if_sk.c revision 1.38 1 /* $NetBSD: if_sk.c,v 1.38 2007/03/13 09:50:00 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the NetBSD
18 * Foundation, Inc. and its contributors.
19 * 4. Neither the name of The NetBSD Foundation nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
37
38 /*
39 * Copyright (c) 1997, 1998, 1999, 2000
40 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Bill Paul.
53 * 4. Neither the name of the author nor the names of any co-contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67 * THE POSSIBILITY OF SUCH DAMAGE.
68 *
69 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70 */
71
72 /*
73 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
74 *
75 * Permission to use, copy, modify, and distribute this software for any
76 * purpose with or without fee is hereby granted, provided that the above
77 * copyright notice and this permission notice appear in all copies.
78 *
79 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86 */
87
88 /*
89 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90 * the SK-984x series adapters, both single port and dual port.
91 * References:
92 * The XaQti XMAC II datasheet,
93 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 * The SysKonnect GEnesis manual, http://www.syskonnect.com
95 *
96 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98 * convenience to others until Vitesse corrects this problem:
99 *
100 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101 *
102 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
103 * Department of Electrical Engineering
104 * Columbia University, New York City
105 */
106
107 /*
108 * The SysKonnect gigabit ethernet adapters consist of two main
109 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111 * components and a PHY while the GEnesis controller provides a PCI
112 * interface with DMA support. Each card may have between 512K and
113 * 2MB of SRAM on board depending on the configuration.
114 *
115 * The SysKonnect GEnesis controller can have either one or two XMAC
116 * chips connected to it, allowing single or dual port NIC configurations.
117 * SysKonnect has the distinction of being the only vendor on the market
118 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120 * XMAC registers. This driver takes advantage of these features to allow
121 * both XMACs to operate as independent interfaces.
122 */
123
124 #include "bpfilter.h"
125 #include "rnd.h"
126
127 #include <sys/param.h>
128 #include <sys/systm.h>
129 #include <sys/sockio.h>
130 #include <sys/mbuf.h>
131 #include <sys/malloc.h>
132 #include <sys/kernel.h>
133 #include <sys/socket.h>
134 #include <sys/device.h>
135 #include <sys/queue.h>
136 #include <sys/callout.h>
137 #include <sys/sysctl.h>
138 #include <sys/endian.h>
139
140 #include <net/if.h>
141 #include <net/if_dl.h>
142 #include <net/if_types.h>
143
144 #include <net/if_media.h>
145
146 #if NBPFILTER > 0
147 #include <net/bpf.h>
148 #endif
149 #if NRND > 0
150 #include <sys/rnd.h>
151 #endif
152
153 #include <dev/mii/mii.h>
154 #include <dev/mii/miivar.h>
155 #include <dev/mii/brgphyreg.h>
156
157 #include <dev/pci/pcireg.h>
158 #include <dev/pci/pcivar.h>
159 #include <dev/pci/pcidevs.h>
160
161 /* #define SK_USEIOSPACE */
162
163 #include <dev/pci/if_skreg.h>
164 #include <dev/pci/if_skvar.h>
165
166 int skc_probe(struct device *, struct cfdata *, void *);
167 void skc_attach(struct device *, struct device *self, void *aux);
168 int sk_probe(struct device *, struct cfdata *, void *);
169 void sk_attach(struct device *, struct device *self, void *aux);
170 int skcprint(void *, const char *);
171 int sk_intr(void *);
172 void sk_intr_bcom(struct sk_if_softc *);
173 void sk_intr_xmac(struct sk_if_softc *);
174 void sk_intr_yukon(struct sk_if_softc *);
175 void sk_rxeof(struct sk_if_softc *);
176 void sk_txeof(struct sk_if_softc *);
177 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
178 void sk_start(struct ifnet *);
179 int sk_ioctl(struct ifnet *, u_long, void *);
180 int sk_init(struct ifnet *);
181 void sk_init_xmac(struct sk_if_softc *);
182 void sk_init_yukon(struct sk_if_softc *);
183 void sk_stop(struct ifnet *, int);
184 void sk_watchdog(struct ifnet *);
185 void sk_shutdown(void *);
186 int sk_ifmedia_upd(struct ifnet *);
187 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
188 void sk_reset(struct sk_softc *);
189 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
190 int sk_alloc_jumbo_mem(struct sk_if_softc *);
191 void sk_free_jumbo_mem(struct sk_if_softc *);
192 void *sk_jalloc(struct sk_if_softc *);
193 void sk_jfree(struct mbuf *, void *, size_t, void *);
194 int sk_init_rx_ring(struct sk_if_softc *);
195 int sk_init_tx_ring(struct sk_if_softc *);
196 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
197 void sk_vpd_read_res(struct sk_softc *,
198 struct vpd_res *, int);
199 void sk_vpd_read(struct sk_softc *);
200
201 void sk_update_int_mod(struct sk_softc *);
202
203 int sk_xmac_miibus_readreg(struct device *, int, int);
204 void sk_xmac_miibus_writereg(struct device *, int, int, int);
205 void sk_xmac_miibus_statchg(struct device *);
206
207 int sk_marv_miibus_readreg(struct device *, int, int);
208 void sk_marv_miibus_writereg(struct device *, int, int, int);
209 void sk_marv_miibus_statchg(struct device *);
210
211 u_int32_t sk_xmac_hash(void *);
212 u_int32_t sk_yukon_hash(void *);
213 void sk_setfilt(struct sk_if_softc *, void *, int);
214 void sk_setmulti(struct sk_if_softc *);
215 void sk_tick(void *);
216
217 /* #define SK_DEBUG 2 */
218 #ifdef SK_DEBUG
219 #define DPRINTF(x) if (skdebug) printf x
220 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
221 int skdebug = SK_DEBUG;
222
223 void sk_dump_txdesc(struct sk_tx_desc *, int);
224 void sk_dump_mbuf(struct mbuf *);
225 void sk_dump_bytes(const char *, int);
226 #else
227 #define DPRINTF(x)
228 #define DPRINTFN(n,x)
229 #endif
230
231 static int sk_sysctl_handler(SYSCTLFN_PROTO);
232 static int sk_root_num;
233
234 /* supported device vendors */
235 static const struct sk_product {
236 pci_vendor_id_t sk_vendor;
237 pci_product_id_t sk_product;
238 } sk_products[] = {
239 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
240 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
241 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T, },
242 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
243 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
244 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
245 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
246 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
247 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
248 { 0, 0, }
249 };
250
251 #define SK_LINKSYS_EG1032_SUBID 0x00151737
252
253 static inline u_int32_t
254 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
255 {
256 #ifdef SK_USEIOSPACE
257 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
258 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
259 #else
260 return CSR_READ_4(sc, reg);
261 #endif
262 }
263
264 static inline u_int16_t
265 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
266 {
267 #ifdef SK_USEIOSPACE
268 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
269 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
270 #else
271 return CSR_READ_2(sc, reg);
272 #endif
273 }
274
275 static inline u_int8_t
276 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
277 {
278 #ifdef SK_USEIOSPACE
279 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
280 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
281 #else
282 return CSR_READ_1(sc, reg);
283 #endif
284 }
285
286 static inline void
287 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
288 {
289 #ifdef SK_USEIOSPACE
290 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
291 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
292 #else
293 CSR_WRITE_4(sc, reg, x);
294 #endif
295 }
296
297 static inline void
298 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
299 {
300 #ifdef SK_USEIOSPACE
301 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
302 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
303 #else
304 CSR_WRITE_2(sc, reg, x);
305 #endif
306 }
307
308 static inline void
309 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
310 {
311 #ifdef SK_USEIOSPACE
312 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
313 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
314 #else
315 CSR_WRITE_1(sc, reg, x);
316 #endif
317 }
318
319 /*
320 * The VPD EEPROM contains Vital Product Data, as suggested in
321 * the PCI 2.1 specification. The VPD data is separared into areas
322 * denoted by resource IDs. The SysKonnect VPD contains an ID string
323 * resource (the name of the adapter), a read-only area resource
324 * containing various key/data fields and a read/write area which
325 * can be used to store asset management information or log messages.
326 * We read the ID string and read-only into buffers attached to
327 * the controller softc structure for later use. At the moment,
328 * we only use the ID string during sk_attach().
329 */
330 u_int8_t
331 sk_vpd_readbyte(struct sk_softc *sc, int addr)
332 {
333 int i;
334
335 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
336 for (i = 0; i < SK_TIMEOUT; i++) {
337 DELAY(1);
338 if (sk_win_read_2(sc,
339 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
340 break;
341 }
342
343 if (i == SK_TIMEOUT)
344 return 0;
345
346 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
347 }
348
349 void
350 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
351 {
352 int i;
353 u_int8_t *ptr;
354
355 ptr = (u_int8_t *)res;
356 for (i = 0; i < sizeof(struct vpd_res); i++)
357 ptr[i] = sk_vpd_readbyte(sc, i + addr);
358 }
359
360 void
361 sk_vpd_read(struct sk_softc *sc)
362 {
363 int pos = 0, i;
364 struct vpd_res res;
365
366 if (sc->sk_vpd_prodname != NULL)
367 free(sc->sk_vpd_prodname, M_DEVBUF);
368 if (sc->sk_vpd_readonly != NULL)
369 free(sc->sk_vpd_readonly, M_DEVBUF);
370 sc->sk_vpd_prodname = NULL;
371 sc->sk_vpd_readonly = NULL;
372
373 sk_vpd_read_res(sc, &res, pos);
374
375 if (res.vr_id != VPD_RES_ID) {
376 aprint_error("%s: bad VPD resource id: expected %x got %x\n",
377 sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
378 return;
379 }
380
381 pos += sizeof(res);
382 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
383 if (sc->sk_vpd_prodname == NULL)
384 panic("sk_vpd_read");
385 for (i = 0; i < res.vr_len; i++)
386 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
387 sc->sk_vpd_prodname[i] = '\0';
388 pos += i;
389
390 sk_vpd_read_res(sc, &res, pos);
391
392 if (res.vr_id != VPD_RES_READ) {
393 aprint_error("%s: bad VPD resource id: expected %x got %x\n",
394 sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
395 return;
396 }
397
398 pos += sizeof(res);
399 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
400 if (sc->sk_vpd_readonly == NULL)
401 panic("sk_vpd_read");
402 for (i = 0; i < res.vr_len ; i++)
403 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
404 }
405
406 int
407 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
408 {
409 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
410 int i;
411
412 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
413
414 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
415 return 0;
416
417 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
418 SK_XM_READ_2(sc_if, XM_PHY_DATA);
419 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
420 for (i = 0; i < SK_TIMEOUT; i++) {
421 DELAY(1);
422 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
423 XM_MMUCMD_PHYDATARDY)
424 break;
425 }
426
427 if (i == SK_TIMEOUT) {
428 aprint_error("%s: phy failed to come ready\n",
429 sc_if->sk_dev.dv_xname);
430 return 0;
431 }
432 }
433 DELAY(1);
434 return SK_XM_READ_2(sc_if, XM_PHY_DATA);
435 }
436
437 void
438 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
439 {
440 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
441 int i;
442
443 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
444
445 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
446 for (i = 0; i < SK_TIMEOUT; i++) {
447 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
448 break;
449 }
450
451 if (i == SK_TIMEOUT) {
452 aprint_error("%s: phy failed to come ready\n",
453 sc_if->sk_dev.dv_xname);
454 return;
455 }
456
457 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
458 for (i = 0; i < SK_TIMEOUT; i++) {
459 DELAY(1);
460 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
461 break;
462 }
463
464 if (i == SK_TIMEOUT)
465 aprint_error("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
466 }
467
468 void
469 sk_xmac_miibus_statchg(struct device *dev)
470 {
471 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
472 struct mii_data *mii = &sc_if->sk_mii;
473
474 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
475
476 /*
477 * If this is a GMII PHY, manually set the XMAC's
478 * duplex mode accordingly.
479 */
480 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
481 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
482 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
483 else
484 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
485 }
486 }
487
488 int
489 sk_marv_miibus_readreg(struct device *dev, int phy, int reg)
490 {
491 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
492 u_int16_t val;
493 int i;
494
495 if (phy != 0 ||
496 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
497 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
498 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
499 phy, reg));
500 return 0;
501 }
502
503 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
504 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
505
506 for (i = 0; i < SK_TIMEOUT; i++) {
507 DELAY(1);
508 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
509 if (val & YU_SMICR_READ_VALID)
510 break;
511 }
512
513 if (i == SK_TIMEOUT) {
514 aprint_error("%s: phy failed to come ready\n",
515 sc_if->sk_dev.dv_xname);
516 return 0;
517 }
518
519 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
520 SK_TIMEOUT));
521
522 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
523
524 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
525 phy, reg, val));
526
527 return val;
528 }
529
530 void
531 sk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
532 {
533 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
534 int i;
535
536 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
537 phy, reg, val));
538
539 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
540 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
541 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
542
543 for (i = 0; i < SK_TIMEOUT; i++) {
544 DELAY(1);
545 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
546 break;
547 }
548
549 if (i == SK_TIMEOUT)
550 printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
551 }
552
553 void
554 sk_marv_miibus_statchg(struct device *dev)
555 {
556 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
557 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
558 }
559
560 #define SK_HASH_BITS 6
561
562 u_int32_t
563 sk_xmac_hash(void *addr)
564 {
565 u_int32_t crc;
566
567 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
568 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
569 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
570 return crc;
571 }
572
573 u_int32_t
574 sk_yukon_hash(void *addr)
575 {
576 u_int32_t crc;
577
578 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
579 crc &= ((1 << SK_HASH_BITS) - 1);
580 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
581 return crc;
582 }
583
584 void
585 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
586 {
587 char *addr = addrv;
588 int base = XM_RXFILT_ENTRY(slot);
589
590 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
591 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
592 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
593 }
594
595 void
596 sk_setmulti(struct sk_if_softc *sc_if)
597 {
598 struct sk_softc *sc = sc_if->sk_softc;
599 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
600 u_int32_t hashes[2] = { 0, 0 };
601 int h = 0, i;
602 struct ethercom *ec = &sc_if->sk_ethercom;
603 struct ether_multi *enm;
604 struct ether_multistep step;
605 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
606
607 /* First, zot all the existing filters. */
608 switch (sc->sk_type) {
609 case SK_GENESIS:
610 for (i = 1; i < XM_RXFILT_MAX; i++)
611 sk_setfilt(sc_if, (void *)&dummy, i);
612
613 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
614 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
615 break;
616 case SK_YUKON:
617 case SK_YUKON_LITE:
618 case SK_YUKON_LP:
619 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
620 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
621 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
622 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
623 break;
624 }
625
626 /* Now program new ones. */
627 allmulti:
628 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
629 hashes[0] = 0xFFFFFFFF;
630 hashes[1] = 0xFFFFFFFF;
631 } else {
632 i = 1;
633 /* First find the tail of the list. */
634 ETHER_FIRST_MULTI(step, ec, enm);
635 while (enm != NULL) {
636 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
637 ETHER_ADDR_LEN)) {
638 ifp->if_flags |= IFF_ALLMULTI;
639 goto allmulti;
640 }
641 DPRINTFN(2,("multicast address %s\n",
642 ether_sprintf(enm->enm_addrlo)));
643 /*
644 * Program the first XM_RXFILT_MAX multicast groups
645 * into the perfect filter. For all others,
646 * use the hash table.
647 */
648 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
649 sk_setfilt(sc_if, enm->enm_addrlo, i);
650 i++;
651 }
652 else {
653 switch (sc->sk_type) {
654 case SK_GENESIS:
655 h = sk_xmac_hash(enm->enm_addrlo);
656 break;
657 case SK_YUKON:
658 case SK_YUKON_LITE:
659 case SK_YUKON_LP:
660 h = sk_yukon_hash(enm->enm_addrlo);
661 break;
662 }
663 if (h < 32)
664 hashes[0] |= (1 << h);
665 else
666 hashes[1] |= (1 << (h - 32));
667 }
668
669 ETHER_NEXT_MULTI(step, enm);
670 }
671 }
672
673 switch (sc->sk_type) {
674 case SK_GENESIS:
675 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
676 XM_MODE_RX_USE_PERFECT);
677 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
678 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
679 break;
680 case SK_YUKON:
681 case SK_YUKON_LITE:
682 case SK_YUKON_LP:
683 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
684 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
685 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
686 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
687 break;
688 }
689 }
690
691 int
692 sk_init_rx_ring(struct sk_if_softc *sc_if)
693 {
694 struct sk_chain_data *cd = &sc_if->sk_cdata;
695 struct sk_ring_data *rd = sc_if->sk_rdata;
696 int i;
697
698 bzero((char *)rd->sk_rx_ring,
699 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
700
701 for (i = 0; i < SK_RX_RING_CNT; i++) {
702 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
703 if (i == (SK_RX_RING_CNT - 1)) {
704 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
705 rd->sk_rx_ring[i].sk_next =
706 htole32(SK_RX_RING_ADDR(sc_if, 0));
707 } else {
708 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
709 rd->sk_rx_ring[i].sk_next =
710 htole32(SK_RX_RING_ADDR(sc_if,i+1));
711 }
712 }
713
714 for (i = 0; i < SK_RX_RING_CNT; i++) {
715 if (sk_newbuf(sc_if, i, NULL,
716 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
717 aprint_error("%s: failed alloc of %dth mbuf\n",
718 sc_if->sk_dev.dv_xname, i);
719 return ENOBUFS;
720 }
721 }
722 sc_if->sk_cdata.sk_rx_prod = 0;
723 sc_if->sk_cdata.sk_rx_cons = 0;
724
725 return 0;
726 }
727
728 int
729 sk_init_tx_ring(struct sk_if_softc *sc_if)
730 {
731 struct sk_chain_data *cd = &sc_if->sk_cdata;
732 struct sk_ring_data *rd = sc_if->sk_rdata;
733 int i;
734
735 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
736 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
737
738 for (i = 0; i < SK_TX_RING_CNT; i++) {
739 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
740 if (i == (SK_TX_RING_CNT - 1)) {
741 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
742 rd->sk_tx_ring[i].sk_next =
743 htole32(SK_TX_RING_ADDR(sc_if, 0));
744 } else {
745 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
746 rd->sk_tx_ring[i].sk_next =
747 htole32(SK_TX_RING_ADDR(sc_if,i+1));
748 }
749 }
750
751 sc_if->sk_cdata.sk_tx_prod = 0;
752 sc_if->sk_cdata.sk_tx_cons = 0;
753 sc_if->sk_cdata.sk_tx_cnt = 0;
754
755 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
756 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
757
758 return 0;
759 }
760
761 int
762 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
763 bus_dmamap_t dmamap)
764 {
765 struct mbuf *m_new = NULL;
766 struct sk_chain *c;
767 struct sk_rx_desc *r;
768
769 if (m == NULL) {
770 void *buf = NULL;
771
772 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
773 if (m_new == NULL) {
774 aprint_error("%s: no memory for rx list -- "
775 "packet dropped!\n", sc_if->sk_dev.dv_xname);
776 return ENOBUFS;
777 }
778
779 /* Allocate the jumbo buffer */
780 buf = sk_jalloc(sc_if);
781 if (buf == NULL) {
782 m_freem(m_new);
783 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
784 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
785 return ENOBUFS;
786 }
787
788 /* Attach the buffer to the mbuf */
789 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
790 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
791
792 } else {
793 /*
794 * We're re-using a previously allocated mbuf;
795 * be sure to re-init pointers and lengths to
796 * default values.
797 */
798 m_new = m;
799 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
800 m_new->m_data = m_new->m_ext.ext_buf;
801 }
802 m_adj(m_new, ETHER_ALIGN);
803
804 c = &sc_if->sk_cdata.sk_rx_chain[i];
805 r = c->sk_desc;
806 c->sk_mbuf = m_new;
807 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
808 (((vaddr_t)m_new->m_data
809 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
810 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
811
812 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
813
814 return 0;
815 }
816
817 /*
818 * Memory management for jumbo frames.
819 */
820
821 int
822 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
823 {
824 struct sk_softc *sc = sc_if->sk_softc;
825 char *ptr, *kva;
826 bus_dma_segment_t seg;
827 int i, rseg, state, error;
828 struct sk_jpool_entry *entry;
829
830 state = error = 0;
831
832 /* Grab a big chunk o' storage. */
833 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
834 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
835 aprint_error("%s: can't alloc rx buffers\n", sc->sk_dev.dv_xname);
836 return ENOBUFS;
837 }
838
839 state = 1;
840 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
841 BUS_DMA_NOWAIT)) {
842 aprint_error("%s: can't map dma buffers (%d bytes)\n",
843 sc->sk_dev.dv_xname, SK_JMEM);
844 error = ENOBUFS;
845 goto out;
846 }
847
848 state = 2;
849 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
850 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
851 aprint_error("%s: can't create dma map\n", sc->sk_dev.dv_xname);
852 error = ENOBUFS;
853 goto out;
854 }
855
856 state = 3;
857 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
858 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
859 aprint_error("%s: can't load dma map\n", sc->sk_dev.dv_xname);
860 error = ENOBUFS;
861 goto out;
862 }
863
864 state = 4;
865 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
866 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
867
868 LIST_INIT(&sc_if->sk_jfree_listhead);
869 LIST_INIT(&sc_if->sk_jinuse_listhead);
870
871 /*
872 * Now divide it up into 9K pieces and save the addresses
873 * in an array.
874 */
875 ptr = sc_if->sk_cdata.sk_jumbo_buf;
876 for (i = 0; i < SK_JSLOTS; i++) {
877 sc_if->sk_cdata.sk_jslots[i] = ptr;
878 ptr += SK_JLEN;
879 entry = malloc(sizeof(struct sk_jpool_entry),
880 M_DEVBUF, M_NOWAIT);
881 if (entry == NULL) {
882 aprint_error("%s: no memory for jumbo buffer queue!\n",
883 sc->sk_dev.dv_xname);
884 error = ENOBUFS;
885 goto out;
886 }
887 entry->slot = i;
888 if (i)
889 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
890 entry, jpool_entries);
891 else
892 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
893 entry, jpool_entries);
894 }
895 out:
896 if (error != 0) {
897 switch (state) {
898 case 4:
899 bus_dmamap_unload(sc->sc_dmatag,
900 sc_if->sk_cdata.sk_rx_jumbo_map);
901 case 3:
902 bus_dmamap_destroy(sc->sc_dmatag,
903 sc_if->sk_cdata.sk_rx_jumbo_map);
904 case 2:
905 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
906 case 1:
907 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
908 break;
909 default:
910 break;
911 }
912 }
913
914 return error;
915 }
916
917 /*
918 * Allocate a jumbo buffer.
919 */
920 void *
921 sk_jalloc(struct sk_if_softc *sc_if)
922 {
923 struct sk_jpool_entry *entry;
924
925 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
926
927 if (entry == NULL)
928 return NULL;
929
930 LIST_REMOVE(entry, jpool_entries);
931 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
932 return sc_if->sk_cdata.sk_jslots[entry->slot];
933 }
934
935 /*
936 * Release a jumbo buffer.
937 */
938 void
939 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
940 {
941 struct sk_jpool_entry *entry;
942 struct sk_if_softc *sc;
943 int i, s;
944
945 /* Extract the softc struct pointer. */
946 sc = (struct sk_if_softc *)arg;
947
948 if (sc == NULL)
949 panic("sk_jfree: can't find softc pointer!");
950
951 /* calculate the slot this buffer belongs to */
952
953 i = ((vaddr_t)buf
954 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
955
956 if ((i < 0) || (i >= SK_JSLOTS))
957 panic("sk_jfree: asked to free buffer that we don't manage!");
958
959 s = splvm();
960 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
961 if (entry == NULL)
962 panic("sk_jfree: buffer not in use!");
963 entry->slot = i;
964 LIST_REMOVE(entry, jpool_entries);
965 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
966
967 if (__predict_true(m != NULL))
968 pool_cache_put(&mbpool_cache, m);
969 splx(s);
970 }
971
972 /*
973 * Set media options.
974 */
975 int
976 sk_ifmedia_upd(struct ifnet *ifp)
977 {
978 struct sk_if_softc *sc_if = ifp->if_softc;
979
980 (void) sk_init(ifp);
981 mii_mediachg(&sc_if->sk_mii);
982 return 0;
983 }
984
985 /*
986 * Report current media status.
987 */
988 void
989 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
990 {
991 struct sk_if_softc *sc_if = ifp->if_softc;
992
993 mii_pollstat(&sc_if->sk_mii);
994 ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
995 ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
996 }
997
998 int
999 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
1000 {
1001 struct sk_if_softc *sc_if = ifp->if_softc;
1002 struct sk_softc *sc = sc_if->sk_softc;
1003 struct ifreq *ifr = (struct ifreq *) data;
1004 struct mii_data *mii;
1005 int s, error = 0;
1006
1007 /* DPRINTFN(2, ("sk_ioctl\n")); */
1008
1009 s = splnet();
1010
1011 switch (command) {
1012
1013 case SIOCSIFFLAGS:
1014 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1015 if (ifp->if_flags & IFF_UP) {
1016 if (ifp->if_flags & IFF_RUNNING &&
1017 ifp->if_flags & IFF_PROMISC &&
1018 !(sc_if->sk_if_flags & IFF_PROMISC)) {
1019 switch (sc->sk_type) {
1020 case SK_GENESIS:
1021 SK_XM_SETBIT_4(sc_if, XM_MODE,
1022 XM_MODE_RX_PROMISC);
1023 break;
1024 case SK_YUKON:
1025 case SK_YUKON_LITE:
1026 case SK_YUKON_LP:
1027 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1028 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1029 break;
1030 }
1031 sk_setmulti(sc_if);
1032 } else if (ifp->if_flags & IFF_RUNNING &&
1033 !(ifp->if_flags & IFF_PROMISC) &&
1034 sc_if->sk_if_flags & IFF_PROMISC) {
1035 switch (sc->sk_type) {
1036 case SK_GENESIS:
1037 SK_XM_CLRBIT_4(sc_if, XM_MODE,
1038 XM_MODE_RX_PROMISC);
1039 break;
1040 case SK_YUKON:
1041 case SK_YUKON_LITE:
1042 case SK_YUKON_LP:
1043 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1044 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1045 break;
1046 }
1047
1048 sk_setmulti(sc_if);
1049 } else
1050 (void) sk_init(ifp);
1051 } else {
1052 if (ifp->if_flags & IFF_RUNNING)
1053 sk_stop(ifp,0);
1054 }
1055 sc_if->sk_if_flags = ifp->if_flags;
1056 error = 0;
1057 break;
1058
1059 case SIOCGIFMEDIA:
1060 case SIOCSIFMEDIA:
1061 DPRINTFN(2, ("sk_ioctl MEDIA\n"));
1062 mii = &sc_if->sk_mii;
1063 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1064 break;
1065 default:
1066 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1067 error = ether_ioctl(ifp, command, data);
1068
1069 if ( error == ENETRESET) {
1070 if (ifp->if_flags & IFF_RUNNING) {
1071 sk_setmulti(sc_if);
1072 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1073 }
1074 error = 0;
1075 } else if ( error ) {
1076 splx(s);
1077 return error;
1078 }
1079 break;
1080 }
1081
1082 splx(s);
1083 return error;
1084 }
1085
1086 void
1087 sk_update_int_mod(struct sk_softc *sc)
1088 {
1089 u_int32_t imtimer_ticks;
1090
1091 /*
1092 * Configure interrupt moderation. The moderation timer
1093 * defers interrupts specified in the interrupt moderation
1094 * timer mask based on the timeout specified in the interrupt
1095 * moderation timer init register. Each bit in the timer
1096 * register represents one tick, so to specify a timeout in
1097 * microseconds, we have to multiply by the correct number of
1098 * ticks-per-microsecond.
1099 */
1100 switch (sc->sk_type) {
1101 case SK_GENESIS:
1102 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1103 break;
1104 case SK_YUKON_EC:
1105 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1106 break;
1107 default:
1108 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1109 }
1110 aprint_verbose("%s: interrupt moderation is %d us\n",
1111 sc->sk_dev.dv_xname, sc->sk_int_mod);
1112 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1113 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1114 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1115 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1116 sc->sk_int_mod_pending = 0;
1117 }
1118
1119 /*
1120 * Lookup: Check the PCI vendor and device, and return a pointer to
1121 * The structure if the IDs match against our list.
1122 */
1123
1124 static const struct sk_product *
1125 sk_lookup(const struct pci_attach_args *pa)
1126 {
1127 const struct sk_product *psk;
1128
1129 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1130 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1131 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1132 return psk;
1133 }
1134 return NULL;
1135 }
1136
1137 /*
1138 * Probe for a SysKonnect GEnesis chip.
1139 */
1140
1141 int
1142 skc_probe(struct device *parent, struct cfdata *match,
1143 void *aux)
1144 {
1145 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1146 const struct sk_product *psk;
1147 pcireg_t subid;
1148
1149 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1150
1151 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1152 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1153 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1154 subid == SK_LINKSYS_EG1032_SUBID)
1155 return 1;
1156
1157 if ((psk = sk_lookup(pa))) {
1158 return 1;
1159 }
1160 return 0;
1161 }
1162
1163 /*
1164 * Force the GEnesis into reset, then bring it out of reset.
1165 */
1166 void sk_reset(struct sk_softc *sc)
1167 {
1168 DPRINTFN(2, ("sk_reset\n"));
1169
1170 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1171 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1172 if (SK_YUKON_FAMILY(sc->sk_type))
1173 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1174
1175 DELAY(1000);
1176 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1177 DELAY(2);
1178 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1179 if (SK_YUKON_FAMILY(sc->sk_type))
1180 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1181
1182 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1183 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1184 CSR_READ_2(sc, SK_LINK_CTRL)));
1185
1186 if (sc->sk_type == SK_GENESIS) {
1187 /* Configure packet arbiter */
1188 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1189 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1190 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1191 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1192 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1193 }
1194
1195 /* Enable RAM interface */
1196 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1197
1198 sk_update_int_mod(sc);
1199 }
1200
1201 int
1202 sk_probe(struct device *parent, struct cfdata *match,
1203 void *aux)
1204 {
1205 struct skc_attach_args *sa = aux;
1206
1207 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1208 return 0;
1209
1210 return 1;
1211 }
1212
1213 /*
1214 * Each XMAC chip is attached as a separate logical IP interface.
1215 * Single port cards will have only one logical interface of course.
1216 */
1217 void
1218 sk_attach(struct device *parent, struct device *self, void *aux)
1219 {
1220 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1221 struct sk_softc *sc = (struct sk_softc *)parent;
1222 struct skc_attach_args *sa = aux;
1223 struct sk_txmap_entry *entry;
1224 struct ifnet *ifp;
1225 bus_dma_segment_t seg;
1226 bus_dmamap_t dmamap;
1227 void *kva;
1228 int i, rseg;
1229
1230 sc_if->sk_port = sa->skc_port;
1231 sc_if->sk_softc = sc;
1232 sc->sk_if[sa->skc_port] = sc_if;
1233
1234 if (sa->skc_port == SK_PORT_A)
1235 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1236 if (sa->skc_port == SK_PORT_B)
1237 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1238
1239 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1240
1241 /*
1242 * Get station address for this interface. Note that
1243 * dual port cards actually come with three station
1244 * addresses: one for each port, plus an extra. The
1245 * extra one is used by the SysKonnect driver software
1246 * as a 'virtual' station address for when both ports
1247 * are operating in failover mode. Currently we don't
1248 * use this extra address.
1249 */
1250 for (i = 0; i < ETHER_ADDR_LEN; i++)
1251 sc_if->sk_enaddr[i] =
1252 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1253
1254
1255 aprint_normal(": Ethernet address %s\n",
1256 ether_sprintf(sc_if->sk_enaddr));
1257
1258 /*
1259 * Set up RAM buffer addresses. The NIC will have a certain
1260 * amount of SRAM on it, somewhere between 512K and 2MB. We
1261 * need to divide this up a) between the transmitter and
1262 * receiver and b) between the two XMACs, if this is a
1263 * dual port NIC. Our algorithm is to divide up the memory
1264 * evenly so that everyone gets a fair share.
1265 */
1266 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1267 u_int32_t chunk, val;
1268
1269 chunk = sc->sk_ramsize / 2;
1270 val = sc->sk_rboff / sizeof(u_int64_t);
1271 sc_if->sk_rx_ramstart = val;
1272 val += (chunk / sizeof(u_int64_t));
1273 sc_if->sk_rx_ramend = val - 1;
1274 sc_if->sk_tx_ramstart = val;
1275 val += (chunk / sizeof(u_int64_t));
1276 sc_if->sk_tx_ramend = val - 1;
1277 } else {
1278 u_int32_t chunk, val;
1279
1280 chunk = sc->sk_ramsize / 4;
1281 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1282 sizeof(u_int64_t);
1283 sc_if->sk_rx_ramstart = val;
1284 val += (chunk / sizeof(u_int64_t));
1285 sc_if->sk_rx_ramend = val - 1;
1286 sc_if->sk_tx_ramstart = val;
1287 val += (chunk / sizeof(u_int64_t));
1288 sc_if->sk_tx_ramend = val - 1;
1289 }
1290
1291 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1292 " tx_ramstart=%#x tx_ramend=%#x\n",
1293 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1294 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1295
1296 /* Read and save PHY type and set PHY address */
1297 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1298 switch (sc_if->sk_phytype) {
1299 case SK_PHYTYPE_XMAC:
1300 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1301 break;
1302 case SK_PHYTYPE_BCOM:
1303 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1304 break;
1305 case SK_PHYTYPE_MARV_COPPER:
1306 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1307 break;
1308 default:
1309 aprint_error("%s: unsupported PHY type: %d\n",
1310 sc->sk_dev.dv_xname, sc_if->sk_phytype);
1311 return;
1312 }
1313
1314 /* Allocate the descriptor queues. */
1315 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1316 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1317 aprint_error("%s: can't alloc rx buffers\n",
1318 sc->sk_dev.dv_xname);
1319 goto fail;
1320 }
1321 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1322 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1323 aprint_error("%s: can't map dma buffers (%lu bytes)\n",
1324 sc_if->sk_dev.dv_xname,
1325 (u_long) sizeof(struct sk_ring_data));
1326 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1327 goto fail;
1328 }
1329 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1330 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1331 &sc_if->sk_ring_map)) {
1332 aprint_error("%s: can't create dma map\n",
1333 sc_if->sk_dev.dv_xname);
1334 bus_dmamem_unmap(sc->sc_dmatag, kva,
1335 sizeof(struct sk_ring_data));
1336 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1337 goto fail;
1338 }
1339 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1340 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1341 aprint_error("%s: can't load dma map\n",
1342 sc_if->sk_dev.dv_xname);
1343 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1344 bus_dmamem_unmap(sc->sc_dmatag, kva,
1345 sizeof(struct sk_ring_data));
1346 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1347 goto fail;
1348 }
1349
1350 for (i = 0; i < SK_RX_RING_CNT; i++)
1351 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1352
1353 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1354 for (i = 0; i < SK_TX_RING_CNT; i++) {
1355 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1356
1357 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1358 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1359 aprint_error("%s: Can't create TX dmamap\n",
1360 sc_if->sk_dev.dv_xname);
1361 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1362 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1363 bus_dmamem_unmap(sc->sc_dmatag, kva,
1364 sizeof(struct sk_ring_data));
1365 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1366 goto fail;
1367 }
1368
1369 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1370 if (!entry) {
1371 aprint_error("%s: Can't alloc txmap entry\n",
1372 sc_if->sk_dev.dv_xname);
1373 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1374 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1375 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1376 bus_dmamem_unmap(sc->sc_dmatag, kva,
1377 sizeof(struct sk_ring_data));
1378 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1379 goto fail;
1380 }
1381 entry->dmamap = dmamap;
1382 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1383 }
1384
1385 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1386 bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1387
1388 ifp = &sc_if->sk_ethercom.ec_if;
1389 /* Try to allocate memory for jumbo buffers. */
1390 if (sk_alloc_jumbo_mem(sc_if)) {
1391 aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1392 goto fail;
1393 }
1394 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1395 | ETHERCAP_JUMBO_MTU;
1396
1397 ifp->if_softc = sc_if;
1398 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1399 ifp->if_ioctl = sk_ioctl;
1400 ifp->if_start = sk_start;
1401 ifp->if_stop = sk_stop;
1402 ifp->if_init = sk_init;
1403 ifp->if_watchdog = sk_watchdog;
1404 ifp->if_capabilities = 0;
1405 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1406 IFQ_SET_READY(&ifp->if_snd);
1407 strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1408
1409 /*
1410 * Do miibus setup.
1411 */
1412 switch (sc->sk_type) {
1413 case SK_GENESIS:
1414 sk_init_xmac(sc_if);
1415 break;
1416 case SK_YUKON:
1417 case SK_YUKON_LITE:
1418 case SK_YUKON_LP:
1419 sk_init_yukon(sc_if);
1420 break;
1421 default:
1422 panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
1423 sc->sk_type);
1424 }
1425
1426 DPRINTFN(2, ("sk_attach: 1\n"));
1427
1428 sc_if->sk_mii.mii_ifp = ifp;
1429 switch (sc->sk_type) {
1430 case SK_GENESIS:
1431 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1432 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1433 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1434 break;
1435 case SK_YUKON:
1436 case SK_YUKON_LITE:
1437 case SK_YUKON_LP:
1438 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1439 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1440 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1441 break;
1442 }
1443
1444 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1445 sk_ifmedia_upd, sk_ifmedia_sts);
1446 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1447 MII_OFFSET_ANY, 0);
1448 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1449 aprint_error("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1450 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1451 0, NULL);
1452 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1453 } else
1454 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1455
1456 callout_init(&sc_if->sk_tick_ch);
1457 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1458
1459 DPRINTFN(2, ("sk_attach: 1\n"));
1460
1461 /*
1462 * Call MI attach routines.
1463 */
1464 if_attach(ifp);
1465
1466 ether_ifattach(ifp, sc_if->sk_enaddr);
1467
1468 #if NRND > 0
1469 rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
1470 RND_TYPE_NET, 0);
1471 #endif
1472
1473 DPRINTFN(2, ("sk_attach: end\n"));
1474
1475 return;
1476
1477 fail:
1478 sc->sk_if[sa->skc_port] = NULL;
1479 }
1480
1481 int
1482 skcprint(void *aux, const char *pnp)
1483 {
1484 struct skc_attach_args *sa = aux;
1485
1486 if (pnp)
1487 aprint_normal("sk port %c at %s",
1488 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1489 else
1490 aprint_normal(" port %c",
1491 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1492 return UNCONF;
1493 }
1494
1495 /*
1496 * Attach the interface. Allocate softc structures, do ifmedia
1497 * setup and ethernet/BPF attach.
1498 */
1499 void
1500 skc_attach(struct device *parent, struct device *self, void *aux)
1501 {
1502 struct sk_softc *sc = (struct sk_softc *)self;
1503 struct pci_attach_args *pa = aux;
1504 struct skc_attach_args skca;
1505 pci_chipset_tag_t pc = pa->pa_pc;
1506 #ifndef SK_USEIOSPACE
1507 pcireg_t memtype;
1508 #endif
1509 pci_intr_handle_t ih;
1510 const char *intrstr = NULL;
1511 bus_addr_t iobase;
1512 bus_size_t iosize;
1513 int rc, sk_nodenum;
1514 u_int32_t command;
1515 const char *revstr;
1516 const struct sysctlnode *node;
1517
1518 DPRINTFN(2, ("begin skc_attach\n"));
1519
1520 /*
1521 * Handle power management nonsense.
1522 */
1523 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1524
1525 if (command == 0x01) {
1526 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1527 if (command & SK_PSTATE_MASK) {
1528 u_int32_t xiobase, membase, irq;
1529
1530 /* Save important PCI config data. */
1531 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1532 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1533 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1534
1535 /* Reset the power state. */
1536 aprint_normal("%s chip is in D%d power mode "
1537 "-- setting to D0\n", sc->sk_dev.dv_xname,
1538 command & SK_PSTATE_MASK);
1539 command &= 0xFFFFFFFC;
1540 pci_conf_write(pc, pa->pa_tag,
1541 SK_PCI_PWRMGMTCTRL, command);
1542
1543 /* Restore PCI config data. */
1544 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1545 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1546 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1547 }
1548 }
1549
1550 /*
1551 * Map control/status registers.
1552 */
1553 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1554 command |= PCI_COMMAND_IO_ENABLE |
1555 PCI_COMMAND_MEM_ENABLE |
1556 PCI_COMMAND_MASTER_ENABLE;
1557 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1558 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1559
1560 #ifdef SK_USEIOSPACE
1561 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1562 aprint_error(": failed to enable I/O ports!\n");
1563 return;
1564 }
1565 /*
1566 * Map control/status registers.
1567 */
1568 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1569 &sc->sk_btag, &sc->sk_bhandle,
1570 &iobase, &iosize)) {
1571 aprint_error(": can't find i/o space\n");
1572 return;
1573 }
1574 #else
1575 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1576 aprint_error(": failed to enable memory mapping!\n");
1577 return;
1578 }
1579 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1580 switch (memtype) {
1581 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1582 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1583 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1584 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1585 &iobase, &iosize) == 0)
1586 break;
1587 default:
1588 aprint_error("%s: can't find mem space\n",
1589 sc->sk_dev.dv_xname);
1590 return;
1591 }
1592
1593 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1594 #endif
1595 sc->sc_dmatag = pa->pa_dmat;
1596
1597 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1598 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1599
1600 /* bail out here if chip is not recognized */
1601 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1602 aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
1603 goto fail;
1604 }
1605 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1606
1607 /* Allocate interrupt */
1608 if (pci_intr_map(pa, &ih)) {
1609 aprint_error(": couldn't map interrupt\n");
1610 goto fail;
1611 }
1612
1613 intrstr = pci_intr_string(pc, ih);
1614 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1615 if (sc->sk_intrhand == NULL) {
1616 aprint_error(": couldn't establish interrupt");
1617 if (intrstr != NULL)
1618 aprint_normal(" at %s", intrstr);
1619 goto fail;
1620 }
1621 aprint_normal(": %s\n", intrstr);
1622
1623 /* Reset the adapter. */
1624 sk_reset(sc);
1625
1626 /* Read and save vital product data from EEPROM. */
1627 sk_vpd_read(sc);
1628
1629 if (sc->sk_type == SK_GENESIS) {
1630 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1631 /* Read and save RAM size and RAMbuffer offset */
1632 switch (val) {
1633 case SK_RAMSIZE_512K_64:
1634 sc->sk_ramsize = 0x80000;
1635 sc->sk_rboff = SK_RBOFF_0;
1636 break;
1637 case SK_RAMSIZE_1024K_64:
1638 sc->sk_ramsize = 0x100000;
1639 sc->sk_rboff = SK_RBOFF_80000;
1640 break;
1641 case SK_RAMSIZE_1024K_128:
1642 sc->sk_ramsize = 0x100000;
1643 sc->sk_rboff = SK_RBOFF_0;
1644 break;
1645 case SK_RAMSIZE_2048K_128:
1646 sc->sk_ramsize = 0x200000;
1647 sc->sk_rboff = SK_RBOFF_0;
1648 break;
1649 default:
1650 aprint_error("%s: unknown ram size: %d\n",
1651 sc->sk_dev.dv_xname, val);
1652 goto fail_1;
1653 break;
1654 }
1655
1656 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1657 sc->sk_ramsize, sc->sk_ramsize / 1024,
1658 sc->sk_rboff));
1659 } else {
1660 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1661 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1662 sc->sk_rboff = SK_RBOFF_0;
1663
1664 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1665 sc->sk_ramsize / 1024, sc->sk_ramsize,
1666 sc->sk_rboff));
1667 }
1668
1669 /* Read and save physical media type */
1670 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1671 case SK_PMD_1000BASESX:
1672 sc->sk_pmd = IFM_1000_SX;
1673 break;
1674 case SK_PMD_1000BASELX:
1675 sc->sk_pmd = IFM_1000_LX;
1676 break;
1677 case SK_PMD_1000BASECX:
1678 sc->sk_pmd = IFM_1000_CX;
1679 break;
1680 case SK_PMD_1000BASETX:
1681 case SK_PMD_1000BASETX_ALT:
1682 sc->sk_pmd = IFM_1000_T;
1683 break;
1684 default:
1685 aprint_error("%s: unknown media type: 0x%x\n",
1686 sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
1687 goto fail_1;
1688 }
1689
1690 /* determine whether to name it with vpd or just make it up */
1691 /* Marvell Yukon VPD's can freqently be bogus */
1692
1693 switch (pa->pa_id) {
1694 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1695 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1696 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1697 case PCI_PRODUCT_3COM_3C940:
1698 case PCI_PRODUCT_DLINK_DGE530T:
1699 case PCI_PRODUCT_DLINK_DGE560T:
1700 case PCI_PRODUCT_DLINK_DGE560T_2:
1701 case PCI_PRODUCT_LINKSYS_EG1032:
1702 case PCI_PRODUCT_LINKSYS_EG1064:
1703 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1704 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1705 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1706 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1707 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1708 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1709 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1710 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1711 sc->sk_name = sc->sk_vpd_prodname;
1712 break;
1713 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1714 /* whoops yukon vpd prodname bears no resemblance to reality */
1715 switch (sc->sk_type) {
1716 case SK_GENESIS:
1717 sc->sk_name = sc->sk_vpd_prodname;
1718 break;
1719 case SK_YUKON:
1720 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1721 break;
1722 case SK_YUKON_LITE:
1723 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1724 break;
1725 case SK_YUKON_LP:
1726 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1727 break;
1728 default:
1729 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1730 }
1731
1732 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1733
1734 if ( sc->sk_type == SK_YUKON ) {
1735 uint32_t flashaddr;
1736 uint8_t testbyte;
1737
1738 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1739
1740 /* test Flash-Address Register */
1741 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1742 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1743
1744 if (testbyte != 0) {
1745 /* this is yukon lite Rev. A0 */
1746 sc->sk_type = SK_YUKON_LITE;
1747 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1748 /* restore Flash-Address Register */
1749 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1750 }
1751 }
1752 break;
1753 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1754 sc->sk_name = sc->sk_vpd_prodname;
1755 break;
1756 default:
1757 sc->sk_name = "Unknown Marvell";
1758 }
1759
1760
1761 if ( sc->sk_type == SK_YUKON_LITE ) {
1762 switch (sc->sk_rev) {
1763 case SK_YUKON_LITE_REV_A0:
1764 revstr = "A0";
1765 break;
1766 case SK_YUKON_LITE_REV_A1:
1767 revstr = "A1";
1768 break;
1769 case SK_YUKON_LITE_REV_A3:
1770 revstr = "A3";
1771 break;
1772 default:
1773 revstr = "";
1774 }
1775 } else {
1776 revstr = "";
1777 }
1778
1779 /* Announce the product name. */
1780 aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
1781 sc->sk_name, revstr, sc->sk_rev);
1782
1783 skca.skc_port = SK_PORT_A;
1784 (void)config_found(&sc->sk_dev, &skca, skcprint);
1785
1786 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1787 skca.skc_port = SK_PORT_B;
1788 (void)config_found(&sc->sk_dev, &skca, skcprint);
1789 }
1790
1791 /* Turn on the 'driver is loaded' LED. */
1792 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1793
1794 /* skc sysctl setup */
1795
1796 sc->sk_int_mod = SK_IM_DEFAULT;
1797 sc->sk_int_mod_pending = 0;
1798
1799 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1800 0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
1801 SYSCTL_DESCR("skc per-controller controls"),
1802 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1803 CTL_EOL)) != 0) {
1804 aprint_normal("%s: couldn't create sysctl node\n",
1805 sc->sk_dev.dv_xname);
1806 goto fail_1;
1807 }
1808
1809 sk_nodenum = node->sysctl_num;
1810
1811 /* interrupt moderation time in usecs */
1812 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1813 CTLFLAG_READWRITE,
1814 CTLTYPE_INT, "int_mod",
1815 SYSCTL_DESCR("sk interrupt moderation timer"),
1816 sk_sysctl_handler, 0, sc,
1817 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1818 CTL_EOL)) != 0) {
1819 aprint_normal("%s: couldn't create int_mod sysctl node\n",
1820 sc->sk_dev.dv_xname);
1821 goto fail_1;
1822 }
1823
1824 return;
1825
1826 fail_1:
1827 pci_intr_disestablish(pc, sc->sk_intrhand);
1828 fail:
1829 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1830 }
1831
1832 int
1833 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1834 {
1835 struct sk_softc *sc = sc_if->sk_softc;
1836 struct sk_tx_desc *f = NULL;
1837 u_int32_t frag, cur, cnt = 0, sk_ctl;
1838 int i;
1839 struct sk_txmap_entry *entry;
1840 bus_dmamap_t txmap;
1841
1842 DPRINTFN(3, ("sk_encap\n"));
1843
1844 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1845 if (entry == NULL) {
1846 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1847 return ENOBUFS;
1848 }
1849 txmap = entry->dmamap;
1850
1851 cur = frag = *txidx;
1852
1853 #ifdef SK_DEBUG
1854 if (skdebug >= 3)
1855 sk_dump_mbuf(m_head);
1856 #endif
1857
1858 /*
1859 * Start packing the mbufs in this chain into
1860 * the fragment pointers. Stop when we run out
1861 * of fragments or hit the end of the mbuf chain.
1862 */
1863 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1864 BUS_DMA_NOWAIT)) {
1865 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1866 return ENOBUFS;
1867 }
1868
1869 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1870
1871 /* Sync the DMA map. */
1872 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1873 BUS_DMASYNC_PREWRITE);
1874
1875 for (i = 0; i < txmap->dm_nsegs; i++) {
1876 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1877 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1878 return ENOBUFS;
1879 }
1880 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1881 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1882 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1883 if (cnt == 0)
1884 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1885 else
1886 sk_ctl |= SK_TXCTL_OWN;
1887 f->sk_ctl = htole32(sk_ctl);
1888 cur = frag;
1889 SK_INC(frag, SK_TX_RING_CNT);
1890 cnt++;
1891 }
1892
1893 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1894 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1895
1896 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1897 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1898 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1899
1900 /* Sync descriptors before handing to chip */
1901 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1902 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1903
1904 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1905 htole32(SK_TXCTL_OWN);
1906
1907 /* Sync first descriptor to hand it off */
1908 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1909
1910 sc_if->sk_cdata.sk_tx_cnt += cnt;
1911
1912 #ifdef SK_DEBUG
1913 if (skdebug >= 3) {
1914 struct sk_tx_desc *desc;
1915 u_int32_t idx;
1916 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1917 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1918 sk_dump_txdesc(desc, idx);
1919 }
1920 }
1921 #endif
1922
1923 *txidx = frag;
1924
1925 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1926
1927 return 0;
1928 }
1929
1930 void
1931 sk_start(struct ifnet *ifp)
1932 {
1933 struct sk_if_softc *sc_if = ifp->if_softc;
1934 struct sk_softc *sc = sc_if->sk_softc;
1935 struct mbuf *m_head = NULL;
1936 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1937 int pkts = 0;
1938
1939 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1940 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1941
1942 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1943 IFQ_POLL(&ifp->if_snd, m_head);
1944 if (m_head == NULL)
1945 break;
1946
1947 /*
1948 * Pack the data into the transmit ring. If we
1949 * don't have room, set the OACTIVE flag and wait
1950 * for the NIC to drain the ring.
1951 */
1952 if (sk_encap(sc_if, m_head, &idx)) {
1953 ifp->if_flags |= IFF_OACTIVE;
1954 break;
1955 }
1956
1957 /* now we are committed to transmit the packet */
1958 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1959 pkts++;
1960
1961 /*
1962 * If there's a BPF listener, bounce a copy of this frame
1963 * to him.
1964 */
1965 #if NBPFILTER > 0
1966 if (ifp->if_bpf)
1967 bpf_mtap(ifp->if_bpf, m_head);
1968 #endif
1969 }
1970 if (pkts == 0)
1971 return;
1972
1973 /* Transmit */
1974 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1975 sc_if->sk_cdata.sk_tx_prod = idx;
1976 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1977
1978 /* Set a timeout in case the chip goes out to lunch. */
1979 ifp->if_timer = 5;
1980 }
1981 }
1982
1983
1984 void
1985 sk_watchdog(struct ifnet *ifp)
1986 {
1987 struct sk_if_softc *sc_if = ifp->if_softc;
1988
1989 /*
1990 * Reclaim first as there is a possibility of losing Tx completion
1991 * interrupts.
1992 */
1993 sk_txeof(sc_if);
1994 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1995 aprint_error("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1996
1997 ifp->if_oerrors++;
1998
1999 sk_init(ifp);
2000 }
2001 }
2002
2003 void
2004 sk_shutdown(void *v)
2005 {
2006 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
2007 struct sk_softc *sc = sc_if->sk_softc;
2008 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2009
2010 DPRINTFN(2, ("sk_shutdown\n"));
2011 sk_stop(ifp,1);
2012
2013 /* Turn off the 'driver is loaded' LED. */
2014 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2015
2016 /*
2017 * Reset the GEnesis controller. Doing this should also
2018 * assert the resets on the attached XMAC(s).
2019 */
2020 sk_reset(sc);
2021 }
2022
2023 void
2024 sk_rxeof(struct sk_if_softc *sc_if)
2025 {
2026 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2027 struct mbuf *m;
2028 struct sk_chain *cur_rx;
2029 struct sk_rx_desc *cur_desc;
2030 int i, cur, total_len = 0;
2031 u_int32_t rxstat, sk_ctl;
2032 bus_dmamap_t dmamap;
2033
2034 i = sc_if->sk_cdata.sk_rx_prod;
2035
2036 DPRINTFN(3, ("sk_rxeof %d\n", i));
2037
2038 for (;;) {
2039 cur = i;
2040
2041 /* Sync the descriptor */
2042 SK_CDRXSYNC(sc_if, cur,
2043 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2044
2045 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2046 if (sk_ctl & SK_RXCTL_OWN) {
2047 /* Invalidate the descriptor -- it's not ready yet */
2048 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2049 sc_if->sk_cdata.sk_rx_prod = i;
2050 break;
2051 }
2052
2053 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2054 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2055 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2056
2057 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2058 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2059
2060 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2061 m = cur_rx->sk_mbuf;
2062 cur_rx->sk_mbuf = NULL;
2063 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2064
2065 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2066
2067 SK_INC(i, SK_RX_RING_CNT);
2068
2069 if (rxstat & XM_RXSTAT_ERRFRAME) {
2070 ifp->if_ierrors++;
2071 sk_newbuf(sc_if, cur, m, dmamap);
2072 continue;
2073 }
2074
2075 /*
2076 * Try to allocate a new jumbo buffer. If that
2077 * fails, copy the packet to mbufs and put the
2078 * jumbo buffer back in the ring so it can be
2079 * re-used. If allocating mbufs fails, then we
2080 * have to drop the packet.
2081 */
2082 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2083 struct mbuf *m0;
2084 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2085 total_len + ETHER_ALIGN, 0, ifp, NULL);
2086 sk_newbuf(sc_if, cur, m, dmamap);
2087 if (m0 == NULL) {
2088 aprint_error("%s: no receive buffers "
2089 "available -- packet dropped!\n",
2090 sc_if->sk_dev.dv_xname);
2091 ifp->if_ierrors++;
2092 continue;
2093 }
2094 m_adj(m0, ETHER_ALIGN);
2095 m = m0;
2096 } else {
2097 m->m_pkthdr.rcvif = ifp;
2098 m->m_pkthdr.len = m->m_len = total_len;
2099 }
2100
2101 ifp->if_ipackets++;
2102
2103 #if NBPFILTER > 0
2104 if (ifp->if_bpf)
2105 bpf_mtap(ifp->if_bpf, m);
2106 #endif
2107 /* pass it on. */
2108 (*ifp->if_input)(ifp, m);
2109 }
2110 }
2111
2112 void
2113 sk_txeof(struct sk_if_softc *sc_if)
2114 {
2115 struct sk_softc *sc = sc_if->sk_softc;
2116 struct sk_tx_desc *cur_tx;
2117 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2118 u_int32_t idx, sk_ctl;
2119 struct sk_txmap_entry *entry;
2120
2121 DPRINTFN(3, ("sk_txeof\n"));
2122
2123 /*
2124 * Go through our tx ring and free mbufs for those
2125 * frames that have been sent.
2126 */
2127 idx = sc_if->sk_cdata.sk_tx_cons;
2128 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2129 SK_CDTXSYNC(sc_if, idx, 1,
2130 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2131
2132 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2133 sk_ctl = le32toh(cur_tx->sk_ctl);
2134 #ifdef SK_DEBUG
2135 if (skdebug >= 3)
2136 sk_dump_txdesc(cur_tx, idx);
2137 #endif
2138 if (sk_ctl & SK_TXCTL_OWN) {
2139 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2140 break;
2141 }
2142 if (sk_ctl & SK_TXCTL_LASTFRAG)
2143 ifp->if_opackets++;
2144 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2145 entry = sc_if->sk_cdata.sk_tx_map[idx];
2146
2147 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2148 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2149
2150 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2151 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2152
2153 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2154 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2155 link);
2156 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2157 }
2158 sc_if->sk_cdata.sk_tx_cnt--;
2159 SK_INC(idx, SK_TX_RING_CNT);
2160 }
2161 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2162 ifp->if_timer = 0;
2163 else /* nudge chip to keep tx ring moving */
2164 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2165
2166 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2167 ifp->if_flags &= ~IFF_OACTIVE;
2168
2169 sc_if->sk_cdata.sk_tx_cons = idx;
2170 }
2171
2172 void
2173 sk_tick(void *xsc_if)
2174 {
2175 struct sk_if_softc *sc_if = xsc_if;
2176 struct mii_data *mii = &sc_if->sk_mii;
2177 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2178 int i;
2179
2180 DPRINTFN(3, ("sk_tick\n"));
2181
2182 if (!(ifp->if_flags & IFF_UP))
2183 return;
2184
2185 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2186 sk_intr_bcom(sc_if);
2187 return;
2188 }
2189
2190 /*
2191 * According to SysKonnect, the correct way to verify that
2192 * the link has come back up is to poll bit 0 of the GPIO
2193 * register three times. This pin has the signal from the
2194 * link sync pin connected to it; if we read the same link
2195 * state 3 times in a row, we know the link is up.
2196 */
2197 for (i = 0; i < 3; i++) {
2198 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2199 break;
2200 }
2201
2202 if (i != 3) {
2203 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2204 return;
2205 }
2206
2207 /* Turn the GP0 interrupt back on. */
2208 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2209 SK_XM_READ_2(sc_if, XM_ISR);
2210 mii_tick(mii);
2211 mii_pollstat(mii);
2212 callout_stop(&sc_if->sk_tick_ch);
2213 }
2214
2215 void
2216 sk_intr_bcom(struct sk_if_softc *sc_if)
2217 {
2218 struct mii_data *mii = &sc_if->sk_mii;
2219 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2220 int status;
2221
2222
2223 DPRINTFN(3, ("sk_intr_bcom\n"));
2224
2225 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2226
2227 /*
2228 * Read the PHY interrupt register to make sure
2229 * we clear any pending interrupts.
2230 */
2231 status = sk_xmac_miibus_readreg((struct device *)sc_if,
2232 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2233
2234 if (!(ifp->if_flags & IFF_RUNNING)) {
2235 sk_init_xmac(sc_if);
2236 return;
2237 }
2238
2239 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2240 int lstat;
2241 lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
2242 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2243
2244 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2245 mii_mediachg(mii);
2246 /* Turn off the link LED. */
2247 SK_IF_WRITE_1(sc_if, 0,
2248 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2249 sc_if->sk_link = 0;
2250 } else if (status & BRGPHY_ISR_LNK_CHG) {
2251 sk_xmac_miibus_writereg((struct device *)sc_if,
2252 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2253 mii_tick(mii);
2254 sc_if->sk_link = 1;
2255 /* Turn on the link LED. */
2256 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2257 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2258 SK_LINKLED_BLINK_OFF);
2259 mii_pollstat(mii);
2260 } else {
2261 mii_tick(mii);
2262 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2263 }
2264 }
2265
2266 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2267 }
2268
2269 void
2270 sk_intr_xmac(struct sk_if_softc *sc_if)
2271 {
2272 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2273
2274 DPRINTFN(3, ("sk_intr_xmac\n"));
2275
2276 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2277 if (status & XM_ISR_GP0_SET) {
2278 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2279 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2280 }
2281
2282 if (status & XM_ISR_AUTONEG_DONE) {
2283 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2284 }
2285 }
2286
2287 if (status & XM_IMR_TX_UNDERRUN)
2288 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2289
2290 if (status & XM_IMR_RX_OVERRUN)
2291 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2292 }
2293
2294 void
2295 sk_intr_yukon(struct sk_if_softc *sc_if)
2296 {
2297 int status;
2298
2299 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2300
2301 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2302 }
2303
2304 int
2305 sk_intr(void *xsc)
2306 {
2307 struct sk_softc *sc = xsc;
2308 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2309 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2310 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2311 u_int32_t status;
2312 int claimed = 0;
2313
2314 if (sc_if0 != NULL)
2315 ifp0 = &sc_if0->sk_ethercom.ec_if;
2316 if (sc_if1 != NULL)
2317 ifp1 = &sc_if1->sk_ethercom.ec_if;
2318
2319 for (;;) {
2320 status = CSR_READ_4(sc, SK_ISSR);
2321 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2322
2323 if (!(status & sc->sk_intrmask))
2324 break;
2325
2326 claimed = 1;
2327
2328 /* Handle receive interrupts first. */
2329 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2330 sk_rxeof(sc_if0);
2331 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2332 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2333 }
2334 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2335 sk_rxeof(sc_if1);
2336 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2337 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2338 }
2339
2340 /* Then transmit interrupts. */
2341 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2342 sk_txeof(sc_if0);
2343 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2344 SK_TXBMU_CLR_IRQ_EOF);
2345 }
2346 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2347 sk_txeof(sc_if1);
2348 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2349 SK_TXBMU_CLR_IRQ_EOF);
2350 }
2351
2352 /* Then MAC interrupts. */
2353 if (sc_if0 && (status & SK_ISR_MAC1) &&
2354 (ifp0->if_flags & IFF_RUNNING)) {
2355 if (sc->sk_type == SK_GENESIS)
2356 sk_intr_xmac(sc_if0);
2357 else
2358 sk_intr_yukon(sc_if0);
2359 }
2360
2361 if (sc_if1 && (status & SK_ISR_MAC2) &&
2362 (ifp1->if_flags & IFF_RUNNING)) {
2363 if (sc->sk_type == SK_GENESIS)
2364 sk_intr_xmac(sc_if1);
2365 else
2366 sk_intr_yukon(sc_if1);
2367
2368 }
2369
2370 if (status & SK_ISR_EXTERNAL_REG) {
2371 if (sc_if0 != NULL &&
2372 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2373 sk_intr_bcom(sc_if0);
2374
2375 if (sc_if1 != NULL &&
2376 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2377 sk_intr_bcom(sc_if1);
2378 }
2379 }
2380
2381 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2382
2383 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2384 sk_start(ifp0);
2385 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2386 sk_start(ifp1);
2387
2388 #if NRND > 0
2389 if (RND_ENABLED(&sc->rnd_source))
2390 rnd_add_uint32(&sc->rnd_source, status);
2391 #endif
2392
2393 if (sc->sk_int_mod_pending)
2394 sk_update_int_mod(sc);
2395
2396 return claimed;
2397 }
2398
2399 void
2400 sk_init_xmac(struct sk_if_softc *sc_if)
2401 {
2402 struct sk_softc *sc = sc_if->sk_softc;
2403 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2404 static const struct sk_bcom_hack bhack[] = {
2405 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2406 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2407 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2408 { 0, 0 } };
2409
2410 DPRINTFN(1, ("sk_init_xmac\n"));
2411
2412 /* Unreset the XMAC. */
2413 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2414 DELAY(1000);
2415
2416 /* Reset the XMAC's internal state. */
2417 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2418
2419 /* Save the XMAC II revision */
2420 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2421
2422 /*
2423 * Perform additional initialization for external PHYs,
2424 * namely for the 1000baseTX cards that use the XMAC's
2425 * GMII mode.
2426 */
2427 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2428 int i = 0;
2429 u_int32_t val;
2430
2431 /* Take PHY out of reset. */
2432 val = sk_win_read_4(sc, SK_GPIO);
2433 if (sc_if->sk_port == SK_PORT_A)
2434 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2435 else
2436 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2437 sk_win_write_4(sc, SK_GPIO, val);
2438
2439 /* Enable GMII mode on the XMAC. */
2440 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2441
2442 sk_xmac_miibus_writereg((struct device *)sc_if,
2443 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2444 DELAY(10000);
2445 sk_xmac_miibus_writereg((struct device *)sc_if,
2446 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2447
2448 /*
2449 * Early versions of the BCM5400 apparently have
2450 * a bug that requires them to have their reserved
2451 * registers initialized to some magic values. I don't
2452 * know what the numbers do, I'm just the messenger.
2453 */
2454 if (sk_xmac_miibus_readreg((struct device *)sc_if,
2455 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2456 while (bhack[i].reg) {
2457 sk_xmac_miibus_writereg((struct device *)sc_if,
2458 SK_PHYADDR_BCOM, bhack[i].reg,
2459 bhack[i].val);
2460 i++;
2461 }
2462 }
2463 }
2464
2465 /* Set station address */
2466 SK_XM_WRITE_2(sc_if, XM_PAR0,
2467 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2468 SK_XM_WRITE_2(sc_if, XM_PAR1,
2469 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2470 SK_XM_WRITE_2(sc_if, XM_PAR2,
2471 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2472 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2473
2474 if (ifp->if_flags & IFF_PROMISC)
2475 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2476 else
2477 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2478
2479 if (ifp->if_flags & IFF_BROADCAST)
2480 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2481 else
2482 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2483
2484 /* We don't need the FCS appended to the packet. */
2485 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2486
2487 /* We want short frames padded to 60 bytes. */
2488 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2489
2490 /*
2491 * Enable the reception of all error frames. This is is
2492 * a necessary evil due to the design of the XMAC. The
2493 * XMAC's receive FIFO is only 8K in size, however jumbo
2494 * frames can be up to 9000 bytes in length. When bad
2495 * frame filtering is enabled, the XMAC's RX FIFO operates
2496 * in 'store and forward' mode. For this to work, the
2497 * entire frame has to fit into the FIFO, but that means
2498 * that jumbo frames larger than 8192 bytes will be
2499 * truncated. Disabling all bad frame filtering causes
2500 * the RX FIFO to operate in streaming mode, in which
2501 * case the XMAC will start transfering frames out of the
2502 * RX FIFO as soon as the FIFO threshold is reached.
2503 */
2504 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2505 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2506 XM_MODE_RX_INRANGELEN);
2507
2508 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2509 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2510 else
2511 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2512
2513 /*
2514 * Bump up the transmit threshold. This helps hold off transmit
2515 * underruns when we're blasting traffic from both ports at once.
2516 */
2517 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2518
2519 /* Set multicast filter */
2520 sk_setmulti(sc_if);
2521
2522 /* Clear and enable interrupts */
2523 SK_XM_READ_2(sc_if, XM_ISR);
2524 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2525 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2526 else
2527 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2528
2529 /* Configure MAC arbiter */
2530 switch (sc_if->sk_xmac_rev) {
2531 case XM_XMAC_REV_B2:
2532 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2533 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2534 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2535 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2536 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2537 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2538 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2539 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2540 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2541 break;
2542 case XM_XMAC_REV_C1:
2543 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2544 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2545 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2546 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2547 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2548 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2549 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2550 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2551 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2552 break;
2553 default:
2554 break;
2555 }
2556 sk_win_write_2(sc, SK_MACARB_CTL,
2557 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2558
2559 sc_if->sk_link = 1;
2560 }
2561
2562 void sk_init_yukon(struct sk_if_softc *sc_if)
2563 {
2564 u_int32_t /*mac, */phy;
2565 u_int16_t reg;
2566 struct sk_softc *sc;
2567 int i;
2568
2569 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2570 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2571
2572 sc = sc_if->sk_softc;
2573 if (sc->sk_type == SK_YUKON_LITE &&
2574 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2575 /* Take PHY out of reset. */
2576 sk_win_write_4(sc, SK_GPIO,
2577 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2578 }
2579
2580
2581 /* GMAC and GPHY Reset */
2582 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2583
2584 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2585
2586 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2587 DELAY(1000);
2588 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2589 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2590 DELAY(1000);
2591
2592
2593 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2594
2595 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2596 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2597
2598 switch (sc_if->sk_softc->sk_pmd) {
2599 case IFM_1000_SX:
2600 case IFM_1000_LX:
2601 phy |= SK_GPHY_FIBER;
2602 break;
2603
2604 case IFM_1000_CX:
2605 case IFM_1000_T:
2606 phy |= SK_GPHY_COPPER;
2607 break;
2608 }
2609
2610 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2611
2612 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2613 DELAY(1000);
2614 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2615 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2616 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2617
2618 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2619 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2620
2621 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2622
2623 /* unused read of the interrupt source register */
2624 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2625 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2626
2627 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2628 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2629 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2630
2631 /* MIB Counter Clear Mode set */
2632 reg |= YU_PAR_MIB_CLR;
2633 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2634 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2635 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2636
2637 /* MIB Counter Clear Mode clear */
2638 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2639 reg &= ~YU_PAR_MIB_CLR;
2640 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2641
2642 /* receive control reg */
2643 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2644 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2645 YU_RCR_CRCR);
2646
2647 /* transmit parameter register */
2648 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2649 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2650 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2651
2652 /* serial mode register */
2653 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2654 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2655 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2656 YU_SMR_IPG_DATA(0x1e));
2657
2658 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2659 /* Setup Yukon's address */
2660 for (i = 0; i < 3; i++) {
2661 /* Write Source Address 1 (unicast filter) */
2662 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2663 sc_if->sk_enaddr[i * 2] |
2664 sc_if->sk_enaddr[i * 2 + 1] << 8);
2665 }
2666
2667 for (i = 0; i < 3; i++) {
2668 reg = sk_win_read_2(sc_if->sk_softc,
2669 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2670 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2671 }
2672
2673 /* Set multicast filter */
2674 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2675 sk_setmulti(sc_if);
2676
2677 /* enable interrupt mask for counter overflows */
2678 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2679 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2680 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2681 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2682
2683 /* Configure RX MAC FIFO */
2684 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2685 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2686
2687 /* Configure TX MAC FIFO */
2688 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2689 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2690
2691 DPRINTFN(6, ("sk_init_yukon: end\n"));
2692 }
2693
2694 /*
2695 * Note that to properly initialize any part of the GEnesis chip,
2696 * you first have to take it out of reset mode.
2697 */
2698 int
2699 sk_init(struct ifnet *ifp)
2700 {
2701 struct sk_if_softc *sc_if = ifp->if_softc;
2702 struct sk_softc *sc = sc_if->sk_softc;
2703 struct mii_data *mii = &sc_if->sk_mii;
2704 int s;
2705 u_int32_t imr, imtimer_ticks;
2706
2707 DPRINTFN(1, ("sk_init\n"));
2708
2709 s = splnet();
2710
2711 if (ifp->if_flags & IFF_RUNNING) {
2712 splx(s);
2713 return 0;
2714 }
2715
2716 /* Cancel pending I/O and free all RX/TX buffers. */
2717 sk_stop(ifp,0);
2718
2719 if (sc->sk_type == SK_GENESIS) {
2720 /* Configure LINK_SYNC LED */
2721 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2722 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2723 SK_LINKLED_LINKSYNC_ON);
2724
2725 /* Configure RX LED */
2726 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2727 SK_RXLEDCTL_COUNTER_START);
2728
2729 /* Configure TX LED */
2730 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2731 SK_TXLEDCTL_COUNTER_START);
2732 }
2733
2734 /* Configure I2C registers */
2735
2736 /* Configure XMAC(s) */
2737 switch (sc->sk_type) {
2738 case SK_GENESIS:
2739 sk_init_xmac(sc_if);
2740 break;
2741 case SK_YUKON:
2742 case SK_YUKON_LITE:
2743 case SK_YUKON_LP:
2744 sk_init_yukon(sc_if);
2745 break;
2746 }
2747 mii_mediachg(mii);
2748
2749 if (sc->sk_type == SK_GENESIS) {
2750 /* Configure MAC FIFOs */
2751 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2752 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2753 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2754
2755 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2756 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2757 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2758 }
2759
2760 /* Configure transmit arbiter(s) */
2761 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2762 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2763
2764 /* Configure RAMbuffers */
2765 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2766 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2767 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2768 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2769 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2770 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2771
2772 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2773 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2774 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2775 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2776 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2777 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2778 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2779
2780 /* Configure BMUs */
2781 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2782 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2783 SK_RX_RING_ADDR(sc_if, 0));
2784 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2785
2786 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2787 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2788 SK_TX_RING_ADDR(sc_if, 0));
2789 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2790
2791 /* Init descriptors */
2792 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2793 aprint_error("%s: initialization failed: no "
2794 "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2795 sk_stop(ifp,0);
2796 splx(s);
2797 return ENOBUFS;
2798 }
2799
2800 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2801 aprint_error("%s: initialization failed: no "
2802 "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2803 sk_stop(ifp,0);
2804 splx(s);
2805 return ENOBUFS;
2806 }
2807
2808 /* Set interrupt moderation if changed via sysctl. */
2809 switch (sc->sk_type) {
2810 case SK_GENESIS:
2811 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2812 break;
2813 case SK_YUKON_EC:
2814 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2815 break;
2816 default:
2817 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2818 }
2819 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2820 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2821 sk_win_write_4(sc, SK_IMTIMERINIT,
2822 SK_IM_USECS(sc->sk_int_mod));
2823 aprint_verbose("%s: interrupt moderation is %d us\n",
2824 sc->sk_dev.dv_xname, sc->sk_int_mod);
2825 }
2826
2827 /* Configure interrupt handling */
2828 CSR_READ_4(sc, SK_ISSR);
2829 if (sc_if->sk_port == SK_PORT_A)
2830 sc->sk_intrmask |= SK_INTRS1;
2831 else
2832 sc->sk_intrmask |= SK_INTRS2;
2833
2834 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2835
2836 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2837
2838 /* Start BMUs. */
2839 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2840
2841 if (sc->sk_type == SK_GENESIS) {
2842 /* Enable XMACs TX and RX state machines */
2843 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2844 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2845 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2846 }
2847
2848 if (SK_YUKON_FAMILY(sc->sk_type)) {
2849 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2850 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2851 #if 0
2852 /* XXX disable 100Mbps and full duplex mode? */
2853 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2854 #endif
2855 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2856 }
2857
2858
2859 ifp->if_flags |= IFF_RUNNING;
2860 ifp->if_flags &= ~IFF_OACTIVE;
2861
2862 splx(s);
2863 return 0;
2864 }
2865
2866 void
2867 sk_stop(struct ifnet *ifp, int disable)
2868 {
2869 struct sk_if_softc *sc_if = ifp->if_softc;
2870 struct sk_softc *sc = sc_if->sk_softc;
2871 int i;
2872
2873 DPRINTFN(1, ("sk_stop\n"));
2874
2875 callout_stop(&sc_if->sk_tick_ch);
2876
2877 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2878 u_int32_t val;
2879
2880 /* Put PHY back into reset. */
2881 val = sk_win_read_4(sc, SK_GPIO);
2882 if (sc_if->sk_port == SK_PORT_A) {
2883 val |= SK_GPIO_DIR0;
2884 val &= ~SK_GPIO_DAT0;
2885 } else {
2886 val |= SK_GPIO_DIR2;
2887 val &= ~SK_GPIO_DAT2;
2888 }
2889 sk_win_write_4(sc, SK_GPIO, val);
2890 }
2891
2892 /* Turn off various components of this interface. */
2893 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2894 switch (sc->sk_type) {
2895 case SK_GENESIS:
2896 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2897 SK_TXMACCTL_XMAC_RESET);
2898 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2899 break;
2900 case SK_YUKON:
2901 case SK_YUKON_LITE:
2902 case SK_YUKON_LP:
2903 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2904 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2905 break;
2906 }
2907 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2908 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2909 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2910 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2911 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2912 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2913 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2914 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2915 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2916
2917 /* Disable interrupts */
2918 if (sc_if->sk_port == SK_PORT_A)
2919 sc->sk_intrmask &= ~SK_INTRS1;
2920 else
2921 sc->sk_intrmask &= ~SK_INTRS2;
2922 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2923
2924 SK_XM_READ_2(sc_if, XM_ISR);
2925 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2926
2927 /* Free RX and TX mbufs still in the queues. */
2928 for (i = 0; i < SK_RX_RING_CNT; i++) {
2929 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2930 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2931 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2932 }
2933 }
2934
2935 for (i = 0; i < SK_TX_RING_CNT; i++) {
2936 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2937 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2938 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2939 }
2940 }
2941
2942 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2943 }
2944
2945 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2946
2947 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2948
2949 #ifdef SK_DEBUG
2950 void
2951 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2952 {
2953 #define DESC_PRINT(X) \
2954 if (X) \
2955 printf("txdesc[%d]." #X "=%#x\n", \
2956 idx, X);
2957
2958 DESC_PRINT(le32toh(desc->sk_ctl));
2959 DESC_PRINT(le32toh(desc->sk_next));
2960 DESC_PRINT(le32toh(desc->sk_data_lo));
2961 DESC_PRINT(le32toh(desc->sk_data_hi));
2962 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2963 DESC_PRINT(le16toh(desc->sk_rsvd0));
2964 DESC_PRINT(le16toh(desc->sk_csum_startval));
2965 DESC_PRINT(le16toh(desc->sk_csum_startpos));
2966 DESC_PRINT(le16toh(desc->sk_csum_writepos));
2967 DESC_PRINT(le16toh(desc->sk_rsvd1));
2968 #undef PRINT
2969 }
2970
2971 void
2972 sk_dump_bytes(const char *data, int len)
2973 {
2974 int c, i, j;
2975
2976 for (i = 0; i < len; i += 16) {
2977 printf("%08x ", i);
2978 c = len - i;
2979 if (c > 16) c = 16;
2980
2981 for (j = 0; j < c; j++) {
2982 printf("%02x ", data[i + j] & 0xff);
2983 if ((j & 0xf) == 7 && j > 0)
2984 printf(" ");
2985 }
2986
2987 for (; j < 16; j++)
2988 printf(" ");
2989 printf(" ");
2990
2991 for (j = 0; j < c; j++) {
2992 int ch = data[i + j] & 0xff;
2993 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2994 }
2995
2996 printf("\n");
2997
2998 if (c < 16)
2999 break;
3000 }
3001 }
3002
3003 void
3004 sk_dump_mbuf(struct mbuf *m)
3005 {
3006 int count = m->m_pkthdr.len;
3007
3008 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3009
3010 while (count > 0 && m) {
3011 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3012 m, m->m_data, m->m_len);
3013 sk_dump_bytes(mtod(m, char *), m->m_len);
3014
3015 count -= m->m_len;
3016 m = m->m_next;
3017 }
3018 }
3019 #endif
3020
3021 static int
3022 sk_sysctl_handler(SYSCTLFN_ARGS)
3023 {
3024 int error, t;
3025 struct sysctlnode node;
3026 struct sk_softc *sc;
3027
3028 node = *rnode;
3029 sc = node.sysctl_data;
3030 t = sc->sk_int_mod;
3031 node.sysctl_data = &t;
3032 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3033 if (error || newp == NULL)
3034 return error;
3035
3036 if (t < SK_IM_MIN || t > SK_IM_MAX)
3037 return EINVAL;
3038
3039 /* update the softc with sysctl-changed value, and mark
3040 for hardware update */
3041 sc->sk_int_mod = t;
3042 sc->sk_int_mod_pending = 1;
3043 return 0;
3044 }
3045
3046 /*
3047 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3048 * set up in skc_attach()
3049 */
3050 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3051 {
3052 int rc;
3053 const struct sysctlnode *node;
3054
3055 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3056 0, CTLTYPE_NODE, "hw", NULL,
3057 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3058 goto err;
3059 }
3060
3061 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3062 0, CTLTYPE_NODE, "sk",
3063 SYSCTL_DESCR("sk interface controls"),
3064 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3065 goto err;
3066 }
3067
3068 sk_root_num = node->sysctl_num;
3069 return;
3070
3071 err:
3072 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3073 }
3074