if_sk.c revision 1.46 1 /* $NetBSD: if_sk.c,v 1.46 2008/01/19 22:10:18 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the NetBSD
18 * Foundation, Inc. and its contributors.
19 * 4. Neither the name of The NetBSD Foundation nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
37
38 /*
39 * Copyright (c) 1997, 1998, 1999, 2000
40 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Bill Paul.
53 * 4. Neither the name of the author nor the names of any co-contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67 * THE POSSIBILITY OF SUCH DAMAGE.
68 *
69 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70 */
71
72 /*
73 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
74 *
75 * Permission to use, copy, modify, and distribute this software for any
76 * purpose with or without fee is hereby granted, provided that the above
77 * copyright notice and this permission notice appear in all copies.
78 *
79 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86 */
87
88 /*
89 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90 * the SK-984x series adapters, both single port and dual port.
91 * References:
92 * The XaQti XMAC II datasheet,
93 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 * The SysKonnect GEnesis manual, http://www.syskonnect.com
95 *
96 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98 * convenience to others until Vitesse corrects this problem:
99 *
100 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101 *
102 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
103 * Department of Electrical Engineering
104 * Columbia University, New York City
105 */
106
107 /*
108 * The SysKonnect gigabit ethernet adapters consist of two main
109 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111 * components and a PHY while the GEnesis controller provides a PCI
112 * interface with DMA support. Each card may have between 512K and
113 * 2MB of SRAM on board depending on the configuration.
114 *
115 * The SysKonnect GEnesis controller can have either one or two XMAC
116 * chips connected to it, allowing single or dual port NIC configurations.
117 * SysKonnect has the distinction of being the only vendor on the market
118 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120 * XMAC registers. This driver takes advantage of these features to allow
121 * both XMACs to operate as independent interfaces.
122 */
123
124 #include <sys/cdefs.h>
125 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.46 2008/01/19 22:10:18 dyoung Exp $");
126
127 #include "bpfilter.h"
128 #include "rnd.h"
129
130 #include <sys/param.h>
131 #include <sys/systm.h>
132 #include <sys/sockio.h>
133 #include <sys/mbuf.h>
134 #include <sys/malloc.h>
135 #include <sys/kernel.h>
136 #include <sys/socket.h>
137 #include <sys/device.h>
138 #include <sys/queue.h>
139 #include <sys/callout.h>
140 #include <sys/sysctl.h>
141 #include <sys/endian.h>
142
143 #include <net/if.h>
144 #include <net/if_dl.h>
145 #include <net/if_types.h>
146
147 #include <net/if_media.h>
148
149 #if NBPFILTER > 0
150 #include <net/bpf.h>
151 #endif
152 #if NRND > 0
153 #include <sys/rnd.h>
154 #endif
155
156 #include <dev/mii/mii.h>
157 #include <dev/mii/miivar.h>
158 #include <dev/mii/brgphyreg.h>
159
160 #include <dev/pci/pcireg.h>
161 #include <dev/pci/pcivar.h>
162 #include <dev/pci/pcidevs.h>
163
164 /* #define SK_USEIOSPACE */
165
166 #include <dev/pci/if_skreg.h>
167 #include <dev/pci/if_skvar.h>
168
169 int skc_probe(struct device *, struct cfdata *, void *);
170 void skc_attach(struct device *, struct device *self, void *aux);
171 int sk_probe(struct device *, struct cfdata *, void *);
172 void sk_attach(struct device *, struct device *self, void *aux);
173 int skcprint(void *, const char *);
174 int sk_intr(void *);
175 void sk_intr_bcom(struct sk_if_softc *);
176 void sk_intr_xmac(struct sk_if_softc *);
177 void sk_intr_yukon(struct sk_if_softc *);
178 void sk_rxeof(struct sk_if_softc *);
179 void sk_txeof(struct sk_if_softc *);
180 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
181 void sk_start(struct ifnet *);
182 int sk_ioctl(struct ifnet *, u_long, void *);
183 int sk_init(struct ifnet *);
184 void sk_init_xmac(struct sk_if_softc *);
185 void sk_init_yukon(struct sk_if_softc *);
186 void sk_stop(struct ifnet *, int);
187 void sk_watchdog(struct ifnet *);
188 void sk_shutdown(void *);
189 int sk_ifmedia_upd(struct ifnet *);
190 void sk_reset(struct sk_softc *);
191 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
192 int sk_alloc_jumbo_mem(struct sk_if_softc *);
193 void sk_free_jumbo_mem(struct sk_if_softc *);
194 void *sk_jalloc(struct sk_if_softc *);
195 void sk_jfree(struct mbuf *, void *, size_t, void *);
196 int sk_init_rx_ring(struct sk_if_softc *);
197 int sk_init_tx_ring(struct sk_if_softc *);
198 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
199 void sk_vpd_read_res(struct sk_softc *,
200 struct vpd_res *, int);
201 void sk_vpd_read(struct sk_softc *);
202
203 void sk_update_int_mod(struct sk_softc *);
204
205 int sk_xmac_miibus_readreg(struct device *, int, int);
206 void sk_xmac_miibus_writereg(struct device *, int, int, int);
207 void sk_xmac_miibus_statchg(struct device *);
208
209 int sk_marv_miibus_readreg(struct device *, int, int);
210 void sk_marv_miibus_writereg(struct device *, int, int, int);
211 void sk_marv_miibus_statchg(struct device *);
212
213 u_int32_t sk_xmac_hash(void *);
214 u_int32_t sk_yukon_hash(void *);
215 void sk_setfilt(struct sk_if_softc *, void *, int);
216 void sk_setmulti(struct sk_if_softc *);
217 void sk_tick(void *);
218
219 /* #define SK_DEBUG 2 */
220 #ifdef SK_DEBUG
221 #define DPRINTF(x) if (skdebug) printf x
222 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
223 int skdebug = SK_DEBUG;
224
225 void sk_dump_txdesc(struct sk_tx_desc *, int);
226 void sk_dump_mbuf(struct mbuf *);
227 void sk_dump_bytes(const char *, int);
228 #else
229 #define DPRINTF(x)
230 #define DPRINTFN(n,x)
231 #endif
232
233 static int sk_sysctl_handler(SYSCTLFN_PROTO);
234 static int sk_root_num;
235
236 /* supported device vendors */
237 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
238 static const struct sk_product {
239 pci_vendor_id_t sk_vendor;
240 pci_product_id_t sk_product;
241 } sk_products[] = {
242 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
243 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
244 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
245 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
246 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
247 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
248 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
249 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
250 { 0, 0, }
251 };
252
253 #define SK_LINKSYS_EG1032_SUBID 0x00151737
254
255 static inline u_int32_t
256 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
257 {
258 #ifdef SK_USEIOSPACE
259 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
260 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
261 #else
262 return CSR_READ_4(sc, reg);
263 #endif
264 }
265
266 static inline u_int16_t
267 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
268 {
269 #ifdef SK_USEIOSPACE
270 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
271 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
272 #else
273 return CSR_READ_2(sc, reg);
274 #endif
275 }
276
277 static inline u_int8_t
278 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
279 {
280 #ifdef SK_USEIOSPACE
281 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
282 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
283 #else
284 return CSR_READ_1(sc, reg);
285 #endif
286 }
287
288 static inline void
289 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
290 {
291 #ifdef SK_USEIOSPACE
292 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
293 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
294 #else
295 CSR_WRITE_4(sc, reg, x);
296 #endif
297 }
298
299 static inline void
300 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
301 {
302 #ifdef SK_USEIOSPACE
303 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
304 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
305 #else
306 CSR_WRITE_2(sc, reg, x);
307 #endif
308 }
309
310 static inline void
311 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
312 {
313 #ifdef SK_USEIOSPACE
314 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
315 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
316 #else
317 CSR_WRITE_1(sc, reg, x);
318 #endif
319 }
320
321 /*
322 * The VPD EEPROM contains Vital Product Data, as suggested in
323 * the PCI 2.1 specification. The VPD data is separared into areas
324 * denoted by resource IDs. The SysKonnect VPD contains an ID string
325 * resource (the name of the adapter), a read-only area resource
326 * containing various key/data fields and a read/write area which
327 * can be used to store asset management information or log messages.
328 * We read the ID string and read-only into buffers attached to
329 * the controller softc structure for later use. At the moment,
330 * we only use the ID string during sk_attach().
331 */
332 u_int8_t
333 sk_vpd_readbyte(struct sk_softc *sc, int addr)
334 {
335 int i;
336
337 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
338 for (i = 0; i < SK_TIMEOUT; i++) {
339 DELAY(1);
340 if (sk_win_read_2(sc,
341 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
342 break;
343 }
344
345 if (i == SK_TIMEOUT)
346 return 0;
347
348 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
349 }
350
351 void
352 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
353 {
354 int i;
355 u_int8_t *ptr;
356
357 ptr = (u_int8_t *)res;
358 for (i = 0; i < sizeof(struct vpd_res); i++)
359 ptr[i] = sk_vpd_readbyte(sc, i + addr);
360 }
361
362 void
363 sk_vpd_read(struct sk_softc *sc)
364 {
365 int pos = 0, i;
366 struct vpd_res res;
367
368 if (sc->sk_vpd_prodname != NULL)
369 free(sc->sk_vpd_prodname, M_DEVBUF);
370 if (sc->sk_vpd_readonly != NULL)
371 free(sc->sk_vpd_readonly, M_DEVBUF);
372 sc->sk_vpd_prodname = NULL;
373 sc->sk_vpd_readonly = NULL;
374
375 sk_vpd_read_res(sc, &res, pos);
376
377 if (res.vr_id != VPD_RES_ID) {
378 aprint_error("%s: bad VPD resource id: expected %x got %x\n",
379 sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
380 return;
381 }
382
383 pos += sizeof(res);
384 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
385 if (sc->sk_vpd_prodname == NULL)
386 panic("sk_vpd_read");
387 for (i = 0; i < res.vr_len; i++)
388 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
389 sc->sk_vpd_prodname[i] = '\0';
390 pos += i;
391
392 sk_vpd_read_res(sc, &res, pos);
393
394 if (res.vr_id != VPD_RES_READ) {
395 aprint_error("%s: bad VPD resource id: expected %x got %x\n",
396 sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
397 return;
398 }
399
400 pos += sizeof(res);
401 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
402 if (sc->sk_vpd_readonly == NULL)
403 panic("sk_vpd_read");
404 for (i = 0; i < res.vr_len ; i++)
405 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
406 }
407
408 int
409 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
410 {
411 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
412 int i;
413
414 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
415
416 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
417 return 0;
418
419 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
420 SK_XM_READ_2(sc_if, XM_PHY_DATA);
421 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
422 for (i = 0; i < SK_TIMEOUT; i++) {
423 DELAY(1);
424 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
425 XM_MMUCMD_PHYDATARDY)
426 break;
427 }
428
429 if (i == SK_TIMEOUT) {
430 aprint_error("%s: phy failed to come ready\n",
431 sc_if->sk_dev.dv_xname);
432 return 0;
433 }
434 }
435 DELAY(1);
436 return SK_XM_READ_2(sc_if, XM_PHY_DATA);
437 }
438
439 void
440 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
441 {
442 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
443 int i;
444
445 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
446
447 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
448 for (i = 0; i < SK_TIMEOUT; i++) {
449 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
450 break;
451 }
452
453 if (i == SK_TIMEOUT) {
454 aprint_error("%s: phy failed to come ready\n",
455 sc_if->sk_dev.dv_xname);
456 return;
457 }
458
459 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
460 for (i = 0; i < SK_TIMEOUT; i++) {
461 DELAY(1);
462 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
463 break;
464 }
465
466 if (i == SK_TIMEOUT)
467 aprint_error("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
468 }
469
470 void
471 sk_xmac_miibus_statchg(struct device *dev)
472 {
473 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
474 struct mii_data *mii = &sc_if->sk_mii;
475
476 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
477
478 /*
479 * If this is a GMII PHY, manually set the XMAC's
480 * duplex mode accordingly.
481 */
482 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
483 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
484 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
485 else
486 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
487 }
488 }
489
490 int
491 sk_marv_miibus_readreg(struct device *dev, int phy, int reg)
492 {
493 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
494 u_int16_t val;
495 int i;
496
497 if (phy != 0 ||
498 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
499 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
500 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
501 phy, reg));
502 return 0;
503 }
504
505 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
506 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
507
508 for (i = 0; i < SK_TIMEOUT; i++) {
509 DELAY(1);
510 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
511 if (val & YU_SMICR_READ_VALID)
512 break;
513 }
514
515 if (i == SK_TIMEOUT) {
516 aprint_error("%s: phy failed to come ready\n",
517 sc_if->sk_dev.dv_xname);
518 return 0;
519 }
520
521 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
522 SK_TIMEOUT));
523
524 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
525
526 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
527 phy, reg, val));
528
529 return val;
530 }
531
532 void
533 sk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
534 {
535 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
536 int i;
537
538 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
539 phy, reg, val));
540
541 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
542 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
543 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
544
545 for (i = 0; i < SK_TIMEOUT; i++) {
546 DELAY(1);
547 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
548 break;
549 }
550
551 if (i == SK_TIMEOUT)
552 printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
553 }
554
555 void
556 sk_marv_miibus_statchg(struct device *dev)
557 {
558 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
559 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
560 }
561
562 #define SK_HASH_BITS 6
563
564 u_int32_t
565 sk_xmac_hash(void *addr)
566 {
567 u_int32_t crc;
568
569 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
570 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
571 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
572 return crc;
573 }
574
575 u_int32_t
576 sk_yukon_hash(void *addr)
577 {
578 u_int32_t crc;
579
580 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
581 crc &= ((1 << SK_HASH_BITS) - 1);
582 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
583 return crc;
584 }
585
586 void
587 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
588 {
589 char *addr = addrv;
590 int base = XM_RXFILT_ENTRY(slot);
591
592 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
593 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
594 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
595 }
596
597 void
598 sk_setmulti(struct sk_if_softc *sc_if)
599 {
600 struct sk_softc *sc = sc_if->sk_softc;
601 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
602 u_int32_t hashes[2] = { 0, 0 };
603 int h = 0, i;
604 struct ethercom *ec = &sc_if->sk_ethercom;
605 struct ether_multi *enm;
606 struct ether_multistep step;
607 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
608
609 /* First, zot all the existing filters. */
610 switch (sc->sk_type) {
611 case SK_GENESIS:
612 for (i = 1; i < XM_RXFILT_MAX; i++)
613 sk_setfilt(sc_if, (void *)&dummy, i);
614
615 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
616 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
617 break;
618 case SK_YUKON:
619 case SK_YUKON_LITE:
620 case SK_YUKON_LP:
621 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
622 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
623 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
624 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
625 break;
626 }
627
628 /* Now program new ones. */
629 allmulti:
630 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
631 hashes[0] = 0xFFFFFFFF;
632 hashes[1] = 0xFFFFFFFF;
633 } else {
634 i = 1;
635 /* First find the tail of the list. */
636 ETHER_FIRST_MULTI(step, ec, enm);
637 while (enm != NULL) {
638 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
639 ETHER_ADDR_LEN)) {
640 ifp->if_flags |= IFF_ALLMULTI;
641 goto allmulti;
642 }
643 DPRINTFN(2,("multicast address %s\n",
644 ether_sprintf(enm->enm_addrlo)));
645 /*
646 * Program the first XM_RXFILT_MAX multicast groups
647 * into the perfect filter. For all others,
648 * use the hash table.
649 */
650 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
651 sk_setfilt(sc_if, enm->enm_addrlo, i);
652 i++;
653 }
654 else {
655 switch (sc->sk_type) {
656 case SK_GENESIS:
657 h = sk_xmac_hash(enm->enm_addrlo);
658 break;
659 case SK_YUKON:
660 case SK_YUKON_LITE:
661 case SK_YUKON_LP:
662 h = sk_yukon_hash(enm->enm_addrlo);
663 break;
664 }
665 if (h < 32)
666 hashes[0] |= (1 << h);
667 else
668 hashes[1] |= (1 << (h - 32));
669 }
670
671 ETHER_NEXT_MULTI(step, enm);
672 }
673 }
674
675 switch (sc->sk_type) {
676 case SK_GENESIS:
677 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
678 XM_MODE_RX_USE_PERFECT);
679 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
680 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
681 break;
682 case SK_YUKON:
683 case SK_YUKON_LITE:
684 case SK_YUKON_LP:
685 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
686 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
687 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
688 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
689 break;
690 }
691 }
692
693 int
694 sk_init_rx_ring(struct sk_if_softc *sc_if)
695 {
696 struct sk_chain_data *cd = &sc_if->sk_cdata;
697 struct sk_ring_data *rd = sc_if->sk_rdata;
698 int i;
699
700 bzero((char *)rd->sk_rx_ring,
701 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
702
703 for (i = 0; i < SK_RX_RING_CNT; i++) {
704 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
705 if (i == (SK_RX_RING_CNT - 1)) {
706 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
707 rd->sk_rx_ring[i].sk_next =
708 htole32(SK_RX_RING_ADDR(sc_if, 0));
709 } else {
710 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
711 rd->sk_rx_ring[i].sk_next =
712 htole32(SK_RX_RING_ADDR(sc_if,i+1));
713 }
714 }
715
716 for (i = 0; i < SK_RX_RING_CNT; i++) {
717 if (sk_newbuf(sc_if, i, NULL,
718 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
719 aprint_error("%s: failed alloc of %dth mbuf\n",
720 sc_if->sk_dev.dv_xname, i);
721 return ENOBUFS;
722 }
723 }
724 sc_if->sk_cdata.sk_rx_prod = 0;
725 sc_if->sk_cdata.sk_rx_cons = 0;
726
727 return 0;
728 }
729
730 int
731 sk_init_tx_ring(struct sk_if_softc *sc_if)
732 {
733 struct sk_chain_data *cd = &sc_if->sk_cdata;
734 struct sk_ring_data *rd = sc_if->sk_rdata;
735 int i;
736
737 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
738 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
739
740 for (i = 0; i < SK_TX_RING_CNT; i++) {
741 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
742 if (i == (SK_TX_RING_CNT - 1)) {
743 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
744 rd->sk_tx_ring[i].sk_next =
745 htole32(SK_TX_RING_ADDR(sc_if, 0));
746 } else {
747 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
748 rd->sk_tx_ring[i].sk_next =
749 htole32(SK_TX_RING_ADDR(sc_if,i+1));
750 }
751 }
752
753 sc_if->sk_cdata.sk_tx_prod = 0;
754 sc_if->sk_cdata.sk_tx_cons = 0;
755 sc_if->sk_cdata.sk_tx_cnt = 0;
756
757 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
758 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
759
760 return 0;
761 }
762
763 int
764 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
765 bus_dmamap_t dmamap)
766 {
767 struct mbuf *m_new = NULL;
768 struct sk_chain *c;
769 struct sk_rx_desc *r;
770
771 if (m == NULL) {
772 void *buf = NULL;
773
774 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
775 if (m_new == NULL) {
776 aprint_error("%s: no memory for rx list -- "
777 "packet dropped!\n", sc_if->sk_dev.dv_xname);
778 return ENOBUFS;
779 }
780
781 /* Allocate the jumbo buffer */
782 buf = sk_jalloc(sc_if);
783 if (buf == NULL) {
784 m_freem(m_new);
785 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
786 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
787 return ENOBUFS;
788 }
789
790 /* Attach the buffer to the mbuf */
791 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
792 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
793
794 } else {
795 /*
796 * We're re-using a previously allocated mbuf;
797 * be sure to re-init pointers and lengths to
798 * default values.
799 */
800 m_new = m;
801 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
802 m_new->m_data = m_new->m_ext.ext_buf;
803 }
804 m_adj(m_new, ETHER_ALIGN);
805
806 c = &sc_if->sk_cdata.sk_rx_chain[i];
807 r = c->sk_desc;
808 c->sk_mbuf = m_new;
809 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
810 (((vaddr_t)m_new->m_data
811 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
812 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
813
814 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
815
816 return 0;
817 }
818
819 /*
820 * Memory management for jumbo frames.
821 */
822
823 int
824 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
825 {
826 struct sk_softc *sc = sc_if->sk_softc;
827 char *ptr, *kva;
828 bus_dma_segment_t seg;
829 int i, rseg, state, error;
830 struct sk_jpool_entry *entry;
831
832 state = error = 0;
833
834 /* Grab a big chunk o' storage. */
835 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
836 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
837 aprint_error("%s: can't alloc rx buffers\n", sc->sk_dev.dv_xname);
838 return ENOBUFS;
839 }
840
841 state = 1;
842 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
843 BUS_DMA_NOWAIT)) {
844 aprint_error("%s: can't map dma buffers (%d bytes)\n",
845 sc->sk_dev.dv_xname, SK_JMEM);
846 error = ENOBUFS;
847 goto out;
848 }
849
850 state = 2;
851 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
852 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
853 aprint_error("%s: can't create dma map\n", sc->sk_dev.dv_xname);
854 error = ENOBUFS;
855 goto out;
856 }
857
858 state = 3;
859 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
860 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
861 aprint_error("%s: can't load dma map\n", sc->sk_dev.dv_xname);
862 error = ENOBUFS;
863 goto out;
864 }
865
866 state = 4;
867 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
868 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
869
870 LIST_INIT(&sc_if->sk_jfree_listhead);
871 LIST_INIT(&sc_if->sk_jinuse_listhead);
872
873 /*
874 * Now divide it up into 9K pieces and save the addresses
875 * in an array.
876 */
877 ptr = sc_if->sk_cdata.sk_jumbo_buf;
878 for (i = 0; i < SK_JSLOTS; i++) {
879 sc_if->sk_cdata.sk_jslots[i] = ptr;
880 ptr += SK_JLEN;
881 entry = malloc(sizeof(struct sk_jpool_entry),
882 M_DEVBUF, M_NOWAIT);
883 if (entry == NULL) {
884 aprint_error("%s: no memory for jumbo buffer queue!\n",
885 sc->sk_dev.dv_xname);
886 error = ENOBUFS;
887 goto out;
888 }
889 entry->slot = i;
890 if (i)
891 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
892 entry, jpool_entries);
893 else
894 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
895 entry, jpool_entries);
896 }
897 out:
898 if (error != 0) {
899 switch (state) {
900 case 4:
901 bus_dmamap_unload(sc->sc_dmatag,
902 sc_if->sk_cdata.sk_rx_jumbo_map);
903 case 3:
904 bus_dmamap_destroy(sc->sc_dmatag,
905 sc_if->sk_cdata.sk_rx_jumbo_map);
906 case 2:
907 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
908 case 1:
909 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
910 break;
911 default:
912 break;
913 }
914 }
915
916 return error;
917 }
918
919 /*
920 * Allocate a jumbo buffer.
921 */
922 void *
923 sk_jalloc(struct sk_if_softc *sc_if)
924 {
925 struct sk_jpool_entry *entry;
926
927 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
928
929 if (entry == NULL)
930 return NULL;
931
932 LIST_REMOVE(entry, jpool_entries);
933 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
934 return sc_if->sk_cdata.sk_jslots[entry->slot];
935 }
936
937 /*
938 * Release a jumbo buffer.
939 */
940 void
941 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
942 {
943 struct sk_jpool_entry *entry;
944 struct sk_if_softc *sc;
945 int i, s;
946
947 /* Extract the softc struct pointer. */
948 sc = (struct sk_if_softc *)arg;
949
950 if (sc == NULL)
951 panic("sk_jfree: can't find softc pointer!");
952
953 /* calculate the slot this buffer belongs to */
954
955 i = ((vaddr_t)buf
956 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
957
958 if ((i < 0) || (i >= SK_JSLOTS))
959 panic("sk_jfree: asked to free buffer that we don't manage!");
960
961 s = splvm();
962 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
963 if (entry == NULL)
964 panic("sk_jfree: buffer not in use!");
965 entry->slot = i;
966 LIST_REMOVE(entry, jpool_entries);
967 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
968
969 if (__predict_true(m != NULL))
970 pool_cache_put(mb_cache, m);
971 splx(s);
972 }
973
974 /*
975 * Set media options.
976 */
977 int
978 sk_ifmedia_upd(struct ifnet *ifp)
979 {
980 struct sk_if_softc *sc_if = ifp->if_softc;
981 int rc;
982
983 (void) sk_init(ifp);
984 if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
985 return 0;
986 return rc;
987 }
988
989 int
990 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
991 {
992 struct sk_if_softc *sc_if = ifp->if_softc;
993 struct sk_softc *sc = sc_if->sk_softc;
994 int s, error = 0;
995
996 /* DPRINTFN(2, ("sk_ioctl\n")); */
997
998 s = splnet();
999
1000 switch (command) {
1001
1002 case SIOCSIFFLAGS:
1003 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1004 if (ifp->if_flags & IFF_UP) {
1005 if (ifp->if_flags & IFF_RUNNING &&
1006 ifp->if_flags & IFF_PROMISC &&
1007 !(sc_if->sk_if_flags & IFF_PROMISC)) {
1008 switch (sc->sk_type) {
1009 case SK_GENESIS:
1010 SK_XM_SETBIT_4(sc_if, XM_MODE,
1011 XM_MODE_RX_PROMISC);
1012 break;
1013 case SK_YUKON:
1014 case SK_YUKON_LITE:
1015 case SK_YUKON_LP:
1016 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1017 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1018 break;
1019 }
1020 sk_setmulti(sc_if);
1021 } else if (ifp->if_flags & IFF_RUNNING &&
1022 !(ifp->if_flags & IFF_PROMISC) &&
1023 sc_if->sk_if_flags & IFF_PROMISC) {
1024 switch (sc->sk_type) {
1025 case SK_GENESIS:
1026 SK_XM_CLRBIT_4(sc_if, XM_MODE,
1027 XM_MODE_RX_PROMISC);
1028 break;
1029 case SK_YUKON:
1030 case SK_YUKON_LITE:
1031 case SK_YUKON_LP:
1032 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1033 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1034 break;
1035 }
1036
1037 sk_setmulti(sc_if);
1038 } else
1039 (void) sk_init(ifp);
1040 } else {
1041 if (ifp->if_flags & IFF_RUNNING)
1042 sk_stop(ifp,0);
1043 }
1044 sc_if->sk_if_flags = ifp->if_flags;
1045 error = 0;
1046 break;
1047
1048 default:
1049 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1050 error = ether_ioctl(ifp, command, data);
1051
1052 if ( error == ENETRESET) {
1053 if (ifp->if_flags & IFF_RUNNING) {
1054 sk_setmulti(sc_if);
1055 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1056 }
1057 error = 0;
1058 }
1059 break;
1060 }
1061
1062 splx(s);
1063 return error;
1064 }
1065
1066 void
1067 sk_update_int_mod(struct sk_softc *sc)
1068 {
1069 u_int32_t imtimer_ticks;
1070
1071 /*
1072 * Configure interrupt moderation. The moderation timer
1073 * defers interrupts specified in the interrupt moderation
1074 * timer mask based on the timeout specified in the interrupt
1075 * moderation timer init register. Each bit in the timer
1076 * register represents one tick, so to specify a timeout in
1077 * microseconds, we have to multiply by the correct number of
1078 * ticks-per-microsecond.
1079 */
1080 switch (sc->sk_type) {
1081 case SK_GENESIS:
1082 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1083 break;
1084 case SK_YUKON_EC:
1085 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1086 break;
1087 default:
1088 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1089 }
1090 aprint_verbose("%s: interrupt moderation is %d us\n",
1091 sc->sk_dev.dv_xname, sc->sk_int_mod);
1092 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1093 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1094 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1095 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1096 sc->sk_int_mod_pending = 0;
1097 }
1098
1099 /*
1100 * Lookup: Check the PCI vendor and device, and return a pointer to
1101 * The structure if the IDs match against our list.
1102 */
1103
1104 static const struct sk_product *
1105 sk_lookup(const struct pci_attach_args *pa)
1106 {
1107 const struct sk_product *psk;
1108
1109 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1110 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1111 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1112 return psk;
1113 }
1114 return NULL;
1115 }
1116
1117 /*
1118 * Probe for a SysKonnect GEnesis chip.
1119 */
1120
1121 int
1122 skc_probe(struct device *parent, struct cfdata *match,
1123 void *aux)
1124 {
1125 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1126 const struct sk_product *psk;
1127 pcireg_t subid;
1128
1129 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1130
1131 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1132 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1133 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1134 subid == SK_LINKSYS_EG1032_SUBID)
1135 return 1;
1136
1137 if ((psk = sk_lookup(pa))) {
1138 return 1;
1139 }
1140 return 0;
1141 }
1142
1143 /*
1144 * Force the GEnesis into reset, then bring it out of reset.
1145 */
1146 void sk_reset(struct sk_softc *sc)
1147 {
1148 DPRINTFN(2, ("sk_reset\n"));
1149
1150 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1151 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1152 if (SK_YUKON_FAMILY(sc->sk_type))
1153 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1154
1155 DELAY(1000);
1156 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1157 DELAY(2);
1158 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1159 if (SK_YUKON_FAMILY(sc->sk_type))
1160 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1161
1162 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1163 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1164 CSR_READ_2(sc, SK_LINK_CTRL)));
1165
1166 if (sc->sk_type == SK_GENESIS) {
1167 /* Configure packet arbiter */
1168 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1169 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1170 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1171 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1172 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1173 }
1174
1175 /* Enable RAM interface */
1176 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1177
1178 sk_update_int_mod(sc);
1179 }
1180
1181 int
1182 sk_probe(struct device *parent, struct cfdata *match,
1183 void *aux)
1184 {
1185 struct skc_attach_args *sa = aux;
1186
1187 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1188 return 0;
1189
1190 return 1;
1191 }
1192
1193 /*
1194 * Each XMAC chip is attached as a separate logical IP interface.
1195 * Single port cards will have only one logical interface of course.
1196 */
1197 void
1198 sk_attach(struct device *parent, struct device *self, void *aux)
1199 {
1200 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1201 struct sk_softc *sc = (struct sk_softc *)parent;
1202 struct skc_attach_args *sa = aux;
1203 struct sk_txmap_entry *entry;
1204 struct ifnet *ifp;
1205 bus_dma_segment_t seg;
1206 bus_dmamap_t dmamap;
1207 void *kva;
1208 int i, rseg;
1209
1210 aprint_naive("\n");
1211
1212 sc_if->sk_port = sa->skc_port;
1213 sc_if->sk_softc = sc;
1214 sc->sk_if[sa->skc_port] = sc_if;
1215
1216 if (sa->skc_port == SK_PORT_A)
1217 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1218 if (sa->skc_port == SK_PORT_B)
1219 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1220
1221 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1222
1223 /*
1224 * Get station address for this interface. Note that
1225 * dual port cards actually come with three station
1226 * addresses: one for each port, plus an extra. The
1227 * extra one is used by the SysKonnect driver software
1228 * as a 'virtual' station address for when both ports
1229 * are operating in failover mode. Currently we don't
1230 * use this extra address.
1231 */
1232 for (i = 0; i < ETHER_ADDR_LEN; i++)
1233 sc_if->sk_enaddr[i] =
1234 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1235
1236
1237 aprint_normal(": Ethernet address %s\n",
1238 ether_sprintf(sc_if->sk_enaddr));
1239
1240 /*
1241 * Set up RAM buffer addresses. The NIC will have a certain
1242 * amount of SRAM on it, somewhere between 512K and 2MB. We
1243 * need to divide this up a) between the transmitter and
1244 * receiver and b) between the two XMACs, if this is a
1245 * dual port NIC. Our algorithm is to divide up the memory
1246 * evenly so that everyone gets a fair share.
1247 */
1248 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1249 u_int32_t chunk, val;
1250
1251 chunk = sc->sk_ramsize / 2;
1252 val = sc->sk_rboff / sizeof(u_int64_t);
1253 sc_if->sk_rx_ramstart = val;
1254 val += (chunk / sizeof(u_int64_t));
1255 sc_if->sk_rx_ramend = val - 1;
1256 sc_if->sk_tx_ramstart = val;
1257 val += (chunk / sizeof(u_int64_t));
1258 sc_if->sk_tx_ramend = val - 1;
1259 } else {
1260 u_int32_t chunk, val;
1261
1262 chunk = sc->sk_ramsize / 4;
1263 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1264 sizeof(u_int64_t);
1265 sc_if->sk_rx_ramstart = val;
1266 val += (chunk / sizeof(u_int64_t));
1267 sc_if->sk_rx_ramend = val - 1;
1268 sc_if->sk_tx_ramstart = val;
1269 val += (chunk / sizeof(u_int64_t));
1270 sc_if->sk_tx_ramend = val - 1;
1271 }
1272
1273 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1274 " tx_ramstart=%#x tx_ramend=%#x\n",
1275 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1276 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1277
1278 /* Read and save PHY type and set PHY address */
1279 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1280 switch (sc_if->sk_phytype) {
1281 case SK_PHYTYPE_XMAC:
1282 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1283 break;
1284 case SK_PHYTYPE_BCOM:
1285 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1286 break;
1287 case SK_PHYTYPE_MARV_COPPER:
1288 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1289 break;
1290 default:
1291 aprint_error("%s: unsupported PHY type: %d\n",
1292 sc->sk_dev.dv_xname, sc_if->sk_phytype);
1293 return;
1294 }
1295
1296 /* Allocate the descriptor queues. */
1297 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1298 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1299 aprint_error("%s: can't alloc rx buffers\n",
1300 sc->sk_dev.dv_xname);
1301 goto fail;
1302 }
1303 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1304 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1305 aprint_error("%s: can't map dma buffers (%lu bytes)\n",
1306 sc_if->sk_dev.dv_xname,
1307 (u_long) sizeof(struct sk_ring_data));
1308 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1309 goto fail;
1310 }
1311 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1312 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1313 &sc_if->sk_ring_map)) {
1314 aprint_error("%s: can't create dma map\n",
1315 sc_if->sk_dev.dv_xname);
1316 bus_dmamem_unmap(sc->sc_dmatag, kva,
1317 sizeof(struct sk_ring_data));
1318 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1319 goto fail;
1320 }
1321 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1322 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1323 aprint_error("%s: can't load dma map\n",
1324 sc_if->sk_dev.dv_xname);
1325 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1326 bus_dmamem_unmap(sc->sc_dmatag, kva,
1327 sizeof(struct sk_ring_data));
1328 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1329 goto fail;
1330 }
1331
1332 for (i = 0; i < SK_RX_RING_CNT; i++)
1333 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1334
1335 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1336 for (i = 0; i < SK_TX_RING_CNT; i++) {
1337 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1338
1339 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1340 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1341 aprint_error("%s: Can't create TX dmamap\n",
1342 sc_if->sk_dev.dv_xname);
1343 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1344 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1345 bus_dmamem_unmap(sc->sc_dmatag, kva,
1346 sizeof(struct sk_ring_data));
1347 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1348 goto fail;
1349 }
1350
1351 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1352 if (!entry) {
1353 aprint_error("%s: Can't alloc txmap entry\n",
1354 sc_if->sk_dev.dv_xname);
1355 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1356 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1357 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1358 bus_dmamem_unmap(sc->sc_dmatag, kva,
1359 sizeof(struct sk_ring_data));
1360 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1361 goto fail;
1362 }
1363 entry->dmamap = dmamap;
1364 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1365 }
1366
1367 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1368 bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1369
1370 ifp = &sc_if->sk_ethercom.ec_if;
1371 /* Try to allocate memory for jumbo buffers. */
1372 if (sk_alloc_jumbo_mem(sc_if)) {
1373 aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1374 goto fail;
1375 }
1376 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1377 | ETHERCAP_JUMBO_MTU;
1378
1379 ifp->if_softc = sc_if;
1380 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1381 ifp->if_ioctl = sk_ioctl;
1382 ifp->if_start = sk_start;
1383 ifp->if_stop = sk_stop;
1384 ifp->if_init = sk_init;
1385 ifp->if_watchdog = sk_watchdog;
1386 ifp->if_capabilities = 0;
1387 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1388 IFQ_SET_READY(&ifp->if_snd);
1389 strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1390
1391 /*
1392 * Do miibus setup.
1393 */
1394 switch (sc->sk_type) {
1395 case SK_GENESIS:
1396 sk_init_xmac(sc_if);
1397 break;
1398 case SK_YUKON:
1399 case SK_YUKON_LITE:
1400 case SK_YUKON_LP:
1401 sk_init_yukon(sc_if);
1402 break;
1403 default:
1404 aprint_error("%s: unknown device type %d\n",
1405 sc->sk_dev.dv_xname, sc->sk_type);
1406 goto fail;
1407 }
1408
1409 DPRINTFN(2, ("sk_attach: 1\n"));
1410
1411 sc_if->sk_mii.mii_ifp = ifp;
1412 switch (sc->sk_type) {
1413 case SK_GENESIS:
1414 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1415 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1416 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1417 break;
1418 case SK_YUKON:
1419 case SK_YUKON_LITE:
1420 case SK_YUKON_LP:
1421 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1422 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1423 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1424 break;
1425 }
1426
1427 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1428 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1429 sk_ifmedia_upd, ether_mediastatus);
1430 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1431 MII_OFFSET_ANY, 0);
1432 if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
1433 aprint_error("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1434 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1435 0, NULL);
1436 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1437 } else
1438 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1439
1440 callout_init(&sc_if->sk_tick_ch, 0);
1441 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1442
1443 DPRINTFN(2, ("sk_attach: 1\n"));
1444
1445 /*
1446 * Call MI attach routines.
1447 */
1448 if_attach(ifp);
1449
1450 ether_ifattach(ifp, sc_if->sk_enaddr);
1451
1452 #if NRND > 0
1453 rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
1454 RND_TYPE_NET, 0);
1455 #endif
1456
1457 DPRINTFN(2, ("sk_attach: end\n"));
1458
1459 return;
1460
1461 fail:
1462 sc->sk_if[sa->skc_port] = NULL;
1463 }
1464
1465 int
1466 skcprint(void *aux, const char *pnp)
1467 {
1468 struct skc_attach_args *sa = aux;
1469
1470 if (pnp)
1471 aprint_normal("sk port %c at %s",
1472 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1473 else
1474 aprint_normal(" port %c",
1475 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1476 return UNCONF;
1477 }
1478
1479 /*
1480 * Attach the interface. Allocate softc structures, do ifmedia
1481 * setup and ethernet/BPF attach.
1482 */
1483 void
1484 skc_attach(struct device *parent, struct device *self, void *aux)
1485 {
1486 struct sk_softc *sc = (struct sk_softc *)self;
1487 struct pci_attach_args *pa = aux;
1488 struct skc_attach_args skca;
1489 pci_chipset_tag_t pc = pa->pa_pc;
1490 #ifndef SK_USEIOSPACE
1491 pcireg_t memtype;
1492 #endif
1493 pci_intr_handle_t ih;
1494 const char *intrstr = NULL;
1495 bus_addr_t iobase;
1496 bus_size_t iosize;
1497 int rc, sk_nodenum;
1498 u_int32_t command;
1499 const char *revstr;
1500 const struct sysctlnode *node;
1501
1502 aprint_naive("\n");
1503
1504 DPRINTFN(2, ("begin skc_attach\n"));
1505
1506 /*
1507 * Handle power management nonsense.
1508 */
1509 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1510
1511 if (command == 0x01) {
1512 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1513 if (command & SK_PSTATE_MASK) {
1514 u_int32_t xiobase, membase, irq;
1515
1516 /* Save important PCI config data. */
1517 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1518 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1519 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1520
1521 /* Reset the power state. */
1522 aprint_normal("%s chip is in D%d power mode "
1523 "-- setting to D0\n", sc->sk_dev.dv_xname,
1524 command & SK_PSTATE_MASK);
1525 command &= 0xFFFFFFFC;
1526 pci_conf_write(pc, pa->pa_tag,
1527 SK_PCI_PWRMGMTCTRL, command);
1528
1529 /* Restore PCI config data. */
1530 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1531 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1532 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1533 }
1534 }
1535
1536 /*
1537 * Map control/status registers.
1538 */
1539 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1540 command |= PCI_COMMAND_IO_ENABLE |
1541 PCI_COMMAND_MEM_ENABLE |
1542 PCI_COMMAND_MASTER_ENABLE;
1543 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1544 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1545
1546 #ifdef SK_USEIOSPACE
1547 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1548 aprint_error(": failed to enable I/O ports!\n");
1549 return;
1550 }
1551 /*
1552 * Map control/status registers.
1553 */
1554 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1555 &sc->sk_btag, &sc->sk_bhandle,
1556 &iobase, &iosize)) {
1557 aprint_error(": can't find i/o space\n");
1558 return;
1559 }
1560 #else
1561 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1562 aprint_error(": failed to enable memory mapping!\n");
1563 return;
1564 }
1565 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1566 switch (memtype) {
1567 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1568 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1569 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1570 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1571 &iobase, &iosize) == 0)
1572 break;
1573 default:
1574 aprint_error("%s: can't find mem space\n",
1575 sc->sk_dev.dv_xname);
1576 return;
1577 }
1578
1579 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1580 #endif
1581 sc->sc_dmatag = pa->pa_dmat;
1582
1583 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1584 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1585
1586 /* bail out here if chip is not recognized */
1587 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1588 aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
1589 goto fail;
1590 }
1591 if (SK_IS_YUKON2(sc)) {
1592 aprint_error("%s: Does not support Yukon2--try msk(4).\n",
1593 sc->sk_dev.dv_xname);
1594 goto fail;
1595 }
1596 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1597
1598 /* Allocate interrupt */
1599 if (pci_intr_map(pa, &ih)) {
1600 aprint_error(": couldn't map interrupt\n");
1601 goto fail;
1602 }
1603
1604 intrstr = pci_intr_string(pc, ih);
1605 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1606 if (sc->sk_intrhand == NULL) {
1607 aprint_error(": couldn't establish interrupt");
1608 if (intrstr != NULL)
1609 aprint_normal(" at %s", intrstr);
1610 goto fail;
1611 }
1612 aprint_normal(": %s\n", intrstr);
1613
1614 /* Reset the adapter. */
1615 sk_reset(sc);
1616
1617 /* Read and save vital product data from EEPROM. */
1618 sk_vpd_read(sc);
1619
1620 if (sc->sk_type == SK_GENESIS) {
1621 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1622 /* Read and save RAM size and RAMbuffer offset */
1623 switch (val) {
1624 case SK_RAMSIZE_512K_64:
1625 sc->sk_ramsize = 0x80000;
1626 sc->sk_rboff = SK_RBOFF_0;
1627 break;
1628 case SK_RAMSIZE_1024K_64:
1629 sc->sk_ramsize = 0x100000;
1630 sc->sk_rboff = SK_RBOFF_80000;
1631 break;
1632 case SK_RAMSIZE_1024K_128:
1633 sc->sk_ramsize = 0x100000;
1634 sc->sk_rboff = SK_RBOFF_0;
1635 break;
1636 case SK_RAMSIZE_2048K_128:
1637 sc->sk_ramsize = 0x200000;
1638 sc->sk_rboff = SK_RBOFF_0;
1639 break;
1640 default:
1641 aprint_error("%s: unknown ram size: %d\n",
1642 sc->sk_dev.dv_xname, val);
1643 goto fail_1;
1644 break;
1645 }
1646
1647 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1648 sc->sk_ramsize, sc->sk_ramsize / 1024,
1649 sc->sk_rboff));
1650 } else {
1651 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1652 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1653 sc->sk_rboff = SK_RBOFF_0;
1654
1655 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1656 sc->sk_ramsize / 1024, sc->sk_ramsize,
1657 sc->sk_rboff));
1658 }
1659
1660 /* Read and save physical media type */
1661 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1662 case SK_PMD_1000BASESX:
1663 sc->sk_pmd = IFM_1000_SX;
1664 break;
1665 case SK_PMD_1000BASELX:
1666 sc->sk_pmd = IFM_1000_LX;
1667 break;
1668 case SK_PMD_1000BASECX:
1669 sc->sk_pmd = IFM_1000_CX;
1670 break;
1671 case SK_PMD_1000BASETX:
1672 case SK_PMD_1000BASETX_ALT:
1673 sc->sk_pmd = IFM_1000_T;
1674 break;
1675 default:
1676 aprint_error("%s: unknown media type: 0x%x\n",
1677 sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
1678 goto fail_1;
1679 }
1680
1681 /* determine whether to name it with vpd or just make it up */
1682 /* Marvell Yukon VPD's can freqently be bogus */
1683
1684 switch (pa->pa_id) {
1685 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1686 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1687 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1688 case PCI_PRODUCT_3COM_3C940:
1689 case PCI_PRODUCT_DLINK_DGE530T:
1690 case PCI_PRODUCT_DLINK_DGE560T:
1691 case PCI_PRODUCT_DLINK_DGE560T_2:
1692 case PCI_PRODUCT_LINKSYS_EG1032:
1693 case PCI_PRODUCT_LINKSYS_EG1064:
1694 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1695 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1696 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1697 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1698 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1699 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1700 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1701 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1702 sc->sk_name = sc->sk_vpd_prodname;
1703 break;
1704 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1705 /* whoops yukon vpd prodname bears no resemblance to reality */
1706 switch (sc->sk_type) {
1707 case SK_GENESIS:
1708 sc->sk_name = sc->sk_vpd_prodname;
1709 break;
1710 case SK_YUKON:
1711 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1712 break;
1713 case SK_YUKON_LITE:
1714 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1715 break;
1716 case SK_YUKON_LP:
1717 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1718 break;
1719 default:
1720 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1721 }
1722
1723 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1724
1725 if ( sc->sk_type == SK_YUKON ) {
1726 uint32_t flashaddr;
1727 uint8_t testbyte;
1728
1729 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1730
1731 /* test Flash-Address Register */
1732 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1733 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1734
1735 if (testbyte != 0) {
1736 /* this is yukon lite Rev. A0 */
1737 sc->sk_type = SK_YUKON_LITE;
1738 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1739 /* restore Flash-Address Register */
1740 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1741 }
1742 }
1743 break;
1744 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1745 sc->sk_name = sc->sk_vpd_prodname;
1746 break;
1747 default:
1748 sc->sk_name = "Unknown Marvell";
1749 }
1750
1751
1752 if ( sc->sk_type == SK_YUKON_LITE ) {
1753 switch (sc->sk_rev) {
1754 case SK_YUKON_LITE_REV_A0:
1755 revstr = "A0";
1756 break;
1757 case SK_YUKON_LITE_REV_A1:
1758 revstr = "A1";
1759 break;
1760 case SK_YUKON_LITE_REV_A3:
1761 revstr = "A3";
1762 break;
1763 default:
1764 revstr = "";
1765 }
1766 } else {
1767 revstr = "";
1768 }
1769
1770 /* Announce the product name. */
1771 aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
1772 sc->sk_name, revstr, sc->sk_rev);
1773
1774 skca.skc_port = SK_PORT_A;
1775 (void)config_found(&sc->sk_dev, &skca, skcprint);
1776
1777 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1778 skca.skc_port = SK_PORT_B;
1779 (void)config_found(&sc->sk_dev, &skca, skcprint);
1780 }
1781
1782 /* Turn on the 'driver is loaded' LED. */
1783 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1784
1785 /* skc sysctl setup */
1786
1787 sc->sk_int_mod = SK_IM_DEFAULT;
1788 sc->sk_int_mod_pending = 0;
1789
1790 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1791 0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
1792 SYSCTL_DESCR("skc per-controller controls"),
1793 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1794 CTL_EOL)) != 0) {
1795 aprint_normal("%s: couldn't create sysctl node\n",
1796 sc->sk_dev.dv_xname);
1797 goto fail_1;
1798 }
1799
1800 sk_nodenum = node->sysctl_num;
1801
1802 /* interrupt moderation time in usecs */
1803 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1804 CTLFLAG_READWRITE,
1805 CTLTYPE_INT, "int_mod",
1806 SYSCTL_DESCR("sk interrupt moderation timer"),
1807 sk_sysctl_handler, 0, sc,
1808 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1809 CTL_EOL)) != 0) {
1810 aprint_normal("%s: couldn't create int_mod sysctl node\n",
1811 sc->sk_dev.dv_xname);
1812 goto fail_1;
1813 }
1814
1815 return;
1816
1817 fail_1:
1818 pci_intr_disestablish(pc, sc->sk_intrhand);
1819 fail:
1820 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1821 }
1822
1823 int
1824 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1825 {
1826 struct sk_softc *sc = sc_if->sk_softc;
1827 struct sk_tx_desc *f = NULL;
1828 u_int32_t frag, cur, cnt = 0, sk_ctl;
1829 int i;
1830 struct sk_txmap_entry *entry;
1831 bus_dmamap_t txmap;
1832
1833 DPRINTFN(3, ("sk_encap\n"));
1834
1835 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1836 if (entry == NULL) {
1837 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1838 return ENOBUFS;
1839 }
1840 txmap = entry->dmamap;
1841
1842 cur = frag = *txidx;
1843
1844 #ifdef SK_DEBUG
1845 if (skdebug >= 3)
1846 sk_dump_mbuf(m_head);
1847 #endif
1848
1849 /*
1850 * Start packing the mbufs in this chain into
1851 * the fragment pointers. Stop when we run out
1852 * of fragments or hit the end of the mbuf chain.
1853 */
1854 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1855 BUS_DMA_NOWAIT)) {
1856 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1857 return ENOBUFS;
1858 }
1859
1860 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1861
1862 /* Sync the DMA map. */
1863 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1864 BUS_DMASYNC_PREWRITE);
1865
1866 for (i = 0; i < txmap->dm_nsegs; i++) {
1867 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1868 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1869 return ENOBUFS;
1870 }
1871 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1872 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1873 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1874 if (cnt == 0)
1875 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1876 else
1877 sk_ctl |= SK_TXCTL_OWN;
1878 f->sk_ctl = htole32(sk_ctl);
1879 cur = frag;
1880 SK_INC(frag, SK_TX_RING_CNT);
1881 cnt++;
1882 }
1883
1884 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1885 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1886
1887 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1888 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1889 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1890
1891 /* Sync descriptors before handing to chip */
1892 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1893 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1894
1895 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1896 htole32(SK_TXCTL_OWN);
1897
1898 /* Sync first descriptor to hand it off */
1899 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1900
1901 sc_if->sk_cdata.sk_tx_cnt += cnt;
1902
1903 #ifdef SK_DEBUG
1904 if (skdebug >= 3) {
1905 struct sk_tx_desc *desc;
1906 u_int32_t idx;
1907 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1908 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1909 sk_dump_txdesc(desc, idx);
1910 }
1911 }
1912 #endif
1913
1914 *txidx = frag;
1915
1916 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1917
1918 return 0;
1919 }
1920
1921 void
1922 sk_start(struct ifnet *ifp)
1923 {
1924 struct sk_if_softc *sc_if = ifp->if_softc;
1925 struct sk_softc *sc = sc_if->sk_softc;
1926 struct mbuf *m_head = NULL;
1927 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1928 int pkts = 0;
1929
1930 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1931 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1932
1933 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1934 IFQ_POLL(&ifp->if_snd, m_head);
1935 if (m_head == NULL)
1936 break;
1937
1938 /*
1939 * Pack the data into the transmit ring. If we
1940 * don't have room, set the OACTIVE flag and wait
1941 * for the NIC to drain the ring.
1942 */
1943 if (sk_encap(sc_if, m_head, &idx)) {
1944 ifp->if_flags |= IFF_OACTIVE;
1945 break;
1946 }
1947
1948 /* now we are committed to transmit the packet */
1949 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1950 pkts++;
1951
1952 /*
1953 * If there's a BPF listener, bounce a copy of this frame
1954 * to him.
1955 */
1956 #if NBPFILTER > 0
1957 if (ifp->if_bpf)
1958 bpf_mtap(ifp->if_bpf, m_head);
1959 #endif
1960 }
1961 if (pkts == 0)
1962 return;
1963
1964 /* Transmit */
1965 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1966 sc_if->sk_cdata.sk_tx_prod = idx;
1967 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1968
1969 /* Set a timeout in case the chip goes out to lunch. */
1970 ifp->if_timer = 5;
1971 }
1972 }
1973
1974
1975 void
1976 sk_watchdog(struct ifnet *ifp)
1977 {
1978 struct sk_if_softc *sc_if = ifp->if_softc;
1979
1980 /*
1981 * Reclaim first as there is a possibility of losing Tx completion
1982 * interrupts.
1983 */
1984 sk_txeof(sc_if);
1985 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1986 aprint_error("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1987
1988 ifp->if_oerrors++;
1989
1990 sk_init(ifp);
1991 }
1992 }
1993
1994 void
1995 sk_shutdown(void *v)
1996 {
1997 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
1998 struct sk_softc *sc = sc_if->sk_softc;
1999 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2000
2001 DPRINTFN(2, ("sk_shutdown\n"));
2002 sk_stop(ifp,1);
2003
2004 /* Turn off the 'driver is loaded' LED. */
2005 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2006
2007 /*
2008 * Reset the GEnesis controller. Doing this should also
2009 * assert the resets on the attached XMAC(s).
2010 */
2011 sk_reset(sc);
2012 }
2013
2014 void
2015 sk_rxeof(struct sk_if_softc *sc_if)
2016 {
2017 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2018 struct mbuf *m;
2019 struct sk_chain *cur_rx;
2020 struct sk_rx_desc *cur_desc;
2021 int i, cur, total_len = 0;
2022 u_int32_t rxstat, sk_ctl;
2023 bus_dmamap_t dmamap;
2024
2025 i = sc_if->sk_cdata.sk_rx_prod;
2026
2027 DPRINTFN(3, ("sk_rxeof %d\n", i));
2028
2029 for (;;) {
2030 cur = i;
2031
2032 /* Sync the descriptor */
2033 SK_CDRXSYNC(sc_if, cur,
2034 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2035
2036 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2037 if (sk_ctl & SK_RXCTL_OWN) {
2038 /* Invalidate the descriptor -- it's not ready yet */
2039 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2040 sc_if->sk_cdata.sk_rx_prod = i;
2041 break;
2042 }
2043
2044 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2045 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2046 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2047
2048 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2049 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2050
2051 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2052 m = cur_rx->sk_mbuf;
2053 cur_rx->sk_mbuf = NULL;
2054 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2055
2056 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2057
2058 SK_INC(i, SK_RX_RING_CNT);
2059
2060 if (rxstat & XM_RXSTAT_ERRFRAME) {
2061 ifp->if_ierrors++;
2062 sk_newbuf(sc_if, cur, m, dmamap);
2063 continue;
2064 }
2065
2066 /*
2067 * Try to allocate a new jumbo buffer. If that
2068 * fails, copy the packet to mbufs and put the
2069 * jumbo buffer back in the ring so it can be
2070 * re-used. If allocating mbufs fails, then we
2071 * have to drop the packet.
2072 */
2073 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2074 struct mbuf *m0;
2075 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2076 total_len + ETHER_ALIGN, 0, ifp, NULL);
2077 sk_newbuf(sc_if, cur, m, dmamap);
2078 if (m0 == NULL) {
2079 aprint_error("%s: no receive buffers "
2080 "available -- packet dropped!\n",
2081 sc_if->sk_dev.dv_xname);
2082 ifp->if_ierrors++;
2083 continue;
2084 }
2085 m_adj(m0, ETHER_ALIGN);
2086 m = m0;
2087 } else {
2088 m->m_pkthdr.rcvif = ifp;
2089 m->m_pkthdr.len = m->m_len = total_len;
2090 }
2091
2092 ifp->if_ipackets++;
2093
2094 #if NBPFILTER > 0
2095 if (ifp->if_bpf)
2096 bpf_mtap(ifp->if_bpf, m);
2097 #endif
2098 /* pass it on. */
2099 (*ifp->if_input)(ifp, m);
2100 }
2101 }
2102
2103 void
2104 sk_txeof(struct sk_if_softc *sc_if)
2105 {
2106 struct sk_softc *sc = sc_if->sk_softc;
2107 struct sk_tx_desc *cur_tx;
2108 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2109 u_int32_t idx, sk_ctl;
2110 struct sk_txmap_entry *entry;
2111
2112 DPRINTFN(3, ("sk_txeof\n"));
2113
2114 /*
2115 * Go through our tx ring and free mbufs for those
2116 * frames that have been sent.
2117 */
2118 idx = sc_if->sk_cdata.sk_tx_cons;
2119 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2120 SK_CDTXSYNC(sc_if, idx, 1,
2121 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2122
2123 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2124 sk_ctl = le32toh(cur_tx->sk_ctl);
2125 #ifdef SK_DEBUG
2126 if (skdebug >= 3)
2127 sk_dump_txdesc(cur_tx, idx);
2128 #endif
2129 if (sk_ctl & SK_TXCTL_OWN) {
2130 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2131 break;
2132 }
2133 if (sk_ctl & SK_TXCTL_LASTFRAG)
2134 ifp->if_opackets++;
2135 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2136 entry = sc_if->sk_cdata.sk_tx_map[idx];
2137
2138 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2139 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2140
2141 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2142 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2143
2144 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2145 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2146 link);
2147 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2148 }
2149 sc_if->sk_cdata.sk_tx_cnt--;
2150 SK_INC(idx, SK_TX_RING_CNT);
2151 }
2152 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2153 ifp->if_timer = 0;
2154 else /* nudge chip to keep tx ring moving */
2155 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2156
2157 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2158 ifp->if_flags &= ~IFF_OACTIVE;
2159
2160 sc_if->sk_cdata.sk_tx_cons = idx;
2161 }
2162
2163 void
2164 sk_tick(void *xsc_if)
2165 {
2166 struct sk_if_softc *sc_if = xsc_if;
2167 struct mii_data *mii = &sc_if->sk_mii;
2168 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2169 int i;
2170
2171 DPRINTFN(3, ("sk_tick\n"));
2172
2173 if (!(ifp->if_flags & IFF_UP))
2174 return;
2175
2176 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2177 sk_intr_bcom(sc_if);
2178 return;
2179 }
2180
2181 /*
2182 * According to SysKonnect, the correct way to verify that
2183 * the link has come back up is to poll bit 0 of the GPIO
2184 * register three times. This pin has the signal from the
2185 * link sync pin connected to it; if we read the same link
2186 * state 3 times in a row, we know the link is up.
2187 */
2188 for (i = 0; i < 3; i++) {
2189 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2190 break;
2191 }
2192
2193 if (i != 3) {
2194 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2195 return;
2196 }
2197
2198 /* Turn the GP0 interrupt back on. */
2199 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2200 SK_XM_READ_2(sc_if, XM_ISR);
2201 mii_tick(mii);
2202 mii_pollstat(mii);
2203 callout_stop(&sc_if->sk_tick_ch);
2204 }
2205
2206 void
2207 sk_intr_bcom(struct sk_if_softc *sc_if)
2208 {
2209 struct mii_data *mii = &sc_if->sk_mii;
2210 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2211 int status;
2212
2213
2214 DPRINTFN(3, ("sk_intr_bcom\n"));
2215
2216 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2217
2218 /*
2219 * Read the PHY interrupt register to make sure
2220 * we clear any pending interrupts.
2221 */
2222 status = sk_xmac_miibus_readreg((struct device *)sc_if,
2223 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2224
2225 if (!(ifp->if_flags & IFF_RUNNING)) {
2226 sk_init_xmac(sc_if);
2227 return;
2228 }
2229
2230 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2231 int lstat;
2232 lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
2233 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2234
2235 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2236 (void)mii_mediachg(mii);
2237 /* Turn off the link LED. */
2238 SK_IF_WRITE_1(sc_if, 0,
2239 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2240 sc_if->sk_link = 0;
2241 } else if (status & BRGPHY_ISR_LNK_CHG) {
2242 sk_xmac_miibus_writereg((struct device *)sc_if,
2243 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2244 mii_tick(mii);
2245 sc_if->sk_link = 1;
2246 /* Turn on the link LED. */
2247 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2248 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2249 SK_LINKLED_BLINK_OFF);
2250 mii_pollstat(mii);
2251 } else {
2252 mii_tick(mii);
2253 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2254 }
2255 }
2256
2257 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2258 }
2259
2260 void
2261 sk_intr_xmac(struct sk_if_softc *sc_if)
2262 {
2263 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2264
2265 DPRINTFN(3, ("sk_intr_xmac\n"));
2266
2267 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2268 if (status & XM_ISR_GP0_SET) {
2269 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2270 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2271 }
2272
2273 if (status & XM_ISR_AUTONEG_DONE) {
2274 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2275 }
2276 }
2277
2278 if (status & XM_IMR_TX_UNDERRUN)
2279 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2280
2281 if (status & XM_IMR_RX_OVERRUN)
2282 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2283 }
2284
2285 void
2286 sk_intr_yukon(struct sk_if_softc *sc_if)
2287 {
2288 int status;
2289
2290 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2291
2292 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2293 }
2294
2295 int
2296 sk_intr(void *xsc)
2297 {
2298 struct sk_softc *sc = xsc;
2299 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2300 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2301 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2302 u_int32_t status;
2303 int claimed = 0;
2304
2305 if (sc_if0 != NULL)
2306 ifp0 = &sc_if0->sk_ethercom.ec_if;
2307 if (sc_if1 != NULL)
2308 ifp1 = &sc_if1->sk_ethercom.ec_if;
2309
2310 for (;;) {
2311 status = CSR_READ_4(sc, SK_ISSR);
2312 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2313
2314 if (!(status & sc->sk_intrmask))
2315 break;
2316
2317 claimed = 1;
2318
2319 /* Handle receive interrupts first. */
2320 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2321 sk_rxeof(sc_if0);
2322 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2323 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2324 }
2325 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2326 sk_rxeof(sc_if1);
2327 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2328 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2329 }
2330
2331 /* Then transmit interrupts. */
2332 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2333 sk_txeof(sc_if0);
2334 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2335 SK_TXBMU_CLR_IRQ_EOF);
2336 }
2337 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2338 sk_txeof(sc_if1);
2339 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2340 SK_TXBMU_CLR_IRQ_EOF);
2341 }
2342
2343 /* Then MAC interrupts. */
2344 if (sc_if0 && (status & SK_ISR_MAC1) &&
2345 (ifp0->if_flags & IFF_RUNNING)) {
2346 if (sc->sk_type == SK_GENESIS)
2347 sk_intr_xmac(sc_if0);
2348 else
2349 sk_intr_yukon(sc_if0);
2350 }
2351
2352 if (sc_if1 && (status & SK_ISR_MAC2) &&
2353 (ifp1->if_flags & IFF_RUNNING)) {
2354 if (sc->sk_type == SK_GENESIS)
2355 sk_intr_xmac(sc_if1);
2356 else
2357 sk_intr_yukon(sc_if1);
2358
2359 }
2360
2361 if (status & SK_ISR_EXTERNAL_REG) {
2362 if (sc_if0 != NULL &&
2363 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2364 sk_intr_bcom(sc_if0);
2365
2366 if (sc_if1 != NULL &&
2367 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2368 sk_intr_bcom(sc_if1);
2369 }
2370 }
2371
2372 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2373
2374 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2375 sk_start(ifp0);
2376 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2377 sk_start(ifp1);
2378
2379 #if NRND > 0
2380 if (RND_ENABLED(&sc->rnd_source))
2381 rnd_add_uint32(&sc->rnd_source, status);
2382 #endif
2383
2384 if (sc->sk_int_mod_pending)
2385 sk_update_int_mod(sc);
2386
2387 return claimed;
2388 }
2389
2390 void
2391 sk_init_xmac(struct sk_if_softc *sc_if)
2392 {
2393 struct sk_softc *sc = sc_if->sk_softc;
2394 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2395 static const struct sk_bcom_hack bhack[] = {
2396 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2397 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2398 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2399 { 0, 0 } };
2400
2401 DPRINTFN(1, ("sk_init_xmac\n"));
2402
2403 /* Unreset the XMAC. */
2404 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2405 DELAY(1000);
2406
2407 /* Reset the XMAC's internal state. */
2408 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2409
2410 /* Save the XMAC II revision */
2411 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2412
2413 /*
2414 * Perform additional initialization for external PHYs,
2415 * namely for the 1000baseTX cards that use the XMAC's
2416 * GMII mode.
2417 */
2418 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2419 int i = 0;
2420 u_int32_t val;
2421
2422 /* Take PHY out of reset. */
2423 val = sk_win_read_4(sc, SK_GPIO);
2424 if (sc_if->sk_port == SK_PORT_A)
2425 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2426 else
2427 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2428 sk_win_write_4(sc, SK_GPIO, val);
2429
2430 /* Enable GMII mode on the XMAC. */
2431 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2432
2433 sk_xmac_miibus_writereg((struct device *)sc_if,
2434 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2435 DELAY(10000);
2436 sk_xmac_miibus_writereg((struct device *)sc_if,
2437 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2438
2439 /*
2440 * Early versions of the BCM5400 apparently have
2441 * a bug that requires them to have their reserved
2442 * registers initialized to some magic values. I don't
2443 * know what the numbers do, I'm just the messenger.
2444 */
2445 if (sk_xmac_miibus_readreg((struct device *)sc_if,
2446 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2447 while (bhack[i].reg) {
2448 sk_xmac_miibus_writereg((struct device *)sc_if,
2449 SK_PHYADDR_BCOM, bhack[i].reg,
2450 bhack[i].val);
2451 i++;
2452 }
2453 }
2454 }
2455
2456 /* Set station address */
2457 SK_XM_WRITE_2(sc_if, XM_PAR0,
2458 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2459 SK_XM_WRITE_2(sc_if, XM_PAR1,
2460 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2461 SK_XM_WRITE_2(sc_if, XM_PAR2,
2462 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2463 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2464
2465 if (ifp->if_flags & IFF_PROMISC)
2466 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2467 else
2468 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2469
2470 if (ifp->if_flags & IFF_BROADCAST)
2471 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2472 else
2473 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2474
2475 /* We don't need the FCS appended to the packet. */
2476 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2477
2478 /* We want short frames padded to 60 bytes. */
2479 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2480
2481 /*
2482 * Enable the reception of all error frames. This is is
2483 * a necessary evil due to the design of the XMAC. The
2484 * XMAC's receive FIFO is only 8K in size, however jumbo
2485 * frames can be up to 9000 bytes in length. When bad
2486 * frame filtering is enabled, the XMAC's RX FIFO operates
2487 * in 'store and forward' mode. For this to work, the
2488 * entire frame has to fit into the FIFO, but that means
2489 * that jumbo frames larger than 8192 bytes will be
2490 * truncated. Disabling all bad frame filtering causes
2491 * the RX FIFO to operate in streaming mode, in which
2492 * case the XMAC will start transfering frames out of the
2493 * RX FIFO as soon as the FIFO threshold is reached.
2494 */
2495 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2496 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2497 XM_MODE_RX_INRANGELEN);
2498
2499 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2500 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2501 else
2502 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2503
2504 /*
2505 * Bump up the transmit threshold. This helps hold off transmit
2506 * underruns when we're blasting traffic from both ports at once.
2507 */
2508 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2509
2510 /* Set multicast filter */
2511 sk_setmulti(sc_if);
2512
2513 /* Clear and enable interrupts */
2514 SK_XM_READ_2(sc_if, XM_ISR);
2515 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2516 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2517 else
2518 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2519
2520 /* Configure MAC arbiter */
2521 switch (sc_if->sk_xmac_rev) {
2522 case XM_XMAC_REV_B2:
2523 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2524 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2525 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2526 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2527 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2528 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2529 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2530 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2531 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2532 break;
2533 case XM_XMAC_REV_C1:
2534 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2535 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2536 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2537 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2538 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2539 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2540 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2541 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2542 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2543 break;
2544 default:
2545 break;
2546 }
2547 sk_win_write_2(sc, SK_MACARB_CTL,
2548 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2549
2550 sc_if->sk_link = 1;
2551 }
2552
2553 void sk_init_yukon(struct sk_if_softc *sc_if)
2554 {
2555 u_int32_t /*mac, */phy;
2556 u_int16_t reg;
2557 struct sk_softc *sc;
2558 int i;
2559
2560 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2561 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2562
2563 sc = sc_if->sk_softc;
2564 if (sc->sk_type == SK_YUKON_LITE &&
2565 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2566 /* Take PHY out of reset. */
2567 sk_win_write_4(sc, SK_GPIO,
2568 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2569 }
2570
2571
2572 /* GMAC and GPHY Reset */
2573 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2574
2575 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2576
2577 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2578 DELAY(1000);
2579 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2580 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2581 DELAY(1000);
2582
2583
2584 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2585
2586 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2587 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2588
2589 switch (sc_if->sk_softc->sk_pmd) {
2590 case IFM_1000_SX:
2591 case IFM_1000_LX:
2592 phy |= SK_GPHY_FIBER;
2593 break;
2594
2595 case IFM_1000_CX:
2596 case IFM_1000_T:
2597 phy |= SK_GPHY_COPPER;
2598 break;
2599 }
2600
2601 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2602
2603 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2604 DELAY(1000);
2605 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2606 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2607 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2608
2609 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2610 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2611
2612 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2613
2614 /* unused read of the interrupt source register */
2615 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2616 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2617
2618 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2619 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2620 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2621
2622 /* MIB Counter Clear Mode set */
2623 reg |= YU_PAR_MIB_CLR;
2624 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2625 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2626 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2627
2628 /* MIB Counter Clear Mode clear */
2629 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2630 reg &= ~YU_PAR_MIB_CLR;
2631 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2632
2633 /* receive control reg */
2634 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2635 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2636 YU_RCR_CRCR);
2637
2638 /* transmit parameter register */
2639 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2640 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2641 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2642
2643 /* serial mode register */
2644 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2645 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2646 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2647 YU_SMR_IPG_DATA(0x1e));
2648
2649 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2650 /* Setup Yukon's address */
2651 for (i = 0; i < 3; i++) {
2652 /* Write Source Address 1 (unicast filter) */
2653 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2654 sc_if->sk_enaddr[i * 2] |
2655 sc_if->sk_enaddr[i * 2 + 1] << 8);
2656 }
2657
2658 for (i = 0; i < 3; i++) {
2659 reg = sk_win_read_2(sc_if->sk_softc,
2660 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2661 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2662 }
2663
2664 /* Set multicast filter */
2665 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2666 sk_setmulti(sc_if);
2667
2668 /* enable interrupt mask for counter overflows */
2669 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2670 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2671 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2672 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2673
2674 /* Configure RX MAC FIFO */
2675 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2676 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2677
2678 /* Configure TX MAC FIFO */
2679 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2680 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2681
2682 DPRINTFN(6, ("sk_init_yukon: end\n"));
2683 }
2684
2685 /*
2686 * Note that to properly initialize any part of the GEnesis chip,
2687 * you first have to take it out of reset mode.
2688 */
2689 int
2690 sk_init(struct ifnet *ifp)
2691 {
2692 struct sk_if_softc *sc_if = ifp->if_softc;
2693 struct sk_softc *sc = sc_if->sk_softc;
2694 struct mii_data *mii = &sc_if->sk_mii;
2695 int rc = 0, s;
2696 u_int32_t imr, imtimer_ticks;
2697
2698 DPRINTFN(1, ("sk_init\n"));
2699
2700 s = splnet();
2701
2702 if (ifp->if_flags & IFF_RUNNING) {
2703 splx(s);
2704 return 0;
2705 }
2706
2707 /* Cancel pending I/O and free all RX/TX buffers. */
2708 sk_stop(ifp,0);
2709
2710 if (sc->sk_type == SK_GENESIS) {
2711 /* Configure LINK_SYNC LED */
2712 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2713 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2714 SK_LINKLED_LINKSYNC_ON);
2715
2716 /* Configure RX LED */
2717 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2718 SK_RXLEDCTL_COUNTER_START);
2719
2720 /* Configure TX LED */
2721 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2722 SK_TXLEDCTL_COUNTER_START);
2723 }
2724
2725 /* Configure I2C registers */
2726
2727 /* Configure XMAC(s) */
2728 switch (sc->sk_type) {
2729 case SK_GENESIS:
2730 sk_init_xmac(sc_if);
2731 break;
2732 case SK_YUKON:
2733 case SK_YUKON_LITE:
2734 case SK_YUKON_LP:
2735 sk_init_yukon(sc_if);
2736 break;
2737 }
2738 if ((rc = mii_mediachg(mii)) == ENXIO)
2739 rc = 0;
2740 else if (rc != 0)
2741 goto out;
2742
2743 if (sc->sk_type == SK_GENESIS) {
2744 /* Configure MAC FIFOs */
2745 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2746 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2747 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2748
2749 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2750 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2751 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2752 }
2753
2754 /* Configure transmit arbiter(s) */
2755 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2756 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2757
2758 /* Configure RAMbuffers */
2759 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2760 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2761 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2762 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2763 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2764 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2765
2766 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2767 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2768 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2769 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2770 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2771 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2772 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2773
2774 /* Configure BMUs */
2775 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2776 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2777 SK_RX_RING_ADDR(sc_if, 0));
2778 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2779
2780 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2781 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2782 SK_TX_RING_ADDR(sc_if, 0));
2783 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2784
2785 /* Init descriptors */
2786 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2787 aprint_error("%s: initialization failed: no "
2788 "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2789 sk_stop(ifp,0);
2790 splx(s);
2791 return ENOBUFS;
2792 }
2793
2794 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2795 aprint_error("%s: initialization failed: no "
2796 "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2797 sk_stop(ifp,0);
2798 splx(s);
2799 return ENOBUFS;
2800 }
2801
2802 /* Set interrupt moderation if changed via sysctl. */
2803 switch (sc->sk_type) {
2804 case SK_GENESIS:
2805 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2806 break;
2807 case SK_YUKON_EC:
2808 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2809 break;
2810 default:
2811 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2812 }
2813 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2814 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2815 sk_win_write_4(sc, SK_IMTIMERINIT,
2816 SK_IM_USECS(sc->sk_int_mod));
2817 aprint_verbose("%s: interrupt moderation is %d us\n",
2818 sc->sk_dev.dv_xname, sc->sk_int_mod);
2819 }
2820
2821 /* Configure interrupt handling */
2822 CSR_READ_4(sc, SK_ISSR);
2823 if (sc_if->sk_port == SK_PORT_A)
2824 sc->sk_intrmask |= SK_INTRS1;
2825 else
2826 sc->sk_intrmask |= SK_INTRS2;
2827
2828 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2829
2830 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2831
2832 /* Start BMUs. */
2833 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2834
2835 if (sc->sk_type == SK_GENESIS) {
2836 /* Enable XMACs TX and RX state machines */
2837 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2838 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2839 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2840 }
2841
2842 if (SK_YUKON_FAMILY(sc->sk_type)) {
2843 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2844 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2845 #if 0
2846 /* XXX disable 100Mbps and full duplex mode? */
2847 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2848 #endif
2849 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2850 }
2851
2852
2853 ifp->if_flags |= IFF_RUNNING;
2854 ifp->if_flags &= ~IFF_OACTIVE;
2855
2856 out:
2857 splx(s);
2858 return rc;
2859 }
2860
2861 void
2862 sk_stop(struct ifnet *ifp, int disable)
2863 {
2864 struct sk_if_softc *sc_if = ifp->if_softc;
2865 struct sk_softc *sc = sc_if->sk_softc;
2866 int i;
2867
2868 DPRINTFN(1, ("sk_stop\n"));
2869
2870 callout_stop(&sc_if->sk_tick_ch);
2871
2872 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2873 u_int32_t val;
2874
2875 /* Put PHY back into reset. */
2876 val = sk_win_read_4(sc, SK_GPIO);
2877 if (sc_if->sk_port == SK_PORT_A) {
2878 val |= SK_GPIO_DIR0;
2879 val &= ~SK_GPIO_DAT0;
2880 } else {
2881 val |= SK_GPIO_DIR2;
2882 val &= ~SK_GPIO_DAT2;
2883 }
2884 sk_win_write_4(sc, SK_GPIO, val);
2885 }
2886
2887 /* Turn off various components of this interface. */
2888 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2889 switch (sc->sk_type) {
2890 case SK_GENESIS:
2891 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2892 SK_TXMACCTL_XMAC_RESET);
2893 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2894 break;
2895 case SK_YUKON:
2896 case SK_YUKON_LITE:
2897 case SK_YUKON_LP:
2898 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2899 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2900 break;
2901 }
2902 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2903 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2904 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2905 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2906 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2907 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2908 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2909 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2910 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2911
2912 /* Disable interrupts */
2913 if (sc_if->sk_port == SK_PORT_A)
2914 sc->sk_intrmask &= ~SK_INTRS1;
2915 else
2916 sc->sk_intrmask &= ~SK_INTRS2;
2917 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2918
2919 SK_XM_READ_2(sc_if, XM_ISR);
2920 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2921
2922 /* Free RX and TX mbufs still in the queues. */
2923 for (i = 0; i < SK_RX_RING_CNT; i++) {
2924 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2925 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2926 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2927 }
2928 }
2929
2930 for (i = 0; i < SK_TX_RING_CNT; i++) {
2931 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2932 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2933 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2934 }
2935 }
2936
2937 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2938 }
2939
2940 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2941
2942 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2943
2944 #ifdef SK_DEBUG
2945 void
2946 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2947 {
2948 #define DESC_PRINT(X) \
2949 if (X) \
2950 printf("txdesc[%d]." #X "=%#x\n", \
2951 idx, X);
2952
2953 DESC_PRINT(le32toh(desc->sk_ctl));
2954 DESC_PRINT(le32toh(desc->sk_next));
2955 DESC_PRINT(le32toh(desc->sk_data_lo));
2956 DESC_PRINT(le32toh(desc->sk_data_hi));
2957 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2958 DESC_PRINT(le16toh(desc->sk_rsvd0));
2959 DESC_PRINT(le16toh(desc->sk_csum_startval));
2960 DESC_PRINT(le16toh(desc->sk_csum_startpos));
2961 DESC_PRINT(le16toh(desc->sk_csum_writepos));
2962 DESC_PRINT(le16toh(desc->sk_rsvd1));
2963 #undef PRINT
2964 }
2965
2966 void
2967 sk_dump_bytes(const char *data, int len)
2968 {
2969 int c, i, j;
2970
2971 for (i = 0; i < len; i += 16) {
2972 printf("%08x ", i);
2973 c = len - i;
2974 if (c > 16) c = 16;
2975
2976 for (j = 0; j < c; j++) {
2977 printf("%02x ", data[i + j] & 0xff);
2978 if ((j & 0xf) == 7 && j > 0)
2979 printf(" ");
2980 }
2981
2982 for (; j < 16; j++)
2983 printf(" ");
2984 printf(" ");
2985
2986 for (j = 0; j < c; j++) {
2987 int ch = data[i + j] & 0xff;
2988 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2989 }
2990
2991 printf("\n");
2992
2993 if (c < 16)
2994 break;
2995 }
2996 }
2997
2998 void
2999 sk_dump_mbuf(struct mbuf *m)
3000 {
3001 int count = m->m_pkthdr.len;
3002
3003 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3004
3005 while (count > 0 && m) {
3006 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3007 m, m->m_data, m->m_len);
3008 sk_dump_bytes(mtod(m, char *), m->m_len);
3009
3010 count -= m->m_len;
3011 m = m->m_next;
3012 }
3013 }
3014 #endif
3015
3016 static int
3017 sk_sysctl_handler(SYSCTLFN_ARGS)
3018 {
3019 int error, t;
3020 struct sysctlnode node;
3021 struct sk_softc *sc;
3022
3023 node = *rnode;
3024 sc = node.sysctl_data;
3025 t = sc->sk_int_mod;
3026 node.sysctl_data = &t;
3027 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3028 if (error || newp == NULL)
3029 return error;
3030
3031 if (t < SK_IM_MIN || t > SK_IM_MAX)
3032 return EINVAL;
3033
3034 /* update the softc with sysctl-changed value, and mark
3035 for hardware update */
3036 sc->sk_int_mod = t;
3037 sc->sk_int_mod_pending = 1;
3038 return 0;
3039 }
3040
3041 /*
3042 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3043 * set up in skc_attach()
3044 */
3045 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3046 {
3047 int rc;
3048 const struct sysctlnode *node;
3049
3050 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3051 0, CTLTYPE_NODE, "hw", NULL,
3052 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3053 goto err;
3054 }
3055
3056 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3057 0, CTLTYPE_NODE, "sk",
3058 SYSCTL_DESCR("sk interface controls"),
3059 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3060 goto err;
3061 }
3062
3063 sk_root_num = node->sysctl_num;
3064 return;
3065
3066 err:
3067 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3068 }
3069