);
577 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
578 return crc;
579 }
580
581 void
582 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
583 {
584 char *addr = addrv;
585 int base = XM_RXFILT_ENTRY(slot);
586
587 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
588 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
589 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
590 }
591
592 void
593 sk_setmulti(struct sk_if_softc *sc_if)
594 {
595 struct sk_softc *sc = sc_if->sk_softc;
596 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
597 u_int32_t hashes[2] = { 0, 0 };
598 int h = 0, i;
599 struct ethercom *ec = &sc_if->sk_ethercom;
600 struct ether_multi *enm;
601 struct ether_multistep step;
602 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
603
604 /* First, zot all the existing filters. */
605 switch (sc->sk_type) {
606 case SK_GENESIS:
607 for (i = 1; i < XM_RXFILT_MAX; i++)
608 sk_setfilt(sc_if, (void *)&dummy, i);
609
610 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
611 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
612 break;
613 case SK_YUKON:
614 case SK_YUKON_LITE:
615 case SK_YUKON_LP:
616 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
617 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
618 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
619 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
620 break;
621 }
622
623 /* Now program new ones. */
624 allmulti:
625 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
626 hashes[0] = 0xFFFFFFFF;
627 hashes[1] = 0xFFFFFFFF;
628 } else {
629 i = 1;
630 /* First find the tail of the list. */
631 ETHER_FIRST_MULTI(step, ec, enm);
632 while (enm != NULL) {
633 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
634 ETHER_ADDR_LEN)) {
635 ifp->if_flags |= IFF_ALLMULTI;
636 goto allmulti;
637 }
638 DPRINTFN(2,("multicast address %s\n",
639 ether_sprintf(enm->enm_addrlo)));
640 /*
641 * Program the first XM_RXFILT_MAX multicast groups
642 * into the perfect filter. For all others,
643 * use the hash table.
644 */
645 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
646 sk_setfilt(sc_if, enm->enm_addrlo, i);
647 i++;
648 }
649 else {
650 switch (sc->sk_type) {
651 case SK_GENESIS:
652 h = sk_xmac_hash(enm->enm_addrlo);
653 break;
654 case SK_YUKON:
655 case SK_YUKON_LITE:
656 case SK_YUKON_LP:
657 h = sk_yukon_hash(enm->enm_addrlo);
658 break;
659 }
660 if (h < 32)
661 hashes[0] |= (1 << h);
662 else
663 hashes[1] |= (1 << (h - 32));
664 }
665
666 ETHER_NEXT_MULTI(step, enm);
667 }
668 }
669
670 switch (sc->sk_type) {
671 case SK_GENESIS:
672 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
673 XM_MODE_RX_USE_PERFECT);
674 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
675 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
676 break;
677 case SK_YUKON:
678 case SK_YUKON_LITE:
679 case SK_YUKON_LP:
680 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
681 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
682 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
683 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
684 break;
685 }
686 }
687
688 int
689 sk_init_rx_ring(struct sk_if_softc *sc_if)
690 {
691 struct sk_chain_data *cd = &sc_if->sk_cdata;
692 struct sk_ring_data *rd = sc_if->sk_rdata;
693 int i;
694
695 bzero((char *)rd->sk_rx_ring,
696 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
697
698 for (i = 0; i < SK_RX_RING_CNT; i++) {
699 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
700 if (i == (SK_RX_RING_CNT - 1)) {
701 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
702 rd->sk_rx_ring[i].sk_next =
703 htole32(SK_RX_RING_ADDR(sc_if, 0));
704 } else {
705 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
706 rd->sk_rx_ring[i].sk_next =
707 htole32(SK_RX_RING_ADDR(sc_if,i+1));
708 }
709 }
710
711 for (i = 0; i < SK_RX_RING_CNT; i++) {
712 if (sk_newbuf(sc_if, i, NULL,
713 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
714 aprint_error("%s: failed alloc of %dth mbuf\n",
715 sc_if->sk_dev.dv_xname, i);
716 return ENOBUFS;
717 }
718 }
719 sc_if->sk_cdata.sk_rx_prod = 0;
720 sc_if->sk_cdata.sk_rx_cons = 0;
721
722 return 0;
723 }
724
725 int
726 sk_init_tx_ring(struct sk_if_softc *sc_if)
727 {
728 struct sk_chain_data *cd = &sc_if->sk_cdata;
729 struct sk_ring_data *rd = sc_if->sk_rdata;
730 int i;
731
732 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
733 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
734
735 for (i = 0; i < SK_TX_RING_CNT; i++) {
736 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
737 if (i == (SK_TX_RING_CNT - 1)) {
738 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
739 rd->sk_tx_ring[i].sk_next =
740 htole32(SK_TX_RING_ADDR(sc_if, 0));
741 } else {
742 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
743 rd->sk_tx_ring[i].sk_next =
744 htole32(SK_TX_RING_ADDR(sc_if,i+1));
745 }
746 }
747
748 sc_if->sk_cdata.sk_tx_prod = 0;
749 sc_if->sk_cdata.sk_tx_cons = 0;
750 sc_if->sk_cdata.sk_tx_cnt = 0;
751
752 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
753 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
754
755 return 0;
756 }
757
758 int
759 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
760 bus_dmamap_t dmamap)
761 {
762 struct mbuf *m_new = NULL;
763 struct sk_chain *c;
764 struct sk_rx_desc *r;
765
766 if (m == NULL) {
767 void *buf = NULL;
768
769 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
770 if (m_new == NULL) {
771 aprint_error("%s: no memory for rx list -- "
772 "packet dropped!\n", sc_if->sk_dev.dv_xname);
773 return ENOBUFS;
774 }
775
776 /* Allocate the jumbo buffer */
777 buf = sk_jalloc(sc_if);
778 if (buf == NULL) {
779 m_freem(m_new);
780 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
781 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
782 return ENOBUFS;
783 }
784
785 /* Attach the buffer to the mbuf */
786 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
787 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
788
789 } else {
790 /*
791 * We're re-using a previously allocated mbuf;
792 * be sure to re-init pointers and lengths to
793 * default values.
794 */
795 m_new = m;
796 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
797 m_new->m_data = m_new->m_ext.ext_buf;
798 }
799 m_adj(m_new, ETHER_ALIGN);
800
801 c = &sc_if->sk_cdata.sk_rx_chain[i];
802 r = c->sk_desc;
803 c->sk_mbuf = m_new;
804 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
805 (((vaddr_t)m_new->m_data
806 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
807 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
808
809 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
810
811 return 0;
812 }
813
814 /*
815 * Memory management for jumbo frames.
816 */
817
818 int
819 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
820 {
821 struct sk_softc *sc = sc_if->sk_softc;
822 char *ptr, *kva;
823 bus_dma_segment_t seg;
824 int i, rseg, state, error;
825 struct sk_jpool_entry *entry;
826
827 state = error = 0;
828
829 /* Grab a big chunk o' storage. */
830 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
831 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
832 aprint_error("%s: can't alloc rx buffers\n", sc->sk_dev.dv_xname);
833 return ENOBUFS;
834 }
835
836 state = 1;
837 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
838 BUS_DMA_NOWAIT)) {
839 aprint_error("%s: can't map dma buffers (%d bytes)\n",
840 sc->sk_dev.dv_xname, SK_JMEM);
841 error = ENOBUFS;
842 goto out;
843 }
844
845 state = 2;
846 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
847 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
848 aprint_error("%s: can't create dma map\n", sc->sk_dev.dv_xname);
849 error = ENOBUFS;
850 goto out;
851 }
852
853 state = 3;
854 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
855 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
856 aprint_error("%s: can't load dma map\n", sc->sk_dev.dv_xname);
857 error = ENOBUFS;
858 goto out;
859 }
860
861 state = 4;
862 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
863 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
864
865 LIST_INIT(&sc_if->sk_jfree_listhead);
866 LIST_INIT(&sc_if->sk_jinuse_listhead);
867
868 /*
869 * Now divide it up into 9K pieces and save the addresses
870 * in an array.
871 */
872 ptr = sc_if->sk_cdata.sk_jumbo_buf;
873 for (i = 0; i < SK_JSLOTS; i++) {
874 sc_if->sk_cdata.sk_jslots[i] = ptr;
875 ptr += SK_JLEN;
876 entry = malloc(sizeof(struct sk_jpool_entry),
877 M_DEVBUF, M_NOWAIT);
878 if (entry == NULL) {
879 aprint_error("%s: no memory for jumbo buffer queue!\n",
880 sc->sk_dev.dv_xname);
881 error = ENOBUFS;
882 goto out;
883 }
884 entry->slot = i;
885 if (i)
886 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
887 entry, jpool_entries);
888 else
889 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
890 entry, jpool_entries);
891 }
892 out:
893 if (error != 0) {
894 switch (state) {
895 case 4:
896 bus_dmamap_unload(sc->sc_dmatag,
897 sc_if->sk_cdata.sk_rx_jumbo_map);
898 case 3:
899 bus_dmamap_destroy(sc->sc_dmatag,
900 sc_if->sk_cdata.sk_rx_jumbo_map);
901 case 2:
902 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
903 case 1:
904 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
905 break;
906 default:
907 break;
908 }
909 }
910
911 return error;
912 }
913
914 /*
915 * Allocate a jumbo buffer.
916 */
917 void *
918 sk_jalloc(struct sk_if_softc *sc_if)
919 {
920 struct sk_jpool_entry *entry;
921
922 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
923
924 if (entry == NULL)
925 return NULL;
926
927 LIST_REMOVE(entry, jpool_entries);
928 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
929 return sc_if->sk_cdata.sk_jslots[entry->slot];
930 }
931
932 /*
933 * Release a jumbo buffer.
934 */
935 void
936 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
937 {
938 struct sk_jpool_entry *entry;
939 struct sk_if_softc *sc;
940 int i, s;
941
942 /* Extract the softc struct pointer. */
943 sc = (struct sk_if_softc *)arg;
944
945 if (sc == NULL)
946 panic("sk_jfree: can't find softc pointer!");
947
948 /* calculate the slot this buffer belongs to */
949
950 i = ((vaddr_t)buf
951 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
952
953 if ((i < 0) || (i >= SK_JSLOTS))
954 panic("sk_jfree: asked to free buffer that we don't manage!");
955
956 s = splvm();
957 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
958 if (entry == NULL)
959 panic("sk_jfree: buffer not in use!");
960 entry->slot = i;
961 LIST_REMOVE(entry, jpool_entries);
962 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
963
964 if (__predict_true(m != NULL))
965 pool_cache_put(&mbpool_cache, m);
966 splx(s);
967 }
968
969 /*
970 * Set media options.
971 */
972 int
973 sk_ifmedia_upd(struct ifnet *ifp)
974 {
975 struct sk_if_softc *sc_if = ifp->if_softc;
976
977 (void) sk_init(ifp);
978 mii_mediachg(&sc_if->sk_mii);
979 return 0;
980 }
981
982 /*
983 * Report current media status.
984 */
985 void
986 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
987 {
988 struct sk_if_softc *sc_if = ifp->if_softc;
989
990 mii_pollstat(&sc_if->sk_mii);
991 ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
992 ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
993 }
994
995 int
996 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
997 {
998 struct sk_if_softc *sc_if = ifp->if_softc;
999 struct sk_softc *sc = sc_if->sk_softc;
1000 struct ifreq *ifr = (struct ifreq *) data;
1001 struct mii_data *mii;
1002 int s, error = 0;
1003
1004 /* DPRINTFN(2, ("sk_ioctl\n")); */
1005
1006 s = splnet();
1007
1008 switch (command) {
1009
1010 case SIOCSIFFLAGS:
1011 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1012 if (ifp->if_flags & IFF_UP) {
1013 if (ifp->if_flags & IFF_RUNNING &&
1014 ifp->if_flags & IFF_PROMISC &&
1015 !(sc_if->sk_if_flags & IFF_PROMISC)) {
1016 switch (sc->sk_type) {
1017 case SK_GENESIS:
1018 SK_XM_SETBIT_4(sc_if, XM_MODE,
1019 XM_MODE_RX_PROMISC);
1020 break;
1021 case SK_YUKON:
1022 case SK_YUKON_LITE:
1023 case SK_YUKON_LP:
1024 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1025 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1026 break;
1027 }
1028 sk_setmulti(sc_if);
1029 } else if (ifp->if_flags & IFF_RUNNING &&
1030 !(ifp->if_flags & IFF_PROMISC) &&
1031 sc_if->sk_if_flags & IFF_PROMISC) {
1032 switch (sc->sk_type) {
1033 case SK_GENESIS:
1034 SK_XM_CLRBIT_4(sc_if, XM_MODE,
1035 XM_MODE_RX_PROMISC);
1036 break;
1037 case SK_YUKON:
1038 case SK_YUKON_LITE:
1039 case SK_YUKON_LP:
1040 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1041 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1042 break;
1043 }
1044
1045 sk_setmulti(sc_if);
1046 } else
1047 (void) sk_init(ifp);
1048 } else {
1049 if (ifp->if_flags & IFF_RUNNING)
1050 sk_stop(ifp,0);
1051 }
1052 sc_if->sk_if_flags = ifp->if_flags;
1053 error = 0;
1054 break;
1055
1056 case SIOCGIFMEDIA:
1057 case SIOCSIFMEDIA:
1058 DPRINTFN(2, ("sk_ioctl MEDIA\n"));
1059 mii = &sc_if->sk_mii;
1060 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1061 break;
1062 default:
1063 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1064 error = ether_ioctl(ifp, command, data);
1065
1066 if ( error == ENETRESET) {
1067 if (ifp->if_flags & IFF_RUNNING) {
1068 sk_setmulti(sc_if);
1069 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1070 }
1071 error = 0;
1072 } else if ( error ) {
1073 splx(s);
1074 return error;
1075 }
1076 break;
1077 }
1078
1079 splx(s);
1080 return error;
1081 }
1082
1083 void
1084 sk_update_int_mod(struct sk_softc *sc)
1085 {
1086 u_int32_t imtimer_ticks;
1087
1088 /*
1089 * Configure interrupt moderation. The moderation timer
1090 * defers interrupts specified in the interrupt moderation
1091 * timer mask based on the timeout specified in the interrupt
1092 * moderation timer init register. Each bit in the timer
1093 * register represents one tick, so to specify a timeout in
1094 * microseconds, we have to multiply by the correct number of
1095 * ticks-per-microsecond.
1096 */
1097 switch (sc->sk_type) {
1098 case SK_GENESIS:
1099 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1100 break;
1101 case SK_YUKON_EC:
1102 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1103 break;
1104 default:
1105 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1106 }
1107 aprint_verbose("%s: interrupt moderation is %d us\n",
1108 sc->sk_dev.dv_xname, sc->sk_int_mod);
1109 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1110 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1111 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1112 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1113 sc->sk_int_mod_pending = 0;
1114 }
1115
1116 /*
1117 * Lookup: Check the PCI vendor and device, and return a pointer to
1118 * The structure if the IDs match against our list.
1119 */
1120
1121 static const struct sk_product *
1122 sk_lookup(const struct pci_attach_args *pa)
1123 {
1124 const struct sk_product *psk;
1125
1126 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1127 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1128 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1129 return psk;
1130 }
1131 return NULL;
1132 }
1133
1134 /*
1135 * Probe for a SysKonnect GEnesis chip.
1136 */
1137
1138 int
1139 skc_probe(struct device *parent, struct cfdata *match,
1140 void *aux)
1141 {
1142 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1143 const struct sk_product *psk;
1144 pcireg_t subid;
1145
1146 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1147
1148 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1149 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1150 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1151 subid == SK_LINKSYS_EG1032_SUBID)
1152 return 1;
1153
1154 if ((psk = sk_lookup(pa))) {
1155 return 1;
1156 }
1157 return 0;
1158 }
1159
1160 /*
1161 * Force the GEnesis into reset, then bring it out of reset.
1162 */
1163 void sk_reset(struct sk_softc *sc)
1164 {
1165 DPRINTFN(2, ("sk_reset\n"));
1166
1167 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1168 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1169 if (SK_YUKON_FAMILY(sc->sk_type))
1170 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1171
1172 DELAY(1000);
1173 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1174 DELAY(2);
1175 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1176 if (SK_YUKON_FAMILY(sc->sk_type))
1177 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1178
1179 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1180 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1181 CSR_READ_2(sc, SK_LINK_CTRL)));
1182
1183 if (sc->sk_type == SK_GENESIS) {
1184 /* Configure packet arbiter */
1185 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1186 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1187 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1188 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1189 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1190 }
1191
1192 /* Enable RAM interface */
1193 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1194
1195 sk_update_int_mod(sc);
1196 }
1197
1198 int
1199 sk_probe(struct device *parent, struct cfdata *match,
1200 void *aux)
1201 {
1202 struct skc_attach_args *sa = aux;
1203
1204 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1205 return 0;
1206
1207 return 1;
1208 }
1209
1210 /*
1211 * Each XMAC chip is attached as a separate logical IP interface.
1212 * Single port cards will have only one logical interface of course.
1213 */
1214 void
1215 sk_attach(struct device *parent, struct device *self, void *aux)
1216 {
1217 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1218 struct sk_softc *sc = (struct sk_softc *)parent;
1219 struct skc_attach_args *sa = aux;
1220 struct sk_txmap_entry *entry;
1221 struct ifnet *ifp;
1222 bus_dma_segment_t seg;
1223 bus_dmamap_t dmamap;
1224 void *kva;
1225 int i, rseg;
1226
1227 sc_if->sk_port = sa->skc_port;
1228 sc_if->sk_softc = sc;
1229 sc->sk_if[sa->skc_port] = sc_if;
1230
1231 if (sa->skc_port == SK_PORT_A)
1232 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1233 if (sa->skc_port == SK_PORT_B)
1234 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1235
1236 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1237
1238 /*
1239 * Get station address for this interface. Note that
1240 * dual port cards actually come with three station
1241 * addresses: one for each port, plus an extra. The
1242 * extra one is used by the SysKonnect driver software
1243 * as a 'virtual' station address for when both ports
1244 * are operating in failover mode. Currently we don't
1245 * use this extra address.
1246 */
1247 for (i = 0; i < ETHER_ADDR_LEN; i++)
1248 sc_if->sk_enaddr[i] =
1249 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1250
1251
1252 aprint_normal(": Ethernet address %s\n",
1253 ether_sprintf(sc_if->sk_enaddr));
1254
1255 /*
1256 * Set up RAM buffer addresses. The NIC will have a certain
1257 * amount of SRAM on it, somewhere between 512K and 2MB. We
1258 * need to divide this up a) between the transmitter and
1259 * receiver and b) between the two XMACs, if this is a
1260 * dual port NIC. Our algorithm is to divide up the memory
1261 * evenly so that everyone gets a fair share.
1262 */
1263 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1264 u_int32_t chunk, val;
1265
1266 chunk = sc->sk_ramsize / 2;
1267 val = sc->sk_rboff / sizeof(u_int64_t);
1268 sc_if->sk_rx_ramstart = val;
1269 val += (chunk / sizeof(u_int64_t));
1270 sc_if->sk_rx_ramend = val - 1;
1271 sc_if->sk_tx_ramstart = val;
1272 val += (chunk / sizeof(u_int64_t));
1273 sc_if->sk_tx_ramend = val - 1;
1274 } else {
1275 u_int32_t chunk, val;
1276
1277 chunk = sc->sk_ramsize / 4;
1278 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1279 sizeof(u_int64_t);
1280 sc_if->sk_rx_ramstart = val;
1281 val += (chunk / sizeof(u_int64_t));
1282 sc_if->sk_rx_ramend = val - 1;
1283 sc_if->sk_tx_ramstart = val;
1284 val += (chunk / sizeof(u_int64_t));
1285 sc_if->sk_tx_ramend = val - 1;
1286 }
1287
1288 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1289 " tx_ramstart=%#x tx_ramend=%#x\n",
1290 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1291 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1292
1293 /* Read and save PHY type and set PHY address */
1294 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1295 switch (sc_if->sk_phytype) {
1296 case SK_PHYTYPE_XMAC:
1297 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1298 break;
1299 case SK_PHYTYPE_BCOM:
1300 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1301 break;
1302 case SK_PHYTYPE_MARV_COPPER:
1303 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1304 break;
1305 default:
1306 aprint_error("%s: unsupported PHY type: %d\n",
1307 sc->sk_dev.dv_xname, sc_if->sk_phytype);
1308 return;
1309 }
1310
1311 /* Allocate the descriptor queues. */
1312 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1313 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1314 aprint_error("%s: can't alloc rx buffers\n",
1315 sc->sk_dev.dv_xname);
1316 goto fail;
1317 }
1318 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1319 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1320 aprint_error("%s: can't map dma buffers (%lu bytes)\n",
1321 sc_if->sk_dev.dv_xname,
1322 (u_long) sizeof(struct sk_ring_data));
1323 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1324 goto fail;
1325 }
1326 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1327 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1328 &sc_if->sk_ring_map)) {
1329 aprint_error("%s: can't create dma map\n",
1330 sc_if->sk_dev.dv_xname);
1331 bus_dmamem_unmap(sc->sc_dmatag, kva,
1332 sizeof(struct sk_ring_data));
1333 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1334 goto fail;
1335 }
1336 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1337 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1338 aprint_error("%s: can't load dma map\n",
1339 sc_if->sk_dev.dv_xname);
1340 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1341 bus_dmamem_unmap(sc->sc_dmatag, kva,
1342 sizeof(struct sk_ring_data));
1343 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1344 goto fail;
1345 }
1346
1347 for (i = 0; i < SK_RX_RING_CNT; i++)
1348 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1349
1350 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1351 for (i = 0; i < SK_TX_RING_CNT; i++) {
1352 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1353
1354 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1355 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1356 aprint_error("%s: Can't create TX dmamap\n",
1357 sc_if->sk_dev.dv_xname);
1358 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1359 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1360 bus_dmamem_unmap(sc->sc_dmatag, kva,
1361 sizeof(struct sk_ring_data));
1362 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1363 goto fail;
1364 }
1365
1366 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1367 if (!entry) {
1368 aprint_error("%s: Can't alloc txmap entry\n",
1369 sc_if->sk_dev.dv_xname);
1370 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1371 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1372 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1373 bus_dmamem_unmap(sc->sc_dmatag, kva,
1374 sizeof(struct sk_ring_data));
1375 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1376 goto fail;
1377 }
1378 entry->dmamap = dmamap;
1379 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1380 }
1381
1382 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1383 bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1384
1385 ifp = &sc_if->sk_ethercom.ec_if;
1386 /* Try to allocate memory for jumbo buffers. */
1387 if (sk_alloc_jumbo_mem(sc_if)) {
1388 aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1389 goto fail;
1390 }
1391 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1392 | ETHERCAP_JUMBO_MTU;
1393
1394 ifp->if_softc = sc_if;
1395 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1396 ifp->if_ioctl = sk_ioctl;
1397 ifp->if_start = sk_start;
1398 ifp->if_stop = sk_stop;
1399 ifp->if_init = sk_init;
1400 ifp->if_watchdog = sk_watchdog;
1401 ifp->if_capabilities = 0;
1402 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1403 IFQ_SET_READY(&ifp->if_snd);
1404 strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1405
1406 /*
1407 * Do miibus setup.
1408 */
1409 switch (sc->sk_type) {
1410 case SK_GENESIS:
1411 sk_init_xmac(sc_if);
1412 break;
1413 case SK_YUKON:
1414 case SK_YUKON_LITE:
1415 case SK_YUKON_LP:
1416 sk_init_yukon(sc_if);
1417 break;
1418 default:
1419 panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
1420 sc->sk_type);
1421 }
1422
1423 DPRINTFN(2, ("sk_attach: 1\n"));
1424
1425 sc_if->sk_mii.mii_ifp = ifp;
1426 switch (sc->sk_type) {
1427 case SK_GENESIS:
1428 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1429 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1430 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1431 break;
1432 case SK_YUKON:
1433 case SK_YUKON_LITE:
1434 case SK_YUKON_LP:
1435 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1436 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1437 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1438 break;
1439 }
1440
1441 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1442 sk_ifmedia_upd, sk_ifmedia_sts);
1443 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1444 MII_OFFSET_ANY, 0);
1445 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1446 aprint_error("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1447 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1448 0, NULL);
1449 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1450 } else
1451 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1452
1453 callout_init(&sc_if->sk_tick_ch);
1454 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1455
1456 DPRINTFN(2, ("sk_attach: 1\n"));
1457
1458 /*
1459 * Call MI attach routines.
1460 */
1461 if_attach(ifp);
1462
1463 ether_ifattach(ifp, sc_if->sk_enaddr);
1464
1465 #if NRND > 0
1466 rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
1467 RND_TYPE_NET, 0);
1468 #endif
1469
1470 DPRINTFN(2, ("sk_attach: end\n"));
1471
1472 return;
1473
1474 fail:
1475 sc->sk_if[sa->skc_port] = NULL;
1476 }
1477
1478 int
1479 skcprint(void *aux, const char *pnp)
1480 {
1481 struct skc_attach_args *sa = aux;
1482
1483 if (pnp)
1484 aprint_normal("sk port %c at %s",
1485 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1486 else
1487 aprint_normal(" port %c",
1488 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1489 return UNCONF;
1490 }
1491
1492 /*
1493 * Attach the interface. Allocate softc structures, do ifmedia
1494 * setup and ethernet/BPF attach.
1495 */
1496 void
1497 skc_attach(struct device *parent, struct device *self, void *aux)
1498 {
1499 struct sk_softc *sc = (struct sk_softc *)self;
1500 struct pci_attach_args *pa = aux;
1501 struct skc_attach_args skca;
1502 pci_chipset_tag_t pc = pa->pa_pc;
1503 #ifndef SK_USEIOSPACE
1504 pcireg_t memtype;
1505 #endif
1506 pci_intr_handle_t ih;
1507 const char *intrstr = NULL;
1508 bus_addr_t iobase;
1509 bus_size_t iosize;
1510 int rc, sk_nodenum;
1511 u_int32_t command;
1512 const char *revstr;
1513 const struct sysctlnode *node;
1514
1515 DPRINTFN(2, ("begin skc_attach\n"));
1516
1517 /*
1518 * Handle power management nonsense.
1519 */
1520 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1521
1522 if (command == 0x01) {
1523 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1524 if (command & SK_PSTATE_MASK) {
1525 u_int32_t xiobase, membase, irq;
1526
1527 /* Save important PCI config data. */
1528 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1529 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1530 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1531
1532 /* Reset the power state. */
1533 aprint_normal("%s chip is in D%d power mode "
1534 "-- setting to D0\n", sc->sk_dev.dv_xname,
1535 command & SK_PSTATE_MASK);
1536 command &= 0xFFFFFFFC;
1537 pci_conf_write(pc, pa->pa_tag,
1538 SK_PCI_PWRMGMTCTRL, command);
1539
1540 /* Restore PCI config data. */
1541 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1542 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1543 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1544 }
1545 }
1546
1547 /*
1548 * Map control/status registers.
1549 */
1550 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1551 command |= PCI_COMMAND_IO_ENABLE |
1552 PCI_COMMAND_MEM_ENABLE |
1553 PCI_COMMAND_MASTER_ENABLE;
1554 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1555 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1556
1557 #ifdef SK_USEIOSPACE
1558 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1559 aprint_error(": failed to enable I/O ports!\n");
1560 return;
1561 }
1562 /*
1563 * Map control/status registers.
1564 */
1565 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1566 &sc->sk_btag, &sc->sk_bhandle,
1567 &iobase, &iosize)) {
1568 aprint_error(": can't find i/o space\n");
1569 return;
1570 }
1571 #else
1572 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1573 aprint_error(": failed to enable memory mapping!\n");
1574 return;
1575 }
1576 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1577 switch (memtype) {
1578 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1579 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1580 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1581 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1582 &iobase, &iosize) == 0)
1583 break;
1584 default:
1585 aprint_error("%s: can't find mem space\n",
1586 sc->sk_dev.dv_xname);
1587 return;
1588 }
1589
1590 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1591 #endif
1592 sc->sc_dmatag = pa->pa_dmat;
1593
1594 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1595 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1596
1597 /* bail out here if chip is not recognized */
1598 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1599 aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
1600 goto fail;
1601 }
1602 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1603
1604 /* Allocate interrupt */
1605 if (pci_intr_map(pa, &ih)) {
1606 aprint_error(": couldn't map interrupt\n");
1607 goto fail;
1608 }
1609
1610 intrstr = pci_intr_string(pc, ih);
1611 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1612 if (sc->sk_intrhand == NULL) {
1613 aprint_error(": couldn't establish interrupt");
1614 if (intrstr != NULL)
1615 aprint_normal(" at %s", intrstr);
1616 goto fail;
1617 }
1618 aprint_normal(": %s\n", intrstr);
1619
1620 /* Reset the adapter. */
1621 sk_reset(sc);
1622
1623 /* Read and save vital product data from EEPROM. */
1624 sk_vpd_read(sc);
1625
1626 if (sc->sk_type == SK_GENESIS) {
1627 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1628 /* Read and save RAM size and RAMbuffer offset */
1629 switch (val) {
1630 case SK_RAMSIZE_512K_64:
1631 sc->sk_ramsize = 0x80000;
1632 sc->sk_rboff = SK_RBOFF_0;
1633 break;
1634 case SK_RAMSIZE_1024K_64:
1635 sc->sk_ramsize = 0x100000;
1636 sc->sk_rboff = SK_RBOFF_80000;
1637 break;
1638 case SK_RAMSIZE_1024K_128:
1639 sc->sk_ramsize = 0x100000;
1640 sc->sk_rboff = SK_RBOFF_0;
1641 break;
1642 case SK_RAMSIZE_2048K_128:
1643 sc->sk_ramsize = 0x200000;
1644 sc->sk_rboff = SK_RBOFF_0;
1645 break;
1646 default:
1647 aprint_error("%s: unknown ram size: %d\n",
1648 sc->sk_dev.dv_xname, val);
1649 goto fail_1;
1650 break;
1651 }
1652
1653 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1654 sc->sk_ramsize, sc->sk_ramsize / 1024,
1655 sc->sk_rboff));
1656 } else {
1657 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1658 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1659 sc->sk_rboff = SK_RBOFF_0;
1660
1661 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1662 sc->sk_ramsize / 1024, sc->sk_ramsize,
1663 sc->sk_rboff));
1664 }
1665
1666 /* Read and save physical media type */
1667 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1668 case SK_PMD_1000BASESX:
1669 sc->sk_pmd = IFM_1000_SX;
1670 break;
1671 case SK_PMD_1000BASELX:
1672 sc->sk_pmd = IFM_1000_LX;
1673 break;
1674 case SK_PMD_1000BASECX:
1675 sc->sk_pmd = IFM_1000_CX;
1676 break;
1677 case SK_PMD_1000BASETX:
1678 case SK_PMD_1000BASETX_ALT:
1679 sc->sk_pmd = IFM_1000_T;
1680 break;
1681 default:
1682 aprint_error("%s: unknown media type: 0x%x\n",
1683 sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
1684 goto fail_1;
1685 }
1686
1687 /* determine whether to name it with vpd or just make it up */
1688 /* Marvell Yukon VPD's can freqently be bogus */
1689
1690 switch (pa->pa_id) {
1691 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1692 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1693 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1694 case PCI_PRODUCT_3COM_3C940:
1695 case PCI_PRODUCT_DLINK_DGE530T:
1696 case PCI_PRODUCT_DLINK_DGE560T:
1697 case PCI_PRODUCT_DLINK_DGE560T_2:
1698 case PCI_PRODUCT_LINKSYS_EG1032:
1699 case PCI_PRODUCT_LINKSYS_EG1064:
1700 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1701 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1702 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1703 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1704 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1705 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1706 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1707 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1708 sc->sk_name = sc->sk_vpd_prodname;
1709 break;
1710 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1711 /* whoops yukon vpd prodname bears no resemblance to reality */
1712 switch (sc->sk_type) {
1713 case SK_GENESIS:
1714 sc->sk_name = sc->sk_vpd_prodname;
1715 break;
1716 case SK_YUKON:
1717 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1718 break;
1719 case SK_YUKON_LITE:
1720 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1721 break;
1722 case SK_YUKON_LP:
1723 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1724 break;
1725 default:
1726 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1727 }
1728
1729 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1730
1731 if ( sc->sk_type == SK_YUKON ) {
1732 uint32_t flashaddr;
1733 uint8_t testbyte;
1734
1735 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1736
1737 /* test Flash-Address Register */
1738 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1739 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1740
1741 if (testbyte != 0) {
1742 /* this is yukon lite Rev. A0 */
1743 sc->sk_type = SK_YUKON_LITE;
1744 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1745 /* restore Flash-Address Register */
1746 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1747 }
1748 }
1749 break;
1750 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1751 sc->sk_name = sc->sk_vpd_prodname;
1752 break;
1753 default:
1754 sc->sk_name = "Unknown Marvell";
1755 }
1756
1757
1758 if ( sc->sk_type == SK_YUKON_LITE ) {
1759 switch (sc->sk_rev) {
1760 case SK_YUKON_LITE_REV_A0:
1761 revstr = "A0";
1762 break;
1763 case SK_YUKON_LITE_REV_A1:
1764 revstr = "A1";
1765 break;
1766 case SK_YUKON_LITE_REV_A3:
1767 revstr = "A3";
1768 break;
1769 default:
1770 revstr = "";
1771 }
1772 } else {
1773 revstr = "";
1774 }
1775
1776 /* Announce the product name. */
1777 aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
1778 sc->sk_name, revstr, sc->sk_rev);
1779
1780 skca.skc_port = SK_PORT_A;
1781 (void)config_found(&sc->sk_dev, &skca, skcprint);
1782
1783 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1784 skca.skc_port = SK_PORT_B;
1785 (void)config_found(&sc->sk_dev, &skca, skcprint);
1786 }
1787
1788 /* Turn on the 'driver is loaded' LED. */
1789 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1790
1791 /* skc sysctl setup */
1792
1793 sc->sk_int_mod = SK_IM_DEFAULT;
1794 sc->sk_int_mod_pending = 0;
1795
1796 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1797 0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
1798 SYSCTL_DESCR("skc per-controller controls"),
1799 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1800 CTL_EOL)) != 0) {
1801 aprint_normal("%s: couldn't create sysctl node\n",
1802 sc->sk_dev.dv_xname);
1803 goto fail_1;
1804 }
1805
1806 sk_nodenum = node->sysctl_num;
1807
1808 /* interrupt moderation time in usecs */
1809 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1810 CTLFLAG_READWRITE,
1811 CTLTYPE_INT, "int_mod",
1812 SYSCTL_DESCR("sk interrupt moderation timer"),
1813 sk_sysctl_handler, 0, sc,
1814 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1815 CTL_EOL)) != 0) {
1816 aprint_normal("%s: couldn't create int_mod sysctl node\n",
1817 sc->sk_dev.dv_xname);
1818 goto fail_1;
1819 }
1820
1821 return;
1822
1823 fail_1:
1824 pci_intr_disestablish(pc, sc->sk_intrhand);
1825 fail:
1826 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1827 }
1828
1829 int
1830 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1831 {
1832 struct sk_softc *sc = sc_if->sk_softc;
1833 struct sk_tx_desc *f = NULL;
1834 u_int32_t frag, cur, cnt = 0, sk_ctl;
1835 int i;
1836 struct sk_txmap_entry *entry;
1837 bus_dmamap_t txmap;
1838
1839 DPRINTFN(3, ("sk_encap\n"));
1840
1841 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1842 if (entry == NULL) {
1843 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1844 return ENOBUFS;
1845 }
1846 txmap = entry->dmamap;
1847
1848 cur = frag = *txidx;
1849
1850 #ifdef SK_DEBUG
1851 if (skdebug >= 3)
1852 sk_dump_mbuf(m_head);
1853 #endif
1854
1855 /*
1856 * Start packing the mbufs in this chain into
1857 * the fragment pointers. Stop when we run out
1858 * of fragments or hit the end of the mbuf chain.
1859 */
1860 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1861 BUS_DMA_NOWAIT)) {
1862 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1863 return ENOBUFS;
1864 }
1865
1866 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1867
1868 /* Sync the DMA map. */
1869 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1870 BUS_DMASYNC_PREWRITE);
1871
1872 for (i = 0; i < txmap->dm_nsegs; i++) {
1873 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1874 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1875 return ENOBUFS;
1876 }
1877 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1878 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1879 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1880 if (cnt == 0)
1881 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1882 else
1883 sk_ctl |= SK_TXCTL_OWN;
1884 f->sk_ctl = htole32(sk_ctl);
1885 cur = frag;
1886 SK_INC(frag, SK_TX_RING_CNT);
1887 cnt++;
1888 }
1889
1890 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1891 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1892
1893 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1894 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1895 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1896
1897 /* Sync descriptors before handing to chip */
1898 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1899 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1900
1901 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1902 htole32(SK_TXCTL_OWN);
1903
1904 /* Sync first descriptor to hand it off */
1905 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1906
1907 sc_if->sk_cdata.sk_tx_cnt += cnt;
1908
1909 #ifdef SK_DEBUG
1910 if (skdebug >= 3) {
1911 struct sk_tx_desc *desc;
1912 u_int32_t idx;
1913 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1914 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1915 sk_dump_txdesc(desc, idx);
1916 }
1917 }
1918 #endif
1919
1920 *txidx = frag;
1921
1922 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1923
1924 return 0;
1925 }
1926
1927 void
1928 sk_start(struct ifnet *ifp)
1929 {
1930 struct sk_if_softc *sc_if = ifp->if_softc;
1931 struct sk_softc *sc = sc_if->sk_softc;
1932 struct mbuf *m_head = NULL;
1933 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1934 int pkts = 0;
1935
1936 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1937 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1938
1939 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1940 IFQ_POLL(&ifp->if_snd, m_head);
1941 if (m_head == NULL)
1942 break;
1943
1944 /*
1945 * Pack the data into the transmit ring. If we
1946 * don't have room, set the OACTIVE flag and wait
1947 * for the NIC to drain the ring.
1948 */
1949 if (sk_encap(sc_if, m_head, &idx)) {
1950 ifp->if_flags |= IFF_OACTIVE;
1951 break;
1952 }
1953
1954 /* now we are committed to transmit the packet */
1955 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1956 pkts++;
1957
1958 /*
1959 * If there's a BPF listener, bounce a copy of this frame
1960 * to him.
1961 */
1962 #if NBPFILTER > 0
1963 if (ifp->if_bpf)
1964 bpf_mtap(ifp->if_bpf, m_head);
1965 #endif
1966 }
1967 if (pkts == 0)
1968 return;
1969
1970 /* Transmit */
1971 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1972 sc_if->sk_cdata.sk_tx_prod = idx;
1973 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1974
1975 /* Set a timeout in case the chip goes out to lunch. */
1976 ifp->if_timer = 5;
1977 }
1978 }
1979
1980
1981 void
1982 sk_watchdog(struct ifnet *ifp)
1983 {
1984 struct sk_if_softc *sc_if = ifp->if_softc;
1985
1986 /*
1987 * Reclaim first as there is a possibility of losing Tx completion
1988 * interrupts.
1989 */
1990 sk_txeof(sc_if);
1991 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1992 aprint_error("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1993
1994 ifp->if_oerrors++;
1995
1996 sk_init(ifp);
1997 }
1998 }
1999
2000 void
2001 sk_shutdown(void *v)
2002 {
2003 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
2004 struct sk_softc *sc = sc_if->sk_softc;
2005 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2006
2007 DPRINTFN(2, ("sk_shutdown\n"));
2008 sk_stop(ifp,1);
2009
2010 /* Turn off the 'driver is loaded' LED. */
2011 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2012
2013 /*
2014 * Reset the GEnesis controller. Doing this should also
2015 * assert the resets on the attached XMAC(s).
2016 */
2017 sk_reset(sc);
2018 }
2019
2020 void
2021 sk_rxeof(struct sk_if_softc *sc_if)
2022 {
2023 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2024 struct mbuf *m;
2025 struct sk_chain *cur_rx;
2026 struct sk_rx_desc *cur_desc;
2027 int i, cur, total_len = 0;
2028 u_int32_t rxstat, sk_ctl;
2029 bus_dmamap_t dmamap;
2030
2031 i = sc_if->sk_cdata.sk_rx_prod;
2032
2033 DPRINTFN(3, ("sk_rxeof %d\n", i));
2034
2035 for (;;) {
2036 cur = i;
2037
2038 /* Sync the descriptor */
2039 SK_CDRXSYNC(sc_if, cur,
2040 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2041
2042 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2043 if (sk_ctl & SK_RXCTL_OWN) {
2044 /* Invalidate the descriptor -- it's not ready yet */
2045 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2046 sc_if->sk_cdata.sk_rx_prod = i;
2047 break;
2048 }
2049
2050 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2051 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2052 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2053
2054 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2055 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2056
2057 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2058 m = cur_rx->sk_mbuf;
2059 cur_rx->sk_mbuf = NULL;
2060 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2061
2062 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2063
2064 SK_INC(i, SK_RX_RING_CNT);
2065
2066 if (rxstat & XM_RXSTAT_ERRFRAME) {
2067 ifp->if_ierrors++;
2068 sk_newbuf(sc_if, cur, m, dmamap);
2069 continue;
2070 }
2071
2072 /*
2073 * Try to allocate a new jumbo buffer. If that
2074 * fails, copy the packet to mbufs and put the
2075 * jumbo buffer back in the ring so it can be
2076 * re-used. If allocating mbufs fails, then we
2077 * have to drop the packet.
2078 */
2079 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2080 struct mbuf *m0;
2081 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2082 total_len + ETHER_ALIGN, 0, ifp, NULL);
2083 sk_newbuf(sc_if, cur, m, dmamap);
2084 if (m0 == NULL) {
2085 aprint_error("%s: no receive buffers "
2086 "available -- packet dropped!\n",
2087 sc_if->sk_dev.dv_xname);
2088 ifp->if_ierrors++;
2089 continue;
2090 }
2091 m_adj(m0, ETHER_ALIGN);
2092 m = m0;
2093 } else {
2094 m->m_pkthdr.rcvif = ifp;
2095 m->m_pkthdr.len = m->m_len = total_len;
2096 }
2097
2098 ifp->if_ipackets++;
2099
2100 #if NBPFILTER > 0
2101 if (ifp->if_bpf)
2102 bpf_mtap(ifp->if_bpf, m);
2103 #endif
2104 /* pass it on. */
2105 (*ifp->if_input)(ifp, m);
2106 }
2107 }
2108
2109 void
2110 sk_txeof(struct sk_if_softc *sc_if)
2111 {
2112 struct sk_softc *sc = sc_if->sk_softc;
2113 struct sk_tx_desc *cur_tx;
2114 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2115 u_int32_t idx, sk_ctl;
2116 struct sk_txmap_entry *entry;
2117
2118 DPRINTFN(3, ("sk_txeof\n"));
2119
2120 /*
2121 * Go through our tx ring and free mbufs for those
2122 * frames that have been sent.
2123 */
2124 idx = sc_if->sk_cdata.sk_tx_cons;
2125 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2126 SK_CDTXSYNC(sc_if, idx, 1,
2127 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2128
2129 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2130 sk_ctl = le32toh(cur_tx->sk_ctl);
2131 #ifdef SK_DEBUG
2132 if (skdebug >= 3)
2133 sk_dump_txdesc(cur_tx, idx);
2134 #endif
2135 if (sk_ctl & SK_TXCTL_OWN) {
2136 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2137 break;
2138 }
2139 if (sk_ctl & SK_TXCTL_LASTFRAG)
2140 ifp->if_opackets++;
2141 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2142 entry = sc_if->sk_cdata.sk_tx_map[idx];
2143
2144 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2145 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2146
2147 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2148 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2149
2150 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2151 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2152 link);
2153 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2154 }
2155 sc_if->sk_cdata.sk_tx_cnt--;
2156 SK_INC(idx, SK_TX_RING_CNT);
2157 }
2158 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2159 ifp->if_timer = 0;
2160 else /* nudge chip to keep tx ring moving */
2161 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2162
2163 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2164 ifp->if_flags &= ~IFF_OACTIVE;
2165
2166 sc_if->sk_cdata.sk_tx_cons = idx;
2167 }
2168
2169 void
2170 sk_tick(void *xsc_if)
2171 {
2172 struct sk_if_softc *sc_if = xsc_if;
2173 struct mii_data *mii = &sc_if->sk_mii;
2174 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2175 int i;
2176
2177 DPRINTFN(3, ("sk_tick\n"));
2178
2179 if (!(ifp->if_flags & IFF_UP))
2180 return;
2181
2182 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2183 sk_intr_bcom(sc_if);
2184 return;
2185 }
2186
2187 /*
2188 * According to SysKonnect, the correct way to verify that
2189 * the link has come back up is to poll bit 0 of the GPIO
2190 * register three times. This pin has the signal from the
2191 * link sync pin connected to it; if we read the same link
2192 * state 3 times in a row, we know the link is up.
2193 */
2194 for (i = 0; i < 3; i++) {
2195 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2196 break;
2197 }
2198
2199 if (i != 3) {
2200 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2201 return;
2202 }
2203
2204 /* Turn the GP0 interrupt back on. */
2205 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2206 SK_XM_READ_2(sc_if, XM_ISR);
2207 mii_tick(mii);
2208 mii_pollstat(mii);
2209 callout_stop(&sc_if->sk_tick_ch);
2210 }
2211
2212 void
2213 sk_intr_bcom(struct sk_if_softc *sc_if)
2214 {
2215 struct mii_data *mii = &sc_if->sk_mii;
2216 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2217 int status;
2218
2219
2220 DPRINTFN(3, ("sk_intr_bcom\n"));
2221
2222 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2223
2224 /*
2225 * Read the PHY interrupt register to make sure
2226 * we clear any pending interrupts.
2227 */
2228 status = sk_xmac_miibus_readreg((struct device *)sc_if,
2229 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2230
2231 if (!(ifp->if_flags & IFF_RUNNING)) {
2232 sk_init_xmac(sc_if);
2233 return;
2234 }
2235
2236 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2237 int lstat;
2238 lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
2239 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2240
2241 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2242 mii_mediachg(mii);
2243 /* Turn off the link LED. */
2244 SK_IF_WRITE_1(sc_if, 0,
2245 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2246 sc_if->sk_link = 0;
2247 } else if (status & BRGPHY_ISR_LNK_CHG) {
2248 sk_xmac_miibus_writereg((struct device *)sc_if,
2249 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2250 mii_tick(mii);
2251 sc_if->sk_link = 1;
2252 /* Turn on the link LED. */
2253 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2254 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2255 SK_LINKLED_BLINK_OFF);
2256 mii_pollstat(mii);
2257 } else {
2258 mii_tick(mii);
2259 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2260 }
2261 }
2262
2263 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2264 }
2265
2266 void
2267 sk_intr_xmac(struct sk_if_softc *sc_if)
2268 {
2269 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2270
2271 DPRINTFN(3, ("sk_intr_xmac\n"));
2272
2273 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2274 if (status & XM_ISR_GP0_SET) {
2275 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2276 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2277 }
2278
2279 if (status & XM_ISR_AUTONEG_DONE) {
2280 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2281 }
2282 }
2283
2284 if (status & XM_IMR_TX_UNDERRUN)
2285 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2286
2287 if (status & XM_IMR_RX_OVERRUN)
2288 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2289 }
2290
2291 void
2292 sk_intr_yukon(struct sk_if_softc *sc_if)
2293 {
2294 int status;
2295
2296 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2297
2298 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2299 }
2300
2301 int
2302 sk_intr(void *xsc)
2303 {
2304 struct sk_softc *sc = xsc;
2305 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2306 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2307 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2308 u_int32_t status;
2309 int claimed = 0;
2310
2311 if (sc_if0 != NULL)
2312 ifp0 = &sc_if0->sk_ethercom.ec_if;
2313 if (sc_if1 != NULL)
2314 ifp1 = &sc_if1->sk_ethercom.ec_if;
2315
2316 for (;;) {
2317 status = CSR_READ_4(sc, SK_ISSR);
2318 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2319
2320 if (!(status & sc->sk_intrmask))
2321 break;
2322
2323 claimed = 1;
2324
2325 /* Handle receive interrupts first. */
2326 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2327 sk_rxeof(sc_if0);
2328 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2329 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2330 }
2331 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2332 sk_rxeof(sc_if1);
2333 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2334 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2335 }
2336
2337 /* Then transmit interrupts. */
2338 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2339 sk_txeof(sc_if0);
2340 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2341 SK_TXBMU_CLR_IRQ_EOF);
2342 }
2343 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2344 sk_txeof(sc_if1);
2345 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2346 SK_TXBMU_CLR_IRQ_EOF);
2347 }
2348
2349 /* Then MAC interrupts. */
2350 if (sc_if0 && (status & SK_ISR_MAC1) &&
2351 (ifp0->if_flags & IFF_RUNNING)) {
2352 if (sc->sk_type == SK_GENESIS)
2353 sk_intr_xmac(sc_if0);
2354 else
2355 sk_intr_yukon(sc_if0);
2356 }
2357
2358 if (sc_if1 && (status & SK_ISR_MAC2) &&
2359 (ifp1->if_flags & IFF_RUNNING)) {
2360 if (sc->sk_type == SK_GENESIS)
2361 sk_intr_xmac(sc_if1);
2362 else
2363 sk_intr_yukon(sc_if1);
2364
2365 }
2366
2367 if (status & SK_ISR_EXTERNAL_REG) {
2368 if (sc_if0 != NULL &&
2369 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2370 sk_intr_bcom(sc_if0);
2371
2372 if (sc_if1 != NULL &&
2373 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2374 sk_intr_bcom(sc_if1);
2375 }
2376 }
2377
2378 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2379
2380 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2381 sk_start(ifp0);
2382 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2383 sk_start(ifp1);
2384
2385 #if NRND > 0
2386 if (RND_ENABLED(&sc->rnd_source))
2387 rnd_add_uint32(&sc->rnd_source, status);
2388 #endif
2389
2390 if (sc->sk_int_mod_pending)
2391 sk_update_int_mod(sc);
2392
2393 return claimed;
2394 }
2395
2396 void
2397 sk_init_xmac(struct sk_if_softc *sc_if)
2398 {
2399 struct sk_softc *sc = sc_if->sk_softc;
2400 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2401 static const struct sk_bcom_hack bhack[] = {
2402 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2403 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2404 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2405 { 0, 0 } };
2406
2407 DPRINTFN(1, ("sk_init_xmac\n"));
2408
2409 /* Unreset the XMAC. */
2410 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2411 DELAY(1000);
2412
2413 /* Reset the XMAC's internal state. */
2414 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2415
2416 /* Save the XMAC II revision */
2417 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2418
2419 /*
2420 * Perform additional initialization for external PHYs,
2421 * namely for the 1000baseTX cards that use the XMAC's
2422 * GMII mode.
2423 */
2424 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2425 int i = 0;
2426 u_int32_t val;
2427
2428 /* Take PHY out of reset. */
2429 val = sk_win_read_4(sc, SK_GPIO);
2430 if (sc_if->sk_port == SK_PORT_A)
2431 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2432 else
2433 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2434 sk_win_write_4(sc, SK_GPIO, val);
2435
2436 /* Enable GMII mode on the XMAC. */
2437 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2438
2439 sk_xmac_miibus_writereg((struct device *)sc_if,
2440 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2441 DELAY(10000);
2442 sk_xmac_miibus_writereg((struct device *)sc_if,
2443 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2444
2445 /*
2446 * Early versions of the BCM5400 apparently have
2447 * a bug that requires them to have their reserved
2448 * registers initialized to some magic values. I don't
2449 * know what the numbers do, I'm just the messenger.
2450 */
2451 if (sk_xmac_miibus_readreg((struct device *)sc_if,
2452 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2453 while (bhack[i].reg) {
2454 sk_xmac_miibus_writereg((struct device *)sc_if,
2455 SK_PHYADDR_BCOM, bhack[i].reg,
2456 bhack[i].val);
2457 i++;
2458 }
2459 }
2460 }
2461
2462 /* Set station address */
2463 SK_XM_WRITE_2(sc_if, XM_PAR0,
2464 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2465 SK_XM_WRITE_2(sc_if, XM_PAR1,
2466 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2467 SK_XM_WRITE_2(sc_if, XM_PAR2,
2468 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2469 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2470
2471 if (ifp->if_flags & IFF_PROMISC)
2472 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2473 else
2474 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2475
2476 if (ifp->if_flags & IFF_BROADCAST)
2477 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2478 else
2479 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2480
2481 /* We don't need the FCS appended to the packet. */
2482 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2483
2484 /* We want short frames padded to 60 bytes. */
2485 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2486
2487 /*
2488 * Enable the reception of all error frames. This is is
2489 * a necessary evil due to the design of the XMAC. The
2490 * XMAC's receive FIFO is only 8K in size, however jumbo
2491 * frames can be up to 9000 bytes in length. When bad
2492 * frame filtering is enabled, the XMAC's RX FIFO operates
2493 * in 'store and forward' mode. For this to work, the
2494 * entire frame has to fit into the FIFO, but that means
2495 * that jumbo frames larger than 8192 bytes will be
2496 * truncated. Disabling all bad frame filtering causes
2497 * the RX FIFO to operate in streaming mode, in which
2498 * case the XMAC will start transfering frames out of the
2499 * RX FIFO as soon as the FIFO threshold is reached.
2500 */
2501 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2502 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2503 XM_MODE_RX_INRANGELEN);
2504
2505 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2506 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2507 else
2508 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2509
2510 /*
2511 * Bump up the transmit threshold. This helps hold off transmit
2512 * underruns when we're blasting traffic from both ports at once.
2513 */
2514 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2515
2516 /* Set multicast filter */
2517 sk_setmulti(sc_if);
2518
2519 /* Clear and enable interrupts */
2520 SK_XM_READ_2(sc_if, XM_ISR);
2521 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2522 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2523 else
2524 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2525
2526 /* Configure MAC arbiter */
2527 switch (sc_if->sk_xmac_rev) {
2528 case XM_XMAC_REV_B2:
2529 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2530 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2531 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2532 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2533 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2534 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2535 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2536 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2537 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2538 break;
2539 case XM_XMAC_REV_C1:
2540 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2541 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2542 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2543 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2544 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2545 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2546 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2547 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2548 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2549 break;
2550 default:
2551 break;
2552 }
2553 sk_win_write_2(sc, SK_MACARB_CTL,
2554 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2555
2556 sc_if->sk_link = 1;
2557 }
2558
2559 void sk_init_yukon(struct sk_if_softc *sc_if)
2560 {
2561 u_int32_t /*mac, */phy;
2562 u_int16_t reg;
2563 struct sk_softc *sc;
2564 int i;
2565
2566 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2567 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2568
2569 sc = sc_if->sk_softc;
2570 if (sc->sk_type == SK_YUKON_LITE &&
2571 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2572 /* Take PHY out of reset. */
2573 sk_win_write_4(sc, SK_GPIO,
2574 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2575 }
2576
2577
2578 /* GMAC and GPHY Reset */
2579 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2580
2581 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2582
2583 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2584 DELAY(1000);
2585 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2586 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2587 DELAY(1000);
2588
2589
2590 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2591
2592 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2593 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2594
2595 switch (sc_if->sk_softc->sk_pmd) {
2596 case IFM_1000_SX:
2597 case IFM_1000_LX:
2598 phy |= SK_GPHY_FIBER;
2599 break;
2600
2601 case IFM_1000_CX:
2602 case IFM_1000_T:
2603 phy |= SK_GPHY_COPPER;
2604 break;
2605 }
2606
2607 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2608
2609 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2610 DELAY(1000);
2611 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2612 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2613 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2614
2615 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2616 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2617
2618 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2619
2620 /* unused read of the interrupt source register */
2621 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2622 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2623
2624 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2625 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2626 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2627
2628 /* MIB Counter Clear Mode set */
2629 reg |= YU_PAR_MIB_CLR;
2630 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2631 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2632 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2633
2634 /* MIB Counter Clear Mode clear */
2635 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2636 reg &= ~YU_PAR_MIB_CLR;
2637 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2638
2639 /* receive control reg */
2640 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2641 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2642 YU_RCR_CRCR);
2643
2644 /* transmit parameter register */
2645 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2646 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2647 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2648
2649 /* serial mode register */
2650 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2651 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2652 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2653 YU_SMR_IPG_DATA(0x1e));
2654
2655 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2656 /* Setup Yukon's address */
2657 for (i = 0; i < 3; i++) {
2658 /* Write Source Address 1 (unicast filter) */
2659 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2660 sc_if->sk_enaddr[i * 2] |
2661 sc_if->sk_enaddr[i * 2 + 1] << 8);
2662 }
2663
2664 for (i = 0; i < 3; i++) {
2665 reg = sk_win_read_2(sc_if->sk_softc,
2666 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2667 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2668 }
2669
2670 /* Set multicast filter */
2671 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2672 sk_setmulti(sc_if);
2673
2674 /* enable interrupt mask for counter overflows */
2675 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2676 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2677 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2678 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2679
2680 /* Configure RX MAC FIFO */
2681 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2682 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2683
2684 /* Configure TX MAC FIFO */
2685 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2686 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2687
2688 DPRINTFN(6, ("sk_init_yukon: end\n"));
2689 }
2690
2691 /*
2692 * Note that to properly initialize any part of the GEnesis chip,
2693 * you first have to take it out of reset mode.
2694 */
2695 int
2696 sk_init(struct ifnet *ifp)
2697 {
2698 struct sk_if_softc *sc_if = ifp->if_softc;
2699 struct sk_softc *sc = sc_if->sk_softc;
2700 struct mii_data *mii = &sc_if->sk_mii;
2701 int s;
2702 u_int32_t imr, imtimer_ticks;
2703
2704 DPRINTFN(1, ("sk_init\n"));
2705
2706 s = splnet();
2707
2708 if (ifp->if_flags & IFF_RUNNING) {
2709 splx(s);
2710 return 0;
2711 }
2712
2713 /* Cancel pending I/O and free all RX/TX buffers. */
2714 sk_stop(ifp,0);
2715
2716 if (sc->sk_type == SK_GENESIS) {
2717 /* Configure LINK_SYNC LED */
2718 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2719 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2720 SK_LINKLED_LINKSYNC_ON);
2721
2722 /* Configure RX LED */
2723 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2724 SK_RXLEDCTL_COUNTER_START);
2725
2726 /* Configure TX LED */
2727 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2728 SK_TXLEDCTL_COUNTER_START);
2729 }
2730
2731 /* Configure I2C registers */
2732
2733 /* Configure XMAC(s) */
2734 switch (sc->sk_type) {
2735 case SK_GENESIS:
2736 sk_init_xmac(sc_if);
2737 break;
2738 case SK_YUKON:
2739 case SK_YUKON_LITE:
2740 case SK_YUKON_LP:
2741 sk_init_yukon(sc_if);
2742 break;
2743 }
2744 mii_mediachg(mii);
2745
2746 if (sc->sk_type == SK_GENESIS) {
2747 /* Configure MAC FIFOs */
2748 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2749 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2750 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2751
2752 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2753 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2754 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2755 }
2756
2757 /* Configure transmit arbiter(s) */
2758 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2759 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2760
2761 /* Configure RAMbuffers */
2762 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2763 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2764 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2765 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2766 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2767 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2768
2769 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2770 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2771 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2772 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2773 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2774 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2775 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2776
2777 /* Configure BMUs */
2778 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2779 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2780 SK_RX_RING_ADDR(sc_if, 0));
2781 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2782
2783 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2784 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2785 SK_TX_RING_ADDR(sc_if, 0));
2786 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2787
2788 /* Init descriptors */
2789 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2790 aprint_error("%s: initialization failed: no "
2791 "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2792 sk_stop(ifp,0);
2793 splx(s);
2794 return ENOBUFS;
2795 }
2796
2797 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2798 aprint_error("%s: initialization failed: no "
2799 "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2800 sk_stop(ifp,0);
2801 splx(s);
2802 return ENOBUFS;
2803 }
2804
2805 /* Set interrupt moderation if changed via sysctl. */
2806 switch (sc->sk_type) {
2807 case SK_GENESIS:
2808 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2809 break;
2810 case SK_YUKON_EC:
2811 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2812 break;
2813 default:
2814 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2815 }
2816 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2817 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2818 sk_win_write_4(sc, SK_IMTIMERINIT,
2819 SK_IM_USECS(sc->sk_int_mod));
2820 aprint_verbose("%s: interrupt moderation is %d us\n",
2821 sc->sk_dev.dv_xname, sc->sk_int_mod);
2822 }
2823
2824 /* Configure interrupt handling */
2825 CSR_READ_4(sc, SK_ISSR);
2826 if (sc_if->sk_port == SK_PORT_A)
2827 sc->sk_intrmask |= SK_INTRS1;
2828 else
2829 sc->sk_intrmask |= SK_INTRS2;
2830
2831 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2832
2833 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2834
2835 /* Start BMUs. */
2836 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2837
2838 if (sc->sk_type == SK_GENESIS) {
2839 /* Enable XMACs TX and RX state machines */
2840 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2841 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2842 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2843 }
2844
2845 if (SK_YUKON_FAMILY(sc->sk_type)) {
2846 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2847 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2848 #if 0
2849 /* XXX disable 100Mbps and full duplex mode? */
2850 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2851 #endif
2852 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2853 }
2854
2855
2856 ifp->if_flags |= IFF_RUNNING;
2857 ifp->if_flags &= ~IFF_OACTIVE;
2858
2859 splx(s);
2860 return 0;
2861 }
2862
2863 void
2864 sk_stop(struct ifnet *ifp, int disable)
2865 {
2866 struct sk_if_softc *sc_if = ifp->if_softc;
2867 struct sk_softc *sc = sc_if->sk_softc;
2868 int i;
2869
2870 DPRINTFN(1, ("sk_stop\n"));
2871
2872 callout_stop(&sc_if->sk_tick_ch);
2873
2874 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2875 u_int32_t val;
2876
2877 /* Put PHY back into reset. */
2878 val = sk_win_read_4(sc, SK_GPIO);
2879 if (sc_if->sk_port == SK_PORT_A) {
2880 val |= SK_GPIO_DIR0;
2881 val &= ~SK_GPIO_DAT0;
2882 } else {
2883 val |= SK_GPIO_DIR2;
2884 val &= ~SK_GPIO_DAT2;
2885 }
2886 sk_win_write_4(sc, SK_GPIO, val);
2887 }
2888
2889 /* Turn off various components of this interface. */
2890 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2891 switch (sc->sk_type) {
2892 case SK_GENESIS:
2893 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2894 SK_TXMACCTL_XMAC_RESET);
2895 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2896 break;
2897 case SK_YUKON:
2898 case SK_YUKON_LITE:
2899 case SK_YUKON_LP:
2900 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2901 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2902 break;
2903 }
2904 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2905 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2906 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2907 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2908 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2909 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2910 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2911 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2912 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2913
2914 /* Disable interrupts */
2915 if (sc_if->sk_port == SK_PORT_A)
2916 sc->sk_intrmask &= ~SK_INTRS1;
2917 else
2918 sc->sk_intrmask &= ~SK_INTRS2;
2919 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2920
2921 SK_XM_READ_2(sc_if, XM_ISR);
2922 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2923
2924 /* Free RX and TX mbufs still in the queues. */
2925 for (i = 0; i < SK_RX_RING_CNT; i++) {
2926 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2927 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2928 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2929 }
2930 }
2931
2932 for (i = 0; i < SK_TX_RING_CNT; i++) {
2933 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2934 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2935 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2936 }
2937 }
2938
2939 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2940 }
2941
2942 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2943
2944 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2945
2946 #ifdef SK_DEBUG
2947 void
2948 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2949 {
2950 #define DESC_PRINT(X) \
2951 if (X) \
2952 printf("txdesc[%d]." #X "=%#x\n", \
2953 idx, X);
2954
2955 DESC_PRINT(le32toh(desc->sk_ctl));
2956 DESC_PRINT(le32toh(desc->sk_next));
2957 DESC_PRINT(le32toh(desc->sk_data_lo));
2958 DESC_PRINT(le32toh(desc->sk_data_hi));
2959 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2960 DESC_PRINT(le16toh(desc->sk_rsvd0));
2961 DESC_PRINT(le16toh(desc->sk_csum_startval));
2962 DESC_PRINT(le16toh(desc->sk_csum_startpos));
2963 DESC_PRINT(le16toh(desc->sk_csum_writepos));
2964 DESC_PRINT(le16toh(desc->sk_rsvd1));
2965 #undef PRINT
2966 }
2967
2968 void
2969 sk_dump_bytes(const char *data, int len)
2970 {
2971 int c, i, j;
2972
2973 for (i = 0; i < len; i += 16) {
2974 printf("%08x ", i);
2975 c = len - i;
2976 if (c > 16) c = 16;
2977
2978 for (j = 0; j < c; j++) {
2979 printf("%02x ", data[i + j] & 0xff);
2980 if ((j & 0xf) == 7 && j > 0)
2981 printf(" ");
2982 }
2983
2984 for (; j < 16; j++)
2985 printf(" ");
2986 printf(" ");
2987
2988 for (j = 0; j < c; j++) {
2989 int ch = data[i + j] & 0xff;
2990 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2991 }
2992
2993 printf("\n");
2994
2995 if (c < 16)
2996 break;
2997 }
2998 }
2999
3000 void
3001 sk_dump_mbuf(struct mbuf *m)
3002 {
3003 int count = m->m_pkthdr.len;
3004
3005 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3006
3007 while (count > 0 && m) {
3008 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3009 m, m->m_data, m->m_len);
3010 sk_dump_bytes(mtod(m, char *), m->m_len);
3011
3012 count -= m->m_len;
3013 m = m->m_next;
3014 }
3015 }
3016 #endif
3017
3018 static int
3019 sk_sysctl_handler(SYSCTLFN_ARGS)
3020 {
3021 int error, t;
3022 struct sysctlnode node;
3023 struct sk_softc *sc;
3024
3025 node = *rnode;
3026 sc = node.sysctl_data;
3027 t = sc->sk_int_mod;
3028 node.sysctl_data = &t;
3029 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3030 if (error || newp == NULL)
3031 return error;
3032
3033 if (t < SK_IM_MIN || t > SK_IM_MAX)
3034 return EINVAL;
3035
3036 /* update the softc with sysctl-changed value, and mark
3037 for hardware update */
3038 sc->sk_int_mod = t;
3039 sc->sk_int_mod_pending = 1;
3040 return 0;
3041 }
3042
3043 /*
3044 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3045 * set up in skc_attach()
3046 */
3047 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3048 {
3049 int rc;
3050 const struct sysctlnode *node;
3051
3052 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3053 0, CTLTYPE_NODE, "hw", NULL,
3054 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3055 goto err;
3056 }
3057
3058 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3059 0, CTLTYPE_NODE, "sk",
3060 SYSCTL_DESCR("sk interface controls"),
3061 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3062 goto err;
3063 }
3064
3065 sk_root_num = node->sysctl_num;
3066 return;
3067
3068 err:
3069 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3070 }
3071