Home | History | Annotate | Line # | Download | only in pci
if_sk.c revision 1.49
      1 /*	$NetBSD: if_sk.c,v 1.49 2008/04/28 20:23:55 martin Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
     30 
     31 /*
     32  * Copyright (c) 1997, 1998, 1999, 2000
     33  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *	This product includes software developed by Bill Paul.
     46  * 4. Neither the name of the author nor the names of any co-contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     60  * THE POSSIBILITY OF SUCH DAMAGE.
     61  *
     62  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
     63  */
     64 
     65 /*
     66  * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
     67  *
     68  * Permission to use, copy, modify, and distribute this software for any
     69  * purpose with or without fee is hereby granted, provided that the above
     70  * copyright notice and this permission notice appear in all copies.
     71  *
     72  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     73  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     74  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     75  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     76  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     77  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     78  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     79  */
     80 
     81 /*
     82  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
     83  * the SK-984x series adapters, both single port and dual port.
     84  * References:
     85  * 	The XaQti XMAC II datasheet,
     86  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     87  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
     88  *
     89  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
     90  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
     91  * convenience to others until Vitesse corrects this problem:
     92  *
     93  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     94  *
     95  * Written by Bill Paul <wpaul (at) ee.columbia.edu>
     96  * Department of Electrical Engineering
     97  * Columbia University, New York City
     98  */
     99 
    100 /*
    101  * The SysKonnect gigabit ethernet adapters consist of two main
    102  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
    103  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
    104  * components and a PHY while the GEnesis controller provides a PCI
    105  * interface with DMA support. Each card may have between 512K and
    106  * 2MB of SRAM on board depending on the configuration.
    107  *
    108  * The SysKonnect GEnesis controller can have either one or two XMAC
    109  * chips connected to it, allowing single or dual port NIC configurations.
    110  * SysKonnect has the distinction of being the only vendor on the market
    111  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
    112  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
    113  * XMAC registers. This driver takes advantage of these features to allow
    114  * both XMACs to operate as independent interfaces.
    115  */
    116 
    117 #include <sys/cdefs.h>
    118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.49 2008/04/28 20:23:55 martin Exp $");
    119 
    120 #include "bpfilter.h"
    121 #include "rnd.h"
    122 
    123 #include <sys/param.h>
    124 #include <sys/systm.h>
    125 #include <sys/sockio.h>
    126 #include <sys/mbuf.h>
    127 #include <sys/malloc.h>
    128 #include <sys/kernel.h>
    129 #include <sys/socket.h>
    130 #include <sys/device.h>
    131 #include <sys/queue.h>
    132 #include <sys/callout.h>
    133 #include <sys/sysctl.h>
    134 #include <sys/endian.h>
    135 
    136 #include <net/if.h>
    137 #include <net/if_dl.h>
    138 #include <net/if_types.h>
    139 
    140 #include <net/if_media.h>
    141 
    142 #if NBPFILTER > 0
    143 #include <net/bpf.h>
    144 #endif
    145 #if NRND > 0
    146 #include <sys/rnd.h>
    147 #endif
    148 
    149 #include <dev/mii/mii.h>
    150 #include <dev/mii/miivar.h>
    151 #include <dev/mii/brgphyreg.h>
    152 
    153 #include <dev/pci/pcireg.h>
    154 #include <dev/pci/pcivar.h>
    155 #include <dev/pci/pcidevs.h>
    156 
    157 /* #define SK_USEIOSPACE */
    158 
    159 #include <dev/pci/if_skreg.h>
    160 #include <dev/pci/if_skvar.h>
    161 
    162 int skc_probe(struct device *, struct cfdata *, void *);
    163 void skc_attach(struct device *, struct device *self, void *aux);
    164 int sk_probe(struct device *, struct cfdata *, void *);
    165 void sk_attach(struct device *, struct device *self, void *aux);
    166 int skcprint(void *, const char *);
    167 int sk_intr(void *);
    168 void sk_intr_bcom(struct sk_if_softc *);
    169 void sk_intr_xmac(struct sk_if_softc *);
    170 void sk_intr_yukon(struct sk_if_softc *);
    171 void sk_rxeof(struct sk_if_softc *);
    172 void sk_txeof(struct sk_if_softc *);
    173 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
    174 void sk_start(struct ifnet *);
    175 int sk_ioctl(struct ifnet *, u_long, void *);
    176 int sk_init(struct ifnet *);
    177 void sk_init_xmac(struct sk_if_softc *);
    178 void sk_init_yukon(struct sk_if_softc *);
    179 void sk_stop(struct ifnet *, int);
    180 void sk_watchdog(struct ifnet *);
    181 void sk_shutdown(void *);
    182 int sk_ifmedia_upd(struct ifnet *);
    183 void sk_reset(struct sk_softc *);
    184 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
    185 int sk_alloc_jumbo_mem(struct sk_if_softc *);
    186 void sk_free_jumbo_mem(struct sk_if_softc *);
    187 void *sk_jalloc(struct sk_if_softc *);
    188 void sk_jfree(struct mbuf *, void *, size_t, void *);
    189 int sk_init_rx_ring(struct sk_if_softc *);
    190 int sk_init_tx_ring(struct sk_if_softc *);
    191 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
    192 void sk_vpd_read_res(struct sk_softc *,
    193 					struct vpd_res *, int);
    194 void sk_vpd_read(struct sk_softc *);
    195 
    196 void sk_update_int_mod(struct sk_softc *);
    197 
    198 int sk_xmac_miibus_readreg(struct device *, int, int);
    199 void sk_xmac_miibus_writereg(struct device *, int, int, int);
    200 void sk_xmac_miibus_statchg(struct device *);
    201 
    202 int sk_marv_miibus_readreg(struct device *, int, int);
    203 void sk_marv_miibus_writereg(struct device *, int, int, int);
    204 void sk_marv_miibus_statchg(struct device *);
    205 
    206 u_int32_t sk_xmac_hash(void *);
    207 u_int32_t sk_yukon_hash(void *);
    208 void sk_setfilt(struct sk_if_softc *, void *, int);
    209 void sk_setmulti(struct sk_if_softc *);
    210 void sk_tick(void *);
    211 
    212 /* #define SK_DEBUG 2 */
    213 #ifdef SK_DEBUG
    214 #define DPRINTF(x)	if (skdebug) printf x
    215 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
    216 int	skdebug = SK_DEBUG;
    217 
    218 void sk_dump_txdesc(struct sk_tx_desc *, int);
    219 void sk_dump_mbuf(struct mbuf *);
    220 void sk_dump_bytes(const char *, int);
    221 #else
    222 #define DPRINTF(x)
    223 #define DPRINTFN(n,x)
    224 #endif
    225 
    226 static int sk_sysctl_handler(SYSCTLFN_PROTO);
    227 static int sk_root_num;
    228 
    229 /* supported device vendors */
    230 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
    231 static const struct sk_product {
    232 	pci_vendor_id_t		sk_vendor;
    233 	pci_product_id_t	sk_product;
    234 } sk_products[] = {
    235 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
    236 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
    237 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
    238 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
    239 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
    240 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
    241 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
    242 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
    243 	{ 0, 0, }
    244 };
    245 
    246 #define SK_LINKSYS_EG1032_SUBID	0x00151737
    247 
    248 static inline u_int32_t
    249 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
    250 {
    251 #ifdef SK_USEIOSPACE
    252 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    253 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
    254 #else
    255 	return CSR_READ_4(sc, reg);
    256 #endif
    257 }
    258 
    259 static inline u_int16_t
    260 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
    261 {
    262 #ifdef SK_USEIOSPACE
    263 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    264 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
    265 #else
    266 	return CSR_READ_2(sc, reg);
    267 #endif
    268 }
    269 
    270 static inline u_int8_t
    271 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
    272 {
    273 #ifdef SK_USEIOSPACE
    274 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    275 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
    276 #else
    277 	return CSR_READ_1(sc, reg);
    278 #endif
    279 }
    280 
    281 static inline void
    282 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
    283 {
    284 #ifdef SK_USEIOSPACE
    285 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    286 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
    287 #else
    288 	CSR_WRITE_4(sc, reg, x);
    289 #endif
    290 }
    291 
    292 static inline void
    293 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
    294 {
    295 #ifdef SK_USEIOSPACE
    296 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    297 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
    298 #else
    299 	CSR_WRITE_2(sc, reg, x);
    300 #endif
    301 }
    302 
    303 static inline void
    304 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
    305 {
    306 #ifdef SK_USEIOSPACE
    307 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    308 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
    309 #else
    310 	CSR_WRITE_1(sc, reg, x);
    311 #endif
    312 }
    313 
    314 /*
    315  * The VPD EEPROM contains Vital Product Data, as suggested in
    316  * the PCI 2.1 specification. The VPD data is separared into areas
    317  * denoted by resource IDs. The SysKonnect VPD contains an ID string
    318  * resource (the name of the adapter), a read-only area resource
    319  * containing various key/data fields and a read/write area which
    320  * can be used to store asset management information or log messages.
    321  * We read the ID string and read-only into buffers attached to
    322  * the controller softc structure for later use. At the moment,
    323  * we only use the ID string during sk_attach().
    324  */
    325 u_int8_t
    326 sk_vpd_readbyte(struct sk_softc *sc, int addr)
    327 {
    328 	int			i;
    329 
    330 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
    331 	for (i = 0; i < SK_TIMEOUT; i++) {
    332 		DELAY(1);
    333 		if (sk_win_read_2(sc,
    334 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
    335 			break;
    336 	}
    337 
    338 	if (i == SK_TIMEOUT)
    339 		return 0;
    340 
    341 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
    342 }
    343 
    344 void
    345 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
    346 {
    347 	int			i;
    348 	u_int8_t		*ptr;
    349 
    350 	ptr = (u_int8_t *)res;
    351 	for (i = 0; i < sizeof(struct vpd_res); i++)
    352 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
    353 }
    354 
    355 void
    356 sk_vpd_read(struct sk_softc *sc)
    357 {
    358 	int			pos = 0, i;
    359 	struct vpd_res		res;
    360 
    361 	if (sc->sk_vpd_prodname != NULL)
    362 		free(sc->sk_vpd_prodname, M_DEVBUF);
    363 	if (sc->sk_vpd_readonly != NULL)
    364 		free(sc->sk_vpd_readonly, M_DEVBUF);
    365 	sc->sk_vpd_prodname = NULL;
    366 	sc->sk_vpd_readonly = NULL;
    367 
    368 	sk_vpd_read_res(sc, &res, pos);
    369 
    370 	if (res.vr_id != VPD_RES_ID) {
    371 		aprint_error_dev(&sc->sk_dev, "bad VPD resource id: expected %x got %x\n",
    372 		    VPD_RES_ID, res.vr_id);
    373 		return;
    374 	}
    375 
    376 	pos += sizeof(res);
    377 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    378 	if (sc->sk_vpd_prodname == NULL)
    379 		panic("sk_vpd_read");
    380 	for (i = 0; i < res.vr_len; i++)
    381 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
    382 	sc->sk_vpd_prodname[i] = '\0';
    383 	pos += i;
    384 
    385 	sk_vpd_read_res(sc, &res, pos);
    386 
    387 	if (res.vr_id != VPD_RES_READ) {
    388 		aprint_error_dev(&sc->sk_dev, "bad VPD resource id: expected %x got %x\n",
    389 		    VPD_RES_READ, res.vr_id);
    390 		return;
    391 	}
    392 
    393 	pos += sizeof(res);
    394 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    395 	if (sc->sk_vpd_readonly == NULL)
    396 		panic("sk_vpd_read");
    397 	for (i = 0; i < res.vr_len ; i++)
    398 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
    399 }
    400 
    401 int
    402 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
    403 {
    404 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    405 	int i;
    406 
    407 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
    408 
    409 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
    410 		return 0;
    411 
    412 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    413 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
    414 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    415 		for (i = 0; i < SK_TIMEOUT; i++) {
    416 			DELAY(1);
    417 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
    418 			    XM_MMUCMD_PHYDATARDY)
    419 				break;
    420 		}
    421 
    422 		if (i == SK_TIMEOUT) {
    423 			aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
    424 			return 0;
    425 		}
    426 	}
    427 	DELAY(1);
    428 	return SK_XM_READ_2(sc_if, XM_PHY_DATA);
    429 }
    430 
    431 void
    432 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
    433 {
    434 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    435 	int i;
    436 
    437 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
    438 
    439 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    440 	for (i = 0; i < SK_TIMEOUT; i++) {
    441 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    442 			break;
    443 	}
    444 
    445 	if (i == SK_TIMEOUT) {
    446 		aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
    447 		return;
    448 	}
    449 
    450 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
    451 	for (i = 0; i < SK_TIMEOUT; i++) {
    452 		DELAY(1);
    453 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    454 			break;
    455 	}
    456 
    457 	if (i == SK_TIMEOUT)
    458 		aprint_error_dev(&sc_if->sk_dev, "phy write timed out\n");
    459 }
    460 
    461 void
    462 sk_xmac_miibus_statchg(struct device *dev)
    463 {
    464 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    465 	struct mii_data *mii = &sc_if->sk_mii;
    466 
    467 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
    468 
    469 	/*
    470 	 * If this is a GMII PHY, manually set the XMAC's
    471 	 * duplex mode accordingly.
    472 	 */
    473 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    474 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
    475 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    476 		else
    477 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    478 	}
    479 }
    480 
    481 int
    482 sk_marv_miibus_readreg(struct device *dev, int phy, int reg)
    483 {
    484 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    485 	u_int16_t val;
    486 	int i;
    487 
    488 	if (phy != 0 ||
    489 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
    490 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
    491 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
    492 			     phy, reg));
    493 		return 0;
    494 	}
    495 
    496         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    497 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
    498 
    499 	for (i = 0; i < SK_TIMEOUT; i++) {
    500 		DELAY(1);
    501 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
    502 		if (val & YU_SMICR_READ_VALID)
    503 			break;
    504 	}
    505 
    506 	if (i == SK_TIMEOUT) {
    507 		aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
    508 		return 0;
    509 	}
    510 
    511  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
    512 		     SK_TIMEOUT));
    513 
    514         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
    515 
    516 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
    517 		     phy, reg, val));
    518 
    519 	return val;
    520 }
    521 
    522 void
    523 sk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
    524 {
    525 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    526 	int i;
    527 
    528 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
    529 		     phy, reg, val));
    530 
    531 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
    532 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    533 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
    534 
    535 	for (i = 0; i < SK_TIMEOUT; i++) {
    536 		DELAY(1);
    537 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
    538 			break;
    539 	}
    540 
    541 	if (i == SK_TIMEOUT)
    542 		printf("%s: phy write timed out\n", device_xname(&sc_if->sk_dev));
    543 }
    544 
    545 void
    546 sk_marv_miibus_statchg(struct device *dev)
    547 {
    548 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
    549 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
    550 }
    551 
    552 #define SK_HASH_BITS		6
    553 
    554 u_int32_t
    555 sk_xmac_hash(void *addr)
    556 {
    557 	u_int32_t		crc;
    558 
    559 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
    560 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
    561 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    562 	return crc;
    563 }
    564 
    565 u_int32_t
    566 sk_yukon_hash(void *addr)
    567 {
    568 	u_int32_t		crc;
    569 
    570 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
    571 	crc &= ((1 << SK_HASH_BITS) - 1);
    572 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    573 	return crc;
    574 }
    575 
    576 void
    577 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
    578 {
    579 	char *addr = addrv;
    580 	int base = XM_RXFILT_ENTRY(slot);
    581 
    582 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
    583 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
    584 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
    585 }
    586 
    587 void
    588 sk_setmulti(struct sk_if_softc *sc_if)
    589 {
    590 	struct sk_softc *sc = sc_if->sk_softc;
    591 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
    592 	u_int32_t hashes[2] = { 0, 0 };
    593 	int h = 0, i;
    594 	struct ethercom *ec = &sc_if->sk_ethercom;
    595 	struct ether_multi *enm;
    596 	struct ether_multistep step;
    597 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
    598 
    599 	/* First, zot all the existing filters. */
    600 	switch (sc->sk_type) {
    601 	case SK_GENESIS:
    602 		for (i = 1; i < XM_RXFILT_MAX; i++)
    603 			sk_setfilt(sc_if, (void *)&dummy, i);
    604 
    605 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
    606 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
    607 		break;
    608 	case SK_YUKON:
    609 	case SK_YUKON_LITE:
    610 	case SK_YUKON_LP:
    611 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
    612 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
    613 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
    614 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
    615 		break;
    616 	}
    617 
    618 	/* Now program new ones. */
    619 allmulti:
    620 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    621 		hashes[0] = 0xFFFFFFFF;
    622 		hashes[1] = 0xFFFFFFFF;
    623 	} else {
    624 		i = 1;
    625 		/* First find the tail of the list. */
    626 		ETHER_FIRST_MULTI(step, ec, enm);
    627 		while (enm != NULL) {
    628 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
    629 				 ETHER_ADDR_LEN)) {
    630 				ifp->if_flags |= IFF_ALLMULTI;
    631 				goto allmulti;
    632 			}
    633 			DPRINTFN(2,("multicast address %s\n",
    634 	    			ether_sprintf(enm->enm_addrlo)));
    635 			/*
    636 			 * Program the first XM_RXFILT_MAX multicast groups
    637 			 * into the perfect filter. For all others,
    638 			 * use the hash table.
    639 			 */
    640 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
    641 				sk_setfilt(sc_if, enm->enm_addrlo, i);
    642 				i++;
    643 			}
    644 			else {
    645 				switch (sc->sk_type) {
    646 				case SK_GENESIS:
    647 					h = sk_xmac_hash(enm->enm_addrlo);
    648 					break;
    649 				case SK_YUKON:
    650 				case SK_YUKON_LITE:
    651 				case SK_YUKON_LP:
    652 					h = sk_yukon_hash(enm->enm_addrlo);
    653 					break;
    654 				}
    655 				if (h < 32)
    656 					hashes[0] |= (1 << h);
    657 				else
    658 					hashes[1] |= (1 << (h - 32));
    659 			}
    660 
    661 			ETHER_NEXT_MULTI(step, enm);
    662 		}
    663 	}
    664 
    665 	switch (sc->sk_type) {
    666 	case SK_GENESIS:
    667 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
    668 			       XM_MODE_RX_USE_PERFECT);
    669 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
    670 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
    671 		break;
    672 	case SK_YUKON:
    673 	case SK_YUKON_LITE:
    674 	case SK_YUKON_LP:
    675 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
    676 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
    677 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
    678 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
    679 		break;
    680 	}
    681 }
    682 
    683 int
    684 sk_init_rx_ring(struct sk_if_softc *sc_if)
    685 {
    686 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    687 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    688 	int			i;
    689 
    690 	bzero((char *)rd->sk_rx_ring,
    691 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
    692 
    693 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    694 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
    695 		if (i == (SK_RX_RING_CNT - 1)) {
    696 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
    697 			rd->sk_rx_ring[i].sk_next =
    698 				htole32(SK_RX_RING_ADDR(sc_if, 0));
    699 		} else {
    700 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
    701 			rd->sk_rx_ring[i].sk_next =
    702 				htole32(SK_RX_RING_ADDR(sc_if,i+1));
    703 		}
    704 	}
    705 
    706 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    707 		if (sk_newbuf(sc_if, i, NULL,
    708 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
    709 			aprint_error_dev(&sc_if->sk_dev, "failed alloc of %dth mbuf\n", i);
    710 			return ENOBUFS;
    711 		}
    712 	}
    713 	sc_if->sk_cdata.sk_rx_prod = 0;
    714 	sc_if->sk_cdata.sk_rx_cons = 0;
    715 
    716 	return 0;
    717 }
    718 
    719 int
    720 sk_init_tx_ring(struct sk_if_softc *sc_if)
    721 {
    722 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    723 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    724 	int			i;
    725 
    726 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
    727 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
    728 
    729 	for (i = 0; i < SK_TX_RING_CNT; i++) {
    730 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
    731 		if (i == (SK_TX_RING_CNT - 1)) {
    732 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
    733 			rd->sk_tx_ring[i].sk_next =
    734 				htole32(SK_TX_RING_ADDR(sc_if, 0));
    735 		} else {
    736 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
    737 			rd->sk_tx_ring[i].sk_next =
    738 				htole32(SK_TX_RING_ADDR(sc_if,i+1));
    739 		}
    740 	}
    741 
    742 	sc_if->sk_cdata.sk_tx_prod = 0;
    743 	sc_if->sk_cdata.sk_tx_cons = 0;
    744 	sc_if->sk_cdata.sk_tx_cnt = 0;
    745 
    746 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
    747 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    748 
    749 	return 0;
    750 }
    751 
    752 int
    753 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
    754 	  bus_dmamap_t dmamap)
    755 {
    756 	struct mbuf		*m_new = NULL;
    757 	struct sk_chain		*c;
    758 	struct sk_rx_desc	*r;
    759 
    760 	if (m == NULL) {
    761 		void *buf = NULL;
    762 
    763 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    764 		if (m_new == NULL) {
    765 			aprint_error_dev(&sc_if->sk_dev, "no memory for rx list -- "
    766 			    "packet dropped!\n");
    767 			return ENOBUFS;
    768 		}
    769 
    770 		/* Allocate the jumbo buffer */
    771 		buf = sk_jalloc(sc_if);
    772 		if (buf == NULL) {
    773 			m_freem(m_new);
    774 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
    775 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
    776 			return ENOBUFS;
    777 		}
    778 
    779 		/* Attach the buffer to the mbuf */
    780 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    781 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
    782 
    783 	} else {
    784 		/*
    785 	 	 * We're re-using a previously allocated mbuf;
    786 		 * be sure to re-init pointers and lengths to
    787 		 * default values.
    788 		 */
    789 		m_new = m;
    790 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    791 		m_new->m_data = m_new->m_ext.ext_buf;
    792 	}
    793 	m_adj(m_new, ETHER_ALIGN);
    794 
    795 	c = &sc_if->sk_cdata.sk_rx_chain[i];
    796 	r = c->sk_desc;
    797 	c->sk_mbuf = m_new;
    798 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
    799 	    (((vaddr_t)m_new->m_data
    800 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
    801 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
    802 
    803 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    804 
    805 	return 0;
    806 }
    807 
    808 /*
    809  * Memory management for jumbo frames.
    810  */
    811 
    812 int
    813 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
    814 {
    815 	struct sk_softc		*sc = sc_if->sk_softc;
    816 	char *ptr, *kva;
    817 	bus_dma_segment_t	seg;
    818 	int		i, rseg, state, error;
    819 	struct sk_jpool_entry   *entry;
    820 
    821 	state = error = 0;
    822 
    823 	/* Grab a big chunk o' storage. */
    824 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
    825 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    826 		aprint_error_dev(&sc->sk_dev, "can't alloc rx buffers\n");
    827 		return ENOBUFS;
    828 	}
    829 
    830 	state = 1;
    831 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
    832 			   BUS_DMA_NOWAIT)) {
    833 		aprint_error_dev(&sc->sk_dev, "can't map dma buffers (%d bytes)\n",
    834 		    SK_JMEM);
    835 		error = ENOBUFS;
    836 		goto out;
    837 	}
    838 
    839 	state = 2;
    840 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
    841 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
    842 		aprint_error_dev(&sc->sk_dev, "can't create dma map\n");
    843 		error = ENOBUFS;
    844 		goto out;
    845 	}
    846 
    847 	state = 3;
    848 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
    849 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
    850 		aprint_error_dev(&sc->sk_dev, "can't load dma map\n");
    851 		error = ENOBUFS;
    852 		goto out;
    853 	}
    854 
    855 	state = 4;
    856 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
    857 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
    858 
    859 	LIST_INIT(&sc_if->sk_jfree_listhead);
    860 	LIST_INIT(&sc_if->sk_jinuse_listhead);
    861 
    862 	/*
    863 	 * Now divide it up into 9K pieces and save the addresses
    864 	 * in an array.
    865 	 */
    866 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
    867 	for (i = 0; i < SK_JSLOTS; i++) {
    868 		sc_if->sk_cdata.sk_jslots[i] = ptr;
    869 		ptr += SK_JLEN;
    870 		entry = malloc(sizeof(struct sk_jpool_entry),
    871 		    M_DEVBUF, M_NOWAIT);
    872 		if (entry == NULL) {
    873 			aprint_error_dev(&sc->sk_dev, "no memory for jumbo buffer queue!\n");
    874 			error = ENOBUFS;
    875 			goto out;
    876 		}
    877 		entry->slot = i;
    878 		if (i)
    879 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
    880 				 entry, jpool_entries);
    881 		else
    882 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
    883 				 entry, jpool_entries);
    884 	}
    885 out:
    886 	if (error != 0) {
    887 		switch (state) {
    888 		case 4:
    889 			bus_dmamap_unload(sc->sc_dmatag,
    890 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    891 		case 3:
    892 			bus_dmamap_destroy(sc->sc_dmatag,
    893 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    894 		case 2:
    895 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
    896 		case 1:
    897 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
    898 			break;
    899 		default:
    900 			break;
    901 		}
    902 	}
    903 
    904 	return error;
    905 }
    906 
    907 /*
    908  * Allocate a jumbo buffer.
    909  */
    910 void *
    911 sk_jalloc(struct sk_if_softc *sc_if)
    912 {
    913 	struct sk_jpool_entry   *entry;
    914 
    915 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
    916 
    917 	if (entry == NULL)
    918 		return NULL;
    919 
    920 	LIST_REMOVE(entry, jpool_entries);
    921 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
    922 	return sc_if->sk_cdata.sk_jslots[entry->slot];
    923 }
    924 
    925 /*
    926  * Release a jumbo buffer.
    927  */
    928 void
    929 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
    930 {
    931 	struct sk_jpool_entry *entry;
    932 	struct sk_if_softc *sc;
    933 	int i, s;
    934 
    935 	/* Extract the softc struct pointer. */
    936 	sc = (struct sk_if_softc *)arg;
    937 
    938 	if (sc == NULL)
    939 		panic("sk_jfree: can't find softc pointer!");
    940 
    941 	/* calculate the slot this buffer belongs to */
    942 
    943 	i = ((vaddr_t)buf
    944 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
    945 
    946 	if ((i < 0) || (i >= SK_JSLOTS))
    947 		panic("sk_jfree: asked to free buffer that we don't manage!");
    948 
    949 	s = splvm();
    950 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
    951 	if (entry == NULL)
    952 		panic("sk_jfree: buffer not in use!");
    953 	entry->slot = i;
    954 	LIST_REMOVE(entry, jpool_entries);
    955 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
    956 
    957 	if (__predict_true(m != NULL))
    958 		pool_cache_put(mb_cache, m);
    959 	splx(s);
    960 }
    961 
    962 /*
    963  * Set media options.
    964  */
    965 int
    966 sk_ifmedia_upd(struct ifnet *ifp)
    967 {
    968 	struct sk_if_softc *sc_if = ifp->if_softc;
    969 	int rc;
    970 
    971 	(void) sk_init(ifp);
    972 	if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
    973 		return 0;
    974 	return rc;
    975 }
    976 
    977 int
    978 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
    979 {
    980 	struct sk_if_softc *sc_if = ifp->if_softc;
    981 	struct sk_softc *sc = sc_if->sk_softc;
    982 	int s, error = 0;
    983 
    984 	/* DPRINTFN(2, ("sk_ioctl\n")); */
    985 
    986 	s = splnet();
    987 
    988 	switch (command) {
    989 
    990 	case SIOCSIFFLAGS:
    991 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
    992 		if (ifp->if_flags & IFF_UP) {
    993 			if (ifp->if_flags & IFF_RUNNING &&
    994 			    ifp->if_flags & IFF_PROMISC &&
    995 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
    996 				switch (sc->sk_type) {
    997 				case SK_GENESIS:
    998 					SK_XM_SETBIT_4(sc_if, XM_MODE,
    999 					    XM_MODE_RX_PROMISC);
   1000 					break;
   1001 				case SK_YUKON:
   1002 				case SK_YUKON_LITE:
   1003 				case SK_YUKON_LP:
   1004 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
   1005 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1006 					break;
   1007 				}
   1008 				sk_setmulti(sc_if);
   1009 			} else if (ifp->if_flags & IFF_RUNNING &&
   1010 			    !(ifp->if_flags & IFF_PROMISC) &&
   1011 			    sc_if->sk_if_flags & IFF_PROMISC) {
   1012 				switch (sc->sk_type) {
   1013 				case SK_GENESIS:
   1014 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
   1015 					    XM_MODE_RX_PROMISC);
   1016 					break;
   1017 				case SK_YUKON:
   1018 				case SK_YUKON_LITE:
   1019 				case SK_YUKON_LP:
   1020 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
   1021 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1022 					break;
   1023 				}
   1024 
   1025 				sk_setmulti(sc_if);
   1026 			} else
   1027 				(void) sk_init(ifp);
   1028 		} else {
   1029 			if (ifp->if_flags & IFF_RUNNING)
   1030 				sk_stop(ifp,0);
   1031 		}
   1032 		sc_if->sk_if_flags = ifp->if_flags;
   1033 		error = 0;
   1034 		break;
   1035 
   1036 	default:
   1037 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
   1038 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   1039 			break;
   1040 
   1041 		error = 0;
   1042 
   1043 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   1044 			;
   1045 		else if (ifp->if_flags & IFF_RUNNING) {
   1046 			sk_setmulti(sc_if);
   1047 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
   1048 		}
   1049 		break;
   1050 	}
   1051 
   1052 	splx(s);
   1053 	return error;
   1054 }
   1055 
   1056 void
   1057 sk_update_int_mod(struct sk_softc *sc)
   1058 {
   1059 	u_int32_t imtimer_ticks;
   1060 
   1061 	/*
   1062          * Configure interrupt moderation. The moderation timer
   1063 	 * defers interrupts specified in the interrupt moderation
   1064 	 * timer mask based on the timeout specified in the interrupt
   1065 	 * moderation timer init register. Each bit in the timer
   1066 	 * register represents one tick, so to specify a timeout in
   1067 	 * microseconds, we have to multiply by the correct number of
   1068 	 * ticks-per-microsecond.
   1069 	 */
   1070 	switch (sc->sk_type) {
   1071 	case SK_GENESIS:
   1072 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   1073 		break;
   1074 	case SK_YUKON_EC:
   1075 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   1076 		break;
   1077 	default:
   1078 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   1079 	}
   1080 	aprint_verbose_dev(&sc->sk_dev, "interrupt moderation is %d us\n",
   1081 	    sc->sk_int_mod);
   1082         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
   1083         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
   1084 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
   1085         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
   1086 	sc->sk_int_mod_pending = 0;
   1087 }
   1088 
   1089 /*
   1090  * Lookup: Check the PCI vendor and device, and return a pointer to
   1091  * The structure if the IDs match against our list.
   1092  */
   1093 
   1094 static const struct sk_product *
   1095 sk_lookup(const struct pci_attach_args *pa)
   1096 {
   1097 	const struct sk_product *psk;
   1098 
   1099 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
   1100 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
   1101 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
   1102 			return psk;
   1103 	}
   1104 	return NULL;
   1105 }
   1106 
   1107 /*
   1108  * Probe for a SysKonnect GEnesis chip.
   1109  */
   1110 
   1111 int
   1112 skc_probe(struct device *parent, struct cfdata *match,
   1113     void *aux)
   1114 {
   1115 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1116 	const struct sk_product *psk;
   1117 	pcireg_t subid;
   1118 
   1119 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
   1120 
   1121 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
   1122 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
   1123 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
   1124 	    subid == SK_LINKSYS_EG1032_SUBID)
   1125 		return 1;
   1126 
   1127 	if ((psk = sk_lookup(pa))) {
   1128 		return 1;
   1129 	}
   1130 	return 0;
   1131 }
   1132 
   1133 /*
   1134  * Force the GEnesis into reset, then bring it out of reset.
   1135  */
   1136 void sk_reset(struct sk_softc *sc)
   1137 {
   1138 	DPRINTFN(2, ("sk_reset\n"));
   1139 
   1140 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
   1141 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
   1142 	if (SK_YUKON_FAMILY(sc->sk_type))
   1143 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
   1144 
   1145 	DELAY(1000);
   1146 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
   1147 	DELAY(2);
   1148 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
   1149 	if (SK_YUKON_FAMILY(sc->sk_type))
   1150 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
   1151 
   1152 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
   1153 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
   1154 		     CSR_READ_2(sc, SK_LINK_CTRL)));
   1155 
   1156 	if (sc->sk_type == SK_GENESIS) {
   1157 		/* Configure packet arbiter */
   1158 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
   1159 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1160 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1161 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1162 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1163 	}
   1164 
   1165 	/* Enable RAM interface */
   1166 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
   1167 
   1168 	sk_update_int_mod(sc);
   1169 }
   1170 
   1171 int
   1172 sk_probe(struct device *parent, struct cfdata *match,
   1173     void *aux)
   1174 {
   1175 	struct skc_attach_args *sa = aux;
   1176 
   1177 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
   1178 		return 0;
   1179 
   1180 	return 1;
   1181 }
   1182 
   1183 /*
   1184  * Each XMAC chip is attached as a separate logical IP interface.
   1185  * Single port cards will have only one logical interface of course.
   1186  */
   1187 void
   1188 sk_attach(struct device *parent, struct device *self, void *aux)
   1189 {
   1190 	struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
   1191 	struct sk_softc *sc = (struct sk_softc *)parent;
   1192 	struct skc_attach_args *sa = aux;
   1193 	struct sk_txmap_entry	*entry;
   1194 	struct ifnet *ifp;
   1195 	bus_dma_segment_t seg;
   1196 	bus_dmamap_t dmamap;
   1197 	void *kva;
   1198 	int i, rseg;
   1199 
   1200 	aprint_naive("\n");
   1201 
   1202 	sc_if->sk_port = sa->skc_port;
   1203 	sc_if->sk_softc = sc;
   1204 	sc->sk_if[sa->skc_port] = sc_if;
   1205 
   1206 	if (sa->skc_port == SK_PORT_A)
   1207 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
   1208 	if (sa->skc_port == SK_PORT_B)
   1209 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
   1210 
   1211 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
   1212 
   1213 	/*
   1214 	 * Get station address for this interface. Note that
   1215 	 * dual port cards actually come with three station
   1216 	 * addresses: one for each port, plus an extra. The
   1217 	 * extra one is used by the SysKonnect driver software
   1218 	 * as a 'virtual' station address for when both ports
   1219 	 * are operating in failover mode. Currently we don't
   1220 	 * use this extra address.
   1221 	 */
   1222 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1223 		sc_if->sk_enaddr[i] =
   1224 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
   1225 
   1226 
   1227 	aprint_normal(": Ethernet address %s\n",
   1228 	    ether_sprintf(sc_if->sk_enaddr));
   1229 
   1230 	/*
   1231 	 * Set up RAM buffer addresses. The NIC will have a certain
   1232 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
   1233 	 * need to divide this up a) between the transmitter and
   1234  	 * receiver and b) between the two XMACs, if this is a
   1235 	 * dual port NIC. Our algorithm is to divide up the memory
   1236 	 * evenly so that everyone gets a fair share.
   1237 	 */
   1238 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
   1239 		u_int32_t		chunk, val;
   1240 
   1241 		chunk = sc->sk_ramsize / 2;
   1242 		val = sc->sk_rboff / sizeof(u_int64_t);
   1243 		sc_if->sk_rx_ramstart = val;
   1244 		val += (chunk / sizeof(u_int64_t));
   1245 		sc_if->sk_rx_ramend = val - 1;
   1246 		sc_if->sk_tx_ramstart = val;
   1247 		val += (chunk / sizeof(u_int64_t));
   1248 		sc_if->sk_tx_ramend = val - 1;
   1249 	} else {
   1250 		u_int32_t		chunk, val;
   1251 
   1252 		chunk = sc->sk_ramsize / 4;
   1253 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
   1254 		    sizeof(u_int64_t);
   1255 		sc_if->sk_rx_ramstart = val;
   1256 		val += (chunk / sizeof(u_int64_t));
   1257 		sc_if->sk_rx_ramend = val - 1;
   1258 		sc_if->sk_tx_ramstart = val;
   1259 		val += (chunk / sizeof(u_int64_t));
   1260 		sc_if->sk_tx_ramend = val - 1;
   1261 	}
   1262 
   1263 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
   1264 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
   1265 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
   1266 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
   1267 
   1268 	/* Read and save PHY type and set PHY address */
   1269 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
   1270 	switch (sc_if->sk_phytype) {
   1271 	case SK_PHYTYPE_XMAC:
   1272 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
   1273 		break;
   1274 	case SK_PHYTYPE_BCOM:
   1275 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
   1276 		break;
   1277 	case SK_PHYTYPE_MARV_COPPER:
   1278 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
   1279 		break;
   1280 	default:
   1281 		aprint_error_dev(&sc->sk_dev, "unsupported PHY type: %d\n",
   1282 		    sc_if->sk_phytype);
   1283 		return;
   1284 	}
   1285 
   1286 	/* Allocate the descriptor queues. */
   1287 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
   1288 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1289 		aprint_error_dev(&sc->sk_dev, "can't alloc rx buffers\n");
   1290 		goto fail;
   1291 	}
   1292 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
   1293 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
   1294 		aprint_error_dev(&sc_if->sk_dev, "can't map dma buffers (%lu bytes)\n",
   1295 		       (u_long) sizeof(struct sk_ring_data));
   1296 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1297 		goto fail;
   1298 	}
   1299 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
   1300 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
   1301             &sc_if->sk_ring_map)) {
   1302 		aprint_error_dev(&sc_if->sk_dev, "can't create dma map\n");
   1303 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1304 		    sizeof(struct sk_ring_data));
   1305 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1306 		goto fail;
   1307 	}
   1308 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
   1309 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
   1310 		aprint_error_dev(&sc_if->sk_dev, "can't load dma map\n");
   1311 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1312 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1313 		    sizeof(struct sk_ring_data));
   1314 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1315 		goto fail;
   1316 	}
   1317 
   1318 	for (i = 0; i < SK_RX_RING_CNT; i++)
   1319 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   1320 
   1321 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
   1322 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   1323 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   1324 
   1325 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
   1326 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
   1327 			aprint_error_dev(&sc_if->sk_dev, "Can't create TX dmamap\n");
   1328 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1329 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1330 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1331 			    sizeof(struct sk_ring_data));
   1332 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1333 			goto fail;
   1334 		}
   1335 
   1336 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
   1337 		if (!entry) {
   1338 			aprint_error_dev(&sc_if->sk_dev, "Can't alloc txmap entry\n");
   1339 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
   1340 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1341 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1342 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1343 			    sizeof(struct sk_ring_data));
   1344 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1345 			goto fail;
   1346 		}
   1347 		entry->dmamap = dmamap;
   1348 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
   1349 	}
   1350 
   1351         sc_if->sk_rdata = (struct sk_ring_data *)kva;
   1352 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
   1353 
   1354 	ifp = &sc_if->sk_ethercom.ec_if;
   1355 	/* Try to allocate memory for jumbo buffers. */
   1356 	if (sk_alloc_jumbo_mem(sc_if)) {
   1357 		aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
   1358 		goto fail;
   1359 	}
   1360 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
   1361 		| ETHERCAP_JUMBO_MTU;
   1362 
   1363 	ifp->if_softc = sc_if;
   1364 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1365 	ifp->if_ioctl = sk_ioctl;
   1366 	ifp->if_start = sk_start;
   1367 	ifp->if_stop = sk_stop;
   1368 	ifp->if_init = sk_init;
   1369 	ifp->if_watchdog = sk_watchdog;
   1370 	ifp->if_capabilities = 0;
   1371 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
   1372 	IFQ_SET_READY(&ifp->if_snd);
   1373 	strlcpy(ifp->if_xname, device_xname(&sc_if->sk_dev), IFNAMSIZ);
   1374 
   1375 	/*
   1376 	 * Do miibus setup.
   1377 	 */
   1378 	switch (sc->sk_type) {
   1379 	case SK_GENESIS:
   1380 		sk_init_xmac(sc_if);
   1381 		break;
   1382 	case SK_YUKON:
   1383 	case SK_YUKON_LITE:
   1384 	case SK_YUKON_LP:
   1385 		sk_init_yukon(sc_if);
   1386 		break;
   1387 	default:
   1388 		aprint_error_dev(&sc->sk_dev, "unknown device type %d\n",
   1389 			sc->sk_type);
   1390 		goto fail;
   1391 	}
   1392 
   1393  	DPRINTFN(2, ("sk_attach: 1\n"));
   1394 
   1395 	sc_if->sk_mii.mii_ifp = ifp;
   1396 	switch (sc->sk_type) {
   1397 	case SK_GENESIS:
   1398 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
   1399 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
   1400 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
   1401 		break;
   1402 	case SK_YUKON:
   1403 	case SK_YUKON_LITE:
   1404 	case SK_YUKON_LP:
   1405 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
   1406 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
   1407 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
   1408 		break;
   1409 	}
   1410 
   1411 	sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
   1412 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
   1413 	    sk_ifmedia_upd, ether_mediastatus);
   1414 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
   1415 	    MII_OFFSET_ANY, 0);
   1416 	if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
   1417 		aprint_error_dev(&sc_if->sk_dev, "no PHY found!\n");
   1418 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
   1419 			    0, NULL);
   1420 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
   1421 	} else
   1422 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1423 
   1424 	callout_init(&sc_if->sk_tick_ch, 0);
   1425 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
   1426 
   1427 	DPRINTFN(2, ("sk_attach: 1\n"));
   1428 
   1429 	/*
   1430 	 * Call MI attach routines.
   1431 	 */
   1432 	if_attach(ifp);
   1433 
   1434 	ether_ifattach(ifp, sc_if->sk_enaddr);
   1435 
   1436 #if NRND > 0
   1437         rnd_attach_source(&sc->rnd_source, device_xname(&sc->sk_dev),
   1438             RND_TYPE_NET, 0);
   1439 #endif
   1440 
   1441 	DPRINTFN(2, ("sk_attach: end\n"));
   1442 
   1443 	return;
   1444 
   1445 fail:
   1446 	sc->sk_if[sa->skc_port] = NULL;
   1447 }
   1448 
   1449 int
   1450 skcprint(void *aux, const char *pnp)
   1451 {
   1452 	struct skc_attach_args *sa = aux;
   1453 
   1454 	if (pnp)
   1455 		aprint_normal("sk port %c at %s",
   1456 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
   1457 	else
   1458 		aprint_normal(" port %c",
   1459 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
   1460 	return UNCONF;
   1461 }
   1462 
   1463 /*
   1464  * Attach the interface. Allocate softc structures, do ifmedia
   1465  * setup and ethernet/BPF attach.
   1466  */
   1467 void
   1468 skc_attach(struct device *parent, struct device *self, void *aux)
   1469 {
   1470 	struct sk_softc *sc = (struct sk_softc *)self;
   1471 	struct pci_attach_args *pa = aux;
   1472 	struct skc_attach_args skca;
   1473 	pci_chipset_tag_t pc = pa->pa_pc;
   1474 #ifndef SK_USEIOSPACE
   1475 	pcireg_t memtype;
   1476 #endif
   1477 	pci_intr_handle_t ih;
   1478 	const char *intrstr = NULL;
   1479 	bus_addr_t iobase;
   1480 	bus_size_t iosize;
   1481 	int rc, sk_nodenum;
   1482 	u_int32_t command;
   1483 	const char *revstr;
   1484 	const struct sysctlnode *node;
   1485 
   1486 	aprint_naive("\n");
   1487 
   1488 	DPRINTFN(2, ("begin skc_attach\n"));
   1489 
   1490 	/*
   1491 	 * Handle power management nonsense.
   1492 	 */
   1493 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
   1494 
   1495 	if (command == 0x01) {
   1496 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
   1497 		if (command & SK_PSTATE_MASK) {
   1498 			u_int32_t		xiobase, membase, irq;
   1499 
   1500 			/* Save important PCI config data. */
   1501 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
   1502 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
   1503 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
   1504 
   1505 			/* Reset the power state. */
   1506 			aprint_normal_dev(&sc->sk_dev, "chip is in D%d power mode "
   1507 			    "-- setting to D0\n",
   1508 			    command & SK_PSTATE_MASK);
   1509 			command &= 0xFFFFFFFC;
   1510 			pci_conf_write(pc, pa->pa_tag,
   1511 			    SK_PCI_PWRMGMTCTRL, command);
   1512 
   1513 			/* Restore PCI config data. */
   1514 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
   1515 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
   1516 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
   1517 		}
   1518 	}
   1519 
   1520 	/*
   1521 	 * Map control/status registers.
   1522 	 */
   1523 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1524 	command |= PCI_COMMAND_IO_ENABLE |
   1525 	    PCI_COMMAND_MEM_ENABLE |
   1526 	    PCI_COMMAND_MASTER_ENABLE;
   1527 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1528 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1529 
   1530 #ifdef SK_USEIOSPACE
   1531 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
   1532 		aprint_error(": failed to enable I/O ports!\n");
   1533 		return;
   1534 	}
   1535 	/*
   1536 	 * Map control/status registers.
   1537 	 */
   1538 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
   1539 			&sc->sk_btag, &sc->sk_bhandle,
   1540 			&iobase, &iosize)) {
   1541 		aprint_error(": can't find i/o space\n");
   1542 		return;
   1543 	}
   1544 #else
   1545 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1546 		aprint_error(": failed to enable memory mapping!\n");
   1547 		return;
   1548 	}
   1549 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
   1550 	switch (memtype) {
   1551         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1552         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1553                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
   1554 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
   1555 				   &iobase, &iosize) == 0)
   1556                         break;
   1557         default:
   1558                 aprint_error_dev(&sc->sk_dev, "can't find mem space\n");
   1559                 return;
   1560 	}
   1561 
   1562 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
   1563 #endif
   1564 	sc->sc_dmatag = pa->pa_dmat;
   1565 
   1566 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
   1567 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
   1568 
   1569 	/* bail out here if chip is not recognized */
   1570 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
   1571 		aprint_error_dev(&sc->sk_dev, "unknown chip type\n");
   1572 		goto fail;
   1573 	}
   1574 	if (SK_IS_YUKON2(sc)) {
   1575 		aprint_error_dev(&sc->sk_dev, "Does not support Yukon2--try msk(4).\n");
   1576 		goto fail;
   1577 	}
   1578 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
   1579 
   1580 	/* Allocate interrupt */
   1581 	if (pci_intr_map(pa, &ih)) {
   1582 		aprint_error(": couldn't map interrupt\n");
   1583 		goto fail;
   1584 	}
   1585 
   1586 	intrstr = pci_intr_string(pc, ih);
   1587 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
   1588 	if (sc->sk_intrhand == NULL) {
   1589 		aprint_error(": couldn't establish interrupt");
   1590 		if (intrstr != NULL)
   1591 			aprint_normal(" at %s", intrstr);
   1592 		goto fail;
   1593 	}
   1594 	aprint_normal(": %s\n", intrstr);
   1595 
   1596 	/* Reset the adapter. */
   1597 	sk_reset(sc);
   1598 
   1599 	/* Read and save vital product data from EEPROM. */
   1600 	sk_vpd_read(sc);
   1601 
   1602 	if (sc->sk_type == SK_GENESIS) {
   1603 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1604 		/* Read and save RAM size and RAMbuffer offset */
   1605 		switch (val) {
   1606 		case SK_RAMSIZE_512K_64:
   1607 			sc->sk_ramsize = 0x80000;
   1608 			sc->sk_rboff = SK_RBOFF_0;
   1609 			break;
   1610 		case SK_RAMSIZE_1024K_64:
   1611 			sc->sk_ramsize = 0x100000;
   1612 			sc->sk_rboff = SK_RBOFF_80000;
   1613 			break;
   1614 		case SK_RAMSIZE_1024K_128:
   1615 			sc->sk_ramsize = 0x100000;
   1616 			sc->sk_rboff = SK_RBOFF_0;
   1617 			break;
   1618 		case SK_RAMSIZE_2048K_128:
   1619 			sc->sk_ramsize = 0x200000;
   1620 			sc->sk_rboff = SK_RBOFF_0;
   1621 			break;
   1622 		default:
   1623 			aprint_error_dev(&sc->sk_dev, "unknown ram size: %d\n",
   1624 			       val);
   1625 			goto fail_1;
   1626 			break;
   1627 		}
   1628 
   1629 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
   1630 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
   1631 			     sc->sk_rboff));
   1632 	} else {
   1633 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1634 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
   1635 		sc->sk_rboff = SK_RBOFF_0;
   1636 
   1637 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
   1638 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
   1639 			     sc->sk_rboff));
   1640 	}
   1641 
   1642 	/* Read and save physical media type */
   1643 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
   1644 	case SK_PMD_1000BASESX:
   1645 		sc->sk_pmd = IFM_1000_SX;
   1646 		break;
   1647 	case SK_PMD_1000BASELX:
   1648 		sc->sk_pmd = IFM_1000_LX;
   1649 		break;
   1650 	case SK_PMD_1000BASECX:
   1651 		sc->sk_pmd = IFM_1000_CX;
   1652 		break;
   1653 	case SK_PMD_1000BASETX:
   1654 	case SK_PMD_1000BASETX_ALT:
   1655 		sc->sk_pmd = IFM_1000_T;
   1656 		break;
   1657 	default:
   1658 		aprint_error_dev(&sc->sk_dev, "unknown media type: 0x%x\n",
   1659 		    sk_win_read_1(sc, SK_PMDTYPE));
   1660 		goto fail_1;
   1661 	}
   1662 
   1663 	/* determine whether to name it with vpd or just make it up */
   1664 	/* Marvell Yukon VPD's can freqently be bogus */
   1665 
   1666 	switch (pa->pa_id) {
   1667 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1668 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
   1669 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
   1670 	case PCI_PRODUCT_3COM_3C940:
   1671 	case PCI_PRODUCT_DLINK_DGE530T:
   1672 	case PCI_PRODUCT_DLINK_DGE560T:
   1673 	case PCI_PRODUCT_DLINK_DGE560T_2:
   1674 	case PCI_PRODUCT_LINKSYS_EG1032:
   1675 	case PCI_PRODUCT_LINKSYS_EG1064:
   1676 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1677 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
   1678 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
   1679 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
   1680 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
   1681 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
   1682 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
   1683 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
   1684  		sc->sk_name = sc->sk_vpd_prodname;
   1685  		break;
   1686 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
   1687 	/* whoops yukon vpd prodname bears no resemblance to reality */
   1688 		switch (sc->sk_type) {
   1689 		case SK_GENESIS:
   1690 			sc->sk_name = sc->sk_vpd_prodname;
   1691 			break;
   1692 		case SK_YUKON:
   1693 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
   1694 			break;
   1695 		case SK_YUKON_LITE:
   1696 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
   1697 			break;
   1698 		case SK_YUKON_LP:
   1699 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
   1700 			break;
   1701 		default:
   1702 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
   1703 		}
   1704 
   1705 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
   1706 
   1707 		if ( sc->sk_type == SK_YUKON ) {
   1708 			uint32_t flashaddr;
   1709 			uint8_t testbyte;
   1710 
   1711 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
   1712 
   1713 			/* test Flash-Address Register */
   1714 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
   1715 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
   1716 
   1717 			if (testbyte != 0) {
   1718 				/* this is yukon lite Rev. A0 */
   1719 				sc->sk_type = SK_YUKON_LITE;
   1720 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
   1721 				/* restore Flash-Address Register */
   1722 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
   1723 			}
   1724 		}
   1725 		break;
   1726 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
   1727 		sc->sk_name = sc->sk_vpd_prodname;
   1728 		break;
   1729  	default:
   1730 		sc->sk_name = "Unknown Marvell";
   1731 	}
   1732 
   1733 
   1734 	if ( sc->sk_type == SK_YUKON_LITE ) {
   1735 		switch (sc->sk_rev) {
   1736 		case SK_YUKON_LITE_REV_A0:
   1737 			revstr = "A0";
   1738 			break;
   1739 		case SK_YUKON_LITE_REV_A1:
   1740 			revstr = "A1";
   1741 			break;
   1742 		case SK_YUKON_LITE_REV_A3:
   1743 			revstr = "A3";
   1744 			break;
   1745 		default:
   1746 			revstr = "";
   1747 		}
   1748 	} else {
   1749 		revstr = "";
   1750 	}
   1751 
   1752 	/* Announce the product name. */
   1753 	aprint_normal_dev(&sc->sk_dev, "%s rev. %s(0x%x)\n",
   1754 			      sc->sk_name, revstr, sc->sk_rev);
   1755 
   1756 	skca.skc_port = SK_PORT_A;
   1757 	(void)config_found(&sc->sk_dev, &skca, skcprint);
   1758 
   1759 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
   1760 		skca.skc_port = SK_PORT_B;
   1761 		(void)config_found(&sc->sk_dev, &skca, skcprint);
   1762 	}
   1763 
   1764 	/* Turn on the 'driver is loaded' LED. */
   1765 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   1766 
   1767 	/* skc sysctl setup */
   1768 
   1769 	sc->sk_int_mod = SK_IM_DEFAULT;
   1770 	sc->sk_int_mod_pending = 0;
   1771 
   1772 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1773 	    0, CTLTYPE_NODE, device_xname(&sc->sk_dev),
   1774 	    SYSCTL_DESCR("skc per-controller controls"),
   1775 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
   1776 	    CTL_EOL)) != 0) {
   1777 		aprint_normal_dev(&sc->sk_dev, "couldn't create sysctl node\n");
   1778 		goto fail_1;
   1779 	}
   1780 
   1781 	sk_nodenum = node->sysctl_num;
   1782 
   1783 	/* interrupt moderation time in usecs */
   1784 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1785 	    CTLFLAG_READWRITE,
   1786 	    CTLTYPE_INT, "int_mod",
   1787 	    SYSCTL_DESCR("sk interrupt moderation timer"),
   1788 	    sk_sysctl_handler, 0, sc,
   1789 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
   1790 	    CTL_EOL)) != 0) {
   1791 		aprint_normal_dev(&sc->sk_dev, "couldn't create int_mod sysctl node\n");
   1792 		goto fail_1;
   1793 	}
   1794 
   1795 	return;
   1796 
   1797 fail_1:
   1798 	pci_intr_disestablish(pc, sc->sk_intrhand);
   1799 fail:
   1800 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
   1801 }
   1802 
   1803 int
   1804 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
   1805 {
   1806 	struct sk_softc		*sc = sc_if->sk_softc;
   1807 	struct sk_tx_desc	*f = NULL;
   1808 	u_int32_t		frag, cur, cnt = 0, sk_ctl;
   1809 	int			i;
   1810 	struct sk_txmap_entry	*entry;
   1811 	bus_dmamap_t		txmap;
   1812 
   1813 	DPRINTFN(3, ("sk_encap\n"));
   1814 
   1815 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
   1816 	if (entry == NULL) {
   1817 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
   1818 		return ENOBUFS;
   1819 	}
   1820 	txmap = entry->dmamap;
   1821 
   1822 	cur = frag = *txidx;
   1823 
   1824 #ifdef SK_DEBUG
   1825 	if (skdebug >= 3)
   1826 		sk_dump_mbuf(m_head);
   1827 #endif
   1828 
   1829 	/*
   1830 	 * Start packing the mbufs in this chain into
   1831 	 * the fragment pointers. Stop when we run out
   1832 	 * of fragments or hit the end of the mbuf chain.
   1833 	 */
   1834 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
   1835 	    BUS_DMA_NOWAIT)) {
   1836 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
   1837 		return ENOBUFS;
   1838 	}
   1839 
   1840 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
   1841 
   1842 	/* Sync the DMA map. */
   1843 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
   1844 	    BUS_DMASYNC_PREWRITE);
   1845 
   1846 	for (i = 0; i < txmap->dm_nsegs; i++) {
   1847 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
   1848 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
   1849 			return ENOBUFS;
   1850 		}
   1851 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
   1852 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
   1853 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
   1854 		if (cnt == 0)
   1855 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
   1856 		else
   1857 			sk_ctl |= SK_TXCTL_OWN;
   1858 		f->sk_ctl = htole32(sk_ctl);
   1859 		cur = frag;
   1860 		SK_INC(frag, SK_TX_RING_CNT);
   1861 		cnt++;
   1862 	}
   1863 
   1864 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
   1865 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
   1866 
   1867 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
   1868 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
   1869 		htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
   1870 
   1871 	/* Sync descriptors before handing to chip */
   1872 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
   1873 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1874 
   1875 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
   1876 		htole32(SK_TXCTL_OWN);
   1877 
   1878 	/* Sync first descriptor to hand it off */
   1879 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1880 
   1881 	sc_if->sk_cdata.sk_tx_cnt += cnt;
   1882 
   1883 #ifdef SK_DEBUG
   1884 	if (skdebug >= 3) {
   1885 		struct sk_tx_desc *desc;
   1886 		u_int32_t idx;
   1887 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
   1888 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
   1889 			sk_dump_txdesc(desc, idx);
   1890 		}
   1891 	}
   1892 #endif
   1893 
   1894 	*txidx = frag;
   1895 
   1896 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
   1897 
   1898 	return 0;
   1899 }
   1900 
   1901 void
   1902 sk_start(struct ifnet *ifp)
   1903 {
   1904         struct sk_if_softc	*sc_if = ifp->if_softc;
   1905         struct sk_softc		*sc = sc_if->sk_softc;
   1906         struct mbuf		*m_head = NULL;
   1907         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
   1908 	int			pkts = 0;
   1909 
   1910 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
   1911 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
   1912 
   1913 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
   1914 		IFQ_POLL(&ifp->if_snd, m_head);
   1915 		if (m_head == NULL)
   1916 			break;
   1917 
   1918 		/*
   1919 		 * Pack the data into the transmit ring. If we
   1920 		 * don't have room, set the OACTIVE flag and wait
   1921 		 * for the NIC to drain the ring.
   1922 		 */
   1923 		if (sk_encap(sc_if, m_head, &idx)) {
   1924 			ifp->if_flags |= IFF_OACTIVE;
   1925 			break;
   1926 		}
   1927 
   1928 		/* now we are committed to transmit the packet */
   1929 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1930 		pkts++;
   1931 
   1932 		/*
   1933 		 * If there's a BPF listener, bounce a copy of this frame
   1934 		 * to him.
   1935 		 */
   1936 #if NBPFILTER > 0
   1937 		if (ifp->if_bpf)
   1938 			bpf_mtap(ifp->if_bpf, m_head);
   1939 #endif
   1940 	}
   1941 	if (pkts == 0)
   1942 		return;
   1943 
   1944 	/* Transmit */
   1945 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
   1946 		sc_if->sk_cdata.sk_tx_prod = idx;
   1947 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   1948 
   1949 		/* Set a timeout in case the chip goes out to lunch. */
   1950 		ifp->if_timer = 5;
   1951 	}
   1952 }
   1953 
   1954 
   1955 void
   1956 sk_watchdog(struct ifnet *ifp)
   1957 {
   1958 	struct sk_if_softc *sc_if = ifp->if_softc;
   1959 
   1960 	/*
   1961 	 * Reclaim first as there is a possibility of losing Tx completion
   1962 	 * interrupts.
   1963 	 */
   1964 	sk_txeof(sc_if);
   1965 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
   1966 		aprint_error_dev(&sc_if->sk_dev, "watchdog timeout\n");
   1967 
   1968 		ifp->if_oerrors++;
   1969 
   1970 		sk_init(ifp);
   1971 	}
   1972 }
   1973 
   1974 void
   1975 sk_shutdown(void *v)
   1976 {
   1977 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
   1978 	struct sk_softc		*sc = sc_if->sk_softc;
   1979 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
   1980 
   1981 	DPRINTFN(2, ("sk_shutdown\n"));
   1982 	sk_stop(ifp,1);
   1983 
   1984 	/* Turn off the 'driver is loaded' LED. */
   1985 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   1986 
   1987 	/*
   1988 	 * Reset the GEnesis controller. Doing this should also
   1989 	 * assert the resets on the attached XMAC(s).
   1990 	 */
   1991 	sk_reset(sc);
   1992 }
   1993 
   1994 void
   1995 sk_rxeof(struct sk_if_softc *sc_if)
   1996 {
   1997 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   1998 	struct mbuf		*m;
   1999 	struct sk_chain		*cur_rx;
   2000 	struct sk_rx_desc	*cur_desc;
   2001 	int			i, cur, total_len = 0;
   2002 	u_int32_t		rxstat, sk_ctl;
   2003 	bus_dmamap_t		dmamap;
   2004 
   2005 	i = sc_if->sk_cdata.sk_rx_prod;
   2006 
   2007 	DPRINTFN(3, ("sk_rxeof %d\n", i));
   2008 
   2009 	for (;;) {
   2010 		cur = i;
   2011 
   2012 		/* Sync the descriptor */
   2013 		SK_CDRXSYNC(sc_if, cur,
   2014 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2015 
   2016 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
   2017 		if (sk_ctl & SK_RXCTL_OWN) {
   2018 			/* Invalidate the descriptor -- it's not ready yet */
   2019 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
   2020 			sc_if->sk_cdata.sk_rx_prod = i;
   2021 			break;
   2022 		}
   2023 
   2024 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
   2025 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
   2026 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
   2027 
   2028 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
   2029 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2030 
   2031 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
   2032 		m = cur_rx->sk_mbuf;
   2033 		cur_rx->sk_mbuf = NULL;
   2034 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
   2035 
   2036 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
   2037 
   2038 		SK_INC(i, SK_RX_RING_CNT);
   2039 
   2040 		if (rxstat & XM_RXSTAT_ERRFRAME) {
   2041 			ifp->if_ierrors++;
   2042 			sk_newbuf(sc_if, cur, m, dmamap);
   2043 			continue;
   2044 		}
   2045 
   2046 		/*
   2047 		 * Try to allocate a new jumbo buffer. If that
   2048 		 * fails, copy the packet to mbufs and put the
   2049 		 * jumbo buffer back in the ring so it can be
   2050 		 * re-used. If allocating mbufs fails, then we
   2051 		 * have to drop the packet.
   2052 		 */
   2053 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
   2054 			struct mbuf		*m0;
   2055 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
   2056 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
   2057 			sk_newbuf(sc_if, cur, m, dmamap);
   2058 			if (m0 == NULL) {
   2059 				aprint_error_dev(&sc_if->sk_dev, "no receive buffers "
   2060 				    "available -- packet dropped!\n");
   2061 				ifp->if_ierrors++;
   2062 				continue;
   2063 			}
   2064 			m_adj(m0, ETHER_ALIGN);
   2065 			m = m0;
   2066 		} else {
   2067 			m->m_pkthdr.rcvif = ifp;
   2068 			m->m_pkthdr.len = m->m_len = total_len;
   2069 		}
   2070 
   2071 		ifp->if_ipackets++;
   2072 
   2073 #if NBPFILTER > 0
   2074 		if (ifp->if_bpf)
   2075 			bpf_mtap(ifp->if_bpf, m);
   2076 #endif
   2077 		/* pass it on. */
   2078 		(*ifp->if_input)(ifp, m);
   2079 	}
   2080 }
   2081 
   2082 void
   2083 sk_txeof(struct sk_if_softc *sc_if)
   2084 {
   2085 	struct sk_softc		*sc = sc_if->sk_softc;
   2086 	struct sk_tx_desc	*cur_tx;
   2087 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2088 	u_int32_t		idx, sk_ctl;
   2089 	struct sk_txmap_entry	*entry;
   2090 
   2091 	DPRINTFN(3, ("sk_txeof\n"));
   2092 
   2093 	/*
   2094 	 * Go through our tx ring and free mbufs for those
   2095 	 * frames that have been sent.
   2096 	 */
   2097 	idx = sc_if->sk_cdata.sk_tx_cons;
   2098 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
   2099 		SK_CDTXSYNC(sc_if, idx, 1,
   2100 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2101 
   2102 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
   2103 		sk_ctl = le32toh(cur_tx->sk_ctl);
   2104 #ifdef SK_DEBUG
   2105 		if (skdebug >= 3)
   2106 			sk_dump_txdesc(cur_tx, idx);
   2107 #endif
   2108 		if (sk_ctl & SK_TXCTL_OWN) {
   2109 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
   2110 			break;
   2111 		}
   2112 		if (sk_ctl & SK_TXCTL_LASTFRAG)
   2113 			ifp->if_opackets++;
   2114 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
   2115 			entry = sc_if->sk_cdata.sk_tx_map[idx];
   2116 
   2117 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
   2118 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
   2119 
   2120 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
   2121 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2122 
   2123 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
   2124 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
   2125 					  link);
   2126 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
   2127 		}
   2128 		sc_if->sk_cdata.sk_tx_cnt--;
   2129 		SK_INC(idx, SK_TX_RING_CNT);
   2130 	}
   2131 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
   2132 		ifp->if_timer = 0;
   2133 	else /* nudge chip to keep tx ring moving */
   2134 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   2135 
   2136 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
   2137 		ifp->if_flags &= ~IFF_OACTIVE;
   2138 
   2139 	sc_if->sk_cdata.sk_tx_cons = idx;
   2140 }
   2141 
   2142 void
   2143 sk_tick(void *xsc_if)
   2144 {
   2145 	struct sk_if_softc *sc_if = xsc_if;
   2146 	struct mii_data *mii = &sc_if->sk_mii;
   2147 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2148 	int i;
   2149 
   2150 	DPRINTFN(3, ("sk_tick\n"));
   2151 
   2152 	if (!(ifp->if_flags & IFF_UP))
   2153 		return;
   2154 
   2155 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2156 		sk_intr_bcom(sc_if);
   2157 		return;
   2158 	}
   2159 
   2160 	/*
   2161 	 * According to SysKonnect, the correct way to verify that
   2162 	 * the link has come back up is to poll bit 0 of the GPIO
   2163 	 * register three times. This pin has the signal from the
   2164 	 * link sync pin connected to it; if we read the same link
   2165 	 * state 3 times in a row, we know the link is up.
   2166 	 */
   2167 	for (i = 0; i < 3; i++) {
   2168 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
   2169 			break;
   2170 	}
   2171 
   2172 	if (i != 3) {
   2173 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2174 		return;
   2175 	}
   2176 
   2177 	/* Turn the GP0 interrupt back on. */
   2178 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2179 	SK_XM_READ_2(sc_if, XM_ISR);
   2180 	mii_tick(mii);
   2181 	mii_pollstat(mii);
   2182 	callout_stop(&sc_if->sk_tick_ch);
   2183 }
   2184 
   2185 void
   2186 sk_intr_bcom(struct sk_if_softc *sc_if)
   2187 {
   2188 	struct mii_data *mii = &sc_if->sk_mii;
   2189 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2190 	int status;
   2191 
   2192 
   2193 	DPRINTFN(3, ("sk_intr_bcom\n"));
   2194 
   2195 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2196 
   2197 	/*
   2198 	 * Read the PHY interrupt register to make sure
   2199 	 * we clear any pending interrupts.
   2200 	 */
   2201 	status = sk_xmac_miibus_readreg((struct device *)sc_if,
   2202 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
   2203 
   2204 	if (!(ifp->if_flags & IFF_RUNNING)) {
   2205 		sk_init_xmac(sc_if);
   2206 		return;
   2207 	}
   2208 
   2209 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
   2210 		int lstat;
   2211 		lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
   2212 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
   2213 
   2214 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
   2215 			(void)mii_mediachg(mii);
   2216 			/* Turn off the link LED. */
   2217 			SK_IF_WRITE_1(sc_if, 0,
   2218 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2219 			sc_if->sk_link = 0;
   2220 		} else if (status & BRGPHY_ISR_LNK_CHG) {
   2221 			sk_xmac_miibus_writereg((struct device *)sc_if,
   2222 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
   2223 			mii_tick(mii);
   2224 			sc_if->sk_link = 1;
   2225 			/* Turn on the link LED. */
   2226 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2227 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
   2228 			    SK_LINKLED_BLINK_OFF);
   2229 			mii_pollstat(mii);
   2230 		} else {
   2231 			mii_tick(mii);
   2232 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
   2233 		}
   2234 	}
   2235 
   2236 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2237 }
   2238 
   2239 void
   2240 sk_intr_xmac(struct sk_if_softc	*sc_if)
   2241 {
   2242 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
   2243 
   2244 	DPRINTFN(3, ("sk_intr_xmac\n"));
   2245 
   2246 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
   2247 		if (status & XM_ISR_GP0_SET) {
   2248 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2249 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2250 		}
   2251 
   2252 		if (status & XM_ISR_AUTONEG_DONE) {
   2253 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2254 		}
   2255 	}
   2256 
   2257 	if (status & XM_IMR_TX_UNDERRUN)
   2258 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
   2259 
   2260 	if (status & XM_IMR_RX_OVERRUN)
   2261 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
   2262 }
   2263 
   2264 void
   2265 sk_intr_yukon(struct sk_if_softc *sc_if)
   2266 {
   2267 	int status;
   2268 
   2269 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2270 
   2271 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
   2272 }
   2273 
   2274 int
   2275 sk_intr(void *xsc)
   2276 {
   2277 	struct sk_softc		*sc = xsc;
   2278 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
   2279 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
   2280 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
   2281 	u_int32_t		status;
   2282 	int			claimed = 0;
   2283 
   2284 	if (sc_if0 != NULL)
   2285 		ifp0 = &sc_if0->sk_ethercom.ec_if;
   2286 	if (sc_if1 != NULL)
   2287 		ifp1 = &sc_if1->sk_ethercom.ec_if;
   2288 
   2289 	for (;;) {
   2290 		status = CSR_READ_4(sc, SK_ISSR);
   2291 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
   2292 
   2293 		if (!(status & sc->sk_intrmask))
   2294 			break;
   2295 
   2296 		claimed = 1;
   2297 
   2298 		/* Handle receive interrupts first. */
   2299 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
   2300 			sk_rxeof(sc_if0);
   2301 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
   2302 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2303 		}
   2304 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
   2305 			sk_rxeof(sc_if1);
   2306 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
   2307 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2308 		}
   2309 
   2310 		/* Then transmit interrupts. */
   2311 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
   2312 			sk_txeof(sc_if0);
   2313 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
   2314 			    SK_TXBMU_CLR_IRQ_EOF);
   2315 		}
   2316 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
   2317 			sk_txeof(sc_if1);
   2318 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
   2319 			    SK_TXBMU_CLR_IRQ_EOF);
   2320 		}
   2321 
   2322 		/* Then MAC interrupts. */
   2323 		if (sc_if0 && (status & SK_ISR_MAC1) &&
   2324 		    (ifp0->if_flags & IFF_RUNNING)) {
   2325 			if (sc->sk_type == SK_GENESIS)
   2326 				sk_intr_xmac(sc_if0);
   2327 			else
   2328 				sk_intr_yukon(sc_if0);
   2329 		}
   2330 
   2331 		if (sc_if1 && (status & SK_ISR_MAC2) &&
   2332 		    (ifp1->if_flags & IFF_RUNNING)) {
   2333 			if (sc->sk_type == SK_GENESIS)
   2334 				sk_intr_xmac(sc_if1);
   2335 			else
   2336 				sk_intr_yukon(sc_if1);
   2337 
   2338 		}
   2339 
   2340 		if (status & SK_ISR_EXTERNAL_REG) {
   2341 			if (sc_if0 != NULL &&
   2342 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
   2343 				sk_intr_bcom(sc_if0);
   2344 
   2345 			if (sc_if1 != NULL &&
   2346 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
   2347 				sk_intr_bcom(sc_if1);
   2348 		}
   2349 	}
   2350 
   2351 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2352 
   2353 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
   2354 		sk_start(ifp0);
   2355 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
   2356 		sk_start(ifp1);
   2357 
   2358 #if NRND > 0
   2359 	if (RND_ENABLED(&sc->rnd_source))
   2360 		rnd_add_uint32(&sc->rnd_source, status);
   2361 #endif
   2362 
   2363 	if (sc->sk_int_mod_pending)
   2364 		sk_update_int_mod(sc);
   2365 
   2366 	return claimed;
   2367 }
   2368 
   2369 void
   2370 sk_init_xmac(struct sk_if_softc	*sc_if)
   2371 {
   2372 	struct sk_softc		*sc = sc_if->sk_softc;
   2373 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2374 	static const struct sk_bcom_hack     bhack[] = {
   2375 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
   2376 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
   2377 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
   2378 	{ 0, 0 } };
   2379 
   2380 	DPRINTFN(1, ("sk_init_xmac\n"));
   2381 
   2382 	/* Unreset the XMAC. */
   2383 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
   2384 	DELAY(1000);
   2385 
   2386 	/* Reset the XMAC's internal state. */
   2387 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2388 
   2389 	/* Save the XMAC II revision */
   2390 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
   2391 
   2392 	/*
   2393 	 * Perform additional initialization for external PHYs,
   2394 	 * namely for the 1000baseTX cards that use the XMAC's
   2395 	 * GMII mode.
   2396 	 */
   2397 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2398 		int			i = 0;
   2399 		u_int32_t		val;
   2400 
   2401 		/* Take PHY out of reset. */
   2402 		val = sk_win_read_4(sc, SK_GPIO);
   2403 		if (sc_if->sk_port == SK_PORT_A)
   2404 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
   2405 		else
   2406 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
   2407 		sk_win_write_4(sc, SK_GPIO, val);
   2408 
   2409 		/* Enable GMII mode on the XMAC. */
   2410 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
   2411 
   2412 		sk_xmac_miibus_writereg((struct device *)sc_if,
   2413 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
   2414 		DELAY(10000);
   2415 		sk_xmac_miibus_writereg((struct device *)sc_if,
   2416 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
   2417 
   2418 		/*
   2419 		 * Early versions of the BCM5400 apparently have
   2420 		 * a bug that requires them to have their reserved
   2421 		 * registers initialized to some magic values. I don't
   2422 		 * know what the numbers do, I'm just the messenger.
   2423 		 */
   2424 		if (sk_xmac_miibus_readreg((struct device *)sc_if,
   2425 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
   2426 			while (bhack[i].reg) {
   2427 				sk_xmac_miibus_writereg((struct device *)sc_if,
   2428 				    SK_PHYADDR_BCOM, bhack[i].reg,
   2429 				    bhack[i].val);
   2430 				i++;
   2431 			}
   2432 		}
   2433 	}
   2434 
   2435 	/* Set station address */
   2436 	SK_XM_WRITE_2(sc_if, XM_PAR0,
   2437 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
   2438 	SK_XM_WRITE_2(sc_if, XM_PAR1,
   2439 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
   2440 	SK_XM_WRITE_2(sc_if, XM_PAR2,
   2441 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
   2442 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
   2443 
   2444 	if (ifp->if_flags & IFF_PROMISC)
   2445 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2446 	else
   2447 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2448 
   2449 	if (ifp->if_flags & IFF_BROADCAST)
   2450 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2451 	else
   2452 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2453 
   2454 	/* We don't need the FCS appended to the packet. */
   2455 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
   2456 
   2457 	/* We want short frames padded to 60 bytes. */
   2458 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
   2459 
   2460 	/*
   2461 	 * Enable the reception of all error frames. This is is
   2462 	 * a necessary evil due to the design of the XMAC. The
   2463 	 * XMAC's receive FIFO is only 8K in size, however jumbo
   2464 	 * frames can be up to 9000 bytes in length. When bad
   2465 	 * frame filtering is enabled, the XMAC's RX FIFO operates
   2466 	 * in 'store and forward' mode. For this to work, the
   2467 	 * entire frame has to fit into the FIFO, but that means
   2468 	 * that jumbo frames larger than 8192 bytes will be
   2469 	 * truncated. Disabling all bad frame filtering causes
   2470 	 * the RX FIFO to operate in streaming mode, in which
   2471 	 * case the XMAC will start transfering frames out of the
   2472 	 * RX FIFO as soon as the FIFO threshold is reached.
   2473 	 */
   2474 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
   2475 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
   2476 	    XM_MODE_RX_INRANGELEN);
   2477 
   2478 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2479 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2480 	else
   2481 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2482 
   2483 	/*
   2484 	 * Bump up the transmit threshold. This helps hold off transmit
   2485 	 * underruns when we're blasting traffic from both ports at once.
   2486 	 */
   2487 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
   2488 
   2489 	/* Set multicast filter */
   2490 	sk_setmulti(sc_if);
   2491 
   2492 	/* Clear and enable interrupts */
   2493 	SK_XM_READ_2(sc_if, XM_ISR);
   2494 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
   2495 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
   2496 	else
   2497 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2498 
   2499 	/* Configure MAC arbiter */
   2500 	switch (sc_if->sk_xmac_rev) {
   2501 	case XM_XMAC_REV_B2:
   2502 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
   2503 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
   2504 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
   2505 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
   2506 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
   2507 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
   2508 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
   2509 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
   2510 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2511 		break;
   2512 	case XM_XMAC_REV_C1:
   2513 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
   2514 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
   2515 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
   2516 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
   2517 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
   2518 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
   2519 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
   2520 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
   2521 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2522 		break;
   2523 	default:
   2524 		break;
   2525 	}
   2526 	sk_win_write_2(sc, SK_MACARB_CTL,
   2527 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
   2528 
   2529 	sc_if->sk_link = 1;
   2530 }
   2531 
   2532 void sk_init_yukon(struct sk_if_softc *sc_if)
   2533 {
   2534 	u_int32_t		/*mac, */phy;
   2535 	u_int16_t		reg;
   2536 	struct sk_softc		*sc;
   2537 	int			i;
   2538 
   2539 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
   2540 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
   2541 
   2542 	sc = sc_if->sk_softc;
   2543 	if (sc->sk_type == SK_YUKON_LITE &&
   2544 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
   2545 		/* Take PHY out of reset. */
   2546 		sk_win_write_4(sc, SK_GPIO,
   2547 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
   2548 	}
   2549 
   2550 
   2551 	/* GMAC and GPHY Reset */
   2552 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
   2553 
   2554 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
   2555 
   2556 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2557 	DELAY(1000);
   2558 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
   2559 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2560 	DELAY(1000);
   2561 
   2562 
   2563 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
   2564 
   2565 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
   2566 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
   2567 
   2568 	switch (sc_if->sk_softc->sk_pmd) {
   2569 	case IFM_1000_SX:
   2570 	case IFM_1000_LX:
   2571 		phy |= SK_GPHY_FIBER;
   2572 		break;
   2573 
   2574 	case IFM_1000_CX:
   2575 	case IFM_1000_T:
   2576 		phy |= SK_GPHY_COPPER;
   2577 		break;
   2578 	}
   2579 
   2580 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
   2581 
   2582 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
   2583 	DELAY(1000);
   2584 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
   2585 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
   2586 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
   2587 
   2588 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
   2589 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
   2590 
   2591 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
   2592 
   2593 	/* unused read of the interrupt source register */
   2594 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
   2595 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2596 
   2597 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
   2598 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
   2599 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2600 
   2601 	/* MIB Counter Clear Mode set */
   2602         reg |= YU_PAR_MIB_CLR;
   2603 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2604 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
   2605 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2606 
   2607 	/* MIB Counter Clear Mode clear */
   2608 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
   2609         reg &= ~YU_PAR_MIB_CLR;
   2610 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2611 
   2612 	/* receive control reg */
   2613 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
   2614 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
   2615 		      YU_RCR_CRCR);
   2616 
   2617 	/* transmit parameter register */
   2618 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
   2619 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
   2620 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
   2621 
   2622 	/* serial mode register */
   2623 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
   2624 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
   2625 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
   2626 		      YU_SMR_IPG_DATA(0x1e));
   2627 
   2628 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
   2629 	/* Setup Yukon's address */
   2630 	for (i = 0; i < 3; i++) {
   2631 		/* Write Source Address 1 (unicast filter) */
   2632 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
   2633 			      sc_if->sk_enaddr[i * 2] |
   2634 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
   2635 	}
   2636 
   2637 	for (i = 0; i < 3; i++) {
   2638 		reg = sk_win_read_2(sc_if->sk_softc,
   2639 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
   2640 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
   2641 	}
   2642 
   2643 	/* Set multicast filter */
   2644 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
   2645 	sk_setmulti(sc_if);
   2646 
   2647 	/* enable interrupt mask for counter overflows */
   2648 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
   2649 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
   2650 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
   2651 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
   2652 
   2653 	/* Configure RX MAC FIFO */
   2654 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
   2655 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
   2656 
   2657 	/* Configure TX MAC FIFO */
   2658 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
   2659 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
   2660 
   2661 	DPRINTFN(6, ("sk_init_yukon: end\n"));
   2662 }
   2663 
   2664 /*
   2665  * Note that to properly initialize any part of the GEnesis chip,
   2666  * you first have to take it out of reset mode.
   2667  */
   2668 int
   2669 sk_init(struct ifnet *ifp)
   2670 {
   2671 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2672 	struct sk_softc		*sc = sc_if->sk_softc;
   2673 	struct mii_data		*mii = &sc_if->sk_mii;
   2674 	int			rc = 0, s;
   2675 	u_int32_t		imr, imtimer_ticks;
   2676 
   2677 	DPRINTFN(1, ("sk_init\n"));
   2678 
   2679 	s = splnet();
   2680 
   2681 	if (ifp->if_flags & IFF_RUNNING) {
   2682 		splx(s);
   2683 		return 0;
   2684 	}
   2685 
   2686 	/* Cancel pending I/O and free all RX/TX buffers. */
   2687 	sk_stop(ifp,0);
   2688 
   2689 	if (sc->sk_type == SK_GENESIS) {
   2690 		/* Configure LINK_SYNC LED */
   2691 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
   2692 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2693 			      SK_LINKLED_LINKSYNC_ON);
   2694 
   2695 		/* Configure RX LED */
   2696 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
   2697 			      SK_RXLEDCTL_COUNTER_START);
   2698 
   2699 		/* Configure TX LED */
   2700 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
   2701 			      SK_TXLEDCTL_COUNTER_START);
   2702 	}
   2703 
   2704 	/* Configure I2C registers */
   2705 
   2706 	/* Configure XMAC(s) */
   2707 	switch (sc->sk_type) {
   2708 	case SK_GENESIS:
   2709 		sk_init_xmac(sc_if);
   2710 		break;
   2711 	case SK_YUKON:
   2712 	case SK_YUKON_LITE:
   2713 	case SK_YUKON_LP:
   2714 		sk_init_yukon(sc_if);
   2715 		break;
   2716 	}
   2717 	if ((rc = mii_mediachg(mii)) == ENXIO)
   2718 		rc = 0;
   2719 	else if (rc != 0)
   2720 		goto out;
   2721 
   2722 	if (sc->sk_type == SK_GENESIS) {
   2723 		/* Configure MAC FIFOs */
   2724 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
   2725 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
   2726 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
   2727 
   2728 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
   2729 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
   2730 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
   2731 	}
   2732 
   2733 	/* Configure transmit arbiter(s) */
   2734 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
   2735 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
   2736 
   2737 	/* Configure RAMbuffers */
   2738 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
   2739 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
   2740 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
   2741 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
   2742 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
   2743 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
   2744 
   2745 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
   2746 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
   2747 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
   2748 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
   2749 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
   2750 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
   2751 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
   2752 
   2753 	/* Configure BMUs */
   2754 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
   2755 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
   2756 	    SK_RX_RING_ADDR(sc_if, 0));
   2757 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
   2758 
   2759 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
   2760 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
   2761             SK_TX_RING_ADDR(sc_if, 0));
   2762 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
   2763 
   2764 	/* Init descriptors */
   2765 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
   2766 		aprint_error_dev(&sc_if->sk_dev, "initialization failed: no "
   2767 		    "memory for rx buffers\n");
   2768 		sk_stop(ifp,0);
   2769 		splx(s);
   2770 		return ENOBUFS;
   2771 	}
   2772 
   2773 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
   2774 		aprint_error_dev(&sc_if->sk_dev, "initialization failed: no "
   2775 		    "memory for tx buffers\n");
   2776 		sk_stop(ifp,0);
   2777 		splx(s);
   2778 		return ENOBUFS;
   2779 	}
   2780 
   2781 	/* Set interrupt moderation if changed via sysctl. */
   2782 	switch (sc->sk_type) {
   2783 	case SK_GENESIS:
   2784 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   2785 		break;
   2786 	case SK_YUKON_EC:
   2787 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   2788 		break;
   2789 	default:
   2790 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   2791 	}
   2792 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
   2793 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
   2794 		sk_win_write_4(sc, SK_IMTIMERINIT,
   2795 		    SK_IM_USECS(sc->sk_int_mod));
   2796 		aprint_verbose_dev(&sc->sk_dev, "interrupt moderation is %d us\n",
   2797 		    sc->sk_int_mod);
   2798 	}
   2799 
   2800 	/* Configure interrupt handling */
   2801 	CSR_READ_4(sc, SK_ISSR);
   2802 	if (sc_if->sk_port == SK_PORT_A)
   2803 		sc->sk_intrmask |= SK_INTRS1;
   2804 	else
   2805 		sc->sk_intrmask |= SK_INTRS2;
   2806 
   2807 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
   2808 
   2809 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2810 
   2811 	/* Start BMUs. */
   2812 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
   2813 
   2814 	if (sc->sk_type == SK_GENESIS) {
   2815 		/* Enable XMACs TX and RX state machines */
   2816 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
   2817 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
   2818 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2819 	}
   2820 
   2821 	if (SK_YUKON_FAMILY(sc->sk_type)) {
   2822 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
   2823 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
   2824 #if 0
   2825 		/* XXX disable 100Mbps and full duplex mode? */
   2826 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
   2827 #endif
   2828 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
   2829 	}
   2830 
   2831 
   2832 	ifp->if_flags |= IFF_RUNNING;
   2833 	ifp->if_flags &= ~IFF_OACTIVE;
   2834 
   2835 out:
   2836 	splx(s);
   2837 	return rc;
   2838 }
   2839 
   2840 void
   2841 sk_stop(struct ifnet *ifp, int disable)
   2842 {
   2843         struct sk_if_softc	*sc_if = ifp->if_softc;
   2844 	struct sk_softc		*sc = sc_if->sk_softc;
   2845 	int			i;
   2846 
   2847 	DPRINTFN(1, ("sk_stop\n"));
   2848 
   2849 	callout_stop(&sc_if->sk_tick_ch);
   2850 
   2851 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2852 		u_int32_t		val;
   2853 
   2854 		/* Put PHY back into reset. */
   2855 		val = sk_win_read_4(sc, SK_GPIO);
   2856 		if (sc_if->sk_port == SK_PORT_A) {
   2857 			val |= SK_GPIO_DIR0;
   2858 			val &= ~SK_GPIO_DAT0;
   2859 		} else {
   2860 			val |= SK_GPIO_DIR2;
   2861 			val &= ~SK_GPIO_DAT2;
   2862 		}
   2863 		sk_win_write_4(sc, SK_GPIO, val);
   2864 	}
   2865 
   2866 	/* Turn off various components of this interface. */
   2867 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2868 	switch (sc->sk_type) {
   2869 	case SK_GENESIS:
   2870 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
   2871 			      SK_TXMACCTL_XMAC_RESET);
   2872 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
   2873 		break;
   2874 	case SK_YUKON:
   2875 	case SK_YUKON_LITE:
   2876 	case SK_YUKON_LP:
   2877 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
   2878 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
   2879 		break;
   2880 	}
   2881 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
   2882 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2883 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
   2884 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2885 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
   2886 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2887 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2888 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2889 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
   2890 
   2891 	/* Disable interrupts */
   2892 	if (sc_if->sk_port == SK_PORT_A)
   2893 		sc->sk_intrmask &= ~SK_INTRS1;
   2894 	else
   2895 		sc->sk_intrmask &= ~SK_INTRS2;
   2896 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2897 
   2898 	SK_XM_READ_2(sc_if, XM_ISR);
   2899 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2900 
   2901 	/* Free RX and TX mbufs still in the queues. */
   2902 	for (i = 0; i < SK_RX_RING_CNT; i++) {
   2903 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
   2904 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
   2905 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   2906 		}
   2907 	}
   2908 
   2909 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   2910 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
   2911 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
   2912 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   2913 		}
   2914 	}
   2915 
   2916 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
   2917 }
   2918 
   2919 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
   2920 
   2921 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
   2922 
   2923 #ifdef SK_DEBUG
   2924 void
   2925 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
   2926 {
   2927 #define DESC_PRINT(X)					\
   2928 	if (X)					\
   2929 		printf("txdesc[%d]." #X "=%#x\n",	\
   2930 		       idx, X);
   2931 
   2932 	DESC_PRINT(le32toh(desc->sk_ctl));
   2933 	DESC_PRINT(le32toh(desc->sk_next));
   2934 	DESC_PRINT(le32toh(desc->sk_data_lo));
   2935 	DESC_PRINT(le32toh(desc->sk_data_hi));
   2936 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
   2937 	DESC_PRINT(le16toh(desc->sk_rsvd0));
   2938 	DESC_PRINT(le16toh(desc->sk_csum_startval));
   2939 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
   2940 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
   2941 	DESC_PRINT(le16toh(desc->sk_rsvd1));
   2942 #undef PRINT
   2943 }
   2944 
   2945 void
   2946 sk_dump_bytes(const char *data, int len)
   2947 {
   2948 	int c, i, j;
   2949 
   2950 	for (i = 0; i < len; i += 16) {
   2951 		printf("%08x  ", i);
   2952 		c = len - i;
   2953 		if (c > 16) c = 16;
   2954 
   2955 		for (j = 0; j < c; j++) {
   2956 			printf("%02x ", data[i + j] & 0xff);
   2957 			if ((j & 0xf) == 7 && j > 0)
   2958 				printf(" ");
   2959 		}
   2960 
   2961 		for (; j < 16; j++)
   2962 			printf("   ");
   2963 		printf("  ");
   2964 
   2965 		for (j = 0; j < c; j++) {
   2966 			int ch = data[i + j] & 0xff;
   2967 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
   2968 		}
   2969 
   2970 		printf("\n");
   2971 
   2972 		if (c < 16)
   2973 			break;
   2974 	}
   2975 }
   2976 
   2977 void
   2978 sk_dump_mbuf(struct mbuf *m)
   2979 {
   2980 	int count = m->m_pkthdr.len;
   2981 
   2982 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
   2983 
   2984 	while (count > 0 && m) {
   2985 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
   2986 		       m, m->m_data, m->m_len);
   2987 		sk_dump_bytes(mtod(m, char *), m->m_len);
   2988 
   2989 		count -= m->m_len;
   2990 		m = m->m_next;
   2991 	}
   2992 }
   2993 #endif
   2994 
   2995 static int
   2996 sk_sysctl_handler(SYSCTLFN_ARGS)
   2997 {
   2998 	int error, t;
   2999 	struct sysctlnode node;
   3000 	struct sk_softc *sc;
   3001 
   3002 	node = *rnode;
   3003 	sc = node.sysctl_data;
   3004 	t = sc->sk_int_mod;
   3005 	node.sysctl_data = &t;
   3006 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3007 	if (error || newp == NULL)
   3008 		return error;
   3009 
   3010 	if (t < SK_IM_MIN || t > SK_IM_MAX)
   3011 		return EINVAL;
   3012 
   3013 	/* update the softc with sysctl-changed value, and mark
   3014 	   for hardware update */
   3015 	sc->sk_int_mod = t;
   3016 	sc->sk_int_mod_pending = 1;
   3017 	return 0;
   3018 }
   3019 
   3020 /*
   3021  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
   3022  * set up in skc_attach()
   3023  */
   3024 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
   3025 {
   3026 	int rc;
   3027 	const struct sysctlnode *node;
   3028 
   3029 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   3030 	    0, CTLTYPE_NODE, "hw", NULL,
   3031 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   3032 		goto err;
   3033 	}
   3034 
   3035 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   3036 	    0, CTLTYPE_NODE, "sk",
   3037 	    SYSCTL_DESCR("sk interface controls"),
   3038 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   3039 		goto err;
   3040 	}
   3041 
   3042 	sk_root_num = node->sysctl_num;
   3043 	return;
   3044 
   3045 err:
   3046 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
   3047 }
   3048