if_sk.c revision 1.48.4.2 1 /* $NetBSD: if_sk.c,v 1.48.4.2 2009/05/04 08:12:57 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
30
31 /*
32 * Copyright (c) 1997, 1998, 1999, 2000
33 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by Bill Paul.
46 * 4. Neither the name of the author nor the names of any co-contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60 * THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63 */
64
65 /*
66 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
67 *
68 * Permission to use, copy, modify, and distribute this software for any
69 * purpose with or without fee is hereby granted, provided that the above
70 * copyright notice and this permission notice appear in all copies.
71 *
72 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79 */
80
81 /*
82 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83 * the SK-984x series adapters, both single port and dual port.
84 * References:
85 * The XaQti XMAC II datasheet,
86 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87 * The SysKonnect GEnesis manual, http://www.syskonnect.com
88 *
89 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91 * convenience to others until Vitesse corrects this problem:
92 *
93 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 *
95 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
96 * Department of Electrical Engineering
97 * Columbia University, New York City
98 */
99
100 /*
101 * The SysKonnect gigabit ethernet adapters consist of two main
102 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104 * components and a PHY while the GEnesis controller provides a PCI
105 * interface with DMA support. Each card may have between 512K and
106 * 2MB of SRAM on board depending on the configuration.
107 *
108 * The SysKonnect GEnesis controller can have either one or two XMAC
109 * chips connected to it, allowing single or dual port NIC configurations.
110 * SysKonnect has the distinction of being the only vendor on the market
111 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113 * XMAC registers. This driver takes advantage of these features to allow
114 * both XMACs to operate as independent interfaces.
115 */
116
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.48.4.2 2009/05/04 08:12:57 yamt Exp $");
119
120 #include "bpfilter.h"
121 #include "rnd.h"
122
123 #include <sys/param.h>
124 #include <sys/systm.h>
125 #include <sys/sockio.h>
126 #include <sys/mbuf.h>
127 #include <sys/malloc.h>
128 #include <sys/mutex.h>
129 #include <sys/kernel.h>
130 #include <sys/socket.h>
131 #include <sys/device.h>
132 #include <sys/queue.h>
133 #include <sys/callout.h>
134 #include <sys/sysctl.h>
135 #include <sys/endian.h>
136
137 #include <net/if.h>
138 #include <net/if_dl.h>
139 #include <net/if_types.h>
140
141 #include <net/if_media.h>
142
143 #if NBPFILTER > 0
144 #include <net/bpf.h>
145 #endif
146 #if NRND > 0
147 #include <sys/rnd.h>
148 #endif
149
150 #include <dev/mii/mii.h>
151 #include <dev/mii/miivar.h>
152 #include <dev/mii/brgphyreg.h>
153
154 #include <dev/pci/pcireg.h>
155 #include <dev/pci/pcivar.h>
156 #include <dev/pci/pcidevs.h>
157
158 /* #define SK_USEIOSPACE */
159
160 #include <dev/pci/if_skreg.h>
161 #include <dev/pci/if_skvar.h>
162
163 int skc_probe(device_t, cfdata_t, void *);
164 void skc_attach(device_t, device_t, void *aux);
165 int sk_probe(device_t, cfdata_t, void *);
166 void sk_attach(device_t, device_t, void *aux);
167 int skcprint(void *, const char *);
168 int sk_intr(void *);
169 void sk_intr_bcom(struct sk_if_softc *);
170 void sk_intr_xmac(struct sk_if_softc *);
171 void sk_intr_yukon(struct sk_if_softc *);
172 void sk_rxeof(struct sk_if_softc *);
173 void sk_txeof(struct sk_if_softc *);
174 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
175 void sk_start(struct ifnet *);
176 int sk_ioctl(struct ifnet *, u_long, void *);
177 int sk_init(struct ifnet *);
178 void sk_init_xmac(struct sk_if_softc *);
179 void sk_init_yukon(struct sk_if_softc *);
180 void sk_stop(struct ifnet *, int);
181 void sk_watchdog(struct ifnet *);
182 void sk_shutdown(void *);
183 int sk_ifmedia_upd(struct ifnet *);
184 void sk_reset(struct sk_softc *);
185 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
186 int sk_alloc_jumbo_mem(struct sk_if_softc *);
187 void sk_free_jumbo_mem(struct sk_if_softc *);
188 void *sk_jalloc(struct sk_if_softc *);
189 void sk_jfree(struct mbuf *, void *, size_t, void *);
190 int sk_init_rx_ring(struct sk_if_softc *);
191 int sk_init_tx_ring(struct sk_if_softc *);
192 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
193 void sk_vpd_read_res(struct sk_softc *,
194 struct vpd_res *, int);
195 void sk_vpd_read(struct sk_softc *);
196
197 void sk_update_int_mod(struct sk_softc *);
198
199 int sk_xmac_miibus_readreg(device_t, int, int);
200 void sk_xmac_miibus_writereg(device_t, int, int, int);
201 void sk_xmac_miibus_statchg(device_t);
202
203 int sk_marv_miibus_readreg(device_t, int, int);
204 void sk_marv_miibus_writereg(device_t, int, int, int);
205 void sk_marv_miibus_statchg(device_t);
206
207 u_int32_t sk_xmac_hash(void *);
208 u_int32_t sk_yukon_hash(void *);
209 void sk_setfilt(struct sk_if_softc *, void *, int);
210 void sk_setmulti(struct sk_if_softc *);
211 void sk_tick(void *);
212
213 static bool skc_suspend(device_t dv PMF_FN_ARGS);
214 static bool skc_resume(device_t dv PMF_FN_ARGS);
215 static bool sk_resume(device_t dv PMF_FN_ARGS);
216
217 /* #define SK_DEBUG 2 */
218 #ifdef SK_DEBUG
219 #define DPRINTF(x) if (skdebug) printf x
220 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
221 int skdebug = SK_DEBUG;
222
223 void sk_dump_txdesc(struct sk_tx_desc *, int);
224 void sk_dump_mbuf(struct mbuf *);
225 void sk_dump_bytes(const char *, int);
226 #else
227 #define DPRINTF(x)
228 #define DPRINTFN(n,x)
229 #endif
230
231 static int sk_sysctl_handler(SYSCTLFN_PROTO);
232 static int sk_root_num;
233
234 /* supported device vendors */
235 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
236 static const struct sk_product {
237 pci_vendor_id_t sk_vendor;
238 pci_product_id_t sk_product;
239 } sk_products[] = {
240 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
241 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
242 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
243 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
244 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
245 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
246 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
247 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
248 { 0, 0, }
249 };
250
251 #define SK_LINKSYS_EG1032_SUBID 0x00151737
252
253 static inline u_int32_t
254 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
255 {
256 #ifdef SK_USEIOSPACE
257 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
258 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
259 #else
260 return CSR_READ_4(sc, reg);
261 #endif
262 }
263
264 static inline u_int16_t
265 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
266 {
267 #ifdef SK_USEIOSPACE
268 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
269 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
270 #else
271 return CSR_READ_2(sc, reg);
272 #endif
273 }
274
275 static inline u_int8_t
276 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
277 {
278 #ifdef SK_USEIOSPACE
279 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
280 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
281 #else
282 return CSR_READ_1(sc, reg);
283 #endif
284 }
285
286 static inline void
287 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
288 {
289 #ifdef SK_USEIOSPACE
290 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
291 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
292 #else
293 CSR_WRITE_4(sc, reg, x);
294 #endif
295 }
296
297 static inline void
298 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
299 {
300 #ifdef SK_USEIOSPACE
301 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
302 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
303 #else
304 CSR_WRITE_2(sc, reg, x);
305 #endif
306 }
307
308 static inline void
309 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
310 {
311 #ifdef SK_USEIOSPACE
312 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
313 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
314 #else
315 CSR_WRITE_1(sc, reg, x);
316 #endif
317 }
318
319 /*
320 * The VPD EEPROM contains Vital Product Data, as suggested in
321 * the PCI 2.1 specification. The VPD data is separared into areas
322 * denoted by resource IDs. The SysKonnect VPD contains an ID string
323 * resource (the name of the adapter), a read-only area resource
324 * containing various key/data fields and a read/write area which
325 * can be used to store asset management information or log messages.
326 * We read the ID string and read-only into buffers attached to
327 * the controller softc structure for later use. At the moment,
328 * we only use the ID string during sk_attach().
329 */
330 u_int8_t
331 sk_vpd_readbyte(struct sk_softc *sc, int addr)
332 {
333 int i;
334
335 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
336 for (i = 0; i < SK_TIMEOUT; i++) {
337 DELAY(1);
338 if (sk_win_read_2(sc,
339 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
340 break;
341 }
342
343 if (i == SK_TIMEOUT)
344 return 0;
345
346 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
347 }
348
349 void
350 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
351 {
352 int i;
353 u_int8_t *ptr;
354
355 ptr = (u_int8_t *)res;
356 for (i = 0; i < sizeof(struct vpd_res); i++)
357 ptr[i] = sk_vpd_readbyte(sc, i + addr);
358 }
359
360 void
361 sk_vpd_read(struct sk_softc *sc)
362 {
363 int pos = 0, i;
364 struct vpd_res res;
365
366 if (sc->sk_vpd_prodname != NULL)
367 free(sc->sk_vpd_prodname, M_DEVBUF);
368 if (sc->sk_vpd_readonly != NULL)
369 free(sc->sk_vpd_readonly, M_DEVBUF);
370 sc->sk_vpd_prodname = NULL;
371 sc->sk_vpd_readonly = NULL;
372
373 sk_vpd_read_res(sc, &res, pos);
374
375 if (res.vr_id != VPD_RES_ID) {
376 aprint_error_dev(sc->sk_dev,
377 "bad VPD resource id: expected %x got %x\n",
378 VPD_RES_ID, res.vr_id);
379 return;
380 }
381
382 pos += sizeof(res);
383 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
384 if (sc->sk_vpd_prodname == NULL)
385 panic("sk_vpd_read");
386 for (i = 0; i < res.vr_len; i++)
387 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
388 sc->sk_vpd_prodname[i] = '\0';
389 pos += i;
390
391 sk_vpd_read_res(sc, &res, pos);
392
393 if (res.vr_id != VPD_RES_READ) {
394 aprint_error_dev(sc->sk_dev,
395 "bad VPD resource id: expected %x got %x\n",
396 VPD_RES_READ, res.vr_id);
397 return;
398 }
399
400 pos += sizeof(res);
401 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
402 if (sc->sk_vpd_readonly == NULL)
403 panic("sk_vpd_read");
404 for (i = 0; i < res.vr_len ; i++)
405 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
406 }
407
408 int
409 sk_xmac_miibus_readreg(device_t dev, int phy, int reg)
410 {
411 struct sk_if_softc *sc_if = device_private(dev);
412 int i;
413
414 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
415
416 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
417 return 0;
418
419 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
420 SK_XM_READ_2(sc_if, XM_PHY_DATA);
421 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
422 for (i = 0; i < SK_TIMEOUT; i++) {
423 DELAY(1);
424 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
425 XM_MMUCMD_PHYDATARDY)
426 break;
427 }
428
429 if (i == SK_TIMEOUT) {
430 aprint_error_dev(sc_if->sk_dev,
431 "phy failed to come ready\n");
432 return 0;
433 }
434 }
435 DELAY(1);
436 return SK_XM_READ_2(sc_if, XM_PHY_DATA);
437 }
438
439 void
440 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, int val)
441 {
442 struct sk_if_softc *sc_if = device_private(dev);
443 int i;
444
445 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
446
447 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
448 for (i = 0; i < SK_TIMEOUT; i++) {
449 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
450 break;
451 }
452
453 if (i == SK_TIMEOUT) {
454 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
455 return;
456 }
457
458 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
459 for (i = 0; i < SK_TIMEOUT; i++) {
460 DELAY(1);
461 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
462 break;
463 }
464
465 if (i == SK_TIMEOUT)
466 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
467 }
468
469 void
470 sk_xmac_miibus_statchg(device_t dev)
471 {
472 struct sk_if_softc *sc_if = device_private(dev);
473 struct mii_data *mii = &sc_if->sk_mii;
474
475 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
476
477 /*
478 * If this is a GMII PHY, manually set the XMAC's
479 * duplex mode accordingly.
480 */
481 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
482 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
483 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
484 else
485 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
486 }
487 }
488
489 int
490 sk_marv_miibus_readreg(device_t dev, int phy, int reg)
491 {
492 struct sk_if_softc *sc_if = device_private(dev);
493 u_int16_t val;
494 int i;
495
496 if (phy != 0 ||
497 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
498 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
499 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
500 phy, reg));
501 return 0;
502 }
503
504 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
505 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
506
507 for (i = 0; i < SK_TIMEOUT; i++) {
508 DELAY(1);
509 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
510 if (val & YU_SMICR_READ_VALID)
511 break;
512 }
513
514 if (i == SK_TIMEOUT) {
515 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
516 return 0;
517 }
518
519 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
520 SK_TIMEOUT));
521
522 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
523
524 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
525 phy, reg, val));
526
527 return val;
528 }
529
530 void
531 sk_marv_miibus_writereg(device_t dev, int phy, int reg, int val)
532 {
533 struct sk_if_softc *sc_if = device_private(dev);
534 int i;
535
536 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
537 phy, reg, val));
538
539 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
540 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
541 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
542
543 for (i = 0; i < SK_TIMEOUT; i++) {
544 DELAY(1);
545 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
546 break;
547 }
548
549 if (i == SK_TIMEOUT)
550 printf("%s: phy write timed out\n",
551 device_xname(sc_if->sk_dev));
552 }
553
554 void
555 sk_marv_miibus_statchg(device_t dev)
556 {
557 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
558 SK_YU_READ_2(((struct sk_if_softc *)device_private(dev)),
559 YUKON_GPCR)));
560 }
561
562 #define SK_HASH_BITS 6
563
564 u_int32_t
565 sk_xmac_hash(void *addr)
566 {
567 u_int32_t crc;
568
569 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
570 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
571 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
572 return crc;
573 }
574
575 u_int32_t
576 sk_yukon_hash(void *addr)
577 {
578 u_int32_t crc;
579
580 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
581 crc &= ((1 << SK_HASH_BITS) - 1);
582 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
583 return crc;
584 }
585
586 void
587 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
588 {
589 char *addr = addrv;
590 int base = XM_RXFILT_ENTRY(slot);
591
592 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
593 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
594 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
595 }
596
597 void
598 sk_setmulti(struct sk_if_softc *sc_if)
599 {
600 struct sk_softc *sc = sc_if->sk_softc;
601 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
602 u_int32_t hashes[2] = { 0, 0 };
603 int h = 0, i;
604 struct ethercom *ec = &sc_if->sk_ethercom;
605 struct ether_multi *enm;
606 struct ether_multistep step;
607 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
608
609 /* First, zot all the existing filters. */
610 switch (sc->sk_type) {
611 case SK_GENESIS:
612 for (i = 1; i < XM_RXFILT_MAX; i++)
613 sk_setfilt(sc_if, (void *)&dummy, i);
614
615 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
616 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
617 break;
618 case SK_YUKON:
619 case SK_YUKON_LITE:
620 case SK_YUKON_LP:
621 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
622 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
623 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
624 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
625 break;
626 }
627
628 /* Now program new ones. */
629 allmulti:
630 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
631 hashes[0] = 0xFFFFFFFF;
632 hashes[1] = 0xFFFFFFFF;
633 } else {
634 i = 1;
635 /* First find the tail of the list. */
636 ETHER_FIRST_MULTI(step, ec, enm);
637 while (enm != NULL) {
638 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
639 ETHER_ADDR_LEN)) {
640 ifp->if_flags |= IFF_ALLMULTI;
641 goto allmulti;
642 }
643 DPRINTFN(2,("multicast address %s\n",
644 ether_sprintf(enm->enm_addrlo)));
645 /*
646 * Program the first XM_RXFILT_MAX multicast groups
647 * into the perfect filter. For all others,
648 * use the hash table.
649 */
650 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
651 sk_setfilt(sc_if, enm->enm_addrlo, i);
652 i++;
653 }
654 else {
655 switch (sc->sk_type) {
656 case SK_GENESIS:
657 h = sk_xmac_hash(enm->enm_addrlo);
658 break;
659 case SK_YUKON:
660 case SK_YUKON_LITE:
661 case SK_YUKON_LP:
662 h = sk_yukon_hash(enm->enm_addrlo);
663 break;
664 }
665 if (h < 32)
666 hashes[0] |= (1 << h);
667 else
668 hashes[1] |= (1 << (h - 32));
669 }
670
671 ETHER_NEXT_MULTI(step, enm);
672 }
673 }
674
675 switch (sc->sk_type) {
676 case SK_GENESIS:
677 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
678 XM_MODE_RX_USE_PERFECT);
679 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
680 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
681 break;
682 case SK_YUKON:
683 case SK_YUKON_LITE:
684 case SK_YUKON_LP:
685 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
686 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
687 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
688 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
689 break;
690 }
691 }
692
693 int
694 sk_init_rx_ring(struct sk_if_softc *sc_if)
695 {
696 struct sk_chain_data *cd = &sc_if->sk_cdata;
697 struct sk_ring_data *rd = sc_if->sk_rdata;
698 int i;
699
700 memset((char *)rd->sk_rx_ring, 0,
701 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
702
703 for (i = 0; i < SK_RX_RING_CNT; i++) {
704 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
705 if (i == (SK_RX_RING_CNT - 1)) {
706 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
707 rd->sk_rx_ring[i].sk_next =
708 htole32(SK_RX_RING_ADDR(sc_if, 0));
709 } else {
710 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
711 rd->sk_rx_ring[i].sk_next =
712 htole32(SK_RX_RING_ADDR(sc_if,i+1));
713 }
714 }
715
716 for (i = 0; i < SK_RX_RING_CNT; i++) {
717 if (sk_newbuf(sc_if, i, NULL,
718 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
719 aprint_error_dev(sc_if->sk_dev,
720 "failed alloc of %dth mbuf\n", i);
721 return ENOBUFS;
722 }
723 }
724 sc_if->sk_cdata.sk_rx_prod = 0;
725 sc_if->sk_cdata.sk_rx_cons = 0;
726
727 return 0;
728 }
729
730 int
731 sk_init_tx_ring(struct sk_if_softc *sc_if)
732 {
733 struct sk_chain_data *cd = &sc_if->sk_cdata;
734 struct sk_ring_data *rd = sc_if->sk_rdata;
735 int i;
736
737 memset(sc_if->sk_rdata->sk_tx_ring, 0,
738 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
739
740 for (i = 0; i < SK_TX_RING_CNT; i++) {
741 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
742 if (i == (SK_TX_RING_CNT - 1)) {
743 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
744 rd->sk_tx_ring[i].sk_next =
745 htole32(SK_TX_RING_ADDR(sc_if, 0));
746 } else {
747 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
748 rd->sk_tx_ring[i].sk_next =
749 htole32(SK_TX_RING_ADDR(sc_if,i+1));
750 }
751 }
752
753 sc_if->sk_cdata.sk_tx_prod = 0;
754 sc_if->sk_cdata.sk_tx_cons = 0;
755 sc_if->sk_cdata.sk_tx_cnt = 0;
756
757 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
758 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
759
760 return 0;
761 }
762
763 int
764 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
765 bus_dmamap_t dmamap)
766 {
767 struct mbuf *m_new = NULL;
768 struct sk_chain *c;
769 struct sk_rx_desc *r;
770
771 if (m == NULL) {
772 void *buf = NULL;
773
774 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
775 if (m_new == NULL) {
776 aprint_error_dev(sc_if->sk_dev,
777 "no memory for rx list -- packet dropped!\n");
778 return ENOBUFS;
779 }
780
781 /* Allocate the jumbo buffer */
782 buf = sk_jalloc(sc_if);
783 if (buf == NULL) {
784 m_freem(m_new);
785 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
786 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
787 return ENOBUFS;
788 }
789
790 /* Attach the buffer to the mbuf */
791 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
792 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
793
794 } else {
795 /*
796 * We're re-using a previously allocated mbuf;
797 * be sure to re-init pointers and lengths to
798 * default values.
799 */
800 m_new = m;
801 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
802 m_new->m_data = m_new->m_ext.ext_buf;
803 }
804 m_adj(m_new, ETHER_ALIGN);
805
806 c = &sc_if->sk_cdata.sk_rx_chain[i];
807 r = c->sk_desc;
808 c->sk_mbuf = m_new;
809 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
810 (((vaddr_t)m_new->m_data
811 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
812 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
813
814 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
815
816 return 0;
817 }
818
819 /*
820 * Memory management for jumbo frames.
821 */
822
823 int
824 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
825 {
826 struct sk_softc *sc = sc_if->sk_softc;
827 char *ptr, *kva;
828 bus_dma_segment_t seg;
829 int i, rseg, state, error;
830 struct sk_jpool_entry *entry;
831
832 state = error = 0;
833
834 /* Grab a big chunk o' storage. */
835 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
836 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
837 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
838 return ENOBUFS;
839 }
840
841 state = 1;
842 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
843 BUS_DMA_NOWAIT)) {
844 aprint_error_dev(sc->sk_dev,
845 "can't map dma buffers (%d bytes)\n",
846 SK_JMEM);
847 error = ENOBUFS;
848 goto out;
849 }
850
851 state = 2;
852 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
853 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
854 aprint_error_dev(sc->sk_dev, "can't create dma map\n");
855 error = ENOBUFS;
856 goto out;
857 }
858
859 state = 3;
860 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
861 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
862 aprint_error_dev(sc->sk_dev, "can't load dma map\n");
863 error = ENOBUFS;
864 goto out;
865 }
866
867 state = 4;
868 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
869 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
870
871 LIST_INIT(&sc_if->sk_jfree_listhead);
872 LIST_INIT(&sc_if->sk_jinuse_listhead);
873 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
874
875 /*
876 * Now divide it up into 9K pieces and save the addresses
877 * in an array.
878 */
879 ptr = sc_if->sk_cdata.sk_jumbo_buf;
880 for (i = 0; i < SK_JSLOTS; i++) {
881 sc_if->sk_cdata.sk_jslots[i] = ptr;
882 ptr += SK_JLEN;
883 entry = malloc(sizeof(struct sk_jpool_entry),
884 M_DEVBUF, M_NOWAIT);
885 if (entry == NULL) {
886 aprint_error_dev(sc->sk_dev,
887 "no memory for jumbo buffer queue!\n");
888 error = ENOBUFS;
889 goto out;
890 }
891 entry->slot = i;
892 if (i)
893 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
894 entry, jpool_entries);
895 else
896 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
897 entry, jpool_entries);
898 }
899 out:
900 if (error != 0) {
901 switch (state) {
902 case 4:
903 bus_dmamap_unload(sc->sc_dmatag,
904 sc_if->sk_cdata.sk_rx_jumbo_map);
905 case 3:
906 bus_dmamap_destroy(sc->sc_dmatag,
907 sc_if->sk_cdata.sk_rx_jumbo_map);
908 case 2:
909 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
910 case 1:
911 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
912 break;
913 default:
914 break;
915 }
916 }
917
918 return error;
919 }
920
921 /*
922 * Allocate a jumbo buffer.
923 */
924 void *
925 sk_jalloc(struct sk_if_softc *sc_if)
926 {
927 struct sk_jpool_entry *entry;
928
929 mutex_enter(&sc_if->sk_jpool_mtx);
930 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
931
932 if (entry == NULL) {
933 mutex_exit(&sc_if->sk_jpool_mtx);
934 return NULL;
935 }
936
937 LIST_REMOVE(entry, jpool_entries);
938 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
939 mutex_exit(&sc_if->sk_jpool_mtx);
940 return sc_if->sk_cdata.sk_jslots[entry->slot];
941 }
942
943 /*
944 * Release a jumbo buffer.
945 */
946 void
947 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
948 {
949 struct sk_jpool_entry *entry;
950 struct sk_if_softc *sc;
951 int i;
952
953 /* Extract the softc struct pointer. */
954 sc = (struct sk_if_softc *)arg;
955
956 if (sc == NULL)
957 panic("sk_jfree: can't find softc pointer!");
958
959 /* calculate the slot this buffer belongs to */
960
961 i = ((vaddr_t)buf
962 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
963
964 if ((i < 0) || (i >= SK_JSLOTS))
965 panic("sk_jfree: asked to free buffer that we don't manage!");
966
967 mutex_enter(&sc->sk_jpool_mtx);
968 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
969 if (entry == NULL)
970 panic("sk_jfree: buffer not in use!");
971 entry->slot = i;
972 LIST_REMOVE(entry, jpool_entries);
973 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
974 mutex_exit(&sc->sk_jpool_mtx);
975
976 if (__predict_true(m != NULL))
977 pool_cache_put(mb_cache, m);
978 }
979
980 /*
981 * Set media options.
982 */
983 int
984 sk_ifmedia_upd(struct ifnet *ifp)
985 {
986 struct sk_if_softc *sc_if = ifp->if_softc;
987 int rc;
988
989 (void) sk_init(ifp);
990 if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
991 return 0;
992 return rc;
993 }
994
995 int
996 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
997 {
998 struct sk_if_softc *sc_if = ifp->if_softc;
999 struct sk_softc *sc = sc_if->sk_softc;
1000 int s, error = 0;
1001
1002 /* DPRINTFN(2, ("sk_ioctl\n")); */
1003
1004 s = splnet();
1005
1006 switch (command) {
1007
1008 case SIOCSIFFLAGS:
1009 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1010 if ((error = ifioctl_common(ifp, command, data)) != 0)
1011 break;
1012 if (ifp->if_flags & IFF_UP) {
1013 if (ifp->if_flags & IFF_RUNNING &&
1014 ifp->if_flags & IFF_PROMISC &&
1015 !(sc_if->sk_if_flags & IFF_PROMISC)) {
1016 switch (sc->sk_type) {
1017 case SK_GENESIS:
1018 SK_XM_SETBIT_4(sc_if, XM_MODE,
1019 XM_MODE_RX_PROMISC);
1020 break;
1021 case SK_YUKON:
1022 case SK_YUKON_LITE:
1023 case SK_YUKON_LP:
1024 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1025 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1026 break;
1027 }
1028 sk_setmulti(sc_if);
1029 } else if (ifp->if_flags & IFF_RUNNING &&
1030 !(ifp->if_flags & IFF_PROMISC) &&
1031 sc_if->sk_if_flags & IFF_PROMISC) {
1032 switch (sc->sk_type) {
1033 case SK_GENESIS:
1034 SK_XM_CLRBIT_4(sc_if, XM_MODE,
1035 XM_MODE_RX_PROMISC);
1036 break;
1037 case SK_YUKON:
1038 case SK_YUKON_LITE:
1039 case SK_YUKON_LP:
1040 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1041 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1042 break;
1043 }
1044
1045 sk_setmulti(sc_if);
1046 } else
1047 (void) sk_init(ifp);
1048 } else {
1049 if (ifp->if_flags & IFF_RUNNING)
1050 sk_stop(ifp,0);
1051 }
1052 sc_if->sk_if_flags = ifp->if_flags;
1053 error = 0;
1054 break;
1055
1056 default:
1057 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1058 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1059 break;
1060
1061 error = 0;
1062
1063 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1064 ;
1065 else if (ifp->if_flags & IFF_RUNNING) {
1066 sk_setmulti(sc_if);
1067 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1068 }
1069 break;
1070 }
1071
1072 splx(s);
1073 return error;
1074 }
1075
1076 void
1077 sk_update_int_mod(struct sk_softc *sc)
1078 {
1079 u_int32_t imtimer_ticks;
1080
1081 /*
1082 * Configure interrupt moderation. The moderation timer
1083 * defers interrupts specified in the interrupt moderation
1084 * timer mask based on the timeout specified in the interrupt
1085 * moderation timer init register. Each bit in the timer
1086 * register represents one tick, so to specify a timeout in
1087 * microseconds, we have to multiply by the correct number of
1088 * ticks-per-microsecond.
1089 */
1090 switch (sc->sk_type) {
1091 case SK_GENESIS:
1092 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1093 break;
1094 case SK_YUKON_EC:
1095 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1096 break;
1097 default:
1098 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1099 }
1100 aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
1101 sc->sk_int_mod);
1102 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1103 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1104 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1105 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1106 sc->sk_int_mod_pending = 0;
1107 }
1108
1109 /*
1110 * Lookup: Check the PCI vendor and device, and return a pointer to
1111 * The structure if the IDs match against our list.
1112 */
1113
1114 static const struct sk_product *
1115 sk_lookup(const struct pci_attach_args *pa)
1116 {
1117 const struct sk_product *psk;
1118
1119 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1120 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1121 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1122 return psk;
1123 }
1124 return NULL;
1125 }
1126
1127 /*
1128 * Probe for a SysKonnect GEnesis chip.
1129 */
1130
1131 int
1132 skc_probe(device_t parent, cfdata_t match, void *aux)
1133 {
1134 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1135 const struct sk_product *psk;
1136 pcireg_t subid;
1137
1138 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1139
1140 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1141 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1142 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1143 subid == SK_LINKSYS_EG1032_SUBID)
1144 return 1;
1145
1146 if ((psk = sk_lookup(pa))) {
1147 return 1;
1148 }
1149 return 0;
1150 }
1151
1152 /*
1153 * Force the GEnesis into reset, then bring it out of reset.
1154 */
1155 void sk_reset(struct sk_softc *sc)
1156 {
1157 DPRINTFN(2, ("sk_reset\n"));
1158
1159 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1160 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1161 if (SK_YUKON_FAMILY(sc->sk_type))
1162 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1163
1164 DELAY(1000);
1165 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1166 DELAY(2);
1167 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1168 if (SK_YUKON_FAMILY(sc->sk_type))
1169 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1170
1171 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1172 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1173 CSR_READ_2(sc, SK_LINK_CTRL)));
1174
1175 if (sc->sk_type == SK_GENESIS) {
1176 /* Configure packet arbiter */
1177 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1178 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1179 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1180 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1181 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1182 }
1183
1184 /* Enable RAM interface */
1185 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1186
1187 sk_update_int_mod(sc);
1188 }
1189
1190 int
1191 sk_probe(device_t parent, cfdata_t match, void *aux)
1192 {
1193 struct skc_attach_args *sa = aux;
1194
1195 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1196 return 0;
1197
1198 return 1;
1199 }
1200
1201 /*
1202 * Each XMAC chip is attached as a separate logical IP interface.
1203 * Single port cards will have only one logical interface of course.
1204 */
1205 void
1206 sk_attach(device_t parent, device_t self, void *aux)
1207 {
1208 struct sk_if_softc *sc_if = device_private(self);
1209 struct sk_softc *sc = device_private(parent);
1210 struct skc_attach_args *sa = aux;
1211 struct sk_txmap_entry *entry;
1212 struct ifnet *ifp;
1213 bus_dma_segment_t seg;
1214 bus_dmamap_t dmamap;
1215 void *kva;
1216 int i, rseg;
1217 int mii_flags = 0;
1218
1219 aprint_naive("\n");
1220
1221 sc_if->sk_dev = self;
1222 sc_if->sk_port = sa->skc_port;
1223 sc_if->sk_softc = sc;
1224 sc->sk_if[sa->skc_port] = sc_if;
1225
1226 if (sa->skc_port == SK_PORT_A)
1227 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1228 if (sa->skc_port == SK_PORT_B)
1229 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1230
1231 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1232
1233 /*
1234 * Get station address for this interface. Note that
1235 * dual port cards actually come with three station
1236 * addresses: one for each port, plus an extra. The
1237 * extra one is used by the SysKonnect driver software
1238 * as a 'virtual' station address for when both ports
1239 * are operating in failover mode. Currently we don't
1240 * use this extra address.
1241 */
1242 for (i = 0; i < ETHER_ADDR_LEN; i++)
1243 sc_if->sk_enaddr[i] =
1244 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1245
1246
1247 aprint_normal(": Ethernet address %s\n",
1248 ether_sprintf(sc_if->sk_enaddr));
1249
1250 /*
1251 * Set up RAM buffer addresses. The NIC will have a certain
1252 * amount of SRAM on it, somewhere between 512K and 2MB. We
1253 * need to divide this up a) between the transmitter and
1254 * receiver and b) between the two XMACs, if this is a
1255 * dual port NIC. Our algorithm is to divide up the memory
1256 * evenly so that everyone gets a fair share.
1257 */
1258 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1259 u_int32_t chunk, val;
1260
1261 chunk = sc->sk_ramsize / 2;
1262 val = sc->sk_rboff / sizeof(u_int64_t);
1263 sc_if->sk_rx_ramstart = val;
1264 val += (chunk / sizeof(u_int64_t));
1265 sc_if->sk_rx_ramend = val - 1;
1266 sc_if->sk_tx_ramstart = val;
1267 val += (chunk / sizeof(u_int64_t));
1268 sc_if->sk_tx_ramend = val - 1;
1269 } else {
1270 u_int32_t chunk, val;
1271
1272 chunk = sc->sk_ramsize / 4;
1273 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1274 sizeof(u_int64_t);
1275 sc_if->sk_rx_ramstart = val;
1276 val += (chunk / sizeof(u_int64_t));
1277 sc_if->sk_rx_ramend = val - 1;
1278 sc_if->sk_tx_ramstart = val;
1279 val += (chunk / sizeof(u_int64_t));
1280 sc_if->sk_tx_ramend = val - 1;
1281 }
1282
1283 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1284 " tx_ramstart=%#x tx_ramend=%#x\n",
1285 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1286 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1287
1288 /* Read and save PHY type and set PHY address */
1289 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1290 switch (sc_if->sk_phytype) {
1291 case SK_PHYTYPE_XMAC:
1292 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1293 break;
1294 case SK_PHYTYPE_BCOM:
1295 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1296 break;
1297 case SK_PHYTYPE_MARV_COPPER:
1298 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1299 break;
1300 default:
1301 aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
1302 sc_if->sk_phytype);
1303 return;
1304 }
1305
1306 /* Allocate the descriptor queues. */
1307 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1308 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1309 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
1310 goto fail;
1311 }
1312 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1313 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1314 aprint_error_dev(sc_if->sk_dev,
1315 "can't map dma buffers (%lu bytes)\n",
1316 (u_long) sizeof(struct sk_ring_data));
1317 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1318 goto fail;
1319 }
1320 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1321 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1322 &sc_if->sk_ring_map)) {
1323 aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
1324 bus_dmamem_unmap(sc->sc_dmatag, kva,
1325 sizeof(struct sk_ring_data));
1326 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1327 goto fail;
1328 }
1329 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1330 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1331 aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
1332 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1333 bus_dmamem_unmap(sc->sc_dmatag, kva,
1334 sizeof(struct sk_ring_data));
1335 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1336 goto fail;
1337 }
1338
1339 for (i = 0; i < SK_RX_RING_CNT; i++)
1340 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1341
1342 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1343 for (i = 0; i < SK_TX_RING_CNT; i++) {
1344 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1345
1346 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1347 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1348 aprint_error_dev(sc_if->sk_dev,
1349 "Can't create TX dmamap\n");
1350 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1351 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1352 bus_dmamem_unmap(sc->sc_dmatag, kva,
1353 sizeof(struct sk_ring_data));
1354 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1355 goto fail;
1356 }
1357
1358 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1359 if (!entry) {
1360 aprint_error_dev(sc_if->sk_dev,
1361 "Can't alloc txmap entry\n");
1362 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1363 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1364 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1365 bus_dmamem_unmap(sc->sc_dmatag, kva,
1366 sizeof(struct sk_ring_data));
1367 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1368 goto fail;
1369 }
1370 entry->dmamap = dmamap;
1371 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1372 }
1373
1374 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1375 memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
1376
1377 ifp = &sc_if->sk_ethercom.ec_if;
1378 /* Try to allocate memory for jumbo buffers. */
1379 if (sk_alloc_jumbo_mem(sc_if)) {
1380 aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1381 goto fail;
1382 }
1383 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1384 | ETHERCAP_JUMBO_MTU;
1385
1386 ifp->if_softc = sc_if;
1387 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1388 ifp->if_ioctl = sk_ioctl;
1389 ifp->if_start = sk_start;
1390 ifp->if_stop = sk_stop;
1391 ifp->if_init = sk_init;
1392 ifp->if_watchdog = sk_watchdog;
1393 ifp->if_capabilities = 0;
1394 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1395 IFQ_SET_READY(&ifp->if_snd);
1396 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1397
1398 /*
1399 * Do miibus setup.
1400 */
1401 switch (sc->sk_type) {
1402 case SK_GENESIS:
1403 sk_init_xmac(sc_if);
1404 break;
1405 case SK_YUKON:
1406 case SK_YUKON_LITE:
1407 case SK_YUKON_LP:
1408 sk_init_yukon(sc_if);
1409 break;
1410 default:
1411 aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
1412 sc->sk_type);
1413 goto fail;
1414 }
1415
1416 DPRINTFN(2, ("sk_attach: 1\n"));
1417
1418 sc_if->sk_mii.mii_ifp = ifp;
1419 switch (sc->sk_type) {
1420 case SK_GENESIS:
1421 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1422 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1423 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1424 break;
1425 case SK_YUKON:
1426 case SK_YUKON_LITE:
1427 case SK_YUKON_LP:
1428 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1429 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1430 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1431 mii_flags = MIIF_DOPAUSE;
1432 break;
1433 }
1434
1435 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1436 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1437 sk_ifmedia_upd, ether_mediastatus);
1438 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1439 MII_OFFSET_ANY, mii_flags);
1440 if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
1441 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1442 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1443 0, NULL);
1444 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1445 } else
1446 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1447
1448 callout_init(&sc_if->sk_tick_ch, 0);
1449 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1450
1451 DPRINTFN(2, ("sk_attach: 1\n"));
1452
1453 /*
1454 * Call MI attach routines.
1455 */
1456 if_attach(ifp);
1457
1458 ether_ifattach(ifp, sc_if->sk_enaddr);
1459
1460 #if NRND > 0
1461 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1462 RND_TYPE_NET, 0);
1463 #endif
1464
1465 if (!pmf_device_register(self, NULL, sk_resume))
1466 aprint_error_dev(self, "couldn't establish power handler\n");
1467 else
1468 pmf_class_network_register(self, ifp);
1469
1470 DPRINTFN(2, ("sk_attach: end\n"));
1471
1472 return;
1473
1474 fail:
1475 sc->sk_if[sa->skc_port] = NULL;
1476 }
1477
1478 int
1479 skcprint(void *aux, const char *pnp)
1480 {
1481 struct skc_attach_args *sa = aux;
1482
1483 if (pnp)
1484 aprint_normal("sk port %c at %s",
1485 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1486 else
1487 aprint_normal(" port %c",
1488 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1489 return UNCONF;
1490 }
1491
1492 /*
1493 * Attach the interface. Allocate softc structures, do ifmedia
1494 * setup and ethernet/BPF attach.
1495 */
1496 void
1497 skc_attach(device_t parent, device_t self, void *aux)
1498 {
1499 struct sk_softc *sc = device_private(self);
1500 struct pci_attach_args *pa = aux;
1501 struct skc_attach_args skca;
1502 pci_chipset_tag_t pc = pa->pa_pc;
1503 #ifndef SK_USEIOSPACE
1504 pcireg_t memtype;
1505 #endif
1506 pci_intr_handle_t ih;
1507 const char *intrstr = NULL;
1508 bus_addr_t iobase;
1509 bus_size_t iosize;
1510 int rc, sk_nodenum;
1511 u_int32_t command;
1512 const char *revstr;
1513 const struct sysctlnode *node;
1514
1515 sc->sk_dev = self;
1516 aprint_naive("\n");
1517
1518 DPRINTFN(2, ("begin skc_attach\n"));
1519
1520 /*
1521 * Handle power management nonsense.
1522 */
1523 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1524
1525 if (command == 0x01) {
1526 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1527 if (command & SK_PSTATE_MASK) {
1528 u_int32_t xiobase, membase, irq;
1529
1530 /* Save important PCI config data. */
1531 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1532 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1533 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1534
1535 /* Reset the power state. */
1536 aprint_normal_dev(sc->sk_dev,
1537 "chip is in D%d power mode -- setting to D0\n",
1538 command & SK_PSTATE_MASK);
1539 command &= 0xFFFFFFFC;
1540 pci_conf_write(pc, pa->pa_tag,
1541 SK_PCI_PWRMGMTCTRL, command);
1542
1543 /* Restore PCI config data. */
1544 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1545 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1546 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1547 }
1548 }
1549
1550 /*
1551 * Map control/status registers.
1552 */
1553 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1554 command |= PCI_COMMAND_IO_ENABLE |
1555 PCI_COMMAND_MEM_ENABLE |
1556 PCI_COMMAND_MASTER_ENABLE;
1557 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1558 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1559
1560 #ifdef SK_USEIOSPACE
1561 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1562 aprint_error(": failed to enable I/O ports!\n");
1563 return;
1564 }
1565 /*
1566 * Map control/status registers.
1567 */
1568 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1569 &sc->sk_btag, &sc->sk_bhandle,
1570 &iobase, &iosize)) {
1571 aprint_error(": can't find i/o space\n");
1572 return;
1573 }
1574 #else
1575 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1576 aprint_error(": failed to enable memory mapping!\n");
1577 return;
1578 }
1579 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1580 switch (memtype) {
1581 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1582 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1583 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1584 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1585 &iobase, &iosize) == 0)
1586 break;
1587 default:
1588 aprint_error_dev(sc->sk_dev, "can't find mem space\n");
1589 return;
1590 }
1591
1592 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase,
1593 (u_long)iosize));
1594 #endif
1595 sc->sc_dmatag = pa->pa_dmat;
1596
1597 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1598 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1599
1600 /* bail out here if chip is not recognized */
1601 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1602 aprint_error_dev(sc->sk_dev, "unknown chip type\n");
1603 goto fail;
1604 }
1605 if (SK_IS_YUKON2(sc)) {
1606 aprint_error_dev(sc->sk_dev,
1607 "Does not support Yukon2--try msk(4).\n");
1608 goto fail;
1609 }
1610 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1611
1612 /* Allocate interrupt */
1613 if (pci_intr_map(pa, &ih)) {
1614 aprint_error(": couldn't map interrupt\n");
1615 goto fail;
1616 }
1617
1618 intrstr = pci_intr_string(pc, ih);
1619 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1620 if (sc->sk_intrhand == NULL) {
1621 aprint_error(": couldn't establish interrupt");
1622 if (intrstr != NULL)
1623 aprint_normal(" at %s", intrstr);
1624 goto fail;
1625 }
1626 aprint_normal(": %s\n", intrstr);
1627
1628 /* Reset the adapter. */
1629 sk_reset(sc);
1630
1631 /* Read and save vital product data from EEPROM. */
1632 sk_vpd_read(sc);
1633
1634 if (sc->sk_type == SK_GENESIS) {
1635 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1636 /* Read and save RAM size and RAMbuffer offset */
1637 switch (val) {
1638 case SK_RAMSIZE_512K_64:
1639 sc->sk_ramsize = 0x80000;
1640 sc->sk_rboff = SK_RBOFF_0;
1641 break;
1642 case SK_RAMSIZE_1024K_64:
1643 sc->sk_ramsize = 0x100000;
1644 sc->sk_rboff = SK_RBOFF_80000;
1645 break;
1646 case SK_RAMSIZE_1024K_128:
1647 sc->sk_ramsize = 0x100000;
1648 sc->sk_rboff = SK_RBOFF_0;
1649 break;
1650 case SK_RAMSIZE_2048K_128:
1651 sc->sk_ramsize = 0x200000;
1652 sc->sk_rboff = SK_RBOFF_0;
1653 break;
1654 default:
1655 aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
1656 val);
1657 goto fail_1;
1658 break;
1659 }
1660
1661 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1662 sc->sk_ramsize, sc->sk_ramsize / 1024,
1663 sc->sk_rboff));
1664 } else {
1665 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1666 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1667 sc->sk_rboff = SK_RBOFF_0;
1668
1669 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1670 sc->sk_ramsize / 1024, sc->sk_ramsize,
1671 sc->sk_rboff));
1672 }
1673
1674 /* Read and save physical media type */
1675 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1676 case SK_PMD_1000BASESX:
1677 sc->sk_pmd = IFM_1000_SX;
1678 break;
1679 case SK_PMD_1000BASELX:
1680 sc->sk_pmd = IFM_1000_LX;
1681 break;
1682 case SK_PMD_1000BASECX:
1683 sc->sk_pmd = IFM_1000_CX;
1684 break;
1685 case SK_PMD_1000BASETX:
1686 case SK_PMD_1000BASETX_ALT:
1687 sc->sk_pmd = IFM_1000_T;
1688 break;
1689 default:
1690 aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
1691 sk_win_read_1(sc, SK_PMDTYPE));
1692 goto fail_1;
1693 }
1694
1695 /* determine whether to name it with vpd or just make it up */
1696 /* Marvell Yukon VPD's can freqently be bogus */
1697
1698 switch (pa->pa_id) {
1699 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1700 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1701 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1702 case PCI_PRODUCT_3COM_3C940:
1703 case PCI_PRODUCT_DLINK_DGE530T:
1704 case PCI_PRODUCT_DLINK_DGE560T:
1705 case PCI_PRODUCT_DLINK_DGE560T_2:
1706 case PCI_PRODUCT_LINKSYS_EG1032:
1707 case PCI_PRODUCT_LINKSYS_EG1064:
1708 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1709 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1710 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1711 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1712 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1713 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1714 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1715 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1716 sc->sk_name = sc->sk_vpd_prodname;
1717 break;
1718 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1719 /* whoops yukon vpd prodname bears no resemblance to reality */
1720 switch (sc->sk_type) {
1721 case SK_GENESIS:
1722 sc->sk_name = sc->sk_vpd_prodname;
1723 break;
1724 case SK_YUKON:
1725 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1726 break;
1727 case SK_YUKON_LITE:
1728 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1729 break;
1730 case SK_YUKON_LP:
1731 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1732 break;
1733 default:
1734 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1735 }
1736
1737 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1738
1739 if ( sc->sk_type == SK_YUKON ) {
1740 uint32_t flashaddr;
1741 uint8_t testbyte;
1742
1743 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1744
1745 /* test Flash-Address Register */
1746 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1747 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1748
1749 if (testbyte != 0) {
1750 /* this is yukon lite Rev. A0 */
1751 sc->sk_type = SK_YUKON_LITE;
1752 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1753 /* restore Flash-Address Register */
1754 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1755 }
1756 }
1757 break;
1758 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1759 sc->sk_name = sc->sk_vpd_prodname;
1760 break;
1761 default:
1762 sc->sk_name = "Unknown Marvell";
1763 }
1764
1765
1766 if ( sc->sk_type == SK_YUKON_LITE ) {
1767 switch (sc->sk_rev) {
1768 case SK_YUKON_LITE_REV_A0:
1769 revstr = "A0";
1770 break;
1771 case SK_YUKON_LITE_REV_A1:
1772 revstr = "A1";
1773 break;
1774 case SK_YUKON_LITE_REV_A3:
1775 revstr = "A3";
1776 break;
1777 default:
1778 revstr = "";
1779 }
1780 } else {
1781 revstr = "";
1782 }
1783
1784 /* Announce the product name. */
1785 aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
1786 sc->sk_name, revstr, sc->sk_rev);
1787
1788 skca.skc_port = SK_PORT_A;
1789 (void)config_found(sc->sk_dev, &skca, skcprint);
1790
1791 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1792 skca.skc_port = SK_PORT_B;
1793 (void)config_found(sc->sk_dev, &skca, skcprint);
1794 }
1795
1796 /* Turn on the 'driver is loaded' LED. */
1797 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1798
1799 /* skc sysctl setup */
1800
1801 sc->sk_int_mod = SK_IM_DEFAULT;
1802 sc->sk_int_mod_pending = 0;
1803
1804 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1805 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1806 SYSCTL_DESCR("skc per-controller controls"),
1807 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1808 CTL_EOL)) != 0) {
1809 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1810 goto fail_1;
1811 }
1812
1813 sk_nodenum = node->sysctl_num;
1814
1815 /* interrupt moderation time in usecs */
1816 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1817 CTLFLAG_READWRITE,
1818 CTLTYPE_INT, "int_mod",
1819 SYSCTL_DESCR("sk interrupt moderation timer"),
1820 sk_sysctl_handler, 0, sc,
1821 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1822 CTL_EOL)) != 0) {
1823 aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1824 goto fail_1;
1825 }
1826
1827 if (!pmf_device_register(self, skc_suspend, skc_resume))
1828 aprint_error_dev(self, "couldn't establish power handler\n");
1829
1830 return;
1831
1832 fail_1:
1833 pci_intr_disestablish(pc, sc->sk_intrhand);
1834 fail:
1835 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1836 }
1837
1838 int
1839 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1840 {
1841 struct sk_softc *sc = sc_if->sk_softc;
1842 struct sk_tx_desc *f = NULL;
1843 u_int32_t frag, cur, cnt = 0, sk_ctl;
1844 int i;
1845 struct sk_txmap_entry *entry;
1846 bus_dmamap_t txmap;
1847
1848 DPRINTFN(3, ("sk_encap\n"));
1849
1850 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1851 if (entry == NULL) {
1852 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1853 return ENOBUFS;
1854 }
1855 txmap = entry->dmamap;
1856
1857 cur = frag = *txidx;
1858
1859 #ifdef SK_DEBUG
1860 if (skdebug >= 3)
1861 sk_dump_mbuf(m_head);
1862 #endif
1863
1864 /*
1865 * Start packing the mbufs in this chain into
1866 * the fragment pointers. Stop when we run out
1867 * of fragments or hit the end of the mbuf chain.
1868 */
1869 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1870 BUS_DMA_NOWAIT)) {
1871 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1872 return ENOBUFS;
1873 }
1874
1875 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1876
1877 /* Sync the DMA map. */
1878 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1879 BUS_DMASYNC_PREWRITE);
1880
1881 for (i = 0; i < txmap->dm_nsegs; i++) {
1882 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1883 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1884 return ENOBUFS;
1885 }
1886 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1887 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1888 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1889 if (cnt == 0)
1890 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1891 else
1892 sk_ctl |= SK_TXCTL_OWN;
1893 f->sk_ctl = htole32(sk_ctl);
1894 cur = frag;
1895 SK_INC(frag, SK_TX_RING_CNT);
1896 cnt++;
1897 }
1898
1899 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1900 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1901
1902 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1903 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1904 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1905
1906 /* Sync descriptors before handing to chip */
1907 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1908 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1909
1910 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1911 htole32(SK_TXCTL_OWN);
1912
1913 /* Sync first descriptor to hand it off */
1914 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1915
1916 sc_if->sk_cdata.sk_tx_cnt += cnt;
1917
1918 #ifdef SK_DEBUG
1919 if (skdebug >= 3) {
1920 struct sk_tx_desc *desc;
1921 u_int32_t idx;
1922 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1923 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1924 sk_dump_txdesc(desc, idx);
1925 }
1926 }
1927 #endif
1928
1929 *txidx = frag;
1930
1931 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1932
1933 return 0;
1934 }
1935
1936 void
1937 sk_start(struct ifnet *ifp)
1938 {
1939 struct sk_if_softc *sc_if = ifp->if_softc;
1940 struct sk_softc *sc = sc_if->sk_softc;
1941 struct mbuf *m_head = NULL;
1942 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1943 int pkts = 0;
1944
1945 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1946 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1947
1948 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1949 IFQ_POLL(&ifp->if_snd, m_head);
1950 if (m_head == NULL)
1951 break;
1952
1953 /*
1954 * Pack the data into the transmit ring. If we
1955 * don't have room, set the OACTIVE flag and wait
1956 * for the NIC to drain the ring.
1957 */
1958 if (sk_encap(sc_if, m_head, &idx)) {
1959 ifp->if_flags |= IFF_OACTIVE;
1960 break;
1961 }
1962
1963 /* now we are committed to transmit the packet */
1964 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1965 pkts++;
1966
1967 /*
1968 * If there's a BPF listener, bounce a copy of this frame
1969 * to him.
1970 */
1971 #if NBPFILTER > 0
1972 if (ifp->if_bpf)
1973 bpf_mtap(ifp->if_bpf, m_head);
1974 #endif
1975 }
1976 if (pkts == 0)
1977 return;
1978
1979 /* Transmit */
1980 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1981 sc_if->sk_cdata.sk_tx_prod = idx;
1982 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1983
1984 /* Set a timeout in case the chip goes out to lunch. */
1985 ifp->if_timer = 5;
1986 }
1987 }
1988
1989
1990 void
1991 sk_watchdog(struct ifnet *ifp)
1992 {
1993 struct sk_if_softc *sc_if = ifp->if_softc;
1994
1995 /*
1996 * Reclaim first as there is a possibility of losing Tx completion
1997 * interrupts.
1998 */
1999 sk_txeof(sc_if);
2000 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2001 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
2002
2003 ifp->if_oerrors++;
2004
2005 sk_init(ifp);
2006 }
2007 }
2008
2009 void
2010 sk_shutdown(void *v)
2011 {
2012 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
2013 struct sk_softc *sc = sc_if->sk_softc;
2014 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2015
2016 DPRINTFN(2, ("sk_shutdown\n"));
2017 sk_stop(ifp,1);
2018
2019 /* Turn off the 'driver is loaded' LED. */
2020 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2021
2022 /*
2023 * Reset the GEnesis controller. Doing this should also
2024 * assert the resets on the attached XMAC(s).
2025 */
2026 sk_reset(sc);
2027 }
2028
2029 void
2030 sk_rxeof(struct sk_if_softc *sc_if)
2031 {
2032 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2033 struct mbuf *m;
2034 struct sk_chain *cur_rx;
2035 struct sk_rx_desc *cur_desc;
2036 int i, cur, total_len = 0;
2037 u_int32_t rxstat, sk_ctl;
2038 bus_dmamap_t dmamap;
2039
2040 i = sc_if->sk_cdata.sk_rx_prod;
2041
2042 DPRINTFN(3, ("sk_rxeof %d\n", i));
2043
2044 for (;;) {
2045 cur = i;
2046
2047 /* Sync the descriptor */
2048 SK_CDRXSYNC(sc_if, cur,
2049 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2050
2051 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2052 if (sk_ctl & SK_RXCTL_OWN) {
2053 /* Invalidate the descriptor -- it's not ready yet */
2054 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2055 sc_if->sk_cdata.sk_rx_prod = i;
2056 break;
2057 }
2058
2059 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2060 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2061 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2062
2063 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2064 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2065
2066 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2067 m = cur_rx->sk_mbuf;
2068 cur_rx->sk_mbuf = NULL;
2069 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2070
2071 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2072
2073 SK_INC(i, SK_RX_RING_CNT);
2074
2075 if (rxstat & XM_RXSTAT_ERRFRAME) {
2076 ifp->if_ierrors++;
2077 sk_newbuf(sc_if, cur, m, dmamap);
2078 continue;
2079 }
2080
2081 /*
2082 * Try to allocate a new jumbo buffer. If that
2083 * fails, copy the packet to mbufs and put the
2084 * jumbo buffer back in the ring so it can be
2085 * re-used. If allocating mbufs fails, then we
2086 * have to drop the packet.
2087 */
2088 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2089 struct mbuf *m0;
2090 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2091 total_len + ETHER_ALIGN, 0, ifp, NULL);
2092 sk_newbuf(sc_if, cur, m, dmamap);
2093 if (m0 == NULL) {
2094 aprint_error_dev(sc_if->sk_dev, "no receive "
2095 "buffers available -- packet dropped!\n");
2096 ifp->if_ierrors++;
2097 continue;
2098 }
2099 m_adj(m0, ETHER_ALIGN);
2100 m = m0;
2101 } else {
2102 m->m_pkthdr.rcvif = ifp;
2103 m->m_pkthdr.len = m->m_len = total_len;
2104 }
2105
2106 ifp->if_ipackets++;
2107
2108 #if NBPFILTER > 0
2109 if (ifp->if_bpf)
2110 bpf_mtap(ifp->if_bpf, m);
2111 #endif
2112 /* pass it on. */
2113 (*ifp->if_input)(ifp, m);
2114 }
2115 }
2116
2117 void
2118 sk_txeof(struct sk_if_softc *sc_if)
2119 {
2120 struct sk_softc *sc = sc_if->sk_softc;
2121 struct sk_tx_desc *cur_tx;
2122 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2123 u_int32_t idx, sk_ctl;
2124 struct sk_txmap_entry *entry;
2125
2126 DPRINTFN(3, ("sk_txeof\n"));
2127
2128 /*
2129 * Go through our tx ring and free mbufs for those
2130 * frames that have been sent.
2131 */
2132 idx = sc_if->sk_cdata.sk_tx_cons;
2133 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2134 SK_CDTXSYNC(sc_if, idx, 1,
2135 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2136
2137 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2138 sk_ctl = le32toh(cur_tx->sk_ctl);
2139 #ifdef SK_DEBUG
2140 if (skdebug >= 3)
2141 sk_dump_txdesc(cur_tx, idx);
2142 #endif
2143 if (sk_ctl & SK_TXCTL_OWN) {
2144 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2145 break;
2146 }
2147 if (sk_ctl & SK_TXCTL_LASTFRAG)
2148 ifp->if_opackets++;
2149 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2150 entry = sc_if->sk_cdata.sk_tx_map[idx];
2151
2152 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2153 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2154
2155 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2156 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2157
2158 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2159 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2160 link);
2161 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2162 }
2163 sc_if->sk_cdata.sk_tx_cnt--;
2164 SK_INC(idx, SK_TX_RING_CNT);
2165 }
2166 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2167 ifp->if_timer = 0;
2168 else /* nudge chip to keep tx ring moving */
2169 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2170
2171 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2172 ifp->if_flags &= ~IFF_OACTIVE;
2173
2174 sc_if->sk_cdata.sk_tx_cons = idx;
2175 }
2176
2177 void
2178 sk_tick(void *xsc_if)
2179 {
2180 struct sk_if_softc *sc_if = xsc_if;
2181 struct mii_data *mii = &sc_if->sk_mii;
2182 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2183 int i;
2184
2185 DPRINTFN(3, ("sk_tick\n"));
2186
2187 if (!(ifp->if_flags & IFF_UP))
2188 return;
2189
2190 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2191 sk_intr_bcom(sc_if);
2192 return;
2193 }
2194
2195 /*
2196 * According to SysKonnect, the correct way to verify that
2197 * the link has come back up is to poll bit 0 of the GPIO
2198 * register three times. This pin has the signal from the
2199 * link sync pin connected to it; if we read the same link
2200 * state 3 times in a row, we know the link is up.
2201 */
2202 for (i = 0; i < 3; i++) {
2203 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2204 break;
2205 }
2206
2207 if (i != 3) {
2208 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2209 return;
2210 }
2211
2212 /* Turn the GP0 interrupt back on. */
2213 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2214 SK_XM_READ_2(sc_if, XM_ISR);
2215 mii_tick(mii);
2216 mii_pollstat(mii);
2217 callout_stop(&sc_if->sk_tick_ch);
2218 }
2219
2220 void
2221 sk_intr_bcom(struct sk_if_softc *sc_if)
2222 {
2223 struct mii_data *mii = &sc_if->sk_mii;
2224 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2225 int status;
2226
2227
2228 DPRINTFN(3, ("sk_intr_bcom\n"));
2229
2230 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2231
2232 /*
2233 * Read the PHY interrupt register to make sure
2234 * we clear any pending interrupts.
2235 */
2236 status = sk_xmac_miibus_readreg(sc_if->sk_dev,
2237 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2238
2239 if (!(ifp->if_flags & IFF_RUNNING)) {
2240 sk_init_xmac(sc_if);
2241 return;
2242 }
2243
2244 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2245 int lstat;
2246 lstat = sk_xmac_miibus_readreg(sc_if->sk_dev,
2247 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2248
2249 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2250 (void)mii_mediachg(mii);
2251 /* Turn off the link LED. */
2252 SK_IF_WRITE_1(sc_if, 0,
2253 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2254 sc_if->sk_link = 0;
2255 } else if (status & BRGPHY_ISR_LNK_CHG) {
2256 sk_xmac_miibus_writereg(sc_if->sk_dev,
2257 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2258 mii_tick(mii);
2259 sc_if->sk_link = 1;
2260 /* Turn on the link LED. */
2261 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2262 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2263 SK_LINKLED_BLINK_OFF);
2264 mii_pollstat(mii);
2265 } else {
2266 mii_tick(mii);
2267 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2268 }
2269 }
2270
2271 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2272 }
2273
2274 void
2275 sk_intr_xmac(struct sk_if_softc *sc_if)
2276 {
2277 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2278
2279 DPRINTFN(3, ("sk_intr_xmac\n"));
2280
2281 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2282 if (status & XM_ISR_GP0_SET) {
2283 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2284 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2285 }
2286
2287 if (status & XM_ISR_AUTONEG_DONE) {
2288 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2289 }
2290 }
2291
2292 if (status & XM_IMR_TX_UNDERRUN)
2293 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2294
2295 if (status & XM_IMR_RX_OVERRUN)
2296 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2297 }
2298
2299 void
2300 sk_intr_yukon(struct sk_if_softc *sc_if)
2301 {
2302 int status;
2303
2304 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2305
2306 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2307 }
2308
2309 int
2310 sk_intr(void *xsc)
2311 {
2312 struct sk_softc *sc = xsc;
2313 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2314 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2315 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2316 u_int32_t status;
2317 int claimed = 0;
2318
2319 if (sc_if0 != NULL)
2320 ifp0 = &sc_if0->sk_ethercom.ec_if;
2321 if (sc_if1 != NULL)
2322 ifp1 = &sc_if1->sk_ethercom.ec_if;
2323
2324 for (;;) {
2325 status = CSR_READ_4(sc, SK_ISSR);
2326 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2327
2328 if (!(status & sc->sk_intrmask))
2329 break;
2330
2331 claimed = 1;
2332
2333 /* Handle receive interrupts first. */
2334 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2335 sk_rxeof(sc_if0);
2336 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2337 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2338 }
2339 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2340 sk_rxeof(sc_if1);
2341 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2342 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2343 }
2344
2345 /* Then transmit interrupts. */
2346 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2347 sk_txeof(sc_if0);
2348 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2349 SK_TXBMU_CLR_IRQ_EOF);
2350 }
2351 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2352 sk_txeof(sc_if1);
2353 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2354 SK_TXBMU_CLR_IRQ_EOF);
2355 }
2356
2357 /* Then MAC interrupts. */
2358 if (sc_if0 && (status & SK_ISR_MAC1) &&
2359 (ifp0->if_flags & IFF_RUNNING)) {
2360 if (sc->sk_type == SK_GENESIS)
2361 sk_intr_xmac(sc_if0);
2362 else
2363 sk_intr_yukon(sc_if0);
2364 }
2365
2366 if (sc_if1 && (status & SK_ISR_MAC2) &&
2367 (ifp1->if_flags & IFF_RUNNING)) {
2368 if (sc->sk_type == SK_GENESIS)
2369 sk_intr_xmac(sc_if1);
2370 else
2371 sk_intr_yukon(sc_if1);
2372
2373 }
2374
2375 if (status & SK_ISR_EXTERNAL_REG) {
2376 if (sc_if0 != NULL &&
2377 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2378 sk_intr_bcom(sc_if0);
2379
2380 if (sc_if1 != NULL &&
2381 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2382 sk_intr_bcom(sc_if1);
2383 }
2384 }
2385
2386 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2387
2388 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2389 sk_start(ifp0);
2390 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2391 sk_start(ifp1);
2392
2393 #if NRND > 0
2394 if (RND_ENABLED(&sc->rnd_source))
2395 rnd_add_uint32(&sc->rnd_source, status);
2396 #endif
2397
2398 if (sc->sk_int_mod_pending)
2399 sk_update_int_mod(sc);
2400
2401 return claimed;
2402 }
2403
2404 void
2405 sk_init_xmac(struct sk_if_softc *sc_if)
2406 {
2407 struct sk_softc *sc = sc_if->sk_softc;
2408 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2409 static const struct sk_bcom_hack bhack[] = {
2410 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2411 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2412 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2413 { 0, 0 } };
2414
2415 DPRINTFN(1, ("sk_init_xmac\n"));
2416
2417 /* Unreset the XMAC. */
2418 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2419 DELAY(1000);
2420
2421 /* Reset the XMAC's internal state. */
2422 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2423
2424 /* Save the XMAC II revision */
2425 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2426
2427 /*
2428 * Perform additional initialization for external PHYs,
2429 * namely for the 1000baseTX cards that use the XMAC's
2430 * GMII mode.
2431 */
2432 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2433 int i = 0;
2434 u_int32_t val;
2435
2436 /* Take PHY out of reset. */
2437 val = sk_win_read_4(sc, SK_GPIO);
2438 if (sc_if->sk_port == SK_PORT_A)
2439 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2440 else
2441 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2442 sk_win_write_4(sc, SK_GPIO, val);
2443
2444 /* Enable GMII mode on the XMAC. */
2445 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2446
2447 sk_xmac_miibus_writereg(sc_if->sk_dev,
2448 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2449 DELAY(10000);
2450 sk_xmac_miibus_writereg(sc_if->sk_dev,
2451 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2452
2453 /*
2454 * Early versions of the BCM5400 apparently have
2455 * a bug that requires them to have their reserved
2456 * registers initialized to some magic values. I don't
2457 * know what the numbers do, I'm just the messenger.
2458 */
2459 if (sk_xmac_miibus_readreg(sc_if->sk_dev,
2460 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2461 while (bhack[i].reg) {
2462 sk_xmac_miibus_writereg(sc_if->sk_dev,
2463 SK_PHYADDR_BCOM, bhack[i].reg,
2464 bhack[i].val);
2465 i++;
2466 }
2467 }
2468 }
2469
2470 /* Set station address */
2471 SK_XM_WRITE_2(sc_if, XM_PAR0,
2472 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2473 SK_XM_WRITE_2(sc_if, XM_PAR1,
2474 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2475 SK_XM_WRITE_2(sc_if, XM_PAR2,
2476 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2477 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2478
2479 if (ifp->if_flags & IFF_PROMISC)
2480 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2481 else
2482 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2483
2484 if (ifp->if_flags & IFF_BROADCAST)
2485 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2486 else
2487 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2488
2489 /* We don't need the FCS appended to the packet. */
2490 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2491
2492 /* We want short frames padded to 60 bytes. */
2493 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2494
2495 /*
2496 * Enable the reception of all error frames. This is is
2497 * a necessary evil due to the design of the XMAC. The
2498 * XMAC's receive FIFO is only 8K in size, however jumbo
2499 * frames can be up to 9000 bytes in length. When bad
2500 * frame filtering is enabled, the XMAC's RX FIFO operates
2501 * in 'store and forward' mode. For this to work, the
2502 * entire frame has to fit into the FIFO, but that means
2503 * that jumbo frames larger than 8192 bytes will be
2504 * truncated. Disabling all bad frame filtering causes
2505 * the RX FIFO to operate in streaming mode, in which
2506 * case the XMAC will start transfering frames out of the
2507 * RX FIFO as soon as the FIFO threshold is reached.
2508 */
2509 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2510 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2511 XM_MODE_RX_INRANGELEN);
2512
2513 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2514 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2515 else
2516 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2517
2518 /*
2519 * Bump up the transmit threshold. This helps hold off transmit
2520 * underruns when we're blasting traffic from both ports at once.
2521 */
2522 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2523
2524 /* Set multicast filter */
2525 sk_setmulti(sc_if);
2526
2527 /* Clear and enable interrupts */
2528 SK_XM_READ_2(sc_if, XM_ISR);
2529 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2530 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2531 else
2532 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2533
2534 /* Configure MAC arbiter */
2535 switch (sc_if->sk_xmac_rev) {
2536 case XM_XMAC_REV_B2:
2537 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2538 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2539 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2540 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2541 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2542 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2543 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2544 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2545 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2546 break;
2547 case XM_XMAC_REV_C1:
2548 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2549 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2550 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2551 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2552 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2553 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2554 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2555 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2556 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2557 break;
2558 default:
2559 break;
2560 }
2561 sk_win_write_2(sc, SK_MACARB_CTL,
2562 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2563
2564 sc_if->sk_link = 1;
2565 }
2566
2567 void sk_init_yukon(struct sk_if_softc *sc_if)
2568 {
2569 u_int32_t /*mac, */phy;
2570 u_int16_t reg;
2571 struct sk_softc *sc;
2572 int i;
2573
2574 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2575 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2576
2577 sc = sc_if->sk_softc;
2578 if (sc->sk_type == SK_YUKON_LITE &&
2579 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2580 /* Take PHY out of reset. */
2581 sk_win_write_4(sc, SK_GPIO,
2582 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2583 }
2584
2585
2586 /* GMAC and GPHY Reset */
2587 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2588
2589 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2590
2591 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2592 DELAY(1000);
2593 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2594 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2595 DELAY(1000);
2596
2597
2598 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2599
2600 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2601 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2602
2603 switch (sc_if->sk_softc->sk_pmd) {
2604 case IFM_1000_SX:
2605 case IFM_1000_LX:
2606 phy |= SK_GPHY_FIBER;
2607 break;
2608
2609 case IFM_1000_CX:
2610 case IFM_1000_T:
2611 phy |= SK_GPHY_COPPER;
2612 break;
2613 }
2614
2615 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2616
2617 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2618 DELAY(1000);
2619 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2620 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2621 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2622
2623 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2624 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2625
2626 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2627
2628 /* unused read of the interrupt source register */
2629 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2630 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2631
2632 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2633 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2634 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2635
2636 /* MIB Counter Clear Mode set */
2637 reg |= YU_PAR_MIB_CLR;
2638 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2639 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2640 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2641
2642 /* MIB Counter Clear Mode clear */
2643 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2644 reg &= ~YU_PAR_MIB_CLR;
2645 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2646
2647 /* receive control reg */
2648 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2649 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2650 YU_RCR_CRCR);
2651
2652 /* transmit parameter register */
2653 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2654 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2655 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2656
2657 /* serial mode register */
2658 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2659 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2660 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2661 YU_SMR_IPG_DATA(0x1e));
2662
2663 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2664 /* Setup Yukon's address */
2665 for (i = 0; i < 3; i++) {
2666 /* Write Source Address 1 (unicast filter) */
2667 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2668 sc_if->sk_enaddr[i * 2] |
2669 sc_if->sk_enaddr[i * 2 + 1] << 8);
2670 }
2671
2672 for (i = 0; i < 3; i++) {
2673 reg = sk_win_read_2(sc_if->sk_softc,
2674 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2675 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2676 }
2677
2678 /* Set multicast filter */
2679 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2680 sk_setmulti(sc_if);
2681
2682 /* enable interrupt mask for counter overflows */
2683 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2684 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2685 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2686 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2687
2688 /* Configure RX MAC FIFO */
2689 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2690 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2691
2692 /* Configure TX MAC FIFO */
2693 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2694 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2695
2696 DPRINTFN(6, ("sk_init_yukon: end\n"));
2697 }
2698
2699 /*
2700 * Note that to properly initialize any part of the GEnesis chip,
2701 * you first have to take it out of reset mode.
2702 */
2703 int
2704 sk_init(struct ifnet *ifp)
2705 {
2706 struct sk_if_softc *sc_if = ifp->if_softc;
2707 struct sk_softc *sc = sc_if->sk_softc;
2708 struct mii_data *mii = &sc_if->sk_mii;
2709 int rc = 0, s;
2710 u_int32_t imr, imtimer_ticks;
2711
2712 DPRINTFN(1, ("sk_init\n"));
2713
2714 s = splnet();
2715
2716 if (ifp->if_flags & IFF_RUNNING) {
2717 splx(s);
2718 return 0;
2719 }
2720
2721 /* Cancel pending I/O and free all RX/TX buffers. */
2722 sk_stop(ifp,0);
2723
2724 if (sc->sk_type == SK_GENESIS) {
2725 /* Configure LINK_SYNC LED */
2726 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2727 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2728 SK_LINKLED_LINKSYNC_ON);
2729
2730 /* Configure RX LED */
2731 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2732 SK_RXLEDCTL_COUNTER_START);
2733
2734 /* Configure TX LED */
2735 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2736 SK_TXLEDCTL_COUNTER_START);
2737 }
2738
2739 /* Configure I2C registers */
2740
2741 /* Configure XMAC(s) */
2742 switch (sc->sk_type) {
2743 case SK_GENESIS:
2744 sk_init_xmac(sc_if);
2745 break;
2746 case SK_YUKON:
2747 case SK_YUKON_LITE:
2748 case SK_YUKON_LP:
2749 sk_init_yukon(sc_if);
2750 break;
2751 }
2752 if ((rc = mii_mediachg(mii)) == ENXIO)
2753 rc = 0;
2754 else if (rc != 0)
2755 goto out;
2756
2757 if (sc->sk_type == SK_GENESIS) {
2758 /* Configure MAC FIFOs */
2759 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2760 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2761 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2762
2763 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2764 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2765 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2766 }
2767
2768 /* Configure transmit arbiter(s) */
2769 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2770 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2771
2772 /* Configure RAMbuffers */
2773 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2774 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2775 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2776 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2777 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2778 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2779
2780 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2781 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2782 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2783 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2784 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2785 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2786 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2787
2788 /* Configure BMUs */
2789 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2790 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2791 SK_RX_RING_ADDR(sc_if, 0));
2792 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2793
2794 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2795 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2796 SK_TX_RING_ADDR(sc_if, 0));
2797 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2798
2799 /* Init descriptors */
2800 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2801 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2802 "memory for rx buffers\n");
2803 sk_stop(ifp,0);
2804 splx(s);
2805 return ENOBUFS;
2806 }
2807
2808 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2809 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2810 "memory for tx buffers\n");
2811 sk_stop(ifp,0);
2812 splx(s);
2813 return ENOBUFS;
2814 }
2815
2816 /* Set interrupt moderation if changed via sysctl. */
2817 switch (sc->sk_type) {
2818 case SK_GENESIS:
2819 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2820 break;
2821 case SK_YUKON_EC:
2822 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2823 break;
2824 default:
2825 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2826 }
2827 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2828 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2829 sk_win_write_4(sc, SK_IMTIMERINIT,
2830 SK_IM_USECS(sc->sk_int_mod));
2831 aprint_verbose_dev(sc->sk_dev,
2832 "interrupt moderation is %d us\n", sc->sk_int_mod);
2833 }
2834
2835 /* Configure interrupt handling */
2836 CSR_READ_4(sc, SK_ISSR);
2837 if (sc_if->sk_port == SK_PORT_A)
2838 sc->sk_intrmask |= SK_INTRS1;
2839 else
2840 sc->sk_intrmask |= SK_INTRS2;
2841
2842 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2843
2844 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2845
2846 /* Start BMUs. */
2847 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2848
2849 if (sc->sk_type == SK_GENESIS) {
2850 /* Enable XMACs TX and RX state machines */
2851 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2852 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2853 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2854 }
2855
2856 if (SK_YUKON_FAMILY(sc->sk_type)) {
2857 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2858 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2859 #if 0
2860 /* XXX disable 100Mbps and full duplex mode? */
2861 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2862 #endif
2863 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2864 }
2865
2866
2867 ifp->if_flags |= IFF_RUNNING;
2868 ifp->if_flags &= ~IFF_OACTIVE;
2869
2870 out:
2871 splx(s);
2872 return rc;
2873 }
2874
2875 void
2876 sk_stop(struct ifnet *ifp, int disable)
2877 {
2878 struct sk_if_softc *sc_if = ifp->if_softc;
2879 struct sk_softc *sc = sc_if->sk_softc;
2880 int i;
2881
2882 DPRINTFN(1, ("sk_stop\n"));
2883
2884 callout_stop(&sc_if->sk_tick_ch);
2885
2886 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2887 u_int32_t val;
2888
2889 /* Put PHY back into reset. */
2890 val = sk_win_read_4(sc, SK_GPIO);
2891 if (sc_if->sk_port == SK_PORT_A) {
2892 val |= SK_GPIO_DIR0;
2893 val &= ~SK_GPIO_DAT0;
2894 } else {
2895 val |= SK_GPIO_DIR2;
2896 val &= ~SK_GPIO_DAT2;
2897 }
2898 sk_win_write_4(sc, SK_GPIO, val);
2899 }
2900
2901 /* Turn off various components of this interface. */
2902 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2903 switch (sc->sk_type) {
2904 case SK_GENESIS:
2905 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2906 SK_TXMACCTL_XMAC_RESET);
2907 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2908 break;
2909 case SK_YUKON:
2910 case SK_YUKON_LITE:
2911 case SK_YUKON_LP:
2912 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2913 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2914 break;
2915 }
2916 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2917 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2918 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2919 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2920 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2921 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2922 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2923 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2924 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2925
2926 /* Disable interrupts */
2927 if (sc_if->sk_port == SK_PORT_A)
2928 sc->sk_intrmask &= ~SK_INTRS1;
2929 else
2930 sc->sk_intrmask &= ~SK_INTRS2;
2931 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2932
2933 SK_XM_READ_2(sc_if, XM_ISR);
2934 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2935
2936 /* Free RX and TX mbufs still in the queues. */
2937 for (i = 0; i < SK_RX_RING_CNT; i++) {
2938 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2939 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2940 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2941 }
2942 }
2943
2944 for (i = 0; i < SK_TX_RING_CNT; i++) {
2945 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2946 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2947 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2948 }
2949 }
2950
2951 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2952 }
2953
2954 /* Power Management Framework */
2955
2956 static bool
2957 skc_suspend(device_t dv PMF_FN_ARGS)
2958 {
2959 struct sk_softc *sc = device_private(dv);
2960
2961 DPRINTFN(2, ("skc_suspend\n"));
2962
2963 /* Turn off the driver is loaded LED */
2964 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2965
2966 return true;
2967 }
2968
2969 static bool
2970 skc_resume(device_t dv PMF_FN_ARGS)
2971 {
2972 struct sk_softc *sc = device_private(dv);
2973
2974 DPRINTFN(2, ("skc_resume\n"));
2975
2976 sk_reset(sc);
2977 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2978
2979 return true;
2980 }
2981
2982 static bool
2983 sk_resume(device_t dv PMF_FN_ARGS)
2984 {
2985 struct sk_if_softc *sc_if = device_private(dv);
2986
2987 sk_init_yukon(sc_if);
2988 return true;
2989 }
2990
2991 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
2992 skc_probe, skc_attach, NULL, NULL);
2993
2994 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
2995 sk_probe, sk_attach, NULL, NULL);
2996
2997 #ifdef SK_DEBUG
2998 void
2999 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
3000 {
3001 #define DESC_PRINT(X) \
3002 if (X) \
3003 printf("txdesc[%d]." #X "=%#x\n", \
3004 idx, X);
3005
3006 DESC_PRINT(le32toh(desc->sk_ctl));
3007 DESC_PRINT(le32toh(desc->sk_next));
3008 DESC_PRINT(le32toh(desc->sk_data_lo));
3009 DESC_PRINT(le32toh(desc->sk_data_hi));
3010 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
3011 DESC_PRINT(le16toh(desc->sk_rsvd0));
3012 DESC_PRINT(le16toh(desc->sk_csum_startval));
3013 DESC_PRINT(le16toh(desc->sk_csum_startpos));
3014 DESC_PRINT(le16toh(desc->sk_csum_writepos));
3015 DESC_PRINT(le16toh(desc->sk_rsvd1));
3016 #undef PRINT
3017 }
3018
3019 void
3020 sk_dump_bytes(const char *data, int len)
3021 {
3022 int c, i, j;
3023
3024 for (i = 0; i < len; i += 16) {
3025 printf("%08x ", i);
3026 c = len - i;
3027 if (c > 16) c = 16;
3028
3029 for (j = 0; j < c; j++) {
3030 printf("%02x ", data[i + j] & 0xff);
3031 if ((j & 0xf) == 7 && j > 0)
3032 printf(" ");
3033 }
3034
3035 for (; j < 16; j++)
3036 printf(" ");
3037 printf(" ");
3038
3039 for (j = 0; j < c; j++) {
3040 int ch = data[i + j] & 0xff;
3041 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
3042 }
3043
3044 printf("\n");
3045
3046 if (c < 16)
3047 break;
3048 }
3049 }
3050
3051 void
3052 sk_dump_mbuf(struct mbuf *m)
3053 {
3054 int count = m->m_pkthdr.len;
3055
3056 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3057
3058 while (count > 0 && m) {
3059 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3060 m, m->m_data, m->m_len);
3061 sk_dump_bytes(mtod(m, char *), m->m_len);
3062
3063 count -= m->m_len;
3064 m = m->m_next;
3065 }
3066 }
3067 #endif
3068
3069 static int
3070 sk_sysctl_handler(SYSCTLFN_ARGS)
3071 {
3072 int error, t;
3073 struct sysctlnode node;
3074 struct sk_softc *sc;
3075
3076 node = *rnode;
3077 sc = node.sysctl_data;
3078 t = sc->sk_int_mod;
3079 node.sysctl_data = &t;
3080 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3081 if (error || newp == NULL)
3082 return error;
3083
3084 if (t < SK_IM_MIN || t > SK_IM_MAX)
3085 return EINVAL;
3086
3087 /* update the softc with sysctl-changed value, and mark
3088 for hardware update */
3089 sc->sk_int_mod = t;
3090 sc->sk_int_mod_pending = 1;
3091 return 0;
3092 }
3093
3094 /*
3095 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3096 * set up in skc_attach()
3097 */
3098 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3099 {
3100 int rc;
3101 const struct sysctlnode *node;
3102
3103 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3104 0, CTLTYPE_NODE, "hw", NULL,
3105 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3106 goto err;
3107 }
3108
3109 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3110 0, CTLTYPE_NODE, "sk",
3111 SYSCTL_DESCR("sk interface controls"),
3112 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3113 goto err;
3114 }
3115
3116 sk_root_num = node->sysctl_num;
3117 return;
3118
3119 err:
3120 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3121 }
3122