if_sk.c revision 1.48 1 /* $NetBSD: if_sk.c,v 1.48 2008/04/10 19:13:37 cegger Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the NetBSD
18 * Foundation, Inc. and its contributors.
19 * 4. Neither the name of The NetBSD Foundation nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
37
38 /*
39 * Copyright (c) 1997, 1998, 1999, 2000
40 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Bill Paul.
53 * 4. Neither the name of the author nor the names of any co-contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67 * THE POSSIBILITY OF SUCH DAMAGE.
68 *
69 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70 */
71
72 /*
73 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
74 *
75 * Permission to use, copy, modify, and distribute this software for any
76 * purpose with or without fee is hereby granted, provided that the above
77 * copyright notice and this permission notice appear in all copies.
78 *
79 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86 */
87
88 /*
89 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90 * the SK-984x series adapters, both single port and dual port.
91 * References:
92 * The XaQti XMAC II datasheet,
93 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 * The SysKonnect GEnesis manual, http://www.syskonnect.com
95 *
96 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98 * convenience to others until Vitesse corrects this problem:
99 *
100 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101 *
102 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
103 * Department of Electrical Engineering
104 * Columbia University, New York City
105 */
106
107 /*
108 * The SysKonnect gigabit ethernet adapters consist of two main
109 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111 * components and a PHY while the GEnesis controller provides a PCI
112 * interface with DMA support. Each card may have between 512K and
113 * 2MB of SRAM on board depending on the configuration.
114 *
115 * The SysKonnect GEnesis controller can have either one or two XMAC
116 * chips connected to it, allowing single or dual port NIC configurations.
117 * SysKonnect has the distinction of being the only vendor on the market
118 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120 * XMAC registers. This driver takes advantage of these features to allow
121 * both XMACs to operate as independent interfaces.
122 */
123
124 #include <sys/cdefs.h>
125 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.48 2008/04/10 19:13:37 cegger Exp $");
126
127 #include "bpfilter.h"
128 #include "rnd.h"
129
130 #include <sys/param.h>
131 #include <sys/systm.h>
132 #include <sys/sockio.h>
133 #include <sys/mbuf.h>
134 #include <sys/malloc.h>
135 #include <sys/kernel.h>
136 #include <sys/socket.h>
137 #include <sys/device.h>
138 #include <sys/queue.h>
139 #include <sys/callout.h>
140 #include <sys/sysctl.h>
141 #include <sys/endian.h>
142
143 #include <net/if.h>
144 #include <net/if_dl.h>
145 #include <net/if_types.h>
146
147 #include <net/if_media.h>
148
149 #if NBPFILTER > 0
150 #include <net/bpf.h>
151 #endif
152 #if NRND > 0
153 #include <sys/rnd.h>
154 #endif
155
156 #include <dev/mii/mii.h>
157 #include <dev/mii/miivar.h>
158 #include <dev/mii/brgphyreg.h>
159
160 #include <dev/pci/pcireg.h>
161 #include <dev/pci/pcivar.h>
162 #include <dev/pci/pcidevs.h>
163
164 /* #define SK_USEIOSPACE */
165
166 #include <dev/pci/if_skreg.h>
167 #include <dev/pci/if_skvar.h>
168
169 int skc_probe(struct device *, struct cfdata *, void *);
170 void skc_attach(struct device *, struct device *self, void *aux);
171 int sk_probe(struct device *, struct cfdata *, void *);
172 void sk_attach(struct device *, struct device *self, void *aux);
173 int skcprint(void *, const char *);
174 int sk_intr(void *);
175 void sk_intr_bcom(struct sk_if_softc *);
176 void sk_intr_xmac(struct sk_if_softc *);
177 void sk_intr_yukon(struct sk_if_softc *);
178 void sk_rxeof(struct sk_if_softc *);
179 void sk_txeof(struct sk_if_softc *);
180 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
181 void sk_start(struct ifnet *);
182 int sk_ioctl(struct ifnet *, u_long, void *);
183 int sk_init(struct ifnet *);
184 void sk_init_xmac(struct sk_if_softc *);
185 void sk_init_yukon(struct sk_if_softc *);
186 void sk_stop(struct ifnet *, int);
187 void sk_watchdog(struct ifnet *);
188 void sk_shutdown(void *);
189 int sk_ifmedia_upd(struct ifnet *);
190 void sk_reset(struct sk_softc *);
191 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
192 int sk_alloc_jumbo_mem(struct sk_if_softc *);
193 void sk_free_jumbo_mem(struct sk_if_softc *);
194 void *sk_jalloc(struct sk_if_softc *);
195 void sk_jfree(struct mbuf *, void *, size_t, void *);
196 int sk_init_rx_ring(struct sk_if_softc *);
197 int sk_init_tx_ring(struct sk_if_softc *);
198 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
199 void sk_vpd_read_res(struct sk_softc *,
200 struct vpd_res *, int);
201 void sk_vpd_read(struct sk_softc *);
202
203 void sk_update_int_mod(struct sk_softc *);
204
205 int sk_xmac_miibus_readreg(struct device *, int, int);
206 void sk_xmac_miibus_writereg(struct device *, int, int, int);
207 void sk_xmac_miibus_statchg(struct device *);
208
209 int sk_marv_miibus_readreg(struct device *, int, int);
210 void sk_marv_miibus_writereg(struct device *, int, int, int);
211 void sk_marv_miibus_statchg(struct device *);
212
213 u_int32_t sk_xmac_hash(void *);
214 u_int32_t sk_yukon_hash(void *);
215 void sk_setfilt(struct sk_if_softc *, void *, int);
216 void sk_setmulti(struct sk_if_softc *);
217 void sk_tick(void *);
218
219 /* #define SK_DEBUG 2 */
220 #ifdef SK_DEBUG
221 #define DPRINTF(x) if (skdebug) printf x
222 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
223 int skdebug = SK_DEBUG;
224
225 void sk_dump_txdesc(struct sk_tx_desc *, int);
226 void sk_dump_mbuf(struct mbuf *);
227 void sk_dump_bytes(const char *, int);
228 #else
229 #define DPRINTF(x)
230 #define DPRINTFN(n,x)
231 #endif
232
233 static int sk_sysctl_handler(SYSCTLFN_PROTO);
234 static int sk_root_num;
235
236 /* supported device vendors */
237 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
238 static const struct sk_product {
239 pci_vendor_id_t sk_vendor;
240 pci_product_id_t sk_product;
241 } sk_products[] = {
242 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
243 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
244 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
245 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
246 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
247 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
248 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
249 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
250 { 0, 0, }
251 };
252
253 #define SK_LINKSYS_EG1032_SUBID 0x00151737
254
255 static inline u_int32_t
256 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
257 {
258 #ifdef SK_USEIOSPACE
259 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
260 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
261 #else
262 return CSR_READ_4(sc, reg);
263 #endif
264 }
265
266 static inline u_int16_t
267 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
268 {
269 #ifdef SK_USEIOSPACE
270 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
271 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
272 #else
273 return CSR_READ_2(sc, reg);
274 #endif
275 }
276
277 static inline u_int8_t
278 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
279 {
280 #ifdef SK_USEIOSPACE
281 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
282 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
283 #else
284 return CSR_READ_1(sc, reg);
285 #endif
286 }
287
288 static inline void
289 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
290 {
291 #ifdef SK_USEIOSPACE
292 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
293 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
294 #else
295 CSR_WRITE_4(sc, reg, x);
296 #endif
297 }
298
299 static inline void
300 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
301 {
302 #ifdef SK_USEIOSPACE
303 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
304 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
305 #else
306 CSR_WRITE_2(sc, reg, x);
307 #endif
308 }
309
310 static inline void
311 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
312 {
313 #ifdef SK_USEIOSPACE
314 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
315 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
316 #else
317 CSR_WRITE_1(sc, reg, x);
318 #endif
319 }
320
321 /*
322 * The VPD EEPROM contains Vital Product Data, as suggested in
323 * the PCI 2.1 specification. The VPD data is separared into areas
324 * denoted by resource IDs. The SysKonnect VPD contains an ID string
325 * resource (the name of the adapter), a read-only area resource
326 * containing various key/data fields and a read/write area which
327 * can be used to store asset management information or log messages.
328 * We read the ID string and read-only into buffers attached to
329 * the controller softc structure for later use. At the moment,
330 * we only use the ID string during sk_attach().
331 */
332 u_int8_t
333 sk_vpd_readbyte(struct sk_softc *sc, int addr)
334 {
335 int i;
336
337 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
338 for (i = 0; i < SK_TIMEOUT; i++) {
339 DELAY(1);
340 if (sk_win_read_2(sc,
341 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
342 break;
343 }
344
345 if (i == SK_TIMEOUT)
346 return 0;
347
348 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
349 }
350
351 void
352 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
353 {
354 int i;
355 u_int8_t *ptr;
356
357 ptr = (u_int8_t *)res;
358 for (i = 0; i < sizeof(struct vpd_res); i++)
359 ptr[i] = sk_vpd_readbyte(sc, i + addr);
360 }
361
362 void
363 sk_vpd_read(struct sk_softc *sc)
364 {
365 int pos = 0, i;
366 struct vpd_res res;
367
368 if (sc->sk_vpd_prodname != NULL)
369 free(sc->sk_vpd_prodname, M_DEVBUF);
370 if (sc->sk_vpd_readonly != NULL)
371 free(sc->sk_vpd_readonly, M_DEVBUF);
372 sc->sk_vpd_prodname = NULL;
373 sc->sk_vpd_readonly = NULL;
374
375 sk_vpd_read_res(sc, &res, pos);
376
377 if (res.vr_id != VPD_RES_ID) {
378 aprint_error_dev(&sc->sk_dev, "bad VPD resource id: expected %x got %x\n",
379 VPD_RES_ID, res.vr_id);
380 return;
381 }
382
383 pos += sizeof(res);
384 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
385 if (sc->sk_vpd_prodname == NULL)
386 panic("sk_vpd_read");
387 for (i = 0; i < res.vr_len; i++)
388 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
389 sc->sk_vpd_prodname[i] = '\0';
390 pos += i;
391
392 sk_vpd_read_res(sc, &res, pos);
393
394 if (res.vr_id != VPD_RES_READ) {
395 aprint_error_dev(&sc->sk_dev, "bad VPD resource id: expected %x got %x\n",
396 VPD_RES_READ, res.vr_id);
397 return;
398 }
399
400 pos += sizeof(res);
401 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
402 if (sc->sk_vpd_readonly == NULL)
403 panic("sk_vpd_read");
404 for (i = 0; i < res.vr_len ; i++)
405 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
406 }
407
408 int
409 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
410 {
411 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
412 int i;
413
414 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
415
416 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
417 return 0;
418
419 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
420 SK_XM_READ_2(sc_if, XM_PHY_DATA);
421 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
422 for (i = 0; i < SK_TIMEOUT; i++) {
423 DELAY(1);
424 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
425 XM_MMUCMD_PHYDATARDY)
426 break;
427 }
428
429 if (i == SK_TIMEOUT) {
430 aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
431 return 0;
432 }
433 }
434 DELAY(1);
435 return SK_XM_READ_2(sc_if, XM_PHY_DATA);
436 }
437
438 void
439 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
440 {
441 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
442 int i;
443
444 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
445
446 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
447 for (i = 0; i < SK_TIMEOUT; i++) {
448 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
449 break;
450 }
451
452 if (i == SK_TIMEOUT) {
453 aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
454 return;
455 }
456
457 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
458 for (i = 0; i < SK_TIMEOUT; i++) {
459 DELAY(1);
460 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
461 break;
462 }
463
464 if (i == SK_TIMEOUT)
465 aprint_error_dev(&sc_if->sk_dev, "phy write timed out\n");
466 }
467
468 void
469 sk_xmac_miibus_statchg(struct device *dev)
470 {
471 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
472 struct mii_data *mii = &sc_if->sk_mii;
473
474 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
475
476 /*
477 * If this is a GMII PHY, manually set the XMAC's
478 * duplex mode accordingly.
479 */
480 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
481 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
482 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
483 else
484 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
485 }
486 }
487
488 int
489 sk_marv_miibus_readreg(struct device *dev, int phy, int reg)
490 {
491 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
492 u_int16_t val;
493 int i;
494
495 if (phy != 0 ||
496 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
497 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
498 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
499 phy, reg));
500 return 0;
501 }
502
503 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
504 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
505
506 for (i = 0; i < SK_TIMEOUT; i++) {
507 DELAY(1);
508 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
509 if (val & YU_SMICR_READ_VALID)
510 break;
511 }
512
513 if (i == SK_TIMEOUT) {
514 aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
515 return 0;
516 }
517
518 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
519 SK_TIMEOUT));
520
521 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
522
523 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
524 phy, reg, val));
525
526 return val;
527 }
528
529 void
530 sk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
531 {
532 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
533 int i;
534
535 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
536 phy, reg, val));
537
538 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
539 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
540 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
541
542 for (i = 0; i < SK_TIMEOUT; i++) {
543 DELAY(1);
544 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
545 break;
546 }
547
548 if (i == SK_TIMEOUT)
549 printf("%s: phy write timed out\n", device_xname(&sc_if->sk_dev));
550 }
551
552 void
553 sk_marv_miibus_statchg(struct device *dev)
554 {
555 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
556 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
557 }
558
559 #define SK_HASH_BITS 6
560
561 u_int32_t
562 sk_xmac_hash(void *addr)
563 {
564 u_int32_t crc;
565
566 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
567 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
568 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
569 return crc;
570 }
571
572 u_int32_t
573 sk_yukon_hash(void *addr)
574 {
575 u_int32_t crc;
576
577 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
578 crc &= ((1 << SK_HASH_BITS) - 1);
579 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
580 return crc;
581 }
582
583 void
584 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
585 {
586 char *addr = addrv;
587 int base = XM_RXFILT_ENTRY(slot);
588
589 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
590 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
591 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
592 }
593
594 void
595 sk_setmulti(struct sk_if_softc *sc_if)
596 {
597 struct sk_softc *sc = sc_if->sk_softc;
598 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
599 u_int32_t hashes[2] = { 0, 0 };
600 int h = 0, i;
601 struct ethercom *ec = &sc_if->sk_ethercom;
602 struct ether_multi *enm;
603 struct ether_multistep step;
604 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
605
606 /* First, zot all the existing filters. */
607 switch (sc->sk_type) {
608 case SK_GENESIS:
609 for (i = 1; i < XM_RXFILT_MAX; i++)
610 sk_setfilt(sc_if, (void *)&dummy, i);
611
612 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
613 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
614 break;
615 case SK_YUKON:
616 case SK_YUKON_LITE:
617 case SK_YUKON_LP:
618 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
619 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
620 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
621 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
622 break;
623 }
624
625 /* Now program new ones. */
626 allmulti:
627 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
628 hashes[0] = 0xFFFFFFFF;
629 hashes[1] = 0xFFFFFFFF;
630 } else {
631 i = 1;
632 /* First find the tail of the list. */
633 ETHER_FIRST_MULTI(step, ec, enm);
634 while (enm != NULL) {
635 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
636 ETHER_ADDR_LEN)) {
637 ifp->if_flags |= IFF_ALLMULTI;
638 goto allmulti;
639 }
640 DPRINTFN(2,("multicast address %s\n",
641 ether_sprintf(enm->enm_addrlo)));
642 /*
643 * Program the first XM_RXFILT_MAX multicast groups
644 * into the perfect filter. For all others,
645 * use the hash table.
646 */
647 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
648 sk_setfilt(sc_if, enm->enm_addrlo, i);
649 i++;
650 }
651 else {
652 switch (sc->sk_type) {
653 case SK_GENESIS:
654 h = sk_xmac_hash(enm->enm_addrlo);
655 break;
656 case SK_YUKON:
657 case SK_YUKON_LITE:
658 case SK_YUKON_LP:
659 h = sk_yukon_hash(enm->enm_addrlo);
660 break;
661 }
662 if (h < 32)
663 hashes[0] |= (1 << h);
664 else
665 hashes[1] |= (1 << (h - 32));
666 }
667
668 ETHER_NEXT_MULTI(step, enm);
669 }
670 }
671
672 switch (sc->sk_type) {
673 case SK_GENESIS:
674 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
675 XM_MODE_RX_USE_PERFECT);
676 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
677 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
678 break;
679 case SK_YUKON:
680 case SK_YUKON_LITE:
681 case SK_YUKON_LP:
682 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
683 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
684 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
685 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
686 break;
687 }
688 }
689
690 int
691 sk_init_rx_ring(struct sk_if_softc *sc_if)
692 {
693 struct sk_chain_data *cd = &sc_if->sk_cdata;
694 struct sk_ring_data *rd = sc_if->sk_rdata;
695 int i;
696
697 bzero((char *)rd->sk_rx_ring,
698 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
699
700 for (i = 0; i < SK_RX_RING_CNT; i++) {
701 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
702 if (i == (SK_RX_RING_CNT - 1)) {
703 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
704 rd->sk_rx_ring[i].sk_next =
705 htole32(SK_RX_RING_ADDR(sc_if, 0));
706 } else {
707 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
708 rd->sk_rx_ring[i].sk_next =
709 htole32(SK_RX_RING_ADDR(sc_if,i+1));
710 }
711 }
712
713 for (i = 0; i < SK_RX_RING_CNT; i++) {
714 if (sk_newbuf(sc_if, i, NULL,
715 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
716 aprint_error_dev(&sc_if->sk_dev, "failed alloc of %dth mbuf\n", i);
717 return ENOBUFS;
718 }
719 }
720 sc_if->sk_cdata.sk_rx_prod = 0;
721 sc_if->sk_cdata.sk_rx_cons = 0;
722
723 return 0;
724 }
725
726 int
727 sk_init_tx_ring(struct sk_if_softc *sc_if)
728 {
729 struct sk_chain_data *cd = &sc_if->sk_cdata;
730 struct sk_ring_data *rd = sc_if->sk_rdata;
731 int i;
732
733 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
734 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
735
736 for (i = 0; i < SK_TX_RING_CNT; i++) {
737 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
738 if (i == (SK_TX_RING_CNT - 1)) {
739 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
740 rd->sk_tx_ring[i].sk_next =
741 htole32(SK_TX_RING_ADDR(sc_if, 0));
742 } else {
743 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
744 rd->sk_tx_ring[i].sk_next =
745 htole32(SK_TX_RING_ADDR(sc_if,i+1));
746 }
747 }
748
749 sc_if->sk_cdata.sk_tx_prod = 0;
750 sc_if->sk_cdata.sk_tx_cons = 0;
751 sc_if->sk_cdata.sk_tx_cnt = 0;
752
753 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
754 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
755
756 return 0;
757 }
758
759 int
760 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
761 bus_dmamap_t dmamap)
762 {
763 struct mbuf *m_new = NULL;
764 struct sk_chain *c;
765 struct sk_rx_desc *r;
766
767 if (m == NULL) {
768 void *buf = NULL;
769
770 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
771 if (m_new == NULL) {
772 aprint_error_dev(&sc_if->sk_dev, "no memory for rx list -- "
773 "packet dropped!\n");
774 return ENOBUFS;
775 }
776
777 /* Allocate the jumbo buffer */
778 buf = sk_jalloc(sc_if);
779 if (buf == NULL) {
780 m_freem(m_new);
781 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
782 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
783 return ENOBUFS;
784 }
785
786 /* Attach the buffer to the mbuf */
787 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
788 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
789
790 } else {
791 /*
792 * We're re-using a previously allocated mbuf;
793 * be sure to re-init pointers and lengths to
794 * default values.
795 */
796 m_new = m;
797 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
798 m_new->m_data = m_new->m_ext.ext_buf;
799 }
800 m_adj(m_new, ETHER_ALIGN);
801
802 c = &sc_if->sk_cdata.sk_rx_chain[i];
803 r = c->sk_desc;
804 c->sk_mbuf = m_new;
805 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
806 (((vaddr_t)m_new->m_data
807 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
808 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
809
810 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
811
812 return 0;
813 }
814
815 /*
816 * Memory management for jumbo frames.
817 */
818
819 int
820 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
821 {
822 struct sk_softc *sc = sc_if->sk_softc;
823 char *ptr, *kva;
824 bus_dma_segment_t seg;
825 int i, rseg, state, error;
826 struct sk_jpool_entry *entry;
827
828 state = error = 0;
829
830 /* Grab a big chunk o' storage. */
831 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
832 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
833 aprint_error_dev(&sc->sk_dev, "can't alloc rx buffers\n");
834 return ENOBUFS;
835 }
836
837 state = 1;
838 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
839 BUS_DMA_NOWAIT)) {
840 aprint_error_dev(&sc->sk_dev, "can't map dma buffers (%d bytes)\n",
841 SK_JMEM);
842 error = ENOBUFS;
843 goto out;
844 }
845
846 state = 2;
847 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
848 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
849 aprint_error_dev(&sc->sk_dev, "can't create dma map\n");
850 error = ENOBUFS;
851 goto out;
852 }
853
854 state = 3;
855 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
856 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
857 aprint_error_dev(&sc->sk_dev, "can't load dma map\n");
858 error = ENOBUFS;
859 goto out;
860 }
861
862 state = 4;
863 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
864 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
865
866 LIST_INIT(&sc_if->sk_jfree_listhead);
867 LIST_INIT(&sc_if->sk_jinuse_listhead);
868
869 /*
870 * Now divide it up into 9K pieces and save the addresses
871 * in an array.
872 */
873 ptr = sc_if->sk_cdata.sk_jumbo_buf;
874 for (i = 0; i < SK_JSLOTS; i++) {
875 sc_if->sk_cdata.sk_jslots[i] = ptr;
876 ptr += SK_JLEN;
877 entry = malloc(sizeof(struct sk_jpool_entry),
878 M_DEVBUF, M_NOWAIT);
879 if (entry == NULL) {
880 aprint_error_dev(&sc->sk_dev, "no memory for jumbo buffer queue!\n");
881 error = ENOBUFS;
882 goto out;
883 }
884 entry->slot = i;
885 if (i)
886 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
887 entry, jpool_entries);
888 else
889 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
890 entry, jpool_entries);
891 }
892 out:
893 if (error != 0) {
894 switch (state) {
895 case 4:
896 bus_dmamap_unload(sc->sc_dmatag,
897 sc_if->sk_cdata.sk_rx_jumbo_map);
898 case 3:
899 bus_dmamap_destroy(sc->sc_dmatag,
900 sc_if->sk_cdata.sk_rx_jumbo_map);
901 case 2:
902 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
903 case 1:
904 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
905 break;
906 default:
907 break;
908 }
909 }
910
911 return error;
912 }
913
914 /*
915 * Allocate a jumbo buffer.
916 */
917 void *
918 sk_jalloc(struct sk_if_softc *sc_if)
919 {
920 struct sk_jpool_entry *entry;
921
922 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
923
924 if (entry == NULL)
925 return NULL;
926
927 LIST_REMOVE(entry, jpool_entries);
928 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
929 return sc_if->sk_cdata.sk_jslots[entry->slot];
930 }
931
932 /*
933 * Release a jumbo buffer.
934 */
935 void
936 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
937 {
938 struct sk_jpool_entry *entry;
939 struct sk_if_softc *sc;
940 int i, s;
941
942 /* Extract the softc struct pointer. */
943 sc = (struct sk_if_softc *)arg;
944
945 if (sc == NULL)
946 panic("sk_jfree: can't find softc pointer!");
947
948 /* calculate the slot this buffer belongs to */
949
950 i = ((vaddr_t)buf
951 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
952
953 if ((i < 0) || (i >= SK_JSLOTS))
954 panic("sk_jfree: asked to free buffer that we don't manage!");
955
956 s = splvm();
957 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
958 if (entry == NULL)
959 panic("sk_jfree: buffer not in use!");
960 entry->slot = i;
961 LIST_REMOVE(entry, jpool_entries);
962 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
963
964 if (__predict_true(m != NULL))
965 pool_cache_put(mb_cache, m);
966 splx(s);
967 }
968
969 /*
970 * Set media options.
971 */
972 int
973 sk_ifmedia_upd(struct ifnet *ifp)
974 {
975 struct sk_if_softc *sc_if = ifp->if_softc;
976 int rc;
977
978 (void) sk_init(ifp);
979 if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
980 return 0;
981 return rc;
982 }
983
984 int
985 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
986 {
987 struct sk_if_softc *sc_if = ifp->if_softc;
988 struct sk_softc *sc = sc_if->sk_softc;
989 int s, error = 0;
990
991 /* DPRINTFN(2, ("sk_ioctl\n")); */
992
993 s = splnet();
994
995 switch (command) {
996
997 case SIOCSIFFLAGS:
998 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
999 if (ifp->if_flags & IFF_UP) {
1000 if (ifp->if_flags & IFF_RUNNING &&
1001 ifp->if_flags & IFF_PROMISC &&
1002 !(sc_if->sk_if_flags & IFF_PROMISC)) {
1003 switch (sc->sk_type) {
1004 case SK_GENESIS:
1005 SK_XM_SETBIT_4(sc_if, XM_MODE,
1006 XM_MODE_RX_PROMISC);
1007 break;
1008 case SK_YUKON:
1009 case SK_YUKON_LITE:
1010 case SK_YUKON_LP:
1011 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1012 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1013 break;
1014 }
1015 sk_setmulti(sc_if);
1016 } else if (ifp->if_flags & IFF_RUNNING &&
1017 !(ifp->if_flags & IFF_PROMISC) &&
1018 sc_if->sk_if_flags & IFF_PROMISC) {
1019 switch (sc->sk_type) {
1020 case SK_GENESIS:
1021 SK_XM_CLRBIT_4(sc_if, XM_MODE,
1022 XM_MODE_RX_PROMISC);
1023 break;
1024 case SK_YUKON:
1025 case SK_YUKON_LITE:
1026 case SK_YUKON_LP:
1027 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1028 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1029 break;
1030 }
1031
1032 sk_setmulti(sc_if);
1033 } else
1034 (void) sk_init(ifp);
1035 } else {
1036 if (ifp->if_flags & IFF_RUNNING)
1037 sk_stop(ifp,0);
1038 }
1039 sc_if->sk_if_flags = ifp->if_flags;
1040 error = 0;
1041 break;
1042
1043 default:
1044 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1045 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1046 break;
1047
1048 error = 0;
1049
1050 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1051 ;
1052 else if (ifp->if_flags & IFF_RUNNING) {
1053 sk_setmulti(sc_if);
1054 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1055 }
1056 break;
1057 }
1058
1059 splx(s);
1060 return error;
1061 }
1062
1063 void
1064 sk_update_int_mod(struct sk_softc *sc)
1065 {
1066 u_int32_t imtimer_ticks;
1067
1068 /*
1069 * Configure interrupt moderation. The moderation timer
1070 * defers interrupts specified in the interrupt moderation
1071 * timer mask based on the timeout specified in the interrupt
1072 * moderation timer init register. Each bit in the timer
1073 * register represents one tick, so to specify a timeout in
1074 * microseconds, we have to multiply by the correct number of
1075 * ticks-per-microsecond.
1076 */
1077 switch (sc->sk_type) {
1078 case SK_GENESIS:
1079 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1080 break;
1081 case SK_YUKON_EC:
1082 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1083 break;
1084 default:
1085 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1086 }
1087 aprint_verbose_dev(&sc->sk_dev, "interrupt moderation is %d us\n",
1088 sc->sk_int_mod);
1089 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1090 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1091 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1092 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1093 sc->sk_int_mod_pending = 0;
1094 }
1095
1096 /*
1097 * Lookup: Check the PCI vendor and device, and return a pointer to
1098 * The structure if the IDs match against our list.
1099 */
1100
1101 static const struct sk_product *
1102 sk_lookup(const struct pci_attach_args *pa)
1103 {
1104 const struct sk_product *psk;
1105
1106 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1107 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1108 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1109 return psk;
1110 }
1111 return NULL;
1112 }
1113
1114 /*
1115 * Probe for a SysKonnect GEnesis chip.
1116 */
1117
1118 int
1119 skc_probe(struct device *parent, struct cfdata *match,
1120 void *aux)
1121 {
1122 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1123 const struct sk_product *psk;
1124 pcireg_t subid;
1125
1126 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1127
1128 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1129 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1130 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1131 subid == SK_LINKSYS_EG1032_SUBID)
1132 return 1;
1133
1134 if ((psk = sk_lookup(pa))) {
1135 return 1;
1136 }
1137 return 0;
1138 }
1139
1140 /*
1141 * Force the GEnesis into reset, then bring it out of reset.
1142 */
1143 void sk_reset(struct sk_softc *sc)
1144 {
1145 DPRINTFN(2, ("sk_reset\n"));
1146
1147 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1148 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1149 if (SK_YUKON_FAMILY(sc->sk_type))
1150 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1151
1152 DELAY(1000);
1153 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1154 DELAY(2);
1155 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1156 if (SK_YUKON_FAMILY(sc->sk_type))
1157 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1158
1159 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1160 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1161 CSR_READ_2(sc, SK_LINK_CTRL)));
1162
1163 if (sc->sk_type == SK_GENESIS) {
1164 /* Configure packet arbiter */
1165 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1166 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1167 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1168 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1169 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1170 }
1171
1172 /* Enable RAM interface */
1173 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1174
1175 sk_update_int_mod(sc);
1176 }
1177
1178 int
1179 sk_probe(struct device *parent, struct cfdata *match,
1180 void *aux)
1181 {
1182 struct skc_attach_args *sa = aux;
1183
1184 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1185 return 0;
1186
1187 return 1;
1188 }
1189
1190 /*
1191 * Each XMAC chip is attached as a separate logical IP interface.
1192 * Single port cards will have only one logical interface of course.
1193 */
1194 void
1195 sk_attach(struct device *parent, struct device *self, void *aux)
1196 {
1197 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1198 struct sk_softc *sc = (struct sk_softc *)parent;
1199 struct skc_attach_args *sa = aux;
1200 struct sk_txmap_entry *entry;
1201 struct ifnet *ifp;
1202 bus_dma_segment_t seg;
1203 bus_dmamap_t dmamap;
1204 void *kva;
1205 int i, rseg;
1206
1207 aprint_naive("\n");
1208
1209 sc_if->sk_port = sa->skc_port;
1210 sc_if->sk_softc = sc;
1211 sc->sk_if[sa->skc_port] = sc_if;
1212
1213 if (sa->skc_port == SK_PORT_A)
1214 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1215 if (sa->skc_port == SK_PORT_B)
1216 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1217
1218 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1219
1220 /*
1221 * Get station address for this interface. Note that
1222 * dual port cards actually come with three station
1223 * addresses: one for each port, plus an extra. The
1224 * extra one is used by the SysKonnect driver software
1225 * as a 'virtual' station address for when both ports
1226 * are operating in failover mode. Currently we don't
1227 * use this extra address.
1228 */
1229 for (i = 0; i < ETHER_ADDR_LEN; i++)
1230 sc_if->sk_enaddr[i] =
1231 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1232
1233
1234 aprint_normal(": Ethernet address %s\n",
1235 ether_sprintf(sc_if->sk_enaddr));
1236
1237 /*
1238 * Set up RAM buffer addresses. The NIC will have a certain
1239 * amount of SRAM on it, somewhere between 512K and 2MB. We
1240 * need to divide this up a) between the transmitter and
1241 * receiver and b) between the two XMACs, if this is a
1242 * dual port NIC. Our algorithm is to divide up the memory
1243 * evenly so that everyone gets a fair share.
1244 */
1245 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1246 u_int32_t chunk, val;
1247
1248 chunk = sc->sk_ramsize / 2;
1249 val = sc->sk_rboff / sizeof(u_int64_t);
1250 sc_if->sk_rx_ramstart = val;
1251 val += (chunk / sizeof(u_int64_t));
1252 sc_if->sk_rx_ramend = val - 1;
1253 sc_if->sk_tx_ramstart = val;
1254 val += (chunk / sizeof(u_int64_t));
1255 sc_if->sk_tx_ramend = val - 1;
1256 } else {
1257 u_int32_t chunk, val;
1258
1259 chunk = sc->sk_ramsize / 4;
1260 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1261 sizeof(u_int64_t);
1262 sc_if->sk_rx_ramstart = val;
1263 val += (chunk / sizeof(u_int64_t));
1264 sc_if->sk_rx_ramend = val - 1;
1265 sc_if->sk_tx_ramstart = val;
1266 val += (chunk / sizeof(u_int64_t));
1267 sc_if->sk_tx_ramend = val - 1;
1268 }
1269
1270 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1271 " tx_ramstart=%#x tx_ramend=%#x\n",
1272 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1273 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1274
1275 /* Read and save PHY type and set PHY address */
1276 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1277 switch (sc_if->sk_phytype) {
1278 case SK_PHYTYPE_XMAC:
1279 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1280 break;
1281 case SK_PHYTYPE_BCOM:
1282 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1283 break;
1284 case SK_PHYTYPE_MARV_COPPER:
1285 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1286 break;
1287 default:
1288 aprint_error_dev(&sc->sk_dev, "unsupported PHY type: %d\n",
1289 sc_if->sk_phytype);
1290 return;
1291 }
1292
1293 /* Allocate the descriptor queues. */
1294 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1295 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1296 aprint_error_dev(&sc->sk_dev, "can't alloc rx buffers\n");
1297 goto fail;
1298 }
1299 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1300 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1301 aprint_error_dev(&sc_if->sk_dev, "can't map dma buffers (%lu bytes)\n",
1302 (u_long) sizeof(struct sk_ring_data));
1303 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1304 goto fail;
1305 }
1306 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1307 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1308 &sc_if->sk_ring_map)) {
1309 aprint_error_dev(&sc_if->sk_dev, "can't create dma map\n");
1310 bus_dmamem_unmap(sc->sc_dmatag, kva,
1311 sizeof(struct sk_ring_data));
1312 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1313 goto fail;
1314 }
1315 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1316 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1317 aprint_error_dev(&sc_if->sk_dev, "can't load dma map\n");
1318 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1319 bus_dmamem_unmap(sc->sc_dmatag, kva,
1320 sizeof(struct sk_ring_data));
1321 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1322 goto fail;
1323 }
1324
1325 for (i = 0; i < SK_RX_RING_CNT; i++)
1326 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1327
1328 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1329 for (i = 0; i < SK_TX_RING_CNT; i++) {
1330 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1331
1332 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1333 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1334 aprint_error_dev(&sc_if->sk_dev, "Can't create TX dmamap\n");
1335 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1336 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1337 bus_dmamem_unmap(sc->sc_dmatag, kva,
1338 sizeof(struct sk_ring_data));
1339 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1340 goto fail;
1341 }
1342
1343 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1344 if (!entry) {
1345 aprint_error_dev(&sc_if->sk_dev, "Can't alloc txmap entry\n");
1346 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1347 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1348 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1349 bus_dmamem_unmap(sc->sc_dmatag, kva,
1350 sizeof(struct sk_ring_data));
1351 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1352 goto fail;
1353 }
1354 entry->dmamap = dmamap;
1355 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1356 }
1357
1358 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1359 bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1360
1361 ifp = &sc_if->sk_ethercom.ec_if;
1362 /* Try to allocate memory for jumbo buffers. */
1363 if (sk_alloc_jumbo_mem(sc_if)) {
1364 aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1365 goto fail;
1366 }
1367 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1368 | ETHERCAP_JUMBO_MTU;
1369
1370 ifp->if_softc = sc_if;
1371 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1372 ifp->if_ioctl = sk_ioctl;
1373 ifp->if_start = sk_start;
1374 ifp->if_stop = sk_stop;
1375 ifp->if_init = sk_init;
1376 ifp->if_watchdog = sk_watchdog;
1377 ifp->if_capabilities = 0;
1378 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1379 IFQ_SET_READY(&ifp->if_snd);
1380 strlcpy(ifp->if_xname, device_xname(&sc_if->sk_dev), IFNAMSIZ);
1381
1382 /*
1383 * Do miibus setup.
1384 */
1385 switch (sc->sk_type) {
1386 case SK_GENESIS:
1387 sk_init_xmac(sc_if);
1388 break;
1389 case SK_YUKON:
1390 case SK_YUKON_LITE:
1391 case SK_YUKON_LP:
1392 sk_init_yukon(sc_if);
1393 break;
1394 default:
1395 aprint_error_dev(&sc->sk_dev, "unknown device type %d\n",
1396 sc->sk_type);
1397 goto fail;
1398 }
1399
1400 DPRINTFN(2, ("sk_attach: 1\n"));
1401
1402 sc_if->sk_mii.mii_ifp = ifp;
1403 switch (sc->sk_type) {
1404 case SK_GENESIS:
1405 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1406 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1407 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1408 break;
1409 case SK_YUKON:
1410 case SK_YUKON_LITE:
1411 case SK_YUKON_LP:
1412 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1413 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1414 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1415 break;
1416 }
1417
1418 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1419 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1420 sk_ifmedia_upd, ether_mediastatus);
1421 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1422 MII_OFFSET_ANY, 0);
1423 if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
1424 aprint_error_dev(&sc_if->sk_dev, "no PHY found!\n");
1425 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1426 0, NULL);
1427 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1428 } else
1429 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1430
1431 callout_init(&sc_if->sk_tick_ch, 0);
1432 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1433
1434 DPRINTFN(2, ("sk_attach: 1\n"));
1435
1436 /*
1437 * Call MI attach routines.
1438 */
1439 if_attach(ifp);
1440
1441 ether_ifattach(ifp, sc_if->sk_enaddr);
1442
1443 #if NRND > 0
1444 rnd_attach_source(&sc->rnd_source, device_xname(&sc->sk_dev),
1445 RND_TYPE_NET, 0);
1446 #endif
1447
1448 DPRINTFN(2, ("sk_attach: end\n"));
1449
1450 return;
1451
1452 fail:
1453 sc->sk_if[sa->skc_port] = NULL;
1454 }
1455
1456 int
1457 skcprint(void *aux, const char *pnp)
1458 {
1459 struct skc_attach_args *sa = aux;
1460
1461 if (pnp)
1462 aprint_normal("sk port %c at %s",
1463 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1464 else
1465 aprint_normal(" port %c",
1466 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1467 return UNCONF;
1468 }
1469
1470 /*
1471 * Attach the interface. Allocate softc structures, do ifmedia
1472 * setup and ethernet/BPF attach.
1473 */
1474 void
1475 skc_attach(struct device *parent, struct device *self, void *aux)
1476 {
1477 struct sk_softc *sc = (struct sk_softc *)self;
1478 struct pci_attach_args *pa = aux;
1479 struct skc_attach_args skca;
1480 pci_chipset_tag_t pc = pa->pa_pc;
1481 #ifndef SK_USEIOSPACE
1482 pcireg_t memtype;
1483 #endif
1484 pci_intr_handle_t ih;
1485 const char *intrstr = NULL;
1486 bus_addr_t iobase;
1487 bus_size_t iosize;
1488 int rc, sk_nodenum;
1489 u_int32_t command;
1490 const char *revstr;
1491 const struct sysctlnode *node;
1492
1493 aprint_naive("\n");
1494
1495 DPRINTFN(2, ("begin skc_attach\n"));
1496
1497 /*
1498 * Handle power management nonsense.
1499 */
1500 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1501
1502 if (command == 0x01) {
1503 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1504 if (command & SK_PSTATE_MASK) {
1505 u_int32_t xiobase, membase, irq;
1506
1507 /* Save important PCI config data. */
1508 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1509 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1510 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1511
1512 /* Reset the power state. */
1513 aprint_normal_dev(&sc->sk_dev, "chip is in D%d power mode "
1514 "-- setting to D0\n",
1515 command & SK_PSTATE_MASK);
1516 command &= 0xFFFFFFFC;
1517 pci_conf_write(pc, pa->pa_tag,
1518 SK_PCI_PWRMGMTCTRL, command);
1519
1520 /* Restore PCI config data. */
1521 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1522 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1523 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1524 }
1525 }
1526
1527 /*
1528 * Map control/status registers.
1529 */
1530 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1531 command |= PCI_COMMAND_IO_ENABLE |
1532 PCI_COMMAND_MEM_ENABLE |
1533 PCI_COMMAND_MASTER_ENABLE;
1534 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1535 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1536
1537 #ifdef SK_USEIOSPACE
1538 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1539 aprint_error(": failed to enable I/O ports!\n");
1540 return;
1541 }
1542 /*
1543 * Map control/status registers.
1544 */
1545 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1546 &sc->sk_btag, &sc->sk_bhandle,
1547 &iobase, &iosize)) {
1548 aprint_error(": can't find i/o space\n");
1549 return;
1550 }
1551 #else
1552 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1553 aprint_error(": failed to enable memory mapping!\n");
1554 return;
1555 }
1556 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1557 switch (memtype) {
1558 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1559 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1560 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1561 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1562 &iobase, &iosize) == 0)
1563 break;
1564 default:
1565 aprint_error_dev(&sc->sk_dev, "can't find mem space\n");
1566 return;
1567 }
1568
1569 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1570 #endif
1571 sc->sc_dmatag = pa->pa_dmat;
1572
1573 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1574 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1575
1576 /* bail out here if chip is not recognized */
1577 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1578 aprint_error_dev(&sc->sk_dev, "unknown chip type\n");
1579 goto fail;
1580 }
1581 if (SK_IS_YUKON2(sc)) {
1582 aprint_error_dev(&sc->sk_dev, "Does not support Yukon2--try msk(4).\n");
1583 goto fail;
1584 }
1585 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1586
1587 /* Allocate interrupt */
1588 if (pci_intr_map(pa, &ih)) {
1589 aprint_error(": couldn't map interrupt\n");
1590 goto fail;
1591 }
1592
1593 intrstr = pci_intr_string(pc, ih);
1594 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1595 if (sc->sk_intrhand == NULL) {
1596 aprint_error(": couldn't establish interrupt");
1597 if (intrstr != NULL)
1598 aprint_normal(" at %s", intrstr);
1599 goto fail;
1600 }
1601 aprint_normal(": %s\n", intrstr);
1602
1603 /* Reset the adapter. */
1604 sk_reset(sc);
1605
1606 /* Read and save vital product data from EEPROM. */
1607 sk_vpd_read(sc);
1608
1609 if (sc->sk_type == SK_GENESIS) {
1610 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1611 /* Read and save RAM size and RAMbuffer offset */
1612 switch (val) {
1613 case SK_RAMSIZE_512K_64:
1614 sc->sk_ramsize = 0x80000;
1615 sc->sk_rboff = SK_RBOFF_0;
1616 break;
1617 case SK_RAMSIZE_1024K_64:
1618 sc->sk_ramsize = 0x100000;
1619 sc->sk_rboff = SK_RBOFF_80000;
1620 break;
1621 case SK_RAMSIZE_1024K_128:
1622 sc->sk_ramsize = 0x100000;
1623 sc->sk_rboff = SK_RBOFF_0;
1624 break;
1625 case SK_RAMSIZE_2048K_128:
1626 sc->sk_ramsize = 0x200000;
1627 sc->sk_rboff = SK_RBOFF_0;
1628 break;
1629 default:
1630 aprint_error_dev(&sc->sk_dev, "unknown ram size: %d\n",
1631 val);
1632 goto fail_1;
1633 break;
1634 }
1635
1636 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1637 sc->sk_ramsize, sc->sk_ramsize / 1024,
1638 sc->sk_rboff));
1639 } else {
1640 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1641 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1642 sc->sk_rboff = SK_RBOFF_0;
1643
1644 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1645 sc->sk_ramsize / 1024, sc->sk_ramsize,
1646 sc->sk_rboff));
1647 }
1648
1649 /* Read and save physical media type */
1650 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1651 case SK_PMD_1000BASESX:
1652 sc->sk_pmd = IFM_1000_SX;
1653 break;
1654 case SK_PMD_1000BASELX:
1655 sc->sk_pmd = IFM_1000_LX;
1656 break;
1657 case SK_PMD_1000BASECX:
1658 sc->sk_pmd = IFM_1000_CX;
1659 break;
1660 case SK_PMD_1000BASETX:
1661 case SK_PMD_1000BASETX_ALT:
1662 sc->sk_pmd = IFM_1000_T;
1663 break;
1664 default:
1665 aprint_error_dev(&sc->sk_dev, "unknown media type: 0x%x\n",
1666 sk_win_read_1(sc, SK_PMDTYPE));
1667 goto fail_1;
1668 }
1669
1670 /* determine whether to name it with vpd or just make it up */
1671 /* Marvell Yukon VPD's can freqently be bogus */
1672
1673 switch (pa->pa_id) {
1674 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1675 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1676 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1677 case PCI_PRODUCT_3COM_3C940:
1678 case PCI_PRODUCT_DLINK_DGE530T:
1679 case PCI_PRODUCT_DLINK_DGE560T:
1680 case PCI_PRODUCT_DLINK_DGE560T_2:
1681 case PCI_PRODUCT_LINKSYS_EG1032:
1682 case PCI_PRODUCT_LINKSYS_EG1064:
1683 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1684 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1685 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1686 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1687 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1688 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1689 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1690 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1691 sc->sk_name = sc->sk_vpd_prodname;
1692 break;
1693 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1694 /* whoops yukon vpd prodname bears no resemblance to reality */
1695 switch (sc->sk_type) {
1696 case SK_GENESIS:
1697 sc->sk_name = sc->sk_vpd_prodname;
1698 break;
1699 case SK_YUKON:
1700 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1701 break;
1702 case SK_YUKON_LITE:
1703 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1704 break;
1705 case SK_YUKON_LP:
1706 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1707 break;
1708 default:
1709 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1710 }
1711
1712 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1713
1714 if ( sc->sk_type == SK_YUKON ) {
1715 uint32_t flashaddr;
1716 uint8_t testbyte;
1717
1718 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1719
1720 /* test Flash-Address Register */
1721 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1722 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1723
1724 if (testbyte != 0) {
1725 /* this is yukon lite Rev. A0 */
1726 sc->sk_type = SK_YUKON_LITE;
1727 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1728 /* restore Flash-Address Register */
1729 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1730 }
1731 }
1732 break;
1733 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1734 sc->sk_name = sc->sk_vpd_prodname;
1735 break;
1736 default:
1737 sc->sk_name = "Unknown Marvell";
1738 }
1739
1740
1741 if ( sc->sk_type == SK_YUKON_LITE ) {
1742 switch (sc->sk_rev) {
1743 case SK_YUKON_LITE_REV_A0:
1744 revstr = "A0";
1745 break;
1746 case SK_YUKON_LITE_REV_A1:
1747 revstr = "A1";
1748 break;
1749 case SK_YUKON_LITE_REV_A3:
1750 revstr = "A3";
1751 break;
1752 default:
1753 revstr = "";
1754 }
1755 } else {
1756 revstr = "";
1757 }
1758
1759 /* Announce the product name. */
1760 aprint_normal_dev(&sc->sk_dev, "%s rev. %s(0x%x)\n",
1761 sc->sk_name, revstr, sc->sk_rev);
1762
1763 skca.skc_port = SK_PORT_A;
1764 (void)config_found(&sc->sk_dev, &skca, skcprint);
1765
1766 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1767 skca.skc_port = SK_PORT_B;
1768 (void)config_found(&sc->sk_dev, &skca, skcprint);
1769 }
1770
1771 /* Turn on the 'driver is loaded' LED. */
1772 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1773
1774 /* skc sysctl setup */
1775
1776 sc->sk_int_mod = SK_IM_DEFAULT;
1777 sc->sk_int_mod_pending = 0;
1778
1779 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1780 0, CTLTYPE_NODE, device_xname(&sc->sk_dev),
1781 SYSCTL_DESCR("skc per-controller controls"),
1782 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1783 CTL_EOL)) != 0) {
1784 aprint_normal_dev(&sc->sk_dev, "couldn't create sysctl node\n");
1785 goto fail_1;
1786 }
1787
1788 sk_nodenum = node->sysctl_num;
1789
1790 /* interrupt moderation time in usecs */
1791 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1792 CTLFLAG_READWRITE,
1793 CTLTYPE_INT, "int_mod",
1794 SYSCTL_DESCR("sk interrupt moderation timer"),
1795 sk_sysctl_handler, 0, sc,
1796 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1797 CTL_EOL)) != 0) {
1798 aprint_normal_dev(&sc->sk_dev, "couldn't create int_mod sysctl node\n");
1799 goto fail_1;
1800 }
1801
1802 return;
1803
1804 fail_1:
1805 pci_intr_disestablish(pc, sc->sk_intrhand);
1806 fail:
1807 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1808 }
1809
1810 int
1811 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1812 {
1813 struct sk_softc *sc = sc_if->sk_softc;
1814 struct sk_tx_desc *f = NULL;
1815 u_int32_t frag, cur, cnt = 0, sk_ctl;
1816 int i;
1817 struct sk_txmap_entry *entry;
1818 bus_dmamap_t txmap;
1819
1820 DPRINTFN(3, ("sk_encap\n"));
1821
1822 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1823 if (entry == NULL) {
1824 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1825 return ENOBUFS;
1826 }
1827 txmap = entry->dmamap;
1828
1829 cur = frag = *txidx;
1830
1831 #ifdef SK_DEBUG
1832 if (skdebug >= 3)
1833 sk_dump_mbuf(m_head);
1834 #endif
1835
1836 /*
1837 * Start packing the mbufs in this chain into
1838 * the fragment pointers. Stop when we run out
1839 * of fragments or hit the end of the mbuf chain.
1840 */
1841 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1842 BUS_DMA_NOWAIT)) {
1843 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1844 return ENOBUFS;
1845 }
1846
1847 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1848
1849 /* Sync the DMA map. */
1850 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1851 BUS_DMASYNC_PREWRITE);
1852
1853 for (i = 0; i < txmap->dm_nsegs; i++) {
1854 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1855 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1856 return ENOBUFS;
1857 }
1858 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1859 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1860 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1861 if (cnt == 0)
1862 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1863 else
1864 sk_ctl |= SK_TXCTL_OWN;
1865 f->sk_ctl = htole32(sk_ctl);
1866 cur = frag;
1867 SK_INC(frag, SK_TX_RING_CNT);
1868 cnt++;
1869 }
1870
1871 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1872 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1873
1874 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1875 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1876 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1877
1878 /* Sync descriptors before handing to chip */
1879 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1880 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1881
1882 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1883 htole32(SK_TXCTL_OWN);
1884
1885 /* Sync first descriptor to hand it off */
1886 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1887
1888 sc_if->sk_cdata.sk_tx_cnt += cnt;
1889
1890 #ifdef SK_DEBUG
1891 if (skdebug >= 3) {
1892 struct sk_tx_desc *desc;
1893 u_int32_t idx;
1894 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1895 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1896 sk_dump_txdesc(desc, idx);
1897 }
1898 }
1899 #endif
1900
1901 *txidx = frag;
1902
1903 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1904
1905 return 0;
1906 }
1907
1908 void
1909 sk_start(struct ifnet *ifp)
1910 {
1911 struct sk_if_softc *sc_if = ifp->if_softc;
1912 struct sk_softc *sc = sc_if->sk_softc;
1913 struct mbuf *m_head = NULL;
1914 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1915 int pkts = 0;
1916
1917 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1918 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1919
1920 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1921 IFQ_POLL(&ifp->if_snd, m_head);
1922 if (m_head == NULL)
1923 break;
1924
1925 /*
1926 * Pack the data into the transmit ring. If we
1927 * don't have room, set the OACTIVE flag and wait
1928 * for the NIC to drain the ring.
1929 */
1930 if (sk_encap(sc_if, m_head, &idx)) {
1931 ifp->if_flags |= IFF_OACTIVE;
1932 break;
1933 }
1934
1935 /* now we are committed to transmit the packet */
1936 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1937 pkts++;
1938
1939 /*
1940 * If there's a BPF listener, bounce a copy of this frame
1941 * to him.
1942 */
1943 #if NBPFILTER > 0
1944 if (ifp->if_bpf)
1945 bpf_mtap(ifp->if_bpf, m_head);
1946 #endif
1947 }
1948 if (pkts == 0)
1949 return;
1950
1951 /* Transmit */
1952 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1953 sc_if->sk_cdata.sk_tx_prod = idx;
1954 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1955
1956 /* Set a timeout in case the chip goes out to lunch. */
1957 ifp->if_timer = 5;
1958 }
1959 }
1960
1961
1962 void
1963 sk_watchdog(struct ifnet *ifp)
1964 {
1965 struct sk_if_softc *sc_if = ifp->if_softc;
1966
1967 /*
1968 * Reclaim first as there is a possibility of losing Tx completion
1969 * interrupts.
1970 */
1971 sk_txeof(sc_if);
1972 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1973 aprint_error_dev(&sc_if->sk_dev, "watchdog timeout\n");
1974
1975 ifp->if_oerrors++;
1976
1977 sk_init(ifp);
1978 }
1979 }
1980
1981 void
1982 sk_shutdown(void *v)
1983 {
1984 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
1985 struct sk_softc *sc = sc_if->sk_softc;
1986 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1987
1988 DPRINTFN(2, ("sk_shutdown\n"));
1989 sk_stop(ifp,1);
1990
1991 /* Turn off the 'driver is loaded' LED. */
1992 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1993
1994 /*
1995 * Reset the GEnesis controller. Doing this should also
1996 * assert the resets on the attached XMAC(s).
1997 */
1998 sk_reset(sc);
1999 }
2000
2001 void
2002 sk_rxeof(struct sk_if_softc *sc_if)
2003 {
2004 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2005 struct mbuf *m;
2006 struct sk_chain *cur_rx;
2007 struct sk_rx_desc *cur_desc;
2008 int i, cur, total_len = 0;
2009 u_int32_t rxstat, sk_ctl;
2010 bus_dmamap_t dmamap;
2011
2012 i = sc_if->sk_cdata.sk_rx_prod;
2013
2014 DPRINTFN(3, ("sk_rxeof %d\n", i));
2015
2016 for (;;) {
2017 cur = i;
2018
2019 /* Sync the descriptor */
2020 SK_CDRXSYNC(sc_if, cur,
2021 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2022
2023 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2024 if (sk_ctl & SK_RXCTL_OWN) {
2025 /* Invalidate the descriptor -- it's not ready yet */
2026 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2027 sc_if->sk_cdata.sk_rx_prod = i;
2028 break;
2029 }
2030
2031 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2032 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2033 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2034
2035 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2036 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2037
2038 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2039 m = cur_rx->sk_mbuf;
2040 cur_rx->sk_mbuf = NULL;
2041 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2042
2043 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2044
2045 SK_INC(i, SK_RX_RING_CNT);
2046
2047 if (rxstat & XM_RXSTAT_ERRFRAME) {
2048 ifp->if_ierrors++;
2049 sk_newbuf(sc_if, cur, m, dmamap);
2050 continue;
2051 }
2052
2053 /*
2054 * Try to allocate a new jumbo buffer. If that
2055 * fails, copy the packet to mbufs and put the
2056 * jumbo buffer back in the ring so it can be
2057 * re-used. If allocating mbufs fails, then we
2058 * have to drop the packet.
2059 */
2060 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2061 struct mbuf *m0;
2062 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2063 total_len + ETHER_ALIGN, 0, ifp, NULL);
2064 sk_newbuf(sc_if, cur, m, dmamap);
2065 if (m0 == NULL) {
2066 aprint_error_dev(&sc_if->sk_dev, "no receive buffers "
2067 "available -- packet dropped!\n");
2068 ifp->if_ierrors++;
2069 continue;
2070 }
2071 m_adj(m0, ETHER_ALIGN);
2072 m = m0;
2073 } else {
2074 m->m_pkthdr.rcvif = ifp;
2075 m->m_pkthdr.len = m->m_len = total_len;
2076 }
2077
2078 ifp->if_ipackets++;
2079
2080 #if NBPFILTER > 0
2081 if (ifp->if_bpf)
2082 bpf_mtap(ifp->if_bpf, m);
2083 #endif
2084 /* pass it on. */
2085 (*ifp->if_input)(ifp, m);
2086 }
2087 }
2088
2089 void
2090 sk_txeof(struct sk_if_softc *sc_if)
2091 {
2092 struct sk_softc *sc = sc_if->sk_softc;
2093 struct sk_tx_desc *cur_tx;
2094 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2095 u_int32_t idx, sk_ctl;
2096 struct sk_txmap_entry *entry;
2097
2098 DPRINTFN(3, ("sk_txeof\n"));
2099
2100 /*
2101 * Go through our tx ring and free mbufs for those
2102 * frames that have been sent.
2103 */
2104 idx = sc_if->sk_cdata.sk_tx_cons;
2105 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2106 SK_CDTXSYNC(sc_if, idx, 1,
2107 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2108
2109 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2110 sk_ctl = le32toh(cur_tx->sk_ctl);
2111 #ifdef SK_DEBUG
2112 if (skdebug >= 3)
2113 sk_dump_txdesc(cur_tx, idx);
2114 #endif
2115 if (sk_ctl & SK_TXCTL_OWN) {
2116 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2117 break;
2118 }
2119 if (sk_ctl & SK_TXCTL_LASTFRAG)
2120 ifp->if_opackets++;
2121 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2122 entry = sc_if->sk_cdata.sk_tx_map[idx];
2123
2124 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2125 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2126
2127 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2128 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2129
2130 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2131 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2132 link);
2133 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2134 }
2135 sc_if->sk_cdata.sk_tx_cnt--;
2136 SK_INC(idx, SK_TX_RING_CNT);
2137 }
2138 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2139 ifp->if_timer = 0;
2140 else /* nudge chip to keep tx ring moving */
2141 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2142
2143 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2144 ifp->if_flags &= ~IFF_OACTIVE;
2145
2146 sc_if->sk_cdata.sk_tx_cons = idx;
2147 }
2148
2149 void
2150 sk_tick(void *xsc_if)
2151 {
2152 struct sk_if_softc *sc_if = xsc_if;
2153 struct mii_data *mii = &sc_if->sk_mii;
2154 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2155 int i;
2156
2157 DPRINTFN(3, ("sk_tick\n"));
2158
2159 if (!(ifp->if_flags & IFF_UP))
2160 return;
2161
2162 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2163 sk_intr_bcom(sc_if);
2164 return;
2165 }
2166
2167 /*
2168 * According to SysKonnect, the correct way to verify that
2169 * the link has come back up is to poll bit 0 of the GPIO
2170 * register three times. This pin has the signal from the
2171 * link sync pin connected to it; if we read the same link
2172 * state 3 times in a row, we know the link is up.
2173 */
2174 for (i = 0; i < 3; i++) {
2175 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2176 break;
2177 }
2178
2179 if (i != 3) {
2180 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2181 return;
2182 }
2183
2184 /* Turn the GP0 interrupt back on. */
2185 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2186 SK_XM_READ_2(sc_if, XM_ISR);
2187 mii_tick(mii);
2188 mii_pollstat(mii);
2189 callout_stop(&sc_if->sk_tick_ch);
2190 }
2191
2192 void
2193 sk_intr_bcom(struct sk_if_softc *sc_if)
2194 {
2195 struct mii_data *mii = &sc_if->sk_mii;
2196 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2197 int status;
2198
2199
2200 DPRINTFN(3, ("sk_intr_bcom\n"));
2201
2202 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2203
2204 /*
2205 * Read the PHY interrupt register to make sure
2206 * we clear any pending interrupts.
2207 */
2208 status = sk_xmac_miibus_readreg((struct device *)sc_if,
2209 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2210
2211 if (!(ifp->if_flags & IFF_RUNNING)) {
2212 sk_init_xmac(sc_if);
2213 return;
2214 }
2215
2216 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2217 int lstat;
2218 lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
2219 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2220
2221 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2222 (void)mii_mediachg(mii);
2223 /* Turn off the link LED. */
2224 SK_IF_WRITE_1(sc_if, 0,
2225 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2226 sc_if->sk_link = 0;
2227 } else if (status & BRGPHY_ISR_LNK_CHG) {
2228 sk_xmac_miibus_writereg((struct device *)sc_if,
2229 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2230 mii_tick(mii);
2231 sc_if->sk_link = 1;
2232 /* Turn on the link LED. */
2233 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2234 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2235 SK_LINKLED_BLINK_OFF);
2236 mii_pollstat(mii);
2237 } else {
2238 mii_tick(mii);
2239 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2240 }
2241 }
2242
2243 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2244 }
2245
2246 void
2247 sk_intr_xmac(struct sk_if_softc *sc_if)
2248 {
2249 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2250
2251 DPRINTFN(3, ("sk_intr_xmac\n"));
2252
2253 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2254 if (status & XM_ISR_GP0_SET) {
2255 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2256 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2257 }
2258
2259 if (status & XM_ISR_AUTONEG_DONE) {
2260 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2261 }
2262 }
2263
2264 if (status & XM_IMR_TX_UNDERRUN)
2265 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2266
2267 if (status & XM_IMR_RX_OVERRUN)
2268 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2269 }
2270
2271 void
2272 sk_intr_yukon(struct sk_if_softc *sc_if)
2273 {
2274 int status;
2275
2276 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2277
2278 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2279 }
2280
2281 int
2282 sk_intr(void *xsc)
2283 {
2284 struct sk_softc *sc = xsc;
2285 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2286 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2287 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2288 u_int32_t status;
2289 int claimed = 0;
2290
2291 if (sc_if0 != NULL)
2292 ifp0 = &sc_if0->sk_ethercom.ec_if;
2293 if (sc_if1 != NULL)
2294 ifp1 = &sc_if1->sk_ethercom.ec_if;
2295
2296 for (;;) {
2297 status = CSR_READ_4(sc, SK_ISSR);
2298 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2299
2300 if (!(status & sc->sk_intrmask))
2301 break;
2302
2303 claimed = 1;
2304
2305 /* Handle receive interrupts first. */
2306 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2307 sk_rxeof(sc_if0);
2308 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2309 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2310 }
2311 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2312 sk_rxeof(sc_if1);
2313 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2314 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2315 }
2316
2317 /* Then transmit interrupts. */
2318 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2319 sk_txeof(sc_if0);
2320 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2321 SK_TXBMU_CLR_IRQ_EOF);
2322 }
2323 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2324 sk_txeof(sc_if1);
2325 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2326 SK_TXBMU_CLR_IRQ_EOF);
2327 }
2328
2329 /* Then MAC interrupts. */
2330 if (sc_if0 && (status & SK_ISR_MAC1) &&
2331 (ifp0->if_flags & IFF_RUNNING)) {
2332 if (sc->sk_type == SK_GENESIS)
2333 sk_intr_xmac(sc_if0);
2334 else
2335 sk_intr_yukon(sc_if0);
2336 }
2337
2338 if (sc_if1 && (status & SK_ISR_MAC2) &&
2339 (ifp1->if_flags & IFF_RUNNING)) {
2340 if (sc->sk_type == SK_GENESIS)
2341 sk_intr_xmac(sc_if1);
2342 else
2343 sk_intr_yukon(sc_if1);
2344
2345 }
2346
2347 if (status & SK_ISR_EXTERNAL_REG) {
2348 if (sc_if0 != NULL &&
2349 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2350 sk_intr_bcom(sc_if0);
2351
2352 if (sc_if1 != NULL &&
2353 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2354 sk_intr_bcom(sc_if1);
2355 }
2356 }
2357
2358 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2359
2360 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2361 sk_start(ifp0);
2362 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2363 sk_start(ifp1);
2364
2365 #if NRND > 0
2366 if (RND_ENABLED(&sc->rnd_source))
2367 rnd_add_uint32(&sc->rnd_source, status);
2368 #endif
2369
2370 if (sc->sk_int_mod_pending)
2371 sk_update_int_mod(sc);
2372
2373 return claimed;
2374 }
2375
2376 void
2377 sk_init_xmac(struct sk_if_softc *sc_if)
2378 {
2379 struct sk_softc *sc = sc_if->sk_softc;
2380 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2381 static const struct sk_bcom_hack bhack[] = {
2382 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2383 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2384 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2385 { 0, 0 } };
2386
2387 DPRINTFN(1, ("sk_init_xmac\n"));
2388
2389 /* Unreset the XMAC. */
2390 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2391 DELAY(1000);
2392
2393 /* Reset the XMAC's internal state. */
2394 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2395
2396 /* Save the XMAC II revision */
2397 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2398
2399 /*
2400 * Perform additional initialization for external PHYs,
2401 * namely for the 1000baseTX cards that use the XMAC's
2402 * GMII mode.
2403 */
2404 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2405 int i = 0;
2406 u_int32_t val;
2407
2408 /* Take PHY out of reset. */
2409 val = sk_win_read_4(sc, SK_GPIO);
2410 if (sc_if->sk_port == SK_PORT_A)
2411 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2412 else
2413 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2414 sk_win_write_4(sc, SK_GPIO, val);
2415
2416 /* Enable GMII mode on the XMAC. */
2417 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2418
2419 sk_xmac_miibus_writereg((struct device *)sc_if,
2420 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2421 DELAY(10000);
2422 sk_xmac_miibus_writereg((struct device *)sc_if,
2423 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2424
2425 /*
2426 * Early versions of the BCM5400 apparently have
2427 * a bug that requires them to have their reserved
2428 * registers initialized to some magic values. I don't
2429 * know what the numbers do, I'm just the messenger.
2430 */
2431 if (sk_xmac_miibus_readreg((struct device *)sc_if,
2432 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2433 while (bhack[i].reg) {
2434 sk_xmac_miibus_writereg((struct device *)sc_if,
2435 SK_PHYADDR_BCOM, bhack[i].reg,
2436 bhack[i].val);
2437 i++;
2438 }
2439 }
2440 }
2441
2442 /* Set station address */
2443 SK_XM_WRITE_2(sc_if, XM_PAR0,
2444 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2445 SK_XM_WRITE_2(sc_if, XM_PAR1,
2446 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2447 SK_XM_WRITE_2(sc_if, XM_PAR2,
2448 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2449 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2450
2451 if (ifp->if_flags & IFF_PROMISC)
2452 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2453 else
2454 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2455
2456 if (ifp->if_flags & IFF_BROADCAST)
2457 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2458 else
2459 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2460
2461 /* We don't need the FCS appended to the packet. */
2462 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2463
2464 /* We want short frames padded to 60 bytes. */
2465 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2466
2467 /*
2468 * Enable the reception of all error frames. This is is
2469 * a necessary evil due to the design of the XMAC. The
2470 * XMAC's receive FIFO is only 8K in size, however jumbo
2471 * frames can be up to 9000 bytes in length. When bad
2472 * frame filtering is enabled, the XMAC's RX FIFO operates
2473 * in 'store and forward' mode. For this to work, the
2474 * entire frame has to fit into the FIFO, but that means
2475 * that jumbo frames larger than 8192 bytes will be
2476 * truncated. Disabling all bad frame filtering causes
2477 * the RX FIFO to operate in streaming mode, in which
2478 * case the XMAC will start transfering frames out of the
2479 * RX FIFO as soon as the FIFO threshold is reached.
2480 */
2481 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2482 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2483 XM_MODE_RX_INRANGELEN);
2484
2485 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2486 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2487 else
2488 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2489
2490 /*
2491 * Bump up the transmit threshold. This helps hold off transmit
2492 * underruns when we're blasting traffic from both ports at once.
2493 */
2494 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2495
2496 /* Set multicast filter */
2497 sk_setmulti(sc_if);
2498
2499 /* Clear and enable interrupts */
2500 SK_XM_READ_2(sc_if, XM_ISR);
2501 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2502 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2503 else
2504 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2505
2506 /* Configure MAC arbiter */
2507 switch (sc_if->sk_xmac_rev) {
2508 case XM_XMAC_REV_B2:
2509 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2510 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2511 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2512 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2513 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2514 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2515 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2516 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2517 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2518 break;
2519 case XM_XMAC_REV_C1:
2520 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2521 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2522 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2523 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2524 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2525 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2526 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2527 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2528 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2529 break;
2530 default:
2531 break;
2532 }
2533 sk_win_write_2(sc, SK_MACARB_CTL,
2534 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2535
2536 sc_if->sk_link = 1;
2537 }
2538
2539 void sk_init_yukon(struct sk_if_softc *sc_if)
2540 {
2541 u_int32_t /*mac, */phy;
2542 u_int16_t reg;
2543 struct sk_softc *sc;
2544 int i;
2545
2546 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2547 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2548
2549 sc = sc_if->sk_softc;
2550 if (sc->sk_type == SK_YUKON_LITE &&
2551 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2552 /* Take PHY out of reset. */
2553 sk_win_write_4(sc, SK_GPIO,
2554 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2555 }
2556
2557
2558 /* GMAC and GPHY Reset */
2559 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2560
2561 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2562
2563 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2564 DELAY(1000);
2565 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2566 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2567 DELAY(1000);
2568
2569
2570 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2571
2572 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2573 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2574
2575 switch (sc_if->sk_softc->sk_pmd) {
2576 case IFM_1000_SX:
2577 case IFM_1000_LX:
2578 phy |= SK_GPHY_FIBER;
2579 break;
2580
2581 case IFM_1000_CX:
2582 case IFM_1000_T:
2583 phy |= SK_GPHY_COPPER;
2584 break;
2585 }
2586
2587 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2588
2589 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2590 DELAY(1000);
2591 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2592 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2593 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2594
2595 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2596 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2597
2598 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2599
2600 /* unused read of the interrupt source register */
2601 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2602 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2603
2604 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2605 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2606 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2607
2608 /* MIB Counter Clear Mode set */
2609 reg |= YU_PAR_MIB_CLR;
2610 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2611 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2612 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2613
2614 /* MIB Counter Clear Mode clear */
2615 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2616 reg &= ~YU_PAR_MIB_CLR;
2617 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2618
2619 /* receive control reg */
2620 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2621 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2622 YU_RCR_CRCR);
2623
2624 /* transmit parameter register */
2625 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2626 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2627 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2628
2629 /* serial mode register */
2630 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2631 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2632 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2633 YU_SMR_IPG_DATA(0x1e));
2634
2635 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2636 /* Setup Yukon's address */
2637 for (i = 0; i < 3; i++) {
2638 /* Write Source Address 1 (unicast filter) */
2639 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2640 sc_if->sk_enaddr[i * 2] |
2641 sc_if->sk_enaddr[i * 2 + 1] << 8);
2642 }
2643
2644 for (i = 0; i < 3; i++) {
2645 reg = sk_win_read_2(sc_if->sk_softc,
2646 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2647 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2648 }
2649
2650 /* Set multicast filter */
2651 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2652 sk_setmulti(sc_if);
2653
2654 /* enable interrupt mask for counter overflows */
2655 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2656 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2657 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2658 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2659
2660 /* Configure RX MAC FIFO */
2661 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2662 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2663
2664 /* Configure TX MAC FIFO */
2665 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2666 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2667
2668 DPRINTFN(6, ("sk_init_yukon: end\n"));
2669 }
2670
2671 /*
2672 * Note that to properly initialize any part of the GEnesis chip,
2673 * you first have to take it out of reset mode.
2674 */
2675 int
2676 sk_init(struct ifnet *ifp)
2677 {
2678 struct sk_if_softc *sc_if = ifp->if_softc;
2679 struct sk_softc *sc = sc_if->sk_softc;
2680 struct mii_data *mii = &sc_if->sk_mii;
2681 int rc = 0, s;
2682 u_int32_t imr, imtimer_ticks;
2683
2684 DPRINTFN(1, ("sk_init\n"));
2685
2686 s = splnet();
2687
2688 if (ifp->if_flags & IFF_RUNNING) {
2689 splx(s);
2690 return 0;
2691 }
2692
2693 /* Cancel pending I/O and free all RX/TX buffers. */
2694 sk_stop(ifp,0);
2695
2696 if (sc->sk_type == SK_GENESIS) {
2697 /* Configure LINK_SYNC LED */
2698 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2699 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2700 SK_LINKLED_LINKSYNC_ON);
2701
2702 /* Configure RX LED */
2703 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2704 SK_RXLEDCTL_COUNTER_START);
2705
2706 /* Configure TX LED */
2707 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2708 SK_TXLEDCTL_COUNTER_START);
2709 }
2710
2711 /* Configure I2C registers */
2712
2713 /* Configure XMAC(s) */
2714 switch (sc->sk_type) {
2715 case SK_GENESIS:
2716 sk_init_xmac(sc_if);
2717 break;
2718 case SK_YUKON:
2719 case SK_YUKON_LITE:
2720 case SK_YUKON_LP:
2721 sk_init_yukon(sc_if);
2722 break;
2723 }
2724 if ((rc = mii_mediachg(mii)) == ENXIO)
2725 rc = 0;
2726 else if (rc != 0)
2727 goto out;
2728
2729 if (sc->sk_type == SK_GENESIS) {
2730 /* Configure MAC FIFOs */
2731 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2732 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2733 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2734
2735 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2736 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2737 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2738 }
2739
2740 /* Configure transmit arbiter(s) */
2741 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2742 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2743
2744 /* Configure RAMbuffers */
2745 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2746 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2747 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2748 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2749 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2750 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2751
2752 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2753 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2754 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2755 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2756 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2757 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2758 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2759
2760 /* Configure BMUs */
2761 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2762 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2763 SK_RX_RING_ADDR(sc_if, 0));
2764 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2765
2766 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2767 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2768 SK_TX_RING_ADDR(sc_if, 0));
2769 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2770
2771 /* Init descriptors */
2772 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2773 aprint_error_dev(&sc_if->sk_dev, "initialization failed: no "
2774 "memory for rx buffers\n");
2775 sk_stop(ifp,0);
2776 splx(s);
2777 return ENOBUFS;
2778 }
2779
2780 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2781 aprint_error_dev(&sc_if->sk_dev, "initialization failed: no "
2782 "memory for tx buffers\n");
2783 sk_stop(ifp,0);
2784 splx(s);
2785 return ENOBUFS;
2786 }
2787
2788 /* Set interrupt moderation if changed via sysctl. */
2789 switch (sc->sk_type) {
2790 case SK_GENESIS:
2791 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2792 break;
2793 case SK_YUKON_EC:
2794 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2795 break;
2796 default:
2797 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2798 }
2799 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2800 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2801 sk_win_write_4(sc, SK_IMTIMERINIT,
2802 SK_IM_USECS(sc->sk_int_mod));
2803 aprint_verbose_dev(&sc->sk_dev, "interrupt moderation is %d us\n",
2804 sc->sk_int_mod);
2805 }
2806
2807 /* Configure interrupt handling */
2808 CSR_READ_4(sc, SK_ISSR);
2809 if (sc_if->sk_port == SK_PORT_A)
2810 sc->sk_intrmask |= SK_INTRS1;
2811 else
2812 sc->sk_intrmask |= SK_INTRS2;
2813
2814 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2815
2816 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2817
2818 /* Start BMUs. */
2819 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2820
2821 if (sc->sk_type == SK_GENESIS) {
2822 /* Enable XMACs TX and RX state machines */
2823 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2824 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2825 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2826 }
2827
2828 if (SK_YUKON_FAMILY(sc->sk_type)) {
2829 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2830 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2831 #if 0
2832 /* XXX disable 100Mbps and full duplex mode? */
2833 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2834 #endif
2835 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2836 }
2837
2838
2839 ifp->if_flags |= IFF_RUNNING;
2840 ifp->if_flags &= ~IFF_OACTIVE;
2841
2842 out:
2843 splx(s);
2844 return rc;
2845 }
2846
2847 void
2848 sk_stop(struct ifnet *ifp, int disable)
2849 {
2850 struct sk_if_softc *sc_if = ifp->if_softc;
2851 struct sk_softc *sc = sc_if->sk_softc;
2852 int i;
2853
2854 DPRINTFN(1, ("sk_stop\n"));
2855
2856 callout_stop(&sc_if->sk_tick_ch);
2857
2858 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2859 u_int32_t val;
2860
2861 /* Put PHY back into reset. */
2862 val = sk_win_read_4(sc, SK_GPIO);
2863 if (sc_if->sk_port == SK_PORT_A) {
2864 val |= SK_GPIO_DIR0;
2865 val &= ~SK_GPIO_DAT0;
2866 } else {
2867 val |= SK_GPIO_DIR2;
2868 val &= ~SK_GPIO_DAT2;
2869 }
2870 sk_win_write_4(sc, SK_GPIO, val);
2871 }
2872
2873 /* Turn off various components of this interface. */
2874 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2875 switch (sc->sk_type) {
2876 case SK_GENESIS:
2877 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2878 SK_TXMACCTL_XMAC_RESET);
2879 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2880 break;
2881 case SK_YUKON:
2882 case SK_YUKON_LITE:
2883 case SK_YUKON_LP:
2884 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2885 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2886 break;
2887 }
2888 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2889 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2890 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2891 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2892 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2893 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2894 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2895 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2896 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2897
2898 /* Disable interrupts */
2899 if (sc_if->sk_port == SK_PORT_A)
2900 sc->sk_intrmask &= ~SK_INTRS1;
2901 else
2902 sc->sk_intrmask &= ~SK_INTRS2;
2903 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2904
2905 SK_XM_READ_2(sc_if, XM_ISR);
2906 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2907
2908 /* Free RX and TX mbufs still in the queues. */
2909 for (i = 0; i < SK_RX_RING_CNT; i++) {
2910 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2911 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2912 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2913 }
2914 }
2915
2916 for (i = 0; i < SK_TX_RING_CNT; i++) {
2917 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2918 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2919 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2920 }
2921 }
2922
2923 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2924 }
2925
2926 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2927
2928 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2929
2930 #ifdef SK_DEBUG
2931 void
2932 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2933 {
2934 #define DESC_PRINT(X) \
2935 if (X) \
2936 printf("txdesc[%d]." #X "=%#x\n", \
2937 idx, X);
2938
2939 DESC_PRINT(le32toh(desc->sk_ctl));
2940 DESC_PRINT(le32toh(desc->sk_next));
2941 DESC_PRINT(le32toh(desc->sk_data_lo));
2942 DESC_PRINT(le32toh(desc->sk_data_hi));
2943 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2944 DESC_PRINT(le16toh(desc->sk_rsvd0));
2945 DESC_PRINT(le16toh(desc->sk_csum_startval));
2946 DESC_PRINT(le16toh(desc->sk_csum_startpos));
2947 DESC_PRINT(le16toh(desc->sk_csum_writepos));
2948 DESC_PRINT(le16toh(desc->sk_rsvd1));
2949 #undef PRINT
2950 }
2951
2952 void
2953 sk_dump_bytes(const char *data, int len)
2954 {
2955 int c, i, j;
2956
2957 for (i = 0; i < len; i += 16) {
2958 printf("%08x ", i);
2959 c = len - i;
2960 if (c > 16) c = 16;
2961
2962 for (j = 0; j < c; j++) {
2963 printf("%02x ", data[i + j] & 0xff);
2964 if ((j & 0xf) == 7 && j > 0)
2965 printf(" ");
2966 }
2967
2968 for (; j < 16; j++)
2969 printf(" ");
2970 printf(" ");
2971
2972 for (j = 0; j < c; j++) {
2973 int ch = data[i + j] & 0xff;
2974 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2975 }
2976
2977 printf("\n");
2978
2979 if (c < 16)
2980 break;
2981 }
2982 }
2983
2984 void
2985 sk_dump_mbuf(struct mbuf *m)
2986 {
2987 int count = m->m_pkthdr.len;
2988
2989 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2990
2991 while (count > 0 && m) {
2992 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2993 m, m->m_data, m->m_len);
2994 sk_dump_bytes(mtod(m, char *), m->m_len);
2995
2996 count -= m->m_len;
2997 m = m->m_next;
2998 }
2999 }
3000 #endif
3001
3002 static int
3003 sk_sysctl_handler(SYSCTLFN_ARGS)
3004 {
3005 int error, t;
3006 struct sysctlnode node;
3007 struct sk_softc *sc;
3008
3009 node = *rnode;
3010 sc = node.sysctl_data;
3011 t = sc->sk_int_mod;
3012 node.sysctl_data = &t;
3013 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3014 if (error || newp == NULL)
3015 return error;
3016
3017 if (t < SK_IM_MIN || t > SK_IM_MAX)
3018 return EINVAL;
3019
3020 /* update the softc with sysctl-changed value, and mark
3021 for hardware update */
3022 sc->sk_int_mod = t;
3023 sc->sk_int_mod_pending = 1;
3024 return 0;
3025 }
3026
3027 /*
3028 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3029 * set up in skc_attach()
3030 */
3031 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3032 {
3033 int rc;
3034 const struct sysctlnode *node;
3035
3036 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3037 0, CTLTYPE_NODE, "hw", NULL,
3038 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3039 goto err;
3040 }
3041
3042 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3043 0, CTLTYPE_NODE, "sk",
3044 SYSCTL_DESCR("sk interface controls"),
3045 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3046 goto err;
3047 }
3048
3049 sk_root_num = node->sysctl_num;
3050 return;
3051
3052 err:
3053 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3054 }
3055