if_sk.c revision 1.49 1 /* $NetBSD: if_sk.c,v 1.49 2008/04/28 20:23:55 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
30
31 /*
32 * Copyright (c) 1997, 1998, 1999, 2000
33 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by Bill Paul.
46 * 4. Neither the name of the author nor the names of any co-contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60 * THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63 */
64
65 /*
66 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
67 *
68 * Permission to use, copy, modify, and distribute this software for any
69 * purpose with or without fee is hereby granted, provided that the above
70 * copyright notice and this permission notice appear in all copies.
71 *
72 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79 */
80
81 /*
82 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83 * the SK-984x series adapters, both single port and dual port.
84 * References:
85 * The XaQti XMAC II datasheet,
86 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87 * The SysKonnect GEnesis manual, http://www.syskonnect.com
88 *
89 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91 * convenience to others until Vitesse corrects this problem:
92 *
93 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 *
95 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
96 * Department of Electrical Engineering
97 * Columbia University, New York City
98 */
99
100 /*
101 * The SysKonnect gigabit ethernet adapters consist of two main
102 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104 * components and a PHY while the GEnesis controller provides a PCI
105 * interface with DMA support. Each card may have between 512K and
106 * 2MB of SRAM on board depending on the configuration.
107 *
108 * The SysKonnect GEnesis controller can have either one or two XMAC
109 * chips connected to it, allowing single or dual port NIC configurations.
110 * SysKonnect has the distinction of being the only vendor on the market
111 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113 * XMAC registers. This driver takes advantage of these features to allow
114 * both XMACs to operate as independent interfaces.
115 */
116
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.49 2008/04/28 20:23:55 martin Exp $");
119
120 #include "bpfilter.h"
121 #include "rnd.h"
122
123 #include <sys/param.h>
124 #include <sys/systm.h>
125 #include <sys/sockio.h>
126 #include <sys/mbuf.h>
127 #include <sys/malloc.h>
128 #include <sys/kernel.h>
129 #include <sys/socket.h>
130 #include <sys/device.h>
131 #include <sys/queue.h>
132 #include <sys/callout.h>
133 #include <sys/sysctl.h>
134 #include <sys/endian.h>
135
136 #include <net/if.h>
137 #include <net/if_dl.h>
138 #include <net/if_types.h>
139
140 #include <net/if_media.h>
141
142 #if NBPFILTER > 0
143 #include <net/bpf.h>
144 #endif
145 #if NRND > 0
146 #include <sys/rnd.h>
147 #endif
148
149 #include <dev/mii/mii.h>
150 #include <dev/mii/miivar.h>
151 #include <dev/mii/brgphyreg.h>
152
153 #include <dev/pci/pcireg.h>
154 #include <dev/pci/pcivar.h>
155 #include <dev/pci/pcidevs.h>
156
157 /* #define SK_USEIOSPACE */
158
159 #include <dev/pci/if_skreg.h>
160 #include <dev/pci/if_skvar.h>
161
162 int skc_probe(struct device *, struct cfdata *, void *);
163 void skc_attach(struct device *, struct device *self, void *aux);
164 int sk_probe(struct device *, struct cfdata *, void *);
165 void sk_attach(struct device *, struct device *self, void *aux);
166 int skcprint(void *, const char *);
167 int sk_intr(void *);
168 void sk_intr_bcom(struct sk_if_softc *);
169 void sk_intr_xmac(struct sk_if_softc *);
170 void sk_intr_yukon(struct sk_if_softc *);
171 void sk_rxeof(struct sk_if_softc *);
172 void sk_txeof(struct sk_if_softc *);
173 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
174 void sk_start(struct ifnet *);
175 int sk_ioctl(struct ifnet *, u_long, void *);
176 int sk_init(struct ifnet *);
177 void sk_init_xmac(struct sk_if_softc *);
178 void sk_init_yukon(struct sk_if_softc *);
179 void sk_stop(struct ifnet *, int);
180 void sk_watchdog(struct ifnet *);
181 void sk_shutdown(void *);
182 int sk_ifmedia_upd(struct ifnet *);
183 void sk_reset(struct sk_softc *);
184 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
185 int sk_alloc_jumbo_mem(struct sk_if_softc *);
186 void sk_free_jumbo_mem(struct sk_if_softc *);
187 void *sk_jalloc(struct sk_if_softc *);
188 void sk_jfree(struct mbuf *, void *, size_t, void *);
189 int sk_init_rx_ring(struct sk_if_softc *);
190 int sk_init_tx_ring(struct sk_if_softc *);
191 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
192 void sk_vpd_read_res(struct sk_softc *,
193 struct vpd_res *, int);
194 void sk_vpd_read(struct sk_softc *);
195
196 void sk_update_int_mod(struct sk_softc *);
197
198 int sk_xmac_miibus_readreg(struct device *, int, int);
199 void sk_xmac_miibus_writereg(struct device *, int, int, int);
200 void sk_xmac_miibus_statchg(struct device *);
201
202 int sk_marv_miibus_readreg(struct device *, int, int);
203 void sk_marv_miibus_writereg(struct device *, int, int, int);
204 void sk_marv_miibus_statchg(struct device *);
205
206 u_int32_t sk_xmac_hash(void *);
207 u_int32_t sk_yukon_hash(void *);
208 void sk_setfilt(struct sk_if_softc *, void *, int);
209 void sk_setmulti(struct sk_if_softc *);
210 void sk_tick(void *);
211
212 /* #define SK_DEBUG 2 */
213 #ifdef SK_DEBUG
214 #define DPRINTF(x) if (skdebug) printf x
215 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
216 int skdebug = SK_DEBUG;
217
218 void sk_dump_txdesc(struct sk_tx_desc *, int);
219 void sk_dump_mbuf(struct mbuf *);
220 void sk_dump_bytes(const char *, int);
221 #else
222 #define DPRINTF(x)
223 #define DPRINTFN(n,x)
224 #endif
225
226 static int sk_sysctl_handler(SYSCTLFN_PROTO);
227 static int sk_root_num;
228
229 /* supported device vendors */
230 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
231 static const struct sk_product {
232 pci_vendor_id_t sk_vendor;
233 pci_product_id_t sk_product;
234 } sk_products[] = {
235 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
236 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
237 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
238 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
239 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
240 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
241 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
242 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
243 { 0, 0, }
244 };
245
246 #define SK_LINKSYS_EG1032_SUBID 0x00151737
247
248 static inline u_int32_t
249 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
250 {
251 #ifdef SK_USEIOSPACE
252 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
253 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
254 #else
255 return CSR_READ_4(sc, reg);
256 #endif
257 }
258
259 static inline u_int16_t
260 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
261 {
262 #ifdef SK_USEIOSPACE
263 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
264 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
265 #else
266 return CSR_READ_2(sc, reg);
267 #endif
268 }
269
270 static inline u_int8_t
271 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
272 {
273 #ifdef SK_USEIOSPACE
274 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
275 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
276 #else
277 return CSR_READ_1(sc, reg);
278 #endif
279 }
280
281 static inline void
282 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
283 {
284 #ifdef SK_USEIOSPACE
285 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
286 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
287 #else
288 CSR_WRITE_4(sc, reg, x);
289 #endif
290 }
291
292 static inline void
293 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
294 {
295 #ifdef SK_USEIOSPACE
296 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
297 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
298 #else
299 CSR_WRITE_2(sc, reg, x);
300 #endif
301 }
302
303 static inline void
304 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
305 {
306 #ifdef SK_USEIOSPACE
307 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
308 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
309 #else
310 CSR_WRITE_1(sc, reg, x);
311 #endif
312 }
313
314 /*
315 * The VPD EEPROM contains Vital Product Data, as suggested in
316 * the PCI 2.1 specification. The VPD data is separared into areas
317 * denoted by resource IDs. The SysKonnect VPD contains an ID string
318 * resource (the name of the adapter), a read-only area resource
319 * containing various key/data fields and a read/write area which
320 * can be used to store asset management information or log messages.
321 * We read the ID string and read-only into buffers attached to
322 * the controller softc structure for later use. At the moment,
323 * we only use the ID string during sk_attach().
324 */
325 u_int8_t
326 sk_vpd_readbyte(struct sk_softc *sc, int addr)
327 {
328 int i;
329
330 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
331 for (i = 0; i < SK_TIMEOUT; i++) {
332 DELAY(1);
333 if (sk_win_read_2(sc,
334 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
335 break;
336 }
337
338 if (i == SK_TIMEOUT)
339 return 0;
340
341 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
342 }
343
344 void
345 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
346 {
347 int i;
348 u_int8_t *ptr;
349
350 ptr = (u_int8_t *)res;
351 for (i = 0; i < sizeof(struct vpd_res); i++)
352 ptr[i] = sk_vpd_readbyte(sc, i + addr);
353 }
354
355 void
356 sk_vpd_read(struct sk_softc *sc)
357 {
358 int pos = 0, i;
359 struct vpd_res res;
360
361 if (sc->sk_vpd_prodname != NULL)
362 free(sc->sk_vpd_prodname, M_DEVBUF);
363 if (sc->sk_vpd_readonly != NULL)
364 free(sc->sk_vpd_readonly, M_DEVBUF);
365 sc->sk_vpd_prodname = NULL;
366 sc->sk_vpd_readonly = NULL;
367
368 sk_vpd_read_res(sc, &res, pos);
369
370 if (res.vr_id != VPD_RES_ID) {
371 aprint_error_dev(&sc->sk_dev, "bad VPD resource id: expected %x got %x\n",
372 VPD_RES_ID, res.vr_id);
373 return;
374 }
375
376 pos += sizeof(res);
377 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
378 if (sc->sk_vpd_prodname == NULL)
379 panic("sk_vpd_read");
380 for (i = 0; i < res.vr_len; i++)
381 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
382 sc->sk_vpd_prodname[i] = '\0';
383 pos += i;
384
385 sk_vpd_read_res(sc, &res, pos);
386
387 if (res.vr_id != VPD_RES_READ) {
388 aprint_error_dev(&sc->sk_dev, "bad VPD resource id: expected %x got %x\n",
389 VPD_RES_READ, res.vr_id);
390 return;
391 }
392
393 pos += sizeof(res);
394 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
395 if (sc->sk_vpd_readonly == NULL)
396 panic("sk_vpd_read");
397 for (i = 0; i < res.vr_len ; i++)
398 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
399 }
400
401 int
402 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
403 {
404 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
405 int i;
406
407 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
408
409 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
410 return 0;
411
412 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
413 SK_XM_READ_2(sc_if, XM_PHY_DATA);
414 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
415 for (i = 0; i < SK_TIMEOUT; i++) {
416 DELAY(1);
417 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
418 XM_MMUCMD_PHYDATARDY)
419 break;
420 }
421
422 if (i == SK_TIMEOUT) {
423 aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
424 return 0;
425 }
426 }
427 DELAY(1);
428 return SK_XM_READ_2(sc_if, XM_PHY_DATA);
429 }
430
431 void
432 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
433 {
434 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
435 int i;
436
437 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
438
439 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
440 for (i = 0; i < SK_TIMEOUT; i++) {
441 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
442 break;
443 }
444
445 if (i == SK_TIMEOUT) {
446 aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
447 return;
448 }
449
450 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
451 for (i = 0; i < SK_TIMEOUT; i++) {
452 DELAY(1);
453 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
454 break;
455 }
456
457 if (i == SK_TIMEOUT)
458 aprint_error_dev(&sc_if->sk_dev, "phy write timed out\n");
459 }
460
461 void
462 sk_xmac_miibus_statchg(struct device *dev)
463 {
464 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
465 struct mii_data *mii = &sc_if->sk_mii;
466
467 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
468
469 /*
470 * If this is a GMII PHY, manually set the XMAC's
471 * duplex mode accordingly.
472 */
473 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
474 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
475 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
476 else
477 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
478 }
479 }
480
481 int
482 sk_marv_miibus_readreg(struct device *dev, int phy, int reg)
483 {
484 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
485 u_int16_t val;
486 int i;
487
488 if (phy != 0 ||
489 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
490 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
491 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
492 phy, reg));
493 return 0;
494 }
495
496 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
497 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
498
499 for (i = 0; i < SK_TIMEOUT; i++) {
500 DELAY(1);
501 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
502 if (val & YU_SMICR_READ_VALID)
503 break;
504 }
505
506 if (i == SK_TIMEOUT) {
507 aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
508 return 0;
509 }
510
511 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
512 SK_TIMEOUT));
513
514 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
515
516 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
517 phy, reg, val));
518
519 return val;
520 }
521
522 void
523 sk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
524 {
525 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
526 int i;
527
528 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
529 phy, reg, val));
530
531 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
532 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
533 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
534
535 for (i = 0; i < SK_TIMEOUT; i++) {
536 DELAY(1);
537 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
538 break;
539 }
540
541 if (i == SK_TIMEOUT)
542 printf("%s: phy write timed out\n", device_xname(&sc_if->sk_dev));
543 }
544
545 void
546 sk_marv_miibus_statchg(struct device *dev)
547 {
548 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
549 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
550 }
551
552 #define SK_HASH_BITS 6
553
554 u_int32_t
555 sk_xmac_hash(void *addr)
556 {
557 u_int32_t crc;
558
559 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
560 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
561 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
562 return crc;
563 }
564
565 u_int32_t
566 sk_yukon_hash(void *addr)
567 {
568 u_int32_t crc;
569
570 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
571 crc &= ((1 << SK_HASH_BITS) - 1);
572 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
573 return crc;
574 }
575
576 void
577 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
578 {
579 char *addr = addrv;
580 int base = XM_RXFILT_ENTRY(slot);
581
582 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
583 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
584 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
585 }
586
587 void
588 sk_setmulti(struct sk_if_softc *sc_if)
589 {
590 struct sk_softc *sc = sc_if->sk_softc;
591 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
592 u_int32_t hashes[2] = { 0, 0 };
593 int h = 0, i;
594 struct ethercom *ec = &sc_if->sk_ethercom;
595 struct ether_multi *enm;
596 struct ether_multistep step;
597 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
598
599 /* First, zot all the existing filters. */
600 switch (sc->sk_type) {
601 case SK_GENESIS:
602 for (i = 1; i < XM_RXFILT_MAX; i++)
603 sk_setfilt(sc_if, (void *)&dummy, i);
604
605 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
606 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
607 break;
608 case SK_YUKON:
609 case SK_YUKON_LITE:
610 case SK_YUKON_LP:
611 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
612 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
613 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
614 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
615 break;
616 }
617
618 /* Now program new ones. */
619 allmulti:
620 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
621 hashes[0] = 0xFFFFFFFF;
622 hashes[1] = 0xFFFFFFFF;
623 } else {
624 i = 1;
625 /* First find the tail of the list. */
626 ETHER_FIRST_MULTI(step, ec, enm);
627 while (enm != NULL) {
628 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
629 ETHER_ADDR_LEN)) {
630 ifp->if_flags |= IFF_ALLMULTI;
631 goto allmulti;
632 }
633 DPRINTFN(2,("multicast address %s\n",
634 ether_sprintf(enm->enm_addrlo)));
635 /*
636 * Program the first XM_RXFILT_MAX multicast groups
637 * into the perfect filter. For all others,
638 * use the hash table.
639 */
640 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
641 sk_setfilt(sc_if, enm->enm_addrlo, i);
642 i++;
643 }
644 else {
645 switch (sc->sk_type) {
646 case SK_GENESIS:
647 h = sk_xmac_hash(enm->enm_addrlo);
648 break;
649 case SK_YUKON:
650 case SK_YUKON_LITE:
651 case SK_YUKON_LP:
652 h = sk_yukon_hash(enm->enm_addrlo);
653 break;
654 }
655 if (h < 32)
656 hashes[0] |= (1 << h);
657 else
658 hashes[1] |= (1 << (h - 32));
659 }
660
661 ETHER_NEXT_MULTI(step, enm);
662 }
663 }
664
665 switch (sc->sk_type) {
666 case SK_GENESIS:
667 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
668 XM_MODE_RX_USE_PERFECT);
669 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
670 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
671 break;
672 case SK_YUKON:
673 case SK_YUKON_LITE:
674 case SK_YUKON_LP:
675 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
676 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
677 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
678 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
679 break;
680 }
681 }
682
683 int
684 sk_init_rx_ring(struct sk_if_softc *sc_if)
685 {
686 struct sk_chain_data *cd = &sc_if->sk_cdata;
687 struct sk_ring_data *rd = sc_if->sk_rdata;
688 int i;
689
690 bzero((char *)rd->sk_rx_ring,
691 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
692
693 for (i = 0; i < SK_RX_RING_CNT; i++) {
694 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
695 if (i == (SK_RX_RING_CNT - 1)) {
696 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
697 rd->sk_rx_ring[i].sk_next =
698 htole32(SK_RX_RING_ADDR(sc_if, 0));
699 } else {
700 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
701 rd->sk_rx_ring[i].sk_next =
702 htole32(SK_RX_RING_ADDR(sc_if,i+1));
703 }
704 }
705
706 for (i = 0; i < SK_RX_RING_CNT; i++) {
707 if (sk_newbuf(sc_if, i, NULL,
708 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
709 aprint_error_dev(&sc_if->sk_dev, "failed alloc of %dth mbuf\n", i);
710 return ENOBUFS;
711 }
712 }
713 sc_if->sk_cdata.sk_rx_prod = 0;
714 sc_if->sk_cdata.sk_rx_cons = 0;
715
716 return 0;
717 }
718
719 int
720 sk_init_tx_ring(struct sk_if_softc *sc_if)
721 {
722 struct sk_chain_data *cd = &sc_if->sk_cdata;
723 struct sk_ring_data *rd = sc_if->sk_rdata;
724 int i;
725
726 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
727 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
728
729 for (i = 0; i < SK_TX_RING_CNT; i++) {
730 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
731 if (i == (SK_TX_RING_CNT - 1)) {
732 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
733 rd->sk_tx_ring[i].sk_next =
734 htole32(SK_TX_RING_ADDR(sc_if, 0));
735 } else {
736 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
737 rd->sk_tx_ring[i].sk_next =
738 htole32(SK_TX_RING_ADDR(sc_if,i+1));
739 }
740 }
741
742 sc_if->sk_cdata.sk_tx_prod = 0;
743 sc_if->sk_cdata.sk_tx_cons = 0;
744 sc_if->sk_cdata.sk_tx_cnt = 0;
745
746 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
747 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
748
749 return 0;
750 }
751
752 int
753 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
754 bus_dmamap_t dmamap)
755 {
756 struct mbuf *m_new = NULL;
757 struct sk_chain *c;
758 struct sk_rx_desc *r;
759
760 if (m == NULL) {
761 void *buf = NULL;
762
763 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
764 if (m_new == NULL) {
765 aprint_error_dev(&sc_if->sk_dev, "no memory for rx list -- "
766 "packet dropped!\n");
767 return ENOBUFS;
768 }
769
770 /* Allocate the jumbo buffer */
771 buf = sk_jalloc(sc_if);
772 if (buf == NULL) {
773 m_freem(m_new);
774 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
775 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
776 return ENOBUFS;
777 }
778
779 /* Attach the buffer to the mbuf */
780 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
781 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
782
783 } else {
784 /*
785 * We're re-using a previously allocated mbuf;
786 * be sure to re-init pointers and lengths to
787 * default values.
788 */
789 m_new = m;
790 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
791 m_new->m_data = m_new->m_ext.ext_buf;
792 }
793 m_adj(m_new, ETHER_ALIGN);
794
795 c = &sc_if->sk_cdata.sk_rx_chain[i];
796 r = c->sk_desc;
797 c->sk_mbuf = m_new;
798 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
799 (((vaddr_t)m_new->m_data
800 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
801 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
802
803 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
804
805 return 0;
806 }
807
808 /*
809 * Memory management for jumbo frames.
810 */
811
812 int
813 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
814 {
815 struct sk_softc *sc = sc_if->sk_softc;
816 char *ptr, *kva;
817 bus_dma_segment_t seg;
818 int i, rseg, state, error;
819 struct sk_jpool_entry *entry;
820
821 state = error = 0;
822
823 /* Grab a big chunk o' storage. */
824 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
825 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
826 aprint_error_dev(&sc->sk_dev, "can't alloc rx buffers\n");
827 return ENOBUFS;
828 }
829
830 state = 1;
831 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
832 BUS_DMA_NOWAIT)) {
833 aprint_error_dev(&sc->sk_dev, "can't map dma buffers (%d bytes)\n",
834 SK_JMEM);
835 error = ENOBUFS;
836 goto out;
837 }
838
839 state = 2;
840 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
841 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
842 aprint_error_dev(&sc->sk_dev, "can't create dma map\n");
843 error = ENOBUFS;
844 goto out;
845 }
846
847 state = 3;
848 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
849 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
850 aprint_error_dev(&sc->sk_dev, "can't load dma map\n");
851 error = ENOBUFS;
852 goto out;
853 }
854
855 state = 4;
856 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
857 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
858
859 LIST_INIT(&sc_if->sk_jfree_listhead);
860 LIST_INIT(&sc_if->sk_jinuse_listhead);
861
862 /*
863 * Now divide it up into 9K pieces and save the addresses
864 * in an array.
865 */
866 ptr = sc_if->sk_cdata.sk_jumbo_buf;
867 for (i = 0; i < SK_JSLOTS; i++) {
868 sc_if->sk_cdata.sk_jslots[i] = ptr;
869 ptr += SK_JLEN;
870 entry = malloc(sizeof(struct sk_jpool_entry),
871 M_DEVBUF, M_NOWAIT);
872 if (entry == NULL) {
873 aprint_error_dev(&sc->sk_dev, "no memory for jumbo buffer queue!\n");
874 error = ENOBUFS;
875 goto out;
876 }
877 entry->slot = i;
878 if (i)
879 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
880 entry, jpool_entries);
881 else
882 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
883 entry, jpool_entries);
884 }
885 out:
886 if (error != 0) {
887 switch (state) {
888 case 4:
889 bus_dmamap_unload(sc->sc_dmatag,
890 sc_if->sk_cdata.sk_rx_jumbo_map);
891 case 3:
892 bus_dmamap_destroy(sc->sc_dmatag,
893 sc_if->sk_cdata.sk_rx_jumbo_map);
894 case 2:
895 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
896 case 1:
897 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
898 break;
899 default:
900 break;
901 }
902 }
903
904 return error;
905 }
906
907 /*
908 * Allocate a jumbo buffer.
909 */
910 void *
911 sk_jalloc(struct sk_if_softc *sc_if)
912 {
913 struct sk_jpool_entry *entry;
914
915 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
916
917 if (entry == NULL)
918 return NULL;
919
920 LIST_REMOVE(entry, jpool_entries);
921 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
922 return sc_if->sk_cdata.sk_jslots[entry->slot];
923 }
924
925 /*
926 * Release a jumbo buffer.
927 */
928 void
929 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
930 {
931 struct sk_jpool_entry *entry;
932 struct sk_if_softc *sc;
933 int i, s;
934
935 /* Extract the softc struct pointer. */
936 sc = (struct sk_if_softc *)arg;
937
938 if (sc == NULL)
939 panic("sk_jfree: can't find softc pointer!");
940
941 /* calculate the slot this buffer belongs to */
942
943 i = ((vaddr_t)buf
944 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
945
946 if ((i < 0) || (i >= SK_JSLOTS))
947 panic("sk_jfree: asked to free buffer that we don't manage!");
948
949 s = splvm();
950 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
951 if (entry == NULL)
952 panic("sk_jfree: buffer not in use!");
953 entry->slot = i;
954 LIST_REMOVE(entry, jpool_entries);
955 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
956
957 if (__predict_true(m != NULL))
958 pool_cache_put(mb_cache, m);
959 splx(s);
960 }
961
962 /*
963 * Set media options.
964 */
965 int
966 sk_ifmedia_upd(struct ifnet *ifp)
967 {
968 struct sk_if_softc *sc_if = ifp->if_softc;
969 int rc;
970
971 (void) sk_init(ifp);
972 if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
973 return 0;
974 return rc;
975 }
976
977 int
978 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
979 {
980 struct sk_if_softc *sc_if = ifp->if_softc;
981 struct sk_softc *sc = sc_if->sk_softc;
982 int s, error = 0;
983
984 /* DPRINTFN(2, ("sk_ioctl\n")); */
985
986 s = splnet();
987
988 switch (command) {
989
990 case SIOCSIFFLAGS:
991 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
992 if (ifp->if_flags & IFF_UP) {
993 if (ifp->if_flags & IFF_RUNNING &&
994 ifp->if_flags & IFF_PROMISC &&
995 !(sc_if->sk_if_flags & IFF_PROMISC)) {
996 switch (sc->sk_type) {
997 case SK_GENESIS:
998 SK_XM_SETBIT_4(sc_if, XM_MODE,
999 XM_MODE_RX_PROMISC);
1000 break;
1001 case SK_YUKON:
1002 case SK_YUKON_LITE:
1003 case SK_YUKON_LP:
1004 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1005 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1006 break;
1007 }
1008 sk_setmulti(sc_if);
1009 } else if (ifp->if_flags & IFF_RUNNING &&
1010 !(ifp->if_flags & IFF_PROMISC) &&
1011 sc_if->sk_if_flags & IFF_PROMISC) {
1012 switch (sc->sk_type) {
1013 case SK_GENESIS:
1014 SK_XM_CLRBIT_4(sc_if, XM_MODE,
1015 XM_MODE_RX_PROMISC);
1016 break;
1017 case SK_YUKON:
1018 case SK_YUKON_LITE:
1019 case SK_YUKON_LP:
1020 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1021 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1022 break;
1023 }
1024
1025 sk_setmulti(sc_if);
1026 } else
1027 (void) sk_init(ifp);
1028 } else {
1029 if (ifp->if_flags & IFF_RUNNING)
1030 sk_stop(ifp,0);
1031 }
1032 sc_if->sk_if_flags = ifp->if_flags;
1033 error = 0;
1034 break;
1035
1036 default:
1037 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1038 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1039 break;
1040
1041 error = 0;
1042
1043 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1044 ;
1045 else if (ifp->if_flags & IFF_RUNNING) {
1046 sk_setmulti(sc_if);
1047 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1048 }
1049 break;
1050 }
1051
1052 splx(s);
1053 return error;
1054 }
1055
1056 void
1057 sk_update_int_mod(struct sk_softc *sc)
1058 {
1059 u_int32_t imtimer_ticks;
1060
1061 /*
1062 * Configure interrupt moderation. The moderation timer
1063 * defers interrupts specified in the interrupt moderation
1064 * timer mask based on the timeout specified in the interrupt
1065 * moderation timer init register. Each bit in the timer
1066 * register represents one tick, so to specify a timeout in
1067 * microseconds, we have to multiply by the correct number of
1068 * ticks-per-microsecond.
1069 */
1070 switch (sc->sk_type) {
1071 case SK_GENESIS:
1072 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1073 break;
1074 case SK_YUKON_EC:
1075 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1076 break;
1077 default:
1078 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1079 }
1080 aprint_verbose_dev(&sc->sk_dev, "interrupt moderation is %d us\n",
1081 sc->sk_int_mod);
1082 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1083 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1084 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1085 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1086 sc->sk_int_mod_pending = 0;
1087 }
1088
1089 /*
1090 * Lookup: Check the PCI vendor and device, and return a pointer to
1091 * The structure if the IDs match against our list.
1092 */
1093
1094 static const struct sk_product *
1095 sk_lookup(const struct pci_attach_args *pa)
1096 {
1097 const struct sk_product *psk;
1098
1099 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1100 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1101 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1102 return psk;
1103 }
1104 return NULL;
1105 }
1106
1107 /*
1108 * Probe for a SysKonnect GEnesis chip.
1109 */
1110
1111 int
1112 skc_probe(struct device *parent, struct cfdata *match,
1113 void *aux)
1114 {
1115 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1116 const struct sk_product *psk;
1117 pcireg_t subid;
1118
1119 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1120
1121 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1122 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1123 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1124 subid == SK_LINKSYS_EG1032_SUBID)
1125 return 1;
1126
1127 if ((psk = sk_lookup(pa))) {
1128 return 1;
1129 }
1130 return 0;
1131 }
1132
1133 /*
1134 * Force the GEnesis into reset, then bring it out of reset.
1135 */
1136 void sk_reset(struct sk_softc *sc)
1137 {
1138 DPRINTFN(2, ("sk_reset\n"));
1139
1140 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1141 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1142 if (SK_YUKON_FAMILY(sc->sk_type))
1143 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1144
1145 DELAY(1000);
1146 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1147 DELAY(2);
1148 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1149 if (SK_YUKON_FAMILY(sc->sk_type))
1150 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1151
1152 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1153 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1154 CSR_READ_2(sc, SK_LINK_CTRL)));
1155
1156 if (sc->sk_type == SK_GENESIS) {
1157 /* Configure packet arbiter */
1158 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1159 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1160 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1161 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1162 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1163 }
1164
1165 /* Enable RAM interface */
1166 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1167
1168 sk_update_int_mod(sc);
1169 }
1170
1171 int
1172 sk_probe(struct device *parent, struct cfdata *match,
1173 void *aux)
1174 {
1175 struct skc_attach_args *sa = aux;
1176
1177 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1178 return 0;
1179
1180 return 1;
1181 }
1182
1183 /*
1184 * Each XMAC chip is attached as a separate logical IP interface.
1185 * Single port cards will have only one logical interface of course.
1186 */
1187 void
1188 sk_attach(struct device *parent, struct device *self, void *aux)
1189 {
1190 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1191 struct sk_softc *sc = (struct sk_softc *)parent;
1192 struct skc_attach_args *sa = aux;
1193 struct sk_txmap_entry *entry;
1194 struct ifnet *ifp;
1195 bus_dma_segment_t seg;
1196 bus_dmamap_t dmamap;
1197 void *kva;
1198 int i, rseg;
1199
1200 aprint_naive("\n");
1201
1202 sc_if->sk_port = sa->skc_port;
1203 sc_if->sk_softc = sc;
1204 sc->sk_if[sa->skc_port] = sc_if;
1205
1206 if (sa->skc_port == SK_PORT_A)
1207 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1208 if (sa->skc_port == SK_PORT_B)
1209 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1210
1211 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1212
1213 /*
1214 * Get station address for this interface. Note that
1215 * dual port cards actually come with three station
1216 * addresses: one for each port, plus an extra. The
1217 * extra one is used by the SysKonnect driver software
1218 * as a 'virtual' station address for when both ports
1219 * are operating in failover mode. Currently we don't
1220 * use this extra address.
1221 */
1222 for (i = 0; i < ETHER_ADDR_LEN; i++)
1223 sc_if->sk_enaddr[i] =
1224 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1225
1226
1227 aprint_normal(": Ethernet address %s\n",
1228 ether_sprintf(sc_if->sk_enaddr));
1229
1230 /*
1231 * Set up RAM buffer addresses. The NIC will have a certain
1232 * amount of SRAM on it, somewhere between 512K and 2MB. We
1233 * need to divide this up a) between the transmitter and
1234 * receiver and b) between the two XMACs, if this is a
1235 * dual port NIC. Our algorithm is to divide up the memory
1236 * evenly so that everyone gets a fair share.
1237 */
1238 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1239 u_int32_t chunk, val;
1240
1241 chunk = sc->sk_ramsize / 2;
1242 val = sc->sk_rboff / sizeof(u_int64_t);
1243 sc_if->sk_rx_ramstart = val;
1244 val += (chunk / sizeof(u_int64_t));
1245 sc_if->sk_rx_ramend = val - 1;
1246 sc_if->sk_tx_ramstart = val;
1247 val += (chunk / sizeof(u_int64_t));
1248 sc_if->sk_tx_ramend = val - 1;
1249 } else {
1250 u_int32_t chunk, val;
1251
1252 chunk = sc->sk_ramsize / 4;
1253 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1254 sizeof(u_int64_t);
1255 sc_if->sk_rx_ramstart = val;
1256 val += (chunk / sizeof(u_int64_t));
1257 sc_if->sk_rx_ramend = val - 1;
1258 sc_if->sk_tx_ramstart = val;
1259 val += (chunk / sizeof(u_int64_t));
1260 sc_if->sk_tx_ramend = val - 1;
1261 }
1262
1263 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1264 " tx_ramstart=%#x tx_ramend=%#x\n",
1265 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1266 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1267
1268 /* Read and save PHY type and set PHY address */
1269 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1270 switch (sc_if->sk_phytype) {
1271 case SK_PHYTYPE_XMAC:
1272 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1273 break;
1274 case SK_PHYTYPE_BCOM:
1275 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1276 break;
1277 case SK_PHYTYPE_MARV_COPPER:
1278 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1279 break;
1280 default:
1281 aprint_error_dev(&sc->sk_dev, "unsupported PHY type: %d\n",
1282 sc_if->sk_phytype);
1283 return;
1284 }
1285
1286 /* Allocate the descriptor queues. */
1287 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1288 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1289 aprint_error_dev(&sc->sk_dev, "can't alloc rx buffers\n");
1290 goto fail;
1291 }
1292 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1293 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1294 aprint_error_dev(&sc_if->sk_dev, "can't map dma buffers (%lu bytes)\n",
1295 (u_long) sizeof(struct sk_ring_data));
1296 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1297 goto fail;
1298 }
1299 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1300 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1301 &sc_if->sk_ring_map)) {
1302 aprint_error_dev(&sc_if->sk_dev, "can't create dma map\n");
1303 bus_dmamem_unmap(sc->sc_dmatag, kva,
1304 sizeof(struct sk_ring_data));
1305 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1306 goto fail;
1307 }
1308 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1309 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1310 aprint_error_dev(&sc_if->sk_dev, "can't load dma map\n");
1311 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1312 bus_dmamem_unmap(sc->sc_dmatag, kva,
1313 sizeof(struct sk_ring_data));
1314 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1315 goto fail;
1316 }
1317
1318 for (i = 0; i < SK_RX_RING_CNT; i++)
1319 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1320
1321 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1322 for (i = 0; i < SK_TX_RING_CNT; i++) {
1323 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1324
1325 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1326 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1327 aprint_error_dev(&sc_if->sk_dev, "Can't create TX dmamap\n");
1328 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1329 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1330 bus_dmamem_unmap(sc->sc_dmatag, kva,
1331 sizeof(struct sk_ring_data));
1332 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1333 goto fail;
1334 }
1335
1336 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1337 if (!entry) {
1338 aprint_error_dev(&sc_if->sk_dev, "Can't alloc txmap entry\n");
1339 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1340 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1341 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1342 bus_dmamem_unmap(sc->sc_dmatag, kva,
1343 sizeof(struct sk_ring_data));
1344 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1345 goto fail;
1346 }
1347 entry->dmamap = dmamap;
1348 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1349 }
1350
1351 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1352 bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1353
1354 ifp = &sc_if->sk_ethercom.ec_if;
1355 /* Try to allocate memory for jumbo buffers. */
1356 if (sk_alloc_jumbo_mem(sc_if)) {
1357 aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1358 goto fail;
1359 }
1360 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1361 | ETHERCAP_JUMBO_MTU;
1362
1363 ifp->if_softc = sc_if;
1364 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1365 ifp->if_ioctl = sk_ioctl;
1366 ifp->if_start = sk_start;
1367 ifp->if_stop = sk_stop;
1368 ifp->if_init = sk_init;
1369 ifp->if_watchdog = sk_watchdog;
1370 ifp->if_capabilities = 0;
1371 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1372 IFQ_SET_READY(&ifp->if_snd);
1373 strlcpy(ifp->if_xname, device_xname(&sc_if->sk_dev), IFNAMSIZ);
1374
1375 /*
1376 * Do miibus setup.
1377 */
1378 switch (sc->sk_type) {
1379 case SK_GENESIS:
1380 sk_init_xmac(sc_if);
1381 break;
1382 case SK_YUKON:
1383 case SK_YUKON_LITE:
1384 case SK_YUKON_LP:
1385 sk_init_yukon(sc_if);
1386 break;
1387 default:
1388 aprint_error_dev(&sc->sk_dev, "unknown device type %d\n",
1389 sc->sk_type);
1390 goto fail;
1391 }
1392
1393 DPRINTFN(2, ("sk_attach: 1\n"));
1394
1395 sc_if->sk_mii.mii_ifp = ifp;
1396 switch (sc->sk_type) {
1397 case SK_GENESIS:
1398 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1399 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1400 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1401 break;
1402 case SK_YUKON:
1403 case SK_YUKON_LITE:
1404 case SK_YUKON_LP:
1405 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1406 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1407 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1408 break;
1409 }
1410
1411 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1412 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1413 sk_ifmedia_upd, ether_mediastatus);
1414 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1415 MII_OFFSET_ANY, 0);
1416 if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
1417 aprint_error_dev(&sc_if->sk_dev, "no PHY found!\n");
1418 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1419 0, NULL);
1420 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1421 } else
1422 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1423
1424 callout_init(&sc_if->sk_tick_ch, 0);
1425 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1426
1427 DPRINTFN(2, ("sk_attach: 1\n"));
1428
1429 /*
1430 * Call MI attach routines.
1431 */
1432 if_attach(ifp);
1433
1434 ether_ifattach(ifp, sc_if->sk_enaddr);
1435
1436 #if NRND > 0
1437 rnd_attach_source(&sc->rnd_source, device_xname(&sc->sk_dev),
1438 RND_TYPE_NET, 0);
1439 #endif
1440
1441 DPRINTFN(2, ("sk_attach: end\n"));
1442
1443 return;
1444
1445 fail:
1446 sc->sk_if[sa->skc_port] = NULL;
1447 }
1448
1449 int
1450 skcprint(void *aux, const char *pnp)
1451 {
1452 struct skc_attach_args *sa = aux;
1453
1454 if (pnp)
1455 aprint_normal("sk port %c at %s",
1456 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1457 else
1458 aprint_normal(" port %c",
1459 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1460 return UNCONF;
1461 }
1462
1463 /*
1464 * Attach the interface. Allocate softc structures, do ifmedia
1465 * setup and ethernet/BPF attach.
1466 */
1467 void
1468 skc_attach(struct device *parent, struct device *self, void *aux)
1469 {
1470 struct sk_softc *sc = (struct sk_softc *)self;
1471 struct pci_attach_args *pa = aux;
1472 struct skc_attach_args skca;
1473 pci_chipset_tag_t pc = pa->pa_pc;
1474 #ifndef SK_USEIOSPACE
1475 pcireg_t memtype;
1476 #endif
1477 pci_intr_handle_t ih;
1478 const char *intrstr = NULL;
1479 bus_addr_t iobase;
1480 bus_size_t iosize;
1481 int rc, sk_nodenum;
1482 u_int32_t command;
1483 const char *revstr;
1484 const struct sysctlnode *node;
1485
1486 aprint_naive("\n");
1487
1488 DPRINTFN(2, ("begin skc_attach\n"));
1489
1490 /*
1491 * Handle power management nonsense.
1492 */
1493 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1494
1495 if (command == 0x01) {
1496 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1497 if (command & SK_PSTATE_MASK) {
1498 u_int32_t xiobase, membase, irq;
1499
1500 /* Save important PCI config data. */
1501 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1502 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1503 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1504
1505 /* Reset the power state. */
1506 aprint_normal_dev(&sc->sk_dev, "chip is in D%d power mode "
1507 "-- setting to D0\n",
1508 command & SK_PSTATE_MASK);
1509 command &= 0xFFFFFFFC;
1510 pci_conf_write(pc, pa->pa_tag,
1511 SK_PCI_PWRMGMTCTRL, command);
1512
1513 /* Restore PCI config data. */
1514 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1515 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1516 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1517 }
1518 }
1519
1520 /*
1521 * Map control/status registers.
1522 */
1523 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1524 command |= PCI_COMMAND_IO_ENABLE |
1525 PCI_COMMAND_MEM_ENABLE |
1526 PCI_COMMAND_MASTER_ENABLE;
1527 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1528 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1529
1530 #ifdef SK_USEIOSPACE
1531 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1532 aprint_error(": failed to enable I/O ports!\n");
1533 return;
1534 }
1535 /*
1536 * Map control/status registers.
1537 */
1538 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1539 &sc->sk_btag, &sc->sk_bhandle,
1540 &iobase, &iosize)) {
1541 aprint_error(": can't find i/o space\n");
1542 return;
1543 }
1544 #else
1545 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1546 aprint_error(": failed to enable memory mapping!\n");
1547 return;
1548 }
1549 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1550 switch (memtype) {
1551 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1552 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1553 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1554 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1555 &iobase, &iosize) == 0)
1556 break;
1557 default:
1558 aprint_error_dev(&sc->sk_dev, "can't find mem space\n");
1559 return;
1560 }
1561
1562 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1563 #endif
1564 sc->sc_dmatag = pa->pa_dmat;
1565
1566 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1567 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1568
1569 /* bail out here if chip is not recognized */
1570 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1571 aprint_error_dev(&sc->sk_dev, "unknown chip type\n");
1572 goto fail;
1573 }
1574 if (SK_IS_YUKON2(sc)) {
1575 aprint_error_dev(&sc->sk_dev, "Does not support Yukon2--try msk(4).\n");
1576 goto fail;
1577 }
1578 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1579
1580 /* Allocate interrupt */
1581 if (pci_intr_map(pa, &ih)) {
1582 aprint_error(": couldn't map interrupt\n");
1583 goto fail;
1584 }
1585
1586 intrstr = pci_intr_string(pc, ih);
1587 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1588 if (sc->sk_intrhand == NULL) {
1589 aprint_error(": couldn't establish interrupt");
1590 if (intrstr != NULL)
1591 aprint_normal(" at %s", intrstr);
1592 goto fail;
1593 }
1594 aprint_normal(": %s\n", intrstr);
1595
1596 /* Reset the adapter. */
1597 sk_reset(sc);
1598
1599 /* Read and save vital product data from EEPROM. */
1600 sk_vpd_read(sc);
1601
1602 if (sc->sk_type == SK_GENESIS) {
1603 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1604 /* Read and save RAM size and RAMbuffer offset */
1605 switch (val) {
1606 case SK_RAMSIZE_512K_64:
1607 sc->sk_ramsize = 0x80000;
1608 sc->sk_rboff = SK_RBOFF_0;
1609 break;
1610 case SK_RAMSIZE_1024K_64:
1611 sc->sk_ramsize = 0x100000;
1612 sc->sk_rboff = SK_RBOFF_80000;
1613 break;
1614 case SK_RAMSIZE_1024K_128:
1615 sc->sk_ramsize = 0x100000;
1616 sc->sk_rboff = SK_RBOFF_0;
1617 break;
1618 case SK_RAMSIZE_2048K_128:
1619 sc->sk_ramsize = 0x200000;
1620 sc->sk_rboff = SK_RBOFF_0;
1621 break;
1622 default:
1623 aprint_error_dev(&sc->sk_dev, "unknown ram size: %d\n",
1624 val);
1625 goto fail_1;
1626 break;
1627 }
1628
1629 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1630 sc->sk_ramsize, sc->sk_ramsize / 1024,
1631 sc->sk_rboff));
1632 } else {
1633 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1634 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1635 sc->sk_rboff = SK_RBOFF_0;
1636
1637 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1638 sc->sk_ramsize / 1024, sc->sk_ramsize,
1639 sc->sk_rboff));
1640 }
1641
1642 /* Read and save physical media type */
1643 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1644 case SK_PMD_1000BASESX:
1645 sc->sk_pmd = IFM_1000_SX;
1646 break;
1647 case SK_PMD_1000BASELX:
1648 sc->sk_pmd = IFM_1000_LX;
1649 break;
1650 case SK_PMD_1000BASECX:
1651 sc->sk_pmd = IFM_1000_CX;
1652 break;
1653 case SK_PMD_1000BASETX:
1654 case SK_PMD_1000BASETX_ALT:
1655 sc->sk_pmd = IFM_1000_T;
1656 break;
1657 default:
1658 aprint_error_dev(&sc->sk_dev, "unknown media type: 0x%x\n",
1659 sk_win_read_1(sc, SK_PMDTYPE));
1660 goto fail_1;
1661 }
1662
1663 /* determine whether to name it with vpd or just make it up */
1664 /* Marvell Yukon VPD's can freqently be bogus */
1665
1666 switch (pa->pa_id) {
1667 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1668 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1669 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1670 case PCI_PRODUCT_3COM_3C940:
1671 case PCI_PRODUCT_DLINK_DGE530T:
1672 case PCI_PRODUCT_DLINK_DGE560T:
1673 case PCI_PRODUCT_DLINK_DGE560T_2:
1674 case PCI_PRODUCT_LINKSYS_EG1032:
1675 case PCI_PRODUCT_LINKSYS_EG1064:
1676 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1677 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1678 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1679 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1680 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1681 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1682 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1683 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1684 sc->sk_name = sc->sk_vpd_prodname;
1685 break;
1686 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1687 /* whoops yukon vpd prodname bears no resemblance to reality */
1688 switch (sc->sk_type) {
1689 case SK_GENESIS:
1690 sc->sk_name = sc->sk_vpd_prodname;
1691 break;
1692 case SK_YUKON:
1693 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1694 break;
1695 case SK_YUKON_LITE:
1696 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1697 break;
1698 case SK_YUKON_LP:
1699 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1700 break;
1701 default:
1702 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1703 }
1704
1705 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1706
1707 if ( sc->sk_type == SK_YUKON ) {
1708 uint32_t flashaddr;
1709 uint8_t testbyte;
1710
1711 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1712
1713 /* test Flash-Address Register */
1714 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1715 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1716
1717 if (testbyte != 0) {
1718 /* this is yukon lite Rev. A0 */
1719 sc->sk_type = SK_YUKON_LITE;
1720 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1721 /* restore Flash-Address Register */
1722 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1723 }
1724 }
1725 break;
1726 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1727 sc->sk_name = sc->sk_vpd_prodname;
1728 break;
1729 default:
1730 sc->sk_name = "Unknown Marvell";
1731 }
1732
1733
1734 if ( sc->sk_type == SK_YUKON_LITE ) {
1735 switch (sc->sk_rev) {
1736 case SK_YUKON_LITE_REV_A0:
1737 revstr = "A0";
1738 break;
1739 case SK_YUKON_LITE_REV_A1:
1740 revstr = "A1";
1741 break;
1742 case SK_YUKON_LITE_REV_A3:
1743 revstr = "A3";
1744 break;
1745 default:
1746 revstr = "";
1747 }
1748 } else {
1749 revstr = "";
1750 }
1751
1752 /* Announce the product name. */
1753 aprint_normal_dev(&sc->sk_dev, "%s rev. %s(0x%x)\n",
1754 sc->sk_name, revstr, sc->sk_rev);
1755
1756 skca.skc_port = SK_PORT_A;
1757 (void)config_found(&sc->sk_dev, &skca, skcprint);
1758
1759 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1760 skca.skc_port = SK_PORT_B;
1761 (void)config_found(&sc->sk_dev, &skca, skcprint);
1762 }
1763
1764 /* Turn on the 'driver is loaded' LED. */
1765 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1766
1767 /* skc sysctl setup */
1768
1769 sc->sk_int_mod = SK_IM_DEFAULT;
1770 sc->sk_int_mod_pending = 0;
1771
1772 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1773 0, CTLTYPE_NODE, device_xname(&sc->sk_dev),
1774 SYSCTL_DESCR("skc per-controller controls"),
1775 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1776 CTL_EOL)) != 0) {
1777 aprint_normal_dev(&sc->sk_dev, "couldn't create sysctl node\n");
1778 goto fail_1;
1779 }
1780
1781 sk_nodenum = node->sysctl_num;
1782
1783 /* interrupt moderation time in usecs */
1784 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1785 CTLFLAG_READWRITE,
1786 CTLTYPE_INT, "int_mod",
1787 SYSCTL_DESCR("sk interrupt moderation timer"),
1788 sk_sysctl_handler, 0, sc,
1789 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1790 CTL_EOL)) != 0) {
1791 aprint_normal_dev(&sc->sk_dev, "couldn't create int_mod sysctl node\n");
1792 goto fail_1;
1793 }
1794
1795 return;
1796
1797 fail_1:
1798 pci_intr_disestablish(pc, sc->sk_intrhand);
1799 fail:
1800 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1801 }
1802
1803 int
1804 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1805 {
1806 struct sk_softc *sc = sc_if->sk_softc;
1807 struct sk_tx_desc *f = NULL;
1808 u_int32_t frag, cur, cnt = 0, sk_ctl;
1809 int i;
1810 struct sk_txmap_entry *entry;
1811 bus_dmamap_t txmap;
1812
1813 DPRINTFN(3, ("sk_encap\n"));
1814
1815 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1816 if (entry == NULL) {
1817 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1818 return ENOBUFS;
1819 }
1820 txmap = entry->dmamap;
1821
1822 cur = frag = *txidx;
1823
1824 #ifdef SK_DEBUG
1825 if (skdebug >= 3)
1826 sk_dump_mbuf(m_head);
1827 #endif
1828
1829 /*
1830 * Start packing the mbufs in this chain into
1831 * the fragment pointers. Stop when we run out
1832 * of fragments or hit the end of the mbuf chain.
1833 */
1834 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1835 BUS_DMA_NOWAIT)) {
1836 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1837 return ENOBUFS;
1838 }
1839
1840 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1841
1842 /* Sync the DMA map. */
1843 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1844 BUS_DMASYNC_PREWRITE);
1845
1846 for (i = 0; i < txmap->dm_nsegs; i++) {
1847 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1848 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1849 return ENOBUFS;
1850 }
1851 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1852 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1853 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1854 if (cnt == 0)
1855 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1856 else
1857 sk_ctl |= SK_TXCTL_OWN;
1858 f->sk_ctl = htole32(sk_ctl);
1859 cur = frag;
1860 SK_INC(frag, SK_TX_RING_CNT);
1861 cnt++;
1862 }
1863
1864 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1865 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1866
1867 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1868 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1869 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1870
1871 /* Sync descriptors before handing to chip */
1872 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1873 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1874
1875 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1876 htole32(SK_TXCTL_OWN);
1877
1878 /* Sync first descriptor to hand it off */
1879 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1880
1881 sc_if->sk_cdata.sk_tx_cnt += cnt;
1882
1883 #ifdef SK_DEBUG
1884 if (skdebug >= 3) {
1885 struct sk_tx_desc *desc;
1886 u_int32_t idx;
1887 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1888 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1889 sk_dump_txdesc(desc, idx);
1890 }
1891 }
1892 #endif
1893
1894 *txidx = frag;
1895
1896 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1897
1898 return 0;
1899 }
1900
1901 void
1902 sk_start(struct ifnet *ifp)
1903 {
1904 struct sk_if_softc *sc_if = ifp->if_softc;
1905 struct sk_softc *sc = sc_if->sk_softc;
1906 struct mbuf *m_head = NULL;
1907 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1908 int pkts = 0;
1909
1910 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1911 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1912
1913 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1914 IFQ_POLL(&ifp->if_snd, m_head);
1915 if (m_head == NULL)
1916 break;
1917
1918 /*
1919 * Pack the data into the transmit ring. If we
1920 * don't have room, set the OACTIVE flag and wait
1921 * for the NIC to drain the ring.
1922 */
1923 if (sk_encap(sc_if, m_head, &idx)) {
1924 ifp->if_flags |= IFF_OACTIVE;
1925 break;
1926 }
1927
1928 /* now we are committed to transmit the packet */
1929 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1930 pkts++;
1931
1932 /*
1933 * If there's a BPF listener, bounce a copy of this frame
1934 * to him.
1935 */
1936 #if NBPFILTER > 0
1937 if (ifp->if_bpf)
1938 bpf_mtap(ifp->if_bpf, m_head);
1939 #endif
1940 }
1941 if (pkts == 0)
1942 return;
1943
1944 /* Transmit */
1945 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1946 sc_if->sk_cdata.sk_tx_prod = idx;
1947 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1948
1949 /* Set a timeout in case the chip goes out to lunch. */
1950 ifp->if_timer = 5;
1951 }
1952 }
1953
1954
1955 void
1956 sk_watchdog(struct ifnet *ifp)
1957 {
1958 struct sk_if_softc *sc_if = ifp->if_softc;
1959
1960 /*
1961 * Reclaim first as there is a possibility of losing Tx completion
1962 * interrupts.
1963 */
1964 sk_txeof(sc_if);
1965 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1966 aprint_error_dev(&sc_if->sk_dev, "watchdog timeout\n");
1967
1968 ifp->if_oerrors++;
1969
1970 sk_init(ifp);
1971 }
1972 }
1973
1974 void
1975 sk_shutdown(void *v)
1976 {
1977 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
1978 struct sk_softc *sc = sc_if->sk_softc;
1979 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1980
1981 DPRINTFN(2, ("sk_shutdown\n"));
1982 sk_stop(ifp,1);
1983
1984 /* Turn off the 'driver is loaded' LED. */
1985 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1986
1987 /*
1988 * Reset the GEnesis controller. Doing this should also
1989 * assert the resets on the attached XMAC(s).
1990 */
1991 sk_reset(sc);
1992 }
1993
1994 void
1995 sk_rxeof(struct sk_if_softc *sc_if)
1996 {
1997 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1998 struct mbuf *m;
1999 struct sk_chain *cur_rx;
2000 struct sk_rx_desc *cur_desc;
2001 int i, cur, total_len = 0;
2002 u_int32_t rxstat, sk_ctl;
2003 bus_dmamap_t dmamap;
2004
2005 i = sc_if->sk_cdata.sk_rx_prod;
2006
2007 DPRINTFN(3, ("sk_rxeof %d\n", i));
2008
2009 for (;;) {
2010 cur = i;
2011
2012 /* Sync the descriptor */
2013 SK_CDRXSYNC(sc_if, cur,
2014 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2015
2016 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2017 if (sk_ctl & SK_RXCTL_OWN) {
2018 /* Invalidate the descriptor -- it's not ready yet */
2019 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2020 sc_if->sk_cdata.sk_rx_prod = i;
2021 break;
2022 }
2023
2024 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2025 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2026 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2027
2028 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2029 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2030
2031 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2032 m = cur_rx->sk_mbuf;
2033 cur_rx->sk_mbuf = NULL;
2034 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2035
2036 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2037
2038 SK_INC(i, SK_RX_RING_CNT);
2039
2040 if (rxstat & XM_RXSTAT_ERRFRAME) {
2041 ifp->if_ierrors++;
2042 sk_newbuf(sc_if, cur, m, dmamap);
2043 continue;
2044 }
2045
2046 /*
2047 * Try to allocate a new jumbo buffer. If that
2048 * fails, copy the packet to mbufs and put the
2049 * jumbo buffer back in the ring so it can be
2050 * re-used. If allocating mbufs fails, then we
2051 * have to drop the packet.
2052 */
2053 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2054 struct mbuf *m0;
2055 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2056 total_len + ETHER_ALIGN, 0, ifp, NULL);
2057 sk_newbuf(sc_if, cur, m, dmamap);
2058 if (m0 == NULL) {
2059 aprint_error_dev(&sc_if->sk_dev, "no receive buffers "
2060 "available -- packet dropped!\n");
2061 ifp->if_ierrors++;
2062 continue;
2063 }
2064 m_adj(m0, ETHER_ALIGN);
2065 m = m0;
2066 } else {
2067 m->m_pkthdr.rcvif = ifp;
2068 m->m_pkthdr.len = m->m_len = total_len;
2069 }
2070
2071 ifp->if_ipackets++;
2072
2073 #if NBPFILTER > 0
2074 if (ifp->if_bpf)
2075 bpf_mtap(ifp->if_bpf, m);
2076 #endif
2077 /* pass it on. */
2078 (*ifp->if_input)(ifp, m);
2079 }
2080 }
2081
2082 void
2083 sk_txeof(struct sk_if_softc *sc_if)
2084 {
2085 struct sk_softc *sc = sc_if->sk_softc;
2086 struct sk_tx_desc *cur_tx;
2087 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2088 u_int32_t idx, sk_ctl;
2089 struct sk_txmap_entry *entry;
2090
2091 DPRINTFN(3, ("sk_txeof\n"));
2092
2093 /*
2094 * Go through our tx ring and free mbufs for those
2095 * frames that have been sent.
2096 */
2097 idx = sc_if->sk_cdata.sk_tx_cons;
2098 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2099 SK_CDTXSYNC(sc_if, idx, 1,
2100 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2101
2102 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2103 sk_ctl = le32toh(cur_tx->sk_ctl);
2104 #ifdef SK_DEBUG
2105 if (skdebug >= 3)
2106 sk_dump_txdesc(cur_tx, idx);
2107 #endif
2108 if (sk_ctl & SK_TXCTL_OWN) {
2109 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2110 break;
2111 }
2112 if (sk_ctl & SK_TXCTL_LASTFRAG)
2113 ifp->if_opackets++;
2114 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2115 entry = sc_if->sk_cdata.sk_tx_map[idx];
2116
2117 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2118 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2119
2120 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2121 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2122
2123 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2124 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2125 link);
2126 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2127 }
2128 sc_if->sk_cdata.sk_tx_cnt--;
2129 SK_INC(idx, SK_TX_RING_CNT);
2130 }
2131 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2132 ifp->if_timer = 0;
2133 else /* nudge chip to keep tx ring moving */
2134 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2135
2136 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2137 ifp->if_flags &= ~IFF_OACTIVE;
2138
2139 sc_if->sk_cdata.sk_tx_cons = idx;
2140 }
2141
2142 void
2143 sk_tick(void *xsc_if)
2144 {
2145 struct sk_if_softc *sc_if = xsc_if;
2146 struct mii_data *mii = &sc_if->sk_mii;
2147 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2148 int i;
2149
2150 DPRINTFN(3, ("sk_tick\n"));
2151
2152 if (!(ifp->if_flags & IFF_UP))
2153 return;
2154
2155 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2156 sk_intr_bcom(sc_if);
2157 return;
2158 }
2159
2160 /*
2161 * According to SysKonnect, the correct way to verify that
2162 * the link has come back up is to poll bit 0 of the GPIO
2163 * register three times. This pin has the signal from the
2164 * link sync pin connected to it; if we read the same link
2165 * state 3 times in a row, we know the link is up.
2166 */
2167 for (i = 0; i < 3; i++) {
2168 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2169 break;
2170 }
2171
2172 if (i != 3) {
2173 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2174 return;
2175 }
2176
2177 /* Turn the GP0 interrupt back on. */
2178 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2179 SK_XM_READ_2(sc_if, XM_ISR);
2180 mii_tick(mii);
2181 mii_pollstat(mii);
2182 callout_stop(&sc_if->sk_tick_ch);
2183 }
2184
2185 void
2186 sk_intr_bcom(struct sk_if_softc *sc_if)
2187 {
2188 struct mii_data *mii = &sc_if->sk_mii;
2189 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2190 int status;
2191
2192
2193 DPRINTFN(3, ("sk_intr_bcom\n"));
2194
2195 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2196
2197 /*
2198 * Read the PHY interrupt register to make sure
2199 * we clear any pending interrupts.
2200 */
2201 status = sk_xmac_miibus_readreg((struct device *)sc_if,
2202 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2203
2204 if (!(ifp->if_flags & IFF_RUNNING)) {
2205 sk_init_xmac(sc_if);
2206 return;
2207 }
2208
2209 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2210 int lstat;
2211 lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
2212 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2213
2214 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2215 (void)mii_mediachg(mii);
2216 /* Turn off the link LED. */
2217 SK_IF_WRITE_1(sc_if, 0,
2218 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2219 sc_if->sk_link = 0;
2220 } else if (status & BRGPHY_ISR_LNK_CHG) {
2221 sk_xmac_miibus_writereg((struct device *)sc_if,
2222 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2223 mii_tick(mii);
2224 sc_if->sk_link = 1;
2225 /* Turn on the link LED. */
2226 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2227 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2228 SK_LINKLED_BLINK_OFF);
2229 mii_pollstat(mii);
2230 } else {
2231 mii_tick(mii);
2232 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2233 }
2234 }
2235
2236 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2237 }
2238
2239 void
2240 sk_intr_xmac(struct sk_if_softc *sc_if)
2241 {
2242 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2243
2244 DPRINTFN(3, ("sk_intr_xmac\n"));
2245
2246 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2247 if (status & XM_ISR_GP0_SET) {
2248 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2249 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2250 }
2251
2252 if (status & XM_ISR_AUTONEG_DONE) {
2253 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2254 }
2255 }
2256
2257 if (status & XM_IMR_TX_UNDERRUN)
2258 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2259
2260 if (status & XM_IMR_RX_OVERRUN)
2261 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2262 }
2263
2264 void
2265 sk_intr_yukon(struct sk_if_softc *sc_if)
2266 {
2267 int status;
2268
2269 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2270
2271 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2272 }
2273
2274 int
2275 sk_intr(void *xsc)
2276 {
2277 struct sk_softc *sc = xsc;
2278 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2279 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2280 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2281 u_int32_t status;
2282 int claimed = 0;
2283
2284 if (sc_if0 != NULL)
2285 ifp0 = &sc_if0->sk_ethercom.ec_if;
2286 if (sc_if1 != NULL)
2287 ifp1 = &sc_if1->sk_ethercom.ec_if;
2288
2289 for (;;) {
2290 status = CSR_READ_4(sc, SK_ISSR);
2291 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2292
2293 if (!(status & sc->sk_intrmask))
2294 break;
2295
2296 claimed = 1;
2297
2298 /* Handle receive interrupts first. */
2299 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2300 sk_rxeof(sc_if0);
2301 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2302 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2303 }
2304 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2305 sk_rxeof(sc_if1);
2306 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2307 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2308 }
2309
2310 /* Then transmit interrupts. */
2311 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2312 sk_txeof(sc_if0);
2313 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2314 SK_TXBMU_CLR_IRQ_EOF);
2315 }
2316 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2317 sk_txeof(sc_if1);
2318 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2319 SK_TXBMU_CLR_IRQ_EOF);
2320 }
2321
2322 /* Then MAC interrupts. */
2323 if (sc_if0 && (status & SK_ISR_MAC1) &&
2324 (ifp0->if_flags & IFF_RUNNING)) {
2325 if (sc->sk_type == SK_GENESIS)
2326 sk_intr_xmac(sc_if0);
2327 else
2328 sk_intr_yukon(sc_if0);
2329 }
2330
2331 if (sc_if1 && (status & SK_ISR_MAC2) &&
2332 (ifp1->if_flags & IFF_RUNNING)) {
2333 if (sc->sk_type == SK_GENESIS)
2334 sk_intr_xmac(sc_if1);
2335 else
2336 sk_intr_yukon(sc_if1);
2337
2338 }
2339
2340 if (status & SK_ISR_EXTERNAL_REG) {
2341 if (sc_if0 != NULL &&
2342 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2343 sk_intr_bcom(sc_if0);
2344
2345 if (sc_if1 != NULL &&
2346 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2347 sk_intr_bcom(sc_if1);
2348 }
2349 }
2350
2351 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2352
2353 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2354 sk_start(ifp0);
2355 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2356 sk_start(ifp1);
2357
2358 #if NRND > 0
2359 if (RND_ENABLED(&sc->rnd_source))
2360 rnd_add_uint32(&sc->rnd_source, status);
2361 #endif
2362
2363 if (sc->sk_int_mod_pending)
2364 sk_update_int_mod(sc);
2365
2366 return claimed;
2367 }
2368
2369 void
2370 sk_init_xmac(struct sk_if_softc *sc_if)
2371 {
2372 struct sk_softc *sc = sc_if->sk_softc;
2373 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2374 static const struct sk_bcom_hack bhack[] = {
2375 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2376 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2377 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2378 { 0, 0 } };
2379
2380 DPRINTFN(1, ("sk_init_xmac\n"));
2381
2382 /* Unreset the XMAC. */
2383 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2384 DELAY(1000);
2385
2386 /* Reset the XMAC's internal state. */
2387 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2388
2389 /* Save the XMAC II revision */
2390 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2391
2392 /*
2393 * Perform additional initialization for external PHYs,
2394 * namely for the 1000baseTX cards that use the XMAC's
2395 * GMII mode.
2396 */
2397 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2398 int i = 0;
2399 u_int32_t val;
2400
2401 /* Take PHY out of reset. */
2402 val = sk_win_read_4(sc, SK_GPIO);
2403 if (sc_if->sk_port == SK_PORT_A)
2404 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2405 else
2406 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2407 sk_win_write_4(sc, SK_GPIO, val);
2408
2409 /* Enable GMII mode on the XMAC. */
2410 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2411
2412 sk_xmac_miibus_writereg((struct device *)sc_if,
2413 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2414 DELAY(10000);
2415 sk_xmac_miibus_writereg((struct device *)sc_if,
2416 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2417
2418 /*
2419 * Early versions of the BCM5400 apparently have
2420 * a bug that requires them to have their reserved
2421 * registers initialized to some magic values. I don't
2422 * know what the numbers do, I'm just the messenger.
2423 */
2424 if (sk_xmac_miibus_readreg((struct device *)sc_if,
2425 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2426 while (bhack[i].reg) {
2427 sk_xmac_miibus_writereg((struct device *)sc_if,
2428 SK_PHYADDR_BCOM, bhack[i].reg,
2429 bhack[i].val);
2430 i++;
2431 }
2432 }
2433 }
2434
2435 /* Set station address */
2436 SK_XM_WRITE_2(sc_if, XM_PAR0,
2437 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2438 SK_XM_WRITE_2(sc_if, XM_PAR1,
2439 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2440 SK_XM_WRITE_2(sc_if, XM_PAR2,
2441 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2442 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2443
2444 if (ifp->if_flags & IFF_PROMISC)
2445 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2446 else
2447 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2448
2449 if (ifp->if_flags & IFF_BROADCAST)
2450 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2451 else
2452 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2453
2454 /* We don't need the FCS appended to the packet. */
2455 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2456
2457 /* We want short frames padded to 60 bytes. */
2458 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2459
2460 /*
2461 * Enable the reception of all error frames. This is is
2462 * a necessary evil due to the design of the XMAC. The
2463 * XMAC's receive FIFO is only 8K in size, however jumbo
2464 * frames can be up to 9000 bytes in length. When bad
2465 * frame filtering is enabled, the XMAC's RX FIFO operates
2466 * in 'store and forward' mode. For this to work, the
2467 * entire frame has to fit into the FIFO, but that means
2468 * that jumbo frames larger than 8192 bytes will be
2469 * truncated. Disabling all bad frame filtering causes
2470 * the RX FIFO to operate in streaming mode, in which
2471 * case the XMAC will start transfering frames out of the
2472 * RX FIFO as soon as the FIFO threshold is reached.
2473 */
2474 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2475 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2476 XM_MODE_RX_INRANGELEN);
2477
2478 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2479 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2480 else
2481 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2482
2483 /*
2484 * Bump up the transmit threshold. This helps hold off transmit
2485 * underruns when we're blasting traffic from both ports at once.
2486 */
2487 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2488
2489 /* Set multicast filter */
2490 sk_setmulti(sc_if);
2491
2492 /* Clear and enable interrupts */
2493 SK_XM_READ_2(sc_if, XM_ISR);
2494 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2495 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2496 else
2497 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2498
2499 /* Configure MAC arbiter */
2500 switch (sc_if->sk_xmac_rev) {
2501 case XM_XMAC_REV_B2:
2502 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2503 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2504 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2505 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2506 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2507 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2508 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2509 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2510 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2511 break;
2512 case XM_XMAC_REV_C1:
2513 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2514 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2515 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2516 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2517 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2518 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2519 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2520 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2521 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2522 break;
2523 default:
2524 break;
2525 }
2526 sk_win_write_2(sc, SK_MACARB_CTL,
2527 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2528
2529 sc_if->sk_link = 1;
2530 }
2531
2532 void sk_init_yukon(struct sk_if_softc *sc_if)
2533 {
2534 u_int32_t /*mac, */phy;
2535 u_int16_t reg;
2536 struct sk_softc *sc;
2537 int i;
2538
2539 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2540 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2541
2542 sc = sc_if->sk_softc;
2543 if (sc->sk_type == SK_YUKON_LITE &&
2544 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2545 /* Take PHY out of reset. */
2546 sk_win_write_4(sc, SK_GPIO,
2547 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2548 }
2549
2550
2551 /* GMAC and GPHY Reset */
2552 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2553
2554 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2555
2556 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2557 DELAY(1000);
2558 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2559 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2560 DELAY(1000);
2561
2562
2563 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2564
2565 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2566 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2567
2568 switch (sc_if->sk_softc->sk_pmd) {
2569 case IFM_1000_SX:
2570 case IFM_1000_LX:
2571 phy |= SK_GPHY_FIBER;
2572 break;
2573
2574 case IFM_1000_CX:
2575 case IFM_1000_T:
2576 phy |= SK_GPHY_COPPER;
2577 break;
2578 }
2579
2580 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2581
2582 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2583 DELAY(1000);
2584 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2585 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2586 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2587
2588 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2589 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2590
2591 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2592
2593 /* unused read of the interrupt source register */
2594 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2595 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2596
2597 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2598 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2599 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2600
2601 /* MIB Counter Clear Mode set */
2602 reg |= YU_PAR_MIB_CLR;
2603 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2604 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2605 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2606
2607 /* MIB Counter Clear Mode clear */
2608 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2609 reg &= ~YU_PAR_MIB_CLR;
2610 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2611
2612 /* receive control reg */
2613 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2614 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2615 YU_RCR_CRCR);
2616
2617 /* transmit parameter register */
2618 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2619 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2620 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2621
2622 /* serial mode register */
2623 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2624 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2625 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2626 YU_SMR_IPG_DATA(0x1e));
2627
2628 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2629 /* Setup Yukon's address */
2630 for (i = 0; i < 3; i++) {
2631 /* Write Source Address 1 (unicast filter) */
2632 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2633 sc_if->sk_enaddr[i * 2] |
2634 sc_if->sk_enaddr[i * 2 + 1] << 8);
2635 }
2636
2637 for (i = 0; i < 3; i++) {
2638 reg = sk_win_read_2(sc_if->sk_softc,
2639 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2640 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2641 }
2642
2643 /* Set multicast filter */
2644 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2645 sk_setmulti(sc_if);
2646
2647 /* enable interrupt mask for counter overflows */
2648 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2649 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2650 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2651 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2652
2653 /* Configure RX MAC FIFO */
2654 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2655 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2656
2657 /* Configure TX MAC FIFO */
2658 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2659 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2660
2661 DPRINTFN(6, ("sk_init_yukon: end\n"));
2662 }
2663
2664 /*
2665 * Note that to properly initialize any part of the GEnesis chip,
2666 * you first have to take it out of reset mode.
2667 */
2668 int
2669 sk_init(struct ifnet *ifp)
2670 {
2671 struct sk_if_softc *sc_if = ifp->if_softc;
2672 struct sk_softc *sc = sc_if->sk_softc;
2673 struct mii_data *mii = &sc_if->sk_mii;
2674 int rc = 0, s;
2675 u_int32_t imr, imtimer_ticks;
2676
2677 DPRINTFN(1, ("sk_init\n"));
2678
2679 s = splnet();
2680
2681 if (ifp->if_flags & IFF_RUNNING) {
2682 splx(s);
2683 return 0;
2684 }
2685
2686 /* Cancel pending I/O and free all RX/TX buffers. */
2687 sk_stop(ifp,0);
2688
2689 if (sc->sk_type == SK_GENESIS) {
2690 /* Configure LINK_SYNC LED */
2691 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2692 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2693 SK_LINKLED_LINKSYNC_ON);
2694
2695 /* Configure RX LED */
2696 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2697 SK_RXLEDCTL_COUNTER_START);
2698
2699 /* Configure TX LED */
2700 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2701 SK_TXLEDCTL_COUNTER_START);
2702 }
2703
2704 /* Configure I2C registers */
2705
2706 /* Configure XMAC(s) */
2707 switch (sc->sk_type) {
2708 case SK_GENESIS:
2709 sk_init_xmac(sc_if);
2710 break;
2711 case SK_YUKON:
2712 case SK_YUKON_LITE:
2713 case SK_YUKON_LP:
2714 sk_init_yukon(sc_if);
2715 break;
2716 }
2717 if ((rc = mii_mediachg(mii)) == ENXIO)
2718 rc = 0;
2719 else if (rc != 0)
2720 goto out;
2721
2722 if (sc->sk_type == SK_GENESIS) {
2723 /* Configure MAC FIFOs */
2724 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2725 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2726 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2727
2728 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2729 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2730 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2731 }
2732
2733 /* Configure transmit arbiter(s) */
2734 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2735 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2736
2737 /* Configure RAMbuffers */
2738 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2739 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2740 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2741 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2742 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2743 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2744
2745 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2746 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2747 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2748 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2749 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2750 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2751 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2752
2753 /* Configure BMUs */
2754 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2755 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2756 SK_RX_RING_ADDR(sc_if, 0));
2757 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2758
2759 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2760 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2761 SK_TX_RING_ADDR(sc_if, 0));
2762 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2763
2764 /* Init descriptors */
2765 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2766 aprint_error_dev(&sc_if->sk_dev, "initialization failed: no "
2767 "memory for rx buffers\n");
2768 sk_stop(ifp,0);
2769 splx(s);
2770 return ENOBUFS;
2771 }
2772
2773 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2774 aprint_error_dev(&sc_if->sk_dev, "initialization failed: no "
2775 "memory for tx buffers\n");
2776 sk_stop(ifp,0);
2777 splx(s);
2778 return ENOBUFS;
2779 }
2780
2781 /* Set interrupt moderation if changed via sysctl. */
2782 switch (sc->sk_type) {
2783 case SK_GENESIS:
2784 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2785 break;
2786 case SK_YUKON_EC:
2787 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2788 break;
2789 default:
2790 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2791 }
2792 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2793 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2794 sk_win_write_4(sc, SK_IMTIMERINIT,
2795 SK_IM_USECS(sc->sk_int_mod));
2796 aprint_verbose_dev(&sc->sk_dev, "interrupt moderation is %d us\n",
2797 sc->sk_int_mod);
2798 }
2799
2800 /* Configure interrupt handling */
2801 CSR_READ_4(sc, SK_ISSR);
2802 if (sc_if->sk_port == SK_PORT_A)
2803 sc->sk_intrmask |= SK_INTRS1;
2804 else
2805 sc->sk_intrmask |= SK_INTRS2;
2806
2807 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2808
2809 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2810
2811 /* Start BMUs. */
2812 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2813
2814 if (sc->sk_type == SK_GENESIS) {
2815 /* Enable XMACs TX and RX state machines */
2816 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2817 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2818 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2819 }
2820
2821 if (SK_YUKON_FAMILY(sc->sk_type)) {
2822 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2823 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2824 #if 0
2825 /* XXX disable 100Mbps and full duplex mode? */
2826 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2827 #endif
2828 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2829 }
2830
2831
2832 ifp->if_flags |= IFF_RUNNING;
2833 ifp->if_flags &= ~IFF_OACTIVE;
2834
2835 out:
2836 splx(s);
2837 return rc;
2838 }
2839
2840 void
2841 sk_stop(struct ifnet *ifp, int disable)
2842 {
2843 struct sk_if_softc *sc_if = ifp->if_softc;
2844 struct sk_softc *sc = sc_if->sk_softc;
2845 int i;
2846
2847 DPRINTFN(1, ("sk_stop\n"));
2848
2849 callout_stop(&sc_if->sk_tick_ch);
2850
2851 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2852 u_int32_t val;
2853
2854 /* Put PHY back into reset. */
2855 val = sk_win_read_4(sc, SK_GPIO);
2856 if (sc_if->sk_port == SK_PORT_A) {
2857 val |= SK_GPIO_DIR0;
2858 val &= ~SK_GPIO_DAT0;
2859 } else {
2860 val |= SK_GPIO_DIR2;
2861 val &= ~SK_GPIO_DAT2;
2862 }
2863 sk_win_write_4(sc, SK_GPIO, val);
2864 }
2865
2866 /* Turn off various components of this interface. */
2867 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2868 switch (sc->sk_type) {
2869 case SK_GENESIS:
2870 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2871 SK_TXMACCTL_XMAC_RESET);
2872 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2873 break;
2874 case SK_YUKON:
2875 case SK_YUKON_LITE:
2876 case SK_YUKON_LP:
2877 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2878 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2879 break;
2880 }
2881 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2882 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2883 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2884 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2885 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2886 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2887 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2888 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2889 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2890
2891 /* Disable interrupts */
2892 if (sc_if->sk_port == SK_PORT_A)
2893 sc->sk_intrmask &= ~SK_INTRS1;
2894 else
2895 sc->sk_intrmask &= ~SK_INTRS2;
2896 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2897
2898 SK_XM_READ_2(sc_if, XM_ISR);
2899 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2900
2901 /* Free RX and TX mbufs still in the queues. */
2902 for (i = 0; i < SK_RX_RING_CNT; i++) {
2903 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2904 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2905 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2906 }
2907 }
2908
2909 for (i = 0; i < SK_TX_RING_CNT; i++) {
2910 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2911 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2912 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2913 }
2914 }
2915
2916 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2917 }
2918
2919 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2920
2921 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2922
2923 #ifdef SK_DEBUG
2924 void
2925 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2926 {
2927 #define DESC_PRINT(X) \
2928 if (X) \
2929 printf("txdesc[%d]." #X "=%#x\n", \
2930 idx, X);
2931
2932 DESC_PRINT(le32toh(desc->sk_ctl));
2933 DESC_PRINT(le32toh(desc->sk_next));
2934 DESC_PRINT(le32toh(desc->sk_data_lo));
2935 DESC_PRINT(le32toh(desc->sk_data_hi));
2936 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2937 DESC_PRINT(le16toh(desc->sk_rsvd0));
2938 DESC_PRINT(le16toh(desc->sk_csum_startval));
2939 DESC_PRINT(le16toh(desc->sk_csum_startpos));
2940 DESC_PRINT(le16toh(desc->sk_csum_writepos));
2941 DESC_PRINT(le16toh(desc->sk_rsvd1));
2942 #undef PRINT
2943 }
2944
2945 void
2946 sk_dump_bytes(const char *data, int len)
2947 {
2948 int c, i, j;
2949
2950 for (i = 0; i < len; i += 16) {
2951 printf("%08x ", i);
2952 c = len - i;
2953 if (c > 16) c = 16;
2954
2955 for (j = 0; j < c; j++) {
2956 printf("%02x ", data[i + j] & 0xff);
2957 if ((j & 0xf) == 7 && j > 0)
2958 printf(" ");
2959 }
2960
2961 for (; j < 16; j++)
2962 printf(" ");
2963 printf(" ");
2964
2965 for (j = 0; j < c; j++) {
2966 int ch = data[i + j] & 0xff;
2967 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2968 }
2969
2970 printf("\n");
2971
2972 if (c < 16)
2973 break;
2974 }
2975 }
2976
2977 void
2978 sk_dump_mbuf(struct mbuf *m)
2979 {
2980 int count = m->m_pkthdr.len;
2981
2982 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2983
2984 while (count > 0 && m) {
2985 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2986 m, m->m_data, m->m_len);
2987 sk_dump_bytes(mtod(m, char *), m->m_len);
2988
2989 count -= m->m_len;
2990 m = m->m_next;
2991 }
2992 }
2993 #endif
2994
2995 static int
2996 sk_sysctl_handler(SYSCTLFN_ARGS)
2997 {
2998 int error, t;
2999 struct sysctlnode node;
3000 struct sk_softc *sc;
3001
3002 node = *rnode;
3003 sc = node.sysctl_data;
3004 t = sc->sk_int_mod;
3005 node.sysctl_data = &t;
3006 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3007 if (error || newp == NULL)
3008 return error;
3009
3010 if (t < SK_IM_MIN || t > SK_IM_MAX)
3011 return EINVAL;
3012
3013 /* update the softc with sysctl-changed value, and mark
3014 for hardware update */
3015 sc->sk_int_mod = t;
3016 sc->sk_int_mod_pending = 1;
3017 return 0;
3018 }
3019
3020 /*
3021 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3022 * set up in skc_attach()
3023 */
3024 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3025 {
3026 int rc;
3027 const struct sysctlnode *node;
3028
3029 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3030 0, CTLTYPE_NODE, "hw", NULL,
3031 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3032 goto err;
3033 }
3034
3035 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3036 0, CTLTYPE_NODE, "sk",
3037 SYSCTL_DESCR("sk interface controls"),
3038 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3039 goto err;
3040 }
3041
3042 sk_root_num = node->sysctl_num;
3043 return;
3044
3045 err:
3046 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3047 }
3048