Home | History | Annotate | Line # | Download | only in pci
if_sk.c revision 1.46
      1 /*	$NetBSD: if_sk.c,v 1.46 2008/01/19 22:10:18 dyoung Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the NetBSD
     18  *	Foundation, Inc. and its contributors.
     19  * 4. Neither the name of The NetBSD Foundation nor the names of its
     20  *    contributors may be used to endorse or promote products derived
     21  *    from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
     37 
     38 /*
     39  * Copyright (c) 1997, 1998, 1999, 2000
     40  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by Bill Paul.
     53  * 4. Neither the name of the author nor the names of any co-contributors
     54  *    may be used to endorse or promote products derived from this software
     55  *    without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     61  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     62  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     63  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     64  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     65  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     66  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     67  * THE POSSIBILITY OF SUCH DAMAGE.
     68  *
     69  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
     70  */
     71 
     72 /*
     73  * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
     74  *
     75  * Permission to use, copy, modify, and distribute this software for any
     76  * purpose with or without fee is hereby granted, provided that the above
     77  * copyright notice and this permission notice appear in all copies.
     78  *
     79  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     80  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     81  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     82  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     83  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     84  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     85  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     86  */
     87 
     88 /*
     89  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
     90  * the SK-984x series adapters, both single port and dual port.
     91  * References:
     92  * 	The XaQti XMAC II datasheet,
     93  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     94  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
     95  *
     96  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
     97  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
     98  * convenience to others until Vitesse corrects this problem:
     99  *
    100  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
    101  *
    102  * Written by Bill Paul <wpaul (at) ee.columbia.edu>
    103  * Department of Electrical Engineering
    104  * Columbia University, New York City
    105  */
    106 
    107 /*
    108  * The SysKonnect gigabit ethernet adapters consist of two main
    109  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
    110  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
    111  * components and a PHY while the GEnesis controller provides a PCI
    112  * interface with DMA support. Each card may have between 512K and
    113  * 2MB of SRAM on board depending on the configuration.
    114  *
    115  * The SysKonnect GEnesis controller can have either one or two XMAC
    116  * chips connected to it, allowing single or dual port NIC configurations.
    117  * SysKonnect has the distinction of being the only vendor on the market
    118  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
    119  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
    120  * XMAC registers. This driver takes advantage of these features to allow
    121  * both XMACs to operate as independent interfaces.
    122  */
    123 
    124 #include <sys/cdefs.h>
    125 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.46 2008/01/19 22:10:18 dyoung Exp $");
    126 
    127 #include "bpfilter.h"
    128 #include "rnd.h"
    129 
    130 #include <sys/param.h>
    131 #include <sys/systm.h>
    132 #include <sys/sockio.h>
    133 #include <sys/mbuf.h>
    134 #include <sys/malloc.h>
    135 #include <sys/kernel.h>
    136 #include <sys/socket.h>
    137 #include <sys/device.h>
    138 #include <sys/queue.h>
    139 #include <sys/callout.h>
    140 #include <sys/sysctl.h>
    141 #include <sys/endian.h>
    142 
    143 #include <net/if.h>
    144 #include <net/if_dl.h>
    145 #include <net/if_types.h>
    146 
    147 #include <net/if_media.h>
    148 
    149 #if NBPFILTER > 0
    150 #include <net/bpf.h>
    151 #endif
    152 #if NRND > 0
    153 #include <sys/rnd.h>
    154 #endif
    155 
    156 #include <dev/mii/mii.h>
    157 #include <dev/mii/miivar.h>
    158 #include <dev/mii/brgphyreg.h>
    159 
    160 #include <dev/pci/pcireg.h>
    161 #include <dev/pci/pcivar.h>
    162 #include <dev/pci/pcidevs.h>
    163 
    164 /* #define SK_USEIOSPACE */
    165 
    166 #include <dev/pci/if_skreg.h>
    167 #include <dev/pci/if_skvar.h>
    168 
    169 int skc_probe(struct device *, struct cfdata *, void *);
    170 void skc_attach(struct device *, struct device *self, void *aux);
    171 int sk_probe(struct device *, struct cfdata *, void *);
    172 void sk_attach(struct device *, struct device *self, void *aux);
    173 int skcprint(void *, const char *);
    174 int sk_intr(void *);
    175 void sk_intr_bcom(struct sk_if_softc *);
    176 void sk_intr_xmac(struct sk_if_softc *);
    177 void sk_intr_yukon(struct sk_if_softc *);
    178 void sk_rxeof(struct sk_if_softc *);
    179 void sk_txeof(struct sk_if_softc *);
    180 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
    181 void sk_start(struct ifnet *);
    182 int sk_ioctl(struct ifnet *, u_long, void *);
    183 int sk_init(struct ifnet *);
    184 void sk_init_xmac(struct sk_if_softc *);
    185 void sk_init_yukon(struct sk_if_softc *);
    186 void sk_stop(struct ifnet *, int);
    187 void sk_watchdog(struct ifnet *);
    188 void sk_shutdown(void *);
    189 int sk_ifmedia_upd(struct ifnet *);
    190 void sk_reset(struct sk_softc *);
    191 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
    192 int sk_alloc_jumbo_mem(struct sk_if_softc *);
    193 void sk_free_jumbo_mem(struct sk_if_softc *);
    194 void *sk_jalloc(struct sk_if_softc *);
    195 void sk_jfree(struct mbuf *, void *, size_t, void *);
    196 int sk_init_rx_ring(struct sk_if_softc *);
    197 int sk_init_tx_ring(struct sk_if_softc *);
    198 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
    199 void sk_vpd_read_res(struct sk_softc *,
    200 					struct vpd_res *, int);
    201 void sk_vpd_read(struct sk_softc *);
    202 
    203 void sk_update_int_mod(struct sk_softc *);
    204 
    205 int sk_xmac_miibus_readreg(struct device *, int, int);
    206 void sk_xmac_miibus_writereg(struct device *, int, int, int);
    207 void sk_xmac_miibus_statchg(struct device *);
    208 
    209 int sk_marv_miibus_readreg(struct device *, int, int);
    210 void sk_marv_miibus_writereg(struct device *, int, int, int);
    211 void sk_marv_miibus_statchg(struct device *);
    212 
    213 u_int32_t sk_xmac_hash(void *);
    214 u_int32_t sk_yukon_hash(void *);
    215 void sk_setfilt(struct sk_if_softc *, void *, int);
    216 void sk_setmulti(struct sk_if_softc *);
    217 void sk_tick(void *);
    218 
    219 /* #define SK_DEBUG 2 */
    220 #ifdef SK_DEBUG
    221 #define DPRINTF(x)	if (skdebug) printf x
    222 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
    223 int	skdebug = SK_DEBUG;
    224 
    225 void sk_dump_txdesc(struct sk_tx_desc *, int);
    226 void sk_dump_mbuf(struct mbuf *);
    227 void sk_dump_bytes(const char *, int);
    228 #else
    229 #define DPRINTF(x)
    230 #define DPRINTFN(n,x)
    231 #endif
    232 
    233 static int sk_sysctl_handler(SYSCTLFN_PROTO);
    234 static int sk_root_num;
    235 
    236 /* supported device vendors */
    237 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
    238 static const struct sk_product {
    239 	pci_vendor_id_t		sk_vendor;
    240 	pci_product_id_t	sk_product;
    241 } sk_products[] = {
    242 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
    243 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
    244 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
    245 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
    246 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
    247 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
    248 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
    249 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
    250 	{ 0, 0, }
    251 };
    252 
    253 #define SK_LINKSYS_EG1032_SUBID	0x00151737
    254 
    255 static inline u_int32_t
    256 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
    257 {
    258 #ifdef SK_USEIOSPACE
    259 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    260 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
    261 #else
    262 	return CSR_READ_4(sc, reg);
    263 #endif
    264 }
    265 
    266 static inline u_int16_t
    267 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
    268 {
    269 #ifdef SK_USEIOSPACE
    270 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    271 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
    272 #else
    273 	return CSR_READ_2(sc, reg);
    274 #endif
    275 }
    276 
    277 static inline u_int8_t
    278 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
    279 {
    280 #ifdef SK_USEIOSPACE
    281 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    282 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
    283 #else
    284 	return CSR_READ_1(sc, reg);
    285 #endif
    286 }
    287 
    288 static inline void
    289 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
    290 {
    291 #ifdef SK_USEIOSPACE
    292 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    293 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
    294 #else
    295 	CSR_WRITE_4(sc, reg, x);
    296 #endif
    297 }
    298 
    299 static inline void
    300 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
    301 {
    302 #ifdef SK_USEIOSPACE
    303 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    304 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
    305 #else
    306 	CSR_WRITE_2(sc, reg, x);
    307 #endif
    308 }
    309 
    310 static inline void
    311 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
    312 {
    313 #ifdef SK_USEIOSPACE
    314 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    315 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
    316 #else
    317 	CSR_WRITE_1(sc, reg, x);
    318 #endif
    319 }
    320 
    321 /*
    322  * The VPD EEPROM contains Vital Product Data, as suggested in
    323  * the PCI 2.1 specification. The VPD data is separared into areas
    324  * denoted by resource IDs. The SysKonnect VPD contains an ID string
    325  * resource (the name of the adapter), a read-only area resource
    326  * containing various key/data fields and a read/write area which
    327  * can be used to store asset management information or log messages.
    328  * We read the ID string and read-only into buffers attached to
    329  * the controller softc structure for later use. At the moment,
    330  * we only use the ID string during sk_attach().
    331  */
    332 u_int8_t
    333 sk_vpd_readbyte(struct sk_softc *sc, int addr)
    334 {
    335 	int			i;
    336 
    337 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
    338 	for (i = 0; i < SK_TIMEOUT; i++) {
    339 		DELAY(1);
    340 		if (sk_win_read_2(sc,
    341 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
    342 			break;
    343 	}
    344 
    345 	if (i == SK_TIMEOUT)
    346 		return 0;
    347 
    348 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
    349 }
    350 
    351 void
    352 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
    353 {
    354 	int			i;
    355 	u_int8_t		*ptr;
    356 
    357 	ptr = (u_int8_t *)res;
    358 	for (i = 0; i < sizeof(struct vpd_res); i++)
    359 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
    360 }
    361 
    362 void
    363 sk_vpd_read(struct sk_softc *sc)
    364 {
    365 	int			pos = 0, i;
    366 	struct vpd_res		res;
    367 
    368 	if (sc->sk_vpd_prodname != NULL)
    369 		free(sc->sk_vpd_prodname, M_DEVBUF);
    370 	if (sc->sk_vpd_readonly != NULL)
    371 		free(sc->sk_vpd_readonly, M_DEVBUF);
    372 	sc->sk_vpd_prodname = NULL;
    373 	sc->sk_vpd_readonly = NULL;
    374 
    375 	sk_vpd_read_res(sc, &res, pos);
    376 
    377 	if (res.vr_id != VPD_RES_ID) {
    378 		aprint_error("%s: bad VPD resource id: expected %x got %x\n",
    379 		    sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
    380 		return;
    381 	}
    382 
    383 	pos += sizeof(res);
    384 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    385 	if (sc->sk_vpd_prodname == NULL)
    386 		panic("sk_vpd_read");
    387 	for (i = 0; i < res.vr_len; i++)
    388 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
    389 	sc->sk_vpd_prodname[i] = '\0';
    390 	pos += i;
    391 
    392 	sk_vpd_read_res(sc, &res, pos);
    393 
    394 	if (res.vr_id != VPD_RES_READ) {
    395 		aprint_error("%s: bad VPD resource id: expected %x got %x\n",
    396 		    sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
    397 		return;
    398 	}
    399 
    400 	pos += sizeof(res);
    401 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    402 	if (sc->sk_vpd_readonly == NULL)
    403 		panic("sk_vpd_read");
    404 	for (i = 0; i < res.vr_len ; i++)
    405 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
    406 }
    407 
    408 int
    409 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
    410 {
    411 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    412 	int i;
    413 
    414 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
    415 
    416 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
    417 		return 0;
    418 
    419 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    420 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
    421 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    422 		for (i = 0; i < SK_TIMEOUT; i++) {
    423 			DELAY(1);
    424 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
    425 			    XM_MMUCMD_PHYDATARDY)
    426 				break;
    427 		}
    428 
    429 		if (i == SK_TIMEOUT) {
    430 			aprint_error("%s: phy failed to come ready\n",
    431 			    sc_if->sk_dev.dv_xname);
    432 			return 0;
    433 		}
    434 	}
    435 	DELAY(1);
    436 	return SK_XM_READ_2(sc_if, XM_PHY_DATA);
    437 }
    438 
    439 void
    440 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
    441 {
    442 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    443 	int i;
    444 
    445 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
    446 
    447 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    448 	for (i = 0; i < SK_TIMEOUT; i++) {
    449 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    450 			break;
    451 	}
    452 
    453 	if (i == SK_TIMEOUT) {
    454 		aprint_error("%s: phy failed to come ready\n",
    455 		    sc_if->sk_dev.dv_xname);
    456 		return;
    457 	}
    458 
    459 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
    460 	for (i = 0; i < SK_TIMEOUT; i++) {
    461 		DELAY(1);
    462 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    463 			break;
    464 	}
    465 
    466 	if (i == SK_TIMEOUT)
    467 		aprint_error("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
    468 }
    469 
    470 void
    471 sk_xmac_miibus_statchg(struct device *dev)
    472 {
    473 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    474 	struct mii_data *mii = &sc_if->sk_mii;
    475 
    476 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
    477 
    478 	/*
    479 	 * If this is a GMII PHY, manually set the XMAC's
    480 	 * duplex mode accordingly.
    481 	 */
    482 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    483 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
    484 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    485 		else
    486 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    487 	}
    488 }
    489 
    490 int
    491 sk_marv_miibus_readreg(struct device *dev, int phy, int reg)
    492 {
    493 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    494 	u_int16_t val;
    495 	int i;
    496 
    497 	if (phy != 0 ||
    498 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
    499 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
    500 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
    501 			     phy, reg));
    502 		return 0;
    503 	}
    504 
    505         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    506 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
    507 
    508 	for (i = 0; i < SK_TIMEOUT; i++) {
    509 		DELAY(1);
    510 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
    511 		if (val & YU_SMICR_READ_VALID)
    512 			break;
    513 	}
    514 
    515 	if (i == SK_TIMEOUT) {
    516 		aprint_error("%s: phy failed to come ready\n",
    517 		       sc_if->sk_dev.dv_xname);
    518 		return 0;
    519 	}
    520 
    521  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
    522 		     SK_TIMEOUT));
    523 
    524         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
    525 
    526 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
    527 		     phy, reg, val));
    528 
    529 	return val;
    530 }
    531 
    532 void
    533 sk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
    534 {
    535 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    536 	int i;
    537 
    538 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
    539 		     phy, reg, val));
    540 
    541 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
    542 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    543 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
    544 
    545 	for (i = 0; i < SK_TIMEOUT; i++) {
    546 		DELAY(1);
    547 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
    548 			break;
    549 	}
    550 
    551 	if (i == SK_TIMEOUT)
    552 		printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
    553 }
    554 
    555 void
    556 sk_marv_miibus_statchg(struct device *dev)
    557 {
    558 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
    559 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
    560 }
    561 
    562 #define SK_HASH_BITS		6
    563 
    564 u_int32_t
    565 sk_xmac_hash(void *addr)
    566 {
    567 	u_int32_t		crc;
    568 
    569 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
    570 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
    571 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    572 	return crc;
    573 }
    574 
    575 u_int32_t
    576 sk_yukon_hash(void *addr)
    577 {
    578 	u_int32_t		crc;
    579 
    580 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
    581 	crc &= ((1 << SK_HASH_BITS) - 1);
    582 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    583 	return crc;
    584 }
    585 
    586 void
    587 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
    588 {
    589 	char *addr = addrv;
    590 	int base = XM_RXFILT_ENTRY(slot);
    591 
    592 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
    593 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
    594 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
    595 }
    596 
    597 void
    598 sk_setmulti(struct sk_if_softc *sc_if)
    599 {
    600 	struct sk_softc *sc = sc_if->sk_softc;
    601 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
    602 	u_int32_t hashes[2] = { 0, 0 };
    603 	int h = 0, i;
    604 	struct ethercom *ec = &sc_if->sk_ethercom;
    605 	struct ether_multi *enm;
    606 	struct ether_multistep step;
    607 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
    608 
    609 	/* First, zot all the existing filters. */
    610 	switch (sc->sk_type) {
    611 	case SK_GENESIS:
    612 		for (i = 1; i < XM_RXFILT_MAX; i++)
    613 			sk_setfilt(sc_if, (void *)&dummy, i);
    614 
    615 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
    616 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
    617 		break;
    618 	case SK_YUKON:
    619 	case SK_YUKON_LITE:
    620 	case SK_YUKON_LP:
    621 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
    622 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
    623 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
    624 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
    625 		break;
    626 	}
    627 
    628 	/* Now program new ones. */
    629 allmulti:
    630 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    631 		hashes[0] = 0xFFFFFFFF;
    632 		hashes[1] = 0xFFFFFFFF;
    633 	} else {
    634 		i = 1;
    635 		/* First find the tail of the list. */
    636 		ETHER_FIRST_MULTI(step, ec, enm);
    637 		while (enm != NULL) {
    638 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
    639 				 ETHER_ADDR_LEN)) {
    640 				ifp->if_flags |= IFF_ALLMULTI;
    641 				goto allmulti;
    642 			}
    643 			DPRINTFN(2,("multicast address %s\n",
    644 	    			ether_sprintf(enm->enm_addrlo)));
    645 			/*
    646 			 * Program the first XM_RXFILT_MAX multicast groups
    647 			 * into the perfect filter. For all others,
    648 			 * use the hash table.
    649 			 */
    650 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
    651 				sk_setfilt(sc_if, enm->enm_addrlo, i);
    652 				i++;
    653 			}
    654 			else {
    655 				switch (sc->sk_type) {
    656 				case SK_GENESIS:
    657 					h = sk_xmac_hash(enm->enm_addrlo);
    658 					break;
    659 				case SK_YUKON:
    660 				case SK_YUKON_LITE:
    661 				case SK_YUKON_LP:
    662 					h = sk_yukon_hash(enm->enm_addrlo);
    663 					break;
    664 				}
    665 				if (h < 32)
    666 					hashes[0] |= (1 << h);
    667 				else
    668 					hashes[1] |= (1 << (h - 32));
    669 			}
    670 
    671 			ETHER_NEXT_MULTI(step, enm);
    672 		}
    673 	}
    674 
    675 	switch (sc->sk_type) {
    676 	case SK_GENESIS:
    677 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
    678 			       XM_MODE_RX_USE_PERFECT);
    679 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
    680 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
    681 		break;
    682 	case SK_YUKON:
    683 	case SK_YUKON_LITE:
    684 	case SK_YUKON_LP:
    685 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
    686 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
    687 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
    688 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
    689 		break;
    690 	}
    691 }
    692 
    693 int
    694 sk_init_rx_ring(struct sk_if_softc *sc_if)
    695 {
    696 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    697 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    698 	int			i;
    699 
    700 	bzero((char *)rd->sk_rx_ring,
    701 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
    702 
    703 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    704 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
    705 		if (i == (SK_RX_RING_CNT - 1)) {
    706 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
    707 			rd->sk_rx_ring[i].sk_next =
    708 				htole32(SK_RX_RING_ADDR(sc_if, 0));
    709 		} else {
    710 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
    711 			rd->sk_rx_ring[i].sk_next =
    712 				htole32(SK_RX_RING_ADDR(sc_if,i+1));
    713 		}
    714 	}
    715 
    716 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    717 		if (sk_newbuf(sc_if, i, NULL,
    718 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
    719 			aprint_error("%s: failed alloc of %dth mbuf\n",
    720 			    sc_if->sk_dev.dv_xname, i);
    721 			return ENOBUFS;
    722 		}
    723 	}
    724 	sc_if->sk_cdata.sk_rx_prod = 0;
    725 	sc_if->sk_cdata.sk_rx_cons = 0;
    726 
    727 	return 0;
    728 }
    729 
    730 int
    731 sk_init_tx_ring(struct sk_if_softc *sc_if)
    732 {
    733 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    734 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    735 	int			i;
    736 
    737 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
    738 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
    739 
    740 	for (i = 0; i < SK_TX_RING_CNT; i++) {
    741 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
    742 		if (i == (SK_TX_RING_CNT - 1)) {
    743 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
    744 			rd->sk_tx_ring[i].sk_next =
    745 				htole32(SK_TX_RING_ADDR(sc_if, 0));
    746 		} else {
    747 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
    748 			rd->sk_tx_ring[i].sk_next =
    749 				htole32(SK_TX_RING_ADDR(sc_if,i+1));
    750 		}
    751 	}
    752 
    753 	sc_if->sk_cdata.sk_tx_prod = 0;
    754 	sc_if->sk_cdata.sk_tx_cons = 0;
    755 	sc_if->sk_cdata.sk_tx_cnt = 0;
    756 
    757 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
    758 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    759 
    760 	return 0;
    761 }
    762 
    763 int
    764 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
    765 	  bus_dmamap_t dmamap)
    766 {
    767 	struct mbuf		*m_new = NULL;
    768 	struct sk_chain		*c;
    769 	struct sk_rx_desc	*r;
    770 
    771 	if (m == NULL) {
    772 		void *buf = NULL;
    773 
    774 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    775 		if (m_new == NULL) {
    776 			aprint_error("%s: no memory for rx list -- "
    777 			    "packet dropped!\n", sc_if->sk_dev.dv_xname);
    778 			return ENOBUFS;
    779 		}
    780 
    781 		/* Allocate the jumbo buffer */
    782 		buf = sk_jalloc(sc_if);
    783 		if (buf == NULL) {
    784 			m_freem(m_new);
    785 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
    786 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
    787 			return ENOBUFS;
    788 		}
    789 
    790 		/* Attach the buffer to the mbuf */
    791 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    792 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
    793 
    794 	} else {
    795 		/*
    796 	 	 * We're re-using a previously allocated mbuf;
    797 		 * be sure to re-init pointers and lengths to
    798 		 * default values.
    799 		 */
    800 		m_new = m;
    801 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    802 		m_new->m_data = m_new->m_ext.ext_buf;
    803 	}
    804 	m_adj(m_new, ETHER_ALIGN);
    805 
    806 	c = &sc_if->sk_cdata.sk_rx_chain[i];
    807 	r = c->sk_desc;
    808 	c->sk_mbuf = m_new;
    809 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
    810 	    (((vaddr_t)m_new->m_data
    811 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
    812 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
    813 
    814 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    815 
    816 	return 0;
    817 }
    818 
    819 /*
    820  * Memory management for jumbo frames.
    821  */
    822 
    823 int
    824 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
    825 {
    826 	struct sk_softc		*sc = sc_if->sk_softc;
    827 	char *ptr, *kva;
    828 	bus_dma_segment_t	seg;
    829 	int		i, rseg, state, error;
    830 	struct sk_jpool_entry   *entry;
    831 
    832 	state = error = 0;
    833 
    834 	/* Grab a big chunk o' storage. */
    835 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
    836 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    837 		aprint_error("%s: can't alloc rx buffers\n", sc->sk_dev.dv_xname);
    838 		return ENOBUFS;
    839 	}
    840 
    841 	state = 1;
    842 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
    843 			   BUS_DMA_NOWAIT)) {
    844 		aprint_error("%s: can't map dma buffers (%d bytes)\n",
    845 		    sc->sk_dev.dv_xname, SK_JMEM);
    846 		error = ENOBUFS;
    847 		goto out;
    848 	}
    849 
    850 	state = 2;
    851 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
    852 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
    853 		aprint_error("%s: can't create dma map\n", sc->sk_dev.dv_xname);
    854 		error = ENOBUFS;
    855 		goto out;
    856 	}
    857 
    858 	state = 3;
    859 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
    860 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
    861 		aprint_error("%s: can't load dma map\n", sc->sk_dev.dv_xname);
    862 		error = ENOBUFS;
    863 		goto out;
    864 	}
    865 
    866 	state = 4;
    867 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
    868 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
    869 
    870 	LIST_INIT(&sc_if->sk_jfree_listhead);
    871 	LIST_INIT(&sc_if->sk_jinuse_listhead);
    872 
    873 	/*
    874 	 * Now divide it up into 9K pieces and save the addresses
    875 	 * in an array.
    876 	 */
    877 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
    878 	for (i = 0; i < SK_JSLOTS; i++) {
    879 		sc_if->sk_cdata.sk_jslots[i] = ptr;
    880 		ptr += SK_JLEN;
    881 		entry = malloc(sizeof(struct sk_jpool_entry),
    882 		    M_DEVBUF, M_NOWAIT);
    883 		if (entry == NULL) {
    884 			aprint_error("%s: no memory for jumbo buffer queue!\n",
    885 			    sc->sk_dev.dv_xname);
    886 			error = ENOBUFS;
    887 			goto out;
    888 		}
    889 		entry->slot = i;
    890 		if (i)
    891 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
    892 				 entry, jpool_entries);
    893 		else
    894 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
    895 				 entry, jpool_entries);
    896 	}
    897 out:
    898 	if (error != 0) {
    899 		switch (state) {
    900 		case 4:
    901 			bus_dmamap_unload(sc->sc_dmatag,
    902 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    903 		case 3:
    904 			bus_dmamap_destroy(sc->sc_dmatag,
    905 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    906 		case 2:
    907 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
    908 		case 1:
    909 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
    910 			break;
    911 		default:
    912 			break;
    913 		}
    914 	}
    915 
    916 	return error;
    917 }
    918 
    919 /*
    920  * Allocate a jumbo buffer.
    921  */
    922 void *
    923 sk_jalloc(struct sk_if_softc *sc_if)
    924 {
    925 	struct sk_jpool_entry   *entry;
    926 
    927 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
    928 
    929 	if (entry == NULL)
    930 		return NULL;
    931 
    932 	LIST_REMOVE(entry, jpool_entries);
    933 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
    934 	return sc_if->sk_cdata.sk_jslots[entry->slot];
    935 }
    936 
    937 /*
    938  * Release a jumbo buffer.
    939  */
    940 void
    941 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
    942 {
    943 	struct sk_jpool_entry *entry;
    944 	struct sk_if_softc *sc;
    945 	int i, s;
    946 
    947 	/* Extract the softc struct pointer. */
    948 	sc = (struct sk_if_softc *)arg;
    949 
    950 	if (sc == NULL)
    951 		panic("sk_jfree: can't find softc pointer!");
    952 
    953 	/* calculate the slot this buffer belongs to */
    954 
    955 	i = ((vaddr_t)buf
    956 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
    957 
    958 	if ((i < 0) || (i >= SK_JSLOTS))
    959 		panic("sk_jfree: asked to free buffer that we don't manage!");
    960 
    961 	s = splvm();
    962 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
    963 	if (entry == NULL)
    964 		panic("sk_jfree: buffer not in use!");
    965 	entry->slot = i;
    966 	LIST_REMOVE(entry, jpool_entries);
    967 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
    968 
    969 	if (__predict_true(m != NULL))
    970 		pool_cache_put(mb_cache, m);
    971 	splx(s);
    972 }
    973 
    974 /*
    975  * Set media options.
    976  */
    977 int
    978 sk_ifmedia_upd(struct ifnet *ifp)
    979 {
    980 	struct sk_if_softc *sc_if = ifp->if_softc;
    981 	int rc;
    982 
    983 	(void) sk_init(ifp);
    984 	if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
    985 		return 0;
    986 	return rc;
    987 }
    988 
    989 int
    990 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
    991 {
    992 	struct sk_if_softc *sc_if = ifp->if_softc;
    993 	struct sk_softc *sc = sc_if->sk_softc;
    994 	int s, error = 0;
    995 
    996 	/* DPRINTFN(2, ("sk_ioctl\n")); */
    997 
    998 	s = splnet();
    999 
   1000 	switch (command) {
   1001 
   1002 	case SIOCSIFFLAGS:
   1003 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
   1004 		if (ifp->if_flags & IFF_UP) {
   1005 			if (ifp->if_flags & IFF_RUNNING &&
   1006 			    ifp->if_flags & IFF_PROMISC &&
   1007 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
   1008 				switch (sc->sk_type) {
   1009 				case SK_GENESIS:
   1010 					SK_XM_SETBIT_4(sc_if, XM_MODE,
   1011 					    XM_MODE_RX_PROMISC);
   1012 					break;
   1013 				case SK_YUKON:
   1014 				case SK_YUKON_LITE:
   1015 				case SK_YUKON_LP:
   1016 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
   1017 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1018 					break;
   1019 				}
   1020 				sk_setmulti(sc_if);
   1021 			} else if (ifp->if_flags & IFF_RUNNING &&
   1022 			    !(ifp->if_flags & IFF_PROMISC) &&
   1023 			    sc_if->sk_if_flags & IFF_PROMISC) {
   1024 				switch (sc->sk_type) {
   1025 				case SK_GENESIS:
   1026 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
   1027 					    XM_MODE_RX_PROMISC);
   1028 					break;
   1029 				case SK_YUKON:
   1030 				case SK_YUKON_LITE:
   1031 				case SK_YUKON_LP:
   1032 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
   1033 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1034 					break;
   1035 				}
   1036 
   1037 				sk_setmulti(sc_if);
   1038 			} else
   1039 				(void) sk_init(ifp);
   1040 		} else {
   1041 			if (ifp->if_flags & IFF_RUNNING)
   1042 				sk_stop(ifp,0);
   1043 		}
   1044 		sc_if->sk_if_flags = ifp->if_flags;
   1045 		error = 0;
   1046 		break;
   1047 
   1048 	default:
   1049 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
   1050 		error = ether_ioctl(ifp, command, data);
   1051 
   1052 		if ( error == ENETRESET) {
   1053 			if (ifp->if_flags & IFF_RUNNING) {
   1054 				sk_setmulti(sc_if);
   1055 				DPRINTFN(2, ("sk_ioctl setmulti called\n"));
   1056 			}
   1057 			error = 0;
   1058 		}
   1059 		break;
   1060 	}
   1061 
   1062 	splx(s);
   1063 	return error;
   1064 }
   1065 
   1066 void
   1067 sk_update_int_mod(struct sk_softc *sc)
   1068 {
   1069 	u_int32_t imtimer_ticks;
   1070 
   1071 	/*
   1072          * Configure interrupt moderation. The moderation timer
   1073 	 * defers interrupts specified in the interrupt moderation
   1074 	 * timer mask based on the timeout specified in the interrupt
   1075 	 * moderation timer init register. Each bit in the timer
   1076 	 * register represents one tick, so to specify a timeout in
   1077 	 * microseconds, we have to multiply by the correct number of
   1078 	 * ticks-per-microsecond.
   1079 	 */
   1080 	switch (sc->sk_type) {
   1081 	case SK_GENESIS:
   1082 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   1083 		break;
   1084 	case SK_YUKON_EC:
   1085 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   1086 		break;
   1087 	default:
   1088 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   1089 	}
   1090 	aprint_verbose("%s: interrupt moderation is %d us\n",
   1091 	    sc->sk_dev.dv_xname, sc->sk_int_mod);
   1092         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
   1093         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
   1094 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
   1095         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
   1096 	sc->sk_int_mod_pending = 0;
   1097 }
   1098 
   1099 /*
   1100  * Lookup: Check the PCI vendor and device, and return a pointer to
   1101  * The structure if the IDs match against our list.
   1102  */
   1103 
   1104 static const struct sk_product *
   1105 sk_lookup(const struct pci_attach_args *pa)
   1106 {
   1107 	const struct sk_product *psk;
   1108 
   1109 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
   1110 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
   1111 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
   1112 			return psk;
   1113 	}
   1114 	return NULL;
   1115 }
   1116 
   1117 /*
   1118  * Probe for a SysKonnect GEnesis chip.
   1119  */
   1120 
   1121 int
   1122 skc_probe(struct device *parent, struct cfdata *match,
   1123     void *aux)
   1124 {
   1125 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1126 	const struct sk_product *psk;
   1127 	pcireg_t subid;
   1128 
   1129 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
   1130 
   1131 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
   1132 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
   1133 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
   1134 	    subid == SK_LINKSYS_EG1032_SUBID)
   1135 		return 1;
   1136 
   1137 	if ((psk = sk_lookup(pa))) {
   1138 		return 1;
   1139 	}
   1140 	return 0;
   1141 }
   1142 
   1143 /*
   1144  * Force the GEnesis into reset, then bring it out of reset.
   1145  */
   1146 void sk_reset(struct sk_softc *sc)
   1147 {
   1148 	DPRINTFN(2, ("sk_reset\n"));
   1149 
   1150 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
   1151 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
   1152 	if (SK_YUKON_FAMILY(sc->sk_type))
   1153 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
   1154 
   1155 	DELAY(1000);
   1156 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
   1157 	DELAY(2);
   1158 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
   1159 	if (SK_YUKON_FAMILY(sc->sk_type))
   1160 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
   1161 
   1162 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
   1163 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
   1164 		     CSR_READ_2(sc, SK_LINK_CTRL)));
   1165 
   1166 	if (sc->sk_type == SK_GENESIS) {
   1167 		/* Configure packet arbiter */
   1168 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
   1169 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1170 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1171 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1172 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1173 	}
   1174 
   1175 	/* Enable RAM interface */
   1176 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
   1177 
   1178 	sk_update_int_mod(sc);
   1179 }
   1180 
   1181 int
   1182 sk_probe(struct device *parent, struct cfdata *match,
   1183     void *aux)
   1184 {
   1185 	struct skc_attach_args *sa = aux;
   1186 
   1187 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
   1188 		return 0;
   1189 
   1190 	return 1;
   1191 }
   1192 
   1193 /*
   1194  * Each XMAC chip is attached as a separate logical IP interface.
   1195  * Single port cards will have only one logical interface of course.
   1196  */
   1197 void
   1198 sk_attach(struct device *parent, struct device *self, void *aux)
   1199 {
   1200 	struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
   1201 	struct sk_softc *sc = (struct sk_softc *)parent;
   1202 	struct skc_attach_args *sa = aux;
   1203 	struct sk_txmap_entry	*entry;
   1204 	struct ifnet *ifp;
   1205 	bus_dma_segment_t seg;
   1206 	bus_dmamap_t dmamap;
   1207 	void *kva;
   1208 	int i, rseg;
   1209 
   1210 	aprint_naive("\n");
   1211 
   1212 	sc_if->sk_port = sa->skc_port;
   1213 	sc_if->sk_softc = sc;
   1214 	sc->sk_if[sa->skc_port] = sc_if;
   1215 
   1216 	if (sa->skc_port == SK_PORT_A)
   1217 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
   1218 	if (sa->skc_port == SK_PORT_B)
   1219 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
   1220 
   1221 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
   1222 
   1223 	/*
   1224 	 * Get station address for this interface. Note that
   1225 	 * dual port cards actually come with three station
   1226 	 * addresses: one for each port, plus an extra. The
   1227 	 * extra one is used by the SysKonnect driver software
   1228 	 * as a 'virtual' station address for when both ports
   1229 	 * are operating in failover mode. Currently we don't
   1230 	 * use this extra address.
   1231 	 */
   1232 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1233 		sc_if->sk_enaddr[i] =
   1234 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
   1235 
   1236 
   1237 	aprint_normal(": Ethernet address %s\n",
   1238 	    ether_sprintf(sc_if->sk_enaddr));
   1239 
   1240 	/*
   1241 	 * Set up RAM buffer addresses. The NIC will have a certain
   1242 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
   1243 	 * need to divide this up a) between the transmitter and
   1244  	 * receiver and b) between the two XMACs, if this is a
   1245 	 * dual port NIC. Our algorithm is to divide up the memory
   1246 	 * evenly so that everyone gets a fair share.
   1247 	 */
   1248 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
   1249 		u_int32_t		chunk, val;
   1250 
   1251 		chunk = sc->sk_ramsize / 2;
   1252 		val = sc->sk_rboff / sizeof(u_int64_t);
   1253 		sc_if->sk_rx_ramstart = val;
   1254 		val += (chunk / sizeof(u_int64_t));
   1255 		sc_if->sk_rx_ramend = val - 1;
   1256 		sc_if->sk_tx_ramstart = val;
   1257 		val += (chunk / sizeof(u_int64_t));
   1258 		sc_if->sk_tx_ramend = val - 1;
   1259 	} else {
   1260 		u_int32_t		chunk, val;
   1261 
   1262 		chunk = sc->sk_ramsize / 4;
   1263 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
   1264 		    sizeof(u_int64_t);
   1265 		sc_if->sk_rx_ramstart = val;
   1266 		val += (chunk / sizeof(u_int64_t));
   1267 		sc_if->sk_rx_ramend = val - 1;
   1268 		sc_if->sk_tx_ramstart = val;
   1269 		val += (chunk / sizeof(u_int64_t));
   1270 		sc_if->sk_tx_ramend = val - 1;
   1271 	}
   1272 
   1273 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
   1274 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
   1275 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
   1276 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
   1277 
   1278 	/* Read and save PHY type and set PHY address */
   1279 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
   1280 	switch (sc_if->sk_phytype) {
   1281 	case SK_PHYTYPE_XMAC:
   1282 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
   1283 		break;
   1284 	case SK_PHYTYPE_BCOM:
   1285 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
   1286 		break;
   1287 	case SK_PHYTYPE_MARV_COPPER:
   1288 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
   1289 		break;
   1290 	default:
   1291 		aprint_error("%s: unsupported PHY type: %d\n",
   1292 		    sc->sk_dev.dv_xname, sc_if->sk_phytype);
   1293 		return;
   1294 	}
   1295 
   1296 	/* Allocate the descriptor queues. */
   1297 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
   1298 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1299 		aprint_error("%s: can't alloc rx buffers\n",
   1300 		    sc->sk_dev.dv_xname);
   1301 		goto fail;
   1302 	}
   1303 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
   1304 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
   1305 		aprint_error("%s: can't map dma buffers (%lu bytes)\n",
   1306 		       sc_if->sk_dev.dv_xname,
   1307 		       (u_long) sizeof(struct sk_ring_data));
   1308 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1309 		goto fail;
   1310 	}
   1311 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
   1312 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
   1313             &sc_if->sk_ring_map)) {
   1314 		aprint_error("%s: can't create dma map\n",
   1315 		    sc_if->sk_dev.dv_xname);
   1316 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1317 		    sizeof(struct sk_ring_data));
   1318 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1319 		goto fail;
   1320 	}
   1321 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
   1322 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
   1323 		aprint_error("%s: can't load dma map\n",
   1324 		    sc_if->sk_dev.dv_xname);
   1325 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1326 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1327 		    sizeof(struct sk_ring_data));
   1328 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1329 		goto fail;
   1330 	}
   1331 
   1332 	for (i = 0; i < SK_RX_RING_CNT; i++)
   1333 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   1334 
   1335 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
   1336 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   1337 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   1338 
   1339 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
   1340 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
   1341 			aprint_error("%s: Can't create TX dmamap\n",
   1342 				sc_if->sk_dev.dv_xname);
   1343 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1344 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1345 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1346 			    sizeof(struct sk_ring_data));
   1347 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1348 			goto fail;
   1349 		}
   1350 
   1351 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
   1352 		if (!entry) {
   1353 			aprint_error("%s: Can't alloc txmap entry\n",
   1354 				sc_if->sk_dev.dv_xname);
   1355 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
   1356 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1357 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1358 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1359 			    sizeof(struct sk_ring_data));
   1360 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1361 			goto fail;
   1362 		}
   1363 		entry->dmamap = dmamap;
   1364 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
   1365 	}
   1366 
   1367         sc_if->sk_rdata = (struct sk_ring_data *)kva;
   1368 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
   1369 
   1370 	ifp = &sc_if->sk_ethercom.ec_if;
   1371 	/* Try to allocate memory for jumbo buffers. */
   1372 	if (sk_alloc_jumbo_mem(sc_if)) {
   1373 		aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
   1374 		goto fail;
   1375 	}
   1376 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
   1377 		| ETHERCAP_JUMBO_MTU;
   1378 
   1379 	ifp->if_softc = sc_if;
   1380 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1381 	ifp->if_ioctl = sk_ioctl;
   1382 	ifp->if_start = sk_start;
   1383 	ifp->if_stop = sk_stop;
   1384 	ifp->if_init = sk_init;
   1385 	ifp->if_watchdog = sk_watchdog;
   1386 	ifp->if_capabilities = 0;
   1387 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
   1388 	IFQ_SET_READY(&ifp->if_snd);
   1389 	strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
   1390 
   1391 	/*
   1392 	 * Do miibus setup.
   1393 	 */
   1394 	switch (sc->sk_type) {
   1395 	case SK_GENESIS:
   1396 		sk_init_xmac(sc_if);
   1397 		break;
   1398 	case SK_YUKON:
   1399 	case SK_YUKON_LITE:
   1400 	case SK_YUKON_LP:
   1401 		sk_init_yukon(sc_if);
   1402 		break;
   1403 	default:
   1404 		aprint_error("%s: unknown device type %d\n",
   1405 		    sc->sk_dev.dv_xname, sc->sk_type);
   1406 		goto fail;
   1407 	}
   1408 
   1409  	DPRINTFN(2, ("sk_attach: 1\n"));
   1410 
   1411 	sc_if->sk_mii.mii_ifp = ifp;
   1412 	switch (sc->sk_type) {
   1413 	case SK_GENESIS:
   1414 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
   1415 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
   1416 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
   1417 		break;
   1418 	case SK_YUKON:
   1419 	case SK_YUKON_LITE:
   1420 	case SK_YUKON_LP:
   1421 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
   1422 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
   1423 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
   1424 		break;
   1425 	}
   1426 
   1427 	sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
   1428 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
   1429 	    sk_ifmedia_upd, ether_mediastatus);
   1430 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
   1431 	    MII_OFFSET_ANY, 0);
   1432 	if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
   1433 		aprint_error("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
   1434 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
   1435 			    0, NULL);
   1436 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
   1437 	} else
   1438 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1439 
   1440 	callout_init(&sc_if->sk_tick_ch, 0);
   1441 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
   1442 
   1443 	DPRINTFN(2, ("sk_attach: 1\n"));
   1444 
   1445 	/*
   1446 	 * Call MI attach routines.
   1447 	 */
   1448 	if_attach(ifp);
   1449 
   1450 	ether_ifattach(ifp, sc_if->sk_enaddr);
   1451 
   1452 #if NRND > 0
   1453         rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
   1454             RND_TYPE_NET, 0);
   1455 #endif
   1456 
   1457 	DPRINTFN(2, ("sk_attach: end\n"));
   1458 
   1459 	return;
   1460 
   1461 fail:
   1462 	sc->sk_if[sa->skc_port] = NULL;
   1463 }
   1464 
   1465 int
   1466 skcprint(void *aux, const char *pnp)
   1467 {
   1468 	struct skc_attach_args *sa = aux;
   1469 
   1470 	if (pnp)
   1471 		aprint_normal("sk port %c at %s",
   1472 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
   1473 	else
   1474 		aprint_normal(" port %c",
   1475 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
   1476 	return UNCONF;
   1477 }
   1478 
   1479 /*
   1480  * Attach the interface. Allocate softc structures, do ifmedia
   1481  * setup and ethernet/BPF attach.
   1482  */
   1483 void
   1484 skc_attach(struct device *parent, struct device *self, void *aux)
   1485 {
   1486 	struct sk_softc *sc = (struct sk_softc *)self;
   1487 	struct pci_attach_args *pa = aux;
   1488 	struct skc_attach_args skca;
   1489 	pci_chipset_tag_t pc = pa->pa_pc;
   1490 #ifndef SK_USEIOSPACE
   1491 	pcireg_t memtype;
   1492 #endif
   1493 	pci_intr_handle_t ih;
   1494 	const char *intrstr = NULL;
   1495 	bus_addr_t iobase;
   1496 	bus_size_t iosize;
   1497 	int rc, sk_nodenum;
   1498 	u_int32_t command;
   1499 	const char *revstr;
   1500 	const struct sysctlnode *node;
   1501 
   1502 	aprint_naive("\n");
   1503 
   1504 	DPRINTFN(2, ("begin skc_attach\n"));
   1505 
   1506 	/*
   1507 	 * Handle power management nonsense.
   1508 	 */
   1509 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
   1510 
   1511 	if (command == 0x01) {
   1512 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
   1513 		if (command & SK_PSTATE_MASK) {
   1514 			u_int32_t		xiobase, membase, irq;
   1515 
   1516 			/* Save important PCI config data. */
   1517 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
   1518 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
   1519 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
   1520 
   1521 			/* Reset the power state. */
   1522 			aprint_normal("%s chip is in D%d power mode "
   1523 			    "-- setting to D0\n", sc->sk_dev.dv_xname,
   1524 			    command & SK_PSTATE_MASK);
   1525 			command &= 0xFFFFFFFC;
   1526 			pci_conf_write(pc, pa->pa_tag,
   1527 			    SK_PCI_PWRMGMTCTRL, command);
   1528 
   1529 			/* Restore PCI config data. */
   1530 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
   1531 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
   1532 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
   1533 		}
   1534 	}
   1535 
   1536 	/*
   1537 	 * Map control/status registers.
   1538 	 */
   1539 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1540 	command |= PCI_COMMAND_IO_ENABLE |
   1541 	    PCI_COMMAND_MEM_ENABLE |
   1542 	    PCI_COMMAND_MASTER_ENABLE;
   1543 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1544 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1545 
   1546 #ifdef SK_USEIOSPACE
   1547 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
   1548 		aprint_error(": failed to enable I/O ports!\n");
   1549 		return;
   1550 	}
   1551 	/*
   1552 	 * Map control/status registers.
   1553 	 */
   1554 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
   1555 			&sc->sk_btag, &sc->sk_bhandle,
   1556 			&iobase, &iosize)) {
   1557 		aprint_error(": can't find i/o space\n");
   1558 		return;
   1559 	}
   1560 #else
   1561 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1562 		aprint_error(": failed to enable memory mapping!\n");
   1563 		return;
   1564 	}
   1565 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
   1566 	switch (memtype) {
   1567         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1568         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1569                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
   1570 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
   1571 				   &iobase, &iosize) == 0)
   1572                         break;
   1573         default:
   1574                 aprint_error("%s: can't find mem space\n",
   1575 		       sc->sk_dev.dv_xname);
   1576                 return;
   1577 	}
   1578 
   1579 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
   1580 #endif
   1581 	sc->sc_dmatag = pa->pa_dmat;
   1582 
   1583 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
   1584 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
   1585 
   1586 	/* bail out here if chip is not recognized */
   1587 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
   1588 		aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
   1589 		goto fail;
   1590 	}
   1591 	if (SK_IS_YUKON2(sc)) {
   1592 		aprint_error("%s: Does not support Yukon2--try msk(4).\n",
   1593 		    sc->sk_dev.dv_xname);
   1594 		goto fail;
   1595 	}
   1596 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
   1597 
   1598 	/* Allocate interrupt */
   1599 	if (pci_intr_map(pa, &ih)) {
   1600 		aprint_error(": couldn't map interrupt\n");
   1601 		goto fail;
   1602 	}
   1603 
   1604 	intrstr = pci_intr_string(pc, ih);
   1605 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
   1606 	if (sc->sk_intrhand == NULL) {
   1607 		aprint_error(": couldn't establish interrupt");
   1608 		if (intrstr != NULL)
   1609 			aprint_normal(" at %s", intrstr);
   1610 		goto fail;
   1611 	}
   1612 	aprint_normal(": %s\n", intrstr);
   1613 
   1614 	/* Reset the adapter. */
   1615 	sk_reset(sc);
   1616 
   1617 	/* Read and save vital product data from EEPROM. */
   1618 	sk_vpd_read(sc);
   1619 
   1620 	if (sc->sk_type == SK_GENESIS) {
   1621 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1622 		/* Read and save RAM size and RAMbuffer offset */
   1623 		switch (val) {
   1624 		case SK_RAMSIZE_512K_64:
   1625 			sc->sk_ramsize = 0x80000;
   1626 			sc->sk_rboff = SK_RBOFF_0;
   1627 			break;
   1628 		case SK_RAMSIZE_1024K_64:
   1629 			sc->sk_ramsize = 0x100000;
   1630 			sc->sk_rboff = SK_RBOFF_80000;
   1631 			break;
   1632 		case SK_RAMSIZE_1024K_128:
   1633 			sc->sk_ramsize = 0x100000;
   1634 			sc->sk_rboff = SK_RBOFF_0;
   1635 			break;
   1636 		case SK_RAMSIZE_2048K_128:
   1637 			sc->sk_ramsize = 0x200000;
   1638 			sc->sk_rboff = SK_RBOFF_0;
   1639 			break;
   1640 		default:
   1641 			aprint_error("%s: unknown ram size: %d\n",
   1642 			       sc->sk_dev.dv_xname, val);
   1643 			goto fail_1;
   1644 			break;
   1645 		}
   1646 
   1647 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
   1648 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
   1649 			     sc->sk_rboff));
   1650 	} else {
   1651 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1652 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
   1653 		sc->sk_rboff = SK_RBOFF_0;
   1654 
   1655 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
   1656 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
   1657 			     sc->sk_rboff));
   1658 	}
   1659 
   1660 	/* Read and save physical media type */
   1661 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
   1662 	case SK_PMD_1000BASESX:
   1663 		sc->sk_pmd = IFM_1000_SX;
   1664 		break;
   1665 	case SK_PMD_1000BASELX:
   1666 		sc->sk_pmd = IFM_1000_LX;
   1667 		break;
   1668 	case SK_PMD_1000BASECX:
   1669 		sc->sk_pmd = IFM_1000_CX;
   1670 		break;
   1671 	case SK_PMD_1000BASETX:
   1672 	case SK_PMD_1000BASETX_ALT:
   1673 		sc->sk_pmd = IFM_1000_T;
   1674 		break;
   1675 	default:
   1676 		aprint_error("%s: unknown media type: 0x%x\n",
   1677 		    sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
   1678 		goto fail_1;
   1679 	}
   1680 
   1681 	/* determine whether to name it with vpd or just make it up */
   1682 	/* Marvell Yukon VPD's can freqently be bogus */
   1683 
   1684 	switch (pa->pa_id) {
   1685 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1686 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
   1687 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
   1688 	case PCI_PRODUCT_3COM_3C940:
   1689 	case PCI_PRODUCT_DLINK_DGE530T:
   1690 	case PCI_PRODUCT_DLINK_DGE560T:
   1691 	case PCI_PRODUCT_DLINK_DGE560T_2:
   1692 	case PCI_PRODUCT_LINKSYS_EG1032:
   1693 	case PCI_PRODUCT_LINKSYS_EG1064:
   1694 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1695 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
   1696 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
   1697 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
   1698 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
   1699 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
   1700 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
   1701 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
   1702  		sc->sk_name = sc->sk_vpd_prodname;
   1703  		break;
   1704 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
   1705 	/* whoops yukon vpd prodname bears no resemblance to reality */
   1706 		switch (sc->sk_type) {
   1707 		case SK_GENESIS:
   1708 			sc->sk_name = sc->sk_vpd_prodname;
   1709 			break;
   1710 		case SK_YUKON:
   1711 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
   1712 			break;
   1713 		case SK_YUKON_LITE:
   1714 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
   1715 			break;
   1716 		case SK_YUKON_LP:
   1717 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
   1718 			break;
   1719 		default:
   1720 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
   1721 		}
   1722 
   1723 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
   1724 
   1725 		if ( sc->sk_type == SK_YUKON ) {
   1726 			uint32_t flashaddr;
   1727 			uint8_t testbyte;
   1728 
   1729 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
   1730 
   1731 			/* test Flash-Address Register */
   1732 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
   1733 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
   1734 
   1735 			if (testbyte != 0) {
   1736 				/* this is yukon lite Rev. A0 */
   1737 				sc->sk_type = SK_YUKON_LITE;
   1738 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
   1739 				/* restore Flash-Address Register */
   1740 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
   1741 			}
   1742 		}
   1743 		break;
   1744 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
   1745 		sc->sk_name = sc->sk_vpd_prodname;
   1746 		break;
   1747  	default:
   1748 		sc->sk_name = "Unknown Marvell";
   1749 	}
   1750 
   1751 
   1752 	if ( sc->sk_type == SK_YUKON_LITE ) {
   1753 		switch (sc->sk_rev) {
   1754 		case SK_YUKON_LITE_REV_A0:
   1755 			revstr = "A0";
   1756 			break;
   1757 		case SK_YUKON_LITE_REV_A1:
   1758 			revstr = "A1";
   1759 			break;
   1760 		case SK_YUKON_LITE_REV_A3:
   1761 			revstr = "A3";
   1762 			break;
   1763 		default:
   1764 			revstr = "";
   1765 		}
   1766 	} else {
   1767 		revstr = "";
   1768 	}
   1769 
   1770 	/* Announce the product name. */
   1771 	aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
   1772 			      sc->sk_name, revstr, sc->sk_rev);
   1773 
   1774 	skca.skc_port = SK_PORT_A;
   1775 	(void)config_found(&sc->sk_dev, &skca, skcprint);
   1776 
   1777 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
   1778 		skca.skc_port = SK_PORT_B;
   1779 		(void)config_found(&sc->sk_dev, &skca, skcprint);
   1780 	}
   1781 
   1782 	/* Turn on the 'driver is loaded' LED. */
   1783 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   1784 
   1785 	/* skc sysctl setup */
   1786 
   1787 	sc->sk_int_mod = SK_IM_DEFAULT;
   1788 	sc->sk_int_mod_pending = 0;
   1789 
   1790 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1791 	    0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
   1792 	    SYSCTL_DESCR("skc per-controller controls"),
   1793 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
   1794 	    CTL_EOL)) != 0) {
   1795 		aprint_normal("%s: couldn't create sysctl node\n",
   1796 		    sc->sk_dev.dv_xname);
   1797 		goto fail_1;
   1798 	}
   1799 
   1800 	sk_nodenum = node->sysctl_num;
   1801 
   1802 	/* interrupt moderation time in usecs */
   1803 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1804 	    CTLFLAG_READWRITE,
   1805 	    CTLTYPE_INT, "int_mod",
   1806 	    SYSCTL_DESCR("sk interrupt moderation timer"),
   1807 	    sk_sysctl_handler, 0, sc,
   1808 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
   1809 	    CTL_EOL)) != 0) {
   1810 		aprint_normal("%s: couldn't create int_mod sysctl node\n",
   1811 		    sc->sk_dev.dv_xname);
   1812 		goto fail_1;
   1813 	}
   1814 
   1815 	return;
   1816 
   1817 fail_1:
   1818 	pci_intr_disestablish(pc, sc->sk_intrhand);
   1819 fail:
   1820 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
   1821 }
   1822 
   1823 int
   1824 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
   1825 {
   1826 	struct sk_softc		*sc = sc_if->sk_softc;
   1827 	struct sk_tx_desc	*f = NULL;
   1828 	u_int32_t		frag, cur, cnt = 0, sk_ctl;
   1829 	int			i;
   1830 	struct sk_txmap_entry	*entry;
   1831 	bus_dmamap_t		txmap;
   1832 
   1833 	DPRINTFN(3, ("sk_encap\n"));
   1834 
   1835 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
   1836 	if (entry == NULL) {
   1837 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
   1838 		return ENOBUFS;
   1839 	}
   1840 	txmap = entry->dmamap;
   1841 
   1842 	cur = frag = *txidx;
   1843 
   1844 #ifdef SK_DEBUG
   1845 	if (skdebug >= 3)
   1846 		sk_dump_mbuf(m_head);
   1847 #endif
   1848 
   1849 	/*
   1850 	 * Start packing the mbufs in this chain into
   1851 	 * the fragment pointers. Stop when we run out
   1852 	 * of fragments or hit the end of the mbuf chain.
   1853 	 */
   1854 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
   1855 	    BUS_DMA_NOWAIT)) {
   1856 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
   1857 		return ENOBUFS;
   1858 	}
   1859 
   1860 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
   1861 
   1862 	/* Sync the DMA map. */
   1863 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
   1864 	    BUS_DMASYNC_PREWRITE);
   1865 
   1866 	for (i = 0; i < txmap->dm_nsegs; i++) {
   1867 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
   1868 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
   1869 			return ENOBUFS;
   1870 		}
   1871 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
   1872 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
   1873 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
   1874 		if (cnt == 0)
   1875 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
   1876 		else
   1877 			sk_ctl |= SK_TXCTL_OWN;
   1878 		f->sk_ctl = htole32(sk_ctl);
   1879 		cur = frag;
   1880 		SK_INC(frag, SK_TX_RING_CNT);
   1881 		cnt++;
   1882 	}
   1883 
   1884 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
   1885 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
   1886 
   1887 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
   1888 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
   1889 		htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
   1890 
   1891 	/* Sync descriptors before handing to chip */
   1892 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
   1893 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1894 
   1895 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
   1896 		htole32(SK_TXCTL_OWN);
   1897 
   1898 	/* Sync first descriptor to hand it off */
   1899 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1900 
   1901 	sc_if->sk_cdata.sk_tx_cnt += cnt;
   1902 
   1903 #ifdef SK_DEBUG
   1904 	if (skdebug >= 3) {
   1905 		struct sk_tx_desc *desc;
   1906 		u_int32_t idx;
   1907 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
   1908 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
   1909 			sk_dump_txdesc(desc, idx);
   1910 		}
   1911 	}
   1912 #endif
   1913 
   1914 	*txidx = frag;
   1915 
   1916 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
   1917 
   1918 	return 0;
   1919 }
   1920 
   1921 void
   1922 sk_start(struct ifnet *ifp)
   1923 {
   1924         struct sk_if_softc	*sc_if = ifp->if_softc;
   1925         struct sk_softc		*sc = sc_if->sk_softc;
   1926         struct mbuf		*m_head = NULL;
   1927         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
   1928 	int			pkts = 0;
   1929 
   1930 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
   1931 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
   1932 
   1933 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
   1934 		IFQ_POLL(&ifp->if_snd, m_head);
   1935 		if (m_head == NULL)
   1936 			break;
   1937 
   1938 		/*
   1939 		 * Pack the data into the transmit ring. If we
   1940 		 * don't have room, set the OACTIVE flag and wait
   1941 		 * for the NIC to drain the ring.
   1942 		 */
   1943 		if (sk_encap(sc_if, m_head, &idx)) {
   1944 			ifp->if_flags |= IFF_OACTIVE;
   1945 			break;
   1946 		}
   1947 
   1948 		/* now we are committed to transmit the packet */
   1949 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1950 		pkts++;
   1951 
   1952 		/*
   1953 		 * If there's a BPF listener, bounce a copy of this frame
   1954 		 * to him.
   1955 		 */
   1956 #if NBPFILTER > 0
   1957 		if (ifp->if_bpf)
   1958 			bpf_mtap(ifp->if_bpf, m_head);
   1959 #endif
   1960 	}
   1961 	if (pkts == 0)
   1962 		return;
   1963 
   1964 	/* Transmit */
   1965 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
   1966 		sc_if->sk_cdata.sk_tx_prod = idx;
   1967 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   1968 
   1969 		/* Set a timeout in case the chip goes out to lunch. */
   1970 		ifp->if_timer = 5;
   1971 	}
   1972 }
   1973 
   1974 
   1975 void
   1976 sk_watchdog(struct ifnet *ifp)
   1977 {
   1978 	struct sk_if_softc *sc_if = ifp->if_softc;
   1979 
   1980 	/*
   1981 	 * Reclaim first as there is a possibility of losing Tx completion
   1982 	 * interrupts.
   1983 	 */
   1984 	sk_txeof(sc_if);
   1985 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
   1986 		aprint_error("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
   1987 
   1988 		ifp->if_oerrors++;
   1989 
   1990 		sk_init(ifp);
   1991 	}
   1992 }
   1993 
   1994 void
   1995 sk_shutdown(void *v)
   1996 {
   1997 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
   1998 	struct sk_softc		*sc = sc_if->sk_softc;
   1999 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
   2000 
   2001 	DPRINTFN(2, ("sk_shutdown\n"));
   2002 	sk_stop(ifp,1);
   2003 
   2004 	/* Turn off the 'driver is loaded' LED. */
   2005 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   2006 
   2007 	/*
   2008 	 * Reset the GEnesis controller. Doing this should also
   2009 	 * assert the resets on the attached XMAC(s).
   2010 	 */
   2011 	sk_reset(sc);
   2012 }
   2013 
   2014 void
   2015 sk_rxeof(struct sk_if_softc *sc_if)
   2016 {
   2017 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2018 	struct mbuf		*m;
   2019 	struct sk_chain		*cur_rx;
   2020 	struct sk_rx_desc	*cur_desc;
   2021 	int			i, cur, total_len = 0;
   2022 	u_int32_t		rxstat, sk_ctl;
   2023 	bus_dmamap_t		dmamap;
   2024 
   2025 	i = sc_if->sk_cdata.sk_rx_prod;
   2026 
   2027 	DPRINTFN(3, ("sk_rxeof %d\n", i));
   2028 
   2029 	for (;;) {
   2030 		cur = i;
   2031 
   2032 		/* Sync the descriptor */
   2033 		SK_CDRXSYNC(sc_if, cur,
   2034 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2035 
   2036 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
   2037 		if (sk_ctl & SK_RXCTL_OWN) {
   2038 			/* Invalidate the descriptor -- it's not ready yet */
   2039 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
   2040 			sc_if->sk_cdata.sk_rx_prod = i;
   2041 			break;
   2042 		}
   2043 
   2044 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
   2045 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
   2046 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
   2047 
   2048 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
   2049 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2050 
   2051 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
   2052 		m = cur_rx->sk_mbuf;
   2053 		cur_rx->sk_mbuf = NULL;
   2054 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
   2055 
   2056 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
   2057 
   2058 		SK_INC(i, SK_RX_RING_CNT);
   2059 
   2060 		if (rxstat & XM_RXSTAT_ERRFRAME) {
   2061 			ifp->if_ierrors++;
   2062 			sk_newbuf(sc_if, cur, m, dmamap);
   2063 			continue;
   2064 		}
   2065 
   2066 		/*
   2067 		 * Try to allocate a new jumbo buffer. If that
   2068 		 * fails, copy the packet to mbufs and put the
   2069 		 * jumbo buffer back in the ring so it can be
   2070 		 * re-used. If allocating mbufs fails, then we
   2071 		 * have to drop the packet.
   2072 		 */
   2073 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
   2074 			struct mbuf		*m0;
   2075 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
   2076 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
   2077 			sk_newbuf(sc_if, cur, m, dmamap);
   2078 			if (m0 == NULL) {
   2079 				aprint_error("%s: no receive buffers "
   2080 				    "available -- packet dropped!\n",
   2081 				    sc_if->sk_dev.dv_xname);
   2082 				ifp->if_ierrors++;
   2083 				continue;
   2084 			}
   2085 			m_adj(m0, ETHER_ALIGN);
   2086 			m = m0;
   2087 		} else {
   2088 			m->m_pkthdr.rcvif = ifp;
   2089 			m->m_pkthdr.len = m->m_len = total_len;
   2090 		}
   2091 
   2092 		ifp->if_ipackets++;
   2093 
   2094 #if NBPFILTER > 0
   2095 		if (ifp->if_bpf)
   2096 			bpf_mtap(ifp->if_bpf, m);
   2097 #endif
   2098 		/* pass it on. */
   2099 		(*ifp->if_input)(ifp, m);
   2100 	}
   2101 }
   2102 
   2103 void
   2104 sk_txeof(struct sk_if_softc *sc_if)
   2105 {
   2106 	struct sk_softc		*sc = sc_if->sk_softc;
   2107 	struct sk_tx_desc	*cur_tx;
   2108 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2109 	u_int32_t		idx, sk_ctl;
   2110 	struct sk_txmap_entry	*entry;
   2111 
   2112 	DPRINTFN(3, ("sk_txeof\n"));
   2113 
   2114 	/*
   2115 	 * Go through our tx ring and free mbufs for those
   2116 	 * frames that have been sent.
   2117 	 */
   2118 	idx = sc_if->sk_cdata.sk_tx_cons;
   2119 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
   2120 		SK_CDTXSYNC(sc_if, idx, 1,
   2121 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2122 
   2123 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
   2124 		sk_ctl = le32toh(cur_tx->sk_ctl);
   2125 #ifdef SK_DEBUG
   2126 		if (skdebug >= 3)
   2127 			sk_dump_txdesc(cur_tx, idx);
   2128 #endif
   2129 		if (sk_ctl & SK_TXCTL_OWN) {
   2130 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
   2131 			break;
   2132 		}
   2133 		if (sk_ctl & SK_TXCTL_LASTFRAG)
   2134 			ifp->if_opackets++;
   2135 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
   2136 			entry = sc_if->sk_cdata.sk_tx_map[idx];
   2137 
   2138 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
   2139 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
   2140 
   2141 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
   2142 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2143 
   2144 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
   2145 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
   2146 					  link);
   2147 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
   2148 		}
   2149 		sc_if->sk_cdata.sk_tx_cnt--;
   2150 		SK_INC(idx, SK_TX_RING_CNT);
   2151 	}
   2152 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
   2153 		ifp->if_timer = 0;
   2154 	else /* nudge chip to keep tx ring moving */
   2155 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   2156 
   2157 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
   2158 		ifp->if_flags &= ~IFF_OACTIVE;
   2159 
   2160 	sc_if->sk_cdata.sk_tx_cons = idx;
   2161 }
   2162 
   2163 void
   2164 sk_tick(void *xsc_if)
   2165 {
   2166 	struct sk_if_softc *sc_if = xsc_if;
   2167 	struct mii_data *mii = &sc_if->sk_mii;
   2168 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2169 	int i;
   2170 
   2171 	DPRINTFN(3, ("sk_tick\n"));
   2172 
   2173 	if (!(ifp->if_flags & IFF_UP))
   2174 		return;
   2175 
   2176 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2177 		sk_intr_bcom(sc_if);
   2178 		return;
   2179 	}
   2180 
   2181 	/*
   2182 	 * According to SysKonnect, the correct way to verify that
   2183 	 * the link has come back up is to poll bit 0 of the GPIO
   2184 	 * register three times. This pin has the signal from the
   2185 	 * link sync pin connected to it; if we read the same link
   2186 	 * state 3 times in a row, we know the link is up.
   2187 	 */
   2188 	for (i = 0; i < 3; i++) {
   2189 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
   2190 			break;
   2191 	}
   2192 
   2193 	if (i != 3) {
   2194 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2195 		return;
   2196 	}
   2197 
   2198 	/* Turn the GP0 interrupt back on. */
   2199 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2200 	SK_XM_READ_2(sc_if, XM_ISR);
   2201 	mii_tick(mii);
   2202 	mii_pollstat(mii);
   2203 	callout_stop(&sc_if->sk_tick_ch);
   2204 }
   2205 
   2206 void
   2207 sk_intr_bcom(struct sk_if_softc *sc_if)
   2208 {
   2209 	struct mii_data *mii = &sc_if->sk_mii;
   2210 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2211 	int status;
   2212 
   2213 
   2214 	DPRINTFN(3, ("sk_intr_bcom\n"));
   2215 
   2216 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2217 
   2218 	/*
   2219 	 * Read the PHY interrupt register to make sure
   2220 	 * we clear any pending interrupts.
   2221 	 */
   2222 	status = sk_xmac_miibus_readreg((struct device *)sc_if,
   2223 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
   2224 
   2225 	if (!(ifp->if_flags & IFF_RUNNING)) {
   2226 		sk_init_xmac(sc_if);
   2227 		return;
   2228 	}
   2229 
   2230 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
   2231 		int lstat;
   2232 		lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
   2233 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
   2234 
   2235 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
   2236 			(void)mii_mediachg(mii);
   2237 			/* Turn off the link LED. */
   2238 			SK_IF_WRITE_1(sc_if, 0,
   2239 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2240 			sc_if->sk_link = 0;
   2241 		} else if (status & BRGPHY_ISR_LNK_CHG) {
   2242 			sk_xmac_miibus_writereg((struct device *)sc_if,
   2243 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
   2244 			mii_tick(mii);
   2245 			sc_if->sk_link = 1;
   2246 			/* Turn on the link LED. */
   2247 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2248 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
   2249 			    SK_LINKLED_BLINK_OFF);
   2250 			mii_pollstat(mii);
   2251 		} else {
   2252 			mii_tick(mii);
   2253 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
   2254 		}
   2255 	}
   2256 
   2257 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2258 }
   2259 
   2260 void
   2261 sk_intr_xmac(struct sk_if_softc	*sc_if)
   2262 {
   2263 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
   2264 
   2265 	DPRINTFN(3, ("sk_intr_xmac\n"));
   2266 
   2267 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
   2268 		if (status & XM_ISR_GP0_SET) {
   2269 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2270 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2271 		}
   2272 
   2273 		if (status & XM_ISR_AUTONEG_DONE) {
   2274 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2275 		}
   2276 	}
   2277 
   2278 	if (status & XM_IMR_TX_UNDERRUN)
   2279 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
   2280 
   2281 	if (status & XM_IMR_RX_OVERRUN)
   2282 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
   2283 }
   2284 
   2285 void
   2286 sk_intr_yukon(struct sk_if_softc *sc_if)
   2287 {
   2288 	int status;
   2289 
   2290 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2291 
   2292 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
   2293 }
   2294 
   2295 int
   2296 sk_intr(void *xsc)
   2297 {
   2298 	struct sk_softc		*sc = xsc;
   2299 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
   2300 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
   2301 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
   2302 	u_int32_t		status;
   2303 	int			claimed = 0;
   2304 
   2305 	if (sc_if0 != NULL)
   2306 		ifp0 = &sc_if0->sk_ethercom.ec_if;
   2307 	if (sc_if1 != NULL)
   2308 		ifp1 = &sc_if1->sk_ethercom.ec_if;
   2309 
   2310 	for (;;) {
   2311 		status = CSR_READ_4(sc, SK_ISSR);
   2312 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
   2313 
   2314 		if (!(status & sc->sk_intrmask))
   2315 			break;
   2316 
   2317 		claimed = 1;
   2318 
   2319 		/* Handle receive interrupts first. */
   2320 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
   2321 			sk_rxeof(sc_if0);
   2322 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
   2323 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2324 		}
   2325 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
   2326 			sk_rxeof(sc_if1);
   2327 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
   2328 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2329 		}
   2330 
   2331 		/* Then transmit interrupts. */
   2332 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
   2333 			sk_txeof(sc_if0);
   2334 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
   2335 			    SK_TXBMU_CLR_IRQ_EOF);
   2336 		}
   2337 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
   2338 			sk_txeof(sc_if1);
   2339 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
   2340 			    SK_TXBMU_CLR_IRQ_EOF);
   2341 		}
   2342 
   2343 		/* Then MAC interrupts. */
   2344 		if (sc_if0 && (status & SK_ISR_MAC1) &&
   2345 		    (ifp0->if_flags & IFF_RUNNING)) {
   2346 			if (sc->sk_type == SK_GENESIS)
   2347 				sk_intr_xmac(sc_if0);
   2348 			else
   2349 				sk_intr_yukon(sc_if0);
   2350 		}
   2351 
   2352 		if (sc_if1 && (status & SK_ISR_MAC2) &&
   2353 		    (ifp1->if_flags & IFF_RUNNING)) {
   2354 			if (sc->sk_type == SK_GENESIS)
   2355 				sk_intr_xmac(sc_if1);
   2356 			else
   2357 				sk_intr_yukon(sc_if1);
   2358 
   2359 		}
   2360 
   2361 		if (status & SK_ISR_EXTERNAL_REG) {
   2362 			if (sc_if0 != NULL &&
   2363 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
   2364 				sk_intr_bcom(sc_if0);
   2365 
   2366 			if (sc_if1 != NULL &&
   2367 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
   2368 				sk_intr_bcom(sc_if1);
   2369 		}
   2370 	}
   2371 
   2372 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2373 
   2374 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
   2375 		sk_start(ifp0);
   2376 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
   2377 		sk_start(ifp1);
   2378 
   2379 #if NRND > 0
   2380 	if (RND_ENABLED(&sc->rnd_source))
   2381 		rnd_add_uint32(&sc->rnd_source, status);
   2382 #endif
   2383 
   2384 	if (sc->sk_int_mod_pending)
   2385 		sk_update_int_mod(sc);
   2386 
   2387 	return claimed;
   2388 }
   2389 
   2390 void
   2391 sk_init_xmac(struct sk_if_softc	*sc_if)
   2392 {
   2393 	struct sk_softc		*sc = sc_if->sk_softc;
   2394 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2395 	static const struct sk_bcom_hack     bhack[] = {
   2396 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
   2397 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
   2398 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
   2399 	{ 0, 0 } };
   2400 
   2401 	DPRINTFN(1, ("sk_init_xmac\n"));
   2402 
   2403 	/* Unreset the XMAC. */
   2404 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
   2405 	DELAY(1000);
   2406 
   2407 	/* Reset the XMAC's internal state. */
   2408 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2409 
   2410 	/* Save the XMAC II revision */
   2411 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
   2412 
   2413 	/*
   2414 	 * Perform additional initialization for external PHYs,
   2415 	 * namely for the 1000baseTX cards that use the XMAC's
   2416 	 * GMII mode.
   2417 	 */
   2418 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2419 		int			i = 0;
   2420 		u_int32_t		val;
   2421 
   2422 		/* Take PHY out of reset. */
   2423 		val = sk_win_read_4(sc, SK_GPIO);
   2424 		if (sc_if->sk_port == SK_PORT_A)
   2425 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
   2426 		else
   2427 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
   2428 		sk_win_write_4(sc, SK_GPIO, val);
   2429 
   2430 		/* Enable GMII mode on the XMAC. */
   2431 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
   2432 
   2433 		sk_xmac_miibus_writereg((struct device *)sc_if,
   2434 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
   2435 		DELAY(10000);
   2436 		sk_xmac_miibus_writereg((struct device *)sc_if,
   2437 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
   2438 
   2439 		/*
   2440 		 * Early versions of the BCM5400 apparently have
   2441 		 * a bug that requires them to have their reserved
   2442 		 * registers initialized to some magic values. I don't
   2443 		 * know what the numbers do, I'm just the messenger.
   2444 		 */
   2445 		if (sk_xmac_miibus_readreg((struct device *)sc_if,
   2446 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
   2447 			while (bhack[i].reg) {
   2448 				sk_xmac_miibus_writereg((struct device *)sc_if,
   2449 				    SK_PHYADDR_BCOM, bhack[i].reg,
   2450 				    bhack[i].val);
   2451 				i++;
   2452 			}
   2453 		}
   2454 	}
   2455 
   2456 	/* Set station address */
   2457 	SK_XM_WRITE_2(sc_if, XM_PAR0,
   2458 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
   2459 	SK_XM_WRITE_2(sc_if, XM_PAR1,
   2460 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
   2461 	SK_XM_WRITE_2(sc_if, XM_PAR2,
   2462 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
   2463 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
   2464 
   2465 	if (ifp->if_flags & IFF_PROMISC)
   2466 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2467 	else
   2468 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2469 
   2470 	if (ifp->if_flags & IFF_BROADCAST)
   2471 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2472 	else
   2473 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2474 
   2475 	/* We don't need the FCS appended to the packet. */
   2476 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
   2477 
   2478 	/* We want short frames padded to 60 bytes. */
   2479 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
   2480 
   2481 	/*
   2482 	 * Enable the reception of all error frames. This is is
   2483 	 * a necessary evil due to the design of the XMAC. The
   2484 	 * XMAC's receive FIFO is only 8K in size, however jumbo
   2485 	 * frames can be up to 9000 bytes in length. When bad
   2486 	 * frame filtering is enabled, the XMAC's RX FIFO operates
   2487 	 * in 'store and forward' mode. For this to work, the
   2488 	 * entire frame has to fit into the FIFO, but that means
   2489 	 * that jumbo frames larger than 8192 bytes will be
   2490 	 * truncated. Disabling all bad frame filtering causes
   2491 	 * the RX FIFO to operate in streaming mode, in which
   2492 	 * case the XMAC will start transfering frames out of the
   2493 	 * RX FIFO as soon as the FIFO threshold is reached.
   2494 	 */
   2495 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
   2496 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
   2497 	    XM_MODE_RX_INRANGELEN);
   2498 
   2499 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2500 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2501 	else
   2502 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2503 
   2504 	/*
   2505 	 * Bump up the transmit threshold. This helps hold off transmit
   2506 	 * underruns when we're blasting traffic from both ports at once.
   2507 	 */
   2508 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
   2509 
   2510 	/* Set multicast filter */
   2511 	sk_setmulti(sc_if);
   2512 
   2513 	/* Clear and enable interrupts */
   2514 	SK_XM_READ_2(sc_if, XM_ISR);
   2515 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
   2516 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
   2517 	else
   2518 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2519 
   2520 	/* Configure MAC arbiter */
   2521 	switch (sc_if->sk_xmac_rev) {
   2522 	case XM_XMAC_REV_B2:
   2523 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
   2524 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
   2525 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
   2526 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
   2527 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
   2528 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
   2529 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
   2530 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
   2531 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2532 		break;
   2533 	case XM_XMAC_REV_C1:
   2534 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
   2535 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
   2536 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
   2537 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
   2538 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
   2539 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
   2540 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
   2541 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
   2542 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2543 		break;
   2544 	default:
   2545 		break;
   2546 	}
   2547 	sk_win_write_2(sc, SK_MACARB_CTL,
   2548 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
   2549 
   2550 	sc_if->sk_link = 1;
   2551 }
   2552 
   2553 void sk_init_yukon(struct sk_if_softc *sc_if)
   2554 {
   2555 	u_int32_t		/*mac, */phy;
   2556 	u_int16_t		reg;
   2557 	struct sk_softc		*sc;
   2558 	int			i;
   2559 
   2560 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
   2561 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
   2562 
   2563 	sc = sc_if->sk_softc;
   2564 	if (sc->sk_type == SK_YUKON_LITE &&
   2565 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
   2566 		/* Take PHY out of reset. */
   2567 		sk_win_write_4(sc, SK_GPIO,
   2568 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
   2569 	}
   2570 
   2571 
   2572 	/* GMAC and GPHY Reset */
   2573 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
   2574 
   2575 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
   2576 
   2577 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2578 	DELAY(1000);
   2579 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
   2580 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2581 	DELAY(1000);
   2582 
   2583 
   2584 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
   2585 
   2586 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
   2587 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
   2588 
   2589 	switch (sc_if->sk_softc->sk_pmd) {
   2590 	case IFM_1000_SX:
   2591 	case IFM_1000_LX:
   2592 		phy |= SK_GPHY_FIBER;
   2593 		break;
   2594 
   2595 	case IFM_1000_CX:
   2596 	case IFM_1000_T:
   2597 		phy |= SK_GPHY_COPPER;
   2598 		break;
   2599 	}
   2600 
   2601 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
   2602 
   2603 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
   2604 	DELAY(1000);
   2605 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
   2606 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
   2607 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
   2608 
   2609 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
   2610 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
   2611 
   2612 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
   2613 
   2614 	/* unused read of the interrupt source register */
   2615 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
   2616 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2617 
   2618 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
   2619 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
   2620 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2621 
   2622 	/* MIB Counter Clear Mode set */
   2623         reg |= YU_PAR_MIB_CLR;
   2624 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2625 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
   2626 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2627 
   2628 	/* MIB Counter Clear Mode clear */
   2629 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
   2630         reg &= ~YU_PAR_MIB_CLR;
   2631 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2632 
   2633 	/* receive control reg */
   2634 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
   2635 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
   2636 		      YU_RCR_CRCR);
   2637 
   2638 	/* transmit parameter register */
   2639 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
   2640 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
   2641 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
   2642 
   2643 	/* serial mode register */
   2644 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
   2645 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
   2646 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
   2647 		      YU_SMR_IPG_DATA(0x1e));
   2648 
   2649 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
   2650 	/* Setup Yukon's address */
   2651 	for (i = 0; i < 3; i++) {
   2652 		/* Write Source Address 1 (unicast filter) */
   2653 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
   2654 			      sc_if->sk_enaddr[i * 2] |
   2655 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
   2656 	}
   2657 
   2658 	for (i = 0; i < 3; i++) {
   2659 		reg = sk_win_read_2(sc_if->sk_softc,
   2660 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
   2661 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
   2662 	}
   2663 
   2664 	/* Set multicast filter */
   2665 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
   2666 	sk_setmulti(sc_if);
   2667 
   2668 	/* enable interrupt mask for counter overflows */
   2669 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
   2670 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
   2671 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
   2672 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
   2673 
   2674 	/* Configure RX MAC FIFO */
   2675 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
   2676 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
   2677 
   2678 	/* Configure TX MAC FIFO */
   2679 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
   2680 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
   2681 
   2682 	DPRINTFN(6, ("sk_init_yukon: end\n"));
   2683 }
   2684 
   2685 /*
   2686  * Note that to properly initialize any part of the GEnesis chip,
   2687  * you first have to take it out of reset mode.
   2688  */
   2689 int
   2690 sk_init(struct ifnet *ifp)
   2691 {
   2692 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2693 	struct sk_softc		*sc = sc_if->sk_softc;
   2694 	struct mii_data		*mii = &sc_if->sk_mii;
   2695 	int			rc = 0, s;
   2696 	u_int32_t		imr, imtimer_ticks;
   2697 
   2698 	DPRINTFN(1, ("sk_init\n"));
   2699 
   2700 	s = splnet();
   2701 
   2702 	if (ifp->if_flags & IFF_RUNNING) {
   2703 		splx(s);
   2704 		return 0;
   2705 	}
   2706 
   2707 	/* Cancel pending I/O and free all RX/TX buffers. */
   2708 	sk_stop(ifp,0);
   2709 
   2710 	if (sc->sk_type == SK_GENESIS) {
   2711 		/* Configure LINK_SYNC LED */
   2712 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
   2713 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2714 			      SK_LINKLED_LINKSYNC_ON);
   2715 
   2716 		/* Configure RX LED */
   2717 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
   2718 			      SK_RXLEDCTL_COUNTER_START);
   2719 
   2720 		/* Configure TX LED */
   2721 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
   2722 			      SK_TXLEDCTL_COUNTER_START);
   2723 	}
   2724 
   2725 	/* Configure I2C registers */
   2726 
   2727 	/* Configure XMAC(s) */
   2728 	switch (sc->sk_type) {
   2729 	case SK_GENESIS:
   2730 		sk_init_xmac(sc_if);
   2731 		break;
   2732 	case SK_YUKON:
   2733 	case SK_YUKON_LITE:
   2734 	case SK_YUKON_LP:
   2735 		sk_init_yukon(sc_if);
   2736 		break;
   2737 	}
   2738 	if ((rc = mii_mediachg(mii)) == ENXIO)
   2739 		rc = 0;
   2740 	else if (rc != 0)
   2741 		goto out;
   2742 
   2743 	if (sc->sk_type == SK_GENESIS) {
   2744 		/* Configure MAC FIFOs */
   2745 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
   2746 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
   2747 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
   2748 
   2749 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
   2750 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
   2751 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
   2752 	}
   2753 
   2754 	/* Configure transmit arbiter(s) */
   2755 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
   2756 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
   2757 
   2758 	/* Configure RAMbuffers */
   2759 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
   2760 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
   2761 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
   2762 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
   2763 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
   2764 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
   2765 
   2766 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
   2767 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
   2768 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
   2769 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
   2770 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
   2771 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
   2772 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
   2773 
   2774 	/* Configure BMUs */
   2775 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
   2776 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
   2777 	    SK_RX_RING_ADDR(sc_if, 0));
   2778 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
   2779 
   2780 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
   2781 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
   2782             SK_TX_RING_ADDR(sc_if, 0));
   2783 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
   2784 
   2785 	/* Init descriptors */
   2786 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
   2787 		aprint_error("%s: initialization failed: no "
   2788 		    "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
   2789 		sk_stop(ifp,0);
   2790 		splx(s);
   2791 		return ENOBUFS;
   2792 	}
   2793 
   2794 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
   2795 		aprint_error("%s: initialization failed: no "
   2796 		    "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
   2797 		sk_stop(ifp,0);
   2798 		splx(s);
   2799 		return ENOBUFS;
   2800 	}
   2801 
   2802 	/* Set interrupt moderation if changed via sysctl. */
   2803 	switch (sc->sk_type) {
   2804 	case SK_GENESIS:
   2805 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   2806 		break;
   2807 	case SK_YUKON_EC:
   2808 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   2809 		break;
   2810 	default:
   2811 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   2812 	}
   2813 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
   2814 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
   2815 		sk_win_write_4(sc, SK_IMTIMERINIT,
   2816 		    SK_IM_USECS(sc->sk_int_mod));
   2817 		aprint_verbose("%s: interrupt moderation is %d us\n",
   2818 		    sc->sk_dev.dv_xname, sc->sk_int_mod);
   2819 	}
   2820 
   2821 	/* Configure interrupt handling */
   2822 	CSR_READ_4(sc, SK_ISSR);
   2823 	if (sc_if->sk_port == SK_PORT_A)
   2824 		sc->sk_intrmask |= SK_INTRS1;
   2825 	else
   2826 		sc->sk_intrmask |= SK_INTRS2;
   2827 
   2828 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
   2829 
   2830 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2831 
   2832 	/* Start BMUs. */
   2833 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
   2834 
   2835 	if (sc->sk_type == SK_GENESIS) {
   2836 		/* Enable XMACs TX and RX state machines */
   2837 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
   2838 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
   2839 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2840 	}
   2841 
   2842 	if (SK_YUKON_FAMILY(sc->sk_type)) {
   2843 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
   2844 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
   2845 #if 0
   2846 		/* XXX disable 100Mbps and full duplex mode? */
   2847 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
   2848 #endif
   2849 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
   2850 	}
   2851 
   2852 
   2853 	ifp->if_flags |= IFF_RUNNING;
   2854 	ifp->if_flags &= ~IFF_OACTIVE;
   2855 
   2856 out:
   2857 	splx(s);
   2858 	return rc;
   2859 }
   2860 
   2861 void
   2862 sk_stop(struct ifnet *ifp, int disable)
   2863 {
   2864         struct sk_if_softc	*sc_if = ifp->if_softc;
   2865 	struct sk_softc		*sc = sc_if->sk_softc;
   2866 	int			i;
   2867 
   2868 	DPRINTFN(1, ("sk_stop\n"));
   2869 
   2870 	callout_stop(&sc_if->sk_tick_ch);
   2871 
   2872 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2873 		u_int32_t		val;
   2874 
   2875 		/* Put PHY back into reset. */
   2876 		val = sk_win_read_4(sc, SK_GPIO);
   2877 		if (sc_if->sk_port == SK_PORT_A) {
   2878 			val |= SK_GPIO_DIR0;
   2879 			val &= ~SK_GPIO_DAT0;
   2880 		} else {
   2881 			val |= SK_GPIO_DIR2;
   2882 			val &= ~SK_GPIO_DAT2;
   2883 		}
   2884 		sk_win_write_4(sc, SK_GPIO, val);
   2885 	}
   2886 
   2887 	/* Turn off various components of this interface. */
   2888 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2889 	switch (sc->sk_type) {
   2890 	case SK_GENESIS:
   2891 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
   2892 			      SK_TXMACCTL_XMAC_RESET);
   2893 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
   2894 		break;
   2895 	case SK_YUKON:
   2896 	case SK_YUKON_LITE:
   2897 	case SK_YUKON_LP:
   2898 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
   2899 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
   2900 		break;
   2901 	}
   2902 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
   2903 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2904 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
   2905 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2906 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
   2907 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2908 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2909 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2910 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
   2911 
   2912 	/* Disable interrupts */
   2913 	if (sc_if->sk_port == SK_PORT_A)
   2914 		sc->sk_intrmask &= ~SK_INTRS1;
   2915 	else
   2916 		sc->sk_intrmask &= ~SK_INTRS2;
   2917 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2918 
   2919 	SK_XM_READ_2(sc_if, XM_ISR);
   2920 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2921 
   2922 	/* Free RX and TX mbufs still in the queues. */
   2923 	for (i = 0; i < SK_RX_RING_CNT; i++) {
   2924 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
   2925 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
   2926 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   2927 		}
   2928 	}
   2929 
   2930 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   2931 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
   2932 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
   2933 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   2934 		}
   2935 	}
   2936 
   2937 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
   2938 }
   2939 
   2940 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
   2941 
   2942 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
   2943 
   2944 #ifdef SK_DEBUG
   2945 void
   2946 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
   2947 {
   2948 #define DESC_PRINT(X)					\
   2949 	if (X)					\
   2950 		printf("txdesc[%d]." #X "=%#x\n",	\
   2951 		       idx, X);
   2952 
   2953 	DESC_PRINT(le32toh(desc->sk_ctl));
   2954 	DESC_PRINT(le32toh(desc->sk_next));
   2955 	DESC_PRINT(le32toh(desc->sk_data_lo));
   2956 	DESC_PRINT(le32toh(desc->sk_data_hi));
   2957 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
   2958 	DESC_PRINT(le16toh(desc->sk_rsvd0));
   2959 	DESC_PRINT(le16toh(desc->sk_csum_startval));
   2960 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
   2961 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
   2962 	DESC_PRINT(le16toh(desc->sk_rsvd1));
   2963 #undef PRINT
   2964 }
   2965 
   2966 void
   2967 sk_dump_bytes(const char *data, int len)
   2968 {
   2969 	int c, i, j;
   2970 
   2971 	for (i = 0; i < len; i += 16) {
   2972 		printf("%08x  ", i);
   2973 		c = len - i;
   2974 		if (c > 16) c = 16;
   2975 
   2976 		for (j = 0; j < c; j++) {
   2977 			printf("%02x ", data[i + j] & 0xff);
   2978 			if ((j & 0xf) == 7 && j > 0)
   2979 				printf(" ");
   2980 		}
   2981 
   2982 		for (; j < 16; j++)
   2983 			printf("   ");
   2984 		printf("  ");
   2985 
   2986 		for (j = 0; j < c; j++) {
   2987 			int ch = data[i + j] & 0xff;
   2988 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
   2989 		}
   2990 
   2991 		printf("\n");
   2992 
   2993 		if (c < 16)
   2994 			break;
   2995 	}
   2996 }
   2997 
   2998 void
   2999 sk_dump_mbuf(struct mbuf *m)
   3000 {
   3001 	int count = m->m_pkthdr.len;
   3002 
   3003 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
   3004 
   3005 	while (count > 0 && m) {
   3006 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
   3007 		       m, m->m_data, m->m_len);
   3008 		sk_dump_bytes(mtod(m, char *), m->m_len);
   3009 
   3010 		count -= m->m_len;
   3011 		m = m->m_next;
   3012 	}
   3013 }
   3014 #endif
   3015 
   3016 static int
   3017 sk_sysctl_handler(SYSCTLFN_ARGS)
   3018 {
   3019 	int error, t;
   3020 	struct sysctlnode node;
   3021 	struct sk_softc *sc;
   3022 
   3023 	node = *rnode;
   3024 	sc = node.sysctl_data;
   3025 	t = sc->sk_int_mod;
   3026 	node.sysctl_data = &t;
   3027 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3028 	if (error || newp == NULL)
   3029 		return error;
   3030 
   3031 	if (t < SK_IM_MIN || t > SK_IM_MAX)
   3032 		return EINVAL;
   3033 
   3034 	/* update the softc with sysctl-changed value, and mark
   3035 	   for hardware update */
   3036 	sc->sk_int_mod = t;
   3037 	sc->sk_int_mod_pending = 1;
   3038 	return 0;
   3039 }
   3040 
   3041 /*
   3042  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
   3043  * set up in skc_attach()
   3044  */
   3045 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
   3046 {
   3047 	int rc;
   3048 	const struct sysctlnode *node;
   3049 
   3050 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   3051 	    0, CTLTYPE_NODE, "hw", NULL,
   3052 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   3053 		goto err;
   3054 	}
   3055 
   3056 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   3057 	    0, CTLTYPE_NODE, "sk",
   3058 	    SYSCTL_DESCR("sk interface controls"),
   3059 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   3060 		goto err;
   3061 	}
   3062 
   3063 	sk_root_num = node->sysctl_num;
   3064 	return;
   3065 
   3066 err:
   3067 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
   3068 }
   3069