Home | History | Annotate | Line # | Download | only in pci
if_sk.c revision 1.48
      1 /*	$NetBSD: if_sk.c,v 1.48 2008/04/10 19:13:37 cegger Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the NetBSD
     18  *	Foundation, Inc. and its contributors.
     19  * 4. Neither the name of The NetBSD Foundation nor the names of its
     20  *    contributors may be used to endorse or promote products derived
     21  *    from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
     37 
     38 /*
     39  * Copyright (c) 1997, 1998, 1999, 2000
     40  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by Bill Paul.
     53  * 4. Neither the name of the author nor the names of any co-contributors
     54  *    may be used to endorse or promote products derived from this software
     55  *    without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     61  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     62  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     63  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     64  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     65  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     66  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     67  * THE POSSIBILITY OF SUCH DAMAGE.
     68  *
     69  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
     70  */
     71 
     72 /*
     73  * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
     74  *
     75  * Permission to use, copy, modify, and distribute this software for any
     76  * purpose with or without fee is hereby granted, provided that the above
     77  * copyright notice and this permission notice appear in all copies.
     78  *
     79  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     80  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     81  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     82  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     83  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     84  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     85  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     86  */
     87 
     88 /*
     89  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
     90  * the SK-984x series adapters, both single port and dual port.
     91  * References:
     92  * 	The XaQti XMAC II datasheet,
     93  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     94  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
     95  *
     96  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
     97  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
     98  * convenience to others until Vitesse corrects this problem:
     99  *
    100  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
    101  *
    102  * Written by Bill Paul <wpaul (at) ee.columbia.edu>
    103  * Department of Electrical Engineering
    104  * Columbia University, New York City
    105  */
    106 
    107 /*
    108  * The SysKonnect gigabit ethernet adapters consist of two main
    109  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
    110  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
    111  * components and a PHY while the GEnesis controller provides a PCI
    112  * interface with DMA support. Each card may have between 512K and
    113  * 2MB of SRAM on board depending on the configuration.
    114  *
    115  * The SysKonnect GEnesis controller can have either one or two XMAC
    116  * chips connected to it, allowing single or dual port NIC configurations.
    117  * SysKonnect has the distinction of being the only vendor on the market
    118  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
    119  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
    120  * XMAC registers. This driver takes advantage of these features to allow
    121  * both XMACs to operate as independent interfaces.
    122  */
    123 
    124 #include <sys/cdefs.h>
    125 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.48 2008/04/10 19:13:37 cegger Exp $");
    126 
    127 #include "bpfilter.h"
    128 #include "rnd.h"
    129 
    130 #include <sys/param.h>
    131 #include <sys/systm.h>
    132 #include <sys/sockio.h>
    133 #include <sys/mbuf.h>
    134 #include <sys/malloc.h>
    135 #include <sys/kernel.h>
    136 #include <sys/socket.h>
    137 #include <sys/device.h>
    138 #include <sys/queue.h>
    139 #include <sys/callout.h>
    140 #include <sys/sysctl.h>
    141 #include <sys/endian.h>
    142 
    143 #include <net/if.h>
    144 #include <net/if_dl.h>
    145 #include <net/if_types.h>
    146 
    147 #include <net/if_media.h>
    148 
    149 #if NBPFILTER > 0
    150 #include <net/bpf.h>
    151 #endif
    152 #if NRND > 0
    153 #include <sys/rnd.h>
    154 #endif
    155 
    156 #include <dev/mii/mii.h>
    157 #include <dev/mii/miivar.h>
    158 #include <dev/mii/brgphyreg.h>
    159 
    160 #include <dev/pci/pcireg.h>
    161 #include <dev/pci/pcivar.h>
    162 #include <dev/pci/pcidevs.h>
    163 
    164 /* #define SK_USEIOSPACE */
    165 
    166 #include <dev/pci/if_skreg.h>
    167 #include <dev/pci/if_skvar.h>
    168 
    169 int skc_probe(struct device *, struct cfdata *, void *);
    170 void skc_attach(struct device *, struct device *self, void *aux);
    171 int sk_probe(struct device *, struct cfdata *, void *);
    172 void sk_attach(struct device *, struct device *self, void *aux);
    173 int skcprint(void *, const char *);
    174 int sk_intr(void *);
    175 void sk_intr_bcom(struct sk_if_softc *);
    176 void sk_intr_xmac(struct sk_if_softc *);
    177 void sk_intr_yukon(struct sk_if_softc *);
    178 void sk_rxeof(struct sk_if_softc *);
    179 void sk_txeof(struct sk_if_softc *);
    180 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
    181 void sk_start(struct ifnet *);
    182 int sk_ioctl(struct ifnet *, u_long, void *);
    183 int sk_init(struct ifnet *);
    184 void sk_init_xmac(struct sk_if_softc *);
    185 void sk_init_yukon(struct sk_if_softc *);
    186 void sk_stop(struct ifnet *, int);
    187 void sk_watchdog(struct ifnet *);
    188 void sk_shutdown(void *);
    189 int sk_ifmedia_upd(struct ifnet *);
    190 void sk_reset(struct sk_softc *);
    191 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
    192 int sk_alloc_jumbo_mem(struct sk_if_softc *);
    193 void sk_free_jumbo_mem(struct sk_if_softc *);
    194 void *sk_jalloc(struct sk_if_softc *);
    195 void sk_jfree(struct mbuf *, void *, size_t, void *);
    196 int sk_init_rx_ring(struct sk_if_softc *);
    197 int sk_init_tx_ring(struct sk_if_softc *);
    198 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
    199 void sk_vpd_read_res(struct sk_softc *,
    200 					struct vpd_res *, int);
    201 void sk_vpd_read(struct sk_softc *);
    202 
    203 void sk_update_int_mod(struct sk_softc *);
    204 
    205 int sk_xmac_miibus_readreg(struct device *, int, int);
    206 void sk_xmac_miibus_writereg(struct device *, int, int, int);
    207 void sk_xmac_miibus_statchg(struct device *);
    208 
    209 int sk_marv_miibus_readreg(struct device *, int, int);
    210 void sk_marv_miibus_writereg(struct device *, int, int, int);
    211 void sk_marv_miibus_statchg(struct device *);
    212 
    213 u_int32_t sk_xmac_hash(void *);
    214 u_int32_t sk_yukon_hash(void *);
    215 void sk_setfilt(struct sk_if_softc *, void *, int);
    216 void sk_setmulti(struct sk_if_softc *);
    217 void sk_tick(void *);
    218 
    219 /* #define SK_DEBUG 2 */
    220 #ifdef SK_DEBUG
    221 #define DPRINTF(x)	if (skdebug) printf x
    222 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
    223 int	skdebug = SK_DEBUG;
    224 
    225 void sk_dump_txdesc(struct sk_tx_desc *, int);
    226 void sk_dump_mbuf(struct mbuf *);
    227 void sk_dump_bytes(const char *, int);
    228 #else
    229 #define DPRINTF(x)
    230 #define DPRINTFN(n,x)
    231 #endif
    232 
    233 static int sk_sysctl_handler(SYSCTLFN_PROTO);
    234 static int sk_root_num;
    235 
    236 /* supported device vendors */
    237 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
    238 static const struct sk_product {
    239 	pci_vendor_id_t		sk_vendor;
    240 	pci_product_id_t	sk_product;
    241 } sk_products[] = {
    242 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
    243 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
    244 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
    245 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
    246 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
    247 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
    248 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
    249 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
    250 	{ 0, 0, }
    251 };
    252 
    253 #define SK_LINKSYS_EG1032_SUBID	0x00151737
    254 
    255 static inline u_int32_t
    256 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
    257 {
    258 #ifdef SK_USEIOSPACE
    259 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    260 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
    261 #else
    262 	return CSR_READ_4(sc, reg);
    263 #endif
    264 }
    265 
    266 static inline u_int16_t
    267 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
    268 {
    269 #ifdef SK_USEIOSPACE
    270 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    271 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
    272 #else
    273 	return CSR_READ_2(sc, reg);
    274 #endif
    275 }
    276 
    277 static inline u_int8_t
    278 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
    279 {
    280 #ifdef SK_USEIOSPACE
    281 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    282 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
    283 #else
    284 	return CSR_READ_1(sc, reg);
    285 #endif
    286 }
    287 
    288 static inline void
    289 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
    290 {
    291 #ifdef SK_USEIOSPACE
    292 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    293 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
    294 #else
    295 	CSR_WRITE_4(sc, reg, x);
    296 #endif
    297 }
    298 
    299 static inline void
    300 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
    301 {
    302 #ifdef SK_USEIOSPACE
    303 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    304 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
    305 #else
    306 	CSR_WRITE_2(sc, reg, x);
    307 #endif
    308 }
    309 
    310 static inline void
    311 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
    312 {
    313 #ifdef SK_USEIOSPACE
    314 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    315 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
    316 #else
    317 	CSR_WRITE_1(sc, reg, x);
    318 #endif
    319 }
    320 
    321 /*
    322  * The VPD EEPROM contains Vital Product Data, as suggested in
    323  * the PCI 2.1 specification. The VPD data is separared into areas
    324  * denoted by resource IDs. The SysKonnect VPD contains an ID string
    325  * resource (the name of the adapter), a read-only area resource
    326  * containing various key/data fields and a read/write area which
    327  * can be used to store asset management information or log messages.
    328  * We read the ID string and read-only into buffers attached to
    329  * the controller softc structure for later use. At the moment,
    330  * we only use the ID string during sk_attach().
    331  */
    332 u_int8_t
    333 sk_vpd_readbyte(struct sk_softc *sc, int addr)
    334 {
    335 	int			i;
    336 
    337 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
    338 	for (i = 0; i < SK_TIMEOUT; i++) {
    339 		DELAY(1);
    340 		if (sk_win_read_2(sc,
    341 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
    342 			break;
    343 	}
    344 
    345 	if (i == SK_TIMEOUT)
    346 		return 0;
    347 
    348 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
    349 }
    350 
    351 void
    352 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
    353 {
    354 	int			i;
    355 	u_int8_t		*ptr;
    356 
    357 	ptr = (u_int8_t *)res;
    358 	for (i = 0; i < sizeof(struct vpd_res); i++)
    359 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
    360 }
    361 
    362 void
    363 sk_vpd_read(struct sk_softc *sc)
    364 {
    365 	int			pos = 0, i;
    366 	struct vpd_res		res;
    367 
    368 	if (sc->sk_vpd_prodname != NULL)
    369 		free(sc->sk_vpd_prodname, M_DEVBUF);
    370 	if (sc->sk_vpd_readonly != NULL)
    371 		free(sc->sk_vpd_readonly, M_DEVBUF);
    372 	sc->sk_vpd_prodname = NULL;
    373 	sc->sk_vpd_readonly = NULL;
    374 
    375 	sk_vpd_read_res(sc, &res, pos);
    376 
    377 	if (res.vr_id != VPD_RES_ID) {
    378 		aprint_error_dev(&sc->sk_dev, "bad VPD resource id: expected %x got %x\n",
    379 		    VPD_RES_ID, res.vr_id);
    380 		return;
    381 	}
    382 
    383 	pos += sizeof(res);
    384 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    385 	if (sc->sk_vpd_prodname == NULL)
    386 		panic("sk_vpd_read");
    387 	for (i = 0; i < res.vr_len; i++)
    388 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
    389 	sc->sk_vpd_prodname[i] = '\0';
    390 	pos += i;
    391 
    392 	sk_vpd_read_res(sc, &res, pos);
    393 
    394 	if (res.vr_id != VPD_RES_READ) {
    395 		aprint_error_dev(&sc->sk_dev, "bad VPD resource id: expected %x got %x\n",
    396 		    VPD_RES_READ, res.vr_id);
    397 		return;
    398 	}
    399 
    400 	pos += sizeof(res);
    401 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    402 	if (sc->sk_vpd_readonly == NULL)
    403 		panic("sk_vpd_read");
    404 	for (i = 0; i < res.vr_len ; i++)
    405 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
    406 }
    407 
    408 int
    409 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
    410 {
    411 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    412 	int i;
    413 
    414 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
    415 
    416 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
    417 		return 0;
    418 
    419 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    420 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
    421 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    422 		for (i = 0; i < SK_TIMEOUT; i++) {
    423 			DELAY(1);
    424 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
    425 			    XM_MMUCMD_PHYDATARDY)
    426 				break;
    427 		}
    428 
    429 		if (i == SK_TIMEOUT) {
    430 			aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
    431 			return 0;
    432 		}
    433 	}
    434 	DELAY(1);
    435 	return SK_XM_READ_2(sc_if, XM_PHY_DATA);
    436 }
    437 
    438 void
    439 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
    440 {
    441 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    442 	int i;
    443 
    444 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
    445 
    446 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    447 	for (i = 0; i < SK_TIMEOUT; i++) {
    448 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    449 			break;
    450 	}
    451 
    452 	if (i == SK_TIMEOUT) {
    453 		aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
    454 		return;
    455 	}
    456 
    457 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
    458 	for (i = 0; i < SK_TIMEOUT; i++) {
    459 		DELAY(1);
    460 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    461 			break;
    462 	}
    463 
    464 	if (i == SK_TIMEOUT)
    465 		aprint_error_dev(&sc_if->sk_dev, "phy write timed out\n");
    466 }
    467 
    468 void
    469 sk_xmac_miibus_statchg(struct device *dev)
    470 {
    471 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    472 	struct mii_data *mii = &sc_if->sk_mii;
    473 
    474 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
    475 
    476 	/*
    477 	 * If this is a GMII PHY, manually set the XMAC's
    478 	 * duplex mode accordingly.
    479 	 */
    480 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    481 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
    482 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    483 		else
    484 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    485 	}
    486 }
    487 
    488 int
    489 sk_marv_miibus_readreg(struct device *dev, int phy, int reg)
    490 {
    491 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    492 	u_int16_t val;
    493 	int i;
    494 
    495 	if (phy != 0 ||
    496 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
    497 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
    498 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
    499 			     phy, reg));
    500 		return 0;
    501 	}
    502 
    503         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    504 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
    505 
    506 	for (i = 0; i < SK_TIMEOUT; i++) {
    507 		DELAY(1);
    508 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
    509 		if (val & YU_SMICR_READ_VALID)
    510 			break;
    511 	}
    512 
    513 	if (i == SK_TIMEOUT) {
    514 		aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
    515 		return 0;
    516 	}
    517 
    518  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
    519 		     SK_TIMEOUT));
    520 
    521         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
    522 
    523 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
    524 		     phy, reg, val));
    525 
    526 	return val;
    527 }
    528 
    529 void
    530 sk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
    531 {
    532 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    533 	int i;
    534 
    535 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
    536 		     phy, reg, val));
    537 
    538 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
    539 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    540 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
    541 
    542 	for (i = 0; i < SK_TIMEOUT; i++) {
    543 		DELAY(1);
    544 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
    545 			break;
    546 	}
    547 
    548 	if (i == SK_TIMEOUT)
    549 		printf("%s: phy write timed out\n", device_xname(&sc_if->sk_dev));
    550 }
    551 
    552 void
    553 sk_marv_miibus_statchg(struct device *dev)
    554 {
    555 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
    556 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
    557 }
    558 
    559 #define SK_HASH_BITS		6
    560 
    561 u_int32_t
    562 sk_xmac_hash(void *addr)
    563 {
    564 	u_int32_t		crc;
    565 
    566 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
    567 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
    568 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    569 	return crc;
    570 }
    571 
    572 u_int32_t
    573 sk_yukon_hash(void *addr)
    574 {
    575 	u_int32_t		crc;
    576 
    577 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
    578 	crc &= ((1 << SK_HASH_BITS) - 1);
    579 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    580 	return crc;
    581 }
    582 
    583 void
    584 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
    585 {
    586 	char *addr = addrv;
    587 	int base = XM_RXFILT_ENTRY(slot);
    588 
    589 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
    590 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
    591 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
    592 }
    593 
    594 void
    595 sk_setmulti(struct sk_if_softc *sc_if)
    596 {
    597 	struct sk_softc *sc = sc_if->sk_softc;
    598 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
    599 	u_int32_t hashes[2] = { 0, 0 };
    600 	int h = 0, i;
    601 	struct ethercom *ec = &sc_if->sk_ethercom;
    602 	struct ether_multi *enm;
    603 	struct ether_multistep step;
    604 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
    605 
    606 	/* First, zot all the existing filters. */
    607 	switch (sc->sk_type) {
    608 	case SK_GENESIS:
    609 		for (i = 1; i < XM_RXFILT_MAX; i++)
    610 			sk_setfilt(sc_if, (void *)&dummy, i);
    611 
    612 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
    613 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
    614 		break;
    615 	case SK_YUKON:
    616 	case SK_YUKON_LITE:
    617 	case SK_YUKON_LP:
    618 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
    619 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
    620 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
    621 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
    622 		break;
    623 	}
    624 
    625 	/* Now program new ones. */
    626 allmulti:
    627 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    628 		hashes[0] = 0xFFFFFFFF;
    629 		hashes[1] = 0xFFFFFFFF;
    630 	} else {
    631 		i = 1;
    632 		/* First find the tail of the list. */
    633 		ETHER_FIRST_MULTI(step, ec, enm);
    634 		while (enm != NULL) {
    635 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
    636 				 ETHER_ADDR_LEN)) {
    637 				ifp->if_flags |= IFF_ALLMULTI;
    638 				goto allmulti;
    639 			}
    640 			DPRINTFN(2,("multicast address %s\n",
    641 	    			ether_sprintf(enm->enm_addrlo)));
    642 			/*
    643 			 * Program the first XM_RXFILT_MAX multicast groups
    644 			 * into the perfect filter. For all others,
    645 			 * use the hash table.
    646 			 */
    647 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
    648 				sk_setfilt(sc_if, enm->enm_addrlo, i);
    649 				i++;
    650 			}
    651 			else {
    652 				switch (sc->sk_type) {
    653 				case SK_GENESIS:
    654 					h = sk_xmac_hash(enm->enm_addrlo);
    655 					break;
    656 				case SK_YUKON:
    657 				case SK_YUKON_LITE:
    658 				case SK_YUKON_LP:
    659 					h = sk_yukon_hash(enm->enm_addrlo);
    660 					break;
    661 				}
    662 				if (h < 32)
    663 					hashes[0] |= (1 << h);
    664 				else
    665 					hashes[1] |= (1 << (h - 32));
    666 			}
    667 
    668 			ETHER_NEXT_MULTI(step, enm);
    669 		}
    670 	}
    671 
    672 	switch (sc->sk_type) {
    673 	case SK_GENESIS:
    674 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
    675 			       XM_MODE_RX_USE_PERFECT);
    676 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
    677 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
    678 		break;
    679 	case SK_YUKON:
    680 	case SK_YUKON_LITE:
    681 	case SK_YUKON_LP:
    682 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
    683 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
    684 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
    685 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
    686 		break;
    687 	}
    688 }
    689 
    690 int
    691 sk_init_rx_ring(struct sk_if_softc *sc_if)
    692 {
    693 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    694 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    695 	int			i;
    696 
    697 	bzero((char *)rd->sk_rx_ring,
    698 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
    699 
    700 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    701 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
    702 		if (i == (SK_RX_RING_CNT - 1)) {
    703 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
    704 			rd->sk_rx_ring[i].sk_next =
    705 				htole32(SK_RX_RING_ADDR(sc_if, 0));
    706 		} else {
    707 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
    708 			rd->sk_rx_ring[i].sk_next =
    709 				htole32(SK_RX_RING_ADDR(sc_if,i+1));
    710 		}
    711 	}
    712 
    713 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    714 		if (sk_newbuf(sc_if, i, NULL,
    715 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
    716 			aprint_error_dev(&sc_if->sk_dev, "failed alloc of %dth mbuf\n", i);
    717 			return ENOBUFS;
    718 		}
    719 	}
    720 	sc_if->sk_cdata.sk_rx_prod = 0;
    721 	sc_if->sk_cdata.sk_rx_cons = 0;
    722 
    723 	return 0;
    724 }
    725 
    726 int
    727 sk_init_tx_ring(struct sk_if_softc *sc_if)
    728 {
    729 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    730 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    731 	int			i;
    732 
    733 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
    734 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
    735 
    736 	for (i = 0; i < SK_TX_RING_CNT; i++) {
    737 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
    738 		if (i == (SK_TX_RING_CNT - 1)) {
    739 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
    740 			rd->sk_tx_ring[i].sk_next =
    741 				htole32(SK_TX_RING_ADDR(sc_if, 0));
    742 		} else {
    743 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
    744 			rd->sk_tx_ring[i].sk_next =
    745 				htole32(SK_TX_RING_ADDR(sc_if,i+1));
    746 		}
    747 	}
    748 
    749 	sc_if->sk_cdata.sk_tx_prod = 0;
    750 	sc_if->sk_cdata.sk_tx_cons = 0;
    751 	sc_if->sk_cdata.sk_tx_cnt = 0;
    752 
    753 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
    754 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    755 
    756 	return 0;
    757 }
    758 
    759 int
    760 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
    761 	  bus_dmamap_t dmamap)
    762 {
    763 	struct mbuf		*m_new = NULL;
    764 	struct sk_chain		*c;
    765 	struct sk_rx_desc	*r;
    766 
    767 	if (m == NULL) {
    768 		void *buf = NULL;
    769 
    770 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    771 		if (m_new == NULL) {
    772 			aprint_error_dev(&sc_if->sk_dev, "no memory for rx list -- "
    773 			    "packet dropped!\n");
    774 			return ENOBUFS;
    775 		}
    776 
    777 		/* Allocate the jumbo buffer */
    778 		buf = sk_jalloc(sc_if);
    779 		if (buf == NULL) {
    780 			m_freem(m_new);
    781 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
    782 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
    783 			return ENOBUFS;
    784 		}
    785 
    786 		/* Attach the buffer to the mbuf */
    787 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    788 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
    789 
    790 	} else {
    791 		/*
    792 	 	 * We're re-using a previously allocated mbuf;
    793 		 * be sure to re-init pointers and lengths to
    794 		 * default values.
    795 		 */
    796 		m_new = m;
    797 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    798 		m_new->m_data = m_new->m_ext.ext_buf;
    799 	}
    800 	m_adj(m_new, ETHER_ALIGN);
    801 
    802 	c = &sc_if->sk_cdata.sk_rx_chain[i];
    803 	r = c->sk_desc;
    804 	c->sk_mbuf = m_new;
    805 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
    806 	    (((vaddr_t)m_new->m_data
    807 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
    808 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
    809 
    810 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    811 
    812 	return 0;
    813 }
    814 
    815 /*
    816  * Memory management for jumbo frames.
    817  */
    818 
    819 int
    820 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
    821 {
    822 	struct sk_softc		*sc = sc_if->sk_softc;
    823 	char *ptr, *kva;
    824 	bus_dma_segment_t	seg;
    825 	int		i, rseg, state, error;
    826 	struct sk_jpool_entry   *entry;
    827 
    828 	state = error = 0;
    829 
    830 	/* Grab a big chunk o' storage. */
    831 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
    832 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    833 		aprint_error_dev(&sc->sk_dev, "can't alloc rx buffers\n");
    834 		return ENOBUFS;
    835 	}
    836 
    837 	state = 1;
    838 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
    839 			   BUS_DMA_NOWAIT)) {
    840 		aprint_error_dev(&sc->sk_dev, "can't map dma buffers (%d bytes)\n",
    841 		    SK_JMEM);
    842 		error = ENOBUFS;
    843 		goto out;
    844 	}
    845 
    846 	state = 2;
    847 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
    848 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
    849 		aprint_error_dev(&sc->sk_dev, "can't create dma map\n");
    850 		error = ENOBUFS;
    851 		goto out;
    852 	}
    853 
    854 	state = 3;
    855 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
    856 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
    857 		aprint_error_dev(&sc->sk_dev, "can't load dma map\n");
    858 		error = ENOBUFS;
    859 		goto out;
    860 	}
    861 
    862 	state = 4;
    863 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
    864 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
    865 
    866 	LIST_INIT(&sc_if->sk_jfree_listhead);
    867 	LIST_INIT(&sc_if->sk_jinuse_listhead);
    868 
    869 	/*
    870 	 * Now divide it up into 9K pieces and save the addresses
    871 	 * in an array.
    872 	 */
    873 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
    874 	for (i = 0; i < SK_JSLOTS; i++) {
    875 		sc_if->sk_cdata.sk_jslots[i] = ptr;
    876 		ptr += SK_JLEN;
    877 		entry = malloc(sizeof(struct sk_jpool_entry),
    878 		    M_DEVBUF, M_NOWAIT);
    879 		if (entry == NULL) {
    880 			aprint_error_dev(&sc->sk_dev, "no memory for jumbo buffer queue!\n");
    881 			error = ENOBUFS;
    882 			goto out;
    883 		}
    884 		entry->slot = i;
    885 		if (i)
    886 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
    887 				 entry, jpool_entries);
    888 		else
    889 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
    890 				 entry, jpool_entries);
    891 	}
    892 out:
    893 	if (error != 0) {
    894 		switch (state) {
    895 		case 4:
    896 			bus_dmamap_unload(sc->sc_dmatag,
    897 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    898 		case 3:
    899 			bus_dmamap_destroy(sc->sc_dmatag,
    900 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    901 		case 2:
    902 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
    903 		case 1:
    904 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
    905 			break;
    906 		default:
    907 			break;
    908 		}
    909 	}
    910 
    911 	return error;
    912 }
    913 
    914 /*
    915  * Allocate a jumbo buffer.
    916  */
    917 void *
    918 sk_jalloc(struct sk_if_softc *sc_if)
    919 {
    920 	struct sk_jpool_entry   *entry;
    921 
    922 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
    923 
    924 	if (entry == NULL)
    925 		return NULL;
    926 
    927 	LIST_REMOVE(entry, jpool_entries);
    928 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
    929 	return sc_if->sk_cdata.sk_jslots[entry->slot];
    930 }
    931 
    932 /*
    933  * Release a jumbo buffer.
    934  */
    935 void
    936 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
    937 {
    938 	struct sk_jpool_entry *entry;
    939 	struct sk_if_softc *sc;
    940 	int i, s;
    941 
    942 	/* Extract the softc struct pointer. */
    943 	sc = (struct sk_if_softc *)arg;
    944 
    945 	if (sc == NULL)
    946 		panic("sk_jfree: can't find softc pointer!");
    947 
    948 	/* calculate the slot this buffer belongs to */
    949 
    950 	i = ((vaddr_t)buf
    951 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
    952 
    953 	if ((i < 0) || (i >= SK_JSLOTS))
    954 		panic("sk_jfree: asked to free buffer that we don't manage!");
    955 
    956 	s = splvm();
    957 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
    958 	if (entry == NULL)
    959 		panic("sk_jfree: buffer not in use!");
    960 	entry->slot = i;
    961 	LIST_REMOVE(entry, jpool_entries);
    962 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
    963 
    964 	if (__predict_true(m != NULL))
    965 		pool_cache_put(mb_cache, m);
    966 	splx(s);
    967 }
    968 
    969 /*
    970  * Set media options.
    971  */
    972 int
    973 sk_ifmedia_upd(struct ifnet *ifp)
    974 {
    975 	struct sk_if_softc *sc_if = ifp->if_softc;
    976 	int rc;
    977 
    978 	(void) sk_init(ifp);
    979 	if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
    980 		return 0;
    981 	return rc;
    982 }
    983 
    984 int
    985 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
    986 {
    987 	struct sk_if_softc *sc_if = ifp->if_softc;
    988 	struct sk_softc *sc = sc_if->sk_softc;
    989 	int s, error = 0;
    990 
    991 	/* DPRINTFN(2, ("sk_ioctl\n")); */
    992 
    993 	s = splnet();
    994 
    995 	switch (command) {
    996 
    997 	case SIOCSIFFLAGS:
    998 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
    999 		if (ifp->if_flags & IFF_UP) {
   1000 			if (ifp->if_flags & IFF_RUNNING &&
   1001 			    ifp->if_flags & IFF_PROMISC &&
   1002 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
   1003 				switch (sc->sk_type) {
   1004 				case SK_GENESIS:
   1005 					SK_XM_SETBIT_4(sc_if, XM_MODE,
   1006 					    XM_MODE_RX_PROMISC);
   1007 					break;
   1008 				case SK_YUKON:
   1009 				case SK_YUKON_LITE:
   1010 				case SK_YUKON_LP:
   1011 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
   1012 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1013 					break;
   1014 				}
   1015 				sk_setmulti(sc_if);
   1016 			} else if (ifp->if_flags & IFF_RUNNING &&
   1017 			    !(ifp->if_flags & IFF_PROMISC) &&
   1018 			    sc_if->sk_if_flags & IFF_PROMISC) {
   1019 				switch (sc->sk_type) {
   1020 				case SK_GENESIS:
   1021 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
   1022 					    XM_MODE_RX_PROMISC);
   1023 					break;
   1024 				case SK_YUKON:
   1025 				case SK_YUKON_LITE:
   1026 				case SK_YUKON_LP:
   1027 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
   1028 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1029 					break;
   1030 				}
   1031 
   1032 				sk_setmulti(sc_if);
   1033 			} else
   1034 				(void) sk_init(ifp);
   1035 		} else {
   1036 			if (ifp->if_flags & IFF_RUNNING)
   1037 				sk_stop(ifp,0);
   1038 		}
   1039 		sc_if->sk_if_flags = ifp->if_flags;
   1040 		error = 0;
   1041 		break;
   1042 
   1043 	default:
   1044 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
   1045 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   1046 			break;
   1047 
   1048 		error = 0;
   1049 
   1050 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   1051 			;
   1052 		else if (ifp->if_flags & IFF_RUNNING) {
   1053 			sk_setmulti(sc_if);
   1054 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
   1055 		}
   1056 		break;
   1057 	}
   1058 
   1059 	splx(s);
   1060 	return error;
   1061 }
   1062 
   1063 void
   1064 sk_update_int_mod(struct sk_softc *sc)
   1065 {
   1066 	u_int32_t imtimer_ticks;
   1067 
   1068 	/*
   1069          * Configure interrupt moderation. The moderation timer
   1070 	 * defers interrupts specified in the interrupt moderation
   1071 	 * timer mask based on the timeout specified in the interrupt
   1072 	 * moderation timer init register. Each bit in the timer
   1073 	 * register represents one tick, so to specify a timeout in
   1074 	 * microseconds, we have to multiply by the correct number of
   1075 	 * ticks-per-microsecond.
   1076 	 */
   1077 	switch (sc->sk_type) {
   1078 	case SK_GENESIS:
   1079 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   1080 		break;
   1081 	case SK_YUKON_EC:
   1082 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   1083 		break;
   1084 	default:
   1085 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   1086 	}
   1087 	aprint_verbose_dev(&sc->sk_dev, "interrupt moderation is %d us\n",
   1088 	    sc->sk_int_mod);
   1089         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
   1090         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
   1091 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
   1092         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
   1093 	sc->sk_int_mod_pending = 0;
   1094 }
   1095 
   1096 /*
   1097  * Lookup: Check the PCI vendor and device, and return a pointer to
   1098  * The structure if the IDs match against our list.
   1099  */
   1100 
   1101 static const struct sk_product *
   1102 sk_lookup(const struct pci_attach_args *pa)
   1103 {
   1104 	const struct sk_product *psk;
   1105 
   1106 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
   1107 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
   1108 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
   1109 			return psk;
   1110 	}
   1111 	return NULL;
   1112 }
   1113 
   1114 /*
   1115  * Probe for a SysKonnect GEnesis chip.
   1116  */
   1117 
   1118 int
   1119 skc_probe(struct device *parent, struct cfdata *match,
   1120     void *aux)
   1121 {
   1122 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1123 	const struct sk_product *psk;
   1124 	pcireg_t subid;
   1125 
   1126 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
   1127 
   1128 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
   1129 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
   1130 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
   1131 	    subid == SK_LINKSYS_EG1032_SUBID)
   1132 		return 1;
   1133 
   1134 	if ((psk = sk_lookup(pa))) {
   1135 		return 1;
   1136 	}
   1137 	return 0;
   1138 }
   1139 
   1140 /*
   1141  * Force the GEnesis into reset, then bring it out of reset.
   1142  */
   1143 void sk_reset(struct sk_softc *sc)
   1144 {
   1145 	DPRINTFN(2, ("sk_reset\n"));
   1146 
   1147 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
   1148 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
   1149 	if (SK_YUKON_FAMILY(sc->sk_type))
   1150 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
   1151 
   1152 	DELAY(1000);
   1153 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
   1154 	DELAY(2);
   1155 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
   1156 	if (SK_YUKON_FAMILY(sc->sk_type))
   1157 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
   1158 
   1159 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
   1160 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
   1161 		     CSR_READ_2(sc, SK_LINK_CTRL)));
   1162 
   1163 	if (sc->sk_type == SK_GENESIS) {
   1164 		/* Configure packet arbiter */
   1165 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
   1166 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1167 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1168 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1169 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1170 	}
   1171 
   1172 	/* Enable RAM interface */
   1173 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
   1174 
   1175 	sk_update_int_mod(sc);
   1176 }
   1177 
   1178 int
   1179 sk_probe(struct device *parent, struct cfdata *match,
   1180     void *aux)
   1181 {
   1182 	struct skc_attach_args *sa = aux;
   1183 
   1184 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
   1185 		return 0;
   1186 
   1187 	return 1;
   1188 }
   1189 
   1190 /*
   1191  * Each XMAC chip is attached as a separate logical IP interface.
   1192  * Single port cards will have only one logical interface of course.
   1193  */
   1194 void
   1195 sk_attach(struct device *parent, struct device *self, void *aux)
   1196 {
   1197 	struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
   1198 	struct sk_softc *sc = (struct sk_softc *)parent;
   1199 	struct skc_attach_args *sa = aux;
   1200 	struct sk_txmap_entry	*entry;
   1201 	struct ifnet *ifp;
   1202 	bus_dma_segment_t seg;
   1203 	bus_dmamap_t dmamap;
   1204 	void *kva;
   1205 	int i, rseg;
   1206 
   1207 	aprint_naive("\n");
   1208 
   1209 	sc_if->sk_port = sa->skc_port;
   1210 	sc_if->sk_softc = sc;
   1211 	sc->sk_if[sa->skc_port] = sc_if;
   1212 
   1213 	if (sa->skc_port == SK_PORT_A)
   1214 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
   1215 	if (sa->skc_port == SK_PORT_B)
   1216 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
   1217 
   1218 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
   1219 
   1220 	/*
   1221 	 * Get station address for this interface. Note that
   1222 	 * dual port cards actually come with three station
   1223 	 * addresses: one for each port, plus an extra. The
   1224 	 * extra one is used by the SysKonnect driver software
   1225 	 * as a 'virtual' station address for when both ports
   1226 	 * are operating in failover mode. Currently we don't
   1227 	 * use this extra address.
   1228 	 */
   1229 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1230 		sc_if->sk_enaddr[i] =
   1231 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
   1232 
   1233 
   1234 	aprint_normal(": Ethernet address %s\n",
   1235 	    ether_sprintf(sc_if->sk_enaddr));
   1236 
   1237 	/*
   1238 	 * Set up RAM buffer addresses. The NIC will have a certain
   1239 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
   1240 	 * need to divide this up a) between the transmitter and
   1241  	 * receiver and b) between the two XMACs, if this is a
   1242 	 * dual port NIC. Our algorithm is to divide up the memory
   1243 	 * evenly so that everyone gets a fair share.
   1244 	 */
   1245 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
   1246 		u_int32_t		chunk, val;
   1247 
   1248 		chunk = sc->sk_ramsize / 2;
   1249 		val = sc->sk_rboff / sizeof(u_int64_t);
   1250 		sc_if->sk_rx_ramstart = val;
   1251 		val += (chunk / sizeof(u_int64_t));
   1252 		sc_if->sk_rx_ramend = val - 1;
   1253 		sc_if->sk_tx_ramstart = val;
   1254 		val += (chunk / sizeof(u_int64_t));
   1255 		sc_if->sk_tx_ramend = val - 1;
   1256 	} else {
   1257 		u_int32_t		chunk, val;
   1258 
   1259 		chunk = sc->sk_ramsize / 4;
   1260 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
   1261 		    sizeof(u_int64_t);
   1262 		sc_if->sk_rx_ramstart = val;
   1263 		val += (chunk / sizeof(u_int64_t));
   1264 		sc_if->sk_rx_ramend = val - 1;
   1265 		sc_if->sk_tx_ramstart = val;
   1266 		val += (chunk / sizeof(u_int64_t));
   1267 		sc_if->sk_tx_ramend = val - 1;
   1268 	}
   1269 
   1270 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
   1271 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
   1272 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
   1273 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
   1274 
   1275 	/* Read and save PHY type and set PHY address */
   1276 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
   1277 	switch (sc_if->sk_phytype) {
   1278 	case SK_PHYTYPE_XMAC:
   1279 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
   1280 		break;
   1281 	case SK_PHYTYPE_BCOM:
   1282 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
   1283 		break;
   1284 	case SK_PHYTYPE_MARV_COPPER:
   1285 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
   1286 		break;
   1287 	default:
   1288 		aprint_error_dev(&sc->sk_dev, "unsupported PHY type: %d\n",
   1289 		    sc_if->sk_phytype);
   1290 		return;
   1291 	}
   1292 
   1293 	/* Allocate the descriptor queues. */
   1294 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
   1295 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1296 		aprint_error_dev(&sc->sk_dev, "can't alloc rx buffers\n");
   1297 		goto fail;
   1298 	}
   1299 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
   1300 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
   1301 		aprint_error_dev(&sc_if->sk_dev, "can't map dma buffers (%lu bytes)\n",
   1302 		       (u_long) sizeof(struct sk_ring_data));
   1303 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1304 		goto fail;
   1305 	}
   1306 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
   1307 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
   1308             &sc_if->sk_ring_map)) {
   1309 		aprint_error_dev(&sc_if->sk_dev, "can't create dma map\n");
   1310 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1311 		    sizeof(struct sk_ring_data));
   1312 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1313 		goto fail;
   1314 	}
   1315 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
   1316 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
   1317 		aprint_error_dev(&sc_if->sk_dev, "can't load dma map\n");
   1318 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1319 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1320 		    sizeof(struct sk_ring_data));
   1321 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1322 		goto fail;
   1323 	}
   1324 
   1325 	for (i = 0; i < SK_RX_RING_CNT; i++)
   1326 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   1327 
   1328 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
   1329 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   1330 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   1331 
   1332 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
   1333 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
   1334 			aprint_error_dev(&sc_if->sk_dev, "Can't create TX dmamap\n");
   1335 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1336 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1337 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1338 			    sizeof(struct sk_ring_data));
   1339 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1340 			goto fail;
   1341 		}
   1342 
   1343 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
   1344 		if (!entry) {
   1345 			aprint_error_dev(&sc_if->sk_dev, "Can't alloc txmap entry\n");
   1346 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
   1347 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1348 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1349 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1350 			    sizeof(struct sk_ring_data));
   1351 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1352 			goto fail;
   1353 		}
   1354 		entry->dmamap = dmamap;
   1355 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
   1356 	}
   1357 
   1358         sc_if->sk_rdata = (struct sk_ring_data *)kva;
   1359 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
   1360 
   1361 	ifp = &sc_if->sk_ethercom.ec_if;
   1362 	/* Try to allocate memory for jumbo buffers. */
   1363 	if (sk_alloc_jumbo_mem(sc_if)) {
   1364 		aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
   1365 		goto fail;
   1366 	}
   1367 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
   1368 		| ETHERCAP_JUMBO_MTU;
   1369 
   1370 	ifp->if_softc = sc_if;
   1371 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1372 	ifp->if_ioctl = sk_ioctl;
   1373 	ifp->if_start = sk_start;
   1374 	ifp->if_stop = sk_stop;
   1375 	ifp->if_init = sk_init;
   1376 	ifp->if_watchdog = sk_watchdog;
   1377 	ifp->if_capabilities = 0;
   1378 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
   1379 	IFQ_SET_READY(&ifp->if_snd);
   1380 	strlcpy(ifp->if_xname, device_xname(&sc_if->sk_dev), IFNAMSIZ);
   1381 
   1382 	/*
   1383 	 * Do miibus setup.
   1384 	 */
   1385 	switch (sc->sk_type) {
   1386 	case SK_GENESIS:
   1387 		sk_init_xmac(sc_if);
   1388 		break;
   1389 	case SK_YUKON:
   1390 	case SK_YUKON_LITE:
   1391 	case SK_YUKON_LP:
   1392 		sk_init_yukon(sc_if);
   1393 		break;
   1394 	default:
   1395 		aprint_error_dev(&sc->sk_dev, "unknown device type %d\n",
   1396 			sc->sk_type);
   1397 		goto fail;
   1398 	}
   1399 
   1400  	DPRINTFN(2, ("sk_attach: 1\n"));
   1401 
   1402 	sc_if->sk_mii.mii_ifp = ifp;
   1403 	switch (sc->sk_type) {
   1404 	case SK_GENESIS:
   1405 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
   1406 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
   1407 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
   1408 		break;
   1409 	case SK_YUKON:
   1410 	case SK_YUKON_LITE:
   1411 	case SK_YUKON_LP:
   1412 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
   1413 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
   1414 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
   1415 		break;
   1416 	}
   1417 
   1418 	sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
   1419 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
   1420 	    sk_ifmedia_upd, ether_mediastatus);
   1421 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
   1422 	    MII_OFFSET_ANY, 0);
   1423 	if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
   1424 		aprint_error_dev(&sc_if->sk_dev, "no PHY found!\n");
   1425 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
   1426 			    0, NULL);
   1427 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
   1428 	} else
   1429 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1430 
   1431 	callout_init(&sc_if->sk_tick_ch, 0);
   1432 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
   1433 
   1434 	DPRINTFN(2, ("sk_attach: 1\n"));
   1435 
   1436 	/*
   1437 	 * Call MI attach routines.
   1438 	 */
   1439 	if_attach(ifp);
   1440 
   1441 	ether_ifattach(ifp, sc_if->sk_enaddr);
   1442 
   1443 #if NRND > 0
   1444         rnd_attach_source(&sc->rnd_source, device_xname(&sc->sk_dev),
   1445             RND_TYPE_NET, 0);
   1446 #endif
   1447 
   1448 	DPRINTFN(2, ("sk_attach: end\n"));
   1449 
   1450 	return;
   1451 
   1452 fail:
   1453 	sc->sk_if[sa->skc_port] = NULL;
   1454 }
   1455 
   1456 int
   1457 skcprint(void *aux, const char *pnp)
   1458 {
   1459 	struct skc_attach_args *sa = aux;
   1460 
   1461 	if (pnp)
   1462 		aprint_normal("sk port %c at %s",
   1463 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
   1464 	else
   1465 		aprint_normal(" port %c",
   1466 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
   1467 	return UNCONF;
   1468 }
   1469 
   1470 /*
   1471  * Attach the interface. Allocate softc structures, do ifmedia
   1472  * setup and ethernet/BPF attach.
   1473  */
   1474 void
   1475 skc_attach(struct device *parent, struct device *self, void *aux)
   1476 {
   1477 	struct sk_softc *sc = (struct sk_softc *)self;
   1478 	struct pci_attach_args *pa = aux;
   1479 	struct skc_attach_args skca;
   1480 	pci_chipset_tag_t pc = pa->pa_pc;
   1481 #ifndef SK_USEIOSPACE
   1482 	pcireg_t memtype;
   1483 #endif
   1484 	pci_intr_handle_t ih;
   1485 	const char *intrstr = NULL;
   1486 	bus_addr_t iobase;
   1487 	bus_size_t iosize;
   1488 	int rc, sk_nodenum;
   1489 	u_int32_t command;
   1490 	const char *revstr;
   1491 	const struct sysctlnode *node;
   1492 
   1493 	aprint_naive("\n");
   1494 
   1495 	DPRINTFN(2, ("begin skc_attach\n"));
   1496 
   1497 	/*
   1498 	 * Handle power management nonsense.
   1499 	 */
   1500 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
   1501 
   1502 	if (command == 0x01) {
   1503 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
   1504 		if (command & SK_PSTATE_MASK) {
   1505 			u_int32_t		xiobase, membase, irq;
   1506 
   1507 			/* Save important PCI config data. */
   1508 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
   1509 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
   1510 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
   1511 
   1512 			/* Reset the power state. */
   1513 			aprint_normal_dev(&sc->sk_dev, "chip is in D%d power mode "
   1514 			    "-- setting to D0\n",
   1515 			    command & SK_PSTATE_MASK);
   1516 			command &= 0xFFFFFFFC;
   1517 			pci_conf_write(pc, pa->pa_tag,
   1518 			    SK_PCI_PWRMGMTCTRL, command);
   1519 
   1520 			/* Restore PCI config data. */
   1521 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
   1522 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
   1523 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
   1524 		}
   1525 	}
   1526 
   1527 	/*
   1528 	 * Map control/status registers.
   1529 	 */
   1530 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1531 	command |= PCI_COMMAND_IO_ENABLE |
   1532 	    PCI_COMMAND_MEM_ENABLE |
   1533 	    PCI_COMMAND_MASTER_ENABLE;
   1534 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1535 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1536 
   1537 #ifdef SK_USEIOSPACE
   1538 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
   1539 		aprint_error(": failed to enable I/O ports!\n");
   1540 		return;
   1541 	}
   1542 	/*
   1543 	 * Map control/status registers.
   1544 	 */
   1545 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
   1546 			&sc->sk_btag, &sc->sk_bhandle,
   1547 			&iobase, &iosize)) {
   1548 		aprint_error(": can't find i/o space\n");
   1549 		return;
   1550 	}
   1551 #else
   1552 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1553 		aprint_error(": failed to enable memory mapping!\n");
   1554 		return;
   1555 	}
   1556 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
   1557 	switch (memtype) {
   1558         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1559         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1560                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
   1561 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
   1562 				   &iobase, &iosize) == 0)
   1563                         break;
   1564         default:
   1565                 aprint_error_dev(&sc->sk_dev, "can't find mem space\n");
   1566                 return;
   1567 	}
   1568 
   1569 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
   1570 #endif
   1571 	sc->sc_dmatag = pa->pa_dmat;
   1572 
   1573 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
   1574 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
   1575 
   1576 	/* bail out here if chip is not recognized */
   1577 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
   1578 		aprint_error_dev(&sc->sk_dev, "unknown chip type\n");
   1579 		goto fail;
   1580 	}
   1581 	if (SK_IS_YUKON2(sc)) {
   1582 		aprint_error_dev(&sc->sk_dev, "Does not support Yukon2--try msk(4).\n");
   1583 		goto fail;
   1584 	}
   1585 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
   1586 
   1587 	/* Allocate interrupt */
   1588 	if (pci_intr_map(pa, &ih)) {
   1589 		aprint_error(": couldn't map interrupt\n");
   1590 		goto fail;
   1591 	}
   1592 
   1593 	intrstr = pci_intr_string(pc, ih);
   1594 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
   1595 	if (sc->sk_intrhand == NULL) {
   1596 		aprint_error(": couldn't establish interrupt");
   1597 		if (intrstr != NULL)
   1598 			aprint_normal(" at %s", intrstr);
   1599 		goto fail;
   1600 	}
   1601 	aprint_normal(": %s\n", intrstr);
   1602 
   1603 	/* Reset the adapter. */
   1604 	sk_reset(sc);
   1605 
   1606 	/* Read and save vital product data from EEPROM. */
   1607 	sk_vpd_read(sc);
   1608 
   1609 	if (sc->sk_type == SK_GENESIS) {
   1610 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1611 		/* Read and save RAM size and RAMbuffer offset */
   1612 		switch (val) {
   1613 		case SK_RAMSIZE_512K_64:
   1614 			sc->sk_ramsize = 0x80000;
   1615 			sc->sk_rboff = SK_RBOFF_0;
   1616 			break;
   1617 		case SK_RAMSIZE_1024K_64:
   1618 			sc->sk_ramsize = 0x100000;
   1619 			sc->sk_rboff = SK_RBOFF_80000;
   1620 			break;
   1621 		case SK_RAMSIZE_1024K_128:
   1622 			sc->sk_ramsize = 0x100000;
   1623 			sc->sk_rboff = SK_RBOFF_0;
   1624 			break;
   1625 		case SK_RAMSIZE_2048K_128:
   1626 			sc->sk_ramsize = 0x200000;
   1627 			sc->sk_rboff = SK_RBOFF_0;
   1628 			break;
   1629 		default:
   1630 			aprint_error_dev(&sc->sk_dev, "unknown ram size: %d\n",
   1631 			       val);
   1632 			goto fail_1;
   1633 			break;
   1634 		}
   1635 
   1636 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
   1637 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
   1638 			     sc->sk_rboff));
   1639 	} else {
   1640 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1641 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
   1642 		sc->sk_rboff = SK_RBOFF_0;
   1643 
   1644 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
   1645 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
   1646 			     sc->sk_rboff));
   1647 	}
   1648 
   1649 	/* Read and save physical media type */
   1650 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
   1651 	case SK_PMD_1000BASESX:
   1652 		sc->sk_pmd = IFM_1000_SX;
   1653 		break;
   1654 	case SK_PMD_1000BASELX:
   1655 		sc->sk_pmd = IFM_1000_LX;
   1656 		break;
   1657 	case SK_PMD_1000BASECX:
   1658 		sc->sk_pmd = IFM_1000_CX;
   1659 		break;
   1660 	case SK_PMD_1000BASETX:
   1661 	case SK_PMD_1000BASETX_ALT:
   1662 		sc->sk_pmd = IFM_1000_T;
   1663 		break;
   1664 	default:
   1665 		aprint_error_dev(&sc->sk_dev, "unknown media type: 0x%x\n",
   1666 		    sk_win_read_1(sc, SK_PMDTYPE));
   1667 		goto fail_1;
   1668 	}
   1669 
   1670 	/* determine whether to name it with vpd or just make it up */
   1671 	/* Marvell Yukon VPD's can freqently be bogus */
   1672 
   1673 	switch (pa->pa_id) {
   1674 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1675 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
   1676 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
   1677 	case PCI_PRODUCT_3COM_3C940:
   1678 	case PCI_PRODUCT_DLINK_DGE530T:
   1679 	case PCI_PRODUCT_DLINK_DGE560T:
   1680 	case PCI_PRODUCT_DLINK_DGE560T_2:
   1681 	case PCI_PRODUCT_LINKSYS_EG1032:
   1682 	case PCI_PRODUCT_LINKSYS_EG1064:
   1683 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1684 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
   1685 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
   1686 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
   1687 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
   1688 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
   1689 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
   1690 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
   1691  		sc->sk_name = sc->sk_vpd_prodname;
   1692  		break;
   1693 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
   1694 	/* whoops yukon vpd prodname bears no resemblance to reality */
   1695 		switch (sc->sk_type) {
   1696 		case SK_GENESIS:
   1697 			sc->sk_name = sc->sk_vpd_prodname;
   1698 			break;
   1699 		case SK_YUKON:
   1700 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
   1701 			break;
   1702 		case SK_YUKON_LITE:
   1703 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
   1704 			break;
   1705 		case SK_YUKON_LP:
   1706 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
   1707 			break;
   1708 		default:
   1709 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
   1710 		}
   1711 
   1712 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
   1713 
   1714 		if ( sc->sk_type == SK_YUKON ) {
   1715 			uint32_t flashaddr;
   1716 			uint8_t testbyte;
   1717 
   1718 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
   1719 
   1720 			/* test Flash-Address Register */
   1721 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
   1722 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
   1723 
   1724 			if (testbyte != 0) {
   1725 				/* this is yukon lite Rev. A0 */
   1726 				sc->sk_type = SK_YUKON_LITE;
   1727 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
   1728 				/* restore Flash-Address Register */
   1729 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
   1730 			}
   1731 		}
   1732 		break;
   1733 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
   1734 		sc->sk_name = sc->sk_vpd_prodname;
   1735 		break;
   1736  	default:
   1737 		sc->sk_name = "Unknown Marvell";
   1738 	}
   1739 
   1740 
   1741 	if ( sc->sk_type == SK_YUKON_LITE ) {
   1742 		switch (sc->sk_rev) {
   1743 		case SK_YUKON_LITE_REV_A0:
   1744 			revstr = "A0";
   1745 			break;
   1746 		case SK_YUKON_LITE_REV_A1:
   1747 			revstr = "A1";
   1748 			break;
   1749 		case SK_YUKON_LITE_REV_A3:
   1750 			revstr = "A3";
   1751 			break;
   1752 		default:
   1753 			revstr = "";
   1754 		}
   1755 	} else {
   1756 		revstr = "";
   1757 	}
   1758 
   1759 	/* Announce the product name. */
   1760 	aprint_normal_dev(&sc->sk_dev, "%s rev. %s(0x%x)\n",
   1761 			      sc->sk_name, revstr, sc->sk_rev);
   1762 
   1763 	skca.skc_port = SK_PORT_A;
   1764 	(void)config_found(&sc->sk_dev, &skca, skcprint);
   1765 
   1766 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
   1767 		skca.skc_port = SK_PORT_B;
   1768 		(void)config_found(&sc->sk_dev, &skca, skcprint);
   1769 	}
   1770 
   1771 	/* Turn on the 'driver is loaded' LED. */
   1772 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   1773 
   1774 	/* skc sysctl setup */
   1775 
   1776 	sc->sk_int_mod = SK_IM_DEFAULT;
   1777 	sc->sk_int_mod_pending = 0;
   1778 
   1779 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1780 	    0, CTLTYPE_NODE, device_xname(&sc->sk_dev),
   1781 	    SYSCTL_DESCR("skc per-controller controls"),
   1782 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
   1783 	    CTL_EOL)) != 0) {
   1784 		aprint_normal_dev(&sc->sk_dev, "couldn't create sysctl node\n");
   1785 		goto fail_1;
   1786 	}
   1787 
   1788 	sk_nodenum = node->sysctl_num;
   1789 
   1790 	/* interrupt moderation time in usecs */
   1791 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1792 	    CTLFLAG_READWRITE,
   1793 	    CTLTYPE_INT, "int_mod",
   1794 	    SYSCTL_DESCR("sk interrupt moderation timer"),
   1795 	    sk_sysctl_handler, 0, sc,
   1796 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
   1797 	    CTL_EOL)) != 0) {
   1798 		aprint_normal_dev(&sc->sk_dev, "couldn't create int_mod sysctl node\n");
   1799 		goto fail_1;
   1800 	}
   1801 
   1802 	return;
   1803 
   1804 fail_1:
   1805 	pci_intr_disestablish(pc, sc->sk_intrhand);
   1806 fail:
   1807 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
   1808 }
   1809 
   1810 int
   1811 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
   1812 {
   1813 	struct sk_softc		*sc = sc_if->sk_softc;
   1814 	struct sk_tx_desc	*f = NULL;
   1815 	u_int32_t		frag, cur, cnt = 0, sk_ctl;
   1816 	int			i;
   1817 	struct sk_txmap_entry	*entry;
   1818 	bus_dmamap_t		txmap;
   1819 
   1820 	DPRINTFN(3, ("sk_encap\n"));
   1821 
   1822 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
   1823 	if (entry == NULL) {
   1824 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
   1825 		return ENOBUFS;
   1826 	}
   1827 	txmap = entry->dmamap;
   1828 
   1829 	cur = frag = *txidx;
   1830 
   1831 #ifdef SK_DEBUG
   1832 	if (skdebug >= 3)
   1833 		sk_dump_mbuf(m_head);
   1834 #endif
   1835 
   1836 	/*
   1837 	 * Start packing the mbufs in this chain into
   1838 	 * the fragment pointers. Stop when we run out
   1839 	 * of fragments or hit the end of the mbuf chain.
   1840 	 */
   1841 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
   1842 	    BUS_DMA_NOWAIT)) {
   1843 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
   1844 		return ENOBUFS;
   1845 	}
   1846 
   1847 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
   1848 
   1849 	/* Sync the DMA map. */
   1850 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
   1851 	    BUS_DMASYNC_PREWRITE);
   1852 
   1853 	for (i = 0; i < txmap->dm_nsegs; i++) {
   1854 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
   1855 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
   1856 			return ENOBUFS;
   1857 		}
   1858 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
   1859 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
   1860 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
   1861 		if (cnt == 0)
   1862 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
   1863 		else
   1864 			sk_ctl |= SK_TXCTL_OWN;
   1865 		f->sk_ctl = htole32(sk_ctl);
   1866 		cur = frag;
   1867 		SK_INC(frag, SK_TX_RING_CNT);
   1868 		cnt++;
   1869 	}
   1870 
   1871 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
   1872 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
   1873 
   1874 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
   1875 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
   1876 		htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
   1877 
   1878 	/* Sync descriptors before handing to chip */
   1879 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
   1880 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1881 
   1882 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
   1883 		htole32(SK_TXCTL_OWN);
   1884 
   1885 	/* Sync first descriptor to hand it off */
   1886 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1887 
   1888 	sc_if->sk_cdata.sk_tx_cnt += cnt;
   1889 
   1890 #ifdef SK_DEBUG
   1891 	if (skdebug >= 3) {
   1892 		struct sk_tx_desc *desc;
   1893 		u_int32_t idx;
   1894 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
   1895 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
   1896 			sk_dump_txdesc(desc, idx);
   1897 		}
   1898 	}
   1899 #endif
   1900 
   1901 	*txidx = frag;
   1902 
   1903 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
   1904 
   1905 	return 0;
   1906 }
   1907 
   1908 void
   1909 sk_start(struct ifnet *ifp)
   1910 {
   1911         struct sk_if_softc	*sc_if = ifp->if_softc;
   1912         struct sk_softc		*sc = sc_if->sk_softc;
   1913         struct mbuf		*m_head = NULL;
   1914         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
   1915 	int			pkts = 0;
   1916 
   1917 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
   1918 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
   1919 
   1920 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
   1921 		IFQ_POLL(&ifp->if_snd, m_head);
   1922 		if (m_head == NULL)
   1923 			break;
   1924 
   1925 		/*
   1926 		 * Pack the data into the transmit ring. If we
   1927 		 * don't have room, set the OACTIVE flag and wait
   1928 		 * for the NIC to drain the ring.
   1929 		 */
   1930 		if (sk_encap(sc_if, m_head, &idx)) {
   1931 			ifp->if_flags |= IFF_OACTIVE;
   1932 			break;
   1933 		}
   1934 
   1935 		/* now we are committed to transmit the packet */
   1936 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1937 		pkts++;
   1938 
   1939 		/*
   1940 		 * If there's a BPF listener, bounce a copy of this frame
   1941 		 * to him.
   1942 		 */
   1943 #if NBPFILTER > 0
   1944 		if (ifp->if_bpf)
   1945 			bpf_mtap(ifp->if_bpf, m_head);
   1946 #endif
   1947 	}
   1948 	if (pkts == 0)
   1949 		return;
   1950 
   1951 	/* Transmit */
   1952 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
   1953 		sc_if->sk_cdata.sk_tx_prod = idx;
   1954 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   1955 
   1956 		/* Set a timeout in case the chip goes out to lunch. */
   1957 		ifp->if_timer = 5;
   1958 	}
   1959 }
   1960 
   1961 
   1962 void
   1963 sk_watchdog(struct ifnet *ifp)
   1964 {
   1965 	struct sk_if_softc *sc_if = ifp->if_softc;
   1966 
   1967 	/*
   1968 	 * Reclaim first as there is a possibility of losing Tx completion
   1969 	 * interrupts.
   1970 	 */
   1971 	sk_txeof(sc_if);
   1972 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
   1973 		aprint_error_dev(&sc_if->sk_dev, "watchdog timeout\n");
   1974 
   1975 		ifp->if_oerrors++;
   1976 
   1977 		sk_init(ifp);
   1978 	}
   1979 }
   1980 
   1981 void
   1982 sk_shutdown(void *v)
   1983 {
   1984 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
   1985 	struct sk_softc		*sc = sc_if->sk_softc;
   1986 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
   1987 
   1988 	DPRINTFN(2, ("sk_shutdown\n"));
   1989 	sk_stop(ifp,1);
   1990 
   1991 	/* Turn off the 'driver is loaded' LED. */
   1992 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   1993 
   1994 	/*
   1995 	 * Reset the GEnesis controller. Doing this should also
   1996 	 * assert the resets on the attached XMAC(s).
   1997 	 */
   1998 	sk_reset(sc);
   1999 }
   2000 
   2001 void
   2002 sk_rxeof(struct sk_if_softc *sc_if)
   2003 {
   2004 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2005 	struct mbuf		*m;
   2006 	struct sk_chain		*cur_rx;
   2007 	struct sk_rx_desc	*cur_desc;
   2008 	int			i, cur, total_len = 0;
   2009 	u_int32_t		rxstat, sk_ctl;
   2010 	bus_dmamap_t		dmamap;
   2011 
   2012 	i = sc_if->sk_cdata.sk_rx_prod;
   2013 
   2014 	DPRINTFN(3, ("sk_rxeof %d\n", i));
   2015 
   2016 	for (;;) {
   2017 		cur = i;
   2018 
   2019 		/* Sync the descriptor */
   2020 		SK_CDRXSYNC(sc_if, cur,
   2021 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2022 
   2023 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
   2024 		if (sk_ctl & SK_RXCTL_OWN) {
   2025 			/* Invalidate the descriptor -- it's not ready yet */
   2026 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
   2027 			sc_if->sk_cdata.sk_rx_prod = i;
   2028 			break;
   2029 		}
   2030 
   2031 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
   2032 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
   2033 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
   2034 
   2035 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
   2036 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2037 
   2038 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
   2039 		m = cur_rx->sk_mbuf;
   2040 		cur_rx->sk_mbuf = NULL;
   2041 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
   2042 
   2043 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
   2044 
   2045 		SK_INC(i, SK_RX_RING_CNT);
   2046 
   2047 		if (rxstat & XM_RXSTAT_ERRFRAME) {
   2048 			ifp->if_ierrors++;
   2049 			sk_newbuf(sc_if, cur, m, dmamap);
   2050 			continue;
   2051 		}
   2052 
   2053 		/*
   2054 		 * Try to allocate a new jumbo buffer. If that
   2055 		 * fails, copy the packet to mbufs and put the
   2056 		 * jumbo buffer back in the ring so it can be
   2057 		 * re-used. If allocating mbufs fails, then we
   2058 		 * have to drop the packet.
   2059 		 */
   2060 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
   2061 			struct mbuf		*m0;
   2062 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
   2063 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
   2064 			sk_newbuf(sc_if, cur, m, dmamap);
   2065 			if (m0 == NULL) {
   2066 				aprint_error_dev(&sc_if->sk_dev, "no receive buffers "
   2067 				    "available -- packet dropped!\n");
   2068 				ifp->if_ierrors++;
   2069 				continue;
   2070 			}
   2071 			m_adj(m0, ETHER_ALIGN);
   2072 			m = m0;
   2073 		} else {
   2074 			m->m_pkthdr.rcvif = ifp;
   2075 			m->m_pkthdr.len = m->m_len = total_len;
   2076 		}
   2077 
   2078 		ifp->if_ipackets++;
   2079 
   2080 #if NBPFILTER > 0
   2081 		if (ifp->if_bpf)
   2082 			bpf_mtap(ifp->if_bpf, m);
   2083 #endif
   2084 		/* pass it on. */
   2085 		(*ifp->if_input)(ifp, m);
   2086 	}
   2087 }
   2088 
   2089 void
   2090 sk_txeof(struct sk_if_softc *sc_if)
   2091 {
   2092 	struct sk_softc		*sc = sc_if->sk_softc;
   2093 	struct sk_tx_desc	*cur_tx;
   2094 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2095 	u_int32_t		idx, sk_ctl;
   2096 	struct sk_txmap_entry	*entry;
   2097 
   2098 	DPRINTFN(3, ("sk_txeof\n"));
   2099 
   2100 	/*
   2101 	 * Go through our tx ring and free mbufs for those
   2102 	 * frames that have been sent.
   2103 	 */
   2104 	idx = sc_if->sk_cdata.sk_tx_cons;
   2105 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
   2106 		SK_CDTXSYNC(sc_if, idx, 1,
   2107 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2108 
   2109 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
   2110 		sk_ctl = le32toh(cur_tx->sk_ctl);
   2111 #ifdef SK_DEBUG
   2112 		if (skdebug >= 3)
   2113 			sk_dump_txdesc(cur_tx, idx);
   2114 #endif
   2115 		if (sk_ctl & SK_TXCTL_OWN) {
   2116 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
   2117 			break;
   2118 		}
   2119 		if (sk_ctl & SK_TXCTL_LASTFRAG)
   2120 			ifp->if_opackets++;
   2121 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
   2122 			entry = sc_if->sk_cdata.sk_tx_map[idx];
   2123 
   2124 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
   2125 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
   2126 
   2127 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
   2128 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2129 
   2130 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
   2131 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
   2132 					  link);
   2133 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
   2134 		}
   2135 		sc_if->sk_cdata.sk_tx_cnt--;
   2136 		SK_INC(idx, SK_TX_RING_CNT);
   2137 	}
   2138 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
   2139 		ifp->if_timer = 0;
   2140 	else /* nudge chip to keep tx ring moving */
   2141 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   2142 
   2143 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
   2144 		ifp->if_flags &= ~IFF_OACTIVE;
   2145 
   2146 	sc_if->sk_cdata.sk_tx_cons = idx;
   2147 }
   2148 
   2149 void
   2150 sk_tick(void *xsc_if)
   2151 {
   2152 	struct sk_if_softc *sc_if = xsc_if;
   2153 	struct mii_data *mii = &sc_if->sk_mii;
   2154 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2155 	int i;
   2156 
   2157 	DPRINTFN(3, ("sk_tick\n"));
   2158 
   2159 	if (!(ifp->if_flags & IFF_UP))
   2160 		return;
   2161 
   2162 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2163 		sk_intr_bcom(sc_if);
   2164 		return;
   2165 	}
   2166 
   2167 	/*
   2168 	 * According to SysKonnect, the correct way to verify that
   2169 	 * the link has come back up is to poll bit 0 of the GPIO
   2170 	 * register three times. This pin has the signal from the
   2171 	 * link sync pin connected to it; if we read the same link
   2172 	 * state 3 times in a row, we know the link is up.
   2173 	 */
   2174 	for (i = 0; i < 3; i++) {
   2175 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
   2176 			break;
   2177 	}
   2178 
   2179 	if (i != 3) {
   2180 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2181 		return;
   2182 	}
   2183 
   2184 	/* Turn the GP0 interrupt back on. */
   2185 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2186 	SK_XM_READ_2(sc_if, XM_ISR);
   2187 	mii_tick(mii);
   2188 	mii_pollstat(mii);
   2189 	callout_stop(&sc_if->sk_tick_ch);
   2190 }
   2191 
   2192 void
   2193 sk_intr_bcom(struct sk_if_softc *sc_if)
   2194 {
   2195 	struct mii_data *mii = &sc_if->sk_mii;
   2196 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2197 	int status;
   2198 
   2199 
   2200 	DPRINTFN(3, ("sk_intr_bcom\n"));
   2201 
   2202 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2203 
   2204 	/*
   2205 	 * Read the PHY interrupt register to make sure
   2206 	 * we clear any pending interrupts.
   2207 	 */
   2208 	status = sk_xmac_miibus_readreg((struct device *)sc_if,
   2209 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
   2210 
   2211 	if (!(ifp->if_flags & IFF_RUNNING)) {
   2212 		sk_init_xmac(sc_if);
   2213 		return;
   2214 	}
   2215 
   2216 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
   2217 		int lstat;
   2218 		lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
   2219 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
   2220 
   2221 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
   2222 			(void)mii_mediachg(mii);
   2223 			/* Turn off the link LED. */
   2224 			SK_IF_WRITE_1(sc_if, 0,
   2225 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2226 			sc_if->sk_link = 0;
   2227 		} else if (status & BRGPHY_ISR_LNK_CHG) {
   2228 			sk_xmac_miibus_writereg((struct device *)sc_if,
   2229 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
   2230 			mii_tick(mii);
   2231 			sc_if->sk_link = 1;
   2232 			/* Turn on the link LED. */
   2233 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2234 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
   2235 			    SK_LINKLED_BLINK_OFF);
   2236 			mii_pollstat(mii);
   2237 		} else {
   2238 			mii_tick(mii);
   2239 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
   2240 		}
   2241 	}
   2242 
   2243 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2244 }
   2245 
   2246 void
   2247 sk_intr_xmac(struct sk_if_softc	*sc_if)
   2248 {
   2249 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
   2250 
   2251 	DPRINTFN(3, ("sk_intr_xmac\n"));
   2252 
   2253 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
   2254 		if (status & XM_ISR_GP0_SET) {
   2255 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2256 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2257 		}
   2258 
   2259 		if (status & XM_ISR_AUTONEG_DONE) {
   2260 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2261 		}
   2262 	}
   2263 
   2264 	if (status & XM_IMR_TX_UNDERRUN)
   2265 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
   2266 
   2267 	if (status & XM_IMR_RX_OVERRUN)
   2268 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
   2269 }
   2270 
   2271 void
   2272 sk_intr_yukon(struct sk_if_softc *sc_if)
   2273 {
   2274 	int status;
   2275 
   2276 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2277 
   2278 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
   2279 }
   2280 
   2281 int
   2282 sk_intr(void *xsc)
   2283 {
   2284 	struct sk_softc		*sc = xsc;
   2285 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
   2286 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
   2287 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
   2288 	u_int32_t		status;
   2289 	int			claimed = 0;
   2290 
   2291 	if (sc_if0 != NULL)
   2292 		ifp0 = &sc_if0->sk_ethercom.ec_if;
   2293 	if (sc_if1 != NULL)
   2294 		ifp1 = &sc_if1->sk_ethercom.ec_if;
   2295 
   2296 	for (;;) {
   2297 		status = CSR_READ_4(sc, SK_ISSR);
   2298 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
   2299 
   2300 		if (!(status & sc->sk_intrmask))
   2301 			break;
   2302 
   2303 		claimed = 1;
   2304 
   2305 		/* Handle receive interrupts first. */
   2306 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
   2307 			sk_rxeof(sc_if0);
   2308 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
   2309 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2310 		}
   2311 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
   2312 			sk_rxeof(sc_if1);
   2313 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
   2314 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2315 		}
   2316 
   2317 		/* Then transmit interrupts. */
   2318 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
   2319 			sk_txeof(sc_if0);
   2320 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
   2321 			    SK_TXBMU_CLR_IRQ_EOF);
   2322 		}
   2323 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
   2324 			sk_txeof(sc_if1);
   2325 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
   2326 			    SK_TXBMU_CLR_IRQ_EOF);
   2327 		}
   2328 
   2329 		/* Then MAC interrupts. */
   2330 		if (sc_if0 && (status & SK_ISR_MAC1) &&
   2331 		    (ifp0->if_flags & IFF_RUNNING)) {
   2332 			if (sc->sk_type == SK_GENESIS)
   2333 				sk_intr_xmac(sc_if0);
   2334 			else
   2335 				sk_intr_yukon(sc_if0);
   2336 		}
   2337 
   2338 		if (sc_if1 && (status & SK_ISR_MAC2) &&
   2339 		    (ifp1->if_flags & IFF_RUNNING)) {
   2340 			if (sc->sk_type == SK_GENESIS)
   2341 				sk_intr_xmac(sc_if1);
   2342 			else
   2343 				sk_intr_yukon(sc_if1);
   2344 
   2345 		}
   2346 
   2347 		if (status & SK_ISR_EXTERNAL_REG) {
   2348 			if (sc_if0 != NULL &&
   2349 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
   2350 				sk_intr_bcom(sc_if0);
   2351 
   2352 			if (sc_if1 != NULL &&
   2353 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
   2354 				sk_intr_bcom(sc_if1);
   2355 		}
   2356 	}
   2357 
   2358 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2359 
   2360 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
   2361 		sk_start(ifp0);
   2362 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
   2363 		sk_start(ifp1);
   2364 
   2365 #if NRND > 0
   2366 	if (RND_ENABLED(&sc->rnd_source))
   2367 		rnd_add_uint32(&sc->rnd_source, status);
   2368 #endif
   2369 
   2370 	if (sc->sk_int_mod_pending)
   2371 		sk_update_int_mod(sc);
   2372 
   2373 	return claimed;
   2374 }
   2375 
   2376 void
   2377 sk_init_xmac(struct sk_if_softc	*sc_if)
   2378 {
   2379 	struct sk_softc		*sc = sc_if->sk_softc;
   2380 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2381 	static const struct sk_bcom_hack     bhack[] = {
   2382 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
   2383 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
   2384 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
   2385 	{ 0, 0 } };
   2386 
   2387 	DPRINTFN(1, ("sk_init_xmac\n"));
   2388 
   2389 	/* Unreset the XMAC. */
   2390 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
   2391 	DELAY(1000);
   2392 
   2393 	/* Reset the XMAC's internal state. */
   2394 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2395 
   2396 	/* Save the XMAC II revision */
   2397 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
   2398 
   2399 	/*
   2400 	 * Perform additional initialization for external PHYs,
   2401 	 * namely for the 1000baseTX cards that use the XMAC's
   2402 	 * GMII mode.
   2403 	 */
   2404 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2405 		int			i = 0;
   2406 		u_int32_t		val;
   2407 
   2408 		/* Take PHY out of reset. */
   2409 		val = sk_win_read_4(sc, SK_GPIO);
   2410 		if (sc_if->sk_port == SK_PORT_A)
   2411 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
   2412 		else
   2413 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
   2414 		sk_win_write_4(sc, SK_GPIO, val);
   2415 
   2416 		/* Enable GMII mode on the XMAC. */
   2417 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
   2418 
   2419 		sk_xmac_miibus_writereg((struct device *)sc_if,
   2420 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
   2421 		DELAY(10000);
   2422 		sk_xmac_miibus_writereg((struct device *)sc_if,
   2423 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
   2424 
   2425 		/*
   2426 		 * Early versions of the BCM5400 apparently have
   2427 		 * a bug that requires them to have their reserved
   2428 		 * registers initialized to some magic values. I don't
   2429 		 * know what the numbers do, I'm just the messenger.
   2430 		 */
   2431 		if (sk_xmac_miibus_readreg((struct device *)sc_if,
   2432 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
   2433 			while (bhack[i].reg) {
   2434 				sk_xmac_miibus_writereg((struct device *)sc_if,
   2435 				    SK_PHYADDR_BCOM, bhack[i].reg,
   2436 				    bhack[i].val);
   2437 				i++;
   2438 			}
   2439 		}
   2440 	}
   2441 
   2442 	/* Set station address */
   2443 	SK_XM_WRITE_2(sc_if, XM_PAR0,
   2444 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
   2445 	SK_XM_WRITE_2(sc_if, XM_PAR1,
   2446 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
   2447 	SK_XM_WRITE_2(sc_if, XM_PAR2,
   2448 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
   2449 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
   2450 
   2451 	if (ifp->if_flags & IFF_PROMISC)
   2452 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2453 	else
   2454 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2455 
   2456 	if (ifp->if_flags & IFF_BROADCAST)
   2457 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2458 	else
   2459 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2460 
   2461 	/* We don't need the FCS appended to the packet. */
   2462 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
   2463 
   2464 	/* We want short frames padded to 60 bytes. */
   2465 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
   2466 
   2467 	/*
   2468 	 * Enable the reception of all error frames. This is is
   2469 	 * a necessary evil due to the design of the XMAC. The
   2470 	 * XMAC's receive FIFO is only 8K in size, however jumbo
   2471 	 * frames can be up to 9000 bytes in length. When bad
   2472 	 * frame filtering is enabled, the XMAC's RX FIFO operates
   2473 	 * in 'store and forward' mode. For this to work, the
   2474 	 * entire frame has to fit into the FIFO, but that means
   2475 	 * that jumbo frames larger than 8192 bytes will be
   2476 	 * truncated. Disabling all bad frame filtering causes
   2477 	 * the RX FIFO to operate in streaming mode, in which
   2478 	 * case the XMAC will start transfering frames out of the
   2479 	 * RX FIFO as soon as the FIFO threshold is reached.
   2480 	 */
   2481 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
   2482 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
   2483 	    XM_MODE_RX_INRANGELEN);
   2484 
   2485 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2486 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2487 	else
   2488 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2489 
   2490 	/*
   2491 	 * Bump up the transmit threshold. This helps hold off transmit
   2492 	 * underruns when we're blasting traffic from both ports at once.
   2493 	 */
   2494 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
   2495 
   2496 	/* Set multicast filter */
   2497 	sk_setmulti(sc_if);
   2498 
   2499 	/* Clear and enable interrupts */
   2500 	SK_XM_READ_2(sc_if, XM_ISR);
   2501 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
   2502 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
   2503 	else
   2504 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2505 
   2506 	/* Configure MAC arbiter */
   2507 	switch (sc_if->sk_xmac_rev) {
   2508 	case XM_XMAC_REV_B2:
   2509 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
   2510 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
   2511 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
   2512 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
   2513 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
   2514 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
   2515 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
   2516 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
   2517 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2518 		break;
   2519 	case XM_XMAC_REV_C1:
   2520 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
   2521 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
   2522 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
   2523 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
   2524 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
   2525 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
   2526 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
   2527 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
   2528 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2529 		break;
   2530 	default:
   2531 		break;
   2532 	}
   2533 	sk_win_write_2(sc, SK_MACARB_CTL,
   2534 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
   2535 
   2536 	sc_if->sk_link = 1;
   2537 }
   2538 
   2539 void sk_init_yukon(struct sk_if_softc *sc_if)
   2540 {
   2541 	u_int32_t		/*mac, */phy;
   2542 	u_int16_t		reg;
   2543 	struct sk_softc		*sc;
   2544 	int			i;
   2545 
   2546 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
   2547 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
   2548 
   2549 	sc = sc_if->sk_softc;
   2550 	if (sc->sk_type == SK_YUKON_LITE &&
   2551 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
   2552 		/* Take PHY out of reset. */
   2553 		sk_win_write_4(sc, SK_GPIO,
   2554 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
   2555 	}
   2556 
   2557 
   2558 	/* GMAC and GPHY Reset */
   2559 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
   2560 
   2561 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
   2562 
   2563 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2564 	DELAY(1000);
   2565 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
   2566 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2567 	DELAY(1000);
   2568 
   2569 
   2570 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
   2571 
   2572 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
   2573 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
   2574 
   2575 	switch (sc_if->sk_softc->sk_pmd) {
   2576 	case IFM_1000_SX:
   2577 	case IFM_1000_LX:
   2578 		phy |= SK_GPHY_FIBER;
   2579 		break;
   2580 
   2581 	case IFM_1000_CX:
   2582 	case IFM_1000_T:
   2583 		phy |= SK_GPHY_COPPER;
   2584 		break;
   2585 	}
   2586 
   2587 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
   2588 
   2589 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
   2590 	DELAY(1000);
   2591 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
   2592 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
   2593 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
   2594 
   2595 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
   2596 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
   2597 
   2598 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
   2599 
   2600 	/* unused read of the interrupt source register */
   2601 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
   2602 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2603 
   2604 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
   2605 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
   2606 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2607 
   2608 	/* MIB Counter Clear Mode set */
   2609         reg |= YU_PAR_MIB_CLR;
   2610 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2611 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
   2612 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2613 
   2614 	/* MIB Counter Clear Mode clear */
   2615 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
   2616         reg &= ~YU_PAR_MIB_CLR;
   2617 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2618 
   2619 	/* receive control reg */
   2620 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
   2621 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
   2622 		      YU_RCR_CRCR);
   2623 
   2624 	/* transmit parameter register */
   2625 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
   2626 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
   2627 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
   2628 
   2629 	/* serial mode register */
   2630 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
   2631 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
   2632 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
   2633 		      YU_SMR_IPG_DATA(0x1e));
   2634 
   2635 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
   2636 	/* Setup Yukon's address */
   2637 	for (i = 0; i < 3; i++) {
   2638 		/* Write Source Address 1 (unicast filter) */
   2639 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
   2640 			      sc_if->sk_enaddr[i * 2] |
   2641 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
   2642 	}
   2643 
   2644 	for (i = 0; i < 3; i++) {
   2645 		reg = sk_win_read_2(sc_if->sk_softc,
   2646 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
   2647 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
   2648 	}
   2649 
   2650 	/* Set multicast filter */
   2651 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
   2652 	sk_setmulti(sc_if);
   2653 
   2654 	/* enable interrupt mask for counter overflows */
   2655 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
   2656 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
   2657 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
   2658 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
   2659 
   2660 	/* Configure RX MAC FIFO */
   2661 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
   2662 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
   2663 
   2664 	/* Configure TX MAC FIFO */
   2665 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
   2666 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
   2667 
   2668 	DPRINTFN(6, ("sk_init_yukon: end\n"));
   2669 }
   2670 
   2671 /*
   2672  * Note that to properly initialize any part of the GEnesis chip,
   2673  * you first have to take it out of reset mode.
   2674  */
   2675 int
   2676 sk_init(struct ifnet *ifp)
   2677 {
   2678 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2679 	struct sk_softc		*sc = sc_if->sk_softc;
   2680 	struct mii_data		*mii = &sc_if->sk_mii;
   2681 	int			rc = 0, s;
   2682 	u_int32_t		imr, imtimer_ticks;
   2683 
   2684 	DPRINTFN(1, ("sk_init\n"));
   2685 
   2686 	s = splnet();
   2687 
   2688 	if (ifp->if_flags & IFF_RUNNING) {
   2689 		splx(s);
   2690 		return 0;
   2691 	}
   2692 
   2693 	/* Cancel pending I/O and free all RX/TX buffers. */
   2694 	sk_stop(ifp,0);
   2695 
   2696 	if (sc->sk_type == SK_GENESIS) {
   2697 		/* Configure LINK_SYNC LED */
   2698 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
   2699 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2700 			      SK_LINKLED_LINKSYNC_ON);
   2701 
   2702 		/* Configure RX LED */
   2703 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
   2704 			      SK_RXLEDCTL_COUNTER_START);
   2705 
   2706 		/* Configure TX LED */
   2707 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
   2708 			      SK_TXLEDCTL_COUNTER_START);
   2709 	}
   2710 
   2711 	/* Configure I2C registers */
   2712 
   2713 	/* Configure XMAC(s) */
   2714 	switch (sc->sk_type) {
   2715 	case SK_GENESIS:
   2716 		sk_init_xmac(sc_if);
   2717 		break;
   2718 	case SK_YUKON:
   2719 	case SK_YUKON_LITE:
   2720 	case SK_YUKON_LP:
   2721 		sk_init_yukon(sc_if);
   2722 		break;
   2723 	}
   2724 	if ((rc = mii_mediachg(mii)) == ENXIO)
   2725 		rc = 0;
   2726 	else if (rc != 0)
   2727 		goto out;
   2728 
   2729 	if (sc->sk_type == SK_GENESIS) {
   2730 		/* Configure MAC FIFOs */
   2731 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
   2732 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
   2733 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
   2734 
   2735 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
   2736 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
   2737 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
   2738 	}
   2739 
   2740 	/* Configure transmit arbiter(s) */
   2741 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
   2742 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
   2743 
   2744 	/* Configure RAMbuffers */
   2745 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
   2746 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
   2747 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
   2748 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
   2749 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
   2750 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
   2751 
   2752 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
   2753 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
   2754 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
   2755 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
   2756 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
   2757 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
   2758 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
   2759 
   2760 	/* Configure BMUs */
   2761 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
   2762 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
   2763 	    SK_RX_RING_ADDR(sc_if, 0));
   2764 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
   2765 
   2766 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
   2767 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
   2768             SK_TX_RING_ADDR(sc_if, 0));
   2769 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
   2770 
   2771 	/* Init descriptors */
   2772 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
   2773 		aprint_error_dev(&sc_if->sk_dev, "initialization failed: no "
   2774 		    "memory for rx buffers\n");
   2775 		sk_stop(ifp,0);
   2776 		splx(s);
   2777 		return ENOBUFS;
   2778 	}
   2779 
   2780 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
   2781 		aprint_error_dev(&sc_if->sk_dev, "initialization failed: no "
   2782 		    "memory for tx buffers\n");
   2783 		sk_stop(ifp,0);
   2784 		splx(s);
   2785 		return ENOBUFS;
   2786 	}
   2787 
   2788 	/* Set interrupt moderation if changed via sysctl. */
   2789 	switch (sc->sk_type) {
   2790 	case SK_GENESIS:
   2791 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   2792 		break;
   2793 	case SK_YUKON_EC:
   2794 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   2795 		break;
   2796 	default:
   2797 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   2798 	}
   2799 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
   2800 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
   2801 		sk_win_write_4(sc, SK_IMTIMERINIT,
   2802 		    SK_IM_USECS(sc->sk_int_mod));
   2803 		aprint_verbose_dev(&sc->sk_dev, "interrupt moderation is %d us\n",
   2804 		    sc->sk_int_mod);
   2805 	}
   2806 
   2807 	/* Configure interrupt handling */
   2808 	CSR_READ_4(sc, SK_ISSR);
   2809 	if (sc_if->sk_port == SK_PORT_A)
   2810 		sc->sk_intrmask |= SK_INTRS1;
   2811 	else
   2812 		sc->sk_intrmask |= SK_INTRS2;
   2813 
   2814 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
   2815 
   2816 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2817 
   2818 	/* Start BMUs. */
   2819 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
   2820 
   2821 	if (sc->sk_type == SK_GENESIS) {
   2822 		/* Enable XMACs TX and RX state machines */
   2823 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
   2824 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
   2825 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2826 	}
   2827 
   2828 	if (SK_YUKON_FAMILY(sc->sk_type)) {
   2829 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
   2830 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
   2831 #if 0
   2832 		/* XXX disable 100Mbps and full duplex mode? */
   2833 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
   2834 #endif
   2835 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
   2836 	}
   2837 
   2838 
   2839 	ifp->if_flags |= IFF_RUNNING;
   2840 	ifp->if_flags &= ~IFF_OACTIVE;
   2841 
   2842 out:
   2843 	splx(s);
   2844 	return rc;
   2845 }
   2846 
   2847 void
   2848 sk_stop(struct ifnet *ifp, int disable)
   2849 {
   2850         struct sk_if_softc	*sc_if = ifp->if_softc;
   2851 	struct sk_softc		*sc = sc_if->sk_softc;
   2852 	int			i;
   2853 
   2854 	DPRINTFN(1, ("sk_stop\n"));
   2855 
   2856 	callout_stop(&sc_if->sk_tick_ch);
   2857 
   2858 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2859 		u_int32_t		val;
   2860 
   2861 		/* Put PHY back into reset. */
   2862 		val = sk_win_read_4(sc, SK_GPIO);
   2863 		if (sc_if->sk_port == SK_PORT_A) {
   2864 			val |= SK_GPIO_DIR0;
   2865 			val &= ~SK_GPIO_DAT0;
   2866 		} else {
   2867 			val |= SK_GPIO_DIR2;
   2868 			val &= ~SK_GPIO_DAT2;
   2869 		}
   2870 		sk_win_write_4(sc, SK_GPIO, val);
   2871 	}
   2872 
   2873 	/* Turn off various components of this interface. */
   2874 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2875 	switch (sc->sk_type) {
   2876 	case SK_GENESIS:
   2877 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
   2878 			      SK_TXMACCTL_XMAC_RESET);
   2879 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
   2880 		break;
   2881 	case SK_YUKON:
   2882 	case SK_YUKON_LITE:
   2883 	case SK_YUKON_LP:
   2884 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
   2885 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
   2886 		break;
   2887 	}
   2888 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
   2889 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2890 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
   2891 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2892 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
   2893 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2894 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2895 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2896 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
   2897 
   2898 	/* Disable interrupts */
   2899 	if (sc_if->sk_port == SK_PORT_A)
   2900 		sc->sk_intrmask &= ~SK_INTRS1;
   2901 	else
   2902 		sc->sk_intrmask &= ~SK_INTRS2;
   2903 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2904 
   2905 	SK_XM_READ_2(sc_if, XM_ISR);
   2906 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2907 
   2908 	/* Free RX and TX mbufs still in the queues. */
   2909 	for (i = 0; i < SK_RX_RING_CNT; i++) {
   2910 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
   2911 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
   2912 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   2913 		}
   2914 	}
   2915 
   2916 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   2917 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
   2918 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
   2919 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   2920 		}
   2921 	}
   2922 
   2923 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
   2924 }
   2925 
   2926 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
   2927 
   2928 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
   2929 
   2930 #ifdef SK_DEBUG
   2931 void
   2932 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
   2933 {
   2934 #define DESC_PRINT(X)					\
   2935 	if (X)					\
   2936 		printf("txdesc[%d]." #X "=%#x\n",	\
   2937 		       idx, X);
   2938 
   2939 	DESC_PRINT(le32toh(desc->sk_ctl));
   2940 	DESC_PRINT(le32toh(desc->sk_next));
   2941 	DESC_PRINT(le32toh(desc->sk_data_lo));
   2942 	DESC_PRINT(le32toh(desc->sk_data_hi));
   2943 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
   2944 	DESC_PRINT(le16toh(desc->sk_rsvd0));
   2945 	DESC_PRINT(le16toh(desc->sk_csum_startval));
   2946 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
   2947 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
   2948 	DESC_PRINT(le16toh(desc->sk_rsvd1));
   2949 #undef PRINT
   2950 }
   2951 
   2952 void
   2953 sk_dump_bytes(const char *data, int len)
   2954 {
   2955 	int c, i, j;
   2956 
   2957 	for (i = 0; i < len; i += 16) {
   2958 		printf("%08x  ", i);
   2959 		c = len - i;
   2960 		if (c > 16) c = 16;
   2961 
   2962 		for (j = 0; j < c; j++) {
   2963 			printf("%02x ", data[i + j] & 0xff);
   2964 			if ((j & 0xf) == 7 && j > 0)
   2965 				printf(" ");
   2966 		}
   2967 
   2968 		for (; j < 16; j++)
   2969 			printf("   ");
   2970 		printf("  ");
   2971 
   2972 		for (j = 0; j < c; j++) {
   2973 			int ch = data[i + j] & 0xff;
   2974 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
   2975 		}
   2976 
   2977 		printf("\n");
   2978 
   2979 		if (c < 16)
   2980 			break;
   2981 	}
   2982 }
   2983 
   2984 void
   2985 sk_dump_mbuf(struct mbuf *m)
   2986 {
   2987 	int count = m->m_pkthdr.len;
   2988 
   2989 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
   2990 
   2991 	while (count > 0 && m) {
   2992 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
   2993 		       m, m->m_data, m->m_len);
   2994 		sk_dump_bytes(mtod(m, char *), m->m_len);
   2995 
   2996 		count -= m->m_len;
   2997 		m = m->m_next;
   2998 	}
   2999 }
   3000 #endif
   3001 
   3002 static int
   3003 sk_sysctl_handler(SYSCTLFN_ARGS)
   3004 {
   3005 	int error, t;
   3006 	struct sysctlnode node;
   3007 	struct sk_softc *sc;
   3008 
   3009 	node = *rnode;
   3010 	sc = node.sysctl_data;
   3011 	t = sc->sk_int_mod;
   3012 	node.sysctl_data = &t;
   3013 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3014 	if (error || newp == NULL)
   3015 		return error;
   3016 
   3017 	if (t < SK_IM_MIN || t > SK_IM_MAX)
   3018 		return EINVAL;
   3019 
   3020 	/* update the softc with sysctl-changed value, and mark
   3021 	   for hardware update */
   3022 	sc->sk_int_mod = t;
   3023 	sc->sk_int_mod_pending = 1;
   3024 	return 0;
   3025 }
   3026 
   3027 /*
   3028  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
   3029  * set up in skc_attach()
   3030  */
   3031 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
   3032 {
   3033 	int rc;
   3034 	const struct sysctlnode *node;
   3035 
   3036 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   3037 	    0, CTLTYPE_NODE, "hw", NULL,
   3038 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   3039 		goto err;
   3040 	}
   3041 
   3042 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   3043 	    0, CTLTYPE_NODE, "sk",
   3044 	    SYSCTL_DESCR("sk interface controls"),
   3045 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   3046 		goto err;
   3047 	}
   3048 
   3049 	sk_root_num = node->sysctl_num;
   3050 	return;
   3051 
   3052 err:
   3053 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
   3054 }
   3055