if_sk.c revision 1.43 1 /* $NetBSD: if_sk.c,v 1.43 2007/11/07 00:23:19 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the NetBSD
18 * Foundation, Inc. and its contributors.
19 * 4. Neither the name of The NetBSD Foundation nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
37
38 /*
39 * Copyright (c) 1997, 1998, 1999, 2000
40 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Bill Paul.
53 * 4. Neither the name of the author nor the names of any co-contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67 * THE POSSIBILITY OF SUCH DAMAGE.
68 *
69 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70 */
71
72 /*
73 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
74 *
75 * Permission to use, copy, modify, and distribute this software for any
76 * purpose with or without fee is hereby granted, provided that the above
77 * copyright notice and this permission notice appear in all copies.
78 *
79 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86 */
87
88 /*
89 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90 * the SK-984x series adapters, both single port and dual port.
91 * References:
92 * The XaQti XMAC II datasheet,
93 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 * The SysKonnect GEnesis manual, http://www.syskonnect.com
95 *
96 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98 * convenience to others until Vitesse corrects this problem:
99 *
100 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101 *
102 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
103 * Department of Electrical Engineering
104 * Columbia University, New York City
105 */
106
107 /*
108 * The SysKonnect gigabit ethernet adapters consist of two main
109 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111 * components and a PHY while the GEnesis controller provides a PCI
112 * interface with DMA support. Each card may have between 512K and
113 * 2MB of SRAM on board depending on the configuration.
114 *
115 * The SysKonnect GEnesis controller can have either one or two XMAC
116 * chips connected to it, allowing single or dual port NIC configurations.
117 * SysKonnect has the distinction of being the only vendor on the market
118 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120 * XMAC registers. This driver takes advantage of these features to allow
121 * both XMACs to operate as independent interfaces.
122 */
123
124 #include <sys/cdefs.h>
125
126 #include "bpfilter.h"
127 #include "rnd.h"
128
129 #include <sys/param.h>
130 #include <sys/systm.h>
131 #include <sys/sockio.h>
132 #include <sys/mbuf.h>
133 #include <sys/malloc.h>
134 #include <sys/kernel.h>
135 #include <sys/socket.h>
136 #include <sys/device.h>
137 #include <sys/queue.h>
138 #include <sys/callout.h>
139 #include <sys/sysctl.h>
140 #include <sys/endian.h>
141
142 #include <net/if.h>
143 #include <net/if_dl.h>
144 #include <net/if_types.h>
145
146 #include <net/if_media.h>
147
148 #if NBPFILTER > 0
149 #include <net/bpf.h>
150 #endif
151 #if NRND > 0
152 #include <sys/rnd.h>
153 #endif
154
155 #include <dev/mii/mii.h>
156 #include <dev/mii/miivar.h>
157 #include <dev/mii/brgphyreg.h>
158
159 #include <dev/pci/pcireg.h>
160 #include <dev/pci/pcivar.h>
161 #include <dev/pci/pcidevs.h>
162
163 /* #define SK_USEIOSPACE */
164
165 #include <dev/pci/if_skreg.h>
166 #include <dev/pci/if_skvar.h>
167
168 int skc_probe(struct device *, struct cfdata *, void *);
169 void skc_attach(struct device *, struct device *self, void *aux);
170 int sk_probe(struct device *, struct cfdata *, void *);
171 void sk_attach(struct device *, struct device *self, void *aux);
172 int skcprint(void *, const char *);
173 int sk_intr(void *);
174 void sk_intr_bcom(struct sk_if_softc *);
175 void sk_intr_xmac(struct sk_if_softc *);
176 void sk_intr_yukon(struct sk_if_softc *);
177 void sk_rxeof(struct sk_if_softc *);
178 void sk_txeof(struct sk_if_softc *);
179 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
180 void sk_start(struct ifnet *);
181 int sk_ioctl(struct ifnet *, u_long, void *);
182 int sk_init(struct ifnet *);
183 void sk_init_xmac(struct sk_if_softc *);
184 void sk_init_yukon(struct sk_if_softc *);
185 void sk_stop(struct ifnet *, int);
186 void sk_watchdog(struct ifnet *);
187 void sk_shutdown(void *);
188 int sk_ifmedia_upd(struct ifnet *);
189 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
190 void sk_reset(struct sk_softc *);
191 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
192 int sk_alloc_jumbo_mem(struct sk_if_softc *);
193 void sk_free_jumbo_mem(struct sk_if_softc *);
194 void *sk_jalloc(struct sk_if_softc *);
195 void sk_jfree(struct mbuf *, void *, size_t, void *);
196 int sk_init_rx_ring(struct sk_if_softc *);
197 int sk_init_tx_ring(struct sk_if_softc *);
198 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
199 void sk_vpd_read_res(struct sk_softc *,
200 struct vpd_res *, int);
201 void sk_vpd_read(struct sk_softc *);
202
203 void sk_update_int_mod(struct sk_softc *);
204
205 int sk_xmac_miibus_readreg(struct device *, int, int);
206 void sk_xmac_miibus_writereg(struct device *, int, int, int);
207 void sk_xmac_miibus_statchg(struct device *);
208
209 int sk_marv_miibus_readreg(struct device *, int, int);
210 void sk_marv_miibus_writereg(struct device *, int, int, int);
211 void sk_marv_miibus_statchg(struct device *);
212
213 u_int32_t sk_xmac_hash(void *);
214 u_int32_t sk_yukon_hash(void *);
215 void sk_setfilt(struct sk_if_softc *, void *, int);
216 void sk_setmulti(struct sk_if_softc *);
217 void sk_tick(void *);
218
219 /* #define SK_DEBUG 2 */
220 #ifdef SK_DEBUG
221 #define DPRINTF(x) if (skdebug) printf x
222 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
223 int skdebug = SK_DEBUG;
224
225 void sk_dump_txdesc(struct sk_tx_desc *, int);
226 void sk_dump_mbuf(struct mbuf *);
227 void sk_dump_bytes(const char *, int);
228 #else
229 #define DPRINTF(x)
230 #define DPRINTFN(n,x)
231 #endif
232
233 static int sk_sysctl_handler(SYSCTLFN_PROTO);
234 static int sk_root_num;
235
236 /* supported device vendors */
237 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
238 static const struct sk_product {
239 pci_vendor_id_t sk_vendor;
240 pci_product_id_t sk_product;
241 } sk_products[] = {
242 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
243 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
244 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
245 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
246 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
247 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
248 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
249 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
250 { 0, 0, }
251 };
252
253 #define SK_LINKSYS_EG1032_SUBID 0x00151737
254
255 static inline u_int32_t
256 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
257 {
258 #ifdef SK_USEIOSPACE
259 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
260 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
261 #else
262 return CSR_READ_4(sc, reg);
263 #endif
264 }
265
266 static inline u_int16_t
267 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
268 {
269 #ifdef SK_USEIOSPACE
270 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
271 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
272 #else
273 return CSR_READ_2(sc, reg);
274 #endif
275 }
276
277 static inline u_int8_t
278 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
279 {
280 #ifdef SK_USEIOSPACE
281 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
282 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
283 #else
284 return CSR_READ_1(sc, reg);
285 #endif
286 }
287
288 static inline void
289 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
290 {
291 #ifdef SK_USEIOSPACE
292 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
293 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
294 #else
295 CSR_WRITE_4(sc, reg, x);
296 #endif
297 }
298
299 static inline void
300 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
301 {
302 #ifdef SK_USEIOSPACE
303 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
304 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
305 #else
306 CSR_WRITE_2(sc, reg, x);
307 #endif
308 }
309
310 static inline void
311 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
312 {
313 #ifdef SK_USEIOSPACE
314 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
315 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
316 #else
317 CSR_WRITE_1(sc, reg, x);
318 #endif
319 }
320
321 /*
322 * The VPD EEPROM contains Vital Product Data, as suggested in
323 * the PCI 2.1 specification. The VPD data is separared into areas
324 * denoted by resource IDs. The SysKonnect VPD contains an ID string
325 * resource (the name of the adapter), a read-only area resource
326 * containing various key/data fields and a read/write area which
327 * can be used to store asset management information or log messages.
328 * We read the ID string and read-only into buffers attached to
329 * the controller softc structure for later use. At the moment,
330 * we only use the ID string during sk_attach().
331 */
332 u_int8_t
333 sk_vpd_readbyte(struct sk_softc *sc, int addr)
334 {
335 int i;
336
337 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
338 for (i = 0; i < SK_TIMEOUT; i++) {
339 DELAY(1);
340 if (sk_win_read_2(sc,
341 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
342 break;
343 }
344
345 if (i == SK_TIMEOUT)
346 return 0;
347
348 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
349 }
350
351 void
352 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
353 {
354 int i;
355 u_int8_t *ptr;
356
357 ptr = (u_int8_t *)res;
358 for (i = 0; i < sizeof(struct vpd_res); i++)
359 ptr[i] = sk_vpd_readbyte(sc, i + addr);
360 }
361
362 void
363 sk_vpd_read(struct sk_softc *sc)
364 {
365 int pos = 0, i;
366 struct vpd_res res;
367
368 if (sc->sk_vpd_prodname != NULL)
369 free(sc->sk_vpd_prodname, M_DEVBUF);
370 if (sc->sk_vpd_readonly != NULL)
371 free(sc->sk_vpd_readonly, M_DEVBUF);
372 sc->sk_vpd_prodname = NULL;
373 sc->sk_vpd_readonly = NULL;
374
375 sk_vpd_read_res(sc, &res, pos);
376
377 if (res.vr_id != VPD_RES_ID) {
378 aprint_error("%s: bad VPD resource id: expected %x got %x\n",
379 sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
380 return;
381 }
382
383 pos += sizeof(res);
384 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
385 if (sc->sk_vpd_prodname == NULL)
386 panic("sk_vpd_read");
387 for (i = 0; i < res.vr_len; i++)
388 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
389 sc->sk_vpd_prodname[i] = '\0';
390 pos += i;
391
392 sk_vpd_read_res(sc, &res, pos);
393
394 if (res.vr_id != VPD_RES_READ) {
395 aprint_error("%s: bad VPD resource id: expected %x got %x\n",
396 sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
397 return;
398 }
399
400 pos += sizeof(res);
401 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
402 if (sc->sk_vpd_readonly == NULL)
403 panic("sk_vpd_read");
404 for (i = 0; i < res.vr_len ; i++)
405 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
406 }
407
408 int
409 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
410 {
411 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
412 int i;
413
414 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
415
416 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
417 return 0;
418
419 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
420 SK_XM_READ_2(sc_if, XM_PHY_DATA);
421 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
422 for (i = 0; i < SK_TIMEOUT; i++) {
423 DELAY(1);
424 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
425 XM_MMUCMD_PHYDATARDY)
426 break;
427 }
428
429 if (i == SK_TIMEOUT) {
430 aprint_error("%s: phy failed to come ready\n",
431 sc_if->sk_dev.dv_xname);
432 return 0;
433 }
434 }
435 DELAY(1);
436 return SK_XM_READ_2(sc_if, XM_PHY_DATA);
437 }
438
439 void
440 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
441 {
442 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
443 int i;
444
445 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
446
447 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
448 for (i = 0; i < SK_TIMEOUT; i++) {
449 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
450 break;
451 }
452
453 if (i == SK_TIMEOUT) {
454 aprint_error("%s: phy failed to come ready\n",
455 sc_if->sk_dev.dv_xname);
456 return;
457 }
458
459 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
460 for (i = 0; i < SK_TIMEOUT; i++) {
461 DELAY(1);
462 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
463 break;
464 }
465
466 if (i == SK_TIMEOUT)
467 aprint_error("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
468 }
469
470 void
471 sk_xmac_miibus_statchg(struct device *dev)
472 {
473 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
474 struct mii_data *mii = &sc_if->sk_mii;
475
476 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
477
478 /*
479 * If this is a GMII PHY, manually set the XMAC's
480 * duplex mode accordingly.
481 */
482 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
483 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
484 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
485 else
486 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
487 }
488 }
489
490 int
491 sk_marv_miibus_readreg(struct device *dev, int phy, int reg)
492 {
493 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
494 u_int16_t val;
495 int i;
496
497 if (phy != 0 ||
498 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
499 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
500 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
501 phy, reg));
502 return 0;
503 }
504
505 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
506 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
507
508 for (i = 0; i < SK_TIMEOUT; i++) {
509 DELAY(1);
510 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
511 if (val & YU_SMICR_READ_VALID)
512 break;
513 }
514
515 if (i == SK_TIMEOUT) {
516 aprint_error("%s: phy failed to come ready\n",
517 sc_if->sk_dev.dv_xname);
518 return 0;
519 }
520
521 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
522 SK_TIMEOUT));
523
524 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
525
526 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
527 phy, reg, val));
528
529 return val;
530 }
531
532 void
533 sk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
534 {
535 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
536 int i;
537
538 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
539 phy, reg, val));
540
541 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
542 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
543 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
544
545 for (i = 0; i < SK_TIMEOUT; i++) {
546 DELAY(1);
547 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
548 break;
549 }
550
551 if (i == SK_TIMEOUT)
552 printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
553 }
554
555 void
556 sk_marv_miibus_statchg(struct device *dev)
557 {
558 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
559 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
560 }
561
562 #define SK_HASH_BITS 6
563
564 u_int32_t
565 sk_xmac_hash(void *addr)
566 {
567 u_int32_t crc;
568
569 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
570 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
571 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
572 return crc;
573 }
574
575 u_int32_t
576 sk_yukon_hash(void *addr)
577 {
578 u_int32_t crc;
579
580 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
581 crc &= ((1 << SK_HASH_BITS) - 1);
582 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
583 return crc;
584 }
585
586 void
587 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
588 {
589 char *addr = addrv;
590 int base = XM_RXFILT_ENTRY(slot);
591
592 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
593 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
594 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
595 }
596
597 void
598 sk_setmulti(struct sk_if_softc *sc_if)
599 {
600 struct sk_softc *sc = sc_if->sk_softc;
601 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
602 u_int32_t hashes[2] = { 0, 0 };
603 int h = 0, i;
604 struct ethercom *ec = &sc_if->sk_ethercom;
605 struct ether_multi *enm;
606 struct ether_multistep step;
607 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
608
609 /* First, zot all the existing filters. */
610 switch (sc->sk_type) {
611 case SK_GENESIS:
612 for (i = 1; i < XM_RXFILT_MAX; i++)
613 sk_setfilt(sc_if, (void *)&dummy, i);
614
615 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
616 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
617 break;
618 case SK_YUKON:
619 case SK_YUKON_LITE:
620 case SK_YUKON_LP:
621 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
622 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
623 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
624 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
625 break;
626 }
627
628 /* Now program new ones. */
629 allmulti:
630 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
631 hashes[0] = 0xFFFFFFFF;
632 hashes[1] = 0xFFFFFFFF;
633 } else {
634 i = 1;
635 /* First find the tail of the list. */
636 ETHER_FIRST_MULTI(step, ec, enm);
637 while (enm != NULL) {
638 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
639 ETHER_ADDR_LEN)) {
640 ifp->if_flags |= IFF_ALLMULTI;
641 goto allmulti;
642 }
643 DPRINTFN(2,("multicast address %s\n",
644 ether_sprintf(enm->enm_addrlo)));
645 /*
646 * Program the first XM_RXFILT_MAX multicast groups
647 * into the perfect filter. For all others,
648 * use the hash table.
649 */
650 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
651 sk_setfilt(sc_if, enm->enm_addrlo, i);
652 i++;
653 }
654 else {
655 switch (sc->sk_type) {
656 case SK_GENESIS:
657 h = sk_xmac_hash(enm->enm_addrlo);
658 break;
659 case SK_YUKON:
660 case SK_YUKON_LITE:
661 case SK_YUKON_LP:
662 h = sk_yukon_hash(enm->enm_addrlo);
663 break;
664 }
665 if (h < 32)
666 hashes[0] |= (1 << h);
667 else
668 hashes[1] |= (1 << (h - 32));
669 }
670
671 ETHER_NEXT_MULTI(step, enm);
672 }
673 }
674
675 switch (sc->sk_type) {
676 case SK_GENESIS:
677 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
678 XM_MODE_RX_USE_PERFECT);
679 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
680 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
681 break;
682 case SK_YUKON:
683 case SK_YUKON_LITE:
684 case SK_YUKON_LP:
685 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
686 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
687 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
688 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
689 break;
690 }
691 }
692
693 int
694 sk_init_rx_ring(struct sk_if_softc *sc_if)
695 {
696 struct sk_chain_data *cd = &sc_if->sk_cdata;
697 struct sk_ring_data *rd = sc_if->sk_rdata;
698 int i;
699
700 bzero((char *)rd->sk_rx_ring,
701 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
702
703 for (i = 0; i < SK_RX_RING_CNT; i++) {
704 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
705 if (i == (SK_RX_RING_CNT - 1)) {
706 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
707 rd->sk_rx_ring[i].sk_next =
708 htole32(SK_RX_RING_ADDR(sc_if, 0));
709 } else {
710 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
711 rd->sk_rx_ring[i].sk_next =
712 htole32(SK_RX_RING_ADDR(sc_if,i+1));
713 }
714 }
715
716 for (i = 0; i < SK_RX_RING_CNT; i++) {
717 if (sk_newbuf(sc_if, i, NULL,
718 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
719 aprint_error("%s: failed alloc of %dth mbuf\n",
720 sc_if->sk_dev.dv_xname, i);
721 return ENOBUFS;
722 }
723 }
724 sc_if->sk_cdata.sk_rx_prod = 0;
725 sc_if->sk_cdata.sk_rx_cons = 0;
726
727 return 0;
728 }
729
730 int
731 sk_init_tx_ring(struct sk_if_softc *sc_if)
732 {
733 struct sk_chain_data *cd = &sc_if->sk_cdata;
734 struct sk_ring_data *rd = sc_if->sk_rdata;
735 int i;
736
737 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
738 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
739
740 for (i = 0; i < SK_TX_RING_CNT; i++) {
741 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
742 if (i == (SK_TX_RING_CNT - 1)) {
743 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
744 rd->sk_tx_ring[i].sk_next =
745 htole32(SK_TX_RING_ADDR(sc_if, 0));
746 } else {
747 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
748 rd->sk_tx_ring[i].sk_next =
749 htole32(SK_TX_RING_ADDR(sc_if,i+1));
750 }
751 }
752
753 sc_if->sk_cdata.sk_tx_prod = 0;
754 sc_if->sk_cdata.sk_tx_cons = 0;
755 sc_if->sk_cdata.sk_tx_cnt = 0;
756
757 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
758 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
759
760 return 0;
761 }
762
763 int
764 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
765 bus_dmamap_t dmamap)
766 {
767 struct mbuf *m_new = NULL;
768 struct sk_chain *c;
769 struct sk_rx_desc *r;
770
771 if (m == NULL) {
772 void *buf = NULL;
773
774 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
775 if (m_new == NULL) {
776 aprint_error("%s: no memory for rx list -- "
777 "packet dropped!\n", sc_if->sk_dev.dv_xname);
778 return ENOBUFS;
779 }
780
781 /* Allocate the jumbo buffer */
782 buf = sk_jalloc(sc_if);
783 if (buf == NULL) {
784 m_freem(m_new);
785 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
786 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
787 return ENOBUFS;
788 }
789
790 /* Attach the buffer to the mbuf */
791 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
792 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
793
794 } else {
795 /*
796 * We're re-using a previously allocated mbuf;
797 * be sure to re-init pointers and lengths to
798 * default values.
799 */
800 m_new = m;
801 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
802 m_new->m_data = m_new->m_ext.ext_buf;
803 }
804 m_adj(m_new, ETHER_ALIGN);
805
806 c = &sc_if->sk_cdata.sk_rx_chain[i];
807 r = c->sk_desc;
808 c->sk_mbuf = m_new;
809 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
810 (((vaddr_t)m_new->m_data
811 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
812 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
813
814 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
815
816 return 0;
817 }
818
819 /*
820 * Memory management for jumbo frames.
821 */
822
823 int
824 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
825 {
826 struct sk_softc *sc = sc_if->sk_softc;
827 char *ptr, *kva;
828 bus_dma_segment_t seg;
829 int i, rseg, state, error;
830 struct sk_jpool_entry *entry;
831
832 state = error = 0;
833
834 /* Grab a big chunk o' storage. */
835 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
836 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
837 aprint_error("%s: can't alloc rx buffers\n", sc->sk_dev.dv_xname);
838 return ENOBUFS;
839 }
840
841 state = 1;
842 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
843 BUS_DMA_NOWAIT)) {
844 aprint_error("%s: can't map dma buffers (%d bytes)\n",
845 sc->sk_dev.dv_xname, SK_JMEM);
846 error = ENOBUFS;
847 goto out;
848 }
849
850 state = 2;
851 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
852 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
853 aprint_error("%s: can't create dma map\n", sc->sk_dev.dv_xname);
854 error = ENOBUFS;
855 goto out;
856 }
857
858 state = 3;
859 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
860 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
861 aprint_error("%s: can't load dma map\n", sc->sk_dev.dv_xname);
862 error = ENOBUFS;
863 goto out;
864 }
865
866 state = 4;
867 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
868 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
869
870 LIST_INIT(&sc_if->sk_jfree_listhead);
871 LIST_INIT(&sc_if->sk_jinuse_listhead);
872
873 /*
874 * Now divide it up into 9K pieces and save the addresses
875 * in an array.
876 */
877 ptr = sc_if->sk_cdata.sk_jumbo_buf;
878 for (i = 0; i < SK_JSLOTS; i++) {
879 sc_if->sk_cdata.sk_jslots[i] = ptr;
880 ptr += SK_JLEN;
881 entry = malloc(sizeof(struct sk_jpool_entry),
882 M_DEVBUF, M_NOWAIT);
883 if (entry == NULL) {
884 aprint_error("%s: no memory for jumbo buffer queue!\n",
885 sc->sk_dev.dv_xname);
886 error = ENOBUFS;
887 goto out;
888 }
889 entry->slot = i;
890 if (i)
891 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
892 entry, jpool_entries);
893 else
894 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
895 entry, jpool_entries);
896 }
897 out:
898 if (error != 0) {
899 switch (state) {
900 case 4:
901 bus_dmamap_unload(sc->sc_dmatag,
902 sc_if->sk_cdata.sk_rx_jumbo_map);
903 case 3:
904 bus_dmamap_destroy(sc->sc_dmatag,
905 sc_if->sk_cdata.sk_rx_jumbo_map);
906 case 2:
907 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
908 case 1:
909 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
910 break;
911 default:
912 break;
913 }
914 }
915
916 return error;
917 }
918
919 /*
920 * Allocate a jumbo buffer.
921 */
922 void *
923 sk_jalloc(struct sk_if_softc *sc_if)
924 {
925 struct sk_jpool_entry *entry;
926
927 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
928
929 if (entry == NULL)
930 return NULL;
931
932 LIST_REMOVE(entry, jpool_entries);
933 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
934 return sc_if->sk_cdata.sk_jslots[entry->slot];
935 }
936
937 /*
938 * Release a jumbo buffer.
939 */
940 void
941 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
942 {
943 struct sk_jpool_entry *entry;
944 struct sk_if_softc *sc;
945 int i, s;
946
947 /* Extract the softc struct pointer. */
948 sc = (struct sk_if_softc *)arg;
949
950 if (sc == NULL)
951 panic("sk_jfree: can't find softc pointer!");
952
953 /* calculate the slot this buffer belongs to */
954
955 i = ((vaddr_t)buf
956 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
957
958 if ((i < 0) || (i >= SK_JSLOTS))
959 panic("sk_jfree: asked to free buffer that we don't manage!");
960
961 s = splvm();
962 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
963 if (entry == NULL)
964 panic("sk_jfree: buffer not in use!");
965 entry->slot = i;
966 LIST_REMOVE(entry, jpool_entries);
967 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
968
969 if (__predict_true(m != NULL))
970 pool_cache_put(mb_cache, m);
971 splx(s);
972 }
973
974 /*
975 * Set media options.
976 */
977 int
978 sk_ifmedia_upd(struct ifnet *ifp)
979 {
980 struct sk_if_softc *sc_if = ifp->if_softc;
981
982 (void) sk_init(ifp);
983 mii_mediachg(&sc_if->sk_mii);
984 return 0;
985 }
986
987 /*
988 * Report current media status.
989 */
990 void
991 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
992 {
993 struct sk_if_softc *sc_if = ifp->if_softc;
994
995 mii_pollstat(&sc_if->sk_mii);
996 ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
997 ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
998 }
999
1000 int
1001 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
1002 {
1003 struct sk_if_softc *sc_if = ifp->if_softc;
1004 struct sk_softc *sc = sc_if->sk_softc;
1005 struct ifreq *ifr = (struct ifreq *) data;
1006 struct mii_data *mii;
1007 int s, error = 0;
1008
1009 /* DPRINTFN(2, ("sk_ioctl\n")); */
1010
1011 s = splnet();
1012
1013 switch (command) {
1014
1015 case SIOCSIFFLAGS:
1016 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1017 if (ifp->if_flags & IFF_UP) {
1018 if (ifp->if_flags & IFF_RUNNING &&
1019 ifp->if_flags & IFF_PROMISC &&
1020 !(sc_if->sk_if_flags & IFF_PROMISC)) {
1021 switch (sc->sk_type) {
1022 case SK_GENESIS:
1023 SK_XM_SETBIT_4(sc_if, XM_MODE,
1024 XM_MODE_RX_PROMISC);
1025 break;
1026 case SK_YUKON:
1027 case SK_YUKON_LITE:
1028 case SK_YUKON_LP:
1029 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1030 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1031 break;
1032 }
1033 sk_setmulti(sc_if);
1034 } else if (ifp->if_flags & IFF_RUNNING &&
1035 !(ifp->if_flags & IFF_PROMISC) &&
1036 sc_if->sk_if_flags & IFF_PROMISC) {
1037 switch (sc->sk_type) {
1038 case SK_GENESIS:
1039 SK_XM_CLRBIT_4(sc_if, XM_MODE,
1040 XM_MODE_RX_PROMISC);
1041 break;
1042 case SK_YUKON:
1043 case SK_YUKON_LITE:
1044 case SK_YUKON_LP:
1045 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1046 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1047 break;
1048 }
1049
1050 sk_setmulti(sc_if);
1051 } else
1052 (void) sk_init(ifp);
1053 } else {
1054 if (ifp->if_flags & IFF_RUNNING)
1055 sk_stop(ifp,0);
1056 }
1057 sc_if->sk_if_flags = ifp->if_flags;
1058 error = 0;
1059 break;
1060
1061 case SIOCGIFMEDIA:
1062 case SIOCSIFMEDIA:
1063 DPRINTFN(2, ("sk_ioctl MEDIA\n"));
1064 mii = &sc_if->sk_mii;
1065 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1066 break;
1067 default:
1068 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1069 error = ether_ioctl(ifp, command, data);
1070
1071 if ( error == ENETRESET) {
1072 if (ifp->if_flags & IFF_RUNNING) {
1073 sk_setmulti(sc_if);
1074 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1075 }
1076 error = 0;
1077 } else if ( error ) {
1078 splx(s);
1079 return error;
1080 }
1081 break;
1082 }
1083
1084 splx(s);
1085 return error;
1086 }
1087
1088 void
1089 sk_update_int_mod(struct sk_softc *sc)
1090 {
1091 u_int32_t imtimer_ticks;
1092
1093 /*
1094 * Configure interrupt moderation. The moderation timer
1095 * defers interrupts specified in the interrupt moderation
1096 * timer mask based on the timeout specified in the interrupt
1097 * moderation timer init register. Each bit in the timer
1098 * register represents one tick, so to specify a timeout in
1099 * microseconds, we have to multiply by the correct number of
1100 * ticks-per-microsecond.
1101 */
1102 switch (sc->sk_type) {
1103 case SK_GENESIS:
1104 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1105 break;
1106 case SK_YUKON_EC:
1107 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1108 break;
1109 default:
1110 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1111 }
1112 aprint_verbose("%s: interrupt moderation is %d us\n",
1113 sc->sk_dev.dv_xname, sc->sk_int_mod);
1114 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1115 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1116 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1117 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1118 sc->sk_int_mod_pending = 0;
1119 }
1120
1121 /*
1122 * Lookup: Check the PCI vendor and device, and return a pointer to
1123 * The structure if the IDs match against our list.
1124 */
1125
1126 static const struct sk_product *
1127 sk_lookup(const struct pci_attach_args *pa)
1128 {
1129 const struct sk_product *psk;
1130
1131 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1132 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1133 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1134 return psk;
1135 }
1136 return NULL;
1137 }
1138
1139 /*
1140 * Probe for a SysKonnect GEnesis chip.
1141 */
1142
1143 int
1144 skc_probe(struct device *parent, struct cfdata *match,
1145 void *aux)
1146 {
1147 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1148 const struct sk_product *psk;
1149 pcireg_t subid;
1150
1151 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1152
1153 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1154 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1155 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1156 subid == SK_LINKSYS_EG1032_SUBID)
1157 return 1;
1158
1159 if ((psk = sk_lookup(pa))) {
1160 return 1;
1161 }
1162 return 0;
1163 }
1164
1165 /*
1166 * Force the GEnesis into reset, then bring it out of reset.
1167 */
1168 void sk_reset(struct sk_softc *sc)
1169 {
1170 DPRINTFN(2, ("sk_reset\n"));
1171
1172 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1173 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1174 if (SK_YUKON_FAMILY(sc->sk_type))
1175 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1176
1177 DELAY(1000);
1178 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1179 DELAY(2);
1180 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1181 if (SK_YUKON_FAMILY(sc->sk_type))
1182 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1183
1184 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1185 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1186 CSR_READ_2(sc, SK_LINK_CTRL)));
1187
1188 if (sc->sk_type == SK_GENESIS) {
1189 /* Configure packet arbiter */
1190 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1191 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1192 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1193 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1194 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1195 }
1196
1197 /* Enable RAM interface */
1198 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1199
1200 sk_update_int_mod(sc);
1201 }
1202
1203 int
1204 sk_probe(struct device *parent, struct cfdata *match,
1205 void *aux)
1206 {
1207 struct skc_attach_args *sa = aux;
1208
1209 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1210 return 0;
1211
1212 return 1;
1213 }
1214
1215 /*
1216 * Each XMAC chip is attached as a separate logical IP interface.
1217 * Single port cards will have only one logical interface of course.
1218 */
1219 void
1220 sk_attach(struct device *parent, struct device *self, void *aux)
1221 {
1222 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1223 struct sk_softc *sc = (struct sk_softc *)parent;
1224 struct skc_attach_args *sa = aux;
1225 struct sk_txmap_entry *entry;
1226 struct ifnet *ifp;
1227 bus_dma_segment_t seg;
1228 bus_dmamap_t dmamap;
1229 void *kva;
1230 int i, rseg;
1231
1232 sc_if->sk_port = sa->skc_port;
1233 sc_if->sk_softc = sc;
1234 sc->sk_if[sa->skc_port] = sc_if;
1235
1236 if (sa->skc_port == SK_PORT_A)
1237 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1238 if (sa->skc_port == SK_PORT_B)
1239 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1240
1241 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1242
1243 /*
1244 * Get station address for this interface. Note that
1245 * dual port cards actually come with three station
1246 * addresses: one for each port, plus an extra. The
1247 * extra one is used by the SysKonnect driver software
1248 * as a 'virtual' station address for when both ports
1249 * are operating in failover mode. Currently we don't
1250 * use this extra address.
1251 */
1252 for (i = 0; i < ETHER_ADDR_LEN; i++)
1253 sc_if->sk_enaddr[i] =
1254 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1255
1256
1257 aprint_normal(": Ethernet address %s\n",
1258 ether_sprintf(sc_if->sk_enaddr));
1259
1260 /*
1261 * Set up RAM buffer addresses. The NIC will have a certain
1262 * amount of SRAM on it, somewhere between 512K and 2MB. We
1263 * need to divide this up a) between the transmitter and
1264 * receiver and b) between the two XMACs, if this is a
1265 * dual port NIC. Our algorithm is to divide up the memory
1266 * evenly so that everyone gets a fair share.
1267 */
1268 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1269 u_int32_t chunk, val;
1270
1271 chunk = sc->sk_ramsize / 2;
1272 val = sc->sk_rboff / sizeof(u_int64_t);
1273 sc_if->sk_rx_ramstart = val;
1274 val += (chunk / sizeof(u_int64_t));
1275 sc_if->sk_rx_ramend = val - 1;
1276 sc_if->sk_tx_ramstart = val;
1277 val += (chunk / sizeof(u_int64_t));
1278 sc_if->sk_tx_ramend = val - 1;
1279 } else {
1280 u_int32_t chunk, val;
1281
1282 chunk = sc->sk_ramsize / 4;
1283 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1284 sizeof(u_int64_t);
1285 sc_if->sk_rx_ramstart = val;
1286 val += (chunk / sizeof(u_int64_t));
1287 sc_if->sk_rx_ramend = val - 1;
1288 sc_if->sk_tx_ramstart = val;
1289 val += (chunk / sizeof(u_int64_t));
1290 sc_if->sk_tx_ramend = val - 1;
1291 }
1292
1293 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1294 " tx_ramstart=%#x tx_ramend=%#x\n",
1295 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1296 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1297
1298 /* Read and save PHY type and set PHY address */
1299 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1300 switch (sc_if->sk_phytype) {
1301 case SK_PHYTYPE_XMAC:
1302 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1303 break;
1304 case SK_PHYTYPE_BCOM:
1305 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1306 break;
1307 case SK_PHYTYPE_MARV_COPPER:
1308 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1309 break;
1310 default:
1311 aprint_error("%s: unsupported PHY type: %d\n",
1312 sc->sk_dev.dv_xname, sc_if->sk_phytype);
1313 return;
1314 }
1315
1316 /* Allocate the descriptor queues. */
1317 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1318 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1319 aprint_error("%s: can't alloc rx buffers\n",
1320 sc->sk_dev.dv_xname);
1321 goto fail;
1322 }
1323 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1324 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1325 aprint_error("%s: can't map dma buffers (%lu bytes)\n",
1326 sc_if->sk_dev.dv_xname,
1327 (u_long) sizeof(struct sk_ring_data));
1328 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1329 goto fail;
1330 }
1331 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1332 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1333 &sc_if->sk_ring_map)) {
1334 aprint_error("%s: can't create dma map\n",
1335 sc_if->sk_dev.dv_xname);
1336 bus_dmamem_unmap(sc->sc_dmatag, kva,
1337 sizeof(struct sk_ring_data));
1338 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1339 goto fail;
1340 }
1341 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1342 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1343 aprint_error("%s: can't load dma map\n",
1344 sc_if->sk_dev.dv_xname);
1345 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1346 bus_dmamem_unmap(sc->sc_dmatag, kva,
1347 sizeof(struct sk_ring_data));
1348 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1349 goto fail;
1350 }
1351
1352 for (i = 0; i < SK_RX_RING_CNT; i++)
1353 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1354
1355 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1356 for (i = 0; i < SK_TX_RING_CNT; i++) {
1357 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1358
1359 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1360 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1361 aprint_error("%s: Can't create TX dmamap\n",
1362 sc_if->sk_dev.dv_xname);
1363 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1364 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1365 bus_dmamem_unmap(sc->sc_dmatag, kva,
1366 sizeof(struct sk_ring_data));
1367 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1368 goto fail;
1369 }
1370
1371 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1372 if (!entry) {
1373 aprint_error("%s: Can't alloc txmap entry\n",
1374 sc_if->sk_dev.dv_xname);
1375 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1376 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1377 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1378 bus_dmamem_unmap(sc->sc_dmatag, kva,
1379 sizeof(struct sk_ring_data));
1380 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1381 goto fail;
1382 }
1383 entry->dmamap = dmamap;
1384 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1385 }
1386
1387 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1388 bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1389
1390 ifp = &sc_if->sk_ethercom.ec_if;
1391 /* Try to allocate memory for jumbo buffers. */
1392 if (sk_alloc_jumbo_mem(sc_if)) {
1393 aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1394 goto fail;
1395 }
1396 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1397 | ETHERCAP_JUMBO_MTU;
1398
1399 ifp->if_softc = sc_if;
1400 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1401 ifp->if_ioctl = sk_ioctl;
1402 ifp->if_start = sk_start;
1403 ifp->if_stop = sk_stop;
1404 ifp->if_init = sk_init;
1405 ifp->if_watchdog = sk_watchdog;
1406 ifp->if_capabilities = 0;
1407 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1408 IFQ_SET_READY(&ifp->if_snd);
1409 strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1410
1411 /*
1412 * Do miibus setup.
1413 */
1414 switch (sc->sk_type) {
1415 case SK_GENESIS:
1416 sk_init_xmac(sc_if);
1417 break;
1418 case SK_YUKON:
1419 case SK_YUKON_LITE:
1420 case SK_YUKON_LP:
1421 sk_init_yukon(sc_if);
1422 break;
1423 default:
1424 aprint_error("%s: unknown device type %d\n",
1425 sc->sk_dev.dv_xname, sc->sk_type);
1426 goto fail;
1427 }
1428
1429 DPRINTFN(2, ("sk_attach: 1\n"));
1430
1431 sc_if->sk_mii.mii_ifp = ifp;
1432 switch (sc->sk_type) {
1433 case SK_GENESIS:
1434 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1435 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1436 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1437 break;
1438 case SK_YUKON:
1439 case SK_YUKON_LITE:
1440 case SK_YUKON_LP:
1441 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1442 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1443 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1444 break;
1445 }
1446
1447 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1448 sk_ifmedia_upd, sk_ifmedia_sts);
1449 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1450 MII_OFFSET_ANY, 0);
1451 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1452 aprint_error("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1453 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1454 0, NULL);
1455 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1456 } else
1457 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1458
1459 callout_init(&sc_if->sk_tick_ch, 0);
1460 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1461
1462 DPRINTFN(2, ("sk_attach: 1\n"));
1463
1464 /*
1465 * Call MI attach routines.
1466 */
1467 if_attach(ifp);
1468
1469 ether_ifattach(ifp, sc_if->sk_enaddr);
1470
1471 #if NRND > 0
1472 rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
1473 RND_TYPE_NET, 0);
1474 #endif
1475
1476 DPRINTFN(2, ("sk_attach: end\n"));
1477
1478 return;
1479
1480 fail:
1481 sc->sk_if[sa->skc_port] = NULL;
1482 }
1483
1484 int
1485 skcprint(void *aux, const char *pnp)
1486 {
1487 struct skc_attach_args *sa = aux;
1488
1489 if (pnp)
1490 aprint_normal("sk port %c at %s",
1491 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1492 else
1493 aprint_normal(" port %c",
1494 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1495 return UNCONF;
1496 }
1497
1498 /*
1499 * Attach the interface. Allocate softc structures, do ifmedia
1500 * setup and ethernet/BPF attach.
1501 */
1502 void
1503 skc_attach(struct device *parent, struct device *self, void *aux)
1504 {
1505 struct sk_softc *sc = (struct sk_softc *)self;
1506 struct pci_attach_args *pa = aux;
1507 struct skc_attach_args skca;
1508 pci_chipset_tag_t pc = pa->pa_pc;
1509 #ifndef SK_USEIOSPACE
1510 pcireg_t memtype;
1511 #endif
1512 pci_intr_handle_t ih;
1513 const char *intrstr = NULL;
1514 bus_addr_t iobase;
1515 bus_size_t iosize;
1516 int rc, sk_nodenum;
1517 u_int32_t command;
1518 const char *revstr;
1519 const struct sysctlnode *node;
1520
1521 DPRINTFN(2, ("begin skc_attach\n"));
1522
1523 /*
1524 * Handle power management nonsense.
1525 */
1526 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1527
1528 if (command == 0x01) {
1529 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1530 if (command & SK_PSTATE_MASK) {
1531 u_int32_t xiobase, membase, irq;
1532
1533 /* Save important PCI config data. */
1534 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1535 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1536 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1537
1538 /* Reset the power state. */
1539 aprint_normal("%s chip is in D%d power mode "
1540 "-- setting to D0\n", sc->sk_dev.dv_xname,
1541 command & SK_PSTATE_MASK);
1542 command &= 0xFFFFFFFC;
1543 pci_conf_write(pc, pa->pa_tag,
1544 SK_PCI_PWRMGMTCTRL, command);
1545
1546 /* Restore PCI config data. */
1547 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1548 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1549 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1550 }
1551 }
1552
1553 /*
1554 * Map control/status registers.
1555 */
1556 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1557 command |= PCI_COMMAND_IO_ENABLE |
1558 PCI_COMMAND_MEM_ENABLE |
1559 PCI_COMMAND_MASTER_ENABLE;
1560 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1561 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1562
1563 #ifdef SK_USEIOSPACE
1564 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1565 aprint_error(": failed to enable I/O ports!\n");
1566 return;
1567 }
1568 /*
1569 * Map control/status registers.
1570 */
1571 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1572 &sc->sk_btag, &sc->sk_bhandle,
1573 &iobase, &iosize)) {
1574 aprint_error(": can't find i/o space\n");
1575 return;
1576 }
1577 #else
1578 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1579 aprint_error(": failed to enable memory mapping!\n");
1580 return;
1581 }
1582 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1583 switch (memtype) {
1584 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1585 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1586 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1587 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1588 &iobase, &iosize) == 0)
1589 break;
1590 default:
1591 aprint_error("%s: can't find mem space\n",
1592 sc->sk_dev.dv_xname);
1593 return;
1594 }
1595
1596 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1597 #endif
1598 sc->sc_dmatag = pa->pa_dmat;
1599
1600 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1601 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1602
1603 /* bail out here if chip is not recognized */
1604 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1605 aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
1606 goto fail;
1607 }
1608 if (SK_IS_YUKON2(sc)) {
1609 aprint_error("%s: Does not support Yukon2--try msk(4).\n",
1610 sc->sk_dev.dv_xname);
1611 goto fail;
1612 }
1613 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1614
1615 /* Allocate interrupt */
1616 if (pci_intr_map(pa, &ih)) {
1617 aprint_error(": couldn't map interrupt\n");
1618 goto fail;
1619 }
1620
1621 intrstr = pci_intr_string(pc, ih);
1622 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1623 if (sc->sk_intrhand == NULL) {
1624 aprint_error(": couldn't establish interrupt");
1625 if (intrstr != NULL)
1626 aprint_normal(" at %s", intrstr);
1627 goto fail;
1628 }
1629 aprint_normal(": %s\n", intrstr);
1630
1631 /* Reset the adapter. */
1632 sk_reset(sc);
1633
1634 /* Read and save vital product data from EEPROM. */
1635 sk_vpd_read(sc);
1636
1637 if (sc->sk_type == SK_GENESIS) {
1638 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1639 /* Read and save RAM size and RAMbuffer offset */
1640 switch (val) {
1641 case SK_RAMSIZE_512K_64:
1642 sc->sk_ramsize = 0x80000;
1643 sc->sk_rboff = SK_RBOFF_0;
1644 break;
1645 case SK_RAMSIZE_1024K_64:
1646 sc->sk_ramsize = 0x100000;
1647 sc->sk_rboff = SK_RBOFF_80000;
1648 break;
1649 case SK_RAMSIZE_1024K_128:
1650 sc->sk_ramsize = 0x100000;
1651 sc->sk_rboff = SK_RBOFF_0;
1652 break;
1653 case SK_RAMSIZE_2048K_128:
1654 sc->sk_ramsize = 0x200000;
1655 sc->sk_rboff = SK_RBOFF_0;
1656 break;
1657 default:
1658 aprint_error("%s: unknown ram size: %d\n",
1659 sc->sk_dev.dv_xname, val);
1660 goto fail_1;
1661 break;
1662 }
1663
1664 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1665 sc->sk_ramsize, sc->sk_ramsize / 1024,
1666 sc->sk_rboff));
1667 } else {
1668 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1669 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1670 sc->sk_rboff = SK_RBOFF_0;
1671
1672 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1673 sc->sk_ramsize / 1024, sc->sk_ramsize,
1674 sc->sk_rboff));
1675 }
1676
1677 /* Read and save physical media type */
1678 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1679 case SK_PMD_1000BASESX:
1680 sc->sk_pmd = IFM_1000_SX;
1681 break;
1682 case SK_PMD_1000BASELX:
1683 sc->sk_pmd = IFM_1000_LX;
1684 break;
1685 case SK_PMD_1000BASECX:
1686 sc->sk_pmd = IFM_1000_CX;
1687 break;
1688 case SK_PMD_1000BASETX:
1689 case SK_PMD_1000BASETX_ALT:
1690 sc->sk_pmd = IFM_1000_T;
1691 break;
1692 default:
1693 aprint_error("%s: unknown media type: 0x%x\n",
1694 sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
1695 goto fail_1;
1696 }
1697
1698 /* determine whether to name it with vpd or just make it up */
1699 /* Marvell Yukon VPD's can freqently be bogus */
1700
1701 switch (pa->pa_id) {
1702 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1703 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1704 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1705 case PCI_PRODUCT_3COM_3C940:
1706 case PCI_PRODUCT_DLINK_DGE530T:
1707 case PCI_PRODUCT_DLINK_DGE560T:
1708 case PCI_PRODUCT_DLINK_DGE560T_2:
1709 case PCI_PRODUCT_LINKSYS_EG1032:
1710 case PCI_PRODUCT_LINKSYS_EG1064:
1711 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1712 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1713 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1714 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1715 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1716 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1717 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1718 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1719 sc->sk_name = sc->sk_vpd_prodname;
1720 break;
1721 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1722 /* whoops yukon vpd prodname bears no resemblance to reality */
1723 switch (sc->sk_type) {
1724 case SK_GENESIS:
1725 sc->sk_name = sc->sk_vpd_prodname;
1726 break;
1727 case SK_YUKON:
1728 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1729 break;
1730 case SK_YUKON_LITE:
1731 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1732 break;
1733 case SK_YUKON_LP:
1734 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1735 break;
1736 default:
1737 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1738 }
1739
1740 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1741
1742 if ( sc->sk_type == SK_YUKON ) {
1743 uint32_t flashaddr;
1744 uint8_t testbyte;
1745
1746 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1747
1748 /* test Flash-Address Register */
1749 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1750 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1751
1752 if (testbyte != 0) {
1753 /* this is yukon lite Rev. A0 */
1754 sc->sk_type = SK_YUKON_LITE;
1755 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1756 /* restore Flash-Address Register */
1757 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1758 }
1759 }
1760 break;
1761 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1762 sc->sk_name = sc->sk_vpd_prodname;
1763 break;
1764 default:
1765 sc->sk_name = "Unknown Marvell";
1766 }
1767
1768
1769 if ( sc->sk_type == SK_YUKON_LITE ) {
1770 switch (sc->sk_rev) {
1771 case SK_YUKON_LITE_REV_A0:
1772 revstr = "A0";
1773 break;
1774 case SK_YUKON_LITE_REV_A1:
1775 revstr = "A1";
1776 break;
1777 case SK_YUKON_LITE_REV_A3:
1778 revstr = "A3";
1779 break;
1780 default:
1781 revstr = "";
1782 }
1783 } else {
1784 revstr = "";
1785 }
1786
1787 /* Announce the product name. */
1788 aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
1789 sc->sk_name, revstr, sc->sk_rev);
1790
1791 skca.skc_port = SK_PORT_A;
1792 (void)config_found(&sc->sk_dev, &skca, skcprint);
1793
1794 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1795 skca.skc_port = SK_PORT_B;
1796 (void)config_found(&sc->sk_dev, &skca, skcprint);
1797 }
1798
1799 /* Turn on the 'driver is loaded' LED. */
1800 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1801
1802 /* skc sysctl setup */
1803
1804 sc->sk_int_mod = SK_IM_DEFAULT;
1805 sc->sk_int_mod_pending = 0;
1806
1807 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1808 0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
1809 SYSCTL_DESCR("skc per-controller controls"),
1810 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1811 CTL_EOL)) != 0) {
1812 aprint_normal("%s: couldn't create sysctl node\n",
1813 sc->sk_dev.dv_xname);
1814 goto fail_1;
1815 }
1816
1817 sk_nodenum = node->sysctl_num;
1818
1819 /* interrupt moderation time in usecs */
1820 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1821 CTLFLAG_READWRITE,
1822 CTLTYPE_INT, "int_mod",
1823 SYSCTL_DESCR("sk interrupt moderation timer"),
1824 sk_sysctl_handler, 0, sc,
1825 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1826 CTL_EOL)) != 0) {
1827 aprint_normal("%s: couldn't create int_mod sysctl node\n",
1828 sc->sk_dev.dv_xname);
1829 goto fail_1;
1830 }
1831
1832 return;
1833
1834 fail_1:
1835 pci_intr_disestablish(pc, sc->sk_intrhand);
1836 fail:
1837 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1838 }
1839
1840 int
1841 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1842 {
1843 struct sk_softc *sc = sc_if->sk_softc;
1844 struct sk_tx_desc *f = NULL;
1845 u_int32_t frag, cur, cnt = 0, sk_ctl;
1846 int i;
1847 struct sk_txmap_entry *entry;
1848 bus_dmamap_t txmap;
1849
1850 DPRINTFN(3, ("sk_encap\n"));
1851
1852 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1853 if (entry == NULL) {
1854 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1855 return ENOBUFS;
1856 }
1857 txmap = entry->dmamap;
1858
1859 cur = frag = *txidx;
1860
1861 #ifdef SK_DEBUG
1862 if (skdebug >= 3)
1863 sk_dump_mbuf(m_head);
1864 #endif
1865
1866 /*
1867 * Start packing the mbufs in this chain into
1868 * the fragment pointers. Stop when we run out
1869 * of fragments or hit the end of the mbuf chain.
1870 */
1871 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1872 BUS_DMA_NOWAIT)) {
1873 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1874 return ENOBUFS;
1875 }
1876
1877 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1878
1879 /* Sync the DMA map. */
1880 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1881 BUS_DMASYNC_PREWRITE);
1882
1883 for (i = 0; i < txmap->dm_nsegs; i++) {
1884 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1885 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1886 return ENOBUFS;
1887 }
1888 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1889 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1890 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1891 if (cnt == 0)
1892 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1893 else
1894 sk_ctl |= SK_TXCTL_OWN;
1895 f->sk_ctl = htole32(sk_ctl);
1896 cur = frag;
1897 SK_INC(frag, SK_TX_RING_CNT);
1898 cnt++;
1899 }
1900
1901 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1902 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1903
1904 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1905 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1906 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1907
1908 /* Sync descriptors before handing to chip */
1909 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1910 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1911
1912 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1913 htole32(SK_TXCTL_OWN);
1914
1915 /* Sync first descriptor to hand it off */
1916 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1917
1918 sc_if->sk_cdata.sk_tx_cnt += cnt;
1919
1920 #ifdef SK_DEBUG
1921 if (skdebug >= 3) {
1922 struct sk_tx_desc *desc;
1923 u_int32_t idx;
1924 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1925 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1926 sk_dump_txdesc(desc, idx);
1927 }
1928 }
1929 #endif
1930
1931 *txidx = frag;
1932
1933 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1934
1935 return 0;
1936 }
1937
1938 void
1939 sk_start(struct ifnet *ifp)
1940 {
1941 struct sk_if_softc *sc_if = ifp->if_softc;
1942 struct sk_softc *sc = sc_if->sk_softc;
1943 struct mbuf *m_head = NULL;
1944 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1945 int pkts = 0;
1946
1947 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1948 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1949
1950 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1951 IFQ_POLL(&ifp->if_snd, m_head);
1952 if (m_head == NULL)
1953 break;
1954
1955 /*
1956 * Pack the data into the transmit ring. If we
1957 * don't have room, set the OACTIVE flag and wait
1958 * for the NIC to drain the ring.
1959 */
1960 if (sk_encap(sc_if, m_head, &idx)) {
1961 ifp->if_flags |= IFF_OACTIVE;
1962 break;
1963 }
1964
1965 /* now we are committed to transmit the packet */
1966 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1967 pkts++;
1968
1969 /*
1970 * If there's a BPF listener, bounce a copy of this frame
1971 * to him.
1972 */
1973 #if NBPFILTER > 0
1974 if (ifp->if_bpf)
1975 bpf_mtap(ifp->if_bpf, m_head);
1976 #endif
1977 }
1978 if (pkts == 0)
1979 return;
1980
1981 /* Transmit */
1982 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1983 sc_if->sk_cdata.sk_tx_prod = idx;
1984 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1985
1986 /* Set a timeout in case the chip goes out to lunch. */
1987 ifp->if_timer = 5;
1988 }
1989 }
1990
1991
1992 void
1993 sk_watchdog(struct ifnet *ifp)
1994 {
1995 struct sk_if_softc *sc_if = ifp->if_softc;
1996
1997 /*
1998 * Reclaim first as there is a possibility of losing Tx completion
1999 * interrupts.
2000 */
2001 sk_txeof(sc_if);
2002 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2003 aprint_error("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
2004
2005 ifp->if_oerrors++;
2006
2007 sk_init(ifp);
2008 }
2009 }
2010
2011 void
2012 sk_shutdown(void *v)
2013 {
2014 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
2015 struct sk_softc *sc = sc_if->sk_softc;
2016 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2017
2018 DPRINTFN(2, ("sk_shutdown\n"));
2019 sk_stop(ifp,1);
2020
2021 /* Turn off the 'driver is loaded' LED. */
2022 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2023
2024 /*
2025 * Reset the GEnesis controller. Doing this should also
2026 * assert the resets on the attached XMAC(s).
2027 */
2028 sk_reset(sc);
2029 }
2030
2031 void
2032 sk_rxeof(struct sk_if_softc *sc_if)
2033 {
2034 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2035 struct mbuf *m;
2036 struct sk_chain *cur_rx;
2037 struct sk_rx_desc *cur_desc;
2038 int i, cur, total_len = 0;
2039 u_int32_t rxstat, sk_ctl;
2040 bus_dmamap_t dmamap;
2041
2042 i = sc_if->sk_cdata.sk_rx_prod;
2043
2044 DPRINTFN(3, ("sk_rxeof %d\n", i));
2045
2046 for (;;) {
2047 cur = i;
2048
2049 /* Sync the descriptor */
2050 SK_CDRXSYNC(sc_if, cur,
2051 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2052
2053 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2054 if (sk_ctl & SK_RXCTL_OWN) {
2055 /* Invalidate the descriptor -- it's not ready yet */
2056 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2057 sc_if->sk_cdata.sk_rx_prod = i;
2058 break;
2059 }
2060
2061 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2062 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2063 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2064
2065 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2066 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2067
2068 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2069 m = cur_rx->sk_mbuf;
2070 cur_rx->sk_mbuf = NULL;
2071 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2072
2073 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2074
2075 SK_INC(i, SK_RX_RING_CNT);
2076
2077 if (rxstat & XM_RXSTAT_ERRFRAME) {
2078 ifp->if_ierrors++;
2079 sk_newbuf(sc_if, cur, m, dmamap);
2080 continue;
2081 }
2082
2083 /*
2084 * Try to allocate a new jumbo buffer. If that
2085 * fails, copy the packet to mbufs and put the
2086 * jumbo buffer back in the ring so it can be
2087 * re-used. If allocating mbufs fails, then we
2088 * have to drop the packet.
2089 */
2090 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2091 struct mbuf *m0;
2092 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2093 total_len + ETHER_ALIGN, 0, ifp, NULL);
2094 sk_newbuf(sc_if, cur, m, dmamap);
2095 if (m0 == NULL) {
2096 aprint_error("%s: no receive buffers "
2097 "available -- packet dropped!\n",
2098 sc_if->sk_dev.dv_xname);
2099 ifp->if_ierrors++;
2100 continue;
2101 }
2102 m_adj(m0, ETHER_ALIGN);
2103 m = m0;
2104 } else {
2105 m->m_pkthdr.rcvif = ifp;
2106 m->m_pkthdr.len = m->m_len = total_len;
2107 }
2108
2109 ifp->if_ipackets++;
2110
2111 #if NBPFILTER > 0
2112 if (ifp->if_bpf)
2113 bpf_mtap(ifp->if_bpf, m);
2114 #endif
2115 /* pass it on. */
2116 (*ifp->if_input)(ifp, m);
2117 }
2118 }
2119
2120 void
2121 sk_txeof(struct sk_if_softc *sc_if)
2122 {
2123 struct sk_softc *sc = sc_if->sk_softc;
2124 struct sk_tx_desc *cur_tx;
2125 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2126 u_int32_t idx, sk_ctl;
2127 struct sk_txmap_entry *entry;
2128
2129 DPRINTFN(3, ("sk_txeof\n"));
2130
2131 /*
2132 * Go through our tx ring and free mbufs for those
2133 * frames that have been sent.
2134 */
2135 idx = sc_if->sk_cdata.sk_tx_cons;
2136 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2137 SK_CDTXSYNC(sc_if, idx, 1,
2138 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2139
2140 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2141 sk_ctl = le32toh(cur_tx->sk_ctl);
2142 #ifdef SK_DEBUG
2143 if (skdebug >= 3)
2144 sk_dump_txdesc(cur_tx, idx);
2145 #endif
2146 if (sk_ctl & SK_TXCTL_OWN) {
2147 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2148 break;
2149 }
2150 if (sk_ctl & SK_TXCTL_LASTFRAG)
2151 ifp->if_opackets++;
2152 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2153 entry = sc_if->sk_cdata.sk_tx_map[idx];
2154
2155 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2156 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2157
2158 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2159 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2160
2161 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2162 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2163 link);
2164 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2165 }
2166 sc_if->sk_cdata.sk_tx_cnt--;
2167 SK_INC(idx, SK_TX_RING_CNT);
2168 }
2169 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2170 ifp->if_timer = 0;
2171 else /* nudge chip to keep tx ring moving */
2172 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2173
2174 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2175 ifp->if_flags &= ~IFF_OACTIVE;
2176
2177 sc_if->sk_cdata.sk_tx_cons = idx;
2178 }
2179
2180 void
2181 sk_tick(void *xsc_if)
2182 {
2183 struct sk_if_softc *sc_if = xsc_if;
2184 struct mii_data *mii = &sc_if->sk_mii;
2185 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2186 int i;
2187
2188 DPRINTFN(3, ("sk_tick\n"));
2189
2190 if (!(ifp->if_flags & IFF_UP))
2191 return;
2192
2193 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2194 sk_intr_bcom(sc_if);
2195 return;
2196 }
2197
2198 /*
2199 * According to SysKonnect, the correct way to verify that
2200 * the link has come back up is to poll bit 0 of the GPIO
2201 * register three times. This pin has the signal from the
2202 * link sync pin connected to it; if we read the same link
2203 * state 3 times in a row, we know the link is up.
2204 */
2205 for (i = 0; i < 3; i++) {
2206 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2207 break;
2208 }
2209
2210 if (i != 3) {
2211 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2212 return;
2213 }
2214
2215 /* Turn the GP0 interrupt back on. */
2216 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2217 SK_XM_READ_2(sc_if, XM_ISR);
2218 mii_tick(mii);
2219 mii_pollstat(mii);
2220 callout_stop(&sc_if->sk_tick_ch);
2221 }
2222
2223 void
2224 sk_intr_bcom(struct sk_if_softc *sc_if)
2225 {
2226 struct mii_data *mii = &sc_if->sk_mii;
2227 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2228 int status;
2229
2230
2231 DPRINTFN(3, ("sk_intr_bcom\n"));
2232
2233 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2234
2235 /*
2236 * Read the PHY interrupt register to make sure
2237 * we clear any pending interrupts.
2238 */
2239 status = sk_xmac_miibus_readreg((struct device *)sc_if,
2240 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2241
2242 if (!(ifp->if_flags & IFF_RUNNING)) {
2243 sk_init_xmac(sc_if);
2244 return;
2245 }
2246
2247 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2248 int lstat;
2249 lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
2250 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2251
2252 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2253 mii_mediachg(mii);
2254 /* Turn off the link LED. */
2255 SK_IF_WRITE_1(sc_if, 0,
2256 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2257 sc_if->sk_link = 0;
2258 } else if (status & BRGPHY_ISR_LNK_CHG) {
2259 sk_xmac_miibus_writereg((struct device *)sc_if,
2260 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2261 mii_tick(mii);
2262 sc_if->sk_link = 1;
2263 /* Turn on the link LED. */
2264 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2265 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2266 SK_LINKLED_BLINK_OFF);
2267 mii_pollstat(mii);
2268 } else {
2269 mii_tick(mii);
2270 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2271 }
2272 }
2273
2274 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2275 }
2276
2277 void
2278 sk_intr_xmac(struct sk_if_softc *sc_if)
2279 {
2280 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2281
2282 DPRINTFN(3, ("sk_intr_xmac\n"));
2283
2284 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2285 if (status & XM_ISR_GP0_SET) {
2286 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2287 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2288 }
2289
2290 if (status & XM_ISR_AUTONEG_DONE) {
2291 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2292 }
2293 }
2294
2295 if (status & XM_IMR_TX_UNDERRUN)
2296 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2297
2298 if (status & XM_IMR_RX_OVERRUN)
2299 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2300 }
2301
2302 void
2303 sk_intr_yukon(struct sk_if_softc *sc_if)
2304 {
2305 int status;
2306
2307 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2308
2309 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2310 }
2311
2312 int
2313 sk_intr(void *xsc)
2314 {
2315 struct sk_softc *sc = xsc;
2316 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2317 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2318 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2319 u_int32_t status;
2320 int claimed = 0;
2321
2322 if (sc_if0 != NULL)
2323 ifp0 = &sc_if0->sk_ethercom.ec_if;
2324 if (sc_if1 != NULL)
2325 ifp1 = &sc_if1->sk_ethercom.ec_if;
2326
2327 for (;;) {
2328 status = CSR_READ_4(sc, SK_ISSR);
2329 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2330
2331 if (!(status & sc->sk_intrmask))
2332 break;
2333
2334 claimed = 1;
2335
2336 /* Handle receive interrupts first. */
2337 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2338 sk_rxeof(sc_if0);
2339 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2340 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2341 }
2342 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2343 sk_rxeof(sc_if1);
2344 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2345 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2346 }
2347
2348 /* Then transmit interrupts. */
2349 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2350 sk_txeof(sc_if0);
2351 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2352 SK_TXBMU_CLR_IRQ_EOF);
2353 }
2354 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2355 sk_txeof(sc_if1);
2356 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2357 SK_TXBMU_CLR_IRQ_EOF);
2358 }
2359
2360 /* Then MAC interrupts. */
2361 if (sc_if0 && (status & SK_ISR_MAC1) &&
2362 (ifp0->if_flags & IFF_RUNNING)) {
2363 if (sc->sk_type == SK_GENESIS)
2364 sk_intr_xmac(sc_if0);
2365 else
2366 sk_intr_yukon(sc_if0);
2367 }
2368
2369 if (sc_if1 && (status & SK_ISR_MAC2) &&
2370 (ifp1->if_flags & IFF_RUNNING)) {
2371 if (sc->sk_type == SK_GENESIS)
2372 sk_intr_xmac(sc_if1);
2373 else
2374 sk_intr_yukon(sc_if1);
2375
2376 }
2377
2378 if (status & SK_ISR_EXTERNAL_REG) {
2379 if (sc_if0 != NULL &&
2380 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2381 sk_intr_bcom(sc_if0);
2382
2383 if (sc_if1 != NULL &&
2384 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2385 sk_intr_bcom(sc_if1);
2386 }
2387 }
2388
2389 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2390
2391 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2392 sk_start(ifp0);
2393 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2394 sk_start(ifp1);
2395
2396 #if NRND > 0
2397 if (RND_ENABLED(&sc->rnd_source))
2398 rnd_add_uint32(&sc->rnd_source, status);
2399 #endif
2400
2401 if (sc->sk_int_mod_pending)
2402 sk_update_int_mod(sc);
2403
2404 return claimed;
2405 }
2406
2407 void
2408 sk_init_xmac(struct sk_if_softc *sc_if)
2409 {
2410 struct sk_softc *sc = sc_if->sk_softc;
2411 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2412 static const struct sk_bcom_hack bhack[] = {
2413 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2414 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2415 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2416 { 0, 0 } };
2417
2418 DPRINTFN(1, ("sk_init_xmac\n"));
2419
2420 /* Unreset the XMAC. */
2421 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2422 DELAY(1000);
2423
2424 /* Reset the XMAC's internal state. */
2425 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2426
2427 /* Save the XMAC II revision */
2428 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2429
2430 /*
2431 * Perform additional initialization for external PHYs,
2432 * namely for the 1000baseTX cards that use the XMAC's
2433 * GMII mode.
2434 */
2435 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2436 int i = 0;
2437 u_int32_t val;
2438
2439 /* Take PHY out of reset. */
2440 val = sk_win_read_4(sc, SK_GPIO);
2441 if (sc_if->sk_port == SK_PORT_A)
2442 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2443 else
2444 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2445 sk_win_write_4(sc, SK_GPIO, val);
2446
2447 /* Enable GMII mode on the XMAC. */
2448 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2449
2450 sk_xmac_miibus_writereg((struct device *)sc_if,
2451 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2452 DELAY(10000);
2453 sk_xmac_miibus_writereg((struct device *)sc_if,
2454 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2455
2456 /*
2457 * Early versions of the BCM5400 apparently have
2458 * a bug that requires them to have their reserved
2459 * registers initialized to some magic values. I don't
2460 * know what the numbers do, I'm just the messenger.
2461 */
2462 if (sk_xmac_miibus_readreg((struct device *)sc_if,
2463 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2464 while (bhack[i].reg) {
2465 sk_xmac_miibus_writereg((struct device *)sc_if,
2466 SK_PHYADDR_BCOM, bhack[i].reg,
2467 bhack[i].val);
2468 i++;
2469 }
2470 }
2471 }
2472
2473 /* Set station address */
2474 SK_XM_WRITE_2(sc_if, XM_PAR0,
2475 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2476 SK_XM_WRITE_2(sc_if, XM_PAR1,
2477 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2478 SK_XM_WRITE_2(sc_if, XM_PAR2,
2479 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2480 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2481
2482 if (ifp->if_flags & IFF_PROMISC)
2483 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2484 else
2485 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2486
2487 if (ifp->if_flags & IFF_BROADCAST)
2488 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2489 else
2490 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2491
2492 /* We don't need the FCS appended to the packet. */
2493 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2494
2495 /* We want short frames padded to 60 bytes. */
2496 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2497
2498 /*
2499 * Enable the reception of all error frames. This is is
2500 * a necessary evil due to the design of the XMAC. The
2501 * XMAC's receive FIFO is only 8K in size, however jumbo
2502 * frames can be up to 9000 bytes in length. When bad
2503 * frame filtering is enabled, the XMAC's RX FIFO operates
2504 * in 'store and forward' mode. For this to work, the
2505 * entire frame has to fit into the FIFO, but that means
2506 * that jumbo frames larger than 8192 bytes will be
2507 * truncated. Disabling all bad frame filtering causes
2508 * the RX FIFO to operate in streaming mode, in which
2509 * case the XMAC will start transfering frames out of the
2510 * RX FIFO as soon as the FIFO threshold is reached.
2511 */
2512 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2513 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2514 XM_MODE_RX_INRANGELEN);
2515
2516 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2517 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2518 else
2519 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2520
2521 /*
2522 * Bump up the transmit threshold. This helps hold off transmit
2523 * underruns when we're blasting traffic from both ports at once.
2524 */
2525 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2526
2527 /* Set multicast filter */
2528 sk_setmulti(sc_if);
2529
2530 /* Clear and enable interrupts */
2531 SK_XM_READ_2(sc_if, XM_ISR);
2532 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2533 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2534 else
2535 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2536
2537 /* Configure MAC arbiter */
2538 switch (sc_if->sk_xmac_rev) {
2539 case XM_XMAC_REV_B2:
2540 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2541 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2542 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2543 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2544 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2545 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2546 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2547 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2548 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2549 break;
2550 case XM_XMAC_REV_C1:
2551 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2552 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2553 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2554 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2555 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2556 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2557 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2558 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2559 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2560 break;
2561 default:
2562 break;
2563 }
2564 sk_win_write_2(sc, SK_MACARB_CTL,
2565 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2566
2567 sc_if->sk_link = 1;
2568 }
2569
2570 void sk_init_yukon(struct sk_if_softc *sc_if)
2571 {
2572 u_int32_t /*mac, */phy;
2573 u_int16_t reg;
2574 struct sk_softc *sc;
2575 int i;
2576
2577 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2578 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2579
2580 sc = sc_if->sk_softc;
2581 if (sc->sk_type == SK_YUKON_LITE &&
2582 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2583 /* Take PHY out of reset. */
2584 sk_win_write_4(sc, SK_GPIO,
2585 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2586 }
2587
2588
2589 /* GMAC and GPHY Reset */
2590 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2591
2592 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2593
2594 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2595 DELAY(1000);
2596 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2597 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2598 DELAY(1000);
2599
2600
2601 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2602
2603 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2604 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2605
2606 switch (sc_if->sk_softc->sk_pmd) {
2607 case IFM_1000_SX:
2608 case IFM_1000_LX:
2609 phy |= SK_GPHY_FIBER;
2610 break;
2611
2612 case IFM_1000_CX:
2613 case IFM_1000_T:
2614 phy |= SK_GPHY_COPPER;
2615 break;
2616 }
2617
2618 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2619
2620 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2621 DELAY(1000);
2622 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2623 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2624 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2625
2626 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2627 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2628
2629 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2630
2631 /* unused read of the interrupt source register */
2632 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2633 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2634
2635 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2636 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2637 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2638
2639 /* MIB Counter Clear Mode set */
2640 reg |= YU_PAR_MIB_CLR;
2641 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2642 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2643 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2644
2645 /* MIB Counter Clear Mode clear */
2646 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2647 reg &= ~YU_PAR_MIB_CLR;
2648 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2649
2650 /* receive control reg */
2651 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2652 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2653 YU_RCR_CRCR);
2654
2655 /* transmit parameter register */
2656 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2657 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2658 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2659
2660 /* serial mode register */
2661 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2662 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2663 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2664 YU_SMR_IPG_DATA(0x1e));
2665
2666 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2667 /* Setup Yukon's address */
2668 for (i = 0; i < 3; i++) {
2669 /* Write Source Address 1 (unicast filter) */
2670 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2671 sc_if->sk_enaddr[i * 2] |
2672 sc_if->sk_enaddr[i * 2 + 1] << 8);
2673 }
2674
2675 for (i = 0; i < 3; i++) {
2676 reg = sk_win_read_2(sc_if->sk_softc,
2677 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2678 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2679 }
2680
2681 /* Set multicast filter */
2682 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2683 sk_setmulti(sc_if);
2684
2685 /* enable interrupt mask for counter overflows */
2686 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2687 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2688 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2689 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2690
2691 /* Configure RX MAC FIFO */
2692 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2693 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2694
2695 /* Configure TX MAC FIFO */
2696 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2697 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2698
2699 DPRINTFN(6, ("sk_init_yukon: end\n"));
2700 }
2701
2702 /*
2703 * Note that to properly initialize any part of the GEnesis chip,
2704 * you first have to take it out of reset mode.
2705 */
2706 int
2707 sk_init(struct ifnet *ifp)
2708 {
2709 struct sk_if_softc *sc_if = ifp->if_softc;
2710 struct sk_softc *sc = sc_if->sk_softc;
2711 struct mii_data *mii = &sc_if->sk_mii;
2712 int s;
2713 u_int32_t imr, imtimer_ticks;
2714
2715 DPRINTFN(1, ("sk_init\n"));
2716
2717 s = splnet();
2718
2719 if (ifp->if_flags & IFF_RUNNING) {
2720 splx(s);
2721 return 0;
2722 }
2723
2724 /* Cancel pending I/O and free all RX/TX buffers. */
2725 sk_stop(ifp,0);
2726
2727 if (sc->sk_type == SK_GENESIS) {
2728 /* Configure LINK_SYNC LED */
2729 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2730 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2731 SK_LINKLED_LINKSYNC_ON);
2732
2733 /* Configure RX LED */
2734 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2735 SK_RXLEDCTL_COUNTER_START);
2736
2737 /* Configure TX LED */
2738 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2739 SK_TXLEDCTL_COUNTER_START);
2740 }
2741
2742 /* Configure I2C registers */
2743
2744 /* Configure XMAC(s) */
2745 switch (sc->sk_type) {
2746 case SK_GENESIS:
2747 sk_init_xmac(sc_if);
2748 break;
2749 case SK_YUKON:
2750 case SK_YUKON_LITE:
2751 case SK_YUKON_LP:
2752 sk_init_yukon(sc_if);
2753 break;
2754 }
2755 mii_mediachg(mii);
2756
2757 if (sc->sk_type == SK_GENESIS) {
2758 /* Configure MAC FIFOs */
2759 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2760 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2761 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2762
2763 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2764 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2765 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2766 }
2767
2768 /* Configure transmit arbiter(s) */
2769 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2770 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2771
2772 /* Configure RAMbuffers */
2773 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2774 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2775 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2776 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2777 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2778 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2779
2780 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2781 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2782 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2783 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2784 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2785 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2786 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2787
2788 /* Configure BMUs */
2789 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2790 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2791 SK_RX_RING_ADDR(sc_if, 0));
2792 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2793
2794 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2795 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2796 SK_TX_RING_ADDR(sc_if, 0));
2797 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2798
2799 /* Init descriptors */
2800 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2801 aprint_error("%s: initialization failed: no "
2802 "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2803 sk_stop(ifp,0);
2804 splx(s);
2805 return ENOBUFS;
2806 }
2807
2808 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2809 aprint_error("%s: initialization failed: no "
2810 "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2811 sk_stop(ifp,0);
2812 splx(s);
2813 return ENOBUFS;
2814 }
2815
2816 /* Set interrupt moderation if changed via sysctl. */
2817 switch (sc->sk_type) {
2818 case SK_GENESIS:
2819 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2820 break;
2821 case SK_YUKON_EC:
2822 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2823 break;
2824 default:
2825 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2826 }
2827 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2828 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2829 sk_win_write_4(sc, SK_IMTIMERINIT,
2830 SK_IM_USECS(sc->sk_int_mod));
2831 aprint_verbose("%s: interrupt moderation is %d us\n",
2832 sc->sk_dev.dv_xname, sc->sk_int_mod);
2833 }
2834
2835 /* Configure interrupt handling */
2836 CSR_READ_4(sc, SK_ISSR);
2837 if (sc_if->sk_port == SK_PORT_A)
2838 sc->sk_intrmask |= SK_INTRS1;
2839 else
2840 sc->sk_intrmask |= SK_INTRS2;
2841
2842 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2843
2844 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2845
2846 /* Start BMUs. */
2847 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2848
2849 if (sc->sk_type == SK_GENESIS) {
2850 /* Enable XMACs TX and RX state machines */
2851 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2852 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2853 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2854 }
2855
2856 if (SK_YUKON_FAMILY(sc->sk_type)) {
2857 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2858 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2859 #if 0
2860 /* XXX disable 100Mbps and full duplex mode? */
2861 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2862 #endif
2863 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2864 }
2865
2866
2867 ifp->if_flags |= IFF_RUNNING;
2868 ifp->if_flags &= ~IFF_OACTIVE;
2869
2870 splx(s);
2871 return 0;
2872 }
2873
2874 void
2875 sk_stop(struct ifnet *ifp, int disable)
2876 {
2877 struct sk_if_softc *sc_if = ifp->if_softc;
2878 struct sk_softc *sc = sc_if->sk_softc;
2879 int i;
2880
2881 DPRINTFN(1, ("sk_stop\n"));
2882
2883 callout_stop(&sc_if->sk_tick_ch);
2884
2885 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2886 u_int32_t val;
2887
2888 /* Put PHY back into reset. */
2889 val = sk_win_read_4(sc, SK_GPIO);
2890 if (sc_if->sk_port == SK_PORT_A) {
2891 val |= SK_GPIO_DIR0;
2892 val &= ~SK_GPIO_DAT0;
2893 } else {
2894 val |= SK_GPIO_DIR2;
2895 val &= ~SK_GPIO_DAT2;
2896 }
2897 sk_win_write_4(sc, SK_GPIO, val);
2898 }
2899
2900 /* Turn off various components of this interface. */
2901 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2902 switch (sc->sk_type) {
2903 case SK_GENESIS:
2904 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2905 SK_TXMACCTL_XMAC_RESET);
2906 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2907 break;
2908 case SK_YUKON:
2909 case SK_YUKON_LITE:
2910 case SK_YUKON_LP:
2911 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2912 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2913 break;
2914 }
2915 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2916 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2917 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2918 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2919 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2920 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2921 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2922 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2923 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2924
2925 /* Disable interrupts */
2926 if (sc_if->sk_port == SK_PORT_A)
2927 sc->sk_intrmask &= ~SK_INTRS1;
2928 else
2929 sc->sk_intrmask &= ~SK_INTRS2;
2930 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2931
2932 SK_XM_READ_2(sc_if, XM_ISR);
2933 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2934
2935 /* Free RX and TX mbufs still in the queues. */
2936 for (i = 0; i < SK_RX_RING_CNT; i++) {
2937 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2938 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2939 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2940 }
2941 }
2942
2943 for (i = 0; i < SK_TX_RING_CNT; i++) {
2944 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2945 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2946 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2947 }
2948 }
2949
2950 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2951 }
2952
2953 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2954
2955 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2956
2957 #ifdef SK_DEBUG
2958 void
2959 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2960 {
2961 #define DESC_PRINT(X) \
2962 if (X) \
2963 printf("txdesc[%d]." #X "=%#x\n", \
2964 idx, X);
2965
2966 DESC_PRINT(le32toh(desc->sk_ctl));
2967 DESC_PRINT(le32toh(desc->sk_next));
2968 DESC_PRINT(le32toh(desc->sk_data_lo));
2969 DESC_PRINT(le32toh(desc->sk_data_hi));
2970 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2971 DESC_PRINT(le16toh(desc->sk_rsvd0));
2972 DESC_PRINT(le16toh(desc->sk_csum_startval));
2973 DESC_PRINT(le16toh(desc->sk_csum_startpos));
2974 DESC_PRINT(le16toh(desc->sk_csum_writepos));
2975 DESC_PRINT(le16toh(desc->sk_rsvd1));
2976 #undef PRINT
2977 }
2978
2979 void
2980 sk_dump_bytes(const char *data, int len)
2981 {
2982 int c, i, j;
2983
2984 for (i = 0; i < len; i += 16) {
2985 printf("%08x ", i);
2986 c = len - i;
2987 if (c > 16) c = 16;
2988
2989 for (j = 0; j < c; j++) {
2990 printf("%02x ", data[i + j] & 0xff);
2991 if ((j & 0xf) == 7 && j > 0)
2992 printf(" ");
2993 }
2994
2995 for (; j < 16; j++)
2996 printf(" ");
2997 printf(" ");
2998
2999 for (j = 0; j < c; j++) {
3000 int ch = data[i + j] & 0xff;
3001 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
3002 }
3003
3004 printf("\n");
3005
3006 if (c < 16)
3007 break;
3008 }
3009 }
3010
3011 void
3012 sk_dump_mbuf(struct mbuf *m)
3013 {
3014 int count = m->m_pkthdr.len;
3015
3016 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3017
3018 while (count > 0 && m) {
3019 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3020 m, m->m_data, m->m_len);
3021 sk_dump_bytes(mtod(m, char *), m->m_len);
3022
3023 count -= m->m_len;
3024 m = m->m_next;
3025 }
3026 }
3027 #endif
3028
3029 static int
3030 sk_sysctl_handler(SYSCTLFN_ARGS)
3031 {
3032 int error, t;
3033 struct sysctlnode node;
3034 struct sk_softc *sc;
3035
3036 node = *rnode;
3037 sc = node.sysctl_data;
3038 t = sc->sk_int_mod;
3039 node.sysctl_data = &t;
3040 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3041 if (error || newp == NULL)
3042 return error;
3043
3044 if (t < SK_IM_MIN || t > SK_IM_MAX)
3045 return EINVAL;
3046
3047 /* update the softc with sysctl-changed value, and mark
3048 for hardware update */
3049 sc->sk_int_mod = t;
3050 sc->sk_int_mod_pending = 1;
3051 return 0;
3052 }
3053
3054 /*
3055 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3056 * set up in skc_attach()
3057 */
3058 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3059 {
3060 int rc;
3061 const struct sysctlnode *node;
3062
3063 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3064 0, CTLTYPE_NODE, "hw", NULL,
3065 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3066 goto err;
3067 }
3068
3069 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3070 0, CTLTYPE_NODE, "sk",
3071 SYSCTL_DESCR("sk interface controls"),
3072 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3073 goto err;
3074 }
3075
3076 sk_root_num = node->sysctl_num;
3077 return;
3078
3079 err:
3080 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3081 }
3082