Home | History | Annotate | Line # | Download | only in pci
if_sk.c revision 1.45
      1 /*	$NetBSD: if_sk.c,v 1.45 2007/12/11 11:25:52 lukem Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the NetBSD
     18  *	Foundation, Inc. and its contributors.
     19  * 4. Neither the name of The NetBSD Foundation nor the names of its
     20  *    contributors may be used to endorse or promote products derived
     21  *    from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
     37 
     38 /*
     39  * Copyright (c) 1997, 1998, 1999, 2000
     40  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by Bill Paul.
     53  * 4. Neither the name of the author nor the names of any co-contributors
     54  *    may be used to endorse or promote products derived from this software
     55  *    without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     61  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     62  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     63  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     64  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     65  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     66  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     67  * THE POSSIBILITY OF SUCH DAMAGE.
     68  *
     69  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
     70  */
     71 
     72 /*
     73  * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
     74  *
     75  * Permission to use, copy, modify, and distribute this software for any
     76  * purpose with or without fee is hereby granted, provided that the above
     77  * copyright notice and this permission notice appear in all copies.
     78  *
     79  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     80  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     81  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     82  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     83  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     84  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     85  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     86  */
     87 
     88 /*
     89  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
     90  * the SK-984x series adapters, both single port and dual port.
     91  * References:
     92  * 	The XaQti XMAC II datasheet,
     93  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     94  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
     95  *
     96  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
     97  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
     98  * convenience to others until Vitesse corrects this problem:
     99  *
    100  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
    101  *
    102  * Written by Bill Paul <wpaul (at) ee.columbia.edu>
    103  * Department of Electrical Engineering
    104  * Columbia University, New York City
    105  */
    106 
    107 /*
    108  * The SysKonnect gigabit ethernet adapters consist of two main
    109  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
    110  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
    111  * components and a PHY while the GEnesis controller provides a PCI
    112  * interface with DMA support. Each card may have between 512K and
    113  * 2MB of SRAM on board depending on the configuration.
    114  *
    115  * The SysKonnect GEnesis controller can have either one or two XMAC
    116  * chips connected to it, allowing single or dual port NIC configurations.
    117  * SysKonnect has the distinction of being the only vendor on the market
    118  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
    119  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
    120  * XMAC registers. This driver takes advantage of these features to allow
    121  * both XMACs to operate as independent interfaces.
    122  */
    123 
    124 #include <sys/cdefs.h>
    125 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.45 2007/12/11 11:25:52 lukem Exp $");
    126 
    127 #include "bpfilter.h"
    128 #include "rnd.h"
    129 
    130 #include <sys/param.h>
    131 #include <sys/systm.h>
    132 #include <sys/sockio.h>
    133 #include <sys/mbuf.h>
    134 #include <sys/malloc.h>
    135 #include <sys/kernel.h>
    136 #include <sys/socket.h>
    137 #include <sys/device.h>
    138 #include <sys/queue.h>
    139 #include <sys/callout.h>
    140 #include <sys/sysctl.h>
    141 #include <sys/endian.h>
    142 
    143 #include <net/if.h>
    144 #include <net/if_dl.h>
    145 #include <net/if_types.h>
    146 
    147 #include <net/if_media.h>
    148 
    149 #if NBPFILTER > 0
    150 #include <net/bpf.h>
    151 #endif
    152 #if NRND > 0
    153 #include <sys/rnd.h>
    154 #endif
    155 
    156 #include <dev/mii/mii.h>
    157 #include <dev/mii/miivar.h>
    158 #include <dev/mii/brgphyreg.h>
    159 
    160 #include <dev/pci/pcireg.h>
    161 #include <dev/pci/pcivar.h>
    162 #include <dev/pci/pcidevs.h>
    163 
    164 /* #define SK_USEIOSPACE */
    165 
    166 #include <dev/pci/if_skreg.h>
    167 #include <dev/pci/if_skvar.h>
    168 
    169 int skc_probe(struct device *, struct cfdata *, void *);
    170 void skc_attach(struct device *, struct device *self, void *aux);
    171 int sk_probe(struct device *, struct cfdata *, void *);
    172 void sk_attach(struct device *, struct device *self, void *aux);
    173 int skcprint(void *, const char *);
    174 int sk_intr(void *);
    175 void sk_intr_bcom(struct sk_if_softc *);
    176 void sk_intr_xmac(struct sk_if_softc *);
    177 void sk_intr_yukon(struct sk_if_softc *);
    178 void sk_rxeof(struct sk_if_softc *);
    179 void sk_txeof(struct sk_if_softc *);
    180 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
    181 void sk_start(struct ifnet *);
    182 int sk_ioctl(struct ifnet *, u_long, void *);
    183 int sk_init(struct ifnet *);
    184 void sk_init_xmac(struct sk_if_softc *);
    185 void sk_init_yukon(struct sk_if_softc *);
    186 void sk_stop(struct ifnet *, int);
    187 void sk_watchdog(struct ifnet *);
    188 void sk_shutdown(void *);
    189 int sk_ifmedia_upd(struct ifnet *);
    190 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    191 void sk_reset(struct sk_softc *);
    192 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
    193 int sk_alloc_jumbo_mem(struct sk_if_softc *);
    194 void sk_free_jumbo_mem(struct sk_if_softc *);
    195 void *sk_jalloc(struct sk_if_softc *);
    196 void sk_jfree(struct mbuf *, void *, size_t, void *);
    197 int sk_init_rx_ring(struct sk_if_softc *);
    198 int sk_init_tx_ring(struct sk_if_softc *);
    199 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
    200 void sk_vpd_read_res(struct sk_softc *,
    201 					struct vpd_res *, int);
    202 void sk_vpd_read(struct sk_softc *);
    203 
    204 void sk_update_int_mod(struct sk_softc *);
    205 
    206 int sk_xmac_miibus_readreg(struct device *, int, int);
    207 void sk_xmac_miibus_writereg(struct device *, int, int, int);
    208 void sk_xmac_miibus_statchg(struct device *);
    209 
    210 int sk_marv_miibus_readreg(struct device *, int, int);
    211 void sk_marv_miibus_writereg(struct device *, int, int, int);
    212 void sk_marv_miibus_statchg(struct device *);
    213 
    214 u_int32_t sk_xmac_hash(void *);
    215 u_int32_t sk_yukon_hash(void *);
    216 void sk_setfilt(struct sk_if_softc *, void *, int);
    217 void sk_setmulti(struct sk_if_softc *);
    218 void sk_tick(void *);
    219 
    220 /* #define SK_DEBUG 2 */
    221 #ifdef SK_DEBUG
    222 #define DPRINTF(x)	if (skdebug) printf x
    223 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
    224 int	skdebug = SK_DEBUG;
    225 
    226 void sk_dump_txdesc(struct sk_tx_desc *, int);
    227 void sk_dump_mbuf(struct mbuf *);
    228 void sk_dump_bytes(const char *, int);
    229 #else
    230 #define DPRINTF(x)
    231 #define DPRINTFN(n,x)
    232 #endif
    233 
    234 static int sk_sysctl_handler(SYSCTLFN_PROTO);
    235 static int sk_root_num;
    236 
    237 /* supported device vendors */
    238 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
    239 static const struct sk_product {
    240 	pci_vendor_id_t		sk_vendor;
    241 	pci_product_id_t	sk_product;
    242 } sk_products[] = {
    243 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
    244 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
    245 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
    246 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
    247 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
    248 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
    249 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
    250 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
    251 	{ 0, 0, }
    252 };
    253 
    254 #define SK_LINKSYS_EG1032_SUBID	0x00151737
    255 
    256 static inline u_int32_t
    257 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
    258 {
    259 #ifdef SK_USEIOSPACE
    260 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    261 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
    262 #else
    263 	return CSR_READ_4(sc, reg);
    264 #endif
    265 }
    266 
    267 static inline u_int16_t
    268 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
    269 {
    270 #ifdef SK_USEIOSPACE
    271 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    272 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
    273 #else
    274 	return CSR_READ_2(sc, reg);
    275 #endif
    276 }
    277 
    278 static inline u_int8_t
    279 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
    280 {
    281 #ifdef SK_USEIOSPACE
    282 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    283 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
    284 #else
    285 	return CSR_READ_1(sc, reg);
    286 #endif
    287 }
    288 
    289 static inline void
    290 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
    291 {
    292 #ifdef SK_USEIOSPACE
    293 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    294 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
    295 #else
    296 	CSR_WRITE_4(sc, reg, x);
    297 #endif
    298 }
    299 
    300 static inline void
    301 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
    302 {
    303 #ifdef SK_USEIOSPACE
    304 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    305 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
    306 #else
    307 	CSR_WRITE_2(sc, reg, x);
    308 #endif
    309 }
    310 
    311 static inline void
    312 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
    313 {
    314 #ifdef SK_USEIOSPACE
    315 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    316 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
    317 #else
    318 	CSR_WRITE_1(sc, reg, x);
    319 #endif
    320 }
    321 
    322 /*
    323  * The VPD EEPROM contains Vital Product Data, as suggested in
    324  * the PCI 2.1 specification. The VPD data is separared into areas
    325  * denoted by resource IDs. The SysKonnect VPD contains an ID string
    326  * resource (the name of the adapter), a read-only area resource
    327  * containing various key/data fields and a read/write area which
    328  * can be used to store asset management information or log messages.
    329  * We read the ID string and read-only into buffers attached to
    330  * the controller softc structure for later use. At the moment,
    331  * we only use the ID string during sk_attach().
    332  */
    333 u_int8_t
    334 sk_vpd_readbyte(struct sk_softc *sc, int addr)
    335 {
    336 	int			i;
    337 
    338 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
    339 	for (i = 0; i < SK_TIMEOUT; i++) {
    340 		DELAY(1);
    341 		if (sk_win_read_2(sc,
    342 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
    343 			break;
    344 	}
    345 
    346 	if (i == SK_TIMEOUT)
    347 		return 0;
    348 
    349 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
    350 }
    351 
    352 void
    353 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
    354 {
    355 	int			i;
    356 	u_int8_t		*ptr;
    357 
    358 	ptr = (u_int8_t *)res;
    359 	for (i = 0; i < sizeof(struct vpd_res); i++)
    360 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
    361 }
    362 
    363 void
    364 sk_vpd_read(struct sk_softc *sc)
    365 {
    366 	int			pos = 0, i;
    367 	struct vpd_res		res;
    368 
    369 	if (sc->sk_vpd_prodname != NULL)
    370 		free(sc->sk_vpd_prodname, M_DEVBUF);
    371 	if (sc->sk_vpd_readonly != NULL)
    372 		free(sc->sk_vpd_readonly, M_DEVBUF);
    373 	sc->sk_vpd_prodname = NULL;
    374 	sc->sk_vpd_readonly = NULL;
    375 
    376 	sk_vpd_read_res(sc, &res, pos);
    377 
    378 	if (res.vr_id != VPD_RES_ID) {
    379 		aprint_error("%s: bad VPD resource id: expected %x got %x\n",
    380 		    sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
    381 		return;
    382 	}
    383 
    384 	pos += sizeof(res);
    385 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    386 	if (sc->sk_vpd_prodname == NULL)
    387 		panic("sk_vpd_read");
    388 	for (i = 0; i < res.vr_len; i++)
    389 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
    390 	sc->sk_vpd_prodname[i] = '\0';
    391 	pos += i;
    392 
    393 	sk_vpd_read_res(sc, &res, pos);
    394 
    395 	if (res.vr_id != VPD_RES_READ) {
    396 		aprint_error("%s: bad VPD resource id: expected %x got %x\n",
    397 		    sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
    398 		return;
    399 	}
    400 
    401 	pos += sizeof(res);
    402 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    403 	if (sc->sk_vpd_readonly == NULL)
    404 		panic("sk_vpd_read");
    405 	for (i = 0; i < res.vr_len ; i++)
    406 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
    407 }
    408 
    409 int
    410 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
    411 {
    412 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    413 	int i;
    414 
    415 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
    416 
    417 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
    418 		return 0;
    419 
    420 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    421 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
    422 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    423 		for (i = 0; i < SK_TIMEOUT; i++) {
    424 			DELAY(1);
    425 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
    426 			    XM_MMUCMD_PHYDATARDY)
    427 				break;
    428 		}
    429 
    430 		if (i == SK_TIMEOUT) {
    431 			aprint_error("%s: phy failed to come ready\n",
    432 			    sc_if->sk_dev.dv_xname);
    433 			return 0;
    434 		}
    435 	}
    436 	DELAY(1);
    437 	return SK_XM_READ_2(sc_if, XM_PHY_DATA);
    438 }
    439 
    440 void
    441 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
    442 {
    443 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    444 	int i;
    445 
    446 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
    447 
    448 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    449 	for (i = 0; i < SK_TIMEOUT; i++) {
    450 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    451 			break;
    452 	}
    453 
    454 	if (i == SK_TIMEOUT) {
    455 		aprint_error("%s: phy failed to come ready\n",
    456 		    sc_if->sk_dev.dv_xname);
    457 		return;
    458 	}
    459 
    460 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
    461 	for (i = 0; i < SK_TIMEOUT; i++) {
    462 		DELAY(1);
    463 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    464 			break;
    465 	}
    466 
    467 	if (i == SK_TIMEOUT)
    468 		aprint_error("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
    469 }
    470 
    471 void
    472 sk_xmac_miibus_statchg(struct device *dev)
    473 {
    474 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    475 	struct mii_data *mii = &sc_if->sk_mii;
    476 
    477 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
    478 
    479 	/*
    480 	 * If this is a GMII PHY, manually set the XMAC's
    481 	 * duplex mode accordingly.
    482 	 */
    483 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    484 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
    485 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    486 		else
    487 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    488 	}
    489 }
    490 
    491 int
    492 sk_marv_miibus_readreg(struct device *dev, int phy, int reg)
    493 {
    494 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    495 	u_int16_t val;
    496 	int i;
    497 
    498 	if (phy != 0 ||
    499 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
    500 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
    501 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
    502 			     phy, reg));
    503 		return 0;
    504 	}
    505 
    506         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    507 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
    508 
    509 	for (i = 0; i < SK_TIMEOUT; i++) {
    510 		DELAY(1);
    511 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
    512 		if (val & YU_SMICR_READ_VALID)
    513 			break;
    514 	}
    515 
    516 	if (i == SK_TIMEOUT) {
    517 		aprint_error("%s: phy failed to come ready\n",
    518 		       sc_if->sk_dev.dv_xname);
    519 		return 0;
    520 	}
    521 
    522  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
    523 		     SK_TIMEOUT));
    524 
    525         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
    526 
    527 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
    528 		     phy, reg, val));
    529 
    530 	return val;
    531 }
    532 
    533 void
    534 sk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
    535 {
    536 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    537 	int i;
    538 
    539 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
    540 		     phy, reg, val));
    541 
    542 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
    543 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    544 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
    545 
    546 	for (i = 0; i < SK_TIMEOUT; i++) {
    547 		DELAY(1);
    548 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
    549 			break;
    550 	}
    551 
    552 	if (i == SK_TIMEOUT)
    553 		printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
    554 }
    555 
    556 void
    557 sk_marv_miibus_statchg(struct device *dev)
    558 {
    559 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
    560 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
    561 }
    562 
    563 #define SK_HASH_BITS		6
    564 
    565 u_int32_t
    566 sk_xmac_hash(void *addr)
    567 {
    568 	u_int32_t		crc;
    569 
    570 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
    571 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
    572 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    573 	return crc;
    574 }
    575 
    576 u_int32_t
    577 sk_yukon_hash(void *addr)
    578 {
    579 	u_int32_t		crc;
    580 
    581 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
    582 	crc &= ((1 << SK_HASH_BITS) - 1);
    583 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    584 	return crc;
    585 }
    586 
    587 void
    588 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
    589 {
    590 	char *addr = addrv;
    591 	int base = XM_RXFILT_ENTRY(slot);
    592 
    593 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
    594 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
    595 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
    596 }
    597 
    598 void
    599 sk_setmulti(struct sk_if_softc *sc_if)
    600 {
    601 	struct sk_softc *sc = sc_if->sk_softc;
    602 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
    603 	u_int32_t hashes[2] = { 0, 0 };
    604 	int h = 0, i;
    605 	struct ethercom *ec = &sc_if->sk_ethercom;
    606 	struct ether_multi *enm;
    607 	struct ether_multistep step;
    608 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
    609 
    610 	/* First, zot all the existing filters. */
    611 	switch (sc->sk_type) {
    612 	case SK_GENESIS:
    613 		for (i = 1; i < XM_RXFILT_MAX; i++)
    614 			sk_setfilt(sc_if, (void *)&dummy, i);
    615 
    616 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
    617 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
    618 		break;
    619 	case SK_YUKON:
    620 	case SK_YUKON_LITE:
    621 	case SK_YUKON_LP:
    622 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
    623 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
    624 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
    625 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
    626 		break;
    627 	}
    628 
    629 	/* Now program new ones. */
    630 allmulti:
    631 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    632 		hashes[0] = 0xFFFFFFFF;
    633 		hashes[1] = 0xFFFFFFFF;
    634 	} else {
    635 		i = 1;
    636 		/* First find the tail of the list. */
    637 		ETHER_FIRST_MULTI(step, ec, enm);
    638 		while (enm != NULL) {
    639 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
    640 				 ETHER_ADDR_LEN)) {
    641 				ifp->if_flags |= IFF_ALLMULTI;
    642 				goto allmulti;
    643 			}
    644 			DPRINTFN(2,("multicast address %s\n",
    645 	    			ether_sprintf(enm->enm_addrlo)));
    646 			/*
    647 			 * Program the first XM_RXFILT_MAX multicast groups
    648 			 * into the perfect filter. For all others,
    649 			 * use the hash table.
    650 			 */
    651 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
    652 				sk_setfilt(sc_if, enm->enm_addrlo, i);
    653 				i++;
    654 			}
    655 			else {
    656 				switch (sc->sk_type) {
    657 				case SK_GENESIS:
    658 					h = sk_xmac_hash(enm->enm_addrlo);
    659 					break;
    660 				case SK_YUKON:
    661 				case SK_YUKON_LITE:
    662 				case SK_YUKON_LP:
    663 					h = sk_yukon_hash(enm->enm_addrlo);
    664 					break;
    665 				}
    666 				if (h < 32)
    667 					hashes[0] |= (1 << h);
    668 				else
    669 					hashes[1] |= (1 << (h - 32));
    670 			}
    671 
    672 			ETHER_NEXT_MULTI(step, enm);
    673 		}
    674 	}
    675 
    676 	switch (sc->sk_type) {
    677 	case SK_GENESIS:
    678 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
    679 			       XM_MODE_RX_USE_PERFECT);
    680 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
    681 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
    682 		break;
    683 	case SK_YUKON:
    684 	case SK_YUKON_LITE:
    685 	case SK_YUKON_LP:
    686 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
    687 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
    688 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
    689 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
    690 		break;
    691 	}
    692 }
    693 
    694 int
    695 sk_init_rx_ring(struct sk_if_softc *sc_if)
    696 {
    697 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    698 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    699 	int			i;
    700 
    701 	bzero((char *)rd->sk_rx_ring,
    702 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
    703 
    704 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    705 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
    706 		if (i == (SK_RX_RING_CNT - 1)) {
    707 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
    708 			rd->sk_rx_ring[i].sk_next =
    709 				htole32(SK_RX_RING_ADDR(sc_if, 0));
    710 		} else {
    711 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
    712 			rd->sk_rx_ring[i].sk_next =
    713 				htole32(SK_RX_RING_ADDR(sc_if,i+1));
    714 		}
    715 	}
    716 
    717 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    718 		if (sk_newbuf(sc_if, i, NULL,
    719 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
    720 			aprint_error("%s: failed alloc of %dth mbuf\n",
    721 			    sc_if->sk_dev.dv_xname, i);
    722 			return ENOBUFS;
    723 		}
    724 	}
    725 	sc_if->sk_cdata.sk_rx_prod = 0;
    726 	sc_if->sk_cdata.sk_rx_cons = 0;
    727 
    728 	return 0;
    729 }
    730 
    731 int
    732 sk_init_tx_ring(struct sk_if_softc *sc_if)
    733 {
    734 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    735 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    736 	int			i;
    737 
    738 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
    739 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
    740 
    741 	for (i = 0; i < SK_TX_RING_CNT; i++) {
    742 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
    743 		if (i == (SK_TX_RING_CNT - 1)) {
    744 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
    745 			rd->sk_tx_ring[i].sk_next =
    746 				htole32(SK_TX_RING_ADDR(sc_if, 0));
    747 		} else {
    748 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
    749 			rd->sk_tx_ring[i].sk_next =
    750 				htole32(SK_TX_RING_ADDR(sc_if,i+1));
    751 		}
    752 	}
    753 
    754 	sc_if->sk_cdata.sk_tx_prod = 0;
    755 	sc_if->sk_cdata.sk_tx_cons = 0;
    756 	sc_if->sk_cdata.sk_tx_cnt = 0;
    757 
    758 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
    759 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    760 
    761 	return 0;
    762 }
    763 
    764 int
    765 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
    766 	  bus_dmamap_t dmamap)
    767 {
    768 	struct mbuf		*m_new = NULL;
    769 	struct sk_chain		*c;
    770 	struct sk_rx_desc	*r;
    771 
    772 	if (m == NULL) {
    773 		void *buf = NULL;
    774 
    775 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    776 		if (m_new == NULL) {
    777 			aprint_error("%s: no memory for rx list -- "
    778 			    "packet dropped!\n", sc_if->sk_dev.dv_xname);
    779 			return ENOBUFS;
    780 		}
    781 
    782 		/* Allocate the jumbo buffer */
    783 		buf = sk_jalloc(sc_if);
    784 		if (buf == NULL) {
    785 			m_freem(m_new);
    786 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
    787 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
    788 			return ENOBUFS;
    789 		}
    790 
    791 		/* Attach the buffer to the mbuf */
    792 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    793 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
    794 
    795 	} else {
    796 		/*
    797 	 	 * We're re-using a previously allocated mbuf;
    798 		 * be sure to re-init pointers and lengths to
    799 		 * default values.
    800 		 */
    801 		m_new = m;
    802 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    803 		m_new->m_data = m_new->m_ext.ext_buf;
    804 	}
    805 	m_adj(m_new, ETHER_ALIGN);
    806 
    807 	c = &sc_if->sk_cdata.sk_rx_chain[i];
    808 	r = c->sk_desc;
    809 	c->sk_mbuf = m_new;
    810 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
    811 	    (((vaddr_t)m_new->m_data
    812 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
    813 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
    814 
    815 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    816 
    817 	return 0;
    818 }
    819 
    820 /*
    821  * Memory management for jumbo frames.
    822  */
    823 
    824 int
    825 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
    826 {
    827 	struct sk_softc		*sc = sc_if->sk_softc;
    828 	char *ptr, *kva;
    829 	bus_dma_segment_t	seg;
    830 	int		i, rseg, state, error;
    831 	struct sk_jpool_entry   *entry;
    832 
    833 	state = error = 0;
    834 
    835 	/* Grab a big chunk o' storage. */
    836 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
    837 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    838 		aprint_error("%s: can't alloc rx buffers\n", sc->sk_dev.dv_xname);
    839 		return ENOBUFS;
    840 	}
    841 
    842 	state = 1;
    843 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
    844 			   BUS_DMA_NOWAIT)) {
    845 		aprint_error("%s: can't map dma buffers (%d bytes)\n",
    846 		    sc->sk_dev.dv_xname, SK_JMEM);
    847 		error = ENOBUFS;
    848 		goto out;
    849 	}
    850 
    851 	state = 2;
    852 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
    853 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
    854 		aprint_error("%s: can't create dma map\n", sc->sk_dev.dv_xname);
    855 		error = ENOBUFS;
    856 		goto out;
    857 	}
    858 
    859 	state = 3;
    860 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
    861 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
    862 		aprint_error("%s: can't load dma map\n", sc->sk_dev.dv_xname);
    863 		error = ENOBUFS;
    864 		goto out;
    865 	}
    866 
    867 	state = 4;
    868 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
    869 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
    870 
    871 	LIST_INIT(&sc_if->sk_jfree_listhead);
    872 	LIST_INIT(&sc_if->sk_jinuse_listhead);
    873 
    874 	/*
    875 	 * Now divide it up into 9K pieces and save the addresses
    876 	 * in an array.
    877 	 */
    878 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
    879 	for (i = 0; i < SK_JSLOTS; i++) {
    880 		sc_if->sk_cdata.sk_jslots[i] = ptr;
    881 		ptr += SK_JLEN;
    882 		entry = malloc(sizeof(struct sk_jpool_entry),
    883 		    M_DEVBUF, M_NOWAIT);
    884 		if (entry == NULL) {
    885 			aprint_error("%s: no memory for jumbo buffer queue!\n",
    886 			    sc->sk_dev.dv_xname);
    887 			error = ENOBUFS;
    888 			goto out;
    889 		}
    890 		entry->slot = i;
    891 		if (i)
    892 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
    893 				 entry, jpool_entries);
    894 		else
    895 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
    896 				 entry, jpool_entries);
    897 	}
    898 out:
    899 	if (error != 0) {
    900 		switch (state) {
    901 		case 4:
    902 			bus_dmamap_unload(sc->sc_dmatag,
    903 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    904 		case 3:
    905 			bus_dmamap_destroy(sc->sc_dmatag,
    906 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    907 		case 2:
    908 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
    909 		case 1:
    910 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
    911 			break;
    912 		default:
    913 			break;
    914 		}
    915 	}
    916 
    917 	return error;
    918 }
    919 
    920 /*
    921  * Allocate a jumbo buffer.
    922  */
    923 void *
    924 sk_jalloc(struct sk_if_softc *sc_if)
    925 {
    926 	struct sk_jpool_entry   *entry;
    927 
    928 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
    929 
    930 	if (entry == NULL)
    931 		return NULL;
    932 
    933 	LIST_REMOVE(entry, jpool_entries);
    934 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
    935 	return sc_if->sk_cdata.sk_jslots[entry->slot];
    936 }
    937 
    938 /*
    939  * Release a jumbo buffer.
    940  */
    941 void
    942 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
    943 {
    944 	struct sk_jpool_entry *entry;
    945 	struct sk_if_softc *sc;
    946 	int i, s;
    947 
    948 	/* Extract the softc struct pointer. */
    949 	sc = (struct sk_if_softc *)arg;
    950 
    951 	if (sc == NULL)
    952 		panic("sk_jfree: can't find softc pointer!");
    953 
    954 	/* calculate the slot this buffer belongs to */
    955 
    956 	i = ((vaddr_t)buf
    957 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
    958 
    959 	if ((i < 0) || (i >= SK_JSLOTS))
    960 		panic("sk_jfree: asked to free buffer that we don't manage!");
    961 
    962 	s = splvm();
    963 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
    964 	if (entry == NULL)
    965 		panic("sk_jfree: buffer not in use!");
    966 	entry->slot = i;
    967 	LIST_REMOVE(entry, jpool_entries);
    968 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
    969 
    970 	if (__predict_true(m != NULL))
    971 		pool_cache_put(mb_cache, m);
    972 	splx(s);
    973 }
    974 
    975 /*
    976  * Set media options.
    977  */
    978 int
    979 sk_ifmedia_upd(struct ifnet *ifp)
    980 {
    981 	struct sk_if_softc *sc_if = ifp->if_softc;
    982 
    983 	(void) sk_init(ifp);
    984 	mii_mediachg(&sc_if->sk_mii);
    985 	return 0;
    986 }
    987 
    988 /*
    989  * Report current media status.
    990  */
    991 void
    992 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
    993 {
    994 	struct sk_if_softc *sc_if = ifp->if_softc;
    995 
    996 	mii_pollstat(&sc_if->sk_mii);
    997 	ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
    998 	ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
    999 }
   1000 
   1001 int
   1002 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
   1003 {
   1004 	struct sk_if_softc *sc_if = ifp->if_softc;
   1005 	struct sk_softc *sc = sc_if->sk_softc;
   1006 	struct ifreq *ifr = (struct ifreq *) data;
   1007 	struct mii_data *mii;
   1008 	int s, error = 0;
   1009 
   1010 	/* DPRINTFN(2, ("sk_ioctl\n")); */
   1011 
   1012 	s = splnet();
   1013 
   1014 	switch (command) {
   1015 
   1016 	case SIOCSIFFLAGS:
   1017 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
   1018 		if (ifp->if_flags & IFF_UP) {
   1019 			if (ifp->if_flags & IFF_RUNNING &&
   1020 			    ifp->if_flags & IFF_PROMISC &&
   1021 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
   1022 				switch (sc->sk_type) {
   1023 				case SK_GENESIS:
   1024 					SK_XM_SETBIT_4(sc_if, XM_MODE,
   1025 					    XM_MODE_RX_PROMISC);
   1026 					break;
   1027 				case SK_YUKON:
   1028 				case SK_YUKON_LITE:
   1029 				case SK_YUKON_LP:
   1030 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
   1031 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1032 					break;
   1033 				}
   1034 				sk_setmulti(sc_if);
   1035 			} else if (ifp->if_flags & IFF_RUNNING &&
   1036 			    !(ifp->if_flags & IFF_PROMISC) &&
   1037 			    sc_if->sk_if_flags & IFF_PROMISC) {
   1038 				switch (sc->sk_type) {
   1039 				case SK_GENESIS:
   1040 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
   1041 					    XM_MODE_RX_PROMISC);
   1042 					break;
   1043 				case SK_YUKON:
   1044 				case SK_YUKON_LITE:
   1045 				case SK_YUKON_LP:
   1046 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
   1047 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1048 					break;
   1049 				}
   1050 
   1051 				sk_setmulti(sc_if);
   1052 			} else
   1053 				(void) sk_init(ifp);
   1054 		} else {
   1055 			if (ifp->if_flags & IFF_RUNNING)
   1056 				sk_stop(ifp,0);
   1057 		}
   1058 		sc_if->sk_if_flags = ifp->if_flags;
   1059 		error = 0;
   1060 		break;
   1061 
   1062 	case SIOCGIFMEDIA:
   1063 	case SIOCSIFMEDIA:
   1064 	        DPRINTFN(2, ("sk_ioctl MEDIA\n"));
   1065 		mii = &sc_if->sk_mii;
   1066 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   1067 		break;
   1068 	default:
   1069 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
   1070 		error = ether_ioctl(ifp, command, data);
   1071 
   1072 		if ( error == ENETRESET) {
   1073 			if (ifp->if_flags & IFF_RUNNING) {
   1074 				sk_setmulti(sc_if);
   1075 				DPRINTFN(2, ("sk_ioctl setmulti called\n"));
   1076 			}
   1077 			error = 0;
   1078 		} else if ( error ) {
   1079 			splx(s);
   1080 			return error;
   1081 		}
   1082 		break;
   1083 	}
   1084 
   1085 	splx(s);
   1086 	return error;
   1087 }
   1088 
   1089 void
   1090 sk_update_int_mod(struct sk_softc *sc)
   1091 {
   1092 	u_int32_t imtimer_ticks;
   1093 
   1094 	/*
   1095          * Configure interrupt moderation. The moderation timer
   1096 	 * defers interrupts specified in the interrupt moderation
   1097 	 * timer mask based on the timeout specified in the interrupt
   1098 	 * moderation timer init register. Each bit in the timer
   1099 	 * register represents one tick, so to specify a timeout in
   1100 	 * microseconds, we have to multiply by the correct number of
   1101 	 * ticks-per-microsecond.
   1102 	 */
   1103 	switch (sc->sk_type) {
   1104 	case SK_GENESIS:
   1105 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   1106 		break;
   1107 	case SK_YUKON_EC:
   1108 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   1109 		break;
   1110 	default:
   1111 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   1112 	}
   1113 	aprint_verbose("%s: interrupt moderation is %d us\n",
   1114 	    sc->sk_dev.dv_xname, sc->sk_int_mod);
   1115         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
   1116         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
   1117 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
   1118         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
   1119 	sc->sk_int_mod_pending = 0;
   1120 }
   1121 
   1122 /*
   1123  * Lookup: Check the PCI vendor and device, and return a pointer to
   1124  * The structure if the IDs match against our list.
   1125  */
   1126 
   1127 static const struct sk_product *
   1128 sk_lookup(const struct pci_attach_args *pa)
   1129 {
   1130 	const struct sk_product *psk;
   1131 
   1132 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
   1133 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
   1134 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
   1135 			return psk;
   1136 	}
   1137 	return NULL;
   1138 }
   1139 
   1140 /*
   1141  * Probe for a SysKonnect GEnesis chip.
   1142  */
   1143 
   1144 int
   1145 skc_probe(struct device *parent, struct cfdata *match,
   1146     void *aux)
   1147 {
   1148 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1149 	const struct sk_product *psk;
   1150 	pcireg_t subid;
   1151 
   1152 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
   1153 
   1154 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
   1155 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
   1156 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
   1157 	    subid == SK_LINKSYS_EG1032_SUBID)
   1158 		return 1;
   1159 
   1160 	if ((psk = sk_lookup(pa))) {
   1161 		return 1;
   1162 	}
   1163 	return 0;
   1164 }
   1165 
   1166 /*
   1167  * Force the GEnesis into reset, then bring it out of reset.
   1168  */
   1169 void sk_reset(struct sk_softc *sc)
   1170 {
   1171 	DPRINTFN(2, ("sk_reset\n"));
   1172 
   1173 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
   1174 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
   1175 	if (SK_YUKON_FAMILY(sc->sk_type))
   1176 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
   1177 
   1178 	DELAY(1000);
   1179 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
   1180 	DELAY(2);
   1181 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
   1182 	if (SK_YUKON_FAMILY(sc->sk_type))
   1183 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
   1184 
   1185 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
   1186 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
   1187 		     CSR_READ_2(sc, SK_LINK_CTRL)));
   1188 
   1189 	if (sc->sk_type == SK_GENESIS) {
   1190 		/* Configure packet arbiter */
   1191 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
   1192 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1193 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1194 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1195 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1196 	}
   1197 
   1198 	/* Enable RAM interface */
   1199 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
   1200 
   1201 	sk_update_int_mod(sc);
   1202 }
   1203 
   1204 int
   1205 sk_probe(struct device *parent, struct cfdata *match,
   1206     void *aux)
   1207 {
   1208 	struct skc_attach_args *sa = aux;
   1209 
   1210 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
   1211 		return 0;
   1212 
   1213 	return 1;
   1214 }
   1215 
   1216 /*
   1217  * Each XMAC chip is attached as a separate logical IP interface.
   1218  * Single port cards will have only one logical interface of course.
   1219  */
   1220 void
   1221 sk_attach(struct device *parent, struct device *self, void *aux)
   1222 {
   1223 	struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
   1224 	struct sk_softc *sc = (struct sk_softc *)parent;
   1225 	struct skc_attach_args *sa = aux;
   1226 	struct sk_txmap_entry	*entry;
   1227 	struct ifnet *ifp;
   1228 	bus_dma_segment_t seg;
   1229 	bus_dmamap_t dmamap;
   1230 	void *kva;
   1231 	int i, rseg;
   1232 
   1233 	aprint_naive("\n");
   1234 
   1235 	sc_if->sk_port = sa->skc_port;
   1236 	sc_if->sk_softc = sc;
   1237 	sc->sk_if[sa->skc_port] = sc_if;
   1238 
   1239 	if (sa->skc_port == SK_PORT_A)
   1240 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
   1241 	if (sa->skc_port == SK_PORT_B)
   1242 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
   1243 
   1244 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
   1245 
   1246 	/*
   1247 	 * Get station address for this interface. Note that
   1248 	 * dual port cards actually come with three station
   1249 	 * addresses: one for each port, plus an extra. The
   1250 	 * extra one is used by the SysKonnect driver software
   1251 	 * as a 'virtual' station address for when both ports
   1252 	 * are operating in failover mode. Currently we don't
   1253 	 * use this extra address.
   1254 	 */
   1255 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1256 		sc_if->sk_enaddr[i] =
   1257 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
   1258 
   1259 
   1260 	aprint_normal(": Ethernet address %s\n",
   1261 	    ether_sprintf(sc_if->sk_enaddr));
   1262 
   1263 	/*
   1264 	 * Set up RAM buffer addresses. The NIC will have a certain
   1265 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
   1266 	 * need to divide this up a) between the transmitter and
   1267  	 * receiver and b) between the two XMACs, if this is a
   1268 	 * dual port NIC. Our algorithm is to divide up the memory
   1269 	 * evenly so that everyone gets a fair share.
   1270 	 */
   1271 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
   1272 		u_int32_t		chunk, val;
   1273 
   1274 		chunk = sc->sk_ramsize / 2;
   1275 		val = sc->sk_rboff / sizeof(u_int64_t);
   1276 		sc_if->sk_rx_ramstart = val;
   1277 		val += (chunk / sizeof(u_int64_t));
   1278 		sc_if->sk_rx_ramend = val - 1;
   1279 		sc_if->sk_tx_ramstart = val;
   1280 		val += (chunk / sizeof(u_int64_t));
   1281 		sc_if->sk_tx_ramend = val - 1;
   1282 	} else {
   1283 		u_int32_t		chunk, val;
   1284 
   1285 		chunk = sc->sk_ramsize / 4;
   1286 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
   1287 		    sizeof(u_int64_t);
   1288 		sc_if->sk_rx_ramstart = val;
   1289 		val += (chunk / sizeof(u_int64_t));
   1290 		sc_if->sk_rx_ramend = val - 1;
   1291 		sc_if->sk_tx_ramstart = val;
   1292 		val += (chunk / sizeof(u_int64_t));
   1293 		sc_if->sk_tx_ramend = val - 1;
   1294 	}
   1295 
   1296 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
   1297 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
   1298 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
   1299 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
   1300 
   1301 	/* Read and save PHY type and set PHY address */
   1302 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
   1303 	switch (sc_if->sk_phytype) {
   1304 	case SK_PHYTYPE_XMAC:
   1305 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
   1306 		break;
   1307 	case SK_PHYTYPE_BCOM:
   1308 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
   1309 		break;
   1310 	case SK_PHYTYPE_MARV_COPPER:
   1311 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
   1312 		break;
   1313 	default:
   1314 		aprint_error("%s: unsupported PHY type: %d\n",
   1315 		    sc->sk_dev.dv_xname, sc_if->sk_phytype);
   1316 		return;
   1317 	}
   1318 
   1319 	/* Allocate the descriptor queues. */
   1320 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
   1321 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1322 		aprint_error("%s: can't alloc rx buffers\n",
   1323 		    sc->sk_dev.dv_xname);
   1324 		goto fail;
   1325 	}
   1326 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
   1327 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
   1328 		aprint_error("%s: can't map dma buffers (%lu bytes)\n",
   1329 		       sc_if->sk_dev.dv_xname,
   1330 		       (u_long) sizeof(struct sk_ring_data));
   1331 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1332 		goto fail;
   1333 	}
   1334 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
   1335 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
   1336             &sc_if->sk_ring_map)) {
   1337 		aprint_error("%s: can't create dma map\n",
   1338 		    sc_if->sk_dev.dv_xname);
   1339 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1340 		    sizeof(struct sk_ring_data));
   1341 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1342 		goto fail;
   1343 	}
   1344 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
   1345 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
   1346 		aprint_error("%s: can't load dma map\n",
   1347 		    sc_if->sk_dev.dv_xname);
   1348 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1349 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1350 		    sizeof(struct sk_ring_data));
   1351 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1352 		goto fail;
   1353 	}
   1354 
   1355 	for (i = 0; i < SK_RX_RING_CNT; i++)
   1356 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   1357 
   1358 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
   1359 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   1360 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   1361 
   1362 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
   1363 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
   1364 			aprint_error("%s: Can't create TX dmamap\n",
   1365 				sc_if->sk_dev.dv_xname);
   1366 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1367 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1368 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1369 			    sizeof(struct sk_ring_data));
   1370 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1371 			goto fail;
   1372 		}
   1373 
   1374 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
   1375 		if (!entry) {
   1376 			aprint_error("%s: Can't alloc txmap entry\n",
   1377 				sc_if->sk_dev.dv_xname);
   1378 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
   1379 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1380 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1381 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1382 			    sizeof(struct sk_ring_data));
   1383 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1384 			goto fail;
   1385 		}
   1386 		entry->dmamap = dmamap;
   1387 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
   1388 	}
   1389 
   1390         sc_if->sk_rdata = (struct sk_ring_data *)kva;
   1391 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
   1392 
   1393 	ifp = &sc_if->sk_ethercom.ec_if;
   1394 	/* Try to allocate memory for jumbo buffers. */
   1395 	if (sk_alloc_jumbo_mem(sc_if)) {
   1396 		aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
   1397 		goto fail;
   1398 	}
   1399 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
   1400 		| ETHERCAP_JUMBO_MTU;
   1401 
   1402 	ifp->if_softc = sc_if;
   1403 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1404 	ifp->if_ioctl = sk_ioctl;
   1405 	ifp->if_start = sk_start;
   1406 	ifp->if_stop = sk_stop;
   1407 	ifp->if_init = sk_init;
   1408 	ifp->if_watchdog = sk_watchdog;
   1409 	ifp->if_capabilities = 0;
   1410 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
   1411 	IFQ_SET_READY(&ifp->if_snd);
   1412 	strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
   1413 
   1414 	/*
   1415 	 * Do miibus setup.
   1416 	 */
   1417 	switch (sc->sk_type) {
   1418 	case SK_GENESIS:
   1419 		sk_init_xmac(sc_if);
   1420 		break;
   1421 	case SK_YUKON:
   1422 	case SK_YUKON_LITE:
   1423 	case SK_YUKON_LP:
   1424 		sk_init_yukon(sc_if);
   1425 		break;
   1426 	default:
   1427 		aprint_error("%s: unknown device type %d\n",
   1428 		    sc->sk_dev.dv_xname, sc->sk_type);
   1429 		goto fail;
   1430 	}
   1431 
   1432  	DPRINTFN(2, ("sk_attach: 1\n"));
   1433 
   1434 	sc_if->sk_mii.mii_ifp = ifp;
   1435 	switch (sc->sk_type) {
   1436 	case SK_GENESIS:
   1437 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
   1438 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
   1439 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
   1440 		break;
   1441 	case SK_YUKON:
   1442 	case SK_YUKON_LITE:
   1443 	case SK_YUKON_LP:
   1444 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
   1445 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
   1446 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
   1447 		break;
   1448 	}
   1449 
   1450 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
   1451 	    sk_ifmedia_upd, sk_ifmedia_sts);
   1452 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
   1453 	    MII_OFFSET_ANY, 0);
   1454 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
   1455 		aprint_error("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
   1456 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
   1457 			    0, NULL);
   1458 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
   1459 	} else
   1460 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1461 
   1462 	callout_init(&sc_if->sk_tick_ch, 0);
   1463 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
   1464 
   1465 	DPRINTFN(2, ("sk_attach: 1\n"));
   1466 
   1467 	/*
   1468 	 * Call MI attach routines.
   1469 	 */
   1470 	if_attach(ifp);
   1471 
   1472 	ether_ifattach(ifp, sc_if->sk_enaddr);
   1473 
   1474 #if NRND > 0
   1475         rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
   1476             RND_TYPE_NET, 0);
   1477 #endif
   1478 
   1479 	DPRINTFN(2, ("sk_attach: end\n"));
   1480 
   1481 	return;
   1482 
   1483 fail:
   1484 	sc->sk_if[sa->skc_port] = NULL;
   1485 }
   1486 
   1487 int
   1488 skcprint(void *aux, const char *pnp)
   1489 {
   1490 	struct skc_attach_args *sa = aux;
   1491 
   1492 	if (pnp)
   1493 		aprint_normal("sk port %c at %s",
   1494 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
   1495 	else
   1496 		aprint_normal(" port %c",
   1497 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
   1498 	return UNCONF;
   1499 }
   1500 
   1501 /*
   1502  * Attach the interface. Allocate softc structures, do ifmedia
   1503  * setup and ethernet/BPF attach.
   1504  */
   1505 void
   1506 skc_attach(struct device *parent, struct device *self, void *aux)
   1507 {
   1508 	struct sk_softc *sc = (struct sk_softc *)self;
   1509 	struct pci_attach_args *pa = aux;
   1510 	struct skc_attach_args skca;
   1511 	pci_chipset_tag_t pc = pa->pa_pc;
   1512 #ifndef SK_USEIOSPACE
   1513 	pcireg_t memtype;
   1514 #endif
   1515 	pci_intr_handle_t ih;
   1516 	const char *intrstr = NULL;
   1517 	bus_addr_t iobase;
   1518 	bus_size_t iosize;
   1519 	int rc, sk_nodenum;
   1520 	u_int32_t command;
   1521 	const char *revstr;
   1522 	const struct sysctlnode *node;
   1523 
   1524 	aprint_naive("\n");
   1525 
   1526 	DPRINTFN(2, ("begin skc_attach\n"));
   1527 
   1528 	/*
   1529 	 * Handle power management nonsense.
   1530 	 */
   1531 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
   1532 
   1533 	if (command == 0x01) {
   1534 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
   1535 		if (command & SK_PSTATE_MASK) {
   1536 			u_int32_t		xiobase, membase, irq;
   1537 
   1538 			/* Save important PCI config data. */
   1539 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
   1540 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
   1541 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
   1542 
   1543 			/* Reset the power state. */
   1544 			aprint_normal("%s chip is in D%d power mode "
   1545 			    "-- setting to D0\n", sc->sk_dev.dv_xname,
   1546 			    command & SK_PSTATE_MASK);
   1547 			command &= 0xFFFFFFFC;
   1548 			pci_conf_write(pc, pa->pa_tag,
   1549 			    SK_PCI_PWRMGMTCTRL, command);
   1550 
   1551 			/* Restore PCI config data. */
   1552 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
   1553 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
   1554 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
   1555 		}
   1556 	}
   1557 
   1558 	/*
   1559 	 * Map control/status registers.
   1560 	 */
   1561 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1562 	command |= PCI_COMMAND_IO_ENABLE |
   1563 	    PCI_COMMAND_MEM_ENABLE |
   1564 	    PCI_COMMAND_MASTER_ENABLE;
   1565 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1566 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1567 
   1568 #ifdef SK_USEIOSPACE
   1569 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
   1570 		aprint_error(": failed to enable I/O ports!\n");
   1571 		return;
   1572 	}
   1573 	/*
   1574 	 * Map control/status registers.
   1575 	 */
   1576 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
   1577 			&sc->sk_btag, &sc->sk_bhandle,
   1578 			&iobase, &iosize)) {
   1579 		aprint_error(": can't find i/o space\n");
   1580 		return;
   1581 	}
   1582 #else
   1583 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1584 		aprint_error(": failed to enable memory mapping!\n");
   1585 		return;
   1586 	}
   1587 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
   1588 	switch (memtype) {
   1589         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1590         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1591                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
   1592 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
   1593 				   &iobase, &iosize) == 0)
   1594                         break;
   1595         default:
   1596                 aprint_error("%s: can't find mem space\n",
   1597 		       sc->sk_dev.dv_xname);
   1598                 return;
   1599 	}
   1600 
   1601 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
   1602 #endif
   1603 	sc->sc_dmatag = pa->pa_dmat;
   1604 
   1605 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
   1606 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
   1607 
   1608 	/* bail out here if chip is not recognized */
   1609 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
   1610 		aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
   1611 		goto fail;
   1612 	}
   1613 	if (SK_IS_YUKON2(sc)) {
   1614 		aprint_error("%s: Does not support Yukon2--try msk(4).\n",
   1615 		    sc->sk_dev.dv_xname);
   1616 		goto fail;
   1617 	}
   1618 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
   1619 
   1620 	/* Allocate interrupt */
   1621 	if (pci_intr_map(pa, &ih)) {
   1622 		aprint_error(": couldn't map interrupt\n");
   1623 		goto fail;
   1624 	}
   1625 
   1626 	intrstr = pci_intr_string(pc, ih);
   1627 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
   1628 	if (sc->sk_intrhand == NULL) {
   1629 		aprint_error(": couldn't establish interrupt");
   1630 		if (intrstr != NULL)
   1631 			aprint_normal(" at %s", intrstr);
   1632 		goto fail;
   1633 	}
   1634 	aprint_normal(": %s\n", intrstr);
   1635 
   1636 	/* Reset the adapter. */
   1637 	sk_reset(sc);
   1638 
   1639 	/* Read and save vital product data from EEPROM. */
   1640 	sk_vpd_read(sc);
   1641 
   1642 	if (sc->sk_type == SK_GENESIS) {
   1643 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1644 		/* Read and save RAM size and RAMbuffer offset */
   1645 		switch (val) {
   1646 		case SK_RAMSIZE_512K_64:
   1647 			sc->sk_ramsize = 0x80000;
   1648 			sc->sk_rboff = SK_RBOFF_0;
   1649 			break;
   1650 		case SK_RAMSIZE_1024K_64:
   1651 			sc->sk_ramsize = 0x100000;
   1652 			sc->sk_rboff = SK_RBOFF_80000;
   1653 			break;
   1654 		case SK_RAMSIZE_1024K_128:
   1655 			sc->sk_ramsize = 0x100000;
   1656 			sc->sk_rboff = SK_RBOFF_0;
   1657 			break;
   1658 		case SK_RAMSIZE_2048K_128:
   1659 			sc->sk_ramsize = 0x200000;
   1660 			sc->sk_rboff = SK_RBOFF_0;
   1661 			break;
   1662 		default:
   1663 			aprint_error("%s: unknown ram size: %d\n",
   1664 			       sc->sk_dev.dv_xname, val);
   1665 			goto fail_1;
   1666 			break;
   1667 		}
   1668 
   1669 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
   1670 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
   1671 			     sc->sk_rboff));
   1672 	} else {
   1673 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1674 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
   1675 		sc->sk_rboff = SK_RBOFF_0;
   1676 
   1677 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
   1678 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
   1679 			     sc->sk_rboff));
   1680 	}
   1681 
   1682 	/* Read and save physical media type */
   1683 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
   1684 	case SK_PMD_1000BASESX:
   1685 		sc->sk_pmd = IFM_1000_SX;
   1686 		break;
   1687 	case SK_PMD_1000BASELX:
   1688 		sc->sk_pmd = IFM_1000_LX;
   1689 		break;
   1690 	case SK_PMD_1000BASECX:
   1691 		sc->sk_pmd = IFM_1000_CX;
   1692 		break;
   1693 	case SK_PMD_1000BASETX:
   1694 	case SK_PMD_1000BASETX_ALT:
   1695 		sc->sk_pmd = IFM_1000_T;
   1696 		break;
   1697 	default:
   1698 		aprint_error("%s: unknown media type: 0x%x\n",
   1699 		    sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
   1700 		goto fail_1;
   1701 	}
   1702 
   1703 	/* determine whether to name it with vpd or just make it up */
   1704 	/* Marvell Yukon VPD's can freqently be bogus */
   1705 
   1706 	switch (pa->pa_id) {
   1707 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1708 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
   1709 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
   1710 	case PCI_PRODUCT_3COM_3C940:
   1711 	case PCI_PRODUCT_DLINK_DGE530T:
   1712 	case PCI_PRODUCT_DLINK_DGE560T:
   1713 	case PCI_PRODUCT_DLINK_DGE560T_2:
   1714 	case PCI_PRODUCT_LINKSYS_EG1032:
   1715 	case PCI_PRODUCT_LINKSYS_EG1064:
   1716 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1717 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
   1718 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
   1719 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
   1720 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
   1721 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
   1722 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
   1723 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
   1724  		sc->sk_name = sc->sk_vpd_prodname;
   1725  		break;
   1726 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
   1727 	/* whoops yukon vpd prodname bears no resemblance to reality */
   1728 		switch (sc->sk_type) {
   1729 		case SK_GENESIS:
   1730 			sc->sk_name = sc->sk_vpd_prodname;
   1731 			break;
   1732 		case SK_YUKON:
   1733 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
   1734 			break;
   1735 		case SK_YUKON_LITE:
   1736 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
   1737 			break;
   1738 		case SK_YUKON_LP:
   1739 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
   1740 			break;
   1741 		default:
   1742 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
   1743 		}
   1744 
   1745 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
   1746 
   1747 		if ( sc->sk_type == SK_YUKON ) {
   1748 			uint32_t flashaddr;
   1749 			uint8_t testbyte;
   1750 
   1751 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
   1752 
   1753 			/* test Flash-Address Register */
   1754 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
   1755 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
   1756 
   1757 			if (testbyte != 0) {
   1758 				/* this is yukon lite Rev. A0 */
   1759 				sc->sk_type = SK_YUKON_LITE;
   1760 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
   1761 				/* restore Flash-Address Register */
   1762 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
   1763 			}
   1764 		}
   1765 		break;
   1766 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
   1767 		sc->sk_name = sc->sk_vpd_prodname;
   1768 		break;
   1769  	default:
   1770 		sc->sk_name = "Unknown Marvell";
   1771 	}
   1772 
   1773 
   1774 	if ( sc->sk_type == SK_YUKON_LITE ) {
   1775 		switch (sc->sk_rev) {
   1776 		case SK_YUKON_LITE_REV_A0:
   1777 			revstr = "A0";
   1778 			break;
   1779 		case SK_YUKON_LITE_REV_A1:
   1780 			revstr = "A1";
   1781 			break;
   1782 		case SK_YUKON_LITE_REV_A3:
   1783 			revstr = "A3";
   1784 			break;
   1785 		default:
   1786 			revstr = "";
   1787 		}
   1788 	} else {
   1789 		revstr = "";
   1790 	}
   1791 
   1792 	/* Announce the product name. */
   1793 	aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
   1794 			      sc->sk_name, revstr, sc->sk_rev);
   1795 
   1796 	skca.skc_port = SK_PORT_A;
   1797 	(void)config_found(&sc->sk_dev, &skca, skcprint);
   1798 
   1799 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
   1800 		skca.skc_port = SK_PORT_B;
   1801 		(void)config_found(&sc->sk_dev, &skca, skcprint);
   1802 	}
   1803 
   1804 	/* Turn on the 'driver is loaded' LED. */
   1805 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   1806 
   1807 	/* skc sysctl setup */
   1808 
   1809 	sc->sk_int_mod = SK_IM_DEFAULT;
   1810 	sc->sk_int_mod_pending = 0;
   1811 
   1812 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1813 	    0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
   1814 	    SYSCTL_DESCR("skc per-controller controls"),
   1815 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
   1816 	    CTL_EOL)) != 0) {
   1817 		aprint_normal("%s: couldn't create sysctl node\n",
   1818 		    sc->sk_dev.dv_xname);
   1819 		goto fail_1;
   1820 	}
   1821 
   1822 	sk_nodenum = node->sysctl_num;
   1823 
   1824 	/* interrupt moderation time in usecs */
   1825 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1826 	    CTLFLAG_READWRITE,
   1827 	    CTLTYPE_INT, "int_mod",
   1828 	    SYSCTL_DESCR("sk interrupt moderation timer"),
   1829 	    sk_sysctl_handler, 0, sc,
   1830 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
   1831 	    CTL_EOL)) != 0) {
   1832 		aprint_normal("%s: couldn't create int_mod sysctl node\n",
   1833 		    sc->sk_dev.dv_xname);
   1834 		goto fail_1;
   1835 	}
   1836 
   1837 	return;
   1838 
   1839 fail_1:
   1840 	pci_intr_disestablish(pc, sc->sk_intrhand);
   1841 fail:
   1842 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
   1843 }
   1844 
   1845 int
   1846 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
   1847 {
   1848 	struct sk_softc		*sc = sc_if->sk_softc;
   1849 	struct sk_tx_desc	*f = NULL;
   1850 	u_int32_t		frag, cur, cnt = 0, sk_ctl;
   1851 	int			i;
   1852 	struct sk_txmap_entry	*entry;
   1853 	bus_dmamap_t		txmap;
   1854 
   1855 	DPRINTFN(3, ("sk_encap\n"));
   1856 
   1857 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
   1858 	if (entry == NULL) {
   1859 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
   1860 		return ENOBUFS;
   1861 	}
   1862 	txmap = entry->dmamap;
   1863 
   1864 	cur = frag = *txidx;
   1865 
   1866 #ifdef SK_DEBUG
   1867 	if (skdebug >= 3)
   1868 		sk_dump_mbuf(m_head);
   1869 #endif
   1870 
   1871 	/*
   1872 	 * Start packing the mbufs in this chain into
   1873 	 * the fragment pointers. Stop when we run out
   1874 	 * of fragments or hit the end of the mbuf chain.
   1875 	 */
   1876 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
   1877 	    BUS_DMA_NOWAIT)) {
   1878 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
   1879 		return ENOBUFS;
   1880 	}
   1881 
   1882 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
   1883 
   1884 	/* Sync the DMA map. */
   1885 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
   1886 	    BUS_DMASYNC_PREWRITE);
   1887 
   1888 	for (i = 0; i < txmap->dm_nsegs; i++) {
   1889 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
   1890 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
   1891 			return ENOBUFS;
   1892 		}
   1893 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
   1894 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
   1895 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
   1896 		if (cnt == 0)
   1897 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
   1898 		else
   1899 			sk_ctl |= SK_TXCTL_OWN;
   1900 		f->sk_ctl = htole32(sk_ctl);
   1901 		cur = frag;
   1902 		SK_INC(frag, SK_TX_RING_CNT);
   1903 		cnt++;
   1904 	}
   1905 
   1906 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
   1907 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
   1908 
   1909 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
   1910 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
   1911 		htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
   1912 
   1913 	/* Sync descriptors before handing to chip */
   1914 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
   1915 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1916 
   1917 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
   1918 		htole32(SK_TXCTL_OWN);
   1919 
   1920 	/* Sync first descriptor to hand it off */
   1921 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1922 
   1923 	sc_if->sk_cdata.sk_tx_cnt += cnt;
   1924 
   1925 #ifdef SK_DEBUG
   1926 	if (skdebug >= 3) {
   1927 		struct sk_tx_desc *desc;
   1928 		u_int32_t idx;
   1929 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
   1930 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
   1931 			sk_dump_txdesc(desc, idx);
   1932 		}
   1933 	}
   1934 #endif
   1935 
   1936 	*txidx = frag;
   1937 
   1938 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
   1939 
   1940 	return 0;
   1941 }
   1942 
   1943 void
   1944 sk_start(struct ifnet *ifp)
   1945 {
   1946         struct sk_if_softc	*sc_if = ifp->if_softc;
   1947         struct sk_softc		*sc = sc_if->sk_softc;
   1948         struct mbuf		*m_head = NULL;
   1949         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
   1950 	int			pkts = 0;
   1951 
   1952 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
   1953 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
   1954 
   1955 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
   1956 		IFQ_POLL(&ifp->if_snd, m_head);
   1957 		if (m_head == NULL)
   1958 			break;
   1959 
   1960 		/*
   1961 		 * Pack the data into the transmit ring. If we
   1962 		 * don't have room, set the OACTIVE flag and wait
   1963 		 * for the NIC to drain the ring.
   1964 		 */
   1965 		if (sk_encap(sc_if, m_head, &idx)) {
   1966 			ifp->if_flags |= IFF_OACTIVE;
   1967 			break;
   1968 		}
   1969 
   1970 		/* now we are committed to transmit the packet */
   1971 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1972 		pkts++;
   1973 
   1974 		/*
   1975 		 * If there's a BPF listener, bounce a copy of this frame
   1976 		 * to him.
   1977 		 */
   1978 #if NBPFILTER > 0
   1979 		if (ifp->if_bpf)
   1980 			bpf_mtap(ifp->if_bpf, m_head);
   1981 #endif
   1982 	}
   1983 	if (pkts == 0)
   1984 		return;
   1985 
   1986 	/* Transmit */
   1987 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
   1988 		sc_if->sk_cdata.sk_tx_prod = idx;
   1989 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   1990 
   1991 		/* Set a timeout in case the chip goes out to lunch. */
   1992 		ifp->if_timer = 5;
   1993 	}
   1994 }
   1995 
   1996 
   1997 void
   1998 sk_watchdog(struct ifnet *ifp)
   1999 {
   2000 	struct sk_if_softc *sc_if = ifp->if_softc;
   2001 
   2002 	/*
   2003 	 * Reclaim first as there is a possibility of losing Tx completion
   2004 	 * interrupts.
   2005 	 */
   2006 	sk_txeof(sc_if);
   2007 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
   2008 		aprint_error("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
   2009 
   2010 		ifp->if_oerrors++;
   2011 
   2012 		sk_init(ifp);
   2013 	}
   2014 }
   2015 
   2016 void
   2017 sk_shutdown(void *v)
   2018 {
   2019 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
   2020 	struct sk_softc		*sc = sc_if->sk_softc;
   2021 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
   2022 
   2023 	DPRINTFN(2, ("sk_shutdown\n"));
   2024 	sk_stop(ifp,1);
   2025 
   2026 	/* Turn off the 'driver is loaded' LED. */
   2027 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   2028 
   2029 	/*
   2030 	 * Reset the GEnesis controller. Doing this should also
   2031 	 * assert the resets on the attached XMAC(s).
   2032 	 */
   2033 	sk_reset(sc);
   2034 }
   2035 
   2036 void
   2037 sk_rxeof(struct sk_if_softc *sc_if)
   2038 {
   2039 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2040 	struct mbuf		*m;
   2041 	struct sk_chain		*cur_rx;
   2042 	struct sk_rx_desc	*cur_desc;
   2043 	int			i, cur, total_len = 0;
   2044 	u_int32_t		rxstat, sk_ctl;
   2045 	bus_dmamap_t		dmamap;
   2046 
   2047 	i = sc_if->sk_cdata.sk_rx_prod;
   2048 
   2049 	DPRINTFN(3, ("sk_rxeof %d\n", i));
   2050 
   2051 	for (;;) {
   2052 		cur = i;
   2053 
   2054 		/* Sync the descriptor */
   2055 		SK_CDRXSYNC(sc_if, cur,
   2056 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2057 
   2058 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
   2059 		if (sk_ctl & SK_RXCTL_OWN) {
   2060 			/* Invalidate the descriptor -- it's not ready yet */
   2061 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
   2062 			sc_if->sk_cdata.sk_rx_prod = i;
   2063 			break;
   2064 		}
   2065 
   2066 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
   2067 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
   2068 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
   2069 
   2070 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
   2071 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2072 
   2073 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
   2074 		m = cur_rx->sk_mbuf;
   2075 		cur_rx->sk_mbuf = NULL;
   2076 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
   2077 
   2078 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
   2079 
   2080 		SK_INC(i, SK_RX_RING_CNT);
   2081 
   2082 		if (rxstat & XM_RXSTAT_ERRFRAME) {
   2083 			ifp->if_ierrors++;
   2084 			sk_newbuf(sc_if, cur, m, dmamap);
   2085 			continue;
   2086 		}
   2087 
   2088 		/*
   2089 		 * Try to allocate a new jumbo buffer. If that
   2090 		 * fails, copy the packet to mbufs and put the
   2091 		 * jumbo buffer back in the ring so it can be
   2092 		 * re-used. If allocating mbufs fails, then we
   2093 		 * have to drop the packet.
   2094 		 */
   2095 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
   2096 			struct mbuf		*m0;
   2097 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
   2098 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
   2099 			sk_newbuf(sc_if, cur, m, dmamap);
   2100 			if (m0 == NULL) {
   2101 				aprint_error("%s: no receive buffers "
   2102 				    "available -- packet dropped!\n",
   2103 				    sc_if->sk_dev.dv_xname);
   2104 				ifp->if_ierrors++;
   2105 				continue;
   2106 			}
   2107 			m_adj(m0, ETHER_ALIGN);
   2108 			m = m0;
   2109 		} else {
   2110 			m->m_pkthdr.rcvif = ifp;
   2111 			m->m_pkthdr.len = m->m_len = total_len;
   2112 		}
   2113 
   2114 		ifp->if_ipackets++;
   2115 
   2116 #if NBPFILTER > 0
   2117 		if (ifp->if_bpf)
   2118 			bpf_mtap(ifp->if_bpf, m);
   2119 #endif
   2120 		/* pass it on. */
   2121 		(*ifp->if_input)(ifp, m);
   2122 	}
   2123 }
   2124 
   2125 void
   2126 sk_txeof(struct sk_if_softc *sc_if)
   2127 {
   2128 	struct sk_softc		*sc = sc_if->sk_softc;
   2129 	struct sk_tx_desc	*cur_tx;
   2130 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2131 	u_int32_t		idx, sk_ctl;
   2132 	struct sk_txmap_entry	*entry;
   2133 
   2134 	DPRINTFN(3, ("sk_txeof\n"));
   2135 
   2136 	/*
   2137 	 * Go through our tx ring and free mbufs for those
   2138 	 * frames that have been sent.
   2139 	 */
   2140 	idx = sc_if->sk_cdata.sk_tx_cons;
   2141 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
   2142 		SK_CDTXSYNC(sc_if, idx, 1,
   2143 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2144 
   2145 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
   2146 		sk_ctl = le32toh(cur_tx->sk_ctl);
   2147 #ifdef SK_DEBUG
   2148 		if (skdebug >= 3)
   2149 			sk_dump_txdesc(cur_tx, idx);
   2150 #endif
   2151 		if (sk_ctl & SK_TXCTL_OWN) {
   2152 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
   2153 			break;
   2154 		}
   2155 		if (sk_ctl & SK_TXCTL_LASTFRAG)
   2156 			ifp->if_opackets++;
   2157 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
   2158 			entry = sc_if->sk_cdata.sk_tx_map[idx];
   2159 
   2160 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
   2161 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
   2162 
   2163 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
   2164 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2165 
   2166 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
   2167 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
   2168 					  link);
   2169 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
   2170 		}
   2171 		sc_if->sk_cdata.sk_tx_cnt--;
   2172 		SK_INC(idx, SK_TX_RING_CNT);
   2173 	}
   2174 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
   2175 		ifp->if_timer = 0;
   2176 	else /* nudge chip to keep tx ring moving */
   2177 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   2178 
   2179 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
   2180 		ifp->if_flags &= ~IFF_OACTIVE;
   2181 
   2182 	sc_if->sk_cdata.sk_tx_cons = idx;
   2183 }
   2184 
   2185 void
   2186 sk_tick(void *xsc_if)
   2187 {
   2188 	struct sk_if_softc *sc_if = xsc_if;
   2189 	struct mii_data *mii = &sc_if->sk_mii;
   2190 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2191 	int i;
   2192 
   2193 	DPRINTFN(3, ("sk_tick\n"));
   2194 
   2195 	if (!(ifp->if_flags & IFF_UP))
   2196 		return;
   2197 
   2198 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2199 		sk_intr_bcom(sc_if);
   2200 		return;
   2201 	}
   2202 
   2203 	/*
   2204 	 * According to SysKonnect, the correct way to verify that
   2205 	 * the link has come back up is to poll bit 0 of the GPIO
   2206 	 * register three times. This pin has the signal from the
   2207 	 * link sync pin connected to it; if we read the same link
   2208 	 * state 3 times in a row, we know the link is up.
   2209 	 */
   2210 	for (i = 0; i < 3; i++) {
   2211 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
   2212 			break;
   2213 	}
   2214 
   2215 	if (i != 3) {
   2216 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2217 		return;
   2218 	}
   2219 
   2220 	/* Turn the GP0 interrupt back on. */
   2221 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2222 	SK_XM_READ_2(sc_if, XM_ISR);
   2223 	mii_tick(mii);
   2224 	mii_pollstat(mii);
   2225 	callout_stop(&sc_if->sk_tick_ch);
   2226 }
   2227 
   2228 void
   2229 sk_intr_bcom(struct sk_if_softc *sc_if)
   2230 {
   2231 	struct mii_data *mii = &sc_if->sk_mii;
   2232 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2233 	int status;
   2234 
   2235 
   2236 	DPRINTFN(3, ("sk_intr_bcom\n"));
   2237 
   2238 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2239 
   2240 	/*
   2241 	 * Read the PHY interrupt register to make sure
   2242 	 * we clear any pending interrupts.
   2243 	 */
   2244 	status = sk_xmac_miibus_readreg((struct device *)sc_if,
   2245 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
   2246 
   2247 	if (!(ifp->if_flags & IFF_RUNNING)) {
   2248 		sk_init_xmac(sc_if);
   2249 		return;
   2250 	}
   2251 
   2252 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
   2253 		int lstat;
   2254 		lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
   2255 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
   2256 
   2257 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
   2258 			mii_mediachg(mii);
   2259 			/* Turn off the link LED. */
   2260 			SK_IF_WRITE_1(sc_if, 0,
   2261 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2262 			sc_if->sk_link = 0;
   2263 		} else if (status & BRGPHY_ISR_LNK_CHG) {
   2264 			sk_xmac_miibus_writereg((struct device *)sc_if,
   2265 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
   2266 			mii_tick(mii);
   2267 			sc_if->sk_link = 1;
   2268 			/* Turn on the link LED. */
   2269 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2270 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
   2271 			    SK_LINKLED_BLINK_OFF);
   2272 			mii_pollstat(mii);
   2273 		} else {
   2274 			mii_tick(mii);
   2275 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
   2276 		}
   2277 	}
   2278 
   2279 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2280 }
   2281 
   2282 void
   2283 sk_intr_xmac(struct sk_if_softc	*sc_if)
   2284 {
   2285 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
   2286 
   2287 	DPRINTFN(3, ("sk_intr_xmac\n"));
   2288 
   2289 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
   2290 		if (status & XM_ISR_GP0_SET) {
   2291 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2292 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2293 		}
   2294 
   2295 		if (status & XM_ISR_AUTONEG_DONE) {
   2296 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2297 		}
   2298 	}
   2299 
   2300 	if (status & XM_IMR_TX_UNDERRUN)
   2301 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
   2302 
   2303 	if (status & XM_IMR_RX_OVERRUN)
   2304 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
   2305 }
   2306 
   2307 void
   2308 sk_intr_yukon(struct sk_if_softc *sc_if)
   2309 {
   2310 	int status;
   2311 
   2312 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2313 
   2314 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
   2315 }
   2316 
   2317 int
   2318 sk_intr(void *xsc)
   2319 {
   2320 	struct sk_softc		*sc = xsc;
   2321 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
   2322 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
   2323 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
   2324 	u_int32_t		status;
   2325 	int			claimed = 0;
   2326 
   2327 	if (sc_if0 != NULL)
   2328 		ifp0 = &sc_if0->sk_ethercom.ec_if;
   2329 	if (sc_if1 != NULL)
   2330 		ifp1 = &sc_if1->sk_ethercom.ec_if;
   2331 
   2332 	for (;;) {
   2333 		status = CSR_READ_4(sc, SK_ISSR);
   2334 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
   2335 
   2336 		if (!(status & sc->sk_intrmask))
   2337 			break;
   2338 
   2339 		claimed = 1;
   2340 
   2341 		/* Handle receive interrupts first. */
   2342 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
   2343 			sk_rxeof(sc_if0);
   2344 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
   2345 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2346 		}
   2347 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
   2348 			sk_rxeof(sc_if1);
   2349 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
   2350 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2351 		}
   2352 
   2353 		/* Then transmit interrupts. */
   2354 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
   2355 			sk_txeof(sc_if0);
   2356 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
   2357 			    SK_TXBMU_CLR_IRQ_EOF);
   2358 		}
   2359 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
   2360 			sk_txeof(sc_if1);
   2361 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
   2362 			    SK_TXBMU_CLR_IRQ_EOF);
   2363 		}
   2364 
   2365 		/* Then MAC interrupts. */
   2366 		if (sc_if0 && (status & SK_ISR_MAC1) &&
   2367 		    (ifp0->if_flags & IFF_RUNNING)) {
   2368 			if (sc->sk_type == SK_GENESIS)
   2369 				sk_intr_xmac(sc_if0);
   2370 			else
   2371 				sk_intr_yukon(sc_if0);
   2372 		}
   2373 
   2374 		if (sc_if1 && (status & SK_ISR_MAC2) &&
   2375 		    (ifp1->if_flags & IFF_RUNNING)) {
   2376 			if (sc->sk_type == SK_GENESIS)
   2377 				sk_intr_xmac(sc_if1);
   2378 			else
   2379 				sk_intr_yukon(sc_if1);
   2380 
   2381 		}
   2382 
   2383 		if (status & SK_ISR_EXTERNAL_REG) {
   2384 			if (sc_if0 != NULL &&
   2385 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
   2386 				sk_intr_bcom(sc_if0);
   2387 
   2388 			if (sc_if1 != NULL &&
   2389 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
   2390 				sk_intr_bcom(sc_if1);
   2391 		}
   2392 	}
   2393 
   2394 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2395 
   2396 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
   2397 		sk_start(ifp0);
   2398 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
   2399 		sk_start(ifp1);
   2400 
   2401 #if NRND > 0
   2402 	if (RND_ENABLED(&sc->rnd_source))
   2403 		rnd_add_uint32(&sc->rnd_source, status);
   2404 #endif
   2405 
   2406 	if (sc->sk_int_mod_pending)
   2407 		sk_update_int_mod(sc);
   2408 
   2409 	return claimed;
   2410 }
   2411 
   2412 void
   2413 sk_init_xmac(struct sk_if_softc	*sc_if)
   2414 {
   2415 	struct sk_softc		*sc = sc_if->sk_softc;
   2416 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2417 	static const struct sk_bcom_hack     bhack[] = {
   2418 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
   2419 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
   2420 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
   2421 	{ 0, 0 } };
   2422 
   2423 	DPRINTFN(1, ("sk_init_xmac\n"));
   2424 
   2425 	/* Unreset the XMAC. */
   2426 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
   2427 	DELAY(1000);
   2428 
   2429 	/* Reset the XMAC's internal state. */
   2430 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2431 
   2432 	/* Save the XMAC II revision */
   2433 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
   2434 
   2435 	/*
   2436 	 * Perform additional initialization for external PHYs,
   2437 	 * namely for the 1000baseTX cards that use the XMAC's
   2438 	 * GMII mode.
   2439 	 */
   2440 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2441 		int			i = 0;
   2442 		u_int32_t		val;
   2443 
   2444 		/* Take PHY out of reset. */
   2445 		val = sk_win_read_4(sc, SK_GPIO);
   2446 		if (sc_if->sk_port == SK_PORT_A)
   2447 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
   2448 		else
   2449 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
   2450 		sk_win_write_4(sc, SK_GPIO, val);
   2451 
   2452 		/* Enable GMII mode on the XMAC. */
   2453 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
   2454 
   2455 		sk_xmac_miibus_writereg((struct device *)sc_if,
   2456 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
   2457 		DELAY(10000);
   2458 		sk_xmac_miibus_writereg((struct device *)sc_if,
   2459 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
   2460 
   2461 		/*
   2462 		 * Early versions of the BCM5400 apparently have
   2463 		 * a bug that requires them to have their reserved
   2464 		 * registers initialized to some magic values. I don't
   2465 		 * know what the numbers do, I'm just the messenger.
   2466 		 */
   2467 		if (sk_xmac_miibus_readreg((struct device *)sc_if,
   2468 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
   2469 			while (bhack[i].reg) {
   2470 				sk_xmac_miibus_writereg((struct device *)sc_if,
   2471 				    SK_PHYADDR_BCOM, bhack[i].reg,
   2472 				    bhack[i].val);
   2473 				i++;
   2474 			}
   2475 		}
   2476 	}
   2477 
   2478 	/* Set station address */
   2479 	SK_XM_WRITE_2(sc_if, XM_PAR0,
   2480 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
   2481 	SK_XM_WRITE_2(sc_if, XM_PAR1,
   2482 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
   2483 	SK_XM_WRITE_2(sc_if, XM_PAR2,
   2484 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
   2485 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
   2486 
   2487 	if (ifp->if_flags & IFF_PROMISC)
   2488 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2489 	else
   2490 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2491 
   2492 	if (ifp->if_flags & IFF_BROADCAST)
   2493 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2494 	else
   2495 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2496 
   2497 	/* We don't need the FCS appended to the packet. */
   2498 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
   2499 
   2500 	/* We want short frames padded to 60 bytes. */
   2501 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
   2502 
   2503 	/*
   2504 	 * Enable the reception of all error frames. This is is
   2505 	 * a necessary evil due to the design of the XMAC. The
   2506 	 * XMAC's receive FIFO is only 8K in size, however jumbo
   2507 	 * frames can be up to 9000 bytes in length. When bad
   2508 	 * frame filtering is enabled, the XMAC's RX FIFO operates
   2509 	 * in 'store and forward' mode. For this to work, the
   2510 	 * entire frame has to fit into the FIFO, but that means
   2511 	 * that jumbo frames larger than 8192 bytes will be
   2512 	 * truncated. Disabling all bad frame filtering causes
   2513 	 * the RX FIFO to operate in streaming mode, in which
   2514 	 * case the XMAC will start transfering frames out of the
   2515 	 * RX FIFO as soon as the FIFO threshold is reached.
   2516 	 */
   2517 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
   2518 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
   2519 	    XM_MODE_RX_INRANGELEN);
   2520 
   2521 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2522 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2523 	else
   2524 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2525 
   2526 	/*
   2527 	 * Bump up the transmit threshold. This helps hold off transmit
   2528 	 * underruns when we're blasting traffic from both ports at once.
   2529 	 */
   2530 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
   2531 
   2532 	/* Set multicast filter */
   2533 	sk_setmulti(sc_if);
   2534 
   2535 	/* Clear and enable interrupts */
   2536 	SK_XM_READ_2(sc_if, XM_ISR);
   2537 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
   2538 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
   2539 	else
   2540 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2541 
   2542 	/* Configure MAC arbiter */
   2543 	switch (sc_if->sk_xmac_rev) {
   2544 	case XM_XMAC_REV_B2:
   2545 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
   2546 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
   2547 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
   2548 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
   2549 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
   2550 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
   2551 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
   2552 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
   2553 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2554 		break;
   2555 	case XM_XMAC_REV_C1:
   2556 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
   2557 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
   2558 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
   2559 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
   2560 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
   2561 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
   2562 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
   2563 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
   2564 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2565 		break;
   2566 	default:
   2567 		break;
   2568 	}
   2569 	sk_win_write_2(sc, SK_MACARB_CTL,
   2570 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
   2571 
   2572 	sc_if->sk_link = 1;
   2573 }
   2574 
   2575 void sk_init_yukon(struct sk_if_softc *sc_if)
   2576 {
   2577 	u_int32_t		/*mac, */phy;
   2578 	u_int16_t		reg;
   2579 	struct sk_softc		*sc;
   2580 	int			i;
   2581 
   2582 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
   2583 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
   2584 
   2585 	sc = sc_if->sk_softc;
   2586 	if (sc->sk_type == SK_YUKON_LITE &&
   2587 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
   2588 		/* Take PHY out of reset. */
   2589 		sk_win_write_4(sc, SK_GPIO,
   2590 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
   2591 	}
   2592 
   2593 
   2594 	/* GMAC and GPHY Reset */
   2595 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
   2596 
   2597 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
   2598 
   2599 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2600 	DELAY(1000);
   2601 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
   2602 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2603 	DELAY(1000);
   2604 
   2605 
   2606 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
   2607 
   2608 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
   2609 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
   2610 
   2611 	switch (sc_if->sk_softc->sk_pmd) {
   2612 	case IFM_1000_SX:
   2613 	case IFM_1000_LX:
   2614 		phy |= SK_GPHY_FIBER;
   2615 		break;
   2616 
   2617 	case IFM_1000_CX:
   2618 	case IFM_1000_T:
   2619 		phy |= SK_GPHY_COPPER;
   2620 		break;
   2621 	}
   2622 
   2623 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
   2624 
   2625 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
   2626 	DELAY(1000);
   2627 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
   2628 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
   2629 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
   2630 
   2631 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
   2632 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
   2633 
   2634 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
   2635 
   2636 	/* unused read of the interrupt source register */
   2637 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
   2638 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2639 
   2640 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
   2641 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
   2642 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2643 
   2644 	/* MIB Counter Clear Mode set */
   2645         reg |= YU_PAR_MIB_CLR;
   2646 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2647 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
   2648 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2649 
   2650 	/* MIB Counter Clear Mode clear */
   2651 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
   2652         reg &= ~YU_PAR_MIB_CLR;
   2653 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2654 
   2655 	/* receive control reg */
   2656 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
   2657 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
   2658 		      YU_RCR_CRCR);
   2659 
   2660 	/* transmit parameter register */
   2661 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
   2662 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
   2663 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
   2664 
   2665 	/* serial mode register */
   2666 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
   2667 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
   2668 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
   2669 		      YU_SMR_IPG_DATA(0x1e));
   2670 
   2671 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
   2672 	/* Setup Yukon's address */
   2673 	for (i = 0; i < 3; i++) {
   2674 		/* Write Source Address 1 (unicast filter) */
   2675 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
   2676 			      sc_if->sk_enaddr[i * 2] |
   2677 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
   2678 	}
   2679 
   2680 	for (i = 0; i < 3; i++) {
   2681 		reg = sk_win_read_2(sc_if->sk_softc,
   2682 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
   2683 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
   2684 	}
   2685 
   2686 	/* Set multicast filter */
   2687 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
   2688 	sk_setmulti(sc_if);
   2689 
   2690 	/* enable interrupt mask for counter overflows */
   2691 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
   2692 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
   2693 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
   2694 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
   2695 
   2696 	/* Configure RX MAC FIFO */
   2697 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
   2698 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
   2699 
   2700 	/* Configure TX MAC FIFO */
   2701 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
   2702 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
   2703 
   2704 	DPRINTFN(6, ("sk_init_yukon: end\n"));
   2705 }
   2706 
   2707 /*
   2708  * Note that to properly initialize any part of the GEnesis chip,
   2709  * you first have to take it out of reset mode.
   2710  */
   2711 int
   2712 sk_init(struct ifnet *ifp)
   2713 {
   2714 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2715 	struct sk_softc		*sc = sc_if->sk_softc;
   2716 	struct mii_data		*mii = &sc_if->sk_mii;
   2717 	int			s;
   2718 	u_int32_t		imr, imtimer_ticks;
   2719 
   2720 	DPRINTFN(1, ("sk_init\n"));
   2721 
   2722 	s = splnet();
   2723 
   2724 	if (ifp->if_flags & IFF_RUNNING) {
   2725 		splx(s);
   2726 		return 0;
   2727 	}
   2728 
   2729 	/* Cancel pending I/O and free all RX/TX buffers. */
   2730 	sk_stop(ifp,0);
   2731 
   2732 	if (sc->sk_type == SK_GENESIS) {
   2733 		/* Configure LINK_SYNC LED */
   2734 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
   2735 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2736 			      SK_LINKLED_LINKSYNC_ON);
   2737 
   2738 		/* Configure RX LED */
   2739 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
   2740 			      SK_RXLEDCTL_COUNTER_START);
   2741 
   2742 		/* Configure TX LED */
   2743 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
   2744 			      SK_TXLEDCTL_COUNTER_START);
   2745 	}
   2746 
   2747 	/* Configure I2C registers */
   2748 
   2749 	/* Configure XMAC(s) */
   2750 	switch (sc->sk_type) {
   2751 	case SK_GENESIS:
   2752 		sk_init_xmac(sc_if);
   2753 		break;
   2754 	case SK_YUKON:
   2755 	case SK_YUKON_LITE:
   2756 	case SK_YUKON_LP:
   2757 		sk_init_yukon(sc_if);
   2758 		break;
   2759 	}
   2760 	mii_mediachg(mii);
   2761 
   2762 	if (sc->sk_type == SK_GENESIS) {
   2763 		/* Configure MAC FIFOs */
   2764 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
   2765 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
   2766 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
   2767 
   2768 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
   2769 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
   2770 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
   2771 	}
   2772 
   2773 	/* Configure transmit arbiter(s) */
   2774 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
   2775 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
   2776 
   2777 	/* Configure RAMbuffers */
   2778 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
   2779 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
   2780 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
   2781 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
   2782 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
   2783 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
   2784 
   2785 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
   2786 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
   2787 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
   2788 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
   2789 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
   2790 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
   2791 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
   2792 
   2793 	/* Configure BMUs */
   2794 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
   2795 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
   2796 	    SK_RX_RING_ADDR(sc_if, 0));
   2797 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
   2798 
   2799 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
   2800 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
   2801             SK_TX_RING_ADDR(sc_if, 0));
   2802 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
   2803 
   2804 	/* Init descriptors */
   2805 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
   2806 		aprint_error("%s: initialization failed: no "
   2807 		    "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
   2808 		sk_stop(ifp,0);
   2809 		splx(s);
   2810 		return ENOBUFS;
   2811 	}
   2812 
   2813 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
   2814 		aprint_error("%s: initialization failed: no "
   2815 		    "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
   2816 		sk_stop(ifp,0);
   2817 		splx(s);
   2818 		return ENOBUFS;
   2819 	}
   2820 
   2821 	/* Set interrupt moderation if changed via sysctl. */
   2822 	switch (sc->sk_type) {
   2823 	case SK_GENESIS:
   2824 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   2825 		break;
   2826 	case SK_YUKON_EC:
   2827 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   2828 		break;
   2829 	default:
   2830 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   2831 	}
   2832 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
   2833 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
   2834 		sk_win_write_4(sc, SK_IMTIMERINIT,
   2835 		    SK_IM_USECS(sc->sk_int_mod));
   2836 		aprint_verbose("%s: interrupt moderation is %d us\n",
   2837 		    sc->sk_dev.dv_xname, sc->sk_int_mod);
   2838 	}
   2839 
   2840 	/* Configure interrupt handling */
   2841 	CSR_READ_4(sc, SK_ISSR);
   2842 	if (sc_if->sk_port == SK_PORT_A)
   2843 		sc->sk_intrmask |= SK_INTRS1;
   2844 	else
   2845 		sc->sk_intrmask |= SK_INTRS2;
   2846 
   2847 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
   2848 
   2849 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2850 
   2851 	/* Start BMUs. */
   2852 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
   2853 
   2854 	if (sc->sk_type == SK_GENESIS) {
   2855 		/* Enable XMACs TX and RX state machines */
   2856 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
   2857 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
   2858 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2859 	}
   2860 
   2861 	if (SK_YUKON_FAMILY(sc->sk_type)) {
   2862 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
   2863 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
   2864 #if 0
   2865 		/* XXX disable 100Mbps and full duplex mode? */
   2866 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
   2867 #endif
   2868 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
   2869 	}
   2870 
   2871 
   2872 	ifp->if_flags |= IFF_RUNNING;
   2873 	ifp->if_flags &= ~IFF_OACTIVE;
   2874 
   2875 	splx(s);
   2876 	return 0;
   2877 }
   2878 
   2879 void
   2880 sk_stop(struct ifnet *ifp, int disable)
   2881 {
   2882         struct sk_if_softc	*sc_if = ifp->if_softc;
   2883 	struct sk_softc		*sc = sc_if->sk_softc;
   2884 	int			i;
   2885 
   2886 	DPRINTFN(1, ("sk_stop\n"));
   2887 
   2888 	callout_stop(&sc_if->sk_tick_ch);
   2889 
   2890 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2891 		u_int32_t		val;
   2892 
   2893 		/* Put PHY back into reset. */
   2894 		val = sk_win_read_4(sc, SK_GPIO);
   2895 		if (sc_if->sk_port == SK_PORT_A) {
   2896 			val |= SK_GPIO_DIR0;
   2897 			val &= ~SK_GPIO_DAT0;
   2898 		} else {
   2899 			val |= SK_GPIO_DIR2;
   2900 			val &= ~SK_GPIO_DAT2;
   2901 		}
   2902 		sk_win_write_4(sc, SK_GPIO, val);
   2903 	}
   2904 
   2905 	/* Turn off various components of this interface. */
   2906 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2907 	switch (sc->sk_type) {
   2908 	case SK_GENESIS:
   2909 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
   2910 			      SK_TXMACCTL_XMAC_RESET);
   2911 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
   2912 		break;
   2913 	case SK_YUKON:
   2914 	case SK_YUKON_LITE:
   2915 	case SK_YUKON_LP:
   2916 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
   2917 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
   2918 		break;
   2919 	}
   2920 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
   2921 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2922 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
   2923 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2924 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
   2925 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2926 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2927 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2928 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
   2929 
   2930 	/* Disable interrupts */
   2931 	if (sc_if->sk_port == SK_PORT_A)
   2932 		sc->sk_intrmask &= ~SK_INTRS1;
   2933 	else
   2934 		sc->sk_intrmask &= ~SK_INTRS2;
   2935 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2936 
   2937 	SK_XM_READ_2(sc_if, XM_ISR);
   2938 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2939 
   2940 	/* Free RX and TX mbufs still in the queues. */
   2941 	for (i = 0; i < SK_RX_RING_CNT; i++) {
   2942 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
   2943 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
   2944 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   2945 		}
   2946 	}
   2947 
   2948 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   2949 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
   2950 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
   2951 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   2952 		}
   2953 	}
   2954 
   2955 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
   2956 }
   2957 
   2958 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
   2959 
   2960 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
   2961 
   2962 #ifdef SK_DEBUG
   2963 void
   2964 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
   2965 {
   2966 #define DESC_PRINT(X)					\
   2967 	if (X)					\
   2968 		printf("txdesc[%d]." #X "=%#x\n",	\
   2969 		       idx, X);
   2970 
   2971 	DESC_PRINT(le32toh(desc->sk_ctl));
   2972 	DESC_PRINT(le32toh(desc->sk_next));
   2973 	DESC_PRINT(le32toh(desc->sk_data_lo));
   2974 	DESC_PRINT(le32toh(desc->sk_data_hi));
   2975 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
   2976 	DESC_PRINT(le16toh(desc->sk_rsvd0));
   2977 	DESC_PRINT(le16toh(desc->sk_csum_startval));
   2978 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
   2979 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
   2980 	DESC_PRINT(le16toh(desc->sk_rsvd1));
   2981 #undef PRINT
   2982 }
   2983 
   2984 void
   2985 sk_dump_bytes(const char *data, int len)
   2986 {
   2987 	int c, i, j;
   2988 
   2989 	for (i = 0; i < len; i += 16) {
   2990 		printf("%08x  ", i);
   2991 		c = len - i;
   2992 		if (c > 16) c = 16;
   2993 
   2994 		for (j = 0; j < c; j++) {
   2995 			printf("%02x ", data[i + j] & 0xff);
   2996 			if ((j & 0xf) == 7 && j > 0)
   2997 				printf(" ");
   2998 		}
   2999 
   3000 		for (; j < 16; j++)
   3001 			printf("   ");
   3002 		printf("  ");
   3003 
   3004 		for (j = 0; j < c; j++) {
   3005 			int ch = data[i + j] & 0xff;
   3006 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
   3007 		}
   3008 
   3009 		printf("\n");
   3010 
   3011 		if (c < 16)
   3012 			break;
   3013 	}
   3014 }
   3015 
   3016 void
   3017 sk_dump_mbuf(struct mbuf *m)
   3018 {
   3019 	int count = m->m_pkthdr.len;
   3020 
   3021 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
   3022 
   3023 	while (count > 0 && m) {
   3024 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
   3025 		       m, m->m_data, m->m_len);
   3026 		sk_dump_bytes(mtod(m, char *), m->m_len);
   3027 
   3028 		count -= m->m_len;
   3029 		m = m->m_next;
   3030 	}
   3031 }
   3032 #endif
   3033 
   3034 static int
   3035 sk_sysctl_handler(SYSCTLFN_ARGS)
   3036 {
   3037 	int error, t;
   3038 	struct sysctlnode node;
   3039 	struct sk_softc *sc;
   3040 
   3041 	node = *rnode;
   3042 	sc = node.sysctl_data;
   3043 	t = sc->sk_int_mod;
   3044 	node.sysctl_data = &t;
   3045 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3046 	if (error || newp == NULL)
   3047 		return error;
   3048 
   3049 	if (t < SK_IM_MIN || t > SK_IM_MAX)
   3050 		return EINVAL;
   3051 
   3052 	/* update the softc with sysctl-changed value, and mark
   3053 	   for hardware update */
   3054 	sc->sk_int_mod = t;
   3055 	sc->sk_int_mod_pending = 1;
   3056 	return 0;
   3057 }
   3058 
   3059 /*
   3060  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
   3061  * set up in skc_attach()
   3062  */
   3063 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
   3064 {
   3065 	int rc;
   3066 	const struct sysctlnode *node;
   3067 
   3068 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   3069 	    0, CTLTYPE_NODE, "hw", NULL,
   3070 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   3071 		goto err;
   3072 	}
   3073 
   3074 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   3075 	    0, CTLTYPE_NODE, "sk",
   3076 	    SYSCTL_DESCR("sk interface controls"),
   3077 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   3078 		goto err;
   3079 	}
   3080 
   3081 	sk_root_num = node->sysctl_num;
   3082 	return;
   3083 
   3084 err:
   3085 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
   3086 }
   3087