if_sk.c revision 1.44.6.1 1 /* $NetBSD: if_sk.c,v 1.44.6.1 2007/12/13 21:55:50 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the NetBSD
18 * Foundation, Inc. and its contributors.
19 * 4. Neither the name of The NetBSD Foundation nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
37
38 /*
39 * Copyright (c) 1997, 1998, 1999, 2000
40 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Bill Paul.
53 * 4. Neither the name of the author nor the names of any co-contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67 * THE POSSIBILITY OF SUCH DAMAGE.
68 *
69 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70 */
71
72 /*
73 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
74 *
75 * Permission to use, copy, modify, and distribute this software for any
76 * purpose with or without fee is hereby granted, provided that the above
77 * copyright notice and this permission notice appear in all copies.
78 *
79 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86 */
87
88 /*
89 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90 * the SK-984x series adapters, both single port and dual port.
91 * References:
92 * The XaQti XMAC II datasheet,
93 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 * The SysKonnect GEnesis manual, http://www.syskonnect.com
95 *
96 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98 * convenience to others until Vitesse corrects this problem:
99 *
100 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101 *
102 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
103 * Department of Electrical Engineering
104 * Columbia University, New York City
105 */
106
107 /*
108 * The SysKonnect gigabit ethernet adapters consist of two main
109 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111 * components and a PHY while the GEnesis controller provides a PCI
112 * interface with DMA support. Each card may have between 512K and
113 * 2MB of SRAM on board depending on the configuration.
114 *
115 * The SysKonnect GEnesis controller can have either one or two XMAC
116 * chips connected to it, allowing single or dual port NIC configurations.
117 * SysKonnect has the distinction of being the only vendor on the market
118 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120 * XMAC registers. This driver takes advantage of these features to allow
121 * both XMACs to operate as independent interfaces.
122 */
123
124 #include <sys/cdefs.h>
125 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.44.6.1 2007/12/13 21:55:50 bouyer Exp $");
126
127 #include "bpfilter.h"
128 #include "rnd.h"
129
130 #include <sys/param.h>
131 #include <sys/systm.h>
132 #include <sys/sockio.h>
133 #include <sys/mbuf.h>
134 #include <sys/malloc.h>
135 #include <sys/kernel.h>
136 #include <sys/socket.h>
137 #include <sys/device.h>
138 #include <sys/queue.h>
139 #include <sys/callout.h>
140 #include <sys/sysctl.h>
141 #include <sys/endian.h>
142
143 #include <net/if.h>
144 #include <net/if_dl.h>
145 #include <net/if_types.h>
146
147 #include <net/if_media.h>
148
149 #if NBPFILTER > 0
150 #include <net/bpf.h>
151 #endif
152 #if NRND > 0
153 #include <sys/rnd.h>
154 #endif
155
156 #include <dev/mii/mii.h>
157 #include <dev/mii/miivar.h>
158 #include <dev/mii/brgphyreg.h>
159
160 #include <dev/pci/pcireg.h>
161 #include <dev/pci/pcivar.h>
162 #include <dev/pci/pcidevs.h>
163
164 /* #define SK_USEIOSPACE */
165
166 #include <dev/pci/if_skreg.h>
167 #include <dev/pci/if_skvar.h>
168
169 int skc_probe(struct device *, struct cfdata *, void *);
170 void skc_attach(struct device *, struct device *self, void *aux);
171 int sk_probe(struct device *, struct cfdata *, void *);
172 void sk_attach(struct device *, struct device *self, void *aux);
173 int skcprint(void *, const char *);
174 int sk_intr(void *);
175 void sk_intr_bcom(struct sk_if_softc *);
176 void sk_intr_xmac(struct sk_if_softc *);
177 void sk_intr_yukon(struct sk_if_softc *);
178 void sk_rxeof(struct sk_if_softc *);
179 void sk_txeof(struct sk_if_softc *);
180 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
181 void sk_start(struct ifnet *);
182 int sk_ioctl(struct ifnet *, u_long, void *);
183 int sk_init(struct ifnet *);
184 void sk_init_xmac(struct sk_if_softc *);
185 void sk_init_yukon(struct sk_if_softc *);
186 void sk_stop(struct ifnet *, int);
187 void sk_watchdog(struct ifnet *);
188 void sk_shutdown(void *);
189 int sk_ifmedia_upd(struct ifnet *);
190 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
191 void sk_reset(struct sk_softc *);
192 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
193 int sk_alloc_jumbo_mem(struct sk_if_softc *);
194 void sk_free_jumbo_mem(struct sk_if_softc *);
195 void *sk_jalloc(struct sk_if_softc *);
196 void sk_jfree(struct mbuf *, void *, size_t, void *);
197 int sk_init_rx_ring(struct sk_if_softc *);
198 int sk_init_tx_ring(struct sk_if_softc *);
199 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
200 void sk_vpd_read_res(struct sk_softc *,
201 struct vpd_res *, int);
202 void sk_vpd_read(struct sk_softc *);
203
204 void sk_update_int_mod(struct sk_softc *);
205
206 int sk_xmac_miibus_readreg(struct device *, int, int);
207 void sk_xmac_miibus_writereg(struct device *, int, int, int);
208 void sk_xmac_miibus_statchg(struct device *);
209
210 int sk_marv_miibus_readreg(struct device *, int, int);
211 void sk_marv_miibus_writereg(struct device *, int, int, int);
212 void sk_marv_miibus_statchg(struct device *);
213
214 u_int32_t sk_xmac_hash(void *);
215 u_int32_t sk_yukon_hash(void *);
216 void sk_setfilt(struct sk_if_softc *, void *, int);
217 void sk_setmulti(struct sk_if_softc *);
218 void sk_tick(void *);
219
220 /* #define SK_DEBUG 2 */
221 #ifdef SK_DEBUG
222 #define DPRINTF(x) if (skdebug) printf x
223 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
224 int skdebug = SK_DEBUG;
225
226 void sk_dump_txdesc(struct sk_tx_desc *, int);
227 void sk_dump_mbuf(struct mbuf *);
228 void sk_dump_bytes(const char *, int);
229 #else
230 #define DPRINTF(x)
231 #define DPRINTFN(n,x)
232 #endif
233
234 static int sk_sysctl_handler(SYSCTLFN_PROTO);
235 static int sk_root_num;
236
237 /* supported device vendors */
238 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
239 static const struct sk_product {
240 pci_vendor_id_t sk_vendor;
241 pci_product_id_t sk_product;
242 } sk_products[] = {
243 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
244 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
245 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
246 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
247 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
248 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
249 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
250 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
251 { 0, 0, }
252 };
253
254 #define SK_LINKSYS_EG1032_SUBID 0x00151737
255
256 static inline u_int32_t
257 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
258 {
259 #ifdef SK_USEIOSPACE
260 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
261 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
262 #else
263 return CSR_READ_4(sc, reg);
264 #endif
265 }
266
267 static inline u_int16_t
268 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
269 {
270 #ifdef SK_USEIOSPACE
271 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
272 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
273 #else
274 return CSR_READ_2(sc, reg);
275 #endif
276 }
277
278 static inline u_int8_t
279 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
280 {
281 #ifdef SK_USEIOSPACE
282 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
283 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
284 #else
285 return CSR_READ_1(sc, reg);
286 #endif
287 }
288
289 static inline void
290 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
291 {
292 #ifdef SK_USEIOSPACE
293 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
294 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
295 #else
296 CSR_WRITE_4(sc, reg, x);
297 #endif
298 }
299
300 static inline void
301 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
302 {
303 #ifdef SK_USEIOSPACE
304 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
305 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
306 #else
307 CSR_WRITE_2(sc, reg, x);
308 #endif
309 }
310
311 static inline void
312 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
313 {
314 #ifdef SK_USEIOSPACE
315 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
316 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
317 #else
318 CSR_WRITE_1(sc, reg, x);
319 #endif
320 }
321
322 /*
323 * The VPD EEPROM contains Vital Product Data, as suggested in
324 * the PCI 2.1 specification. The VPD data is separared into areas
325 * denoted by resource IDs. The SysKonnect VPD contains an ID string
326 * resource (the name of the adapter), a read-only area resource
327 * containing various key/data fields and a read/write area which
328 * can be used to store asset management information or log messages.
329 * We read the ID string and read-only into buffers attached to
330 * the controller softc structure for later use. At the moment,
331 * we only use the ID string during sk_attach().
332 */
333 u_int8_t
334 sk_vpd_readbyte(struct sk_softc *sc, int addr)
335 {
336 int i;
337
338 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
339 for (i = 0; i < SK_TIMEOUT; i++) {
340 DELAY(1);
341 if (sk_win_read_2(sc,
342 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
343 break;
344 }
345
346 if (i == SK_TIMEOUT)
347 return 0;
348
349 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
350 }
351
352 void
353 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
354 {
355 int i;
356 u_int8_t *ptr;
357
358 ptr = (u_int8_t *)res;
359 for (i = 0; i < sizeof(struct vpd_res); i++)
360 ptr[i] = sk_vpd_readbyte(sc, i + addr);
361 }
362
363 void
364 sk_vpd_read(struct sk_softc *sc)
365 {
366 int pos = 0, i;
367 struct vpd_res res;
368
369 if (sc->sk_vpd_prodname != NULL)
370 free(sc->sk_vpd_prodname, M_DEVBUF);
371 if (sc->sk_vpd_readonly != NULL)
372 free(sc->sk_vpd_readonly, M_DEVBUF);
373 sc->sk_vpd_prodname = NULL;
374 sc->sk_vpd_readonly = NULL;
375
376 sk_vpd_read_res(sc, &res, pos);
377
378 if (res.vr_id != VPD_RES_ID) {
379 aprint_error("%s: bad VPD resource id: expected %x got %x\n",
380 sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
381 return;
382 }
383
384 pos += sizeof(res);
385 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
386 if (sc->sk_vpd_prodname == NULL)
387 panic("sk_vpd_read");
388 for (i = 0; i < res.vr_len; i++)
389 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
390 sc->sk_vpd_prodname[i] = '\0';
391 pos += i;
392
393 sk_vpd_read_res(sc, &res, pos);
394
395 if (res.vr_id != VPD_RES_READ) {
396 aprint_error("%s: bad VPD resource id: expected %x got %x\n",
397 sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
398 return;
399 }
400
401 pos += sizeof(res);
402 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
403 if (sc->sk_vpd_readonly == NULL)
404 panic("sk_vpd_read");
405 for (i = 0; i < res.vr_len ; i++)
406 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
407 }
408
409 int
410 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
411 {
412 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
413 int i;
414
415 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
416
417 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
418 return 0;
419
420 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
421 SK_XM_READ_2(sc_if, XM_PHY_DATA);
422 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
423 for (i = 0; i < SK_TIMEOUT; i++) {
424 DELAY(1);
425 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
426 XM_MMUCMD_PHYDATARDY)
427 break;
428 }
429
430 if (i == SK_TIMEOUT) {
431 aprint_error("%s: phy failed to come ready\n",
432 sc_if->sk_dev.dv_xname);
433 return 0;
434 }
435 }
436 DELAY(1);
437 return SK_XM_READ_2(sc_if, XM_PHY_DATA);
438 }
439
440 void
441 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
442 {
443 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
444 int i;
445
446 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
447
448 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
449 for (i = 0; i < SK_TIMEOUT; i++) {
450 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
451 break;
452 }
453
454 if (i == SK_TIMEOUT) {
455 aprint_error("%s: phy failed to come ready\n",
456 sc_if->sk_dev.dv_xname);
457 return;
458 }
459
460 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
461 for (i = 0; i < SK_TIMEOUT; i++) {
462 DELAY(1);
463 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
464 break;
465 }
466
467 if (i == SK_TIMEOUT)
468 aprint_error("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
469 }
470
471 void
472 sk_xmac_miibus_statchg(struct device *dev)
473 {
474 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
475 struct mii_data *mii = &sc_if->sk_mii;
476
477 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
478
479 /*
480 * If this is a GMII PHY, manually set the XMAC's
481 * duplex mode accordingly.
482 */
483 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
484 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
485 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
486 else
487 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
488 }
489 }
490
491 int
492 sk_marv_miibus_readreg(struct device *dev, int phy, int reg)
493 {
494 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
495 u_int16_t val;
496 int i;
497
498 if (phy != 0 ||
499 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
500 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
501 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
502 phy, reg));
503 return 0;
504 }
505
506 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
507 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
508
509 for (i = 0; i < SK_TIMEOUT; i++) {
510 DELAY(1);
511 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
512 if (val & YU_SMICR_READ_VALID)
513 break;
514 }
515
516 if (i == SK_TIMEOUT) {
517 aprint_error("%s: phy failed to come ready\n",
518 sc_if->sk_dev.dv_xname);
519 return 0;
520 }
521
522 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
523 SK_TIMEOUT));
524
525 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
526
527 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
528 phy, reg, val));
529
530 return val;
531 }
532
533 void
534 sk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
535 {
536 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
537 int i;
538
539 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
540 phy, reg, val));
541
542 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
543 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
544 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
545
546 for (i = 0; i < SK_TIMEOUT; i++) {
547 DELAY(1);
548 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
549 break;
550 }
551
552 if (i == SK_TIMEOUT)
553 printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
554 }
555
556 void
557 sk_marv_miibus_statchg(struct device *dev)
558 {
559 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
560 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
561 }
562
563 #define SK_HASH_BITS 6
564
565 u_int32_t
566 sk_xmac_hash(void *addr)
567 {
568 u_int32_t crc;
569
570 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
571 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
572 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
573 return crc;
574 }
575
576 u_int32_t
577 sk_yukon_hash(void *addr)
578 {
579 u_int32_t crc;
580
581 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
582 crc &= ((1 << SK_HASH_BITS) - 1);
583 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
584 return crc;
585 }
586
587 void
588 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
589 {
590 char *addr = addrv;
591 int base = XM_RXFILT_ENTRY(slot);
592
593 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
594 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
595 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
596 }
597
598 void
599 sk_setmulti(struct sk_if_softc *sc_if)
600 {
601 struct sk_softc *sc = sc_if->sk_softc;
602 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
603 u_int32_t hashes[2] = { 0, 0 };
604 int h = 0, i;
605 struct ethercom *ec = &sc_if->sk_ethercom;
606 struct ether_multi *enm;
607 struct ether_multistep step;
608 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
609
610 /* First, zot all the existing filters. */
611 switch (sc->sk_type) {
612 case SK_GENESIS:
613 for (i = 1; i < XM_RXFILT_MAX; i++)
614 sk_setfilt(sc_if, (void *)&dummy, i);
615
616 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
617 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
618 break;
619 case SK_YUKON:
620 case SK_YUKON_LITE:
621 case SK_YUKON_LP:
622 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
623 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
624 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
625 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
626 break;
627 }
628
629 /* Now program new ones. */
630 allmulti:
631 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
632 hashes[0] = 0xFFFFFFFF;
633 hashes[1] = 0xFFFFFFFF;
634 } else {
635 i = 1;
636 /* First find the tail of the list. */
637 ETHER_FIRST_MULTI(step, ec, enm);
638 while (enm != NULL) {
639 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
640 ETHER_ADDR_LEN)) {
641 ifp->if_flags |= IFF_ALLMULTI;
642 goto allmulti;
643 }
644 DPRINTFN(2,("multicast address %s\n",
645 ether_sprintf(enm->enm_addrlo)));
646 /*
647 * Program the first XM_RXFILT_MAX multicast groups
648 * into the perfect filter. For all others,
649 * use the hash table.
650 */
651 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
652 sk_setfilt(sc_if, enm->enm_addrlo, i);
653 i++;
654 }
655 else {
656 switch (sc->sk_type) {
657 case SK_GENESIS:
658 h = sk_xmac_hash(enm->enm_addrlo);
659 break;
660 case SK_YUKON:
661 case SK_YUKON_LITE:
662 case SK_YUKON_LP:
663 h = sk_yukon_hash(enm->enm_addrlo);
664 break;
665 }
666 if (h < 32)
667 hashes[0] |= (1 << h);
668 else
669 hashes[1] |= (1 << (h - 32));
670 }
671
672 ETHER_NEXT_MULTI(step, enm);
673 }
674 }
675
676 switch (sc->sk_type) {
677 case SK_GENESIS:
678 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
679 XM_MODE_RX_USE_PERFECT);
680 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
681 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
682 break;
683 case SK_YUKON:
684 case SK_YUKON_LITE:
685 case SK_YUKON_LP:
686 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
687 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
688 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
689 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
690 break;
691 }
692 }
693
694 int
695 sk_init_rx_ring(struct sk_if_softc *sc_if)
696 {
697 struct sk_chain_data *cd = &sc_if->sk_cdata;
698 struct sk_ring_data *rd = sc_if->sk_rdata;
699 int i;
700
701 bzero((char *)rd->sk_rx_ring,
702 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
703
704 for (i = 0; i < SK_RX_RING_CNT; i++) {
705 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
706 if (i == (SK_RX_RING_CNT - 1)) {
707 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
708 rd->sk_rx_ring[i].sk_next =
709 htole32(SK_RX_RING_ADDR(sc_if, 0));
710 } else {
711 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
712 rd->sk_rx_ring[i].sk_next =
713 htole32(SK_RX_RING_ADDR(sc_if,i+1));
714 }
715 }
716
717 for (i = 0; i < SK_RX_RING_CNT; i++) {
718 if (sk_newbuf(sc_if, i, NULL,
719 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
720 aprint_error("%s: failed alloc of %dth mbuf\n",
721 sc_if->sk_dev.dv_xname, i);
722 return ENOBUFS;
723 }
724 }
725 sc_if->sk_cdata.sk_rx_prod = 0;
726 sc_if->sk_cdata.sk_rx_cons = 0;
727
728 return 0;
729 }
730
731 int
732 sk_init_tx_ring(struct sk_if_softc *sc_if)
733 {
734 struct sk_chain_data *cd = &sc_if->sk_cdata;
735 struct sk_ring_data *rd = sc_if->sk_rdata;
736 int i;
737
738 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
739 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
740
741 for (i = 0; i < SK_TX_RING_CNT; i++) {
742 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
743 if (i == (SK_TX_RING_CNT - 1)) {
744 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
745 rd->sk_tx_ring[i].sk_next =
746 htole32(SK_TX_RING_ADDR(sc_if, 0));
747 } else {
748 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
749 rd->sk_tx_ring[i].sk_next =
750 htole32(SK_TX_RING_ADDR(sc_if,i+1));
751 }
752 }
753
754 sc_if->sk_cdata.sk_tx_prod = 0;
755 sc_if->sk_cdata.sk_tx_cons = 0;
756 sc_if->sk_cdata.sk_tx_cnt = 0;
757
758 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
759 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
760
761 return 0;
762 }
763
764 int
765 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
766 bus_dmamap_t dmamap)
767 {
768 struct mbuf *m_new = NULL;
769 struct sk_chain *c;
770 struct sk_rx_desc *r;
771
772 if (m == NULL) {
773 void *buf = NULL;
774
775 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
776 if (m_new == NULL) {
777 aprint_error("%s: no memory for rx list -- "
778 "packet dropped!\n", sc_if->sk_dev.dv_xname);
779 return ENOBUFS;
780 }
781
782 /* Allocate the jumbo buffer */
783 buf = sk_jalloc(sc_if);
784 if (buf == NULL) {
785 m_freem(m_new);
786 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
787 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
788 return ENOBUFS;
789 }
790
791 /* Attach the buffer to the mbuf */
792 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
793 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
794
795 } else {
796 /*
797 * We're re-using a previously allocated mbuf;
798 * be sure to re-init pointers and lengths to
799 * default values.
800 */
801 m_new = m;
802 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
803 m_new->m_data = m_new->m_ext.ext_buf;
804 }
805 m_adj(m_new, ETHER_ALIGN);
806
807 c = &sc_if->sk_cdata.sk_rx_chain[i];
808 r = c->sk_desc;
809 c->sk_mbuf = m_new;
810 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
811 (((vaddr_t)m_new->m_data
812 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
813 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
814
815 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
816
817 return 0;
818 }
819
820 /*
821 * Memory management for jumbo frames.
822 */
823
824 int
825 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
826 {
827 struct sk_softc *sc = sc_if->sk_softc;
828 char *ptr, *kva;
829 bus_dma_segment_t seg;
830 int i, rseg, state, error;
831 struct sk_jpool_entry *entry;
832
833 state = error = 0;
834
835 /* Grab a big chunk o' storage. */
836 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
837 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
838 aprint_error("%s: can't alloc rx buffers\n", sc->sk_dev.dv_xname);
839 return ENOBUFS;
840 }
841
842 state = 1;
843 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
844 BUS_DMA_NOWAIT)) {
845 aprint_error("%s: can't map dma buffers (%d bytes)\n",
846 sc->sk_dev.dv_xname, SK_JMEM);
847 error = ENOBUFS;
848 goto out;
849 }
850
851 state = 2;
852 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
853 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
854 aprint_error("%s: can't create dma map\n", sc->sk_dev.dv_xname);
855 error = ENOBUFS;
856 goto out;
857 }
858
859 state = 3;
860 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
861 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
862 aprint_error("%s: can't load dma map\n", sc->sk_dev.dv_xname);
863 error = ENOBUFS;
864 goto out;
865 }
866
867 state = 4;
868 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
869 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
870
871 LIST_INIT(&sc_if->sk_jfree_listhead);
872 LIST_INIT(&sc_if->sk_jinuse_listhead);
873
874 /*
875 * Now divide it up into 9K pieces and save the addresses
876 * in an array.
877 */
878 ptr = sc_if->sk_cdata.sk_jumbo_buf;
879 for (i = 0; i < SK_JSLOTS; i++) {
880 sc_if->sk_cdata.sk_jslots[i] = ptr;
881 ptr += SK_JLEN;
882 entry = malloc(sizeof(struct sk_jpool_entry),
883 M_DEVBUF, M_NOWAIT);
884 if (entry == NULL) {
885 aprint_error("%s: no memory for jumbo buffer queue!\n",
886 sc->sk_dev.dv_xname);
887 error = ENOBUFS;
888 goto out;
889 }
890 entry->slot = i;
891 if (i)
892 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
893 entry, jpool_entries);
894 else
895 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
896 entry, jpool_entries);
897 }
898 out:
899 if (error != 0) {
900 switch (state) {
901 case 4:
902 bus_dmamap_unload(sc->sc_dmatag,
903 sc_if->sk_cdata.sk_rx_jumbo_map);
904 case 3:
905 bus_dmamap_destroy(sc->sc_dmatag,
906 sc_if->sk_cdata.sk_rx_jumbo_map);
907 case 2:
908 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
909 case 1:
910 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
911 break;
912 default:
913 break;
914 }
915 }
916
917 return error;
918 }
919
920 /*
921 * Allocate a jumbo buffer.
922 */
923 void *
924 sk_jalloc(struct sk_if_softc *sc_if)
925 {
926 struct sk_jpool_entry *entry;
927
928 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
929
930 if (entry == NULL)
931 return NULL;
932
933 LIST_REMOVE(entry, jpool_entries);
934 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
935 return sc_if->sk_cdata.sk_jslots[entry->slot];
936 }
937
938 /*
939 * Release a jumbo buffer.
940 */
941 void
942 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
943 {
944 struct sk_jpool_entry *entry;
945 struct sk_if_softc *sc;
946 int i, s;
947
948 /* Extract the softc struct pointer. */
949 sc = (struct sk_if_softc *)arg;
950
951 if (sc == NULL)
952 panic("sk_jfree: can't find softc pointer!");
953
954 /* calculate the slot this buffer belongs to */
955
956 i = ((vaddr_t)buf
957 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
958
959 if ((i < 0) || (i >= SK_JSLOTS))
960 panic("sk_jfree: asked to free buffer that we don't manage!");
961
962 s = splvm();
963 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
964 if (entry == NULL)
965 panic("sk_jfree: buffer not in use!");
966 entry->slot = i;
967 LIST_REMOVE(entry, jpool_entries);
968 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
969
970 if (__predict_true(m != NULL))
971 pool_cache_put(mb_cache, m);
972 splx(s);
973 }
974
975 /*
976 * Set media options.
977 */
978 int
979 sk_ifmedia_upd(struct ifnet *ifp)
980 {
981 struct sk_if_softc *sc_if = ifp->if_softc;
982
983 (void) sk_init(ifp);
984 mii_mediachg(&sc_if->sk_mii);
985 return 0;
986 }
987
988 /*
989 * Report current media status.
990 */
991 void
992 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
993 {
994 struct sk_if_softc *sc_if = ifp->if_softc;
995
996 mii_pollstat(&sc_if->sk_mii);
997 ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
998 ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
999 }
1000
1001 int
1002 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
1003 {
1004 struct sk_if_softc *sc_if = ifp->if_softc;
1005 struct sk_softc *sc = sc_if->sk_softc;
1006 struct ifreq *ifr = (struct ifreq *) data;
1007 struct mii_data *mii;
1008 int s, error = 0;
1009
1010 /* DPRINTFN(2, ("sk_ioctl\n")); */
1011
1012 s = splnet();
1013
1014 switch (command) {
1015
1016 case SIOCSIFFLAGS:
1017 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1018 if (ifp->if_flags & IFF_UP) {
1019 if (ifp->if_flags & IFF_RUNNING &&
1020 ifp->if_flags & IFF_PROMISC &&
1021 !(sc_if->sk_if_flags & IFF_PROMISC)) {
1022 switch (sc->sk_type) {
1023 case SK_GENESIS:
1024 SK_XM_SETBIT_4(sc_if, XM_MODE,
1025 XM_MODE_RX_PROMISC);
1026 break;
1027 case SK_YUKON:
1028 case SK_YUKON_LITE:
1029 case SK_YUKON_LP:
1030 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1031 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1032 break;
1033 }
1034 sk_setmulti(sc_if);
1035 } else if (ifp->if_flags & IFF_RUNNING &&
1036 !(ifp->if_flags & IFF_PROMISC) &&
1037 sc_if->sk_if_flags & IFF_PROMISC) {
1038 switch (sc->sk_type) {
1039 case SK_GENESIS:
1040 SK_XM_CLRBIT_4(sc_if, XM_MODE,
1041 XM_MODE_RX_PROMISC);
1042 break;
1043 case SK_YUKON:
1044 case SK_YUKON_LITE:
1045 case SK_YUKON_LP:
1046 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1047 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1048 break;
1049 }
1050
1051 sk_setmulti(sc_if);
1052 } else
1053 (void) sk_init(ifp);
1054 } else {
1055 if (ifp->if_flags & IFF_RUNNING)
1056 sk_stop(ifp,0);
1057 }
1058 sc_if->sk_if_flags = ifp->if_flags;
1059 error = 0;
1060 break;
1061
1062 case SIOCGIFMEDIA:
1063 case SIOCSIFMEDIA:
1064 DPRINTFN(2, ("sk_ioctl MEDIA\n"));
1065 mii = &sc_if->sk_mii;
1066 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1067 break;
1068 default:
1069 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1070 error = ether_ioctl(ifp, command, data);
1071
1072 if ( error == ENETRESET) {
1073 if (ifp->if_flags & IFF_RUNNING) {
1074 sk_setmulti(sc_if);
1075 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1076 }
1077 error = 0;
1078 } else if ( error ) {
1079 splx(s);
1080 return error;
1081 }
1082 break;
1083 }
1084
1085 splx(s);
1086 return error;
1087 }
1088
1089 void
1090 sk_update_int_mod(struct sk_softc *sc)
1091 {
1092 u_int32_t imtimer_ticks;
1093
1094 /*
1095 * Configure interrupt moderation. The moderation timer
1096 * defers interrupts specified in the interrupt moderation
1097 * timer mask based on the timeout specified in the interrupt
1098 * moderation timer init register. Each bit in the timer
1099 * register represents one tick, so to specify a timeout in
1100 * microseconds, we have to multiply by the correct number of
1101 * ticks-per-microsecond.
1102 */
1103 switch (sc->sk_type) {
1104 case SK_GENESIS:
1105 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1106 break;
1107 case SK_YUKON_EC:
1108 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1109 break;
1110 default:
1111 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1112 }
1113 aprint_verbose("%s: interrupt moderation is %d us\n",
1114 sc->sk_dev.dv_xname, sc->sk_int_mod);
1115 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1116 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1117 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1118 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1119 sc->sk_int_mod_pending = 0;
1120 }
1121
1122 /*
1123 * Lookup: Check the PCI vendor and device, and return a pointer to
1124 * The structure if the IDs match against our list.
1125 */
1126
1127 static const struct sk_product *
1128 sk_lookup(const struct pci_attach_args *pa)
1129 {
1130 const struct sk_product *psk;
1131
1132 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1133 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1134 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1135 return psk;
1136 }
1137 return NULL;
1138 }
1139
1140 /*
1141 * Probe for a SysKonnect GEnesis chip.
1142 */
1143
1144 int
1145 skc_probe(struct device *parent, struct cfdata *match,
1146 void *aux)
1147 {
1148 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1149 const struct sk_product *psk;
1150 pcireg_t subid;
1151
1152 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1153
1154 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1155 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1156 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1157 subid == SK_LINKSYS_EG1032_SUBID)
1158 return 1;
1159
1160 if ((psk = sk_lookup(pa))) {
1161 return 1;
1162 }
1163 return 0;
1164 }
1165
1166 /*
1167 * Force the GEnesis into reset, then bring it out of reset.
1168 */
1169 void sk_reset(struct sk_softc *sc)
1170 {
1171 DPRINTFN(2, ("sk_reset\n"));
1172
1173 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1174 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1175 if (SK_YUKON_FAMILY(sc->sk_type))
1176 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1177
1178 DELAY(1000);
1179 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1180 DELAY(2);
1181 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1182 if (SK_YUKON_FAMILY(sc->sk_type))
1183 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1184
1185 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1186 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1187 CSR_READ_2(sc, SK_LINK_CTRL)));
1188
1189 if (sc->sk_type == SK_GENESIS) {
1190 /* Configure packet arbiter */
1191 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1192 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1193 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1194 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1195 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1196 }
1197
1198 /* Enable RAM interface */
1199 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1200
1201 sk_update_int_mod(sc);
1202 }
1203
1204 int
1205 sk_probe(struct device *parent, struct cfdata *match,
1206 void *aux)
1207 {
1208 struct skc_attach_args *sa = aux;
1209
1210 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1211 return 0;
1212
1213 return 1;
1214 }
1215
1216 /*
1217 * Each XMAC chip is attached as a separate logical IP interface.
1218 * Single port cards will have only one logical interface of course.
1219 */
1220 void
1221 sk_attach(struct device *parent, struct device *self, void *aux)
1222 {
1223 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1224 struct sk_softc *sc = (struct sk_softc *)parent;
1225 struct skc_attach_args *sa = aux;
1226 struct sk_txmap_entry *entry;
1227 struct ifnet *ifp;
1228 bus_dma_segment_t seg;
1229 bus_dmamap_t dmamap;
1230 void *kva;
1231 int i, rseg;
1232
1233 aprint_naive("\n");
1234
1235 sc_if->sk_port = sa->skc_port;
1236 sc_if->sk_softc = sc;
1237 sc->sk_if[sa->skc_port] = sc_if;
1238
1239 if (sa->skc_port == SK_PORT_A)
1240 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1241 if (sa->skc_port == SK_PORT_B)
1242 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1243
1244 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1245
1246 /*
1247 * Get station address for this interface. Note that
1248 * dual port cards actually come with three station
1249 * addresses: one for each port, plus an extra. The
1250 * extra one is used by the SysKonnect driver software
1251 * as a 'virtual' station address for when both ports
1252 * are operating in failover mode. Currently we don't
1253 * use this extra address.
1254 */
1255 for (i = 0; i < ETHER_ADDR_LEN; i++)
1256 sc_if->sk_enaddr[i] =
1257 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1258
1259
1260 aprint_normal(": Ethernet address %s\n",
1261 ether_sprintf(sc_if->sk_enaddr));
1262
1263 /*
1264 * Set up RAM buffer addresses. The NIC will have a certain
1265 * amount of SRAM on it, somewhere between 512K and 2MB. We
1266 * need to divide this up a) between the transmitter and
1267 * receiver and b) between the two XMACs, if this is a
1268 * dual port NIC. Our algorithm is to divide up the memory
1269 * evenly so that everyone gets a fair share.
1270 */
1271 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1272 u_int32_t chunk, val;
1273
1274 chunk = sc->sk_ramsize / 2;
1275 val = sc->sk_rboff / sizeof(u_int64_t);
1276 sc_if->sk_rx_ramstart = val;
1277 val += (chunk / sizeof(u_int64_t));
1278 sc_if->sk_rx_ramend = val - 1;
1279 sc_if->sk_tx_ramstart = val;
1280 val += (chunk / sizeof(u_int64_t));
1281 sc_if->sk_tx_ramend = val - 1;
1282 } else {
1283 u_int32_t chunk, val;
1284
1285 chunk = sc->sk_ramsize / 4;
1286 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1287 sizeof(u_int64_t);
1288 sc_if->sk_rx_ramstart = val;
1289 val += (chunk / sizeof(u_int64_t));
1290 sc_if->sk_rx_ramend = val - 1;
1291 sc_if->sk_tx_ramstart = val;
1292 val += (chunk / sizeof(u_int64_t));
1293 sc_if->sk_tx_ramend = val - 1;
1294 }
1295
1296 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1297 " tx_ramstart=%#x tx_ramend=%#x\n",
1298 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1299 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1300
1301 /* Read and save PHY type and set PHY address */
1302 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1303 switch (sc_if->sk_phytype) {
1304 case SK_PHYTYPE_XMAC:
1305 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1306 break;
1307 case SK_PHYTYPE_BCOM:
1308 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1309 break;
1310 case SK_PHYTYPE_MARV_COPPER:
1311 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1312 break;
1313 default:
1314 aprint_error("%s: unsupported PHY type: %d\n",
1315 sc->sk_dev.dv_xname, sc_if->sk_phytype);
1316 return;
1317 }
1318
1319 /* Allocate the descriptor queues. */
1320 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1321 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1322 aprint_error("%s: can't alloc rx buffers\n",
1323 sc->sk_dev.dv_xname);
1324 goto fail;
1325 }
1326 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1327 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1328 aprint_error("%s: can't map dma buffers (%lu bytes)\n",
1329 sc_if->sk_dev.dv_xname,
1330 (u_long) sizeof(struct sk_ring_data));
1331 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1332 goto fail;
1333 }
1334 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1335 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1336 &sc_if->sk_ring_map)) {
1337 aprint_error("%s: can't create dma map\n",
1338 sc_if->sk_dev.dv_xname);
1339 bus_dmamem_unmap(sc->sc_dmatag, kva,
1340 sizeof(struct sk_ring_data));
1341 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1342 goto fail;
1343 }
1344 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1345 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1346 aprint_error("%s: can't load dma map\n",
1347 sc_if->sk_dev.dv_xname);
1348 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1349 bus_dmamem_unmap(sc->sc_dmatag, kva,
1350 sizeof(struct sk_ring_data));
1351 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1352 goto fail;
1353 }
1354
1355 for (i = 0; i < SK_RX_RING_CNT; i++)
1356 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1357
1358 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1359 for (i = 0; i < SK_TX_RING_CNT; i++) {
1360 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1361
1362 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1363 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1364 aprint_error("%s: Can't create TX dmamap\n",
1365 sc_if->sk_dev.dv_xname);
1366 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1367 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1368 bus_dmamem_unmap(sc->sc_dmatag, kva,
1369 sizeof(struct sk_ring_data));
1370 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1371 goto fail;
1372 }
1373
1374 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1375 if (!entry) {
1376 aprint_error("%s: Can't alloc txmap entry\n",
1377 sc_if->sk_dev.dv_xname);
1378 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1379 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1380 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1381 bus_dmamem_unmap(sc->sc_dmatag, kva,
1382 sizeof(struct sk_ring_data));
1383 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1384 goto fail;
1385 }
1386 entry->dmamap = dmamap;
1387 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1388 }
1389
1390 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1391 bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1392
1393 ifp = &sc_if->sk_ethercom.ec_if;
1394 /* Try to allocate memory for jumbo buffers. */
1395 if (sk_alloc_jumbo_mem(sc_if)) {
1396 aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1397 goto fail;
1398 }
1399 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1400 | ETHERCAP_JUMBO_MTU;
1401
1402 ifp->if_softc = sc_if;
1403 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1404 ifp->if_ioctl = sk_ioctl;
1405 ifp->if_start = sk_start;
1406 ifp->if_stop = sk_stop;
1407 ifp->if_init = sk_init;
1408 ifp->if_watchdog = sk_watchdog;
1409 ifp->if_capabilities = 0;
1410 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1411 IFQ_SET_READY(&ifp->if_snd);
1412 strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1413
1414 /*
1415 * Do miibus setup.
1416 */
1417 switch (sc->sk_type) {
1418 case SK_GENESIS:
1419 sk_init_xmac(sc_if);
1420 break;
1421 case SK_YUKON:
1422 case SK_YUKON_LITE:
1423 case SK_YUKON_LP:
1424 sk_init_yukon(sc_if);
1425 break;
1426 default:
1427 aprint_error("%s: unknown device type %d\n",
1428 sc->sk_dev.dv_xname, sc->sk_type);
1429 goto fail;
1430 }
1431
1432 DPRINTFN(2, ("sk_attach: 1\n"));
1433
1434 sc_if->sk_mii.mii_ifp = ifp;
1435 switch (sc->sk_type) {
1436 case SK_GENESIS:
1437 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1438 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1439 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1440 break;
1441 case SK_YUKON:
1442 case SK_YUKON_LITE:
1443 case SK_YUKON_LP:
1444 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1445 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1446 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1447 break;
1448 }
1449
1450 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1451 sk_ifmedia_upd, sk_ifmedia_sts);
1452 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1453 MII_OFFSET_ANY, 0);
1454 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1455 aprint_error("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1456 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1457 0, NULL);
1458 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1459 } else
1460 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1461
1462 callout_init(&sc_if->sk_tick_ch, 0);
1463 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1464
1465 DPRINTFN(2, ("sk_attach: 1\n"));
1466
1467 /*
1468 * Call MI attach routines.
1469 */
1470 if_attach(ifp);
1471
1472 ether_ifattach(ifp, sc_if->sk_enaddr);
1473
1474 #if NRND > 0
1475 rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
1476 RND_TYPE_NET, 0);
1477 #endif
1478
1479 DPRINTFN(2, ("sk_attach: end\n"));
1480
1481 return;
1482
1483 fail:
1484 sc->sk_if[sa->skc_port] = NULL;
1485 }
1486
1487 int
1488 skcprint(void *aux, const char *pnp)
1489 {
1490 struct skc_attach_args *sa = aux;
1491
1492 if (pnp)
1493 aprint_normal("sk port %c at %s",
1494 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1495 else
1496 aprint_normal(" port %c",
1497 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1498 return UNCONF;
1499 }
1500
1501 /*
1502 * Attach the interface. Allocate softc structures, do ifmedia
1503 * setup and ethernet/BPF attach.
1504 */
1505 void
1506 skc_attach(struct device *parent, struct device *self, void *aux)
1507 {
1508 struct sk_softc *sc = (struct sk_softc *)self;
1509 struct pci_attach_args *pa = aux;
1510 struct skc_attach_args skca;
1511 pci_chipset_tag_t pc = pa->pa_pc;
1512 #ifndef SK_USEIOSPACE
1513 pcireg_t memtype;
1514 #endif
1515 pci_intr_handle_t ih;
1516 const char *intrstr = NULL;
1517 bus_addr_t iobase;
1518 bus_size_t iosize;
1519 int rc, sk_nodenum;
1520 u_int32_t command;
1521 const char *revstr;
1522 const struct sysctlnode *node;
1523
1524 aprint_naive("\n");
1525
1526 DPRINTFN(2, ("begin skc_attach\n"));
1527
1528 /*
1529 * Handle power management nonsense.
1530 */
1531 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1532
1533 if (command == 0x01) {
1534 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1535 if (command & SK_PSTATE_MASK) {
1536 u_int32_t xiobase, membase, irq;
1537
1538 /* Save important PCI config data. */
1539 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1540 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1541 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1542
1543 /* Reset the power state. */
1544 aprint_normal("%s chip is in D%d power mode "
1545 "-- setting to D0\n", sc->sk_dev.dv_xname,
1546 command & SK_PSTATE_MASK);
1547 command &= 0xFFFFFFFC;
1548 pci_conf_write(pc, pa->pa_tag,
1549 SK_PCI_PWRMGMTCTRL, command);
1550
1551 /* Restore PCI config data. */
1552 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1553 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1554 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1555 }
1556 }
1557
1558 /*
1559 * Map control/status registers.
1560 */
1561 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1562 command |= PCI_COMMAND_IO_ENABLE |
1563 PCI_COMMAND_MEM_ENABLE |
1564 PCI_COMMAND_MASTER_ENABLE;
1565 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1566 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1567
1568 #ifdef SK_USEIOSPACE
1569 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1570 aprint_error(": failed to enable I/O ports!\n");
1571 return;
1572 }
1573 /*
1574 * Map control/status registers.
1575 */
1576 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1577 &sc->sk_btag, &sc->sk_bhandle,
1578 &iobase, &iosize)) {
1579 aprint_error(": can't find i/o space\n");
1580 return;
1581 }
1582 #else
1583 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1584 aprint_error(": failed to enable memory mapping!\n");
1585 return;
1586 }
1587 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1588 switch (memtype) {
1589 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1590 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1591 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1592 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1593 &iobase, &iosize) == 0)
1594 break;
1595 default:
1596 aprint_error("%s: can't find mem space\n",
1597 sc->sk_dev.dv_xname);
1598 return;
1599 }
1600
1601 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1602 #endif
1603 sc->sc_dmatag = pa->pa_dmat;
1604
1605 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1606 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1607
1608 /* bail out here if chip is not recognized */
1609 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1610 aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
1611 goto fail;
1612 }
1613 if (SK_IS_YUKON2(sc)) {
1614 aprint_error("%s: Does not support Yukon2--try msk(4).\n",
1615 sc->sk_dev.dv_xname);
1616 goto fail;
1617 }
1618 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1619
1620 /* Allocate interrupt */
1621 if (pci_intr_map(pa, &ih)) {
1622 aprint_error(": couldn't map interrupt\n");
1623 goto fail;
1624 }
1625
1626 intrstr = pci_intr_string(pc, ih);
1627 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1628 if (sc->sk_intrhand == NULL) {
1629 aprint_error(": couldn't establish interrupt");
1630 if (intrstr != NULL)
1631 aprint_normal(" at %s", intrstr);
1632 goto fail;
1633 }
1634 aprint_normal(": %s\n", intrstr);
1635
1636 /* Reset the adapter. */
1637 sk_reset(sc);
1638
1639 /* Read and save vital product data from EEPROM. */
1640 sk_vpd_read(sc);
1641
1642 if (sc->sk_type == SK_GENESIS) {
1643 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1644 /* Read and save RAM size and RAMbuffer offset */
1645 switch (val) {
1646 case SK_RAMSIZE_512K_64:
1647 sc->sk_ramsize = 0x80000;
1648 sc->sk_rboff = SK_RBOFF_0;
1649 break;
1650 case SK_RAMSIZE_1024K_64:
1651 sc->sk_ramsize = 0x100000;
1652 sc->sk_rboff = SK_RBOFF_80000;
1653 break;
1654 case SK_RAMSIZE_1024K_128:
1655 sc->sk_ramsize = 0x100000;
1656 sc->sk_rboff = SK_RBOFF_0;
1657 break;
1658 case SK_RAMSIZE_2048K_128:
1659 sc->sk_ramsize = 0x200000;
1660 sc->sk_rboff = SK_RBOFF_0;
1661 break;
1662 default:
1663 aprint_error("%s: unknown ram size: %d\n",
1664 sc->sk_dev.dv_xname, val);
1665 goto fail_1;
1666 break;
1667 }
1668
1669 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1670 sc->sk_ramsize, sc->sk_ramsize / 1024,
1671 sc->sk_rboff));
1672 } else {
1673 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1674 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1675 sc->sk_rboff = SK_RBOFF_0;
1676
1677 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1678 sc->sk_ramsize / 1024, sc->sk_ramsize,
1679 sc->sk_rboff));
1680 }
1681
1682 /* Read and save physical media type */
1683 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1684 case SK_PMD_1000BASESX:
1685 sc->sk_pmd = IFM_1000_SX;
1686 break;
1687 case SK_PMD_1000BASELX:
1688 sc->sk_pmd = IFM_1000_LX;
1689 break;
1690 case SK_PMD_1000BASECX:
1691 sc->sk_pmd = IFM_1000_CX;
1692 break;
1693 case SK_PMD_1000BASETX:
1694 case SK_PMD_1000BASETX_ALT:
1695 sc->sk_pmd = IFM_1000_T;
1696 break;
1697 default:
1698 aprint_error("%s: unknown media type: 0x%x\n",
1699 sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
1700 goto fail_1;
1701 }
1702
1703 /* determine whether to name it with vpd or just make it up */
1704 /* Marvell Yukon VPD's can freqently be bogus */
1705
1706 switch (pa->pa_id) {
1707 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1708 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1709 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1710 case PCI_PRODUCT_3COM_3C940:
1711 case PCI_PRODUCT_DLINK_DGE530T:
1712 case PCI_PRODUCT_DLINK_DGE560T:
1713 case PCI_PRODUCT_DLINK_DGE560T_2:
1714 case PCI_PRODUCT_LINKSYS_EG1032:
1715 case PCI_PRODUCT_LINKSYS_EG1064:
1716 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1717 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1718 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1719 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1720 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1721 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1722 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1723 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1724 sc->sk_name = sc->sk_vpd_prodname;
1725 break;
1726 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1727 /* whoops yukon vpd prodname bears no resemblance to reality */
1728 switch (sc->sk_type) {
1729 case SK_GENESIS:
1730 sc->sk_name = sc->sk_vpd_prodname;
1731 break;
1732 case SK_YUKON:
1733 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1734 break;
1735 case SK_YUKON_LITE:
1736 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1737 break;
1738 case SK_YUKON_LP:
1739 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1740 break;
1741 default:
1742 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1743 }
1744
1745 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1746
1747 if ( sc->sk_type == SK_YUKON ) {
1748 uint32_t flashaddr;
1749 uint8_t testbyte;
1750
1751 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1752
1753 /* test Flash-Address Register */
1754 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1755 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1756
1757 if (testbyte != 0) {
1758 /* this is yukon lite Rev. A0 */
1759 sc->sk_type = SK_YUKON_LITE;
1760 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1761 /* restore Flash-Address Register */
1762 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1763 }
1764 }
1765 break;
1766 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1767 sc->sk_name = sc->sk_vpd_prodname;
1768 break;
1769 default:
1770 sc->sk_name = "Unknown Marvell";
1771 }
1772
1773
1774 if ( sc->sk_type == SK_YUKON_LITE ) {
1775 switch (sc->sk_rev) {
1776 case SK_YUKON_LITE_REV_A0:
1777 revstr = "A0";
1778 break;
1779 case SK_YUKON_LITE_REV_A1:
1780 revstr = "A1";
1781 break;
1782 case SK_YUKON_LITE_REV_A3:
1783 revstr = "A3";
1784 break;
1785 default:
1786 revstr = "";
1787 }
1788 } else {
1789 revstr = "";
1790 }
1791
1792 /* Announce the product name. */
1793 aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
1794 sc->sk_name, revstr, sc->sk_rev);
1795
1796 skca.skc_port = SK_PORT_A;
1797 (void)config_found(&sc->sk_dev, &skca, skcprint);
1798
1799 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1800 skca.skc_port = SK_PORT_B;
1801 (void)config_found(&sc->sk_dev, &skca, skcprint);
1802 }
1803
1804 /* Turn on the 'driver is loaded' LED. */
1805 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1806
1807 /* skc sysctl setup */
1808
1809 sc->sk_int_mod = SK_IM_DEFAULT;
1810 sc->sk_int_mod_pending = 0;
1811
1812 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1813 0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
1814 SYSCTL_DESCR("skc per-controller controls"),
1815 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1816 CTL_EOL)) != 0) {
1817 aprint_normal("%s: couldn't create sysctl node\n",
1818 sc->sk_dev.dv_xname);
1819 goto fail_1;
1820 }
1821
1822 sk_nodenum = node->sysctl_num;
1823
1824 /* interrupt moderation time in usecs */
1825 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1826 CTLFLAG_READWRITE,
1827 CTLTYPE_INT, "int_mod",
1828 SYSCTL_DESCR("sk interrupt moderation timer"),
1829 sk_sysctl_handler, 0, sc,
1830 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1831 CTL_EOL)) != 0) {
1832 aprint_normal("%s: couldn't create int_mod sysctl node\n",
1833 sc->sk_dev.dv_xname);
1834 goto fail_1;
1835 }
1836
1837 return;
1838
1839 fail_1:
1840 pci_intr_disestablish(pc, sc->sk_intrhand);
1841 fail:
1842 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1843 }
1844
1845 int
1846 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1847 {
1848 struct sk_softc *sc = sc_if->sk_softc;
1849 struct sk_tx_desc *f = NULL;
1850 u_int32_t frag, cur, cnt = 0, sk_ctl;
1851 int i;
1852 struct sk_txmap_entry *entry;
1853 bus_dmamap_t txmap;
1854
1855 DPRINTFN(3, ("sk_encap\n"));
1856
1857 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1858 if (entry == NULL) {
1859 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1860 return ENOBUFS;
1861 }
1862 txmap = entry->dmamap;
1863
1864 cur = frag = *txidx;
1865
1866 #ifdef SK_DEBUG
1867 if (skdebug >= 3)
1868 sk_dump_mbuf(m_head);
1869 #endif
1870
1871 /*
1872 * Start packing the mbufs in this chain into
1873 * the fragment pointers. Stop when we run out
1874 * of fragments or hit the end of the mbuf chain.
1875 */
1876 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1877 BUS_DMA_NOWAIT)) {
1878 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1879 return ENOBUFS;
1880 }
1881
1882 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1883
1884 /* Sync the DMA map. */
1885 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1886 BUS_DMASYNC_PREWRITE);
1887
1888 for (i = 0; i < txmap->dm_nsegs; i++) {
1889 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1890 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1891 return ENOBUFS;
1892 }
1893 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1894 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1895 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1896 if (cnt == 0)
1897 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1898 else
1899 sk_ctl |= SK_TXCTL_OWN;
1900 f->sk_ctl = htole32(sk_ctl);
1901 cur = frag;
1902 SK_INC(frag, SK_TX_RING_CNT);
1903 cnt++;
1904 }
1905
1906 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1907 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1908
1909 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1910 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1911 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1912
1913 /* Sync descriptors before handing to chip */
1914 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1915 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1916
1917 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1918 htole32(SK_TXCTL_OWN);
1919
1920 /* Sync first descriptor to hand it off */
1921 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1922
1923 sc_if->sk_cdata.sk_tx_cnt += cnt;
1924
1925 #ifdef SK_DEBUG
1926 if (skdebug >= 3) {
1927 struct sk_tx_desc *desc;
1928 u_int32_t idx;
1929 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1930 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1931 sk_dump_txdesc(desc, idx);
1932 }
1933 }
1934 #endif
1935
1936 *txidx = frag;
1937
1938 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1939
1940 return 0;
1941 }
1942
1943 void
1944 sk_start(struct ifnet *ifp)
1945 {
1946 struct sk_if_softc *sc_if = ifp->if_softc;
1947 struct sk_softc *sc = sc_if->sk_softc;
1948 struct mbuf *m_head = NULL;
1949 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1950 int pkts = 0;
1951
1952 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1953 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1954
1955 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1956 IFQ_POLL(&ifp->if_snd, m_head);
1957 if (m_head == NULL)
1958 break;
1959
1960 /*
1961 * Pack the data into the transmit ring. If we
1962 * don't have room, set the OACTIVE flag and wait
1963 * for the NIC to drain the ring.
1964 */
1965 if (sk_encap(sc_if, m_head, &idx)) {
1966 ifp->if_flags |= IFF_OACTIVE;
1967 break;
1968 }
1969
1970 /* now we are committed to transmit the packet */
1971 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1972 pkts++;
1973
1974 /*
1975 * If there's a BPF listener, bounce a copy of this frame
1976 * to him.
1977 */
1978 #if NBPFILTER > 0
1979 if (ifp->if_bpf)
1980 bpf_mtap(ifp->if_bpf, m_head);
1981 #endif
1982 }
1983 if (pkts == 0)
1984 return;
1985
1986 /* Transmit */
1987 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1988 sc_if->sk_cdata.sk_tx_prod = idx;
1989 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1990
1991 /* Set a timeout in case the chip goes out to lunch. */
1992 ifp->if_timer = 5;
1993 }
1994 }
1995
1996
1997 void
1998 sk_watchdog(struct ifnet *ifp)
1999 {
2000 struct sk_if_softc *sc_if = ifp->if_softc;
2001
2002 /*
2003 * Reclaim first as there is a possibility of losing Tx completion
2004 * interrupts.
2005 */
2006 sk_txeof(sc_if);
2007 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2008 aprint_error("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
2009
2010 ifp->if_oerrors++;
2011
2012 sk_init(ifp);
2013 }
2014 }
2015
2016 void
2017 sk_shutdown(void *v)
2018 {
2019 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
2020 struct sk_softc *sc = sc_if->sk_softc;
2021 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2022
2023 DPRINTFN(2, ("sk_shutdown\n"));
2024 sk_stop(ifp,1);
2025
2026 /* Turn off the 'driver is loaded' LED. */
2027 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2028
2029 /*
2030 * Reset the GEnesis controller. Doing this should also
2031 * assert the resets on the attached XMAC(s).
2032 */
2033 sk_reset(sc);
2034 }
2035
2036 void
2037 sk_rxeof(struct sk_if_softc *sc_if)
2038 {
2039 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2040 struct mbuf *m;
2041 struct sk_chain *cur_rx;
2042 struct sk_rx_desc *cur_desc;
2043 int i, cur, total_len = 0;
2044 u_int32_t rxstat, sk_ctl;
2045 bus_dmamap_t dmamap;
2046
2047 i = sc_if->sk_cdata.sk_rx_prod;
2048
2049 DPRINTFN(3, ("sk_rxeof %d\n", i));
2050
2051 for (;;) {
2052 cur = i;
2053
2054 /* Sync the descriptor */
2055 SK_CDRXSYNC(sc_if, cur,
2056 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2057
2058 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2059 if (sk_ctl & SK_RXCTL_OWN) {
2060 /* Invalidate the descriptor -- it's not ready yet */
2061 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2062 sc_if->sk_cdata.sk_rx_prod = i;
2063 break;
2064 }
2065
2066 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2067 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2068 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2069
2070 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2071 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2072
2073 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2074 m = cur_rx->sk_mbuf;
2075 cur_rx->sk_mbuf = NULL;
2076 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2077
2078 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2079
2080 SK_INC(i, SK_RX_RING_CNT);
2081
2082 if (rxstat & XM_RXSTAT_ERRFRAME) {
2083 ifp->if_ierrors++;
2084 sk_newbuf(sc_if, cur, m, dmamap);
2085 continue;
2086 }
2087
2088 /*
2089 * Try to allocate a new jumbo buffer. If that
2090 * fails, copy the packet to mbufs and put the
2091 * jumbo buffer back in the ring so it can be
2092 * re-used. If allocating mbufs fails, then we
2093 * have to drop the packet.
2094 */
2095 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2096 struct mbuf *m0;
2097 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2098 total_len + ETHER_ALIGN, 0, ifp, NULL);
2099 sk_newbuf(sc_if, cur, m, dmamap);
2100 if (m0 == NULL) {
2101 aprint_error("%s: no receive buffers "
2102 "available -- packet dropped!\n",
2103 sc_if->sk_dev.dv_xname);
2104 ifp->if_ierrors++;
2105 continue;
2106 }
2107 m_adj(m0, ETHER_ALIGN);
2108 m = m0;
2109 } else {
2110 m->m_pkthdr.rcvif = ifp;
2111 m->m_pkthdr.len = m->m_len = total_len;
2112 }
2113
2114 ifp->if_ipackets++;
2115
2116 #if NBPFILTER > 0
2117 if (ifp->if_bpf)
2118 bpf_mtap(ifp->if_bpf, m);
2119 #endif
2120 /* pass it on. */
2121 (*ifp->if_input)(ifp, m);
2122 }
2123 }
2124
2125 void
2126 sk_txeof(struct sk_if_softc *sc_if)
2127 {
2128 struct sk_softc *sc = sc_if->sk_softc;
2129 struct sk_tx_desc *cur_tx;
2130 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2131 u_int32_t idx, sk_ctl;
2132 struct sk_txmap_entry *entry;
2133
2134 DPRINTFN(3, ("sk_txeof\n"));
2135
2136 /*
2137 * Go through our tx ring and free mbufs for those
2138 * frames that have been sent.
2139 */
2140 idx = sc_if->sk_cdata.sk_tx_cons;
2141 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2142 SK_CDTXSYNC(sc_if, idx, 1,
2143 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2144
2145 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2146 sk_ctl = le32toh(cur_tx->sk_ctl);
2147 #ifdef SK_DEBUG
2148 if (skdebug >= 3)
2149 sk_dump_txdesc(cur_tx, idx);
2150 #endif
2151 if (sk_ctl & SK_TXCTL_OWN) {
2152 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2153 break;
2154 }
2155 if (sk_ctl & SK_TXCTL_LASTFRAG)
2156 ifp->if_opackets++;
2157 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2158 entry = sc_if->sk_cdata.sk_tx_map[idx];
2159
2160 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2161 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2162
2163 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2164 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2165
2166 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2167 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2168 link);
2169 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2170 }
2171 sc_if->sk_cdata.sk_tx_cnt--;
2172 SK_INC(idx, SK_TX_RING_CNT);
2173 }
2174 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2175 ifp->if_timer = 0;
2176 else /* nudge chip to keep tx ring moving */
2177 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2178
2179 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2180 ifp->if_flags &= ~IFF_OACTIVE;
2181
2182 sc_if->sk_cdata.sk_tx_cons = idx;
2183 }
2184
2185 void
2186 sk_tick(void *xsc_if)
2187 {
2188 struct sk_if_softc *sc_if = xsc_if;
2189 struct mii_data *mii = &sc_if->sk_mii;
2190 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2191 int i;
2192
2193 DPRINTFN(3, ("sk_tick\n"));
2194
2195 if (!(ifp->if_flags & IFF_UP))
2196 return;
2197
2198 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2199 sk_intr_bcom(sc_if);
2200 return;
2201 }
2202
2203 /*
2204 * According to SysKonnect, the correct way to verify that
2205 * the link has come back up is to poll bit 0 of the GPIO
2206 * register three times. This pin has the signal from the
2207 * link sync pin connected to it; if we read the same link
2208 * state 3 times in a row, we know the link is up.
2209 */
2210 for (i = 0; i < 3; i++) {
2211 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2212 break;
2213 }
2214
2215 if (i != 3) {
2216 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2217 return;
2218 }
2219
2220 /* Turn the GP0 interrupt back on. */
2221 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2222 SK_XM_READ_2(sc_if, XM_ISR);
2223 mii_tick(mii);
2224 mii_pollstat(mii);
2225 callout_stop(&sc_if->sk_tick_ch);
2226 }
2227
2228 void
2229 sk_intr_bcom(struct sk_if_softc *sc_if)
2230 {
2231 struct mii_data *mii = &sc_if->sk_mii;
2232 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2233 int status;
2234
2235
2236 DPRINTFN(3, ("sk_intr_bcom\n"));
2237
2238 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2239
2240 /*
2241 * Read the PHY interrupt register to make sure
2242 * we clear any pending interrupts.
2243 */
2244 status = sk_xmac_miibus_readreg((struct device *)sc_if,
2245 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2246
2247 if (!(ifp->if_flags & IFF_RUNNING)) {
2248 sk_init_xmac(sc_if);
2249 return;
2250 }
2251
2252 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2253 int lstat;
2254 lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
2255 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2256
2257 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2258 mii_mediachg(mii);
2259 /* Turn off the link LED. */
2260 SK_IF_WRITE_1(sc_if, 0,
2261 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2262 sc_if->sk_link = 0;
2263 } else if (status & BRGPHY_ISR_LNK_CHG) {
2264 sk_xmac_miibus_writereg((struct device *)sc_if,
2265 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2266 mii_tick(mii);
2267 sc_if->sk_link = 1;
2268 /* Turn on the link LED. */
2269 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2270 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2271 SK_LINKLED_BLINK_OFF);
2272 mii_pollstat(mii);
2273 } else {
2274 mii_tick(mii);
2275 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2276 }
2277 }
2278
2279 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2280 }
2281
2282 void
2283 sk_intr_xmac(struct sk_if_softc *sc_if)
2284 {
2285 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2286
2287 DPRINTFN(3, ("sk_intr_xmac\n"));
2288
2289 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2290 if (status & XM_ISR_GP0_SET) {
2291 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2292 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2293 }
2294
2295 if (status & XM_ISR_AUTONEG_DONE) {
2296 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2297 }
2298 }
2299
2300 if (status & XM_IMR_TX_UNDERRUN)
2301 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2302
2303 if (status & XM_IMR_RX_OVERRUN)
2304 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2305 }
2306
2307 void
2308 sk_intr_yukon(struct sk_if_softc *sc_if)
2309 {
2310 int status;
2311
2312 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2313
2314 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2315 }
2316
2317 int
2318 sk_intr(void *xsc)
2319 {
2320 struct sk_softc *sc = xsc;
2321 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2322 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2323 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2324 u_int32_t status;
2325 int claimed = 0;
2326
2327 if (sc_if0 != NULL)
2328 ifp0 = &sc_if0->sk_ethercom.ec_if;
2329 if (sc_if1 != NULL)
2330 ifp1 = &sc_if1->sk_ethercom.ec_if;
2331
2332 for (;;) {
2333 status = CSR_READ_4(sc, SK_ISSR);
2334 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2335
2336 if (!(status & sc->sk_intrmask))
2337 break;
2338
2339 claimed = 1;
2340
2341 /* Handle receive interrupts first. */
2342 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2343 sk_rxeof(sc_if0);
2344 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2345 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2346 }
2347 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2348 sk_rxeof(sc_if1);
2349 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2350 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2351 }
2352
2353 /* Then transmit interrupts. */
2354 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2355 sk_txeof(sc_if0);
2356 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2357 SK_TXBMU_CLR_IRQ_EOF);
2358 }
2359 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2360 sk_txeof(sc_if1);
2361 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2362 SK_TXBMU_CLR_IRQ_EOF);
2363 }
2364
2365 /* Then MAC interrupts. */
2366 if (sc_if0 && (status & SK_ISR_MAC1) &&
2367 (ifp0->if_flags & IFF_RUNNING)) {
2368 if (sc->sk_type == SK_GENESIS)
2369 sk_intr_xmac(sc_if0);
2370 else
2371 sk_intr_yukon(sc_if0);
2372 }
2373
2374 if (sc_if1 && (status & SK_ISR_MAC2) &&
2375 (ifp1->if_flags & IFF_RUNNING)) {
2376 if (sc->sk_type == SK_GENESIS)
2377 sk_intr_xmac(sc_if1);
2378 else
2379 sk_intr_yukon(sc_if1);
2380
2381 }
2382
2383 if (status & SK_ISR_EXTERNAL_REG) {
2384 if (sc_if0 != NULL &&
2385 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2386 sk_intr_bcom(sc_if0);
2387
2388 if (sc_if1 != NULL &&
2389 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2390 sk_intr_bcom(sc_if1);
2391 }
2392 }
2393
2394 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2395
2396 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2397 sk_start(ifp0);
2398 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2399 sk_start(ifp1);
2400
2401 #if NRND > 0
2402 if (RND_ENABLED(&sc->rnd_source))
2403 rnd_add_uint32(&sc->rnd_source, status);
2404 #endif
2405
2406 if (sc->sk_int_mod_pending)
2407 sk_update_int_mod(sc);
2408
2409 return claimed;
2410 }
2411
2412 void
2413 sk_init_xmac(struct sk_if_softc *sc_if)
2414 {
2415 struct sk_softc *sc = sc_if->sk_softc;
2416 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2417 static const struct sk_bcom_hack bhack[] = {
2418 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2419 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2420 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2421 { 0, 0 } };
2422
2423 DPRINTFN(1, ("sk_init_xmac\n"));
2424
2425 /* Unreset the XMAC. */
2426 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2427 DELAY(1000);
2428
2429 /* Reset the XMAC's internal state. */
2430 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2431
2432 /* Save the XMAC II revision */
2433 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2434
2435 /*
2436 * Perform additional initialization for external PHYs,
2437 * namely for the 1000baseTX cards that use the XMAC's
2438 * GMII mode.
2439 */
2440 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2441 int i = 0;
2442 u_int32_t val;
2443
2444 /* Take PHY out of reset. */
2445 val = sk_win_read_4(sc, SK_GPIO);
2446 if (sc_if->sk_port == SK_PORT_A)
2447 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2448 else
2449 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2450 sk_win_write_4(sc, SK_GPIO, val);
2451
2452 /* Enable GMII mode on the XMAC. */
2453 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2454
2455 sk_xmac_miibus_writereg((struct device *)sc_if,
2456 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2457 DELAY(10000);
2458 sk_xmac_miibus_writereg((struct device *)sc_if,
2459 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2460
2461 /*
2462 * Early versions of the BCM5400 apparently have
2463 * a bug that requires them to have their reserved
2464 * registers initialized to some magic values. I don't
2465 * know what the numbers do, I'm just the messenger.
2466 */
2467 if (sk_xmac_miibus_readreg((struct device *)sc_if,
2468 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2469 while (bhack[i].reg) {
2470 sk_xmac_miibus_writereg((struct device *)sc_if,
2471 SK_PHYADDR_BCOM, bhack[i].reg,
2472 bhack[i].val);
2473 i++;
2474 }
2475 }
2476 }
2477
2478 /* Set station address */
2479 SK_XM_WRITE_2(sc_if, XM_PAR0,
2480 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2481 SK_XM_WRITE_2(sc_if, XM_PAR1,
2482 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2483 SK_XM_WRITE_2(sc_if, XM_PAR2,
2484 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2485 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2486
2487 if (ifp->if_flags & IFF_PROMISC)
2488 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2489 else
2490 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2491
2492 if (ifp->if_flags & IFF_BROADCAST)
2493 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2494 else
2495 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2496
2497 /* We don't need the FCS appended to the packet. */
2498 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2499
2500 /* We want short frames padded to 60 bytes. */
2501 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2502
2503 /*
2504 * Enable the reception of all error frames. This is is
2505 * a necessary evil due to the design of the XMAC. The
2506 * XMAC's receive FIFO is only 8K in size, however jumbo
2507 * frames can be up to 9000 bytes in length. When bad
2508 * frame filtering is enabled, the XMAC's RX FIFO operates
2509 * in 'store and forward' mode. For this to work, the
2510 * entire frame has to fit into the FIFO, but that means
2511 * that jumbo frames larger than 8192 bytes will be
2512 * truncated. Disabling all bad frame filtering causes
2513 * the RX FIFO to operate in streaming mode, in which
2514 * case the XMAC will start transfering frames out of the
2515 * RX FIFO as soon as the FIFO threshold is reached.
2516 */
2517 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2518 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2519 XM_MODE_RX_INRANGELEN);
2520
2521 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2522 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2523 else
2524 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2525
2526 /*
2527 * Bump up the transmit threshold. This helps hold off transmit
2528 * underruns when we're blasting traffic from both ports at once.
2529 */
2530 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2531
2532 /* Set multicast filter */
2533 sk_setmulti(sc_if);
2534
2535 /* Clear and enable interrupts */
2536 SK_XM_READ_2(sc_if, XM_ISR);
2537 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2538 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2539 else
2540 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2541
2542 /* Configure MAC arbiter */
2543 switch (sc_if->sk_xmac_rev) {
2544 case XM_XMAC_REV_B2:
2545 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2546 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2547 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2548 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2549 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2550 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2551 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2552 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2553 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2554 break;
2555 case XM_XMAC_REV_C1:
2556 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2557 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2558 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2559 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2560 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2561 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2562 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2563 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2564 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2565 break;
2566 default:
2567 break;
2568 }
2569 sk_win_write_2(sc, SK_MACARB_CTL,
2570 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2571
2572 sc_if->sk_link = 1;
2573 }
2574
2575 void sk_init_yukon(struct sk_if_softc *sc_if)
2576 {
2577 u_int32_t /*mac, */phy;
2578 u_int16_t reg;
2579 struct sk_softc *sc;
2580 int i;
2581
2582 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2583 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2584
2585 sc = sc_if->sk_softc;
2586 if (sc->sk_type == SK_YUKON_LITE &&
2587 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2588 /* Take PHY out of reset. */
2589 sk_win_write_4(sc, SK_GPIO,
2590 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2591 }
2592
2593
2594 /* GMAC and GPHY Reset */
2595 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2596
2597 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2598
2599 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2600 DELAY(1000);
2601 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2602 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2603 DELAY(1000);
2604
2605
2606 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2607
2608 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2609 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2610
2611 switch (sc_if->sk_softc->sk_pmd) {
2612 case IFM_1000_SX:
2613 case IFM_1000_LX:
2614 phy |= SK_GPHY_FIBER;
2615 break;
2616
2617 case IFM_1000_CX:
2618 case IFM_1000_T:
2619 phy |= SK_GPHY_COPPER;
2620 break;
2621 }
2622
2623 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2624
2625 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2626 DELAY(1000);
2627 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2628 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2629 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2630
2631 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2632 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2633
2634 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2635
2636 /* unused read of the interrupt source register */
2637 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2638 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2639
2640 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2641 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2642 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2643
2644 /* MIB Counter Clear Mode set */
2645 reg |= YU_PAR_MIB_CLR;
2646 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2647 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2648 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2649
2650 /* MIB Counter Clear Mode clear */
2651 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2652 reg &= ~YU_PAR_MIB_CLR;
2653 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2654
2655 /* receive control reg */
2656 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2657 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2658 YU_RCR_CRCR);
2659
2660 /* transmit parameter register */
2661 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2662 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2663 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2664
2665 /* serial mode register */
2666 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2667 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2668 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2669 YU_SMR_IPG_DATA(0x1e));
2670
2671 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2672 /* Setup Yukon's address */
2673 for (i = 0; i < 3; i++) {
2674 /* Write Source Address 1 (unicast filter) */
2675 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2676 sc_if->sk_enaddr[i * 2] |
2677 sc_if->sk_enaddr[i * 2 + 1] << 8);
2678 }
2679
2680 for (i = 0; i < 3; i++) {
2681 reg = sk_win_read_2(sc_if->sk_softc,
2682 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2683 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2684 }
2685
2686 /* Set multicast filter */
2687 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2688 sk_setmulti(sc_if);
2689
2690 /* enable interrupt mask for counter overflows */
2691 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2692 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2693 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2694 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2695
2696 /* Configure RX MAC FIFO */
2697 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2698 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2699
2700 /* Configure TX MAC FIFO */
2701 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2702 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2703
2704 DPRINTFN(6, ("sk_init_yukon: end\n"));
2705 }
2706
2707 /*
2708 * Note that to properly initialize any part of the GEnesis chip,
2709 * you first have to take it out of reset mode.
2710 */
2711 int
2712 sk_init(struct ifnet *ifp)
2713 {
2714 struct sk_if_softc *sc_if = ifp->if_softc;
2715 struct sk_softc *sc = sc_if->sk_softc;
2716 struct mii_data *mii = &sc_if->sk_mii;
2717 int s;
2718 u_int32_t imr, imtimer_ticks;
2719
2720 DPRINTFN(1, ("sk_init\n"));
2721
2722 s = splnet();
2723
2724 if (ifp->if_flags & IFF_RUNNING) {
2725 splx(s);
2726 return 0;
2727 }
2728
2729 /* Cancel pending I/O and free all RX/TX buffers. */
2730 sk_stop(ifp,0);
2731
2732 if (sc->sk_type == SK_GENESIS) {
2733 /* Configure LINK_SYNC LED */
2734 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2735 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2736 SK_LINKLED_LINKSYNC_ON);
2737
2738 /* Configure RX LED */
2739 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2740 SK_RXLEDCTL_COUNTER_START);
2741
2742 /* Configure TX LED */
2743 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2744 SK_TXLEDCTL_COUNTER_START);
2745 }
2746
2747 /* Configure I2C registers */
2748
2749 /* Configure XMAC(s) */
2750 switch (sc->sk_type) {
2751 case SK_GENESIS:
2752 sk_init_xmac(sc_if);
2753 break;
2754 case SK_YUKON:
2755 case SK_YUKON_LITE:
2756 case SK_YUKON_LP:
2757 sk_init_yukon(sc_if);
2758 break;
2759 }
2760 mii_mediachg(mii);
2761
2762 if (sc->sk_type == SK_GENESIS) {
2763 /* Configure MAC FIFOs */
2764 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2765 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2766 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2767
2768 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2769 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2770 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2771 }
2772
2773 /* Configure transmit arbiter(s) */
2774 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2775 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2776
2777 /* Configure RAMbuffers */
2778 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2779 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2780 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2781 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2782 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2783 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2784
2785 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2786 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2787 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2788 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2789 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2790 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2791 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2792
2793 /* Configure BMUs */
2794 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2795 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2796 SK_RX_RING_ADDR(sc_if, 0));
2797 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2798
2799 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2800 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2801 SK_TX_RING_ADDR(sc_if, 0));
2802 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2803
2804 /* Init descriptors */
2805 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2806 aprint_error("%s: initialization failed: no "
2807 "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2808 sk_stop(ifp,0);
2809 splx(s);
2810 return ENOBUFS;
2811 }
2812
2813 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2814 aprint_error("%s: initialization failed: no "
2815 "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2816 sk_stop(ifp,0);
2817 splx(s);
2818 return ENOBUFS;
2819 }
2820
2821 /* Set interrupt moderation if changed via sysctl. */
2822 switch (sc->sk_type) {
2823 case SK_GENESIS:
2824 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2825 break;
2826 case SK_YUKON_EC:
2827 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2828 break;
2829 default:
2830 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2831 }
2832 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2833 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2834 sk_win_write_4(sc, SK_IMTIMERINIT,
2835 SK_IM_USECS(sc->sk_int_mod));
2836 aprint_verbose("%s: interrupt moderation is %d us\n",
2837 sc->sk_dev.dv_xname, sc->sk_int_mod);
2838 }
2839
2840 /* Configure interrupt handling */
2841 CSR_READ_4(sc, SK_ISSR);
2842 if (sc_if->sk_port == SK_PORT_A)
2843 sc->sk_intrmask |= SK_INTRS1;
2844 else
2845 sc->sk_intrmask |= SK_INTRS2;
2846
2847 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2848
2849 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2850
2851 /* Start BMUs. */
2852 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2853
2854 if (sc->sk_type == SK_GENESIS) {
2855 /* Enable XMACs TX and RX state machines */
2856 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2857 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2858 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2859 }
2860
2861 if (SK_YUKON_FAMILY(sc->sk_type)) {
2862 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2863 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2864 #if 0
2865 /* XXX disable 100Mbps and full duplex mode? */
2866 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2867 #endif
2868 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2869 }
2870
2871
2872 ifp->if_flags |= IFF_RUNNING;
2873 ifp->if_flags &= ~IFF_OACTIVE;
2874
2875 splx(s);
2876 return 0;
2877 }
2878
2879 void
2880 sk_stop(struct ifnet *ifp, int disable)
2881 {
2882 struct sk_if_softc *sc_if = ifp->if_softc;
2883 struct sk_softc *sc = sc_if->sk_softc;
2884 int i;
2885
2886 DPRINTFN(1, ("sk_stop\n"));
2887
2888 callout_stop(&sc_if->sk_tick_ch);
2889
2890 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2891 u_int32_t val;
2892
2893 /* Put PHY back into reset. */
2894 val = sk_win_read_4(sc, SK_GPIO);
2895 if (sc_if->sk_port == SK_PORT_A) {
2896 val |= SK_GPIO_DIR0;
2897 val &= ~SK_GPIO_DAT0;
2898 } else {
2899 val |= SK_GPIO_DIR2;
2900 val &= ~SK_GPIO_DAT2;
2901 }
2902 sk_win_write_4(sc, SK_GPIO, val);
2903 }
2904
2905 /* Turn off various components of this interface. */
2906 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2907 switch (sc->sk_type) {
2908 case SK_GENESIS:
2909 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2910 SK_TXMACCTL_XMAC_RESET);
2911 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2912 break;
2913 case SK_YUKON:
2914 case SK_YUKON_LITE:
2915 case SK_YUKON_LP:
2916 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2917 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2918 break;
2919 }
2920 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2921 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2922 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2923 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2924 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2925 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2926 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2927 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2928 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2929
2930 /* Disable interrupts */
2931 if (sc_if->sk_port == SK_PORT_A)
2932 sc->sk_intrmask &= ~SK_INTRS1;
2933 else
2934 sc->sk_intrmask &= ~SK_INTRS2;
2935 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2936
2937 SK_XM_READ_2(sc_if, XM_ISR);
2938 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2939
2940 /* Free RX and TX mbufs still in the queues. */
2941 for (i = 0; i < SK_RX_RING_CNT; i++) {
2942 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2943 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2944 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2945 }
2946 }
2947
2948 for (i = 0; i < SK_TX_RING_CNT; i++) {
2949 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2950 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2951 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2952 }
2953 }
2954
2955 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2956 }
2957
2958 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2959
2960 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2961
2962 #ifdef SK_DEBUG
2963 void
2964 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2965 {
2966 #define DESC_PRINT(X) \
2967 if (X) \
2968 printf("txdesc[%d]." #X "=%#x\n", \
2969 idx, X);
2970
2971 DESC_PRINT(le32toh(desc->sk_ctl));
2972 DESC_PRINT(le32toh(desc->sk_next));
2973 DESC_PRINT(le32toh(desc->sk_data_lo));
2974 DESC_PRINT(le32toh(desc->sk_data_hi));
2975 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2976 DESC_PRINT(le16toh(desc->sk_rsvd0));
2977 DESC_PRINT(le16toh(desc->sk_csum_startval));
2978 DESC_PRINT(le16toh(desc->sk_csum_startpos));
2979 DESC_PRINT(le16toh(desc->sk_csum_writepos));
2980 DESC_PRINT(le16toh(desc->sk_rsvd1));
2981 #undef PRINT
2982 }
2983
2984 void
2985 sk_dump_bytes(const char *data, int len)
2986 {
2987 int c, i, j;
2988
2989 for (i = 0; i < len; i += 16) {
2990 printf("%08x ", i);
2991 c = len - i;
2992 if (c > 16) c = 16;
2993
2994 for (j = 0; j < c; j++) {
2995 printf("%02x ", data[i + j] & 0xff);
2996 if ((j & 0xf) == 7 && j > 0)
2997 printf(" ");
2998 }
2999
3000 for (; j < 16; j++)
3001 printf(" ");
3002 printf(" ");
3003
3004 for (j = 0; j < c; j++) {
3005 int ch = data[i + j] & 0xff;
3006 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
3007 }
3008
3009 printf("\n");
3010
3011 if (c < 16)
3012 break;
3013 }
3014 }
3015
3016 void
3017 sk_dump_mbuf(struct mbuf *m)
3018 {
3019 int count = m->m_pkthdr.len;
3020
3021 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3022
3023 while (count > 0 && m) {
3024 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3025 m, m->m_data, m->m_len);
3026 sk_dump_bytes(mtod(m, char *), m->m_len);
3027
3028 count -= m->m_len;
3029 m = m->m_next;
3030 }
3031 }
3032 #endif
3033
3034 static int
3035 sk_sysctl_handler(SYSCTLFN_ARGS)
3036 {
3037 int error, t;
3038 struct sysctlnode node;
3039 struct sk_softc *sc;
3040
3041 node = *rnode;
3042 sc = node.sysctl_data;
3043 t = sc->sk_int_mod;
3044 node.sysctl_data = &t;
3045 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3046 if (error || newp == NULL)
3047 return error;
3048
3049 if (t < SK_IM_MIN || t > SK_IM_MAX)
3050 return EINVAL;
3051
3052 /* update the softc with sysctl-changed value, and mark
3053 for hardware update */
3054 sc->sk_int_mod = t;
3055 sc->sk_int_mod_pending = 1;
3056 return 0;
3057 }
3058
3059 /*
3060 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3061 * set up in skc_attach()
3062 */
3063 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3064 {
3065 int rc;
3066 const struct sysctlnode *node;
3067
3068 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3069 0, CTLTYPE_NODE, "hw", NULL,
3070 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3071 goto err;
3072 }
3073
3074 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3075 0, CTLTYPE_NODE, "sk",
3076 SYSCTL_DESCR("sk interface controls"),
3077 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3078 goto err;
3079 }
3080
3081 sk_root_num = node->sysctl_num;
3082 return;
3083
3084 err:
3085 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3086 }
3087