if_sk.c revision 1.49.2.2 1 /* $NetBSD: if_sk.c,v 1.49.2.2 2008/09/24 16:38:53 wrstuden Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
30
31 /*
32 * Copyright (c) 1997, 1998, 1999, 2000
33 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by Bill Paul.
46 * 4. Neither the name of the author nor the names of any co-contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60 * THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63 */
64
65 /*
66 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
67 *
68 * Permission to use, copy, modify, and distribute this software for any
69 * purpose with or without fee is hereby granted, provided that the above
70 * copyright notice and this permission notice appear in all copies.
71 *
72 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79 */
80
81 /*
82 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83 * the SK-984x series adapters, both single port and dual port.
84 * References:
85 * The XaQti XMAC II datasheet,
86 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87 * The SysKonnect GEnesis manual, http://www.syskonnect.com
88 *
89 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91 * convenience to others until Vitesse corrects this problem:
92 *
93 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 *
95 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
96 * Department of Electrical Engineering
97 * Columbia University, New York City
98 */
99
100 /*
101 * The SysKonnect gigabit ethernet adapters consist of two main
102 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104 * components and a PHY while the GEnesis controller provides a PCI
105 * interface with DMA support. Each card may have between 512K and
106 * 2MB of SRAM on board depending on the configuration.
107 *
108 * The SysKonnect GEnesis controller can have either one or two XMAC
109 * chips connected to it, allowing single or dual port NIC configurations.
110 * SysKonnect has the distinction of being the only vendor on the market
111 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113 * XMAC registers. This driver takes advantage of these features to allow
114 * both XMACs to operate as independent interfaces.
115 */
116
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.49.2.2 2008/09/24 16:38:53 wrstuden Exp $");
119
120 #include "bpfilter.h"
121 #include "rnd.h"
122
123 #include <sys/param.h>
124 #include <sys/systm.h>
125 #include <sys/sockio.h>
126 #include <sys/mbuf.h>
127 #include <sys/malloc.h>
128 #include <sys/mutex.h>
129 #include <sys/kernel.h>
130 #include <sys/socket.h>
131 #include <sys/device.h>
132 #include <sys/queue.h>
133 #include <sys/callout.h>
134 #include <sys/sysctl.h>
135 #include <sys/endian.h>
136
137 #include <net/if.h>
138 #include <net/if_dl.h>
139 #include <net/if_types.h>
140
141 #include <net/if_media.h>
142
143 #if NBPFILTER > 0
144 #include <net/bpf.h>
145 #endif
146 #if NRND > 0
147 #include <sys/rnd.h>
148 #endif
149
150 #include <dev/mii/mii.h>
151 #include <dev/mii/miivar.h>
152 #include <dev/mii/brgphyreg.h>
153
154 #include <dev/pci/pcireg.h>
155 #include <dev/pci/pcivar.h>
156 #include <dev/pci/pcidevs.h>
157
158 /* #define SK_USEIOSPACE */
159
160 #include <dev/pci/if_skreg.h>
161 #include <dev/pci/if_skvar.h>
162
163 int skc_probe(device_t, cfdata_t, void *);
164 void skc_attach(device_t, device_t, void *aux);
165 int sk_probe(device_t, cfdata_t, void *);
166 void sk_attach(device_t, device_t, void *aux);
167 int skcprint(void *, const char *);
168 int sk_intr(void *);
169 void sk_intr_bcom(struct sk_if_softc *);
170 void sk_intr_xmac(struct sk_if_softc *);
171 void sk_intr_yukon(struct sk_if_softc *);
172 void sk_rxeof(struct sk_if_softc *);
173 void sk_txeof(struct sk_if_softc *);
174 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
175 void sk_start(struct ifnet *);
176 int sk_ioctl(struct ifnet *, u_long, void *);
177 int sk_init(struct ifnet *);
178 void sk_init_xmac(struct sk_if_softc *);
179 void sk_init_yukon(struct sk_if_softc *);
180 void sk_stop(struct ifnet *, int);
181 void sk_watchdog(struct ifnet *);
182 void sk_shutdown(void *);
183 int sk_ifmedia_upd(struct ifnet *);
184 void sk_reset(struct sk_softc *);
185 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
186 int sk_alloc_jumbo_mem(struct sk_if_softc *);
187 void sk_free_jumbo_mem(struct sk_if_softc *);
188 void *sk_jalloc(struct sk_if_softc *);
189 void sk_jfree(struct mbuf *, void *, size_t, void *);
190 int sk_init_rx_ring(struct sk_if_softc *);
191 int sk_init_tx_ring(struct sk_if_softc *);
192 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
193 void sk_vpd_read_res(struct sk_softc *,
194 struct vpd_res *, int);
195 void sk_vpd_read(struct sk_softc *);
196
197 void sk_update_int_mod(struct sk_softc *);
198
199 int sk_xmac_miibus_readreg(device_t, int, int);
200 void sk_xmac_miibus_writereg(device_t, int, int, int);
201 void sk_xmac_miibus_statchg(device_t);
202
203 int sk_marv_miibus_readreg(device_t, int, int);
204 void sk_marv_miibus_writereg(device_t, int, int, int);
205 void sk_marv_miibus_statchg(device_t);
206
207 u_int32_t sk_xmac_hash(void *);
208 u_int32_t sk_yukon_hash(void *);
209 void sk_setfilt(struct sk_if_softc *, void *, int);
210 void sk_setmulti(struct sk_if_softc *);
211 void sk_tick(void *);
212
213 /* #define SK_DEBUG 2 */
214 #ifdef SK_DEBUG
215 #define DPRINTF(x) if (skdebug) printf x
216 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
217 int skdebug = SK_DEBUG;
218
219 void sk_dump_txdesc(struct sk_tx_desc *, int);
220 void sk_dump_mbuf(struct mbuf *);
221 void sk_dump_bytes(const char *, int);
222 #else
223 #define DPRINTF(x)
224 #define DPRINTFN(n,x)
225 #endif
226
227 static int sk_sysctl_handler(SYSCTLFN_PROTO);
228 static int sk_root_num;
229
230 /* supported device vendors */
231 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
232 static const struct sk_product {
233 pci_vendor_id_t sk_vendor;
234 pci_product_id_t sk_product;
235 } sk_products[] = {
236 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
237 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
238 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
239 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
240 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
241 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
242 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
243 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
244 { 0, 0, }
245 };
246
247 #define SK_LINKSYS_EG1032_SUBID 0x00151737
248
249 static inline u_int32_t
250 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
251 {
252 #ifdef SK_USEIOSPACE
253 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
254 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
255 #else
256 return CSR_READ_4(sc, reg);
257 #endif
258 }
259
260 static inline u_int16_t
261 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
262 {
263 #ifdef SK_USEIOSPACE
264 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
265 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
266 #else
267 return CSR_READ_2(sc, reg);
268 #endif
269 }
270
271 static inline u_int8_t
272 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
273 {
274 #ifdef SK_USEIOSPACE
275 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
276 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
277 #else
278 return CSR_READ_1(sc, reg);
279 #endif
280 }
281
282 static inline void
283 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
284 {
285 #ifdef SK_USEIOSPACE
286 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
287 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
288 #else
289 CSR_WRITE_4(sc, reg, x);
290 #endif
291 }
292
293 static inline void
294 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
295 {
296 #ifdef SK_USEIOSPACE
297 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
298 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
299 #else
300 CSR_WRITE_2(sc, reg, x);
301 #endif
302 }
303
304 static inline void
305 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
306 {
307 #ifdef SK_USEIOSPACE
308 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
309 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
310 #else
311 CSR_WRITE_1(sc, reg, x);
312 #endif
313 }
314
315 /*
316 * The VPD EEPROM contains Vital Product Data, as suggested in
317 * the PCI 2.1 specification. The VPD data is separared into areas
318 * denoted by resource IDs. The SysKonnect VPD contains an ID string
319 * resource (the name of the adapter), a read-only area resource
320 * containing various key/data fields and a read/write area which
321 * can be used to store asset management information or log messages.
322 * We read the ID string and read-only into buffers attached to
323 * the controller softc structure for later use. At the moment,
324 * we only use the ID string during sk_attach().
325 */
326 u_int8_t
327 sk_vpd_readbyte(struct sk_softc *sc, int addr)
328 {
329 int i;
330
331 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
332 for (i = 0; i < SK_TIMEOUT; i++) {
333 DELAY(1);
334 if (sk_win_read_2(sc,
335 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
336 break;
337 }
338
339 if (i == SK_TIMEOUT)
340 return 0;
341
342 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
343 }
344
345 void
346 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
347 {
348 int i;
349 u_int8_t *ptr;
350
351 ptr = (u_int8_t *)res;
352 for (i = 0; i < sizeof(struct vpd_res); i++)
353 ptr[i] = sk_vpd_readbyte(sc, i + addr);
354 }
355
356 void
357 sk_vpd_read(struct sk_softc *sc)
358 {
359 int pos = 0, i;
360 struct vpd_res res;
361
362 if (sc->sk_vpd_prodname != NULL)
363 free(sc->sk_vpd_prodname, M_DEVBUF);
364 if (sc->sk_vpd_readonly != NULL)
365 free(sc->sk_vpd_readonly, M_DEVBUF);
366 sc->sk_vpd_prodname = NULL;
367 sc->sk_vpd_readonly = NULL;
368
369 sk_vpd_read_res(sc, &res, pos);
370
371 if (res.vr_id != VPD_RES_ID) {
372 aprint_error_dev(sc->sk_dev,
373 "bad VPD resource id: expected %x got %x\n",
374 VPD_RES_ID, res.vr_id);
375 return;
376 }
377
378 pos += sizeof(res);
379 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
380 if (sc->sk_vpd_prodname == NULL)
381 panic("sk_vpd_read");
382 for (i = 0; i < res.vr_len; i++)
383 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
384 sc->sk_vpd_prodname[i] = '\0';
385 pos += i;
386
387 sk_vpd_read_res(sc, &res, pos);
388
389 if (res.vr_id != VPD_RES_READ) {
390 aprint_error_dev(sc->sk_dev,
391 "bad VPD resource id: expected %x got %x\n",
392 VPD_RES_READ, res.vr_id);
393 return;
394 }
395
396 pos += sizeof(res);
397 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
398 if (sc->sk_vpd_readonly == NULL)
399 panic("sk_vpd_read");
400 for (i = 0; i < res.vr_len ; i++)
401 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
402 }
403
404 int
405 sk_xmac_miibus_readreg(device_t dev, int phy, int reg)
406 {
407 struct sk_if_softc *sc_if = device_private(dev);
408 int i;
409
410 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
411
412 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
413 return 0;
414
415 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
416 SK_XM_READ_2(sc_if, XM_PHY_DATA);
417 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
418 for (i = 0; i < SK_TIMEOUT; i++) {
419 DELAY(1);
420 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
421 XM_MMUCMD_PHYDATARDY)
422 break;
423 }
424
425 if (i == SK_TIMEOUT) {
426 aprint_error_dev(sc_if->sk_dev,
427 "phy failed to come ready\n");
428 return 0;
429 }
430 }
431 DELAY(1);
432 return SK_XM_READ_2(sc_if, XM_PHY_DATA);
433 }
434
435 void
436 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, int val)
437 {
438 struct sk_if_softc *sc_if = device_private(dev);
439 int i;
440
441 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
442
443 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
444 for (i = 0; i < SK_TIMEOUT; i++) {
445 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
446 break;
447 }
448
449 if (i == SK_TIMEOUT) {
450 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
451 return;
452 }
453
454 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
455 for (i = 0; i < SK_TIMEOUT; i++) {
456 DELAY(1);
457 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
458 break;
459 }
460
461 if (i == SK_TIMEOUT)
462 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
463 }
464
465 void
466 sk_xmac_miibus_statchg(device_t dev)
467 {
468 struct sk_if_softc *sc_if = device_private(dev);
469 struct mii_data *mii = &sc_if->sk_mii;
470
471 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
472
473 /*
474 * If this is a GMII PHY, manually set the XMAC's
475 * duplex mode accordingly.
476 */
477 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
478 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
479 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
480 else
481 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
482 }
483 }
484
485 int
486 sk_marv_miibus_readreg(device_t dev, int phy, int reg)
487 {
488 struct sk_if_softc *sc_if = device_private(dev);
489 u_int16_t val;
490 int i;
491
492 if (phy != 0 ||
493 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
494 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
495 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
496 phy, reg));
497 return 0;
498 }
499
500 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
501 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
502
503 for (i = 0; i < SK_TIMEOUT; i++) {
504 DELAY(1);
505 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
506 if (val & YU_SMICR_READ_VALID)
507 break;
508 }
509
510 if (i == SK_TIMEOUT) {
511 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
512 return 0;
513 }
514
515 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
516 SK_TIMEOUT));
517
518 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
519
520 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
521 phy, reg, val));
522
523 return val;
524 }
525
526 void
527 sk_marv_miibus_writereg(device_t dev, int phy, int reg, int val)
528 {
529 struct sk_if_softc *sc_if = device_private(dev);
530 int i;
531
532 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
533 phy, reg, val));
534
535 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
536 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
537 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
538
539 for (i = 0; i < SK_TIMEOUT; i++) {
540 DELAY(1);
541 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
542 break;
543 }
544
545 if (i == SK_TIMEOUT)
546 printf("%s: phy write timed out\n",
547 device_xname(sc_if->sk_dev));
548 }
549
550 void
551 sk_marv_miibus_statchg(device_t dev)
552 {
553 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
554 SK_YU_READ_2(((struct sk_if_softc *)device_private(dev)),
555 YUKON_GPCR)));
556 }
557
558 #define SK_HASH_BITS 6
559
560 u_int32_t
561 sk_xmac_hash(void *addr)
562 {
563 u_int32_t crc;
564
565 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
566 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
567 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
568 return crc;
569 }
570
571 u_int32_t
572 sk_yukon_hash(void *addr)
573 {
574 u_int32_t crc;
575
576 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
577 crc &= ((1 << SK_HASH_BITS) - 1);
578 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
579 return crc;
580 }
581
582 void
583 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
584 {
585 char *addr = addrv;
586 int base = XM_RXFILT_ENTRY(slot);
587
588 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
589 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
590 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
591 }
592
593 void
594 sk_setmulti(struct sk_if_softc *sc_if)
595 {
596 struct sk_softc *sc = sc_if->sk_softc;
597 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
598 u_int32_t hashes[2] = { 0, 0 };
599 int h = 0, i;
600 struct ethercom *ec = &sc_if->sk_ethercom;
601 struct ether_multi *enm;
602 struct ether_multistep step;
603 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
604
605 /* First, zot all the existing filters. */
606 switch (sc->sk_type) {
607 case SK_GENESIS:
608 for (i = 1; i < XM_RXFILT_MAX; i++)
609 sk_setfilt(sc_if, (void *)&dummy, i);
610
611 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
612 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
613 break;
614 case SK_YUKON:
615 case SK_YUKON_LITE:
616 case SK_YUKON_LP:
617 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
618 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
619 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
620 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
621 break;
622 }
623
624 /* Now program new ones. */
625 allmulti:
626 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
627 hashes[0] = 0xFFFFFFFF;
628 hashes[1] = 0xFFFFFFFF;
629 } else {
630 i = 1;
631 /* First find the tail of the list. */
632 ETHER_FIRST_MULTI(step, ec, enm);
633 while (enm != NULL) {
634 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
635 ETHER_ADDR_LEN)) {
636 ifp->if_flags |= IFF_ALLMULTI;
637 goto allmulti;
638 }
639 DPRINTFN(2,("multicast address %s\n",
640 ether_sprintf(enm->enm_addrlo)));
641 /*
642 * Program the first XM_RXFILT_MAX multicast groups
643 * into the perfect filter. For all others,
644 * use the hash table.
645 */
646 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
647 sk_setfilt(sc_if, enm->enm_addrlo, i);
648 i++;
649 }
650 else {
651 switch (sc->sk_type) {
652 case SK_GENESIS:
653 h = sk_xmac_hash(enm->enm_addrlo);
654 break;
655 case SK_YUKON:
656 case SK_YUKON_LITE:
657 case SK_YUKON_LP:
658 h = sk_yukon_hash(enm->enm_addrlo);
659 break;
660 }
661 if (h < 32)
662 hashes[0] |= (1 << h);
663 else
664 hashes[1] |= (1 << (h - 32));
665 }
666
667 ETHER_NEXT_MULTI(step, enm);
668 }
669 }
670
671 switch (sc->sk_type) {
672 case SK_GENESIS:
673 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
674 XM_MODE_RX_USE_PERFECT);
675 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
676 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
677 break;
678 case SK_YUKON:
679 case SK_YUKON_LITE:
680 case SK_YUKON_LP:
681 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
682 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
683 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
684 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
685 break;
686 }
687 }
688
689 int
690 sk_init_rx_ring(struct sk_if_softc *sc_if)
691 {
692 struct sk_chain_data *cd = &sc_if->sk_cdata;
693 struct sk_ring_data *rd = sc_if->sk_rdata;
694 int i;
695
696 bzero((char *)rd->sk_rx_ring,
697 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
698
699 for (i = 0; i < SK_RX_RING_CNT; i++) {
700 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
701 if (i == (SK_RX_RING_CNT - 1)) {
702 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
703 rd->sk_rx_ring[i].sk_next =
704 htole32(SK_RX_RING_ADDR(sc_if, 0));
705 } else {
706 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
707 rd->sk_rx_ring[i].sk_next =
708 htole32(SK_RX_RING_ADDR(sc_if,i+1));
709 }
710 }
711
712 for (i = 0; i < SK_RX_RING_CNT; i++) {
713 if (sk_newbuf(sc_if, i, NULL,
714 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
715 aprint_error_dev(sc_if->sk_dev,
716 "failed alloc of %dth mbuf\n", i);
717 return ENOBUFS;
718 }
719 }
720 sc_if->sk_cdata.sk_rx_prod = 0;
721 sc_if->sk_cdata.sk_rx_cons = 0;
722
723 return 0;
724 }
725
726 int
727 sk_init_tx_ring(struct sk_if_softc *sc_if)
728 {
729 struct sk_chain_data *cd = &sc_if->sk_cdata;
730 struct sk_ring_data *rd = sc_if->sk_rdata;
731 int i;
732
733 memset(sc_if->sk_rdata->sk_tx_ring, 0,
734 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
735
736 for (i = 0; i < SK_TX_RING_CNT; i++) {
737 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
738 if (i == (SK_TX_RING_CNT - 1)) {
739 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
740 rd->sk_tx_ring[i].sk_next =
741 htole32(SK_TX_RING_ADDR(sc_if, 0));
742 } else {
743 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
744 rd->sk_tx_ring[i].sk_next =
745 htole32(SK_TX_RING_ADDR(sc_if,i+1));
746 }
747 }
748
749 sc_if->sk_cdata.sk_tx_prod = 0;
750 sc_if->sk_cdata.sk_tx_cons = 0;
751 sc_if->sk_cdata.sk_tx_cnt = 0;
752
753 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
754 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
755
756 return 0;
757 }
758
759 int
760 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
761 bus_dmamap_t dmamap)
762 {
763 struct mbuf *m_new = NULL;
764 struct sk_chain *c;
765 struct sk_rx_desc *r;
766
767 if (m == NULL) {
768 void *buf = NULL;
769
770 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
771 if (m_new == NULL) {
772 aprint_error_dev(sc_if->sk_dev,
773 "no memory for rx list -- packet dropped!\n");
774 return ENOBUFS;
775 }
776
777 /* Allocate the jumbo buffer */
778 buf = sk_jalloc(sc_if);
779 if (buf == NULL) {
780 m_freem(m_new);
781 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
782 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
783 return ENOBUFS;
784 }
785
786 /* Attach the buffer to the mbuf */
787 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
788 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
789
790 } else {
791 /*
792 * We're re-using a previously allocated mbuf;
793 * be sure to re-init pointers and lengths to
794 * default values.
795 */
796 m_new = m;
797 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
798 m_new->m_data = m_new->m_ext.ext_buf;
799 }
800 m_adj(m_new, ETHER_ALIGN);
801
802 c = &sc_if->sk_cdata.sk_rx_chain[i];
803 r = c->sk_desc;
804 c->sk_mbuf = m_new;
805 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
806 (((vaddr_t)m_new->m_data
807 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
808 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
809
810 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
811
812 return 0;
813 }
814
815 /*
816 * Memory management for jumbo frames.
817 */
818
819 int
820 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
821 {
822 struct sk_softc *sc = sc_if->sk_softc;
823 char *ptr, *kva;
824 bus_dma_segment_t seg;
825 int i, rseg, state, error;
826 struct sk_jpool_entry *entry;
827
828 state = error = 0;
829
830 /* Grab a big chunk o' storage. */
831 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
832 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
833 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
834 return ENOBUFS;
835 }
836
837 state = 1;
838 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
839 BUS_DMA_NOWAIT)) {
840 aprint_error_dev(sc->sk_dev,
841 "can't map dma buffers (%d bytes)\n",
842 SK_JMEM);
843 error = ENOBUFS;
844 goto out;
845 }
846
847 state = 2;
848 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
849 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
850 aprint_error_dev(sc->sk_dev, "can't create dma map\n");
851 error = ENOBUFS;
852 goto out;
853 }
854
855 state = 3;
856 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
857 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
858 aprint_error_dev(sc->sk_dev, "can't load dma map\n");
859 error = ENOBUFS;
860 goto out;
861 }
862
863 state = 4;
864 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
865 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
866
867 LIST_INIT(&sc_if->sk_jfree_listhead);
868 LIST_INIT(&sc_if->sk_jinuse_listhead);
869 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
870
871 /*
872 * Now divide it up into 9K pieces and save the addresses
873 * in an array.
874 */
875 ptr = sc_if->sk_cdata.sk_jumbo_buf;
876 for (i = 0; i < SK_JSLOTS; i++) {
877 sc_if->sk_cdata.sk_jslots[i] = ptr;
878 ptr += SK_JLEN;
879 entry = malloc(sizeof(struct sk_jpool_entry),
880 M_DEVBUF, M_NOWAIT);
881 if (entry == NULL) {
882 aprint_error_dev(sc->sk_dev,
883 "no memory for jumbo buffer queue!\n");
884 error = ENOBUFS;
885 goto out;
886 }
887 entry->slot = i;
888 if (i)
889 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
890 entry, jpool_entries);
891 else
892 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
893 entry, jpool_entries);
894 }
895 out:
896 if (error != 0) {
897 switch (state) {
898 case 4:
899 bus_dmamap_unload(sc->sc_dmatag,
900 sc_if->sk_cdata.sk_rx_jumbo_map);
901 case 3:
902 bus_dmamap_destroy(sc->sc_dmatag,
903 sc_if->sk_cdata.sk_rx_jumbo_map);
904 case 2:
905 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
906 case 1:
907 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
908 break;
909 default:
910 break;
911 }
912 }
913
914 return error;
915 }
916
917 /*
918 * Allocate a jumbo buffer.
919 */
920 void *
921 sk_jalloc(struct sk_if_softc *sc_if)
922 {
923 struct sk_jpool_entry *entry;
924
925 mutex_enter(&sc_if->sk_jpool_mtx);
926 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
927
928 if (entry == NULL) {
929 mutex_exit(&sc_if->sk_jpool_mtx);
930 return NULL;
931 }
932
933 LIST_REMOVE(entry, jpool_entries);
934 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
935 mutex_exit(&sc_if->sk_jpool_mtx);
936 return sc_if->sk_cdata.sk_jslots[entry->slot];
937 }
938
939 /*
940 * Release a jumbo buffer.
941 */
942 void
943 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
944 {
945 struct sk_jpool_entry *entry;
946 struct sk_if_softc *sc;
947 int i;
948
949 /* Extract the softc struct pointer. */
950 sc = (struct sk_if_softc *)arg;
951
952 if (sc == NULL)
953 panic("sk_jfree: can't find softc pointer!");
954
955 /* calculate the slot this buffer belongs to */
956
957 i = ((vaddr_t)buf
958 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
959
960 if ((i < 0) || (i >= SK_JSLOTS))
961 panic("sk_jfree: asked to free buffer that we don't manage!");
962
963 mutex_enter(&sc->sk_jpool_mtx);
964 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
965 if (entry == NULL)
966 panic("sk_jfree: buffer not in use!");
967 entry->slot = i;
968 LIST_REMOVE(entry, jpool_entries);
969 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
970 mutex_exit(&sc->sk_jpool_mtx);
971
972 if (__predict_true(m != NULL))
973 pool_cache_put(mb_cache, m);
974 }
975
976 /*
977 * Set media options.
978 */
979 int
980 sk_ifmedia_upd(struct ifnet *ifp)
981 {
982 struct sk_if_softc *sc_if = ifp->if_softc;
983 int rc;
984
985 (void) sk_init(ifp);
986 if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
987 return 0;
988 return rc;
989 }
990
991 int
992 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
993 {
994 struct sk_if_softc *sc_if = ifp->if_softc;
995 struct sk_softc *sc = sc_if->sk_softc;
996 int s, error = 0;
997
998 /* DPRINTFN(2, ("sk_ioctl\n")); */
999
1000 s = splnet();
1001
1002 switch (command) {
1003
1004 case SIOCSIFFLAGS:
1005 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1006 if (ifp->if_flags & IFF_UP) {
1007 if (ifp->if_flags & IFF_RUNNING &&
1008 ifp->if_flags & IFF_PROMISC &&
1009 !(sc_if->sk_if_flags & IFF_PROMISC)) {
1010 switch (sc->sk_type) {
1011 case SK_GENESIS:
1012 SK_XM_SETBIT_4(sc_if, XM_MODE,
1013 XM_MODE_RX_PROMISC);
1014 break;
1015 case SK_YUKON:
1016 case SK_YUKON_LITE:
1017 case SK_YUKON_LP:
1018 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1019 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1020 break;
1021 }
1022 sk_setmulti(sc_if);
1023 } else if (ifp->if_flags & IFF_RUNNING &&
1024 !(ifp->if_flags & IFF_PROMISC) &&
1025 sc_if->sk_if_flags & IFF_PROMISC) {
1026 switch (sc->sk_type) {
1027 case SK_GENESIS:
1028 SK_XM_CLRBIT_4(sc_if, XM_MODE,
1029 XM_MODE_RX_PROMISC);
1030 break;
1031 case SK_YUKON:
1032 case SK_YUKON_LITE:
1033 case SK_YUKON_LP:
1034 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1035 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1036 break;
1037 }
1038
1039 sk_setmulti(sc_if);
1040 } else
1041 (void) sk_init(ifp);
1042 } else {
1043 if (ifp->if_flags & IFF_RUNNING)
1044 sk_stop(ifp,0);
1045 }
1046 sc_if->sk_if_flags = ifp->if_flags;
1047 error = 0;
1048 break;
1049
1050 default:
1051 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1052 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1053 break;
1054
1055 error = 0;
1056
1057 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1058 ;
1059 else if (ifp->if_flags & IFF_RUNNING) {
1060 sk_setmulti(sc_if);
1061 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1062 }
1063 break;
1064 }
1065
1066 splx(s);
1067 return error;
1068 }
1069
1070 void
1071 sk_update_int_mod(struct sk_softc *sc)
1072 {
1073 u_int32_t imtimer_ticks;
1074
1075 /*
1076 * Configure interrupt moderation. The moderation timer
1077 * defers interrupts specified in the interrupt moderation
1078 * timer mask based on the timeout specified in the interrupt
1079 * moderation timer init register. Each bit in the timer
1080 * register represents one tick, so to specify a timeout in
1081 * microseconds, we have to multiply by the correct number of
1082 * ticks-per-microsecond.
1083 */
1084 switch (sc->sk_type) {
1085 case SK_GENESIS:
1086 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1087 break;
1088 case SK_YUKON_EC:
1089 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1090 break;
1091 default:
1092 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1093 }
1094 aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
1095 sc->sk_int_mod);
1096 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1097 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1098 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1099 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1100 sc->sk_int_mod_pending = 0;
1101 }
1102
1103 /*
1104 * Lookup: Check the PCI vendor and device, and return a pointer to
1105 * The structure if the IDs match against our list.
1106 */
1107
1108 static const struct sk_product *
1109 sk_lookup(const struct pci_attach_args *pa)
1110 {
1111 const struct sk_product *psk;
1112
1113 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1114 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1115 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1116 return psk;
1117 }
1118 return NULL;
1119 }
1120
1121 /*
1122 * Probe for a SysKonnect GEnesis chip.
1123 */
1124
1125 int
1126 skc_probe(device_t parent, cfdata_t match, void *aux)
1127 {
1128 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1129 const struct sk_product *psk;
1130 pcireg_t subid;
1131
1132 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1133
1134 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1135 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1136 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1137 subid == SK_LINKSYS_EG1032_SUBID)
1138 return 1;
1139
1140 if ((psk = sk_lookup(pa))) {
1141 return 1;
1142 }
1143 return 0;
1144 }
1145
1146 /*
1147 * Force the GEnesis into reset, then bring it out of reset.
1148 */
1149 void sk_reset(struct sk_softc *sc)
1150 {
1151 DPRINTFN(2, ("sk_reset\n"));
1152
1153 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1154 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1155 if (SK_YUKON_FAMILY(sc->sk_type))
1156 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1157
1158 DELAY(1000);
1159 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1160 DELAY(2);
1161 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1162 if (SK_YUKON_FAMILY(sc->sk_type))
1163 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1164
1165 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1166 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1167 CSR_READ_2(sc, SK_LINK_CTRL)));
1168
1169 if (sc->sk_type == SK_GENESIS) {
1170 /* Configure packet arbiter */
1171 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1172 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1173 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1174 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1175 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1176 }
1177
1178 /* Enable RAM interface */
1179 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1180
1181 sk_update_int_mod(sc);
1182 }
1183
1184 int
1185 sk_probe(device_t parent, cfdata_t match, void *aux)
1186 {
1187 struct skc_attach_args *sa = aux;
1188
1189 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1190 return 0;
1191
1192 return 1;
1193 }
1194
1195 /*
1196 * Each XMAC chip is attached as a separate logical IP interface.
1197 * Single port cards will have only one logical interface of course.
1198 */
1199 void
1200 sk_attach(device_t parent, device_t self, void *aux)
1201 {
1202 struct sk_if_softc *sc_if = device_private(self);
1203 struct sk_softc *sc = device_private(parent);
1204 struct skc_attach_args *sa = aux;
1205 struct sk_txmap_entry *entry;
1206 struct ifnet *ifp;
1207 bus_dma_segment_t seg;
1208 bus_dmamap_t dmamap;
1209 void *kva;
1210 int i, rseg;
1211
1212 aprint_naive("\n");
1213
1214 sc_if->sk_dev = self;
1215 sc_if->sk_port = sa->skc_port;
1216 sc_if->sk_softc = sc;
1217 sc->sk_if[sa->skc_port] = sc_if;
1218
1219 if (sa->skc_port == SK_PORT_A)
1220 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1221 if (sa->skc_port == SK_PORT_B)
1222 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1223
1224 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1225
1226 /*
1227 * Get station address for this interface. Note that
1228 * dual port cards actually come with three station
1229 * addresses: one for each port, plus an extra. The
1230 * extra one is used by the SysKonnect driver software
1231 * as a 'virtual' station address for when both ports
1232 * are operating in failover mode. Currently we don't
1233 * use this extra address.
1234 */
1235 for (i = 0; i < ETHER_ADDR_LEN; i++)
1236 sc_if->sk_enaddr[i] =
1237 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1238
1239
1240 aprint_normal(": Ethernet address %s\n",
1241 ether_sprintf(sc_if->sk_enaddr));
1242
1243 /*
1244 * Set up RAM buffer addresses. The NIC will have a certain
1245 * amount of SRAM on it, somewhere between 512K and 2MB. We
1246 * need to divide this up a) between the transmitter and
1247 * receiver and b) between the two XMACs, if this is a
1248 * dual port NIC. Our algorithm is to divide up the memory
1249 * evenly so that everyone gets a fair share.
1250 */
1251 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1252 u_int32_t chunk, val;
1253
1254 chunk = sc->sk_ramsize / 2;
1255 val = sc->sk_rboff / sizeof(u_int64_t);
1256 sc_if->sk_rx_ramstart = val;
1257 val += (chunk / sizeof(u_int64_t));
1258 sc_if->sk_rx_ramend = val - 1;
1259 sc_if->sk_tx_ramstart = val;
1260 val += (chunk / sizeof(u_int64_t));
1261 sc_if->sk_tx_ramend = val - 1;
1262 } else {
1263 u_int32_t chunk, val;
1264
1265 chunk = sc->sk_ramsize / 4;
1266 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1267 sizeof(u_int64_t);
1268 sc_if->sk_rx_ramstart = val;
1269 val += (chunk / sizeof(u_int64_t));
1270 sc_if->sk_rx_ramend = val - 1;
1271 sc_if->sk_tx_ramstart = val;
1272 val += (chunk / sizeof(u_int64_t));
1273 sc_if->sk_tx_ramend = val - 1;
1274 }
1275
1276 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1277 " tx_ramstart=%#x tx_ramend=%#x\n",
1278 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1279 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1280
1281 /* Read and save PHY type and set PHY address */
1282 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1283 switch (sc_if->sk_phytype) {
1284 case SK_PHYTYPE_XMAC:
1285 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1286 break;
1287 case SK_PHYTYPE_BCOM:
1288 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1289 break;
1290 case SK_PHYTYPE_MARV_COPPER:
1291 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1292 break;
1293 default:
1294 aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
1295 sc_if->sk_phytype);
1296 return;
1297 }
1298
1299 /* Allocate the descriptor queues. */
1300 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1301 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1302 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
1303 goto fail;
1304 }
1305 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1306 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1307 aprint_error_dev(sc_if->sk_dev,
1308 "can't map dma buffers (%lu bytes)\n",
1309 (u_long) sizeof(struct sk_ring_data));
1310 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1311 goto fail;
1312 }
1313 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1314 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1315 &sc_if->sk_ring_map)) {
1316 aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
1317 bus_dmamem_unmap(sc->sc_dmatag, kva,
1318 sizeof(struct sk_ring_data));
1319 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1320 goto fail;
1321 }
1322 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1323 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1324 aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
1325 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1326 bus_dmamem_unmap(sc->sc_dmatag, kva,
1327 sizeof(struct sk_ring_data));
1328 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1329 goto fail;
1330 }
1331
1332 for (i = 0; i < SK_RX_RING_CNT; i++)
1333 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1334
1335 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1336 for (i = 0; i < SK_TX_RING_CNT; i++) {
1337 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1338
1339 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1340 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1341 aprint_error_dev(sc_if->sk_dev,
1342 "Can't create TX dmamap\n");
1343 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1344 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1345 bus_dmamem_unmap(sc->sc_dmatag, kva,
1346 sizeof(struct sk_ring_data));
1347 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1348 goto fail;
1349 }
1350
1351 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1352 if (!entry) {
1353 aprint_error_dev(sc_if->sk_dev,
1354 "Can't alloc txmap entry\n");
1355 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1356 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1357 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1358 bus_dmamem_unmap(sc->sc_dmatag, kva,
1359 sizeof(struct sk_ring_data));
1360 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1361 goto fail;
1362 }
1363 entry->dmamap = dmamap;
1364 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1365 }
1366
1367 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1368 bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1369
1370 ifp = &sc_if->sk_ethercom.ec_if;
1371 /* Try to allocate memory for jumbo buffers. */
1372 if (sk_alloc_jumbo_mem(sc_if)) {
1373 aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1374 goto fail;
1375 }
1376 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1377 | ETHERCAP_JUMBO_MTU;
1378
1379 ifp->if_softc = sc_if;
1380 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1381 ifp->if_ioctl = sk_ioctl;
1382 ifp->if_start = sk_start;
1383 ifp->if_stop = sk_stop;
1384 ifp->if_init = sk_init;
1385 ifp->if_watchdog = sk_watchdog;
1386 ifp->if_capabilities = 0;
1387 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1388 IFQ_SET_READY(&ifp->if_snd);
1389 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1390
1391 /*
1392 * Do miibus setup.
1393 */
1394 switch (sc->sk_type) {
1395 case SK_GENESIS:
1396 sk_init_xmac(sc_if);
1397 break;
1398 case SK_YUKON:
1399 case SK_YUKON_LITE:
1400 case SK_YUKON_LP:
1401 sk_init_yukon(sc_if);
1402 break;
1403 default:
1404 aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
1405 sc->sk_type);
1406 goto fail;
1407 }
1408
1409 DPRINTFN(2, ("sk_attach: 1\n"));
1410
1411 sc_if->sk_mii.mii_ifp = ifp;
1412 switch (sc->sk_type) {
1413 case SK_GENESIS:
1414 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1415 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1416 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1417 break;
1418 case SK_YUKON:
1419 case SK_YUKON_LITE:
1420 case SK_YUKON_LP:
1421 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1422 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1423 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1424 break;
1425 }
1426
1427 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1428 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1429 sk_ifmedia_upd, ether_mediastatus);
1430 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1431 MII_OFFSET_ANY, 0);
1432 if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
1433 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1434 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1435 0, NULL);
1436 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1437 } else
1438 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1439
1440 callout_init(&sc_if->sk_tick_ch, 0);
1441 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1442
1443 DPRINTFN(2, ("sk_attach: 1\n"));
1444
1445 /*
1446 * Call MI attach routines.
1447 */
1448 if_attach(ifp);
1449
1450 ether_ifattach(ifp, sc_if->sk_enaddr);
1451
1452 #if NRND > 0
1453 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1454 RND_TYPE_NET, 0);
1455 #endif
1456
1457 DPRINTFN(2, ("sk_attach: end\n"));
1458
1459 return;
1460
1461 fail:
1462 sc->sk_if[sa->skc_port] = NULL;
1463 }
1464
1465 int
1466 skcprint(void *aux, const char *pnp)
1467 {
1468 struct skc_attach_args *sa = aux;
1469
1470 if (pnp)
1471 aprint_normal("sk port %c at %s",
1472 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1473 else
1474 aprint_normal(" port %c",
1475 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1476 return UNCONF;
1477 }
1478
1479 /*
1480 * Attach the interface. Allocate softc structures, do ifmedia
1481 * setup and ethernet/BPF attach.
1482 */
1483 void
1484 skc_attach(device_t parent, device_t self, void *aux)
1485 {
1486 struct sk_softc *sc = device_private(self);
1487 struct pci_attach_args *pa = aux;
1488 struct skc_attach_args skca;
1489 pci_chipset_tag_t pc = pa->pa_pc;
1490 #ifndef SK_USEIOSPACE
1491 pcireg_t memtype;
1492 #endif
1493 pci_intr_handle_t ih;
1494 const char *intrstr = NULL;
1495 bus_addr_t iobase;
1496 bus_size_t iosize;
1497 int rc, sk_nodenum;
1498 u_int32_t command;
1499 const char *revstr;
1500 const struct sysctlnode *node;
1501
1502 sc->sk_dev = self;
1503 aprint_naive("\n");
1504
1505 DPRINTFN(2, ("begin skc_attach\n"));
1506
1507 /*
1508 * Handle power management nonsense.
1509 */
1510 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1511
1512 if (command == 0x01) {
1513 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1514 if (command & SK_PSTATE_MASK) {
1515 u_int32_t xiobase, membase, irq;
1516
1517 /* Save important PCI config data. */
1518 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1519 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1520 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1521
1522 /* Reset the power state. */
1523 aprint_normal_dev(sc->sk_dev,
1524 "chip is in D%d power mode -- setting to D0\n",
1525 command & SK_PSTATE_MASK);
1526 command &= 0xFFFFFFFC;
1527 pci_conf_write(pc, pa->pa_tag,
1528 SK_PCI_PWRMGMTCTRL, command);
1529
1530 /* Restore PCI config data. */
1531 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1532 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1533 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1534 }
1535 }
1536
1537 /*
1538 * Map control/status registers.
1539 */
1540 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1541 command |= PCI_COMMAND_IO_ENABLE |
1542 PCI_COMMAND_MEM_ENABLE |
1543 PCI_COMMAND_MASTER_ENABLE;
1544 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1545 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1546
1547 #ifdef SK_USEIOSPACE
1548 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1549 aprint_error(": failed to enable I/O ports!\n");
1550 return;
1551 }
1552 /*
1553 * Map control/status registers.
1554 */
1555 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1556 &sc->sk_btag, &sc->sk_bhandle,
1557 &iobase, &iosize)) {
1558 aprint_error(": can't find i/o space\n");
1559 return;
1560 }
1561 #else
1562 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1563 aprint_error(": failed to enable memory mapping!\n");
1564 return;
1565 }
1566 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1567 switch (memtype) {
1568 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1569 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1570 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1571 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1572 &iobase, &iosize) == 0)
1573 break;
1574 default:
1575 aprint_error_dev(sc->sk_dev, "can't find mem space\n");
1576 return;
1577 }
1578
1579 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1580 #endif
1581 sc->sc_dmatag = pa->pa_dmat;
1582
1583 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1584 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1585
1586 /* bail out here if chip is not recognized */
1587 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1588 aprint_error_dev(sc->sk_dev, "unknown chip type\n");
1589 goto fail;
1590 }
1591 if (SK_IS_YUKON2(sc)) {
1592 aprint_error_dev(sc->sk_dev,
1593 "Does not support Yukon2--try msk(4).\n");
1594 goto fail;
1595 }
1596 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1597
1598 /* Allocate interrupt */
1599 if (pci_intr_map(pa, &ih)) {
1600 aprint_error(": couldn't map interrupt\n");
1601 goto fail;
1602 }
1603
1604 intrstr = pci_intr_string(pc, ih);
1605 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1606 if (sc->sk_intrhand == NULL) {
1607 aprint_error(": couldn't establish interrupt");
1608 if (intrstr != NULL)
1609 aprint_normal(" at %s", intrstr);
1610 goto fail;
1611 }
1612 aprint_normal(": %s\n", intrstr);
1613
1614 /* Reset the adapter. */
1615 sk_reset(sc);
1616
1617 /* Read and save vital product data from EEPROM. */
1618 sk_vpd_read(sc);
1619
1620 if (sc->sk_type == SK_GENESIS) {
1621 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1622 /* Read and save RAM size and RAMbuffer offset */
1623 switch (val) {
1624 case SK_RAMSIZE_512K_64:
1625 sc->sk_ramsize = 0x80000;
1626 sc->sk_rboff = SK_RBOFF_0;
1627 break;
1628 case SK_RAMSIZE_1024K_64:
1629 sc->sk_ramsize = 0x100000;
1630 sc->sk_rboff = SK_RBOFF_80000;
1631 break;
1632 case SK_RAMSIZE_1024K_128:
1633 sc->sk_ramsize = 0x100000;
1634 sc->sk_rboff = SK_RBOFF_0;
1635 break;
1636 case SK_RAMSIZE_2048K_128:
1637 sc->sk_ramsize = 0x200000;
1638 sc->sk_rboff = SK_RBOFF_0;
1639 break;
1640 default:
1641 aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
1642 val);
1643 goto fail_1;
1644 break;
1645 }
1646
1647 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1648 sc->sk_ramsize, sc->sk_ramsize / 1024,
1649 sc->sk_rboff));
1650 } else {
1651 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1652 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1653 sc->sk_rboff = SK_RBOFF_0;
1654
1655 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1656 sc->sk_ramsize / 1024, sc->sk_ramsize,
1657 sc->sk_rboff));
1658 }
1659
1660 /* Read and save physical media type */
1661 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1662 case SK_PMD_1000BASESX:
1663 sc->sk_pmd = IFM_1000_SX;
1664 break;
1665 case SK_PMD_1000BASELX:
1666 sc->sk_pmd = IFM_1000_LX;
1667 break;
1668 case SK_PMD_1000BASECX:
1669 sc->sk_pmd = IFM_1000_CX;
1670 break;
1671 case SK_PMD_1000BASETX:
1672 case SK_PMD_1000BASETX_ALT:
1673 sc->sk_pmd = IFM_1000_T;
1674 break;
1675 default:
1676 aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
1677 sk_win_read_1(sc, SK_PMDTYPE));
1678 goto fail_1;
1679 }
1680
1681 /* determine whether to name it with vpd or just make it up */
1682 /* Marvell Yukon VPD's can freqently be bogus */
1683
1684 switch (pa->pa_id) {
1685 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1686 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1687 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1688 case PCI_PRODUCT_3COM_3C940:
1689 case PCI_PRODUCT_DLINK_DGE530T:
1690 case PCI_PRODUCT_DLINK_DGE560T:
1691 case PCI_PRODUCT_DLINK_DGE560T_2:
1692 case PCI_PRODUCT_LINKSYS_EG1032:
1693 case PCI_PRODUCT_LINKSYS_EG1064:
1694 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1695 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1696 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1697 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1698 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1699 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1700 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1701 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1702 sc->sk_name = sc->sk_vpd_prodname;
1703 break;
1704 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1705 /* whoops yukon vpd prodname bears no resemblance to reality */
1706 switch (sc->sk_type) {
1707 case SK_GENESIS:
1708 sc->sk_name = sc->sk_vpd_prodname;
1709 break;
1710 case SK_YUKON:
1711 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1712 break;
1713 case SK_YUKON_LITE:
1714 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1715 break;
1716 case SK_YUKON_LP:
1717 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1718 break;
1719 default:
1720 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1721 }
1722
1723 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1724
1725 if ( sc->sk_type == SK_YUKON ) {
1726 uint32_t flashaddr;
1727 uint8_t testbyte;
1728
1729 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1730
1731 /* test Flash-Address Register */
1732 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1733 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1734
1735 if (testbyte != 0) {
1736 /* this is yukon lite Rev. A0 */
1737 sc->sk_type = SK_YUKON_LITE;
1738 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1739 /* restore Flash-Address Register */
1740 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1741 }
1742 }
1743 break;
1744 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1745 sc->sk_name = sc->sk_vpd_prodname;
1746 break;
1747 default:
1748 sc->sk_name = "Unknown Marvell";
1749 }
1750
1751
1752 if ( sc->sk_type == SK_YUKON_LITE ) {
1753 switch (sc->sk_rev) {
1754 case SK_YUKON_LITE_REV_A0:
1755 revstr = "A0";
1756 break;
1757 case SK_YUKON_LITE_REV_A1:
1758 revstr = "A1";
1759 break;
1760 case SK_YUKON_LITE_REV_A3:
1761 revstr = "A3";
1762 break;
1763 default:
1764 revstr = "";
1765 }
1766 } else {
1767 revstr = "";
1768 }
1769
1770 /* Announce the product name. */
1771 aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
1772 sc->sk_name, revstr, sc->sk_rev);
1773
1774 skca.skc_port = SK_PORT_A;
1775 (void)config_found(sc->sk_dev, &skca, skcprint);
1776
1777 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1778 skca.skc_port = SK_PORT_B;
1779 (void)config_found(sc->sk_dev, &skca, skcprint);
1780 }
1781
1782 /* Turn on the 'driver is loaded' LED. */
1783 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1784
1785 /* skc sysctl setup */
1786
1787 sc->sk_int_mod = SK_IM_DEFAULT;
1788 sc->sk_int_mod_pending = 0;
1789
1790 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1791 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1792 SYSCTL_DESCR("skc per-controller controls"),
1793 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1794 CTL_EOL)) != 0) {
1795 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1796 goto fail_1;
1797 }
1798
1799 sk_nodenum = node->sysctl_num;
1800
1801 /* interrupt moderation time in usecs */
1802 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1803 CTLFLAG_READWRITE,
1804 CTLTYPE_INT, "int_mod",
1805 SYSCTL_DESCR("sk interrupt moderation timer"),
1806 sk_sysctl_handler, 0, sc,
1807 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1808 CTL_EOL)) != 0) {
1809 aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1810 goto fail_1;
1811 }
1812
1813 return;
1814
1815 fail_1:
1816 pci_intr_disestablish(pc, sc->sk_intrhand);
1817 fail:
1818 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1819 }
1820
1821 int
1822 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1823 {
1824 struct sk_softc *sc = sc_if->sk_softc;
1825 struct sk_tx_desc *f = NULL;
1826 u_int32_t frag, cur, cnt = 0, sk_ctl;
1827 int i;
1828 struct sk_txmap_entry *entry;
1829 bus_dmamap_t txmap;
1830
1831 DPRINTFN(3, ("sk_encap\n"));
1832
1833 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1834 if (entry == NULL) {
1835 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1836 return ENOBUFS;
1837 }
1838 txmap = entry->dmamap;
1839
1840 cur = frag = *txidx;
1841
1842 #ifdef SK_DEBUG
1843 if (skdebug >= 3)
1844 sk_dump_mbuf(m_head);
1845 #endif
1846
1847 /*
1848 * Start packing the mbufs in this chain into
1849 * the fragment pointers. Stop when we run out
1850 * of fragments or hit the end of the mbuf chain.
1851 */
1852 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1853 BUS_DMA_NOWAIT)) {
1854 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1855 return ENOBUFS;
1856 }
1857
1858 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1859
1860 /* Sync the DMA map. */
1861 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1862 BUS_DMASYNC_PREWRITE);
1863
1864 for (i = 0; i < txmap->dm_nsegs; i++) {
1865 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1866 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1867 return ENOBUFS;
1868 }
1869 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1870 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1871 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1872 if (cnt == 0)
1873 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1874 else
1875 sk_ctl |= SK_TXCTL_OWN;
1876 f->sk_ctl = htole32(sk_ctl);
1877 cur = frag;
1878 SK_INC(frag, SK_TX_RING_CNT);
1879 cnt++;
1880 }
1881
1882 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1883 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1884
1885 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1886 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1887 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1888
1889 /* Sync descriptors before handing to chip */
1890 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1891 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1892
1893 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1894 htole32(SK_TXCTL_OWN);
1895
1896 /* Sync first descriptor to hand it off */
1897 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1898
1899 sc_if->sk_cdata.sk_tx_cnt += cnt;
1900
1901 #ifdef SK_DEBUG
1902 if (skdebug >= 3) {
1903 struct sk_tx_desc *desc;
1904 u_int32_t idx;
1905 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1906 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1907 sk_dump_txdesc(desc, idx);
1908 }
1909 }
1910 #endif
1911
1912 *txidx = frag;
1913
1914 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1915
1916 return 0;
1917 }
1918
1919 void
1920 sk_start(struct ifnet *ifp)
1921 {
1922 struct sk_if_softc *sc_if = ifp->if_softc;
1923 struct sk_softc *sc = sc_if->sk_softc;
1924 struct mbuf *m_head = NULL;
1925 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1926 int pkts = 0;
1927
1928 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1929 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1930
1931 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1932 IFQ_POLL(&ifp->if_snd, m_head);
1933 if (m_head == NULL)
1934 break;
1935
1936 /*
1937 * Pack the data into the transmit ring. If we
1938 * don't have room, set the OACTIVE flag and wait
1939 * for the NIC to drain the ring.
1940 */
1941 if (sk_encap(sc_if, m_head, &idx)) {
1942 ifp->if_flags |= IFF_OACTIVE;
1943 break;
1944 }
1945
1946 /* now we are committed to transmit the packet */
1947 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1948 pkts++;
1949
1950 /*
1951 * If there's a BPF listener, bounce a copy of this frame
1952 * to him.
1953 */
1954 #if NBPFILTER > 0
1955 if (ifp->if_bpf)
1956 bpf_mtap(ifp->if_bpf, m_head);
1957 #endif
1958 }
1959 if (pkts == 0)
1960 return;
1961
1962 /* Transmit */
1963 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1964 sc_if->sk_cdata.sk_tx_prod = idx;
1965 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1966
1967 /* Set a timeout in case the chip goes out to lunch. */
1968 ifp->if_timer = 5;
1969 }
1970 }
1971
1972
1973 void
1974 sk_watchdog(struct ifnet *ifp)
1975 {
1976 struct sk_if_softc *sc_if = ifp->if_softc;
1977
1978 /*
1979 * Reclaim first as there is a possibility of losing Tx completion
1980 * interrupts.
1981 */
1982 sk_txeof(sc_if);
1983 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1984 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1985
1986 ifp->if_oerrors++;
1987
1988 sk_init(ifp);
1989 }
1990 }
1991
1992 void
1993 sk_shutdown(void *v)
1994 {
1995 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
1996 struct sk_softc *sc = sc_if->sk_softc;
1997 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1998
1999 DPRINTFN(2, ("sk_shutdown\n"));
2000 sk_stop(ifp,1);
2001
2002 /* Turn off the 'driver is loaded' LED. */
2003 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2004
2005 /*
2006 * Reset the GEnesis controller. Doing this should also
2007 * assert the resets on the attached XMAC(s).
2008 */
2009 sk_reset(sc);
2010 }
2011
2012 void
2013 sk_rxeof(struct sk_if_softc *sc_if)
2014 {
2015 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2016 struct mbuf *m;
2017 struct sk_chain *cur_rx;
2018 struct sk_rx_desc *cur_desc;
2019 int i, cur, total_len = 0;
2020 u_int32_t rxstat, sk_ctl;
2021 bus_dmamap_t dmamap;
2022
2023 i = sc_if->sk_cdata.sk_rx_prod;
2024
2025 DPRINTFN(3, ("sk_rxeof %d\n", i));
2026
2027 for (;;) {
2028 cur = i;
2029
2030 /* Sync the descriptor */
2031 SK_CDRXSYNC(sc_if, cur,
2032 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2033
2034 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2035 if (sk_ctl & SK_RXCTL_OWN) {
2036 /* Invalidate the descriptor -- it's not ready yet */
2037 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2038 sc_if->sk_cdata.sk_rx_prod = i;
2039 break;
2040 }
2041
2042 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2043 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2044 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2045
2046 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2047 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2048
2049 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2050 m = cur_rx->sk_mbuf;
2051 cur_rx->sk_mbuf = NULL;
2052 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2053
2054 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2055
2056 SK_INC(i, SK_RX_RING_CNT);
2057
2058 if (rxstat & XM_RXSTAT_ERRFRAME) {
2059 ifp->if_ierrors++;
2060 sk_newbuf(sc_if, cur, m, dmamap);
2061 continue;
2062 }
2063
2064 /*
2065 * Try to allocate a new jumbo buffer. If that
2066 * fails, copy the packet to mbufs and put the
2067 * jumbo buffer back in the ring so it can be
2068 * re-used. If allocating mbufs fails, then we
2069 * have to drop the packet.
2070 */
2071 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2072 struct mbuf *m0;
2073 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2074 total_len + ETHER_ALIGN, 0, ifp, NULL);
2075 sk_newbuf(sc_if, cur, m, dmamap);
2076 if (m0 == NULL) {
2077 aprint_error_dev(sc_if->sk_dev, "no receive "
2078 "buffers available -- packet dropped!\n");
2079 ifp->if_ierrors++;
2080 continue;
2081 }
2082 m_adj(m0, ETHER_ALIGN);
2083 m = m0;
2084 } else {
2085 m->m_pkthdr.rcvif = ifp;
2086 m->m_pkthdr.len = m->m_len = total_len;
2087 }
2088
2089 ifp->if_ipackets++;
2090
2091 #if NBPFILTER > 0
2092 if (ifp->if_bpf)
2093 bpf_mtap(ifp->if_bpf, m);
2094 #endif
2095 /* pass it on. */
2096 (*ifp->if_input)(ifp, m);
2097 }
2098 }
2099
2100 void
2101 sk_txeof(struct sk_if_softc *sc_if)
2102 {
2103 struct sk_softc *sc = sc_if->sk_softc;
2104 struct sk_tx_desc *cur_tx;
2105 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2106 u_int32_t idx, sk_ctl;
2107 struct sk_txmap_entry *entry;
2108
2109 DPRINTFN(3, ("sk_txeof\n"));
2110
2111 /*
2112 * Go through our tx ring and free mbufs for those
2113 * frames that have been sent.
2114 */
2115 idx = sc_if->sk_cdata.sk_tx_cons;
2116 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2117 SK_CDTXSYNC(sc_if, idx, 1,
2118 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2119
2120 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2121 sk_ctl = le32toh(cur_tx->sk_ctl);
2122 #ifdef SK_DEBUG
2123 if (skdebug >= 3)
2124 sk_dump_txdesc(cur_tx, idx);
2125 #endif
2126 if (sk_ctl & SK_TXCTL_OWN) {
2127 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2128 break;
2129 }
2130 if (sk_ctl & SK_TXCTL_LASTFRAG)
2131 ifp->if_opackets++;
2132 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2133 entry = sc_if->sk_cdata.sk_tx_map[idx];
2134
2135 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2136 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2137
2138 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2139 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2140
2141 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2142 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2143 link);
2144 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2145 }
2146 sc_if->sk_cdata.sk_tx_cnt--;
2147 SK_INC(idx, SK_TX_RING_CNT);
2148 }
2149 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2150 ifp->if_timer = 0;
2151 else /* nudge chip to keep tx ring moving */
2152 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2153
2154 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2155 ifp->if_flags &= ~IFF_OACTIVE;
2156
2157 sc_if->sk_cdata.sk_tx_cons = idx;
2158 }
2159
2160 void
2161 sk_tick(void *xsc_if)
2162 {
2163 struct sk_if_softc *sc_if = xsc_if;
2164 struct mii_data *mii = &sc_if->sk_mii;
2165 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2166 int i;
2167
2168 DPRINTFN(3, ("sk_tick\n"));
2169
2170 if (!(ifp->if_flags & IFF_UP))
2171 return;
2172
2173 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2174 sk_intr_bcom(sc_if);
2175 return;
2176 }
2177
2178 /*
2179 * According to SysKonnect, the correct way to verify that
2180 * the link has come back up is to poll bit 0 of the GPIO
2181 * register three times. This pin has the signal from the
2182 * link sync pin connected to it; if we read the same link
2183 * state 3 times in a row, we know the link is up.
2184 */
2185 for (i = 0; i < 3; i++) {
2186 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2187 break;
2188 }
2189
2190 if (i != 3) {
2191 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2192 return;
2193 }
2194
2195 /* Turn the GP0 interrupt back on. */
2196 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2197 SK_XM_READ_2(sc_if, XM_ISR);
2198 mii_tick(mii);
2199 mii_pollstat(mii);
2200 callout_stop(&sc_if->sk_tick_ch);
2201 }
2202
2203 void
2204 sk_intr_bcom(struct sk_if_softc *sc_if)
2205 {
2206 struct mii_data *mii = &sc_if->sk_mii;
2207 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2208 int status;
2209
2210
2211 DPRINTFN(3, ("sk_intr_bcom\n"));
2212
2213 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2214
2215 /*
2216 * Read the PHY interrupt register to make sure
2217 * we clear any pending interrupts.
2218 */
2219 status = sk_xmac_miibus_readreg(sc_if->sk_dev,
2220 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2221
2222 if (!(ifp->if_flags & IFF_RUNNING)) {
2223 sk_init_xmac(sc_if);
2224 return;
2225 }
2226
2227 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2228 int lstat;
2229 lstat = sk_xmac_miibus_readreg(sc_if->sk_dev,
2230 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2231
2232 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2233 (void)mii_mediachg(mii);
2234 /* Turn off the link LED. */
2235 SK_IF_WRITE_1(sc_if, 0,
2236 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2237 sc_if->sk_link = 0;
2238 } else if (status & BRGPHY_ISR_LNK_CHG) {
2239 sk_xmac_miibus_writereg(sc_if->sk_dev,
2240 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2241 mii_tick(mii);
2242 sc_if->sk_link = 1;
2243 /* Turn on the link LED. */
2244 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2245 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2246 SK_LINKLED_BLINK_OFF);
2247 mii_pollstat(mii);
2248 } else {
2249 mii_tick(mii);
2250 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2251 }
2252 }
2253
2254 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2255 }
2256
2257 void
2258 sk_intr_xmac(struct sk_if_softc *sc_if)
2259 {
2260 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2261
2262 DPRINTFN(3, ("sk_intr_xmac\n"));
2263
2264 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2265 if (status & XM_ISR_GP0_SET) {
2266 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2267 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2268 }
2269
2270 if (status & XM_ISR_AUTONEG_DONE) {
2271 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2272 }
2273 }
2274
2275 if (status & XM_IMR_TX_UNDERRUN)
2276 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2277
2278 if (status & XM_IMR_RX_OVERRUN)
2279 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2280 }
2281
2282 void
2283 sk_intr_yukon(struct sk_if_softc *sc_if)
2284 {
2285 int status;
2286
2287 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2288
2289 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2290 }
2291
2292 int
2293 sk_intr(void *xsc)
2294 {
2295 struct sk_softc *sc = xsc;
2296 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2297 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2298 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2299 u_int32_t status;
2300 int claimed = 0;
2301
2302 if (sc_if0 != NULL)
2303 ifp0 = &sc_if0->sk_ethercom.ec_if;
2304 if (sc_if1 != NULL)
2305 ifp1 = &sc_if1->sk_ethercom.ec_if;
2306
2307 for (;;) {
2308 status = CSR_READ_4(sc, SK_ISSR);
2309 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2310
2311 if (!(status & sc->sk_intrmask))
2312 break;
2313
2314 claimed = 1;
2315
2316 /* Handle receive interrupts first. */
2317 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2318 sk_rxeof(sc_if0);
2319 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2320 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2321 }
2322 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2323 sk_rxeof(sc_if1);
2324 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2325 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2326 }
2327
2328 /* Then transmit interrupts. */
2329 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2330 sk_txeof(sc_if0);
2331 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2332 SK_TXBMU_CLR_IRQ_EOF);
2333 }
2334 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2335 sk_txeof(sc_if1);
2336 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2337 SK_TXBMU_CLR_IRQ_EOF);
2338 }
2339
2340 /* Then MAC interrupts. */
2341 if (sc_if0 && (status & SK_ISR_MAC1) &&
2342 (ifp0->if_flags & IFF_RUNNING)) {
2343 if (sc->sk_type == SK_GENESIS)
2344 sk_intr_xmac(sc_if0);
2345 else
2346 sk_intr_yukon(sc_if0);
2347 }
2348
2349 if (sc_if1 && (status & SK_ISR_MAC2) &&
2350 (ifp1->if_flags & IFF_RUNNING)) {
2351 if (sc->sk_type == SK_GENESIS)
2352 sk_intr_xmac(sc_if1);
2353 else
2354 sk_intr_yukon(sc_if1);
2355
2356 }
2357
2358 if (status & SK_ISR_EXTERNAL_REG) {
2359 if (sc_if0 != NULL &&
2360 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2361 sk_intr_bcom(sc_if0);
2362
2363 if (sc_if1 != NULL &&
2364 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2365 sk_intr_bcom(sc_if1);
2366 }
2367 }
2368
2369 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2370
2371 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2372 sk_start(ifp0);
2373 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2374 sk_start(ifp1);
2375
2376 #if NRND > 0
2377 if (RND_ENABLED(&sc->rnd_source))
2378 rnd_add_uint32(&sc->rnd_source, status);
2379 #endif
2380
2381 if (sc->sk_int_mod_pending)
2382 sk_update_int_mod(sc);
2383
2384 return claimed;
2385 }
2386
2387 void
2388 sk_init_xmac(struct sk_if_softc *sc_if)
2389 {
2390 struct sk_softc *sc = sc_if->sk_softc;
2391 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2392 static const struct sk_bcom_hack bhack[] = {
2393 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2394 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2395 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2396 { 0, 0 } };
2397
2398 DPRINTFN(1, ("sk_init_xmac\n"));
2399
2400 /* Unreset the XMAC. */
2401 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2402 DELAY(1000);
2403
2404 /* Reset the XMAC's internal state. */
2405 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2406
2407 /* Save the XMAC II revision */
2408 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2409
2410 /*
2411 * Perform additional initialization for external PHYs,
2412 * namely for the 1000baseTX cards that use the XMAC's
2413 * GMII mode.
2414 */
2415 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2416 int i = 0;
2417 u_int32_t val;
2418
2419 /* Take PHY out of reset. */
2420 val = sk_win_read_4(sc, SK_GPIO);
2421 if (sc_if->sk_port == SK_PORT_A)
2422 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2423 else
2424 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2425 sk_win_write_4(sc, SK_GPIO, val);
2426
2427 /* Enable GMII mode on the XMAC. */
2428 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2429
2430 sk_xmac_miibus_writereg(sc_if->sk_dev,
2431 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2432 DELAY(10000);
2433 sk_xmac_miibus_writereg(sc_if->sk_dev,
2434 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2435
2436 /*
2437 * Early versions of the BCM5400 apparently have
2438 * a bug that requires them to have their reserved
2439 * registers initialized to some magic values. I don't
2440 * know what the numbers do, I'm just the messenger.
2441 */
2442 if (sk_xmac_miibus_readreg(sc_if->sk_dev,
2443 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2444 while (bhack[i].reg) {
2445 sk_xmac_miibus_writereg(sc_if->sk_dev,
2446 SK_PHYADDR_BCOM, bhack[i].reg,
2447 bhack[i].val);
2448 i++;
2449 }
2450 }
2451 }
2452
2453 /* Set station address */
2454 SK_XM_WRITE_2(sc_if, XM_PAR0,
2455 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2456 SK_XM_WRITE_2(sc_if, XM_PAR1,
2457 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2458 SK_XM_WRITE_2(sc_if, XM_PAR2,
2459 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2460 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2461
2462 if (ifp->if_flags & IFF_PROMISC)
2463 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2464 else
2465 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2466
2467 if (ifp->if_flags & IFF_BROADCAST)
2468 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2469 else
2470 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2471
2472 /* We don't need the FCS appended to the packet. */
2473 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2474
2475 /* We want short frames padded to 60 bytes. */
2476 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2477
2478 /*
2479 * Enable the reception of all error frames. This is is
2480 * a necessary evil due to the design of the XMAC. The
2481 * XMAC's receive FIFO is only 8K in size, however jumbo
2482 * frames can be up to 9000 bytes in length. When bad
2483 * frame filtering is enabled, the XMAC's RX FIFO operates
2484 * in 'store and forward' mode. For this to work, the
2485 * entire frame has to fit into the FIFO, but that means
2486 * that jumbo frames larger than 8192 bytes will be
2487 * truncated. Disabling all bad frame filtering causes
2488 * the RX FIFO to operate in streaming mode, in which
2489 * case the XMAC will start transfering frames out of the
2490 * RX FIFO as soon as the FIFO threshold is reached.
2491 */
2492 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2493 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2494 XM_MODE_RX_INRANGELEN);
2495
2496 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2497 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2498 else
2499 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2500
2501 /*
2502 * Bump up the transmit threshold. This helps hold off transmit
2503 * underruns when we're blasting traffic from both ports at once.
2504 */
2505 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2506
2507 /* Set multicast filter */
2508 sk_setmulti(sc_if);
2509
2510 /* Clear and enable interrupts */
2511 SK_XM_READ_2(sc_if, XM_ISR);
2512 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2513 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2514 else
2515 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2516
2517 /* Configure MAC arbiter */
2518 switch (sc_if->sk_xmac_rev) {
2519 case XM_XMAC_REV_B2:
2520 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2521 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2522 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2523 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2524 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2525 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2526 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2527 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2528 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2529 break;
2530 case XM_XMAC_REV_C1:
2531 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2532 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2533 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2534 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2535 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2536 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2537 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2538 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2539 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2540 break;
2541 default:
2542 break;
2543 }
2544 sk_win_write_2(sc, SK_MACARB_CTL,
2545 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2546
2547 sc_if->sk_link = 1;
2548 }
2549
2550 void sk_init_yukon(struct sk_if_softc *sc_if)
2551 {
2552 u_int32_t /*mac, */phy;
2553 u_int16_t reg;
2554 struct sk_softc *sc;
2555 int i;
2556
2557 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2558 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2559
2560 sc = sc_if->sk_softc;
2561 if (sc->sk_type == SK_YUKON_LITE &&
2562 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2563 /* Take PHY out of reset. */
2564 sk_win_write_4(sc, SK_GPIO,
2565 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2566 }
2567
2568
2569 /* GMAC and GPHY Reset */
2570 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2571
2572 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2573
2574 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2575 DELAY(1000);
2576 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2577 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2578 DELAY(1000);
2579
2580
2581 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2582
2583 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2584 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2585
2586 switch (sc_if->sk_softc->sk_pmd) {
2587 case IFM_1000_SX:
2588 case IFM_1000_LX:
2589 phy |= SK_GPHY_FIBER;
2590 break;
2591
2592 case IFM_1000_CX:
2593 case IFM_1000_T:
2594 phy |= SK_GPHY_COPPER;
2595 break;
2596 }
2597
2598 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2599
2600 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2601 DELAY(1000);
2602 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2603 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2604 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2605
2606 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2607 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2608
2609 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2610
2611 /* unused read of the interrupt source register */
2612 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2613 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2614
2615 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2616 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2617 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2618
2619 /* MIB Counter Clear Mode set */
2620 reg |= YU_PAR_MIB_CLR;
2621 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2622 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2623 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2624
2625 /* MIB Counter Clear Mode clear */
2626 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2627 reg &= ~YU_PAR_MIB_CLR;
2628 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2629
2630 /* receive control reg */
2631 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2632 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2633 YU_RCR_CRCR);
2634
2635 /* transmit parameter register */
2636 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2637 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2638 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2639
2640 /* serial mode register */
2641 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2642 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2643 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2644 YU_SMR_IPG_DATA(0x1e));
2645
2646 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2647 /* Setup Yukon's address */
2648 for (i = 0; i < 3; i++) {
2649 /* Write Source Address 1 (unicast filter) */
2650 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2651 sc_if->sk_enaddr[i * 2] |
2652 sc_if->sk_enaddr[i * 2 + 1] << 8);
2653 }
2654
2655 for (i = 0; i < 3; i++) {
2656 reg = sk_win_read_2(sc_if->sk_softc,
2657 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2658 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2659 }
2660
2661 /* Set multicast filter */
2662 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2663 sk_setmulti(sc_if);
2664
2665 /* enable interrupt mask for counter overflows */
2666 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2667 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2668 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2669 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2670
2671 /* Configure RX MAC FIFO */
2672 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2673 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2674
2675 /* Configure TX MAC FIFO */
2676 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2677 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2678
2679 DPRINTFN(6, ("sk_init_yukon: end\n"));
2680 }
2681
2682 /*
2683 * Note that to properly initialize any part of the GEnesis chip,
2684 * you first have to take it out of reset mode.
2685 */
2686 int
2687 sk_init(struct ifnet *ifp)
2688 {
2689 struct sk_if_softc *sc_if = ifp->if_softc;
2690 struct sk_softc *sc = sc_if->sk_softc;
2691 struct mii_data *mii = &sc_if->sk_mii;
2692 int rc = 0, s;
2693 u_int32_t imr, imtimer_ticks;
2694
2695 DPRINTFN(1, ("sk_init\n"));
2696
2697 s = splnet();
2698
2699 if (ifp->if_flags & IFF_RUNNING) {
2700 splx(s);
2701 return 0;
2702 }
2703
2704 /* Cancel pending I/O and free all RX/TX buffers. */
2705 sk_stop(ifp,0);
2706
2707 if (sc->sk_type == SK_GENESIS) {
2708 /* Configure LINK_SYNC LED */
2709 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2710 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2711 SK_LINKLED_LINKSYNC_ON);
2712
2713 /* Configure RX LED */
2714 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2715 SK_RXLEDCTL_COUNTER_START);
2716
2717 /* Configure TX LED */
2718 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2719 SK_TXLEDCTL_COUNTER_START);
2720 }
2721
2722 /* Configure I2C registers */
2723
2724 /* Configure XMAC(s) */
2725 switch (sc->sk_type) {
2726 case SK_GENESIS:
2727 sk_init_xmac(sc_if);
2728 break;
2729 case SK_YUKON:
2730 case SK_YUKON_LITE:
2731 case SK_YUKON_LP:
2732 sk_init_yukon(sc_if);
2733 break;
2734 }
2735 if ((rc = mii_mediachg(mii)) == ENXIO)
2736 rc = 0;
2737 else if (rc != 0)
2738 goto out;
2739
2740 if (sc->sk_type == SK_GENESIS) {
2741 /* Configure MAC FIFOs */
2742 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2743 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2744 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2745
2746 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2747 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2748 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2749 }
2750
2751 /* Configure transmit arbiter(s) */
2752 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2753 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2754
2755 /* Configure RAMbuffers */
2756 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2757 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2758 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2759 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2760 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2761 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2762
2763 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2764 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2765 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2766 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2767 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2768 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2769 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2770
2771 /* Configure BMUs */
2772 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2773 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2774 SK_RX_RING_ADDR(sc_if, 0));
2775 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2776
2777 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2778 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2779 SK_TX_RING_ADDR(sc_if, 0));
2780 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2781
2782 /* Init descriptors */
2783 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2784 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2785 "memory for rx buffers\n");
2786 sk_stop(ifp,0);
2787 splx(s);
2788 return ENOBUFS;
2789 }
2790
2791 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2792 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2793 "memory for tx buffers\n");
2794 sk_stop(ifp,0);
2795 splx(s);
2796 return ENOBUFS;
2797 }
2798
2799 /* Set interrupt moderation if changed via sysctl. */
2800 switch (sc->sk_type) {
2801 case SK_GENESIS:
2802 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2803 break;
2804 case SK_YUKON_EC:
2805 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2806 break;
2807 default:
2808 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2809 }
2810 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2811 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2812 sk_win_write_4(sc, SK_IMTIMERINIT,
2813 SK_IM_USECS(sc->sk_int_mod));
2814 aprint_verbose_dev(sc->sk_dev,
2815 "interrupt moderation is %d us\n", sc->sk_int_mod);
2816 }
2817
2818 /* Configure interrupt handling */
2819 CSR_READ_4(sc, SK_ISSR);
2820 if (sc_if->sk_port == SK_PORT_A)
2821 sc->sk_intrmask |= SK_INTRS1;
2822 else
2823 sc->sk_intrmask |= SK_INTRS2;
2824
2825 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2826
2827 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2828
2829 /* Start BMUs. */
2830 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2831
2832 if (sc->sk_type == SK_GENESIS) {
2833 /* Enable XMACs TX and RX state machines */
2834 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2835 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2836 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2837 }
2838
2839 if (SK_YUKON_FAMILY(sc->sk_type)) {
2840 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2841 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2842 #if 0
2843 /* XXX disable 100Mbps and full duplex mode? */
2844 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2845 #endif
2846 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2847 }
2848
2849
2850 ifp->if_flags |= IFF_RUNNING;
2851 ifp->if_flags &= ~IFF_OACTIVE;
2852
2853 out:
2854 splx(s);
2855 return rc;
2856 }
2857
2858 void
2859 sk_stop(struct ifnet *ifp, int disable)
2860 {
2861 struct sk_if_softc *sc_if = ifp->if_softc;
2862 struct sk_softc *sc = sc_if->sk_softc;
2863 int i;
2864
2865 DPRINTFN(1, ("sk_stop\n"));
2866
2867 callout_stop(&sc_if->sk_tick_ch);
2868
2869 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2870 u_int32_t val;
2871
2872 /* Put PHY back into reset. */
2873 val = sk_win_read_4(sc, SK_GPIO);
2874 if (sc_if->sk_port == SK_PORT_A) {
2875 val |= SK_GPIO_DIR0;
2876 val &= ~SK_GPIO_DAT0;
2877 } else {
2878 val |= SK_GPIO_DIR2;
2879 val &= ~SK_GPIO_DAT2;
2880 }
2881 sk_win_write_4(sc, SK_GPIO, val);
2882 }
2883
2884 /* Turn off various components of this interface. */
2885 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2886 switch (sc->sk_type) {
2887 case SK_GENESIS:
2888 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2889 SK_TXMACCTL_XMAC_RESET);
2890 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2891 break;
2892 case SK_YUKON:
2893 case SK_YUKON_LITE:
2894 case SK_YUKON_LP:
2895 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2896 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2897 break;
2898 }
2899 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2900 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2901 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2902 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2903 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2904 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2905 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2906 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2907 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2908
2909 /* Disable interrupts */
2910 if (sc_if->sk_port == SK_PORT_A)
2911 sc->sk_intrmask &= ~SK_INTRS1;
2912 else
2913 sc->sk_intrmask &= ~SK_INTRS2;
2914 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2915
2916 SK_XM_READ_2(sc_if, XM_ISR);
2917 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2918
2919 /* Free RX and TX mbufs still in the queues. */
2920 for (i = 0; i < SK_RX_RING_CNT; i++) {
2921 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2922 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2923 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2924 }
2925 }
2926
2927 for (i = 0; i < SK_TX_RING_CNT; i++) {
2928 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2929 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2930 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2931 }
2932 }
2933
2934 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2935 }
2936
2937 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
2938 skc_probe, skc_attach, NULL, NULL);
2939
2940 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
2941 sk_probe, sk_attach, NULL, NULL);
2942
2943 #ifdef SK_DEBUG
2944 void
2945 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2946 {
2947 #define DESC_PRINT(X) \
2948 if (X) \
2949 printf("txdesc[%d]." #X "=%#x\n", \
2950 idx, X);
2951
2952 DESC_PRINT(le32toh(desc->sk_ctl));
2953 DESC_PRINT(le32toh(desc->sk_next));
2954 DESC_PRINT(le32toh(desc->sk_data_lo));
2955 DESC_PRINT(le32toh(desc->sk_data_hi));
2956 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2957 DESC_PRINT(le16toh(desc->sk_rsvd0));
2958 DESC_PRINT(le16toh(desc->sk_csum_startval));
2959 DESC_PRINT(le16toh(desc->sk_csum_startpos));
2960 DESC_PRINT(le16toh(desc->sk_csum_writepos));
2961 DESC_PRINT(le16toh(desc->sk_rsvd1));
2962 #undef PRINT
2963 }
2964
2965 void
2966 sk_dump_bytes(const char *data, int len)
2967 {
2968 int c, i, j;
2969
2970 for (i = 0; i < len; i += 16) {
2971 printf("%08x ", i);
2972 c = len - i;
2973 if (c > 16) c = 16;
2974
2975 for (j = 0; j < c; j++) {
2976 printf("%02x ", data[i + j] & 0xff);
2977 if ((j & 0xf) == 7 && j > 0)
2978 printf(" ");
2979 }
2980
2981 for (; j < 16; j++)
2982 printf(" ");
2983 printf(" ");
2984
2985 for (j = 0; j < c; j++) {
2986 int ch = data[i + j] & 0xff;
2987 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2988 }
2989
2990 printf("\n");
2991
2992 if (c < 16)
2993 break;
2994 }
2995 }
2996
2997 void
2998 sk_dump_mbuf(struct mbuf *m)
2999 {
3000 int count = m->m_pkthdr.len;
3001
3002 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3003
3004 while (count > 0 && m) {
3005 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3006 m, m->m_data, m->m_len);
3007 sk_dump_bytes(mtod(m, char *), m->m_len);
3008
3009 count -= m->m_len;
3010 m = m->m_next;
3011 }
3012 }
3013 #endif
3014
3015 static int
3016 sk_sysctl_handler(SYSCTLFN_ARGS)
3017 {
3018 int error, t;
3019 struct sysctlnode node;
3020 struct sk_softc *sc;
3021
3022 node = *rnode;
3023 sc = node.sysctl_data;
3024 t = sc->sk_int_mod;
3025 node.sysctl_data = &t;
3026 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3027 if (error || newp == NULL)
3028 return error;
3029
3030 if (t < SK_IM_MIN || t > SK_IM_MAX)
3031 return EINVAL;
3032
3033 /* update the softc with sysctl-changed value, and mark
3034 for hardware update */
3035 sc->sk_int_mod = t;
3036 sc->sk_int_mod_pending = 1;
3037 return 0;
3038 }
3039
3040 /*
3041 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3042 * set up in skc_attach()
3043 */
3044 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3045 {
3046 int rc;
3047 const struct sysctlnode *node;
3048
3049 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3050 0, CTLTYPE_NODE, "hw", NULL,
3051 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3052 goto err;
3053 }
3054
3055 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3056 0, CTLTYPE_NODE, "sk",
3057 SYSCTL_DESCR("sk interface controls"),
3058 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3059 goto err;
3060 }
3061
3062 sk_root_num = node->sysctl_num;
3063 return;
3064
3065 err:
3066 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3067 }
3068