if_sk.c revision 1.40 1 /* $NetBSD: if_sk.c,v 1.40 2007/07/06 18:52:52 briggs Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the NetBSD
18 * Foundation, Inc. and its contributors.
19 * 4. Neither the name of The NetBSD Foundation nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
37
38 /*
39 * Copyright (c) 1997, 1998, 1999, 2000
40 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Bill Paul.
53 * 4. Neither the name of the author nor the names of any co-contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67 * THE POSSIBILITY OF SUCH DAMAGE.
68 *
69 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70 */
71
72 /*
73 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
74 *
75 * Permission to use, copy, modify, and distribute this software for any
76 * purpose with or without fee is hereby granted, provided that the above
77 * copyright notice and this permission notice appear in all copies.
78 *
79 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86 */
87
88 /*
89 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90 * the SK-984x series adapters, both single port and dual port.
91 * References:
92 * The XaQti XMAC II datasheet,
93 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 * The SysKonnect GEnesis manual, http://www.syskonnect.com
95 *
96 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98 * convenience to others until Vitesse corrects this problem:
99 *
100 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101 *
102 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
103 * Department of Electrical Engineering
104 * Columbia University, New York City
105 */
106
107 /*
108 * The SysKonnect gigabit ethernet adapters consist of two main
109 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111 * components and a PHY while the GEnesis controller provides a PCI
112 * interface with DMA support. Each card may have between 512K and
113 * 2MB of SRAM on board depending on the configuration.
114 *
115 * The SysKonnect GEnesis controller can have either one or two XMAC
116 * chips connected to it, allowing single or dual port NIC configurations.
117 * SysKonnect has the distinction of being the only vendor on the market
118 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120 * XMAC registers. This driver takes advantage of these features to allow
121 * both XMACs to operate as independent interfaces.
122 */
123
124 #include "bpfilter.h"
125 #include "rnd.h"
126
127 #include <sys/param.h>
128 #include <sys/systm.h>
129 #include <sys/sockio.h>
130 #include <sys/mbuf.h>
131 #include <sys/malloc.h>
132 #include <sys/kernel.h>
133 #include <sys/socket.h>
134 #include <sys/device.h>
135 #include <sys/queue.h>
136 #include <sys/callout.h>
137 #include <sys/sysctl.h>
138 #include <sys/endian.h>
139
140 #include <net/if.h>
141 #include <net/if_dl.h>
142 #include <net/if_types.h>
143
144 #include <net/if_media.h>
145
146 #if NBPFILTER > 0
147 #include <net/bpf.h>
148 #endif
149 #if NRND > 0
150 #include <sys/rnd.h>
151 #endif
152
153 #include <dev/mii/mii.h>
154 #include <dev/mii/miivar.h>
155 #include <dev/mii/brgphyreg.h>
156
157 #include <dev/pci/pcireg.h>
158 #include <dev/pci/pcivar.h>
159 #include <dev/pci/pcidevs.h>
160
161 /* #define SK_USEIOSPACE */
162
163 #include <dev/pci/if_skreg.h>
164 #include <dev/pci/if_skvar.h>
165
166 int skc_probe(struct device *, struct cfdata *, void *);
167 void skc_attach(struct device *, struct device *self, void *aux);
168 int sk_probe(struct device *, struct cfdata *, void *);
169 void sk_attach(struct device *, struct device *self, void *aux);
170 int skcprint(void *, const char *);
171 int sk_intr(void *);
172 void sk_intr_bcom(struct sk_if_softc *);
173 void sk_intr_xmac(struct sk_if_softc *);
174 void sk_intr_yukon(struct sk_if_softc *);
175 void sk_rxeof(struct sk_if_softc *);
176 void sk_txeof(struct sk_if_softc *);
177 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
178 void sk_start(struct ifnet *);
179 int sk_ioctl(struct ifnet *, u_long, void *);
180 int sk_init(struct ifnet *);
181 void sk_init_xmac(struct sk_if_softc *);
182 void sk_init_yukon(struct sk_if_softc *);
183 void sk_stop(struct ifnet *, int);
184 void sk_watchdog(struct ifnet *);
185 void sk_shutdown(void *);
186 int sk_ifmedia_upd(struct ifnet *);
187 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
188 void sk_reset(struct sk_softc *);
189 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
190 int sk_alloc_jumbo_mem(struct sk_if_softc *);
191 void sk_free_jumbo_mem(struct sk_if_softc *);
192 void *sk_jalloc(struct sk_if_softc *);
193 void sk_jfree(struct mbuf *, void *, size_t, void *);
194 int sk_init_rx_ring(struct sk_if_softc *);
195 int sk_init_tx_ring(struct sk_if_softc *);
196 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
197 void sk_vpd_read_res(struct sk_softc *,
198 struct vpd_res *, int);
199 void sk_vpd_read(struct sk_softc *);
200
201 void sk_update_int_mod(struct sk_softc *);
202
203 int sk_xmac_miibus_readreg(struct device *, int, int);
204 void sk_xmac_miibus_writereg(struct device *, int, int, int);
205 void sk_xmac_miibus_statchg(struct device *);
206
207 int sk_marv_miibus_readreg(struct device *, int, int);
208 void sk_marv_miibus_writereg(struct device *, int, int, int);
209 void sk_marv_miibus_statchg(struct device *);
210
211 u_int32_t sk_xmac_hash(void *);
212 u_int32_t sk_yukon_hash(void *);
213 void sk_setfilt(struct sk_if_softc *, void *, int);
214 void sk_setmulti(struct sk_if_softc *);
215 void sk_tick(void *);
216
217 /* #define SK_DEBUG 2 */
218 #ifdef SK_DEBUG
219 #define DPRINTF(x) if (skdebug) printf x
220 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
221 int skdebug = SK_DEBUG;
222
223 void sk_dump_txdesc(struct sk_tx_desc *, int);
224 void sk_dump_mbuf(struct mbuf *);
225 void sk_dump_bytes(const char *, int);
226 #else
227 #define DPRINTF(x)
228 #define DPRINTFN(n,x)
229 #endif
230
231 static int sk_sysctl_handler(SYSCTLFN_PROTO);
232 static int sk_root_num;
233
234 /* supported device vendors */
235 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
236 static const struct sk_product {
237 pci_vendor_id_t sk_vendor;
238 pci_product_id_t sk_product;
239 } sk_products[] = {
240 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
241 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
242 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
243 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
244 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
245 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
246 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
247 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
248 { 0, 0, }
249 };
250
251 #define SK_LINKSYS_EG1032_SUBID 0x00151737
252
253 static inline u_int32_t
254 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
255 {
256 #ifdef SK_USEIOSPACE
257 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
258 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
259 #else
260 return CSR_READ_4(sc, reg);
261 #endif
262 }
263
264 static inline u_int16_t
265 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
266 {
267 #ifdef SK_USEIOSPACE
268 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
269 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
270 #else
271 return CSR_READ_2(sc, reg);
272 #endif
273 }
274
275 static inline u_int8_t
276 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
277 {
278 #ifdef SK_USEIOSPACE
279 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
280 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
281 #else
282 return CSR_READ_1(sc, reg);
283 #endif
284 }
285
286 static inline void
287 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
288 {
289 #ifdef SK_USEIOSPACE
290 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
291 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
292 #else
293 CSR_WRITE_4(sc, reg, x);
294 #endif
295 }
296
297 static inline void
298 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
299 {
300 #ifdef SK_USEIOSPACE
301 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
302 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
303 #else
304 CSR_WRITE_2(sc, reg, x);
305 #endif
306 }
307
308 static inline void
309 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
310 {
311 #ifdef SK_USEIOSPACE
312 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
313 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
314 #else
315 CSR_WRITE_1(sc, reg, x);
316 #endif
317 }
318
319 /*
320 * The VPD EEPROM contains Vital Product Data, as suggested in
321 * the PCI 2.1 specification. The VPD data is separared into areas
322 * denoted by resource IDs. The SysKonnect VPD contains an ID string
323 * resource (the name of the adapter), a read-only area resource
324 * containing various key/data fields and a read/write area which
325 * can be used to store asset management information or log messages.
326 * We read the ID string and read-only into buffers attached to
327 * the controller softc structure for later use. At the moment,
328 * we only use the ID string during sk_attach().
329 */
330 u_int8_t
331 sk_vpd_readbyte(struct sk_softc *sc, int addr)
332 {
333 int i;
334
335 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
336 for (i = 0; i < SK_TIMEOUT; i++) {
337 DELAY(1);
338 if (sk_win_read_2(sc,
339 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
340 break;
341 }
342
343 if (i == SK_TIMEOUT)
344 return 0;
345
346 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
347 }
348
349 void
350 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
351 {
352 int i;
353 u_int8_t *ptr;
354
355 ptr = (u_int8_t *)res;
356 for (i = 0; i < sizeof(struct vpd_res); i++)
357 ptr[i] = sk_vpd_readbyte(sc, i + addr);
358 }
359
360 void
361 sk_vpd_read(struct sk_softc *sc)
362 {
363 int pos = 0, i;
364 struct vpd_res res;
365
366 if (sc->sk_vpd_prodname != NULL)
367 free(sc->sk_vpd_prodname, M_DEVBUF);
368 if (sc->sk_vpd_readonly != NULL)
369 free(sc->sk_vpd_readonly, M_DEVBUF);
370 sc->sk_vpd_prodname = NULL;
371 sc->sk_vpd_readonly = NULL;
372
373 sk_vpd_read_res(sc, &res, pos);
374
375 if (res.vr_id != VPD_RES_ID) {
376 aprint_error("%s: bad VPD resource id: expected %x got %x\n",
377 sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
378 return;
379 }
380
381 pos += sizeof(res);
382 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
383 if (sc->sk_vpd_prodname == NULL)
384 panic("sk_vpd_read");
385 for (i = 0; i < res.vr_len; i++)
386 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
387 sc->sk_vpd_prodname[i] = '\0';
388 pos += i;
389
390 sk_vpd_read_res(sc, &res, pos);
391
392 if (res.vr_id != VPD_RES_READ) {
393 aprint_error("%s: bad VPD resource id: expected %x got %x\n",
394 sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
395 return;
396 }
397
398 pos += sizeof(res);
399 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
400 if (sc->sk_vpd_readonly == NULL)
401 panic("sk_vpd_read");
402 for (i = 0; i < res.vr_len ; i++)
403 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
404 }
405
406 int
407 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
408 {
409 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
410 int i;
411
412 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
413
414 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
415 return 0;
416
417 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
418 SK_XM_READ_2(sc_if, XM_PHY_DATA);
419 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
420 for (i = 0; i < SK_TIMEOUT; i++) {
421 DELAY(1);
422 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
423 XM_MMUCMD_PHYDATARDY)
424 break;
425 }
426
427 if (i == SK_TIMEOUT) {
428 aprint_error("%s: phy failed to come ready\n",
429 sc_if->sk_dev.dv_xname);
430 return 0;
431 }
432 }
433 DELAY(1);
434 return SK_XM_READ_2(sc_if, XM_PHY_DATA);
435 }
436
437 void
438 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
439 {
440 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
441 int i;
442
443 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
444
445 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
446 for (i = 0; i < SK_TIMEOUT; i++) {
447 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
448 break;
449 }
450
451 if (i == SK_TIMEOUT) {
452 aprint_error("%s: phy failed to come ready\n",
453 sc_if->sk_dev.dv_xname);
454 return;
455 }
456
457 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
458 for (i = 0; i < SK_TIMEOUT; i++) {
459 DELAY(1);
460 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
461 break;
462 }
463
464 if (i == SK_TIMEOUT)
465 aprint_error("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
466 }
467
468 void
469 sk_xmac_miibus_statchg(struct device *dev)
470 {
471 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
472 struct mii_data *mii = &sc_if->sk_mii;
473
474 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
475
476 /*
477 * If this is a GMII PHY, manually set the XMAC's
478 * duplex mode accordingly.
479 */
480 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
481 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
482 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
483 else
484 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
485 }
486 }
487
488 int
489 sk_marv_miibus_readreg(struct device *dev, int phy, int reg)
490 {
491 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
492 u_int16_t val;
493 int i;
494
495 if (phy != 0 ||
496 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
497 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
498 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
499 phy, reg));
500 return 0;
501 }
502
503 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
504 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
505
506 for (i = 0; i < SK_TIMEOUT; i++) {
507 DELAY(1);
508 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
509 if (val & YU_SMICR_READ_VALID)
510 break;
511 }
512
513 if (i == SK_TIMEOUT) {
514 aprint_error("%s: phy failed to come ready\n",
515 sc_if->sk_dev.dv_xname);
516 return 0;
517 }
518
519 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
520 SK_TIMEOUT));
521
522 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
523
524 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
525 phy, reg, val));
526
527 return val;
528 }
529
530 void
531 sk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
532 {
533 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
534 int i;
535
536 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
537 phy, reg, val));
538
539 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
540 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
541 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
542
543 for (i = 0; i < SK_TIMEOUT; i++) {
544 DELAY(1);
545 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
546 break;
547 }
548
549 if (i == SK_TIMEOUT)
550 printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
551 }
552
553 void
554 sk_marv_miibus_statchg(struct device *dev)
555 {
556 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
557 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
558 }
559
560 #define SK_HASH_BITS 6
561
562 u_int32_t
563 sk_xmac_hash(void *addr)
564 {
565 u_int32_t crc;
566
567 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
568 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
569 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
570 return crc;
571 }
572
573 u_int32_t
574 sk_yukon_hash(void *addr)
575 {
576 u_int32_t crc;
577
578 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
579 crc &= ((1 << SK_HASH_BITS) - 1);
580 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
581 return crc;
582 }
583
584 void
585 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
586 {
587 char *addr = addrv;
588 int base = XM_RXFILT_ENTRY(slot);
589
590 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
591 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
592 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
593 }
594
595 void
596 sk_setmulti(struct sk_if_softc *sc_if)
597 {
598 struct sk_softc *sc = sc_if->sk_softc;
599 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
600 u_int32_t hashes[2] = { 0, 0 };
601 int h = 0, i;
602 struct ethercom *ec = &sc_if->sk_ethercom;
603 struct ether_multi *enm;
604 struct ether_multistep step;
605 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
606
607 /* First, zot all the existing filters. */
608 switch (sc->sk_type) {
609 case SK_GENESIS:
610 for (i = 1; i < XM_RXFILT_MAX; i++)
611 sk_setfilt(sc_if, (void *)&dummy, i);
612
613 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
614 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
615 break;
616 case SK_YUKON:
617 case SK_YUKON_LITE:
618 case SK_YUKON_LP:
619 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
620 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
621 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
622 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
623 break;
624 }
625
626 /* Now program new ones. */
627 allmulti:
628 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
629 hashes[0] = 0xFFFFFFFF;
630 hashes[1] = 0xFFFFFFFF;
631 } else {
632 i = 1;
633 /* First find the tail of the list. */
634 ETHER_FIRST_MULTI(step, ec, enm);
635 while (enm != NULL) {
636 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
637 ETHER_ADDR_LEN)) {
638 ifp->if_flags |= IFF_ALLMULTI;
639 goto allmulti;
640 }
641 DPRINTFN(2,("multicast address %s\n",
642 ether_sprintf(enm->enm_addrlo)));
643 /*
644 * Program the first XM_RXFILT_MAX multicast groups
645 * into the perfect filter. For all others,
646 * use the hash table.
647 */
648 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
649 sk_setfilt(sc_if, enm->enm_addrlo, i);
650 i++;
651 }
652 else {
653 switch (sc->sk_type) {
654 case SK_GENESIS:
655 h = sk_xmac_hash(enm->enm_addrlo);
656 break;
657 case SK_YUKON:
658 case SK_YUKON_LITE:
659 case SK_YUKON_LP:
660 h = sk_yukon_hash(enm->enm_addrlo);
661 break;
662 }
663 if (h < 32)
664 hashes[0] |= (1 << h);
665 else
666 hashes[1] |= (1 << (h - 32));
667 }
668
669 ETHER_NEXT_MULTI(step, enm);
670 }
671 }
672
673 switch (sc->sk_type) {
674 case SK_GENESIS:
675 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
676 XM_MODE_RX_USE_PERFECT);
677 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
678 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
679 break;
680 case SK_YUKON:
681 case SK_YUKON_LITE:
682 case SK_YUKON_LP:
683 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
684 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
685 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
686 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
687 break;
688 }
689 }
690
691 int
692 sk_init_rx_ring(struct sk_if_softc *sc_if)
693 {
694 struct sk_chain_data *cd = &sc_if->sk_cdata;
695 struct sk_ring_data *rd = sc_if->sk_rdata;
696 int i;
697
698 bzero((char *)rd->sk_rx_ring,
699 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
700
701 for (i = 0; i < SK_RX_RING_CNT; i++) {
702 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
703 if (i == (SK_RX_RING_CNT - 1)) {
704 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
705 rd->sk_rx_ring[i].sk_next =
706 htole32(SK_RX_RING_ADDR(sc_if, 0));
707 } else {
708 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
709 rd->sk_rx_ring[i].sk_next =
710 htole32(SK_RX_RING_ADDR(sc_if,i+1));
711 }
712 }
713
714 for (i = 0; i < SK_RX_RING_CNT; i++) {
715 if (sk_newbuf(sc_if, i, NULL,
716 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
717 aprint_error("%s: failed alloc of %dth mbuf\n",
718 sc_if->sk_dev.dv_xname, i);
719 return ENOBUFS;
720 }
721 }
722 sc_if->sk_cdata.sk_rx_prod = 0;
723 sc_if->sk_cdata.sk_rx_cons = 0;
724
725 return 0;
726 }
727
728 int
729 sk_init_tx_ring(struct sk_if_softc *sc_if)
730 {
731 struct sk_chain_data *cd = &sc_if->sk_cdata;
732 struct sk_ring_data *rd = sc_if->sk_rdata;
733 int i;
734
735 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
736 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
737
738 for (i = 0; i < SK_TX_RING_CNT; i++) {
739 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
740 if (i == (SK_TX_RING_CNT - 1)) {
741 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
742 rd->sk_tx_ring[i].sk_next =
743 htole32(SK_TX_RING_ADDR(sc_if, 0));
744 } else {
745 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
746 rd->sk_tx_ring[i].sk_next =
747 htole32(SK_TX_RING_ADDR(sc_if,i+1));
748 }
749 }
750
751 sc_if->sk_cdata.sk_tx_prod = 0;
752 sc_if->sk_cdata.sk_tx_cons = 0;
753 sc_if->sk_cdata.sk_tx_cnt = 0;
754
755 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
756 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
757
758 return 0;
759 }
760
761 int
762 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
763 bus_dmamap_t dmamap)
764 {
765 struct mbuf *m_new = NULL;
766 struct sk_chain *c;
767 struct sk_rx_desc *r;
768
769 if (m == NULL) {
770 void *buf = NULL;
771
772 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
773 if (m_new == NULL) {
774 aprint_error("%s: no memory for rx list -- "
775 "packet dropped!\n", sc_if->sk_dev.dv_xname);
776 return ENOBUFS;
777 }
778
779 /* Allocate the jumbo buffer */
780 buf = sk_jalloc(sc_if);
781 if (buf == NULL) {
782 m_freem(m_new);
783 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
784 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
785 return ENOBUFS;
786 }
787
788 /* Attach the buffer to the mbuf */
789 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
790 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
791
792 } else {
793 /*
794 * We're re-using a previously allocated mbuf;
795 * be sure to re-init pointers and lengths to
796 * default values.
797 */
798 m_new = m;
799 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
800 m_new->m_data = m_new->m_ext.ext_buf;
801 }
802 m_adj(m_new, ETHER_ALIGN);
803
804 c = &sc_if->sk_cdata.sk_rx_chain[i];
805 r = c->sk_desc;
806 c->sk_mbuf = m_new;
807 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
808 (((vaddr_t)m_new->m_data
809 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
810 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
811
812 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
813
814 return 0;
815 }
816
817 /*
818 * Memory management for jumbo frames.
819 */
820
821 int
822 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
823 {
824 struct sk_softc *sc = sc_if->sk_softc;
825 char *ptr, *kva;
826 bus_dma_segment_t seg;
827 int i, rseg, state, error;
828 struct sk_jpool_entry *entry;
829
830 state = error = 0;
831
832 /* Grab a big chunk o' storage. */
833 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
834 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
835 aprint_error("%s: can't alloc rx buffers\n", sc->sk_dev.dv_xname);
836 return ENOBUFS;
837 }
838
839 state = 1;
840 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
841 BUS_DMA_NOWAIT)) {
842 aprint_error("%s: can't map dma buffers (%d bytes)\n",
843 sc->sk_dev.dv_xname, SK_JMEM);
844 error = ENOBUFS;
845 goto out;
846 }
847
848 state = 2;
849 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
850 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
851 aprint_error("%s: can't create dma map\n", sc->sk_dev.dv_xname);
852 error = ENOBUFS;
853 goto out;
854 }
855
856 state = 3;
857 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
858 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
859 aprint_error("%s: can't load dma map\n", sc->sk_dev.dv_xname);
860 error = ENOBUFS;
861 goto out;
862 }
863
864 state = 4;
865 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
866 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
867
868 LIST_INIT(&sc_if->sk_jfree_listhead);
869 LIST_INIT(&sc_if->sk_jinuse_listhead);
870
871 /*
872 * Now divide it up into 9K pieces and save the addresses
873 * in an array.
874 */
875 ptr = sc_if->sk_cdata.sk_jumbo_buf;
876 for (i = 0; i < SK_JSLOTS; i++) {
877 sc_if->sk_cdata.sk_jslots[i] = ptr;
878 ptr += SK_JLEN;
879 entry = malloc(sizeof(struct sk_jpool_entry),
880 M_DEVBUF, M_NOWAIT);
881 if (entry == NULL) {
882 aprint_error("%s: no memory for jumbo buffer queue!\n",
883 sc->sk_dev.dv_xname);
884 error = ENOBUFS;
885 goto out;
886 }
887 entry->slot = i;
888 if (i)
889 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
890 entry, jpool_entries);
891 else
892 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
893 entry, jpool_entries);
894 }
895 out:
896 if (error != 0) {
897 switch (state) {
898 case 4:
899 bus_dmamap_unload(sc->sc_dmatag,
900 sc_if->sk_cdata.sk_rx_jumbo_map);
901 case 3:
902 bus_dmamap_destroy(sc->sc_dmatag,
903 sc_if->sk_cdata.sk_rx_jumbo_map);
904 case 2:
905 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
906 case 1:
907 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
908 break;
909 default:
910 break;
911 }
912 }
913
914 return error;
915 }
916
917 /*
918 * Allocate a jumbo buffer.
919 */
920 void *
921 sk_jalloc(struct sk_if_softc *sc_if)
922 {
923 struct sk_jpool_entry *entry;
924
925 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
926
927 if (entry == NULL)
928 return NULL;
929
930 LIST_REMOVE(entry, jpool_entries);
931 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
932 return sc_if->sk_cdata.sk_jslots[entry->slot];
933 }
934
935 /*
936 * Release a jumbo buffer.
937 */
938 void
939 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
940 {
941 struct sk_jpool_entry *entry;
942 struct sk_if_softc *sc;
943 int i, s;
944
945 /* Extract the softc struct pointer. */
946 sc = (struct sk_if_softc *)arg;
947
948 if (sc == NULL)
949 panic("sk_jfree: can't find softc pointer!");
950
951 /* calculate the slot this buffer belongs to */
952
953 i = ((vaddr_t)buf
954 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
955
956 if ((i < 0) || (i >= SK_JSLOTS))
957 panic("sk_jfree: asked to free buffer that we don't manage!");
958
959 s = splvm();
960 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
961 if (entry == NULL)
962 panic("sk_jfree: buffer not in use!");
963 entry->slot = i;
964 LIST_REMOVE(entry, jpool_entries);
965 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
966
967 if (__predict_true(m != NULL))
968 pool_cache_put(&mbpool_cache, m);
969 splx(s);
970 }
971
972 /*
973 * Set media options.
974 */
975 int
976 sk_ifmedia_upd(struct ifnet *ifp)
977 {
978 struct sk_if_softc *sc_if = ifp->if_softc;
979
980 (void) sk_init(ifp);
981 mii_mediachg(&sc_if->sk_mii);
982 return 0;
983 }
984
985 /*
986 * Report current media status.
987 */
988 void
989 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
990 {
991 struct sk_if_softc *sc_if = ifp->if_softc;
992
993 mii_pollstat(&sc_if->sk_mii);
994 ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
995 ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
996 }
997
998 int
999 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
1000 {
1001 struct sk_if_softc *sc_if = ifp->if_softc;
1002 struct sk_softc *sc = sc_if->sk_softc;
1003 struct ifreq *ifr = (struct ifreq *) data;
1004 struct mii_data *mii;
1005 int s, error = 0;
1006
1007 /* DPRINTFN(2, ("sk_ioctl\n")); */
1008
1009 s = splnet();
1010
1011 switch (command) {
1012
1013 case SIOCSIFFLAGS:
1014 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1015 if (ifp->if_flags & IFF_UP) {
1016 if (ifp->if_flags & IFF_RUNNING &&
1017 ifp->if_flags & IFF_PROMISC &&
1018 !(sc_if->sk_if_flags & IFF_PROMISC)) {
1019 switch (sc->sk_type) {
1020 case SK_GENESIS:
1021 SK_XM_SETBIT_4(sc_if, XM_MODE,
1022 XM_MODE_RX_PROMISC);
1023 break;
1024 case SK_YUKON:
1025 case SK_YUKON_LITE:
1026 case SK_YUKON_LP:
1027 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1028 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1029 break;
1030 }
1031 sk_setmulti(sc_if);
1032 } else if (ifp->if_flags & IFF_RUNNING &&
1033 !(ifp->if_flags & IFF_PROMISC) &&
1034 sc_if->sk_if_flags & IFF_PROMISC) {
1035 switch (sc->sk_type) {
1036 case SK_GENESIS:
1037 SK_XM_CLRBIT_4(sc_if, XM_MODE,
1038 XM_MODE_RX_PROMISC);
1039 break;
1040 case SK_YUKON:
1041 case SK_YUKON_LITE:
1042 case SK_YUKON_LP:
1043 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1044 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1045 break;
1046 }
1047
1048 sk_setmulti(sc_if);
1049 } else
1050 (void) sk_init(ifp);
1051 } else {
1052 if (ifp->if_flags & IFF_RUNNING)
1053 sk_stop(ifp,0);
1054 }
1055 sc_if->sk_if_flags = ifp->if_flags;
1056 error = 0;
1057 break;
1058
1059 case SIOCGIFMEDIA:
1060 case SIOCSIFMEDIA:
1061 DPRINTFN(2, ("sk_ioctl MEDIA\n"));
1062 mii = &sc_if->sk_mii;
1063 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1064 break;
1065 default:
1066 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1067 error = ether_ioctl(ifp, command, data);
1068
1069 if ( error == ENETRESET) {
1070 if (ifp->if_flags & IFF_RUNNING) {
1071 sk_setmulti(sc_if);
1072 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1073 }
1074 error = 0;
1075 } else if ( error ) {
1076 splx(s);
1077 return error;
1078 }
1079 break;
1080 }
1081
1082 splx(s);
1083 return error;
1084 }
1085
1086 void
1087 sk_update_int_mod(struct sk_softc *sc)
1088 {
1089 u_int32_t imtimer_ticks;
1090
1091 /*
1092 * Configure interrupt moderation. The moderation timer
1093 * defers interrupts specified in the interrupt moderation
1094 * timer mask based on the timeout specified in the interrupt
1095 * moderation timer init register. Each bit in the timer
1096 * register represents one tick, so to specify a timeout in
1097 * microseconds, we have to multiply by the correct number of
1098 * ticks-per-microsecond.
1099 */
1100 switch (sc->sk_type) {
1101 case SK_GENESIS:
1102 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1103 break;
1104 case SK_YUKON_EC:
1105 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1106 break;
1107 default:
1108 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1109 }
1110 aprint_verbose("%s: interrupt moderation is %d us\n",
1111 sc->sk_dev.dv_xname, sc->sk_int_mod);
1112 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1113 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1114 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1115 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1116 sc->sk_int_mod_pending = 0;
1117 }
1118
1119 /*
1120 * Lookup: Check the PCI vendor and device, and return a pointer to
1121 * The structure if the IDs match against our list.
1122 */
1123
1124 static const struct sk_product *
1125 sk_lookup(const struct pci_attach_args *pa)
1126 {
1127 const struct sk_product *psk;
1128
1129 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1130 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1131 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1132 return psk;
1133 }
1134 return NULL;
1135 }
1136
1137 /*
1138 * Probe for a SysKonnect GEnesis chip.
1139 */
1140
1141 int
1142 skc_probe(struct device *parent, struct cfdata *match,
1143 void *aux)
1144 {
1145 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1146 const struct sk_product *psk;
1147 pcireg_t subid;
1148
1149 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1150
1151 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1152 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1153 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1154 subid == SK_LINKSYS_EG1032_SUBID)
1155 return 1;
1156
1157 if ((psk = sk_lookup(pa))) {
1158 return 1;
1159 }
1160 return 0;
1161 }
1162
1163 /*
1164 * Force the GEnesis into reset, then bring it out of reset.
1165 */
1166 void sk_reset(struct sk_softc *sc)
1167 {
1168 DPRINTFN(2, ("sk_reset\n"));
1169
1170 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1171 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1172 if (SK_YUKON_FAMILY(sc->sk_type))
1173 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1174
1175 DELAY(1000);
1176 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1177 DELAY(2);
1178 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1179 if (SK_YUKON_FAMILY(sc->sk_type))
1180 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1181
1182 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1183 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1184 CSR_READ_2(sc, SK_LINK_CTRL)));
1185
1186 if (sc->sk_type == SK_GENESIS) {
1187 /* Configure packet arbiter */
1188 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1189 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1190 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1191 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1192 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1193 }
1194
1195 /* Enable RAM interface */
1196 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1197
1198 sk_update_int_mod(sc);
1199 }
1200
1201 int
1202 sk_probe(struct device *parent, struct cfdata *match,
1203 void *aux)
1204 {
1205 struct skc_attach_args *sa = aux;
1206
1207 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1208 return 0;
1209
1210 return 1;
1211 }
1212
1213 /*
1214 * Each XMAC chip is attached as a separate logical IP interface.
1215 * Single port cards will have only one logical interface of course.
1216 */
1217 void
1218 sk_attach(struct device *parent, struct device *self, void *aux)
1219 {
1220 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1221 struct sk_softc *sc = (struct sk_softc *)parent;
1222 struct skc_attach_args *sa = aux;
1223 struct sk_txmap_entry *entry;
1224 struct ifnet *ifp;
1225 bus_dma_segment_t seg;
1226 bus_dmamap_t dmamap;
1227 void *kva;
1228 int i, rseg;
1229
1230 sc_if->sk_port = sa->skc_port;
1231 sc_if->sk_softc = sc;
1232 sc->sk_if[sa->skc_port] = sc_if;
1233
1234 if (sa->skc_port == SK_PORT_A)
1235 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1236 if (sa->skc_port == SK_PORT_B)
1237 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1238
1239 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1240
1241 /*
1242 * Get station address for this interface. Note that
1243 * dual port cards actually come with three station
1244 * addresses: one for each port, plus an extra. The
1245 * extra one is used by the SysKonnect driver software
1246 * as a 'virtual' station address for when both ports
1247 * are operating in failover mode. Currently we don't
1248 * use this extra address.
1249 */
1250 for (i = 0; i < ETHER_ADDR_LEN; i++)
1251 sc_if->sk_enaddr[i] =
1252 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1253
1254
1255 aprint_normal(": Ethernet address %s\n",
1256 ether_sprintf(sc_if->sk_enaddr));
1257
1258 /*
1259 * Set up RAM buffer addresses. The NIC will have a certain
1260 * amount of SRAM on it, somewhere between 512K and 2MB. We
1261 * need to divide this up a) between the transmitter and
1262 * receiver and b) between the two XMACs, if this is a
1263 * dual port NIC. Our algorithm is to divide up the memory
1264 * evenly so that everyone gets a fair share.
1265 */
1266 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1267 u_int32_t chunk, val;
1268
1269 chunk = sc->sk_ramsize / 2;
1270 val = sc->sk_rboff / sizeof(u_int64_t);
1271 sc_if->sk_rx_ramstart = val;
1272 val += (chunk / sizeof(u_int64_t));
1273 sc_if->sk_rx_ramend = val - 1;
1274 sc_if->sk_tx_ramstart = val;
1275 val += (chunk / sizeof(u_int64_t));
1276 sc_if->sk_tx_ramend = val - 1;
1277 } else {
1278 u_int32_t chunk, val;
1279
1280 chunk = sc->sk_ramsize / 4;
1281 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1282 sizeof(u_int64_t);
1283 sc_if->sk_rx_ramstart = val;
1284 val += (chunk / sizeof(u_int64_t));
1285 sc_if->sk_rx_ramend = val - 1;
1286 sc_if->sk_tx_ramstart = val;
1287 val += (chunk / sizeof(u_int64_t));
1288 sc_if->sk_tx_ramend = val - 1;
1289 }
1290
1291 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1292 " tx_ramstart=%#x tx_ramend=%#x\n",
1293 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1294 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1295
1296 /* Read and save PHY type and set PHY address */
1297 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1298 switch (sc_if->sk_phytype) {
1299 case SK_PHYTYPE_XMAC:
1300 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1301 break;
1302 case SK_PHYTYPE_BCOM:
1303 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1304 break;
1305 case SK_PHYTYPE_MARV_COPPER:
1306 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1307 break;
1308 default:
1309 aprint_error("%s: unsupported PHY type: %d\n",
1310 sc->sk_dev.dv_xname, sc_if->sk_phytype);
1311 return;
1312 }
1313
1314 /* Allocate the descriptor queues. */
1315 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1316 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1317 aprint_error("%s: can't alloc rx buffers\n",
1318 sc->sk_dev.dv_xname);
1319 goto fail;
1320 }
1321 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1322 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1323 aprint_error("%s: can't map dma buffers (%lu bytes)\n",
1324 sc_if->sk_dev.dv_xname,
1325 (u_long) sizeof(struct sk_ring_data));
1326 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1327 goto fail;
1328 }
1329 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1330 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1331 &sc_if->sk_ring_map)) {
1332 aprint_error("%s: can't create dma map\n",
1333 sc_if->sk_dev.dv_xname);
1334 bus_dmamem_unmap(sc->sc_dmatag, kva,
1335 sizeof(struct sk_ring_data));
1336 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1337 goto fail;
1338 }
1339 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1340 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1341 aprint_error("%s: can't load dma map\n",
1342 sc_if->sk_dev.dv_xname);
1343 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1344 bus_dmamem_unmap(sc->sc_dmatag, kva,
1345 sizeof(struct sk_ring_data));
1346 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1347 goto fail;
1348 }
1349
1350 for (i = 0; i < SK_RX_RING_CNT; i++)
1351 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1352
1353 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1354 for (i = 0; i < SK_TX_RING_CNT; i++) {
1355 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1356
1357 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1358 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1359 aprint_error("%s: Can't create TX dmamap\n",
1360 sc_if->sk_dev.dv_xname);
1361 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1362 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1363 bus_dmamem_unmap(sc->sc_dmatag, kva,
1364 sizeof(struct sk_ring_data));
1365 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1366 goto fail;
1367 }
1368
1369 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1370 if (!entry) {
1371 aprint_error("%s: Can't alloc txmap entry\n",
1372 sc_if->sk_dev.dv_xname);
1373 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1374 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1375 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1376 bus_dmamem_unmap(sc->sc_dmatag, kva,
1377 sizeof(struct sk_ring_data));
1378 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1379 goto fail;
1380 }
1381 entry->dmamap = dmamap;
1382 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1383 }
1384
1385 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1386 bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1387
1388 ifp = &sc_if->sk_ethercom.ec_if;
1389 /* Try to allocate memory for jumbo buffers. */
1390 if (sk_alloc_jumbo_mem(sc_if)) {
1391 aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1392 goto fail;
1393 }
1394 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1395 | ETHERCAP_JUMBO_MTU;
1396
1397 ifp->if_softc = sc_if;
1398 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1399 ifp->if_ioctl = sk_ioctl;
1400 ifp->if_start = sk_start;
1401 ifp->if_stop = sk_stop;
1402 ifp->if_init = sk_init;
1403 ifp->if_watchdog = sk_watchdog;
1404 ifp->if_capabilities = 0;
1405 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1406 IFQ_SET_READY(&ifp->if_snd);
1407 strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1408
1409 /*
1410 * Do miibus setup.
1411 */
1412 switch (sc->sk_type) {
1413 case SK_GENESIS:
1414 sk_init_xmac(sc_if);
1415 break;
1416 case SK_YUKON:
1417 case SK_YUKON_LITE:
1418 case SK_YUKON_LP:
1419 sk_init_yukon(sc_if);
1420 break;
1421 default:
1422 aprint_error("%s: unknown device type %d\n",
1423 sc->sk_dev.dv_xname, sc->sk_type);
1424 goto fail;
1425 }
1426
1427 DPRINTFN(2, ("sk_attach: 1\n"));
1428
1429 sc_if->sk_mii.mii_ifp = ifp;
1430 switch (sc->sk_type) {
1431 case SK_GENESIS:
1432 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1433 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1434 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1435 break;
1436 case SK_YUKON:
1437 case SK_YUKON_LITE:
1438 case SK_YUKON_LP:
1439 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1440 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1441 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1442 break;
1443 }
1444
1445 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1446 sk_ifmedia_upd, sk_ifmedia_sts);
1447 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1448 MII_OFFSET_ANY, 0);
1449 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1450 aprint_error("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1451 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1452 0, NULL);
1453 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1454 } else
1455 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1456
1457 callout_init(&sc_if->sk_tick_ch);
1458 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1459
1460 DPRINTFN(2, ("sk_attach: 1\n"));
1461
1462 /*
1463 * Call MI attach routines.
1464 */
1465 if_attach(ifp);
1466
1467 ether_ifattach(ifp, sc_if->sk_enaddr);
1468
1469 #if NRND > 0
1470 rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
1471 RND_TYPE_NET, 0);
1472 #endif
1473
1474 DPRINTFN(2, ("sk_attach: end\n"));
1475
1476 return;
1477
1478 fail:
1479 sc->sk_if[sa->skc_port] = NULL;
1480 }
1481
1482 int
1483 skcprint(void *aux, const char *pnp)
1484 {
1485 struct skc_attach_args *sa = aux;
1486
1487 if (pnp)
1488 aprint_normal("sk port %c at %s",
1489 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1490 else
1491 aprint_normal(" port %c",
1492 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1493 return UNCONF;
1494 }
1495
1496 /*
1497 * Attach the interface. Allocate softc structures, do ifmedia
1498 * setup and ethernet/BPF attach.
1499 */
1500 void
1501 skc_attach(struct device *parent, struct device *self, void *aux)
1502 {
1503 struct sk_softc *sc = (struct sk_softc *)self;
1504 struct pci_attach_args *pa = aux;
1505 struct skc_attach_args skca;
1506 pci_chipset_tag_t pc = pa->pa_pc;
1507 #ifndef SK_USEIOSPACE
1508 pcireg_t memtype;
1509 #endif
1510 pci_intr_handle_t ih;
1511 const char *intrstr = NULL;
1512 bus_addr_t iobase;
1513 bus_size_t iosize;
1514 int rc, sk_nodenum;
1515 u_int32_t command;
1516 const char *revstr;
1517 const struct sysctlnode *node;
1518
1519 DPRINTFN(2, ("begin skc_attach\n"));
1520
1521 /*
1522 * Handle power management nonsense.
1523 */
1524 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1525
1526 if (command == 0x01) {
1527 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1528 if (command & SK_PSTATE_MASK) {
1529 u_int32_t xiobase, membase, irq;
1530
1531 /* Save important PCI config data. */
1532 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1533 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1534 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1535
1536 /* Reset the power state. */
1537 aprint_normal("%s chip is in D%d power mode "
1538 "-- setting to D0\n", sc->sk_dev.dv_xname,
1539 command & SK_PSTATE_MASK);
1540 command &= 0xFFFFFFFC;
1541 pci_conf_write(pc, pa->pa_tag,
1542 SK_PCI_PWRMGMTCTRL, command);
1543
1544 /* Restore PCI config data. */
1545 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1546 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1547 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1548 }
1549 }
1550
1551 /*
1552 * Map control/status registers.
1553 */
1554 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1555 command |= PCI_COMMAND_IO_ENABLE |
1556 PCI_COMMAND_MEM_ENABLE |
1557 PCI_COMMAND_MASTER_ENABLE;
1558 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1559 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1560
1561 #ifdef SK_USEIOSPACE
1562 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1563 aprint_error(": failed to enable I/O ports!\n");
1564 return;
1565 }
1566 /*
1567 * Map control/status registers.
1568 */
1569 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1570 &sc->sk_btag, &sc->sk_bhandle,
1571 &iobase, &iosize)) {
1572 aprint_error(": can't find i/o space\n");
1573 return;
1574 }
1575 #else
1576 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1577 aprint_error(": failed to enable memory mapping!\n");
1578 return;
1579 }
1580 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1581 switch (memtype) {
1582 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1583 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1584 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1585 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1586 &iobase, &iosize) == 0)
1587 break;
1588 default:
1589 aprint_error("%s: can't find mem space\n",
1590 sc->sk_dev.dv_xname);
1591 return;
1592 }
1593
1594 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1595 #endif
1596 sc->sc_dmatag = pa->pa_dmat;
1597
1598 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1599 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1600
1601 /* bail out here if chip is not recognized */
1602 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1603 aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
1604 goto fail;
1605 }
1606 if (SK_IS_YUKON2(sc)) {
1607 aprint_error("%s: Does not support Yukon2--try msk(4).\n",
1608 sc->sk_dev.dv_xname);
1609 goto fail;
1610 }
1611 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1612
1613 /* Allocate interrupt */
1614 if (pci_intr_map(pa, &ih)) {
1615 aprint_error(": couldn't map interrupt\n");
1616 goto fail;
1617 }
1618
1619 intrstr = pci_intr_string(pc, ih);
1620 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1621 if (sc->sk_intrhand == NULL) {
1622 aprint_error(": couldn't establish interrupt");
1623 if (intrstr != NULL)
1624 aprint_normal(" at %s", intrstr);
1625 goto fail;
1626 }
1627 aprint_normal(": %s\n", intrstr);
1628
1629 /* Reset the adapter. */
1630 sk_reset(sc);
1631
1632 /* Read and save vital product data from EEPROM. */
1633 sk_vpd_read(sc);
1634
1635 if (sc->sk_type == SK_GENESIS) {
1636 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1637 /* Read and save RAM size and RAMbuffer offset */
1638 switch (val) {
1639 case SK_RAMSIZE_512K_64:
1640 sc->sk_ramsize = 0x80000;
1641 sc->sk_rboff = SK_RBOFF_0;
1642 break;
1643 case SK_RAMSIZE_1024K_64:
1644 sc->sk_ramsize = 0x100000;
1645 sc->sk_rboff = SK_RBOFF_80000;
1646 break;
1647 case SK_RAMSIZE_1024K_128:
1648 sc->sk_ramsize = 0x100000;
1649 sc->sk_rboff = SK_RBOFF_0;
1650 break;
1651 case SK_RAMSIZE_2048K_128:
1652 sc->sk_ramsize = 0x200000;
1653 sc->sk_rboff = SK_RBOFF_0;
1654 break;
1655 default:
1656 aprint_error("%s: unknown ram size: %d\n",
1657 sc->sk_dev.dv_xname, val);
1658 goto fail_1;
1659 break;
1660 }
1661
1662 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1663 sc->sk_ramsize, sc->sk_ramsize / 1024,
1664 sc->sk_rboff));
1665 } else {
1666 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1667 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1668 sc->sk_rboff = SK_RBOFF_0;
1669
1670 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1671 sc->sk_ramsize / 1024, sc->sk_ramsize,
1672 sc->sk_rboff));
1673 }
1674
1675 /* Read and save physical media type */
1676 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1677 case SK_PMD_1000BASESX:
1678 sc->sk_pmd = IFM_1000_SX;
1679 break;
1680 case SK_PMD_1000BASELX:
1681 sc->sk_pmd = IFM_1000_LX;
1682 break;
1683 case SK_PMD_1000BASECX:
1684 sc->sk_pmd = IFM_1000_CX;
1685 break;
1686 case SK_PMD_1000BASETX:
1687 case SK_PMD_1000BASETX_ALT:
1688 sc->sk_pmd = IFM_1000_T;
1689 break;
1690 default:
1691 aprint_error("%s: unknown media type: 0x%x\n",
1692 sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
1693 goto fail_1;
1694 }
1695
1696 /* determine whether to name it with vpd or just make it up */
1697 /* Marvell Yukon VPD's can freqently be bogus */
1698
1699 switch (pa->pa_id) {
1700 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1701 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1702 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1703 case PCI_PRODUCT_3COM_3C940:
1704 case PCI_PRODUCT_DLINK_DGE530T:
1705 case PCI_PRODUCT_DLINK_DGE560T:
1706 case PCI_PRODUCT_DLINK_DGE560T_2:
1707 case PCI_PRODUCT_LINKSYS_EG1032:
1708 case PCI_PRODUCT_LINKSYS_EG1064:
1709 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1710 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1711 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1712 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1713 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1714 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1715 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1716 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1717 sc->sk_name = sc->sk_vpd_prodname;
1718 break;
1719 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1720 /* whoops yukon vpd prodname bears no resemblance to reality */
1721 switch (sc->sk_type) {
1722 case SK_GENESIS:
1723 sc->sk_name = sc->sk_vpd_prodname;
1724 break;
1725 case SK_YUKON:
1726 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1727 break;
1728 case SK_YUKON_LITE:
1729 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1730 break;
1731 case SK_YUKON_LP:
1732 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1733 break;
1734 default:
1735 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1736 }
1737
1738 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1739
1740 if ( sc->sk_type == SK_YUKON ) {
1741 uint32_t flashaddr;
1742 uint8_t testbyte;
1743
1744 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1745
1746 /* test Flash-Address Register */
1747 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1748 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1749
1750 if (testbyte != 0) {
1751 /* this is yukon lite Rev. A0 */
1752 sc->sk_type = SK_YUKON_LITE;
1753 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1754 /* restore Flash-Address Register */
1755 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1756 }
1757 }
1758 break;
1759 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1760 sc->sk_name = sc->sk_vpd_prodname;
1761 break;
1762 default:
1763 sc->sk_name = "Unknown Marvell";
1764 }
1765
1766
1767 if ( sc->sk_type == SK_YUKON_LITE ) {
1768 switch (sc->sk_rev) {
1769 case SK_YUKON_LITE_REV_A0:
1770 revstr = "A0";
1771 break;
1772 case SK_YUKON_LITE_REV_A1:
1773 revstr = "A1";
1774 break;
1775 case SK_YUKON_LITE_REV_A3:
1776 revstr = "A3";
1777 break;
1778 default:
1779 revstr = "";
1780 }
1781 } else {
1782 revstr = "";
1783 }
1784
1785 /* Announce the product name. */
1786 aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
1787 sc->sk_name, revstr, sc->sk_rev);
1788
1789 skca.skc_port = SK_PORT_A;
1790 (void)config_found(&sc->sk_dev, &skca, skcprint);
1791
1792 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1793 skca.skc_port = SK_PORT_B;
1794 (void)config_found(&sc->sk_dev, &skca, skcprint);
1795 }
1796
1797 /* Turn on the 'driver is loaded' LED. */
1798 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1799
1800 /* skc sysctl setup */
1801
1802 sc->sk_int_mod = SK_IM_DEFAULT;
1803 sc->sk_int_mod_pending = 0;
1804
1805 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1806 0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
1807 SYSCTL_DESCR("skc per-controller controls"),
1808 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1809 CTL_EOL)) != 0) {
1810 aprint_normal("%s: couldn't create sysctl node\n",
1811 sc->sk_dev.dv_xname);
1812 goto fail_1;
1813 }
1814
1815 sk_nodenum = node->sysctl_num;
1816
1817 /* interrupt moderation time in usecs */
1818 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1819 CTLFLAG_READWRITE,
1820 CTLTYPE_INT, "int_mod",
1821 SYSCTL_DESCR("sk interrupt moderation timer"),
1822 sk_sysctl_handler, 0, sc,
1823 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1824 CTL_EOL)) != 0) {
1825 aprint_normal("%s: couldn't create int_mod sysctl node\n",
1826 sc->sk_dev.dv_xname);
1827 goto fail_1;
1828 }
1829
1830 return;
1831
1832 fail_1:
1833 pci_intr_disestablish(pc, sc->sk_intrhand);
1834 fail:
1835 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1836 }
1837
1838 int
1839 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1840 {
1841 struct sk_softc *sc = sc_if->sk_softc;
1842 struct sk_tx_desc *f = NULL;
1843 u_int32_t frag, cur, cnt = 0, sk_ctl;
1844 int i;
1845 struct sk_txmap_entry *entry;
1846 bus_dmamap_t txmap;
1847
1848 DPRINTFN(3, ("sk_encap\n"));
1849
1850 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1851 if (entry == NULL) {
1852 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1853 return ENOBUFS;
1854 }
1855 txmap = entry->dmamap;
1856
1857 cur = frag = *txidx;
1858
1859 #ifdef SK_DEBUG
1860 if (skdebug >= 3)
1861 sk_dump_mbuf(m_head);
1862 #endif
1863
1864 /*
1865 * Start packing the mbufs in this chain into
1866 * the fragment pointers. Stop when we run out
1867 * of fragments or hit the end of the mbuf chain.
1868 */
1869 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1870 BUS_DMA_NOWAIT)) {
1871 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1872 return ENOBUFS;
1873 }
1874
1875 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1876
1877 /* Sync the DMA map. */
1878 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1879 BUS_DMASYNC_PREWRITE);
1880
1881 for (i = 0; i < txmap->dm_nsegs; i++) {
1882 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1883 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1884 return ENOBUFS;
1885 }
1886 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1887 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1888 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1889 if (cnt == 0)
1890 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1891 else
1892 sk_ctl |= SK_TXCTL_OWN;
1893 f->sk_ctl = htole32(sk_ctl);
1894 cur = frag;
1895 SK_INC(frag, SK_TX_RING_CNT);
1896 cnt++;
1897 }
1898
1899 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1900 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1901
1902 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1903 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1904 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1905
1906 /* Sync descriptors before handing to chip */
1907 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1908 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1909
1910 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1911 htole32(SK_TXCTL_OWN);
1912
1913 /* Sync first descriptor to hand it off */
1914 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1915
1916 sc_if->sk_cdata.sk_tx_cnt += cnt;
1917
1918 #ifdef SK_DEBUG
1919 if (skdebug >= 3) {
1920 struct sk_tx_desc *desc;
1921 u_int32_t idx;
1922 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1923 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1924 sk_dump_txdesc(desc, idx);
1925 }
1926 }
1927 #endif
1928
1929 *txidx = frag;
1930
1931 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1932
1933 return 0;
1934 }
1935
1936 void
1937 sk_start(struct ifnet *ifp)
1938 {
1939 struct sk_if_softc *sc_if = ifp->if_softc;
1940 struct sk_softc *sc = sc_if->sk_softc;
1941 struct mbuf *m_head = NULL;
1942 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1943 int pkts = 0;
1944
1945 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1946 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1947
1948 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1949 IFQ_POLL(&ifp->if_snd, m_head);
1950 if (m_head == NULL)
1951 break;
1952
1953 /*
1954 * Pack the data into the transmit ring. If we
1955 * don't have room, set the OACTIVE flag and wait
1956 * for the NIC to drain the ring.
1957 */
1958 if (sk_encap(sc_if, m_head, &idx)) {
1959 ifp->if_flags |= IFF_OACTIVE;
1960 break;
1961 }
1962
1963 /* now we are committed to transmit the packet */
1964 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1965 pkts++;
1966
1967 /*
1968 * If there's a BPF listener, bounce a copy of this frame
1969 * to him.
1970 */
1971 #if NBPFILTER > 0
1972 if (ifp->if_bpf)
1973 bpf_mtap(ifp->if_bpf, m_head);
1974 #endif
1975 }
1976 if (pkts == 0)
1977 return;
1978
1979 /* Transmit */
1980 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1981 sc_if->sk_cdata.sk_tx_prod = idx;
1982 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1983
1984 /* Set a timeout in case the chip goes out to lunch. */
1985 ifp->if_timer = 5;
1986 }
1987 }
1988
1989
1990 void
1991 sk_watchdog(struct ifnet *ifp)
1992 {
1993 struct sk_if_softc *sc_if = ifp->if_softc;
1994
1995 /*
1996 * Reclaim first as there is a possibility of losing Tx completion
1997 * interrupts.
1998 */
1999 sk_txeof(sc_if);
2000 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2001 aprint_error("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
2002
2003 ifp->if_oerrors++;
2004
2005 sk_init(ifp);
2006 }
2007 }
2008
2009 void
2010 sk_shutdown(void *v)
2011 {
2012 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
2013 struct sk_softc *sc = sc_if->sk_softc;
2014 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2015
2016 DPRINTFN(2, ("sk_shutdown\n"));
2017 sk_stop(ifp,1);
2018
2019 /* Turn off the 'driver is loaded' LED. */
2020 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2021
2022 /*
2023 * Reset the GEnesis controller. Doing this should also
2024 * assert the resets on the attached XMAC(s).
2025 */
2026 sk_reset(sc);
2027 }
2028
2029 void
2030 sk_rxeof(struct sk_if_softc *sc_if)
2031 {
2032 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2033 struct mbuf *m;
2034 struct sk_chain *cur_rx;
2035 struct sk_rx_desc *cur_desc;
2036 int i, cur, total_len = 0;
2037 u_int32_t rxstat, sk_ctl;
2038 bus_dmamap_t dmamap;
2039
2040 i = sc_if->sk_cdata.sk_rx_prod;
2041
2042 DPRINTFN(3, ("sk_rxeof %d\n", i));
2043
2044 for (;;) {
2045 cur = i;
2046
2047 /* Sync the descriptor */
2048 SK_CDRXSYNC(sc_if, cur,
2049 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2050
2051 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2052 if (sk_ctl & SK_RXCTL_OWN) {
2053 /* Invalidate the descriptor -- it's not ready yet */
2054 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2055 sc_if->sk_cdata.sk_rx_prod = i;
2056 break;
2057 }
2058
2059 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2060 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2061 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2062
2063 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2064 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2065
2066 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2067 m = cur_rx->sk_mbuf;
2068 cur_rx->sk_mbuf = NULL;
2069 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2070
2071 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2072
2073 SK_INC(i, SK_RX_RING_CNT);
2074
2075 if (rxstat & XM_RXSTAT_ERRFRAME) {
2076 ifp->if_ierrors++;
2077 sk_newbuf(sc_if, cur, m, dmamap);
2078 continue;
2079 }
2080
2081 /*
2082 * Try to allocate a new jumbo buffer. If that
2083 * fails, copy the packet to mbufs and put the
2084 * jumbo buffer back in the ring so it can be
2085 * re-used. If allocating mbufs fails, then we
2086 * have to drop the packet.
2087 */
2088 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2089 struct mbuf *m0;
2090 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2091 total_len + ETHER_ALIGN, 0, ifp, NULL);
2092 sk_newbuf(sc_if, cur, m, dmamap);
2093 if (m0 == NULL) {
2094 aprint_error("%s: no receive buffers "
2095 "available -- packet dropped!\n",
2096 sc_if->sk_dev.dv_xname);
2097 ifp->if_ierrors++;
2098 continue;
2099 }
2100 m_adj(m0, ETHER_ALIGN);
2101 m = m0;
2102 } else {
2103 m->m_pkthdr.rcvif = ifp;
2104 m->m_pkthdr.len = m->m_len = total_len;
2105 }
2106
2107 ifp->if_ipackets++;
2108
2109 #if NBPFILTER > 0
2110 if (ifp->if_bpf)
2111 bpf_mtap(ifp->if_bpf, m);
2112 #endif
2113 /* pass it on. */
2114 (*ifp->if_input)(ifp, m);
2115 }
2116 }
2117
2118 void
2119 sk_txeof(struct sk_if_softc *sc_if)
2120 {
2121 struct sk_softc *sc = sc_if->sk_softc;
2122 struct sk_tx_desc *cur_tx;
2123 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2124 u_int32_t idx, sk_ctl;
2125 struct sk_txmap_entry *entry;
2126
2127 DPRINTFN(3, ("sk_txeof\n"));
2128
2129 /*
2130 * Go through our tx ring and free mbufs for those
2131 * frames that have been sent.
2132 */
2133 idx = sc_if->sk_cdata.sk_tx_cons;
2134 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2135 SK_CDTXSYNC(sc_if, idx, 1,
2136 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2137
2138 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2139 sk_ctl = le32toh(cur_tx->sk_ctl);
2140 #ifdef SK_DEBUG
2141 if (skdebug >= 3)
2142 sk_dump_txdesc(cur_tx, idx);
2143 #endif
2144 if (sk_ctl & SK_TXCTL_OWN) {
2145 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2146 break;
2147 }
2148 if (sk_ctl & SK_TXCTL_LASTFRAG)
2149 ifp->if_opackets++;
2150 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2151 entry = sc_if->sk_cdata.sk_tx_map[idx];
2152
2153 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2154 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2155
2156 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2157 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2158
2159 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2160 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2161 link);
2162 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2163 }
2164 sc_if->sk_cdata.sk_tx_cnt--;
2165 SK_INC(idx, SK_TX_RING_CNT);
2166 }
2167 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2168 ifp->if_timer = 0;
2169 else /* nudge chip to keep tx ring moving */
2170 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2171
2172 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2173 ifp->if_flags &= ~IFF_OACTIVE;
2174
2175 sc_if->sk_cdata.sk_tx_cons = idx;
2176 }
2177
2178 void
2179 sk_tick(void *xsc_if)
2180 {
2181 struct sk_if_softc *sc_if = xsc_if;
2182 struct mii_data *mii = &sc_if->sk_mii;
2183 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2184 int i;
2185
2186 DPRINTFN(3, ("sk_tick\n"));
2187
2188 if (!(ifp->if_flags & IFF_UP))
2189 return;
2190
2191 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2192 sk_intr_bcom(sc_if);
2193 return;
2194 }
2195
2196 /*
2197 * According to SysKonnect, the correct way to verify that
2198 * the link has come back up is to poll bit 0 of the GPIO
2199 * register three times. This pin has the signal from the
2200 * link sync pin connected to it; if we read the same link
2201 * state 3 times in a row, we know the link is up.
2202 */
2203 for (i = 0; i < 3; i++) {
2204 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2205 break;
2206 }
2207
2208 if (i != 3) {
2209 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2210 return;
2211 }
2212
2213 /* Turn the GP0 interrupt back on. */
2214 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2215 SK_XM_READ_2(sc_if, XM_ISR);
2216 mii_tick(mii);
2217 mii_pollstat(mii);
2218 callout_stop(&sc_if->sk_tick_ch);
2219 }
2220
2221 void
2222 sk_intr_bcom(struct sk_if_softc *sc_if)
2223 {
2224 struct mii_data *mii = &sc_if->sk_mii;
2225 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2226 int status;
2227
2228
2229 DPRINTFN(3, ("sk_intr_bcom\n"));
2230
2231 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2232
2233 /*
2234 * Read the PHY interrupt register to make sure
2235 * we clear any pending interrupts.
2236 */
2237 status = sk_xmac_miibus_readreg((struct device *)sc_if,
2238 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2239
2240 if (!(ifp->if_flags & IFF_RUNNING)) {
2241 sk_init_xmac(sc_if);
2242 return;
2243 }
2244
2245 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2246 int lstat;
2247 lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
2248 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2249
2250 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2251 mii_mediachg(mii);
2252 /* Turn off the link LED. */
2253 SK_IF_WRITE_1(sc_if, 0,
2254 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2255 sc_if->sk_link = 0;
2256 } else if (status & BRGPHY_ISR_LNK_CHG) {
2257 sk_xmac_miibus_writereg((struct device *)sc_if,
2258 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2259 mii_tick(mii);
2260 sc_if->sk_link = 1;
2261 /* Turn on the link LED. */
2262 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2263 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2264 SK_LINKLED_BLINK_OFF);
2265 mii_pollstat(mii);
2266 } else {
2267 mii_tick(mii);
2268 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2269 }
2270 }
2271
2272 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2273 }
2274
2275 void
2276 sk_intr_xmac(struct sk_if_softc *sc_if)
2277 {
2278 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2279
2280 DPRINTFN(3, ("sk_intr_xmac\n"));
2281
2282 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2283 if (status & XM_ISR_GP0_SET) {
2284 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2285 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2286 }
2287
2288 if (status & XM_ISR_AUTONEG_DONE) {
2289 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2290 }
2291 }
2292
2293 if (status & XM_IMR_TX_UNDERRUN)
2294 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2295
2296 if (status & XM_IMR_RX_OVERRUN)
2297 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2298 }
2299
2300 void
2301 sk_intr_yukon(struct sk_if_softc *sc_if)
2302 {
2303 int status;
2304
2305 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2306
2307 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2308 }
2309
2310 int
2311 sk_intr(void *xsc)
2312 {
2313 struct sk_softc *sc = xsc;
2314 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2315 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2316 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2317 u_int32_t status;
2318 int claimed = 0;
2319
2320 if (sc_if0 != NULL)
2321 ifp0 = &sc_if0->sk_ethercom.ec_if;
2322 if (sc_if1 != NULL)
2323 ifp1 = &sc_if1->sk_ethercom.ec_if;
2324
2325 for (;;) {
2326 status = CSR_READ_4(sc, SK_ISSR);
2327 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2328
2329 if (!(status & sc->sk_intrmask))
2330 break;
2331
2332 claimed = 1;
2333
2334 /* Handle receive interrupts first. */
2335 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2336 sk_rxeof(sc_if0);
2337 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2338 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2339 }
2340 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2341 sk_rxeof(sc_if1);
2342 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2343 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2344 }
2345
2346 /* Then transmit interrupts. */
2347 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2348 sk_txeof(sc_if0);
2349 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2350 SK_TXBMU_CLR_IRQ_EOF);
2351 }
2352 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2353 sk_txeof(sc_if1);
2354 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2355 SK_TXBMU_CLR_IRQ_EOF);
2356 }
2357
2358 /* Then MAC interrupts. */
2359 if (sc_if0 && (status & SK_ISR_MAC1) &&
2360 (ifp0->if_flags & IFF_RUNNING)) {
2361 if (sc->sk_type == SK_GENESIS)
2362 sk_intr_xmac(sc_if0);
2363 else
2364 sk_intr_yukon(sc_if0);
2365 }
2366
2367 if (sc_if1 && (status & SK_ISR_MAC2) &&
2368 (ifp1->if_flags & IFF_RUNNING)) {
2369 if (sc->sk_type == SK_GENESIS)
2370 sk_intr_xmac(sc_if1);
2371 else
2372 sk_intr_yukon(sc_if1);
2373
2374 }
2375
2376 if (status & SK_ISR_EXTERNAL_REG) {
2377 if (sc_if0 != NULL &&
2378 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2379 sk_intr_bcom(sc_if0);
2380
2381 if (sc_if1 != NULL &&
2382 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2383 sk_intr_bcom(sc_if1);
2384 }
2385 }
2386
2387 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2388
2389 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2390 sk_start(ifp0);
2391 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2392 sk_start(ifp1);
2393
2394 #if NRND > 0
2395 if (RND_ENABLED(&sc->rnd_source))
2396 rnd_add_uint32(&sc->rnd_source, status);
2397 #endif
2398
2399 if (sc->sk_int_mod_pending)
2400 sk_update_int_mod(sc);
2401
2402 return claimed;
2403 }
2404
2405 void
2406 sk_init_xmac(struct sk_if_softc *sc_if)
2407 {
2408 struct sk_softc *sc = sc_if->sk_softc;
2409 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2410 static const struct sk_bcom_hack bhack[] = {
2411 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2412 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2413 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2414 { 0, 0 } };
2415
2416 DPRINTFN(1, ("sk_init_xmac\n"));
2417
2418 /* Unreset the XMAC. */
2419 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2420 DELAY(1000);
2421
2422 /* Reset the XMAC's internal state. */
2423 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2424
2425 /* Save the XMAC II revision */
2426 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2427
2428 /*
2429 * Perform additional initialization for external PHYs,
2430 * namely for the 1000baseTX cards that use the XMAC's
2431 * GMII mode.
2432 */
2433 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2434 int i = 0;
2435 u_int32_t val;
2436
2437 /* Take PHY out of reset. */
2438 val = sk_win_read_4(sc, SK_GPIO);
2439 if (sc_if->sk_port == SK_PORT_A)
2440 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2441 else
2442 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2443 sk_win_write_4(sc, SK_GPIO, val);
2444
2445 /* Enable GMII mode on the XMAC. */
2446 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2447
2448 sk_xmac_miibus_writereg((struct device *)sc_if,
2449 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2450 DELAY(10000);
2451 sk_xmac_miibus_writereg((struct device *)sc_if,
2452 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2453
2454 /*
2455 * Early versions of the BCM5400 apparently have
2456 * a bug that requires them to have their reserved
2457 * registers initialized to some magic values. I don't
2458 * know what the numbers do, I'm just the messenger.
2459 */
2460 if (sk_xmac_miibus_readreg((struct device *)sc_if,
2461 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2462 while (bhack[i].reg) {
2463 sk_xmac_miibus_writereg((struct device *)sc_if,
2464 SK_PHYADDR_BCOM, bhack[i].reg,
2465 bhack[i].val);
2466 i++;
2467 }
2468 }
2469 }
2470
2471 /* Set station address */
2472 SK_XM_WRITE_2(sc_if, XM_PAR0,
2473 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2474 SK_XM_WRITE_2(sc_if, XM_PAR1,
2475 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2476 SK_XM_WRITE_2(sc_if, XM_PAR2,
2477 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2478 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2479
2480 if (ifp->if_flags & IFF_PROMISC)
2481 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2482 else
2483 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2484
2485 if (ifp->if_flags & IFF_BROADCAST)
2486 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2487 else
2488 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2489
2490 /* We don't need the FCS appended to the packet. */
2491 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2492
2493 /* We want short frames padded to 60 bytes. */
2494 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2495
2496 /*
2497 * Enable the reception of all error frames. This is is
2498 * a necessary evil due to the design of the XMAC. The
2499 * XMAC's receive FIFO is only 8K in size, however jumbo
2500 * frames can be up to 9000 bytes in length. When bad
2501 * frame filtering is enabled, the XMAC's RX FIFO operates
2502 * in 'store and forward' mode. For this to work, the
2503 * entire frame has to fit into the FIFO, but that means
2504 * that jumbo frames larger than 8192 bytes will be
2505 * truncated. Disabling all bad frame filtering causes
2506 * the RX FIFO to operate in streaming mode, in which
2507 * case the XMAC will start transfering frames out of the
2508 * RX FIFO as soon as the FIFO threshold is reached.
2509 */
2510 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2511 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2512 XM_MODE_RX_INRANGELEN);
2513
2514 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2515 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2516 else
2517 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2518
2519 /*
2520 * Bump up the transmit threshold. This helps hold off transmit
2521 * underruns when we're blasting traffic from both ports at once.
2522 */
2523 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2524
2525 /* Set multicast filter */
2526 sk_setmulti(sc_if);
2527
2528 /* Clear and enable interrupts */
2529 SK_XM_READ_2(sc_if, XM_ISR);
2530 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2531 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2532 else
2533 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2534
2535 /* Configure MAC arbiter */
2536 switch (sc_if->sk_xmac_rev) {
2537 case XM_XMAC_REV_B2:
2538 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2539 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2540 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2541 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2542 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2543 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2544 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2545 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2546 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2547 break;
2548 case XM_XMAC_REV_C1:
2549 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2550 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2551 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2552 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2553 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2554 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2555 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2556 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2557 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2558 break;
2559 default:
2560 break;
2561 }
2562 sk_win_write_2(sc, SK_MACARB_CTL,
2563 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2564
2565 sc_if->sk_link = 1;
2566 }
2567
2568 void sk_init_yukon(struct sk_if_softc *sc_if)
2569 {
2570 u_int32_t /*mac, */phy;
2571 u_int16_t reg;
2572 struct sk_softc *sc;
2573 int i;
2574
2575 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2576 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2577
2578 sc = sc_if->sk_softc;
2579 if (sc->sk_type == SK_YUKON_LITE &&
2580 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2581 /* Take PHY out of reset. */
2582 sk_win_write_4(sc, SK_GPIO,
2583 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2584 }
2585
2586
2587 /* GMAC and GPHY Reset */
2588 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2589
2590 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2591
2592 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2593 DELAY(1000);
2594 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2595 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2596 DELAY(1000);
2597
2598
2599 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2600
2601 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2602 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2603
2604 switch (sc_if->sk_softc->sk_pmd) {
2605 case IFM_1000_SX:
2606 case IFM_1000_LX:
2607 phy |= SK_GPHY_FIBER;
2608 break;
2609
2610 case IFM_1000_CX:
2611 case IFM_1000_T:
2612 phy |= SK_GPHY_COPPER;
2613 break;
2614 }
2615
2616 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2617
2618 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2619 DELAY(1000);
2620 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2621 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2622 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2623
2624 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2625 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2626
2627 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2628
2629 /* unused read of the interrupt source register */
2630 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2631 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2632
2633 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2634 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2635 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2636
2637 /* MIB Counter Clear Mode set */
2638 reg |= YU_PAR_MIB_CLR;
2639 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2640 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2641 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2642
2643 /* MIB Counter Clear Mode clear */
2644 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2645 reg &= ~YU_PAR_MIB_CLR;
2646 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2647
2648 /* receive control reg */
2649 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2650 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2651 YU_RCR_CRCR);
2652
2653 /* transmit parameter register */
2654 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2655 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2656 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2657
2658 /* serial mode register */
2659 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2660 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2661 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2662 YU_SMR_IPG_DATA(0x1e));
2663
2664 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2665 /* Setup Yukon's address */
2666 for (i = 0; i < 3; i++) {
2667 /* Write Source Address 1 (unicast filter) */
2668 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2669 sc_if->sk_enaddr[i * 2] |
2670 sc_if->sk_enaddr[i * 2 + 1] << 8);
2671 }
2672
2673 for (i = 0; i < 3; i++) {
2674 reg = sk_win_read_2(sc_if->sk_softc,
2675 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2676 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2677 }
2678
2679 /* Set multicast filter */
2680 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2681 sk_setmulti(sc_if);
2682
2683 /* enable interrupt mask for counter overflows */
2684 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2685 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2686 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2687 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2688
2689 /* Configure RX MAC FIFO */
2690 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2691 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2692
2693 /* Configure TX MAC FIFO */
2694 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2695 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2696
2697 DPRINTFN(6, ("sk_init_yukon: end\n"));
2698 }
2699
2700 /*
2701 * Note that to properly initialize any part of the GEnesis chip,
2702 * you first have to take it out of reset mode.
2703 */
2704 int
2705 sk_init(struct ifnet *ifp)
2706 {
2707 struct sk_if_softc *sc_if = ifp->if_softc;
2708 struct sk_softc *sc = sc_if->sk_softc;
2709 struct mii_data *mii = &sc_if->sk_mii;
2710 int s;
2711 u_int32_t imr, imtimer_ticks;
2712
2713 DPRINTFN(1, ("sk_init\n"));
2714
2715 s = splnet();
2716
2717 if (ifp->if_flags & IFF_RUNNING) {
2718 splx(s);
2719 return 0;
2720 }
2721
2722 /* Cancel pending I/O and free all RX/TX buffers. */
2723 sk_stop(ifp,0);
2724
2725 if (sc->sk_type == SK_GENESIS) {
2726 /* Configure LINK_SYNC LED */
2727 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2728 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2729 SK_LINKLED_LINKSYNC_ON);
2730
2731 /* Configure RX LED */
2732 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2733 SK_RXLEDCTL_COUNTER_START);
2734
2735 /* Configure TX LED */
2736 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2737 SK_TXLEDCTL_COUNTER_START);
2738 }
2739
2740 /* Configure I2C registers */
2741
2742 /* Configure XMAC(s) */
2743 switch (sc->sk_type) {
2744 case SK_GENESIS:
2745 sk_init_xmac(sc_if);
2746 break;
2747 case SK_YUKON:
2748 case SK_YUKON_LITE:
2749 case SK_YUKON_LP:
2750 sk_init_yukon(sc_if);
2751 break;
2752 }
2753 mii_mediachg(mii);
2754
2755 if (sc->sk_type == SK_GENESIS) {
2756 /* Configure MAC FIFOs */
2757 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2758 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2759 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2760
2761 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2762 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2763 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2764 }
2765
2766 /* Configure transmit arbiter(s) */
2767 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2768 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2769
2770 /* Configure RAMbuffers */
2771 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2772 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2773 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2774 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2775 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2776 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2777
2778 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2779 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2780 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2781 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2782 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2783 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2784 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2785
2786 /* Configure BMUs */
2787 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2788 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2789 SK_RX_RING_ADDR(sc_if, 0));
2790 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2791
2792 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2793 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2794 SK_TX_RING_ADDR(sc_if, 0));
2795 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2796
2797 /* Init descriptors */
2798 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2799 aprint_error("%s: initialization failed: no "
2800 "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2801 sk_stop(ifp,0);
2802 splx(s);
2803 return ENOBUFS;
2804 }
2805
2806 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2807 aprint_error("%s: initialization failed: no "
2808 "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2809 sk_stop(ifp,0);
2810 splx(s);
2811 return ENOBUFS;
2812 }
2813
2814 /* Set interrupt moderation if changed via sysctl. */
2815 switch (sc->sk_type) {
2816 case SK_GENESIS:
2817 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2818 break;
2819 case SK_YUKON_EC:
2820 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2821 break;
2822 default:
2823 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2824 }
2825 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2826 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2827 sk_win_write_4(sc, SK_IMTIMERINIT,
2828 SK_IM_USECS(sc->sk_int_mod));
2829 aprint_verbose("%s: interrupt moderation is %d us\n",
2830 sc->sk_dev.dv_xname, sc->sk_int_mod);
2831 }
2832
2833 /* Configure interrupt handling */
2834 CSR_READ_4(sc, SK_ISSR);
2835 if (sc_if->sk_port == SK_PORT_A)
2836 sc->sk_intrmask |= SK_INTRS1;
2837 else
2838 sc->sk_intrmask |= SK_INTRS2;
2839
2840 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2841
2842 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2843
2844 /* Start BMUs. */
2845 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2846
2847 if (sc->sk_type == SK_GENESIS) {
2848 /* Enable XMACs TX and RX state machines */
2849 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2850 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2851 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2852 }
2853
2854 if (SK_YUKON_FAMILY(sc->sk_type)) {
2855 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2856 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2857 #if 0
2858 /* XXX disable 100Mbps and full duplex mode? */
2859 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2860 #endif
2861 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2862 }
2863
2864
2865 ifp->if_flags |= IFF_RUNNING;
2866 ifp->if_flags &= ~IFF_OACTIVE;
2867
2868 splx(s);
2869 return 0;
2870 }
2871
2872 void
2873 sk_stop(struct ifnet *ifp, int disable)
2874 {
2875 struct sk_if_softc *sc_if = ifp->if_softc;
2876 struct sk_softc *sc = sc_if->sk_softc;
2877 int i;
2878
2879 DPRINTFN(1, ("sk_stop\n"));
2880
2881 callout_stop(&sc_if->sk_tick_ch);
2882
2883 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2884 u_int32_t val;
2885
2886 /* Put PHY back into reset. */
2887 val = sk_win_read_4(sc, SK_GPIO);
2888 if (sc_if->sk_port == SK_PORT_A) {
2889 val |= SK_GPIO_DIR0;
2890 val &= ~SK_GPIO_DAT0;
2891 } else {
2892 val |= SK_GPIO_DIR2;
2893 val &= ~SK_GPIO_DAT2;
2894 }
2895 sk_win_write_4(sc, SK_GPIO, val);
2896 }
2897
2898 /* Turn off various components of this interface. */
2899 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2900 switch (sc->sk_type) {
2901 case SK_GENESIS:
2902 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2903 SK_TXMACCTL_XMAC_RESET);
2904 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2905 break;
2906 case SK_YUKON:
2907 case SK_YUKON_LITE:
2908 case SK_YUKON_LP:
2909 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2910 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2911 break;
2912 }
2913 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2914 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2915 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2916 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2917 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2918 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2919 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2920 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2921 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2922
2923 /* Disable interrupts */
2924 if (sc_if->sk_port == SK_PORT_A)
2925 sc->sk_intrmask &= ~SK_INTRS1;
2926 else
2927 sc->sk_intrmask &= ~SK_INTRS2;
2928 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2929
2930 SK_XM_READ_2(sc_if, XM_ISR);
2931 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2932
2933 /* Free RX and TX mbufs still in the queues. */
2934 for (i = 0; i < SK_RX_RING_CNT; i++) {
2935 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2936 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2937 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2938 }
2939 }
2940
2941 for (i = 0; i < SK_TX_RING_CNT; i++) {
2942 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2943 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2944 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2945 }
2946 }
2947
2948 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2949 }
2950
2951 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2952
2953 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2954
2955 #ifdef SK_DEBUG
2956 void
2957 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2958 {
2959 #define DESC_PRINT(X) \
2960 if (X) \
2961 printf("txdesc[%d]." #X "=%#x\n", \
2962 idx, X);
2963
2964 DESC_PRINT(le32toh(desc->sk_ctl));
2965 DESC_PRINT(le32toh(desc->sk_next));
2966 DESC_PRINT(le32toh(desc->sk_data_lo));
2967 DESC_PRINT(le32toh(desc->sk_data_hi));
2968 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2969 DESC_PRINT(le16toh(desc->sk_rsvd0));
2970 DESC_PRINT(le16toh(desc->sk_csum_startval));
2971 DESC_PRINT(le16toh(desc->sk_csum_startpos));
2972 DESC_PRINT(le16toh(desc->sk_csum_writepos));
2973 DESC_PRINT(le16toh(desc->sk_rsvd1));
2974 #undef PRINT
2975 }
2976
2977 void
2978 sk_dump_bytes(const char *data, int len)
2979 {
2980 int c, i, j;
2981
2982 for (i = 0; i < len; i += 16) {
2983 printf("%08x ", i);
2984 c = len - i;
2985 if (c > 16) c = 16;
2986
2987 for (j = 0; j < c; j++) {
2988 printf("%02x ", data[i + j] & 0xff);
2989 if ((j & 0xf) == 7 && j > 0)
2990 printf(" ");
2991 }
2992
2993 for (; j < 16; j++)
2994 printf(" ");
2995 printf(" ");
2996
2997 for (j = 0; j < c; j++) {
2998 int ch = data[i + j] & 0xff;
2999 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
3000 }
3001
3002 printf("\n");
3003
3004 if (c < 16)
3005 break;
3006 }
3007 }
3008
3009 void
3010 sk_dump_mbuf(struct mbuf *m)
3011 {
3012 int count = m->m_pkthdr.len;
3013
3014 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3015
3016 while (count > 0 && m) {
3017 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3018 m, m->m_data, m->m_len);
3019 sk_dump_bytes(mtod(m, char *), m->m_len);
3020
3021 count -= m->m_len;
3022 m = m->m_next;
3023 }
3024 }
3025 #endif
3026
3027 static int
3028 sk_sysctl_handler(SYSCTLFN_ARGS)
3029 {
3030 int error, t;
3031 struct sysctlnode node;
3032 struct sk_softc *sc;
3033
3034 node = *rnode;
3035 sc = node.sysctl_data;
3036 t = sc->sk_int_mod;
3037 node.sysctl_data = &t;
3038 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3039 if (error || newp == NULL)
3040 return error;
3041
3042 if (t < SK_IM_MIN || t > SK_IM_MAX)
3043 return EINVAL;
3044
3045 /* update the softc with sysctl-changed value, and mark
3046 for hardware update */
3047 sc->sk_int_mod = t;
3048 sc->sk_int_mod_pending = 1;
3049 return 0;
3050 }
3051
3052 /*
3053 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3054 * set up in skc_attach()
3055 */
3056 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3057 {
3058 int rc;
3059 const struct sysctlnode *node;
3060
3061 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3062 0, CTLTYPE_NODE, "hw", NULL,
3063 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3064 goto err;
3065 }
3066
3067 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3068 0, CTLTYPE_NODE, "sk",
3069 SYSCTL_DESCR("sk interface controls"),
3070 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3071 goto err;
3072 }
3073
3074 sk_root_num = node->sysctl_num;
3075 return;
3076
3077 err:
3078 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3079 }
3080