if_sk.c revision 1.47 1 /* $NetBSD: if_sk.c,v 1.47 2008/02/07 01:21:57 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the NetBSD
18 * Foundation, Inc. and its contributors.
19 * 4. Neither the name of The NetBSD Foundation nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
37
38 /*
39 * Copyright (c) 1997, 1998, 1999, 2000
40 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Bill Paul.
53 * 4. Neither the name of the author nor the names of any co-contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67 * THE POSSIBILITY OF SUCH DAMAGE.
68 *
69 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70 */
71
72 /*
73 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
74 *
75 * Permission to use, copy, modify, and distribute this software for any
76 * purpose with or without fee is hereby granted, provided that the above
77 * copyright notice and this permission notice appear in all copies.
78 *
79 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86 */
87
88 /*
89 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90 * the SK-984x series adapters, both single port and dual port.
91 * References:
92 * The XaQti XMAC II datasheet,
93 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 * The SysKonnect GEnesis manual, http://www.syskonnect.com
95 *
96 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98 * convenience to others until Vitesse corrects this problem:
99 *
100 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101 *
102 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
103 * Department of Electrical Engineering
104 * Columbia University, New York City
105 */
106
107 /*
108 * The SysKonnect gigabit ethernet adapters consist of two main
109 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111 * components and a PHY while the GEnesis controller provides a PCI
112 * interface with DMA support. Each card may have between 512K and
113 * 2MB of SRAM on board depending on the configuration.
114 *
115 * The SysKonnect GEnesis controller can have either one or two XMAC
116 * chips connected to it, allowing single or dual port NIC configurations.
117 * SysKonnect has the distinction of being the only vendor on the market
118 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120 * XMAC registers. This driver takes advantage of these features to allow
121 * both XMACs to operate as independent interfaces.
122 */
123
124 #include <sys/cdefs.h>
125 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.47 2008/02/07 01:21:57 dyoung Exp $");
126
127 #include "bpfilter.h"
128 #include "rnd.h"
129
130 #include <sys/param.h>
131 #include <sys/systm.h>
132 #include <sys/sockio.h>
133 #include <sys/mbuf.h>
134 #include <sys/malloc.h>
135 #include <sys/kernel.h>
136 #include <sys/socket.h>
137 #include <sys/device.h>
138 #include <sys/queue.h>
139 #include <sys/callout.h>
140 #include <sys/sysctl.h>
141 #include <sys/endian.h>
142
143 #include <net/if.h>
144 #include <net/if_dl.h>
145 #include <net/if_types.h>
146
147 #include <net/if_media.h>
148
149 #if NBPFILTER > 0
150 #include <net/bpf.h>
151 #endif
152 #if NRND > 0
153 #include <sys/rnd.h>
154 #endif
155
156 #include <dev/mii/mii.h>
157 #include <dev/mii/miivar.h>
158 #include <dev/mii/brgphyreg.h>
159
160 #include <dev/pci/pcireg.h>
161 #include <dev/pci/pcivar.h>
162 #include <dev/pci/pcidevs.h>
163
164 /* #define SK_USEIOSPACE */
165
166 #include <dev/pci/if_skreg.h>
167 #include <dev/pci/if_skvar.h>
168
169 int skc_probe(struct device *, struct cfdata *, void *);
170 void skc_attach(struct device *, struct device *self, void *aux);
171 int sk_probe(struct device *, struct cfdata *, void *);
172 void sk_attach(struct device *, struct device *self, void *aux);
173 int skcprint(void *, const char *);
174 int sk_intr(void *);
175 void sk_intr_bcom(struct sk_if_softc *);
176 void sk_intr_xmac(struct sk_if_softc *);
177 void sk_intr_yukon(struct sk_if_softc *);
178 void sk_rxeof(struct sk_if_softc *);
179 void sk_txeof(struct sk_if_softc *);
180 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
181 void sk_start(struct ifnet *);
182 int sk_ioctl(struct ifnet *, u_long, void *);
183 int sk_init(struct ifnet *);
184 void sk_init_xmac(struct sk_if_softc *);
185 void sk_init_yukon(struct sk_if_softc *);
186 void sk_stop(struct ifnet *, int);
187 void sk_watchdog(struct ifnet *);
188 void sk_shutdown(void *);
189 int sk_ifmedia_upd(struct ifnet *);
190 void sk_reset(struct sk_softc *);
191 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
192 int sk_alloc_jumbo_mem(struct sk_if_softc *);
193 void sk_free_jumbo_mem(struct sk_if_softc *);
194 void *sk_jalloc(struct sk_if_softc *);
195 void sk_jfree(struct mbuf *, void *, size_t, void *);
196 int sk_init_rx_ring(struct sk_if_softc *);
197 int sk_init_tx_ring(struct sk_if_softc *);
198 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
199 void sk_vpd_read_res(struct sk_softc *,
200 struct vpd_res *, int);
201 void sk_vpd_read(struct sk_softc *);
202
203 void sk_update_int_mod(struct sk_softc *);
204
205 int sk_xmac_miibus_readreg(struct device *, int, int);
206 void sk_xmac_miibus_writereg(struct device *, int, int, int);
207 void sk_xmac_miibus_statchg(struct device *);
208
209 int sk_marv_miibus_readreg(struct device *, int, int);
210 void sk_marv_miibus_writereg(struct device *, int, int, int);
211 void sk_marv_miibus_statchg(struct device *);
212
213 u_int32_t sk_xmac_hash(void *);
214 u_int32_t sk_yukon_hash(void *);
215 void sk_setfilt(struct sk_if_softc *, void *, int);
216 void sk_setmulti(struct sk_if_softc *);
217 void sk_tick(void *);
218
219 /* #define SK_DEBUG 2 */
220 #ifdef SK_DEBUG
221 #define DPRINTF(x) if (skdebug) printf x
222 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
223 int skdebug = SK_DEBUG;
224
225 void sk_dump_txdesc(struct sk_tx_desc *, int);
226 void sk_dump_mbuf(struct mbuf *);
227 void sk_dump_bytes(const char *, int);
228 #else
229 #define DPRINTF(x)
230 #define DPRINTFN(n,x)
231 #endif
232
233 static int sk_sysctl_handler(SYSCTLFN_PROTO);
234 static int sk_root_num;
235
236 /* supported device vendors */
237 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
238 static const struct sk_product {
239 pci_vendor_id_t sk_vendor;
240 pci_product_id_t sk_product;
241 } sk_products[] = {
242 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
243 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
244 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
245 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
246 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
247 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
248 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
249 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
250 { 0, 0, }
251 };
252
253 #define SK_LINKSYS_EG1032_SUBID 0x00151737
254
255 static inline u_int32_t
256 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
257 {
258 #ifdef SK_USEIOSPACE
259 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
260 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
261 #else
262 return CSR_READ_4(sc, reg);
263 #endif
264 }
265
266 static inline u_int16_t
267 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
268 {
269 #ifdef SK_USEIOSPACE
270 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
271 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
272 #else
273 return CSR_READ_2(sc, reg);
274 #endif
275 }
276
277 static inline u_int8_t
278 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
279 {
280 #ifdef SK_USEIOSPACE
281 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
282 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
283 #else
284 return CSR_READ_1(sc, reg);
285 #endif
286 }
287
288 static inline void
289 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
290 {
291 #ifdef SK_USEIOSPACE
292 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
293 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
294 #else
295 CSR_WRITE_4(sc, reg, x);
296 #endif
297 }
298
299 static inline void
300 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
301 {
302 #ifdef SK_USEIOSPACE
303 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
304 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
305 #else
306 CSR_WRITE_2(sc, reg, x);
307 #endif
308 }
309
310 static inline void
311 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
312 {
313 #ifdef SK_USEIOSPACE
314 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
315 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
316 #else
317 CSR_WRITE_1(sc, reg, x);
318 #endif
319 }
320
321 /*
322 * The VPD EEPROM contains Vital Product Data, as suggested in
323 * the PCI 2.1 specification. The VPD data is separared into areas
324 * denoted by resource IDs. The SysKonnect VPD contains an ID string
325 * resource (the name of the adapter), a read-only area resource
326 * containing various key/data fields and a read/write area which
327 * can be used to store asset management information or log messages.
328 * We read the ID string and read-only into buffers attached to
329 * the controller softc structure for later use. At the moment,
330 * we only use the ID string during sk_attach().
331 */
332 u_int8_t
333 sk_vpd_readbyte(struct sk_softc *sc, int addr)
334 {
335 int i;
336
337 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
338 for (i = 0; i < SK_TIMEOUT; i++) {
339 DELAY(1);
340 if (sk_win_read_2(sc,
341 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
342 break;
343 }
344
345 if (i == SK_TIMEOUT)
346 return 0;
347
348 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
349 }
350
351 void
352 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
353 {
354 int i;
355 u_int8_t *ptr;
356
357 ptr = (u_int8_t *)res;
358 for (i = 0; i < sizeof(struct vpd_res); i++)
359 ptr[i] = sk_vpd_readbyte(sc, i + addr);
360 }
361
362 void
363 sk_vpd_read(struct sk_softc *sc)
364 {
365 int pos = 0, i;
366 struct vpd_res res;
367
368 if (sc->sk_vpd_prodname != NULL)
369 free(sc->sk_vpd_prodname, M_DEVBUF);
370 if (sc->sk_vpd_readonly != NULL)
371 free(sc->sk_vpd_readonly, M_DEVBUF);
372 sc->sk_vpd_prodname = NULL;
373 sc->sk_vpd_readonly = NULL;
374
375 sk_vpd_read_res(sc, &res, pos);
376
377 if (res.vr_id != VPD_RES_ID) {
378 aprint_error("%s: bad VPD resource id: expected %x got %x\n",
379 sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
380 return;
381 }
382
383 pos += sizeof(res);
384 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
385 if (sc->sk_vpd_prodname == NULL)
386 panic("sk_vpd_read");
387 for (i = 0; i < res.vr_len; i++)
388 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
389 sc->sk_vpd_prodname[i] = '\0';
390 pos += i;
391
392 sk_vpd_read_res(sc, &res, pos);
393
394 if (res.vr_id != VPD_RES_READ) {
395 aprint_error("%s: bad VPD resource id: expected %x got %x\n",
396 sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
397 return;
398 }
399
400 pos += sizeof(res);
401 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
402 if (sc->sk_vpd_readonly == NULL)
403 panic("sk_vpd_read");
404 for (i = 0; i < res.vr_len ; i++)
405 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
406 }
407
408 int
409 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
410 {
411 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
412 int i;
413
414 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
415
416 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
417 return 0;
418
419 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
420 SK_XM_READ_2(sc_if, XM_PHY_DATA);
421 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
422 for (i = 0; i < SK_TIMEOUT; i++) {
423 DELAY(1);
424 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
425 XM_MMUCMD_PHYDATARDY)
426 break;
427 }
428
429 if (i == SK_TIMEOUT) {
430 aprint_error("%s: phy failed to come ready\n",
431 sc_if->sk_dev.dv_xname);
432 return 0;
433 }
434 }
435 DELAY(1);
436 return SK_XM_READ_2(sc_if, XM_PHY_DATA);
437 }
438
439 void
440 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
441 {
442 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
443 int i;
444
445 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
446
447 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
448 for (i = 0; i < SK_TIMEOUT; i++) {
449 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
450 break;
451 }
452
453 if (i == SK_TIMEOUT) {
454 aprint_error("%s: phy failed to come ready\n",
455 sc_if->sk_dev.dv_xname);
456 return;
457 }
458
459 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
460 for (i = 0; i < SK_TIMEOUT; i++) {
461 DELAY(1);
462 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
463 break;
464 }
465
466 if (i == SK_TIMEOUT)
467 aprint_error("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
468 }
469
470 void
471 sk_xmac_miibus_statchg(struct device *dev)
472 {
473 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
474 struct mii_data *mii = &sc_if->sk_mii;
475
476 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
477
478 /*
479 * If this is a GMII PHY, manually set the XMAC's
480 * duplex mode accordingly.
481 */
482 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
483 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
484 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
485 else
486 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
487 }
488 }
489
490 int
491 sk_marv_miibus_readreg(struct device *dev, int phy, int reg)
492 {
493 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
494 u_int16_t val;
495 int i;
496
497 if (phy != 0 ||
498 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
499 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
500 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
501 phy, reg));
502 return 0;
503 }
504
505 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
506 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
507
508 for (i = 0; i < SK_TIMEOUT; i++) {
509 DELAY(1);
510 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
511 if (val & YU_SMICR_READ_VALID)
512 break;
513 }
514
515 if (i == SK_TIMEOUT) {
516 aprint_error("%s: phy failed to come ready\n",
517 sc_if->sk_dev.dv_xname);
518 return 0;
519 }
520
521 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
522 SK_TIMEOUT));
523
524 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
525
526 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
527 phy, reg, val));
528
529 return val;
530 }
531
532 void
533 sk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
534 {
535 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
536 int i;
537
538 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
539 phy, reg, val));
540
541 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
542 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
543 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
544
545 for (i = 0; i < SK_TIMEOUT; i++) {
546 DELAY(1);
547 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
548 break;
549 }
550
551 if (i == SK_TIMEOUT)
552 printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
553 }
554
555 void
556 sk_marv_miibus_statchg(struct device *dev)
557 {
558 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
559 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
560 }
561
562 #define SK_HASH_BITS 6
563
564 u_int32_t
565 sk_xmac_hash(void *addr)
566 {
567 u_int32_t crc;
568
569 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
570 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
571 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
572 return crc;
573 }
574
575 u_int32_t
576 sk_yukon_hash(void *addr)
577 {
578 u_int32_t crc;
579
580 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
581 crc &= ((1 << SK_HASH_BITS) - 1);
582 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
583 return crc;
584 }
585
586 void
587 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
588 {
589 char *addr = addrv;
590 int base = XM_RXFILT_ENTRY(slot);
591
592 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
593 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
594 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
595 }
596
597 void
598 sk_setmulti(struct sk_if_softc *sc_if)
599 {
600 struct sk_softc *sc = sc_if->sk_softc;
601 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
602 u_int32_t hashes[2] = { 0, 0 };
603 int h = 0, i;
604 struct ethercom *ec = &sc_if->sk_ethercom;
605 struct ether_multi *enm;
606 struct ether_multistep step;
607 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
608
609 /* First, zot all the existing filters. */
610 switch (sc->sk_type) {
611 case SK_GENESIS:
612 for (i = 1; i < XM_RXFILT_MAX; i++)
613 sk_setfilt(sc_if, (void *)&dummy, i);
614
615 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
616 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
617 break;
618 case SK_YUKON:
619 case SK_YUKON_LITE:
620 case SK_YUKON_LP:
621 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
622 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
623 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
624 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
625 break;
626 }
627
628 /* Now program new ones. */
629 allmulti:
630 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
631 hashes[0] = 0xFFFFFFFF;
632 hashes[1] = 0xFFFFFFFF;
633 } else {
634 i = 1;
635 /* First find the tail of the list. */
636 ETHER_FIRST_MULTI(step, ec, enm);
637 while (enm != NULL) {
638 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
639 ETHER_ADDR_LEN)) {
640 ifp->if_flags |= IFF_ALLMULTI;
641 goto allmulti;
642 }
643 DPRINTFN(2,("multicast address %s\n",
644 ether_sprintf(enm->enm_addrlo)));
645 /*
646 * Program the first XM_RXFILT_MAX multicast groups
647 * into the perfect filter. For all others,
648 * use the hash table.
649 */
650 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
651 sk_setfilt(sc_if, enm->enm_addrlo, i);
652 i++;
653 }
654 else {
655 switch (sc->sk_type) {
656 case SK_GENESIS:
657 h = sk_xmac_hash(enm->enm_addrlo);
658 break;
659 case SK_YUKON:
660 case SK_YUKON_LITE:
661 case SK_YUKON_LP:
662 h = sk_yukon_hash(enm->enm_addrlo);
663 break;
664 }
665 if (h < 32)
666 hashes[0] |= (1 << h);
667 else
668 hashes[1] |= (1 << (h - 32));
669 }
670
671 ETHER_NEXT_MULTI(step, enm);
672 }
673 }
674
675 switch (sc->sk_type) {
676 case SK_GENESIS:
677 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
678 XM_MODE_RX_USE_PERFECT);
679 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
680 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
681 break;
682 case SK_YUKON:
683 case SK_YUKON_LITE:
684 case SK_YUKON_LP:
685 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
686 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
687 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
688 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
689 break;
690 }
691 }
692
693 int
694 sk_init_rx_ring(struct sk_if_softc *sc_if)
695 {
696 struct sk_chain_data *cd = &sc_if->sk_cdata;
697 struct sk_ring_data *rd = sc_if->sk_rdata;
698 int i;
699
700 bzero((char *)rd->sk_rx_ring,
701 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
702
703 for (i = 0; i < SK_RX_RING_CNT; i++) {
704 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
705 if (i == (SK_RX_RING_CNT - 1)) {
706 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
707 rd->sk_rx_ring[i].sk_next =
708 htole32(SK_RX_RING_ADDR(sc_if, 0));
709 } else {
710 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
711 rd->sk_rx_ring[i].sk_next =
712 htole32(SK_RX_RING_ADDR(sc_if,i+1));
713 }
714 }
715
716 for (i = 0; i < SK_RX_RING_CNT; i++) {
717 if (sk_newbuf(sc_if, i, NULL,
718 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
719 aprint_error("%s: failed alloc of %dth mbuf\n",
720 sc_if->sk_dev.dv_xname, i);
721 return ENOBUFS;
722 }
723 }
724 sc_if->sk_cdata.sk_rx_prod = 0;
725 sc_if->sk_cdata.sk_rx_cons = 0;
726
727 return 0;
728 }
729
730 int
731 sk_init_tx_ring(struct sk_if_softc *sc_if)
732 {
733 struct sk_chain_data *cd = &sc_if->sk_cdata;
734 struct sk_ring_data *rd = sc_if->sk_rdata;
735 int i;
736
737 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
738 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
739
740 for (i = 0; i < SK_TX_RING_CNT; i++) {
741 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
742 if (i == (SK_TX_RING_CNT - 1)) {
743 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
744 rd->sk_tx_ring[i].sk_next =
745 htole32(SK_TX_RING_ADDR(sc_if, 0));
746 } else {
747 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
748 rd->sk_tx_ring[i].sk_next =
749 htole32(SK_TX_RING_ADDR(sc_if,i+1));
750 }
751 }
752
753 sc_if->sk_cdata.sk_tx_prod = 0;
754 sc_if->sk_cdata.sk_tx_cons = 0;
755 sc_if->sk_cdata.sk_tx_cnt = 0;
756
757 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
758 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
759
760 return 0;
761 }
762
763 int
764 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
765 bus_dmamap_t dmamap)
766 {
767 struct mbuf *m_new = NULL;
768 struct sk_chain *c;
769 struct sk_rx_desc *r;
770
771 if (m == NULL) {
772 void *buf = NULL;
773
774 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
775 if (m_new == NULL) {
776 aprint_error("%s: no memory for rx list -- "
777 "packet dropped!\n", sc_if->sk_dev.dv_xname);
778 return ENOBUFS;
779 }
780
781 /* Allocate the jumbo buffer */
782 buf = sk_jalloc(sc_if);
783 if (buf == NULL) {
784 m_freem(m_new);
785 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
786 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
787 return ENOBUFS;
788 }
789
790 /* Attach the buffer to the mbuf */
791 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
792 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
793
794 } else {
795 /*
796 * We're re-using a previously allocated mbuf;
797 * be sure to re-init pointers and lengths to
798 * default values.
799 */
800 m_new = m;
801 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
802 m_new->m_data = m_new->m_ext.ext_buf;
803 }
804 m_adj(m_new, ETHER_ALIGN);
805
806 c = &sc_if->sk_cdata.sk_rx_chain[i];
807 r = c->sk_desc;
808 c->sk_mbuf = m_new;
809 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
810 (((vaddr_t)m_new->m_data
811 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
812 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
813
814 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
815
816 return 0;
817 }
818
819 /*
820 * Memory management for jumbo frames.
821 */
822
823 int
824 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
825 {
826 struct sk_softc *sc = sc_if->sk_softc;
827 char *ptr, *kva;
828 bus_dma_segment_t seg;
829 int i, rseg, state, error;
830 struct sk_jpool_entry *entry;
831
832 state = error = 0;
833
834 /* Grab a big chunk o' storage. */
835 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
836 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
837 aprint_error("%s: can't alloc rx buffers\n", sc->sk_dev.dv_xname);
838 return ENOBUFS;
839 }
840
841 state = 1;
842 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
843 BUS_DMA_NOWAIT)) {
844 aprint_error("%s: can't map dma buffers (%d bytes)\n",
845 sc->sk_dev.dv_xname, SK_JMEM);
846 error = ENOBUFS;
847 goto out;
848 }
849
850 state = 2;
851 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
852 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
853 aprint_error("%s: can't create dma map\n", sc->sk_dev.dv_xname);
854 error = ENOBUFS;
855 goto out;
856 }
857
858 state = 3;
859 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
860 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
861 aprint_error("%s: can't load dma map\n", sc->sk_dev.dv_xname);
862 error = ENOBUFS;
863 goto out;
864 }
865
866 state = 4;
867 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
868 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
869
870 LIST_INIT(&sc_if->sk_jfree_listhead);
871 LIST_INIT(&sc_if->sk_jinuse_listhead);
872
873 /*
874 * Now divide it up into 9K pieces and save the addresses
875 * in an array.
876 */
877 ptr = sc_if->sk_cdata.sk_jumbo_buf;
878 for (i = 0; i < SK_JSLOTS; i++) {
879 sc_if->sk_cdata.sk_jslots[i] = ptr;
880 ptr += SK_JLEN;
881 entry = malloc(sizeof(struct sk_jpool_entry),
882 M_DEVBUF, M_NOWAIT);
883 if (entry == NULL) {
884 aprint_error("%s: no memory for jumbo buffer queue!\n",
885 sc->sk_dev.dv_xname);
886 error = ENOBUFS;
887 goto out;
888 }
889 entry->slot = i;
890 if (i)
891 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
892 entry, jpool_entries);
893 else
894 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
895 entry, jpool_entries);
896 }
897 out:
898 if (error != 0) {
899 switch (state) {
900 case 4:
901 bus_dmamap_unload(sc->sc_dmatag,
902 sc_if->sk_cdata.sk_rx_jumbo_map);
903 case 3:
904 bus_dmamap_destroy(sc->sc_dmatag,
905 sc_if->sk_cdata.sk_rx_jumbo_map);
906 case 2:
907 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
908 case 1:
909 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
910 break;
911 default:
912 break;
913 }
914 }
915
916 return error;
917 }
918
919 /*
920 * Allocate a jumbo buffer.
921 */
922 void *
923 sk_jalloc(struct sk_if_softc *sc_if)
924 {
925 struct sk_jpool_entry *entry;
926
927 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
928
929 if (entry == NULL)
930 return NULL;
931
932 LIST_REMOVE(entry, jpool_entries);
933 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
934 return sc_if->sk_cdata.sk_jslots[entry->slot];
935 }
936
937 /*
938 * Release a jumbo buffer.
939 */
940 void
941 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
942 {
943 struct sk_jpool_entry *entry;
944 struct sk_if_softc *sc;
945 int i, s;
946
947 /* Extract the softc struct pointer. */
948 sc = (struct sk_if_softc *)arg;
949
950 if (sc == NULL)
951 panic("sk_jfree: can't find softc pointer!");
952
953 /* calculate the slot this buffer belongs to */
954
955 i = ((vaddr_t)buf
956 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
957
958 if ((i < 0) || (i >= SK_JSLOTS))
959 panic("sk_jfree: asked to free buffer that we don't manage!");
960
961 s = splvm();
962 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
963 if (entry == NULL)
964 panic("sk_jfree: buffer not in use!");
965 entry->slot = i;
966 LIST_REMOVE(entry, jpool_entries);
967 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
968
969 if (__predict_true(m != NULL))
970 pool_cache_put(mb_cache, m);
971 splx(s);
972 }
973
974 /*
975 * Set media options.
976 */
977 int
978 sk_ifmedia_upd(struct ifnet *ifp)
979 {
980 struct sk_if_softc *sc_if = ifp->if_softc;
981 int rc;
982
983 (void) sk_init(ifp);
984 if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
985 return 0;
986 return rc;
987 }
988
989 int
990 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
991 {
992 struct sk_if_softc *sc_if = ifp->if_softc;
993 struct sk_softc *sc = sc_if->sk_softc;
994 int s, error = 0;
995
996 /* DPRINTFN(2, ("sk_ioctl\n")); */
997
998 s = splnet();
999
1000 switch (command) {
1001
1002 case SIOCSIFFLAGS:
1003 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1004 if (ifp->if_flags & IFF_UP) {
1005 if (ifp->if_flags & IFF_RUNNING &&
1006 ifp->if_flags & IFF_PROMISC &&
1007 !(sc_if->sk_if_flags & IFF_PROMISC)) {
1008 switch (sc->sk_type) {
1009 case SK_GENESIS:
1010 SK_XM_SETBIT_4(sc_if, XM_MODE,
1011 XM_MODE_RX_PROMISC);
1012 break;
1013 case SK_YUKON:
1014 case SK_YUKON_LITE:
1015 case SK_YUKON_LP:
1016 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1017 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1018 break;
1019 }
1020 sk_setmulti(sc_if);
1021 } else if (ifp->if_flags & IFF_RUNNING &&
1022 !(ifp->if_flags & IFF_PROMISC) &&
1023 sc_if->sk_if_flags & IFF_PROMISC) {
1024 switch (sc->sk_type) {
1025 case SK_GENESIS:
1026 SK_XM_CLRBIT_4(sc_if, XM_MODE,
1027 XM_MODE_RX_PROMISC);
1028 break;
1029 case SK_YUKON:
1030 case SK_YUKON_LITE:
1031 case SK_YUKON_LP:
1032 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1033 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1034 break;
1035 }
1036
1037 sk_setmulti(sc_if);
1038 } else
1039 (void) sk_init(ifp);
1040 } else {
1041 if (ifp->if_flags & IFF_RUNNING)
1042 sk_stop(ifp,0);
1043 }
1044 sc_if->sk_if_flags = ifp->if_flags;
1045 error = 0;
1046 break;
1047
1048 default:
1049 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1050 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1051 break;
1052
1053 error = 0;
1054
1055 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1056 ;
1057 else if (ifp->if_flags & IFF_RUNNING) {
1058 sk_setmulti(sc_if);
1059 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1060 }
1061 break;
1062 }
1063
1064 splx(s);
1065 return error;
1066 }
1067
1068 void
1069 sk_update_int_mod(struct sk_softc *sc)
1070 {
1071 u_int32_t imtimer_ticks;
1072
1073 /*
1074 * Configure interrupt moderation. The moderation timer
1075 * defers interrupts specified in the interrupt moderation
1076 * timer mask based on the timeout specified in the interrupt
1077 * moderation timer init register. Each bit in the timer
1078 * register represents one tick, so to specify a timeout in
1079 * microseconds, we have to multiply by the correct number of
1080 * ticks-per-microsecond.
1081 */
1082 switch (sc->sk_type) {
1083 case SK_GENESIS:
1084 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1085 break;
1086 case SK_YUKON_EC:
1087 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1088 break;
1089 default:
1090 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1091 }
1092 aprint_verbose("%s: interrupt moderation is %d us\n",
1093 sc->sk_dev.dv_xname, sc->sk_int_mod);
1094 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1095 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1096 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1097 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1098 sc->sk_int_mod_pending = 0;
1099 }
1100
1101 /*
1102 * Lookup: Check the PCI vendor and device, and return a pointer to
1103 * The structure if the IDs match against our list.
1104 */
1105
1106 static const struct sk_product *
1107 sk_lookup(const struct pci_attach_args *pa)
1108 {
1109 const struct sk_product *psk;
1110
1111 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1112 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1113 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1114 return psk;
1115 }
1116 return NULL;
1117 }
1118
1119 /*
1120 * Probe for a SysKonnect GEnesis chip.
1121 */
1122
1123 int
1124 skc_probe(struct device *parent, struct cfdata *match,
1125 void *aux)
1126 {
1127 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1128 const struct sk_product *psk;
1129 pcireg_t subid;
1130
1131 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1132
1133 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1134 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1135 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1136 subid == SK_LINKSYS_EG1032_SUBID)
1137 return 1;
1138
1139 if ((psk = sk_lookup(pa))) {
1140 return 1;
1141 }
1142 return 0;
1143 }
1144
1145 /*
1146 * Force the GEnesis into reset, then bring it out of reset.
1147 */
1148 void sk_reset(struct sk_softc *sc)
1149 {
1150 DPRINTFN(2, ("sk_reset\n"));
1151
1152 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1153 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1154 if (SK_YUKON_FAMILY(sc->sk_type))
1155 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1156
1157 DELAY(1000);
1158 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1159 DELAY(2);
1160 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1161 if (SK_YUKON_FAMILY(sc->sk_type))
1162 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1163
1164 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1165 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1166 CSR_READ_2(sc, SK_LINK_CTRL)));
1167
1168 if (sc->sk_type == SK_GENESIS) {
1169 /* Configure packet arbiter */
1170 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1171 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1172 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1173 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1174 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1175 }
1176
1177 /* Enable RAM interface */
1178 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1179
1180 sk_update_int_mod(sc);
1181 }
1182
1183 int
1184 sk_probe(struct device *parent, struct cfdata *match,
1185 void *aux)
1186 {
1187 struct skc_attach_args *sa = aux;
1188
1189 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1190 return 0;
1191
1192 return 1;
1193 }
1194
1195 /*
1196 * Each XMAC chip is attached as a separate logical IP interface.
1197 * Single port cards will have only one logical interface of course.
1198 */
1199 void
1200 sk_attach(struct device *parent, struct device *self, void *aux)
1201 {
1202 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1203 struct sk_softc *sc = (struct sk_softc *)parent;
1204 struct skc_attach_args *sa = aux;
1205 struct sk_txmap_entry *entry;
1206 struct ifnet *ifp;
1207 bus_dma_segment_t seg;
1208 bus_dmamap_t dmamap;
1209 void *kva;
1210 int i, rseg;
1211
1212 aprint_naive("\n");
1213
1214 sc_if->sk_port = sa->skc_port;
1215 sc_if->sk_softc = sc;
1216 sc->sk_if[sa->skc_port] = sc_if;
1217
1218 if (sa->skc_port == SK_PORT_A)
1219 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1220 if (sa->skc_port == SK_PORT_B)
1221 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1222
1223 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1224
1225 /*
1226 * Get station address for this interface. Note that
1227 * dual port cards actually come with three station
1228 * addresses: one for each port, plus an extra. The
1229 * extra one is used by the SysKonnect driver software
1230 * as a 'virtual' station address for when both ports
1231 * are operating in failover mode. Currently we don't
1232 * use this extra address.
1233 */
1234 for (i = 0; i < ETHER_ADDR_LEN; i++)
1235 sc_if->sk_enaddr[i] =
1236 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1237
1238
1239 aprint_normal(": Ethernet address %s\n",
1240 ether_sprintf(sc_if->sk_enaddr));
1241
1242 /*
1243 * Set up RAM buffer addresses. The NIC will have a certain
1244 * amount of SRAM on it, somewhere between 512K and 2MB. We
1245 * need to divide this up a) between the transmitter and
1246 * receiver and b) between the two XMACs, if this is a
1247 * dual port NIC. Our algorithm is to divide up the memory
1248 * evenly so that everyone gets a fair share.
1249 */
1250 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1251 u_int32_t chunk, val;
1252
1253 chunk = sc->sk_ramsize / 2;
1254 val = sc->sk_rboff / sizeof(u_int64_t);
1255 sc_if->sk_rx_ramstart = val;
1256 val += (chunk / sizeof(u_int64_t));
1257 sc_if->sk_rx_ramend = val - 1;
1258 sc_if->sk_tx_ramstart = val;
1259 val += (chunk / sizeof(u_int64_t));
1260 sc_if->sk_tx_ramend = val - 1;
1261 } else {
1262 u_int32_t chunk, val;
1263
1264 chunk = sc->sk_ramsize / 4;
1265 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1266 sizeof(u_int64_t);
1267 sc_if->sk_rx_ramstart = val;
1268 val += (chunk / sizeof(u_int64_t));
1269 sc_if->sk_rx_ramend = val - 1;
1270 sc_if->sk_tx_ramstart = val;
1271 val += (chunk / sizeof(u_int64_t));
1272 sc_if->sk_tx_ramend = val - 1;
1273 }
1274
1275 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1276 " tx_ramstart=%#x tx_ramend=%#x\n",
1277 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1278 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1279
1280 /* Read and save PHY type and set PHY address */
1281 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1282 switch (sc_if->sk_phytype) {
1283 case SK_PHYTYPE_XMAC:
1284 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1285 break;
1286 case SK_PHYTYPE_BCOM:
1287 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1288 break;
1289 case SK_PHYTYPE_MARV_COPPER:
1290 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1291 break;
1292 default:
1293 aprint_error("%s: unsupported PHY type: %d\n",
1294 sc->sk_dev.dv_xname, sc_if->sk_phytype);
1295 return;
1296 }
1297
1298 /* Allocate the descriptor queues. */
1299 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1300 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1301 aprint_error("%s: can't alloc rx buffers\n",
1302 sc->sk_dev.dv_xname);
1303 goto fail;
1304 }
1305 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1306 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1307 aprint_error("%s: can't map dma buffers (%lu bytes)\n",
1308 sc_if->sk_dev.dv_xname,
1309 (u_long) sizeof(struct sk_ring_data));
1310 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1311 goto fail;
1312 }
1313 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1314 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1315 &sc_if->sk_ring_map)) {
1316 aprint_error("%s: can't create dma map\n",
1317 sc_if->sk_dev.dv_xname);
1318 bus_dmamem_unmap(sc->sc_dmatag, kva,
1319 sizeof(struct sk_ring_data));
1320 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1321 goto fail;
1322 }
1323 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1324 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1325 aprint_error("%s: can't load dma map\n",
1326 sc_if->sk_dev.dv_xname);
1327 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1328 bus_dmamem_unmap(sc->sc_dmatag, kva,
1329 sizeof(struct sk_ring_data));
1330 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1331 goto fail;
1332 }
1333
1334 for (i = 0; i < SK_RX_RING_CNT; i++)
1335 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1336
1337 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1338 for (i = 0; i < SK_TX_RING_CNT; i++) {
1339 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1340
1341 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1342 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1343 aprint_error("%s: Can't create TX dmamap\n",
1344 sc_if->sk_dev.dv_xname);
1345 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1346 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1347 bus_dmamem_unmap(sc->sc_dmatag, kva,
1348 sizeof(struct sk_ring_data));
1349 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1350 goto fail;
1351 }
1352
1353 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1354 if (!entry) {
1355 aprint_error("%s: Can't alloc txmap entry\n",
1356 sc_if->sk_dev.dv_xname);
1357 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1358 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1359 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1360 bus_dmamem_unmap(sc->sc_dmatag, kva,
1361 sizeof(struct sk_ring_data));
1362 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1363 goto fail;
1364 }
1365 entry->dmamap = dmamap;
1366 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1367 }
1368
1369 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1370 bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1371
1372 ifp = &sc_if->sk_ethercom.ec_if;
1373 /* Try to allocate memory for jumbo buffers. */
1374 if (sk_alloc_jumbo_mem(sc_if)) {
1375 aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1376 goto fail;
1377 }
1378 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1379 | ETHERCAP_JUMBO_MTU;
1380
1381 ifp->if_softc = sc_if;
1382 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1383 ifp->if_ioctl = sk_ioctl;
1384 ifp->if_start = sk_start;
1385 ifp->if_stop = sk_stop;
1386 ifp->if_init = sk_init;
1387 ifp->if_watchdog = sk_watchdog;
1388 ifp->if_capabilities = 0;
1389 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1390 IFQ_SET_READY(&ifp->if_snd);
1391 strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1392
1393 /*
1394 * Do miibus setup.
1395 */
1396 switch (sc->sk_type) {
1397 case SK_GENESIS:
1398 sk_init_xmac(sc_if);
1399 break;
1400 case SK_YUKON:
1401 case SK_YUKON_LITE:
1402 case SK_YUKON_LP:
1403 sk_init_yukon(sc_if);
1404 break;
1405 default:
1406 aprint_error("%s: unknown device type %d\n",
1407 sc->sk_dev.dv_xname, sc->sk_type);
1408 goto fail;
1409 }
1410
1411 DPRINTFN(2, ("sk_attach: 1\n"));
1412
1413 sc_if->sk_mii.mii_ifp = ifp;
1414 switch (sc->sk_type) {
1415 case SK_GENESIS:
1416 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1417 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1418 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1419 break;
1420 case SK_YUKON:
1421 case SK_YUKON_LITE:
1422 case SK_YUKON_LP:
1423 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1424 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1425 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1426 break;
1427 }
1428
1429 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1430 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1431 sk_ifmedia_upd, ether_mediastatus);
1432 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1433 MII_OFFSET_ANY, 0);
1434 if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
1435 aprint_error("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1436 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1437 0, NULL);
1438 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1439 } else
1440 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1441
1442 callout_init(&sc_if->sk_tick_ch, 0);
1443 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1444
1445 DPRINTFN(2, ("sk_attach: 1\n"));
1446
1447 /*
1448 * Call MI attach routines.
1449 */
1450 if_attach(ifp);
1451
1452 ether_ifattach(ifp, sc_if->sk_enaddr);
1453
1454 #if NRND > 0
1455 rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
1456 RND_TYPE_NET, 0);
1457 #endif
1458
1459 DPRINTFN(2, ("sk_attach: end\n"));
1460
1461 return;
1462
1463 fail:
1464 sc->sk_if[sa->skc_port] = NULL;
1465 }
1466
1467 int
1468 skcprint(void *aux, const char *pnp)
1469 {
1470 struct skc_attach_args *sa = aux;
1471
1472 if (pnp)
1473 aprint_normal("sk port %c at %s",
1474 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1475 else
1476 aprint_normal(" port %c",
1477 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1478 return UNCONF;
1479 }
1480
1481 /*
1482 * Attach the interface. Allocate softc structures, do ifmedia
1483 * setup and ethernet/BPF attach.
1484 */
1485 void
1486 skc_attach(struct device *parent, struct device *self, void *aux)
1487 {
1488 struct sk_softc *sc = (struct sk_softc *)self;
1489 struct pci_attach_args *pa = aux;
1490 struct skc_attach_args skca;
1491 pci_chipset_tag_t pc = pa->pa_pc;
1492 #ifndef SK_USEIOSPACE
1493 pcireg_t memtype;
1494 #endif
1495 pci_intr_handle_t ih;
1496 const char *intrstr = NULL;
1497 bus_addr_t iobase;
1498 bus_size_t iosize;
1499 int rc, sk_nodenum;
1500 u_int32_t command;
1501 const char *revstr;
1502 const struct sysctlnode *node;
1503
1504 aprint_naive("\n");
1505
1506 DPRINTFN(2, ("begin skc_attach\n"));
1507
1508 /*
1509 * Handle power management nonsense.
1510 */
1511 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1512
1513 if (command == 0x01) {
1514 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1515 if (command & SK_PSTATE_MASK) {
1516 u_int32_t xiobase, membase, irq;
1517
1518 /* Save important PCI config data. */
1519 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1520 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1521 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1522
1523 /* Reset the power state. */
1524 aprint_normal("%s chip is in D%d power mode "
1525 "-- setting to D0\n", sc->sk_dev.dv_xname,
1526 command & SK_PSTATE_MASK);
1527 command &= 0xFFFFFFFC;
1528 pci_conf_write(pc, pa->pa_tag,
1529 SK_PCI_PWRMGMTCTRL, command);
1530
1531 /* Restore PCI config data. */
1532 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1533 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1534 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1535 }
1536 }
1537
1538 /*
1539 * Map control/status registers.
1540 */
1541 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1542 command |= PCI_COMMAND_IO_ENABLE |
1543 PCI_COMMAND_MEM_ENABLE |
1544 PCI_COMMAND_MASTER_ENABLE;
1545 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1546 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1547
1548 #ifdef SK_USEIOSPACE
1549 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1550 aprint_error(": failed to enable I/O ports!\n");
1551 return;
1552 }
1553 /*
1554 * Map control/status registers.
1555 */
1556 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1557 &sc->sk_btag, &sc->sk_bhandle,
1558 &iobase, &iosize)) {
1559 aprint_error(": can't find i/o space\n");
1560 return;
1561 }
1562 #else
1563 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1564 aprint_error(": failed to enable memory mapping!\n");
1565 return;
1566 }
1567 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1568 switch (memtype) {
1569 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1570 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1571 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1572 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1573 &iobase, &iosize) == 0)
1574 break;
1575 default:
1576 aprint_error("%s: can't find mem space\n",
1577 sc->sk_dev.dv_xname);
1578 return;
1579 }
1580
1581 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1582 #endif
1583 sc->sc_dmatag = pa->pa_dmat;
1584
1585 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1586 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1587
1588 /* bail out here if chip is not recognized */
1589 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1590 aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
1591 goto fail;
1592 }
1593 if (SK_IS_YUKON2(sc)) {
1594 aprint_error("%s: Does not support Yukon2--try msk(4).\n",
1595 sc->sk_dev.dv_xname);
1596 goto fail;
1597 }
1598 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1599
1600 /* Allocate interrupt */
1601 if (pci_intr_map(pa, &ih)) {
1602 aprint_error(": couldn't map interrupt\n");
1603 goto fail;
1604 }
1605
1606 intrstr = pci_intr_string(pc, ih);
1607 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1608 if (sc->sk_intrhand == NULL) {
1609 aprint_error(": couldn't establish interrupt");
1610 if (intrstr != NULL)
1611 aprint_normal(" at %s", intrstr);
1612 goto fail;
1613 }
1614 aprint_normal(": %s\n", intrstr);
1615
1616 /* Reset the adapter. */
1617 sk_reset(sc);
1618
1619 /* Read and save vital product data from EEPROM. */
1620 sk_vpd_read(sc);
1621
1622 if (sc->sk_type == SK_GENESIS) {
1623 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1624 /* Read and save RAM size and RAMbuffer offset */
1625 switch (val) {
1626 case SK_RAMSIZE_512K_64:
1627 sc->sk_ramsize = 0x80000;
1628 sc->sk_rboff = SK_RBOFF_0;
1629 break;
1630 case SK_RAMSIZE_1024K_64:
1631 sc->sk_ramsize = 0x100000;
1632 sc->sk_rboff = SK_RBOFF_80000;
1633 break;
1634 case SK_RAMSIZE_1024K_128:
1635 sc->sk_ramsize = 0x100000;
1636 sc->sk_rboff = SK_RBOFF_0;
1637 break;
1638 case SK_RAMSIZE_2048K_128:
1639 sc->sk_ramsize = 0x200000;
1640 sc->sk_rboff = SK_RBOFF_0;
1641 break;
1642 default:
1643 aprint_error("%s: unknown ram size: %d\n",
1644 sc->sk_dev.dv_xname, val);
1645 goto fail_1;
1646 break;
1647 }
1648
1649 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1650 sc->sk_ramsize, sc->sk_ramsize / 1024,
1651 sc->sk_rboff));
1652 } else {
1653 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1654 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1655 sc->sk_rboff = SK_RBOFF_0;
1656
1657 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1658 sc->sk_ramsize / 1024, sc->sk_ramsize,
1659 sc->sk_rboff));
1660 }
1661
1662 /* Read and save physical media type */
1663 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1664 case SK_PMD_1000BASESX:
1665 sc->sk_pmd = IFM_1000_SX;
1666 break;
1667 case SK_PMD_1000BASELX:
1668 sc->sk_pmd = IFM_1000_LX;
1669 break;
1670 case SK_PMD_1000BASECX:
1671 sc->sk_pmd = IFM_1000_CX;
1672 break;
1673 case SK_PMD_1000BASETX:
1674 case SK_PMD_1000BASETX_ALT:
1675 sc->sk_pmd = IFM_1000_T;
1676 break;
1677 default:
1678 aprint_error("%s: unknown media type: 0x%x\n",
1679 sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
1680 goto fail_1;
1681 }
1682
1683 /* determine whether to name it with vpd or just make it up */
1684 /* Marvell Yukon VPD's can freqently be bogus */
1685
1686 switch (pa->pa_id) {
1687 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1688 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1689 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1690 case PCI_PRODUCT_3COM_3C940:
1691 case PCI_PRODUCT_DLINK_DGE530T:
1692 case PCI_PRODUCT_DLINK_DGE560T:
1693 case PCI_PRODUCT_DLINK_DGE560T_2:
1694 case PCI_PRODUCT_LINKSYS_EG1032:
1695 case PCI_PRODUCT_LINKSYS_EG1064:
1696 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1697 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1698 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1699 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1700 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1701 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1702 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1703 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1704 sc->sk_name = sc->sk_vpd_prodname;
1705 break;
1706 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1707 /* whoops yukon vpd prodname bears no resemblance to reality */
1708 switch (sc->sk_type) {
1709 case SK_GENESIS:
1710 sc->sk_name = sc->sk_vpd_prodname;
1711 break;
1712 case SK_YUKON:
1713 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1714 break;
1715 case SK_YUKON_LITE:
1716 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1717 break;
1718 case SK_YUKON_LP:
1719 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1720 break;
1721 default:
1722 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1723 }
1724
1725 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1726
1727 if ( sc->sk_type == SK_YUKON ) {
1728 uint32_t flashaddr;
1729 uint8_t testbyte;
1730
1731 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1732
1733 /* test Flash-Address Register */
1734 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1735 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1736
1737 if (testbyte != 0) {
1738 /* this is yukon lite Rev. A0 */
1739 sc->sk_type = SK_YUKON_LITE;
1740 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1741 /* restore Flash-Address Register */
1742 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1743 }
1744 }
1745 break;
1746 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1747 sc->sk_name = sc->sk_vpd_prodname;
1748 break;
1749 default:
1750 sc->sk_name = "Unknown Marvell";
1751 }
1752
1753
1754 if ( sc->sk_type == SK_YUKON_LITE ) {
1755 switch (sc->sk_rev) {
1756 case SK_YUKON_LITE_REV_A0:
1757 revstr = "A0";
1758 break;
1759 case SK_YUKON_LITE_REV_A1:
1760 revstr = "A1";
1761 break;
1762 case SK_YUKON_LITE_REV_A3:
1763 revstr = "A3";
1764 break;
1765 default:
1766 revstr = "";
1767 }
1768 } else {
1769 revstr = "";
1770 }
1771
1772 /* Announce the product name. */
1773 aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
1774 sc->sk_name, revstr, sc->sk_rev);
1775
1776 skca.skc_port = SK_PORT_A;
1777 (void)config_found(&sc->sk_dev, &skca, skcprint);
1778
1779 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1780 skca.skc_port = SK_PORT_B;
1781 (void)config_found(&sc->sk_dev, &skca, skcprint);
1782 }
1783
1784 /* Turn on the 'driver is loaded' LED. */
1785 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1786
1787 /* skc sysctl setup */
1788
1789 sc->sk_int_mod = SK_IM_DEFAULT;
1790 sc->sk_int_mod_pending = 0;
1791
1792 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1793 0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
1794 SYSCTL_DESCR("skc per-controller controls"),
1795 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1796 CTL_EOL)) != 0) {
1797 aprint_normal("%s: couldn't create sysctl node\n",
1798 sc->sk_dev.dv_xname);
1799 goto fail_1;
1800 }
1801
1802 sk_nodenum = node->sysctl_num;
1803
1804 /* interrupt moderation time in usecs */
1805 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1806 CTLFLAG_READWRITE,
1807 CTLTYPE_INT, "int_mod",
1808 SYSCTL_DESCR("sk interrupt moderation timer"),
1809 sk_sysctl_handler, 0, sc,
1810 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1811 CTL_EOL)) != 0) {
1812 aprint_normal("%s: couldn't create int_mod sysctl node\n",
1813 sc->sk_dev.dv_xname);
1814 goto fail_1;
1815 }
1816
1817 return;
1818
1819 fail_1:
1820 pci_intr_disestablish(pc, sc->sk_intrhand);
1821 fail:
1822 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1823 }
1824
1825 int
1826 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1827 {
1828 struct sk_softc *sc = sc_if->sk_softc;
1829 struct sk_tx_desc *f = NULL;
1830 u_int32_t frag, cur, cnt = 0, sk_ctl;
1831 int i;
1832 struct sk_txmap_entry *entry;
1833 bus_dmamap_t txmap;
1834
1835 DPRINTFN(3, ("sk_encap\n"));
1836
1837 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1838 if (entry == NULL) {
1839 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1840 return ENOBUFS;
1841 }
1842 txmap = entry->dmamap;
1843
1844 cur = frag = *txidx;
1845
1846 #ifdef SK_DEBUG
1847 if (skdebug >= 3)
1848 sk_dump_mbuf(m_head);
1849 #endif
1850
1851 /*
1852 * Start packing the mbufs in this chain into
1853 * the fragment pointers. Stop when we run out
1854 * of fragments or hit the end of the mbuf chain.
1855 */
1856 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1857 BUS_DMA_NOWAIT)) {
1858 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1859 return ENOBUFS;
1860 }
1861
1862 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1863
1864 /* Sync the DMA map. */
1865 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1866 BUS_DMASYNC_PREWRITE);
1867
1868 for (i = 0; i < txmap->dm_nsegs; i++) {
1869 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1870 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1871 return ENOBUFS;
1872 }
1873 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1874 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1875 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1876 if (cnt == 0)
1877 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1878 else
1879 sk_ctl |= SK_TXCTL_OWN;
1880 f->sk_ctl = htole32(sk_ctl);
1881 cur = frag;
1882 SK_INC(frag, SK_TX_RING_CNT);
1883 cnt++;
1884 }
1885
1886 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1887 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1888
1889 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1890 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1891 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1892
1893 /* Sync descriptors before handing to chip */
1894 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1895 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1896
1897 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1898 htole32(SK_TXCTL_OWN);
1899
1900 /* Sync first descriptor to hand it off */
1901 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1902
1903 sc_if->sk_cdata.sk_tx_cnt += cnt;
1904
1905 #ifdef SK_DEBUG
1906 if (skdebug >= 3) {
1907 struct sk_tx_desc *desc;
1908 u_int32_t idx;
1909 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1910 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1911 sk_dump_txdesc(desc, idx);
1912 }
1913 }
1914 #endif
1915
1916 *txidx = frag;
1917
1918 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1919
1920 return 0;
1921 }
1922
1923 void
1924 sk_start(struct ifnet *ifp)
1925 {
1926 struct sk_if_softc *sc_if = ifp->if_softc;
1927 struct sk_softc *sc = sc_if->sk_softc;
1928 struct mbuf *m_head = NULL;
1929 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1930 int pkts = 0;
1931
1932 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1933 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1934
1935 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1936 IFQ_POLL(&ifp->if_snd, m_head);
1937 if (m_head == NULL)
1938 break;
1939
1940 /*
1941 * Pack the data into the transmit ring. If we
1942 * don't have room, set the OACTIVE flag and wait
1943 * for the NIC to drain the ring.
1944 */
1945 if (sk_encap(sc_if, m_head, &idx)) {
1946 ifp->if_flags |= IFF_OACTIVE;
1947 break;
1948 }
1949
1950 /* now we are committed to transmit the packet */
1951 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1952 pkts++;
1953
1954 /*
1955 * If there's a BPF listener, bounce a copy of this frame
1956 * to him.
1957 */
1958 #if NBPFILTER > 0
1959 if (ifp->if_bpf)
1960 bpf_mtap(ifp->if_bpf, m_head);
1961 #endif
1962 }
1963 if (pkts == 0)
1964 return;
1965
1966 /* Transmit */
1967 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1968 sc_if->sk_cdata.sk_tx_prod = idx;
1969 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1970
1971 /* Set a timeout in case the chip goes out to lunch. */
1972 ifp->if_timer = 5;
1973 }
1974 }
1975
1976
1977 void
1978 sk_watchdog(struct ifnet *ifp)
1979 {
1980 struct sk_if_softc *sc_if = ifp->if_softc;
1981
1982 /*
1983 * Reclaim first as there is a possibility of losing Tx completion
1984 * interrupts.
1985 */
1986 sk_txeof(sc_if);
1987 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1988 aprint_error("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1989
1990 ifp->if_oerrors++;
1991
1992 sk_init(ifp);
1993 }
1994 }
1995
1996 void
1997 sk_shutdown(void *v)
1998 {
1999 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
2000 struct sk_softc *sc = sc_if->sk_softc;
2001 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2002
2003 DPRINTFN(2, ("sk_shutdown\n"));
2004 sk_stop(ifp,1);
2005
2006 /* Turn off the 'driver is loaded' LED. */
2007 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2008
2009 /*
2010 * Reset the GEnesis controller. Doing this should also
2011 * assert the resets on the attached XMAC(s).
2012 */
2013 sk_reset(sc);
2014 }
2015
2016 void
2017 sk_rxeof(struct sk_if_softc *sc_if)
2018 {
2019 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2020 struct mbuf *m;
2021 struct sk_chain *cur_rx;
2022 struct sk_rx_desc *cur_desc;
2023 int i, cur, total_len = 0;
2024 u_int32_t rxstat, sk_ctl;
2025 bus_dmamap_t dmamap;
2026
2027 i = sc_if->sk_cdata.sk_rx_prod;
2028
2029 DPRINTFN(3, ("sk_rxeof %d\n", i));
2030
2031 for (;;) {
2032 cur = i;
2033
2034 /* Sync the descriptor */
2035 SK_CDRXSYNC(sc_if, cur,
2036 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2037
2038 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2039 if (sk_ctl & SK_RXCTL_OWN) {
2040 /* Invalidate the descriptor -- it's not ready yet */
2041 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2042 sc_if->sk_cdata.sk_rx_prod = i;
2043 break;
2044 }
2045
2046 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2047 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2048 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2049
2050 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2051 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2052
2053 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2054 m = cur_rx->sk_mbuf;
2055 cur_rx->sk_mbuf = NULL;
2056 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2057
2058 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2059
2060 SK_INC(i, SK_RX_RING_CNT);
2061
2062 if (rxstat & XM_RXSTAT_ERRFRAME) {
2063 ifp->if_ierrors++;
2064 sk_newbuf(sc_if, cur, m, dmamap);
2065 continue;
2066 }
2067
2068 /*
2069 * Try to allocate a new jumbo buffer. If that
2070 * fails, copy the packet to mbufs and put the
2071 * jumbo buffer back in the ring so it can be
2072 * re-used. If allocating mbufs fails, then we
2073 * have to drop the packet.
2074 */
2075 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2076 struct mbuf *m0;
2077 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2078 total_len + ETHER_ALIGN, 0, ifp, NULL);
2079 sk_newbuf(sc_if, cur, m, dmamap);
2080 if (m0 == NULL) {
2081 aprint_error("%s: no receive buffers "
2082 "available -- packet dropped!\n",
2083 sc_if->sk_dev.dv_xname);
2084 ifp->if_ierrors++;
2085 continue;
2086 }
2087 m_adj(m0, ETHER_ALIGN);
2088 m = m0;
2089 } else {
2090 m->m_pkthdr.rcvif = ifp;
2091 m->m_pkthdr.len = m->m_len = total_len;
2092 }
2093
2094 ifp->if_ipackets++;
2095
2096 #if NBPFILTER > 0
2097 if (ifp->if_bpf)
2098 bpf_mtap(ifp->if_bpf, m);
2099 #endif
2100 /* pass it on. */
2101 (*ifp->if_input)(ifp, m);
2102 }
2103 }
2104
2105 void
2106 sk_txeof(struct sk_if_softc *sc_if)
2107 {
2108 struct sk_softc *sc = sc_if->sk_softc;
2109 struct sk_tx_desc *cur_tx;
2110 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2111 u_int32_t idx, sk_ctl;
2112 struct sk_txmap_entry *entry;
2113
2114 DPRINTFN(3, ("sk_txeof\n"));
2115
2116 /*
2117 * Go through our tx ring and free mbufs for those
2118 * frames that have been sent.
2119 */
2120 idx = sc_if->sk_cdata.sk_tx_cons;
2121 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2122 SK_CDTXSYNC(sc_if, idx, 1,
2123 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2124
2125 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2126 sk_ctl = le32toh(cur_tx->sk_ctl);
2127 #ifdef SK_DEBUG
2128 if (skdebug >= 3)
2129 sk_dump_txdesc(cur_tx, idx);
2130 #endif
2131 if (sk_ctl & SK_TXCTL_OWN) {
2132 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2133 break;
2134 }
2135 if (sk_ctl & SK_TXCTL_LASTFRAG)
2136 ifp->if_opackets++;
2137 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2138 entry = sc_if->sk_cdata.sk_tx_map[idx];
2139
2140 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2141 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2142
2143 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2144 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2145
2146 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2147 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2148 link);
2149 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2150 }
2151 sc_if->sk_cdata.sk_tx_cnt--;
2152 SK_INC(idx, SK_TX_RING_CNT);
2153 }
2154 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2155 ifp->if_timer = 0;
2156 else /* nudge chip to keep tx ring moving */
2157 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2158
2159 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2160 ifp->if_flags &= ~IFF_OACTIVE;
2161
2162 sc_if->sk_cdata.sk_tx_cons = idx;
2163 }
2164
2165 void
2166 sk_tick(void *xsc_if)
2167 {
2168 struct sk_if_softc *sc_if = xsc_if;
2169 struct mii_data *mii = &sc_if->sk_mii;
2170 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2171 int i;
2172
2173 DPRINTFN(3, ("sk_tick\n"));
2174
2175 if (!(ifp->if_flags & IFF_UP))
2176 return;
2177
2178 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2179 sk_intr_bcom(sc_if);
2180 return;
2181 }
2182
2183 /*
2184 * According to SysKonnect, the correct way to verify that
2185 * the link has come back up is to poll bit 0 of the GPIO
2186 * register three times. This pin has the signal from the
2187 * link sync pin connected to it; if we read the same link
2188 * state 3 times in a row, we know the link is up.
2189 */
2190 for (i = 0; i < 3; i++) {
2191 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2192 break;
2193 }
2194
2195 if (i != 3) {
2196 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2197 return;
2198 }
2199
2200 /* Turn the GP0 interrupt back on. */
2201 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2202 SK_XM_READ_2(sc_if, XM_ISR);
2203 mii_tick(mii);
2204 mii_pollstat(mii);
2205 callout_stop(&sc_if->sk_tick_ch);
2206 }
2207
2208 void
2209 sk_intr_bcom(struct sk_if_softc *sc_if)
2210 {
2211 struct mii_data *mii = &sc_if->sk_mii;
2212 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2213 int status;
2214
2215
2216 DPRINTFN(3, ("sk_intr_bcom\n"));
2217
2218 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2219
2220 /*
2221 * Read the PHY interrupt register to make sure
2222 * we clear any pending interrupts.
2223 */
2224 status = sk_xmac_miibus_readreg((struct device *)sc_if,
2225 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2226
2227 if (!(ifp->if_flags & IFF_RUNNING)) {
2228 sk_init_xmac(sc_if);
2229 return;
2230 }
2231
2232 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2233 int lstat;
2234 lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
2235 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2236
2237 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2238 (void)mii_mediachg(mii);
2239 /* Turn off the link LED. */
2240 SK_IF_WRITE_1(sc_if, 0,
2241 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2242 sc_if->sk_link = 0;
2243 } else if (status & BRGPHY_ISR_LNK_CHG) {
2244 sk_xmac_miibus_writereg((struct device *)sc_if,
2245 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2246 mii_tick(mii);
2247 sc_if->sk_link = 1;
2248 /* Turn on the link LED. */
2249 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2250 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2251 SK_LINKLED_BLINK_OFF);
2252 mii_pollstat(mii);
2253 } else {
2254 mii_tick(mii);
2255 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2256 }
2257 }
2258
2259 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2260 }
2261
2262 void
2263 sk_intr_xmac(struct sk_if_softc *sc_if)
2264 {
2265 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2266
2267 DPRINTFN(3, ("sk_intr_xmac\n"));
2268
2269 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2270 if (status & XM_ISR_GP0_SET) {
2271 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2272 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2273 }
2274
2275 if (status & XM_ISR_AUTONEG_DONE) {
2276 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2277 }
2278 }
2279
2280 if (status & XM_IMR_TX_UNDERRUN)
2281 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2282
2283 if (status & XM_IMR_RX_OVERRUN)
2284 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2285 }
2286
2287 void
2288 sk_intr_yukon(struct sk_if_softc *sc_if)
2289 {
2290 int status;
2291
2292 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2293
2294 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2295 }
2296
2297 int
2298 sk_intr(void *xsc)
2299 {
2300 struct sk_softc *sc = xsc;
2301 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2302 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2303 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2304 u_int32_t status;
2305 int claimed = 0;
2306
2307 if (sc_if0 != NULL)
2308 ifp0 = &sc_if0->sk_ethercom.ec_if;
2309 if (sc_if1 != NULL)
2310 ifp1 = &sc_if1->sk_ethercom.ec_if;
2311
2312 for (;;) {
2313 status = CSR_READ_4(sc, SK_ISSR);
2314 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2315
2316 if (!(status & sc->sk_intrmask))
2317 break;
2318
2319 claimed = 1;
2320
2321 /* Handle receive interrupts first. */
2322 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2323 sk_rxeof(sc_if0);
2324 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2325 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2326 }
2327 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2328 sk_rxeof(sc_if1);
2329 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2330 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2331 }
2332
2333 /* Then transmit interrupts. */
2334 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2335 sk_txeof(sc_if0);
2336 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2337 SK_TXBMU_CLR_IRQ_EOF);
2338 }
2339 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2340 sk_txeof(sc_if1);
2341 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2342 SK_TXBMU_CLR_IRQ_EOF);
2343 }
2344
2345 /* Then MAC interrupts. */
2346 if (sc_if0 && (status & SK_ISR_MAC1) &&
2347 (ifp0->if_flags & IFF_RUNNING)) {
2348 if (sc->sk_type == SK_GENESIS)
2349 sk_intr_xmac(sc_if0);
2350 else
2351 sk_intr_yukon(sc_if0);
2352 }
2353
2354 if (sc_if1 && (status & SK_ISR_MAC2) &&
2355 (ifp1->if_flags & IFF_RUNNING)) {
2356 if (sc->sk_type == SK_GENESIS)
2357 sk_intr_xmac(sc_if1);
2358 else
2359 sk_intr_yukon(sc_if1);
2360
2361 }
2362
2363 if (status & SK_ISR_EXTERNAL_REG) {
2364 if (sc_if0 != NULL &&
2365 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2366 sk_intr_bcom(sc_if0);
2367
2368 if (sc_if1 != NULL &&
2369 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2370 sk_intr_bcom(sc_if1);
2371 }
2372 }
2373
2374 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2375
2376 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2377 sk_start(ifp0);
2378 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2379 sk_start(ifp1);
2380
2381 #if NRND > 0
2382 if (RND_ENABLED(&sc->rnd_source))
2383 rnd_add_uint32(&sc->rnd_source, status);
2384 #endif
2385
2386 if (sc->sk_int_mod_pending)
2387 sk_update_int_mod(sc);
2388
2389 return claimed;
2390 }
2391
2392 void
2393 sk_init_xmac(struct sk_if_softc *sc_if)
2394 {
2395 struct sk_softc *sc = sc_if->sk_softc;
2396 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2397 static const struct sk_bcom_hack bhack[] = {
2398 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2399 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2400 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2401 { 0, 0 } };
2402
2403 DPRINTFN(1, ("sk_init_xmac\n"));
2404
2405 /* Unreset the XMAC. */
2406 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2407 DELAY(1000);
2408
2409 /* Reset the XMAC's internal state. */
2410 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2411
2412 /* Save the XMAC II revision */
2413 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2414
2415 /*
2416 * Perform additional initialization for external PHYs,
2417 * namely for the 1000baseTX cards that use the XMAC's
2418 * GMII mode.
2419 */
2420 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2421 int i = 0;
2422 u_int32_t val;
2423
2424 /* Take PHY out of reset. */
2425 val = sk_win_read_4(sc, SK_GPIO);
2426 if (sc_if->sk_port == SK_PORT_A)
2427 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2428 else
2429 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2430 sk_win_write_4(sc, SK_GPIO, val);
2431
2432 /* Enable GMII mode on the XMAC. */
2433 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2434
2435 sk_xmac_miibus_writereg((struct device *)sc_if,
2436 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2437 DELAY(10000);
2438 sk_xmac_miibus_writereg((struct device *)sc_if,
2439 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2440
2441 /*
2442 * Early versions of the BCM5400 apparently have
2443 * a bug that requires them to have their reserved
2444 * registers initialized to some magic values. I don't
2445 * know what the numbers do, I'm just the messenger.
2446 */
2447 if (sk_xmac_miibus_readreg((struct device *)sc_if,
2448 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2449 while (bhack[i].reg) {
2450 sk_xmac_miibus_writereg((struct device *)sc_if,
2451 SK_PHYADDR_BCOM, bhack[i].reg,
2452 bhack[i].val);
2453 i++;
2454 }
2455 }
2456 }
2457
2458 /* Set station address */
2459 SK_XM_WRITE_2(sc_if, XM_PAR0,
2460 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2461 SK_XM_WRITE_2(sc_if, XM_PAR1,
2462 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2463 SK_XM_WRITE_2(sc_if, XM_PAR2,
2464 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2465 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2466
2467 if (ifp->if_flags & IFF_PROMISC)
2468 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2469 else
2470 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2471
2472 if (ifp->if_flags & IFF_BROADCAST)
2473 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2474 else
2475 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2476
2477 /* We don't need the FCS appended to the packet. */
2478 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2479
2480 /* We want short frames padded to 60 bytes. */
2481 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2482
2483 /*
2484 * Enable the reception of all error frames. This is is
2485 * a necessary evil due to the design of the XMAC. The
2486 * XMAC's receive FIFO is only 8K in size, however jumbo
2487 * frames can be up to 9000 bytes in length. When bad
2488 * frame filtering is enabled, the XMAC's RX FIFO operates
2489 * in 'store and forward' mode. For this to work, the
2490 * entire frame has to fit into the FIFO, but that means
2491 * that jumbo frames larger than 8192 bytes will be
2492 * truncated. Disabling all bad frame filtering causes
2493 * the RX FIFO to operate in streaming mode, in which
2494 * case the XMAC will start transfering frames out of the
2495 * RX FIFO as soon as the FIFO threshold is reached.
2496 */
2497 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2498 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2499 XM_MODE_RX_INRANGELEN);
2500
2501 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2502 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2503 else
2504 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2505
2506 /*
2507 * Bump up the transmit threshold. This helps hold off transmit
2508 * underruns when we're blasting traffic from both ports at once.
2509 */
2510 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2511
2512 /* Set multicast filter */
2513 sk_setmulti(sc_if);
2514
2515 /* Clear and enable interrupts */
2516 SK_XM_READ_2(sc_if, XM_ISR);
2517 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2518 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2519 else
2520 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2521
2522 /* Configure MAC arbiter */
2523 switch (sc_if->sk_xmac_rev) {
2524 case XM_XMAC_REV_B2:
2525 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2526 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2527 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2528 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2529 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2530 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2531 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2532 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2533 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2534 break;
2535 case XM_XMAC_REV_C1:
2536 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2537 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2538 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2539 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2540 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2541 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2542 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2543 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2544 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2545 break;
2546 default:
2547 break;
2548 }
2549 sk_win_write_2(sc, SK_MACARB_CTL,
2550 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2551
2552 sc_if->sk_link = 1;
2553 }
2554
2555 void sk_init_yukon(struct sk_if_softc *sc_if)
2556 {
2557 u_int32_t /*mac, */phy;
2558 u_int16_t reg;
2559 struct sk_softc *sc;
2560 int i;
2561
2562 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2563 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2564
2565 sc = sc_if->sk_softc;
2566 if (sc->sk_type == SK_YUKON_LITE &&
2567 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2568 /* Take PHY out of reset. */
2569 sk_win_write_4(sc, SK_GPIO,
2570 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2571 }
2572
2573
2574 /* GMAC and GPHY Reset */
2575 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2576
2577 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2578
2579 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2580 DELAY(1000);
2581 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2582 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2583 DELAY(1000);
2584
2585
2586 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2587
2588 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2589 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2590
2591 switch (sc_if->sk_softc->sk_pmd) {
2592 case IFM_1000_SX:
2593 case IFM_1000_LX:
2594 phy |= SK_GPHY_FIBER;
2595 break;
2596
2597 case IFM_1000_CX:
2598 case IFM_1000_T:
2599 phy |= SK_GPHY_COPPER;
2600 break;
2601 }
2602
2603 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2604
2605 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2606 DELAY(1000);
2607 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2608 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2609 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2610
2611 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2612 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2613
2614 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2615
2616 /* unused read of the interrupt source register */
2617 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2618 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2619
2620 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2621 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2622 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2623
2624 /* MIB Counter Clear Mode set */
2625 reg |= YU_PAR_MIB_CLR;
2626 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2627 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2628 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2629
2630 /* MIB Counter Clear Mode clear */
2631 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2632 reg &= ~YU_PAR_MIB_CLR;
2633 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2634
2635 /* receive control reg */
2636 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2637 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2638 YU_RCR_CRCR);
2639
2640 /* transmit parameter register */
2641 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2642 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2643 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2644
2645 /* serial mode register */
2646 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2647 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2648 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2649 YU_SMR_IPG_DATA(0x1e));
2650
2651 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2652 /* Setup Yukon's address */
2653 for (i = 0; i < 3; i++) {
2654 /* Write Source Address 1 (unicast filter) */
2655 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2656 sc_if->sk_enaddr[i * 2] |
2657 sc_if->sk_enaddr[i * 2 + 1] << 8);
2658 }
2659
2660 for (i = 0; i < 3; i++) {
2661 reg = sk_win_read_2(sc_if->sk_softc,
2662 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2663 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2664 }
2665
2666 /* Set multicast filter */
2667 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2668 sk_setmulti(sc_if);
2669
2670 /* enable interrupt mask for counter overflows */
2671 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2672 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2673 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2674 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2675
2676 /* Configure RX MAC FIFO */
2677 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2678 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2679
2680 /* Configure TX MAC FIFO */
2681 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2682 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2683
2684 DPRINTFN(6, ("sk_init_yukon: end\n"));
2685 }
2686
2687 /*
2688 * Note that to properly initialize any part of the GEnesis chip,
2689 * you first have to take it out of reset mode.
2690 */
2691 int
2692 sk_init(struct ifnet *ifp)
2693 {
2694 struct sk_if_softc *sc_if = ifp->if_softc;
2695 struct sk_softc *sc = sc_if->sk_softc;
2696 struct mii_data *mii = &sc_if->sk_mii;
2697 int rc = 0, s;
2698 u_int32_t imr, imtimer_ticks;
2699
2700 DPRINTFN(1, ("sk_init\n"));
2701
2702 s = splnet();
2703
2704 if (ifp->if_flags & IFF_RUNNING) {
2705 splx(s);
2706 return 0;
2707 }
2708
2709 /* Cancel pending I/O and free all RX/TX buffers. */
2710 sk_stop(ifp,0);
2711
2712 if (sc->sk_type == SK_GENESIS) {
2713 /* Configure LINK_SYNC LED */
2714 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2715 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2716 SK_LINKLED_LINKSYNC_ON);
2717
2718 /* Configure RX LED */
2719 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2720 SK_RXLEDCTL_COUNTER_START);
2721
2722 /* Configure TX LED */
2723 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2724 SK_TXLEDCTL_COUNTER_START);
2725 }
2726
2727 /* Configure I2C registers */
2728
2729 /* Configure XMAC(s) */
2730 switch (sc->sk_type) {
2731 case SK_GENESIS:
2732 sk_init_xmac(sc_if);
2733 break;
2734 case SK_YUKON:
2735 case SK_YUKON_LITE:
2736 case SK_YUKON_LP:
2737 sk_init_yukon(sc_if);
2738 break;
2739 }
2740 if ((rc = mii_mediachg(mii)) == ENXIO)
2741 rc = 0;
2742 else if (rc != 0)
2743 goto out;
2744
2745 if (sc->sk_type == SK_GENESIS) {
2746 /* Configure MAC FIFOs */
2747 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2748 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2749 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2750
2751 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2752 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2753 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2754 }
2755
2756 /* Configure transmit arbiter(s) */
2757 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2758 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2759
2760 /* Configure RAMbuffers */
2761 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2762 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2763 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2764 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2765 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2766 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2767
2768 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2769 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2770 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2771 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2772 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2773 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2774 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2775
2776 /* Configure BMUs */
2777 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2778 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2779 SK_RX_RING_ADDR(sc_if, 0));
2780 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2781
2782 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2783 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2784 SK_TX_RING_ADDR(sc_if, 0));
2785 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2786
2787 /* Init descriptors */
2788 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2789 aprint_error("%s: initialization failed: no "
2790 "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2791 sk_stop(ifp,0);
2792 splx(s);
2793 return ENOBUFS;
2794 }
2795
2796 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2797 aprint_error("%s: initialization failed: no "
2798 "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2799 sk_stop(ifp,0);
2800 splx(s);
2801 return ENOBUFS;
2802 }
2803
2804 /* Set interrupt moderation if changed via sysctl. */
2805 switch (sc->sk_type) {
2806 case SK_GENESIS:
2807 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2808 break;
2809 case SK_YUKON_EC:
2810 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2811 break;
2812 default:
2813 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2814 }
2815 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2816 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2817 sk_win_write_4(sc, SK_IMTIMERINIT,
2818 SK_IM_USECS(sc->sk_int_mod));
2819 aprint_verbose("%s: interrupt moderation is %d us\n",
2820 sc->sk_dev.dv_xname, sc->sk_int_mod);
2821 }
2822
2823 /* Configure interrupt handling */
2824 CSR_READ_4(sc, SK_ISSR);
2825 if (sc_if->sk_port == SK_PORT_A)
2826 sc->sk_intrmask |= SK_INTRS1;
2827 else
2828 sc->sk_intrmask |= SK_INTRS2;
2829
2830 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2831
2832 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2833
2834 /* Start BMUs. */
2835 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2836
2837 if (sc->sk_type == SK_GENESIS) {
2838 /* Enable XMACs TX and RX state machines */
2839 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2840 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2841 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2842 }
2843
2844 if (SK_YUKON_FAMILY(sc->sk_type)) {
2845 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2846 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2847 #if 0
2848 /* XXX disable 100Mbps and full duplex mode? */
2849 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2850 #endif
2851 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2852 }
2853
2854
2855 ifp->if_flags |= IFF_RUNNING;
2856 ifp->if_flags &= ~IFF_OACTIVE;
2857
2858 out:
2859 splx(s);
2860 return rc;
2861 }
2862
2863 void
2864 sk_stop(struct ifnet *ifp, int disable)
2865 {
2866 struct sk_if_softc *sc_if = ifp->if_softc;
2867 struct sk_softc *sc = sc_if->sk_softc;
2868 int i;
2869
2870 DPRINTFN(1, ("sk_stop\n"));
2871
2872 callout_stop(&sc_if->sk_tick_ch);
2873
2874 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2875 u_int32_t val;
2876
2877 /* Put PHY back into reset. */
2878 val = sk_win_read_4(sc, SK_GPIO);
2879 if (sc_if->sk_port == SK_PORT_A) {
2880 val |= SK_GPIO_DIR0;
2881 val &= ~SK_GPIO_DAT0;
2882 } else {
2883 val |= SK_GPIO_DIR2;
2884 val &= ~SK_GPIO_DAT2;
2885 }
2886 sk_win_write_4(sc, SK_GPIO, val);
2887 }
2888
2889 /* Turn off various components of this interface. */
2890 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2891 switch (sc->sk_type) {
2892 case SK_GENESIS:
2893 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2894 SK_TXMACCTL_XMAC_RESET);
2895 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2896 break;
2897 case SK_YUKON:
2898 case SK_YUKON_LITE:
2899 case SK_YUKON_LP:
2900 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2901 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2902 break;
2903 }
2904 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2905 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2906 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2907 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2908 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2909 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2910 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2911 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2912 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2913
2914 /* Disable interrupts */
2915 if (sc_if->sk_port == SK_PORT_A)
2916 sc->sk_intrmask &= ~SK_INTRS1;
2917 else
2918 sc->sk_intrmask &= ~SK_INTRS2;
2919 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2920
2921 SK_XM_READ_2(sc_if, XM_ISR);
2922 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2923
2924 /* Free RX and TX mbufs still in the queues. */
2925 for (i = 0; i < SK_RX_RING_CNT; i++) {
2926 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2927 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2928 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2929 }
2930 }
2931
2932 for (i = 0; i < SK_TX_RING_CNT; i++) {
2933 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2934 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2935 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2936 }
2937 }
2938
2939 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2940 }
2941
2942 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2943
2944 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2945
2946 #ifdef SK_DEBUG
2947 void
2948 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2949 {
2950 #define DESC_PRINT(X) \
2951 if (X) \
2952 printf("txdesc[%d]." #X "=%#x\n", \
2953 idx, X);
2954
2955 DESC_PRINT(le32toh(desc->sk_ctl));
2956 DESC_PRINT(le32toh(desc->sk_next));
2957 DESC_PRINT(le32toh(desc->sk_data_lo));
2958 DESC_PRINT(le32toh(desc->sk_data_hi));
2959 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2960 DESC_PRINT(le16toh(desc->sk_rsvd0));
2961 DESC_PRINT(le16toh(desc->sk_csum_startval));
2962 DESC_PRINT(le16toh(desc->sk_csum_startpos));
2963 DESC_PRINT(le16toh(desc->sk_csum_writepos));
2964 DESC_PRINT(le16toh(desc->sk_rsvd1));
2965 #undef PRINT
2966 }
2967
2968 void
2969 sk_dump_bytes(const char *data, int len)
2970 {
2971 int c, i, j;
2972
2973 for (i = 0; i < len; i += 16) {
2974 printf("%08x ", i);
2975 c = len - i;
2976 if (c > 16) c = 16;
2977
2978 for (j = 0; j < c; j++) {
2979 printf("%02x ", data[i + j] & 0xff);
2980 if ((j & 0xf) == 7 && j > 0)
2981 printf(" ");
2982 }
2983
2984 for (; j < 16; j++)
2985 printf(" ");
2986 printf(" ");
2987
2988 for (j = 0; j < c; j++) {
2989 int ch = data[i + j] & 0xff;
2990 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2991 }
2992
2993 printf("\n");
2994
2995 if (c < 16)
2996 break;
2997 }
2998 }
2999
3000 void
3001 sk_dump_mbuf(struct mbuf *m)
3002 {
3003 int count = m->m_pkthdr.len;
3004
3005 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3006
3007 while (count > 0 && m) {
3008 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3009 m, m->m_data, m->m_len);
3010 sk_dump_bytes(mtod(m, char *), m->m_len);
3011
3012 count -= m->m_len;
3013 m = m->m_next;
3014 }
3015 }
3016 #endif
3017
3018 static int
3019 sk_sysctl_handler(SYSCTLFN_ARGS)
3020 {
3021 int error, t;
3022 struct sysctlnode node;
3023 struct sk_softc *sc;
3024
3025 node = *rnode;
3026 sc = node.sysctl_data;
3027 t = sc->sk_int_mod;
3028 node.sysctl_data = &t;
3029 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3030 if (error || newp == NULL)
3031 return error;
3032
3033 if (t < SK_IM_MIN || t > SK_IM_MAX)
3034 return EINVAL;
3035
3036 /* update the softc with sysctl-changed value, and mark
3037 for hardware update */
3038 sc->sk_int_mod = t;
3039 sc->sk_int_mod_pending = 1;
3040 return 0;
3041 }
3042
3043 /*
3044 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3045 * set up in skc_attach()
3046 */
3047 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3048 {
3049 int rc;
3050 const struct sysctlnode *node;
3051
3052 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3053 0, CTLTYPE_NODE, "hw", NULL,
3054 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3055 goto err;
3056 }
3057
3058 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3059 0, CTLTYPE_NODE, "sk",
3060 SYSCTL_DESCR("sk interface controls"),
3061 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3062 goto err;
3063 }
3064
3065 sk_root_num = node->sysctl_num;
3066 return;
3067
3068 err:
3069 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3070 }
3071