if_sk.c revision 1.5 1 /* $NetBSD: if_sk.c,v 1.5 2003/10/30 04:11:36 briggs Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the NetBSD
18 * Foundation, Inc. and its contributors.
19 * 4. Neither the name of The NetBSD Foundation nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /* $OpenBSD: if_sk.c,v 1.33 2003/08/12 05:23:06 nate Exp $ */
37
38 /*
39 * Copyright (c) 1997, 1998, 1999, 2000
40 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Bill Paul.
53 * 4. Neither the name of the author nor the names of any co-contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67 * THE POSSIBILITY OF SUCH DAMAGE.
68 *
69 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70 */
71
72 /*
73 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
74 *
75 * Permission to use, copy, modify, and distribute this software for any
76 * purpose with or without fee is hereby granted, provided that the above
77 * copyright notice and this permission notice appear in all copies.
78 *
79 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86 */
87
88 /*
89 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90 * the SK-984x series adapters, both single port and dual port.
91 * References:
92 * The XaQti XMAC II datasheet,
93 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 * The SysKonnect GEnesis manual, http://www.syskonnect.com
95 *
96 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98 * convenience to others until Vitesse corrects this problem:
99 *
100 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101 *
102 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
103 * Department of Electrical Engineering
104 * Columbia University, New York City
105 */
106
107 /*
108 * The SysKonnect gigabit ethernet adapters consist of two main
109 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111 * components and a PHY while the GEnesis controller provides a PCI
112 * interface with DMA support. Each card may have between 512K and
113 * 2MB of SRAM on board depending on the configuration.
114 *
115 * The SysKonnect GEnesis controller can have either one or two XMAC
116 * chips connected to it, allowing single or dual port NIC configurations.
117 * SysKonnect has the distinction of being the only vendor on the market
118 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120 * XMAC registers. This driver takes advantage of these features to allow
121 * both XMACs to operate as independent interfaces.
122 */
123
124 #include "bpfilter.h"
125
126 #include <sys/param.h>
127 #include <sys/systm.h>
128 #include <sys/sockio.h>
129 #include <sys/mbuf.h>
130 #include <sys/malloc.h>
131 #include <sys/kernel.h>
132 #include <sys/socket.h>
133 #include <sys/device.h>
134 #include <sys/queue.h>
135 #include <sys/callout.h>
136
137 #include <net/if.h>
138 #include <net/if_dl.h>
139 #include <net/if_types.h>
140
141 #ifdef INET
142 #include <netinet/in.h>
143 #include <netinet/in_systm.h>
144 #include <netinet/in_var.h>
145 #include <netinet/ip.h>
146 #include <netinet/if_ether.h>
147 #endif
148
149 #include <net/if_media.h>
150
151 #if NBPFILTER > 0
152 #include <net/bpf.h>
153 #endif
154
155 #include <dev/mii/mii.h>
156 #include <dev/mii/miivar.h>
157 #include <dev/mii/brgphyreg.h>
158
159 #include <dev/pci/pcireg.h>
160 #include <dev/pci/pcivar.h>
161 #include <dev/pci/pcidevs.h>
162
163 #define SK_VERBOSE
164 /* #define SK_USEIOSPACE */
165
166 #include <dev/pci/if_skreg.h>
167 #include <dev/pci/if_skvar.h>
168
169 int skc_probe(struct device *, struct cfdata *, void *);
170 void skc_attach(struct device *, struct device *self, void *aux);
171 int sk_probe(struct device *, struct cfdata *, void *);
172 void sk_attach(struct device *, struct device *self, void *aux);
173 int skcprint(void *, const char *);
174 int sk_intr(void *);
175 void sk_intr_bcom(struct sk_if_softc *);
176 void sk_intr_xmac(struct sk_if_softc *);
177 void sk_intr_yukon(struct sk_if_softc *);
178 void sk_rxeof(struct sk_if_softc *);
179 void sk_txeof(struct sk_if_softc *);
180 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
181 void sk_start(struct ifnet *);
182 int sk_ioctl(struct ifnet *, u_long, caddr_t);
183 int sk_init(struct ifnet *);
184 void sk_init_xmac(struct sk_if_softc *);
185 void sk_init_yukon(struct sk_if_softc *);
186 void sk_stop(struct ifnet *, int);
187 void sk_watchdog(struct ifnet *);
188 void sk_shutdown(void *);
189 int sk_ifmedia_upd(struct ifnet *);
190 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
191 void sk_reset(struct sk_softc *);
192 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
193 int sk_init_rx_ring(struct sk_if_softc *);
194 int sk_init_tx_ring(struct sk_if_softc *);
195 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
196 void sk_vpd_read_res(struct sk_softc *,
197 struct vpd_res *, int);
198 void sk_vpd_read(struct sk_softc *);
199
200 int sk_xmac_miibus_readreg(struct device *, int, int);
201 void sk_xmac_miibus_writereg(struct device *, int, int, int);
202 void sk_xmac_miibus_statchg(struct device *);
203
204 int sk_marv_miibus_readreg(struct device *, int, int);
205 void sk_marv_miibus_writereg(struct device *, int, int, int);
206 void sk_marv_miibus_statchg(struct device *);
207
208 u_int32_t sk_calchash(caddr_t);
209 void sk_setfilt(struct sk_if_softc *, caddr_t, int);
210 void sk_setmulti(struct sk_if_softc *);
211 void sk_tick(void *);
212
213 /* #define SK_DEBUG 2 */
214 #ifdef SK_DEBUG
215 #define DPRINTF(x) if (skdebug) printf x
216 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
217 int skdebug = SK_DEBUG;
218
219 void sk_dump_txdesc(struct sk_tx_desc *, int);
220 void sk_dump_mbuf(struct mbuf *);
221 void sk_dump_bytes(const char *, int);
222 #else
223 #define DPRINTF(x)
224 #define DPRINTFN(n,x)
225 #endif
226
227 #define SK_SETBIT(sc, reg, x) \
228 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
229
230 #define SK_CLRBIT(sc, reg, x) \
231 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
232
233 #define SK_WIN_SETBIT_4(sc, reg, x) \
234 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
235
236 #define SK_WIN_CLRBIT_4(sc, reg, x) \
237 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
238
239 #define SK_WIN_SETBIT_2(sc, reg, x) \
240 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
241
242 #define SK_WIN_CLRBIT_2(sc, reg, x) \
243 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
244
245 /* supported device vendors */
246 static const struct sk_product {
247 pci_vendor_id_t sk_vendor;
248 pci_product_id_t sk_product;
249 } sk_products[] = {
250 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
251 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
252 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
253 { 0, 0, }
254 };
255
256 static inline u_int32_t
257 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
258 {
259 #ifdef SK_USEIOSPACE
260 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
261 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
262 #else
263 return CSR_READ_4(sc, reg);
264 #endif
265 }
266
267 static inline u_int16_t
268 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
269 {
270 #ifdef SK_USEIOSPACE
271 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
272 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
273 #else
274 return CSR_READ_2(sc, reg);
275 #endif
276 }
277
278 static inline u_int8_t
279 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
280 {
281 #ifdef SK_USEIOSPACE
282 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
283 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
284 #else
285 return CSR_READ_1(sc, reg);
286 #endif
287 }
288
289 static inline void
290 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
291 {
292 #ifdef SK_USEIOSPACE
293 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
294 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
295 #else
296 CSR_WRITE_4(sc, reg, x);
297 #endif
298 }
299
300 static inline void
301 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
302 {
303 #ifdef SK_USEIOSPACE
304 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
305 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
306 #else
307 CSR_WRITE_2(sc, reg, x);
308 #endif
309 }
310
311 static inline void
312 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
313 {
314 #ifdef SK_USEIOSPACE
315 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
316 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
317 #else
318 CSR_WRITE_1(sc, reg, x);
319 #endif
320 }
321
322 /*
323 * The VPD EEPROM contains Vital Product Data, as suggested in
324 * the PCI 2.1 specification. The VPD data is separared into areas
325 * denoted by resource IDs. The SysKonnect VPD contains an ID string
326 * resource (the name of the adapter), a read-only area resource
327 * containing various key/data fields and a read/write area which
328 * can be used to store asset management information or log messages.
329 * We read the ID string and read-only into buffers attached to
330 * the controller softc structure for later use. At the moment,
331 * we only use the ID string during sk_attach().
332 */
333 u_int8_t
334 sk_vpd_readbyte(struct sk_softc *sc, int addr)
335 {
336 int i;
337
338 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
339 for (i = 0; i < SK_TIMEOUT; i++) {
340 DELAY(1);
341 if (sk_win_read_2(sc,
342 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
343 break;
344 }
345
346 if (i == SK_TIMEOUT)
347 return(0);
348
349 return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
350 }
351
352 void
353 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
354 {
355 int i;
356 u_int8_t *ptr;
357
358 ptr = (u_int8_t *)res;
359 for (i = 0; i < sizeof(struct vpd_res); i++)
360 ptr[i] = sk_vpd_readbyte(sc, i + addr);
361 }
362
363 void
364 sk_vpd_read(struct sk_softc *sc)
365 {
366 int pos = 0, i;
367 struct vpd_res res;
368
369 if (sc->sk_vpd_prodname != NULL)
370 free(sc->sk_vpd_prodname, M_DEVBUF);
371 if (sc->sk_vpd_readonly != NULL)
372 free(sc->sk_vpd_readonly, M_DEVBUF);
373 sc->sk_vpd_prodname = NULL;
374 sc->sk_vpd_readonly = NULL;
375
376 sk_vpd_read_res(sc, &res, pos);
377
378 if (res.vr_id != VPD_RES_ID) {
379 printf("%s: bad VPD resource id: expected %x got %x\n",
380 sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
381 return;
382 }
383
384 pos += sizeof(res);
385 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
386 if (sc->sk_vpd_prodname == NULL)
387 panic("sk_vpd_read");
388 for (i = 0; i < res.vr_len; i++)
389 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
390 sc->sk_vpd_prodname[i] = '\0';
391 pos += i;
392
393 sk_vpd_read_res(sc, &res, pos);
394
395 if (res.vr_id != VPD_RES_READ) {
396 printf("%s: bad VPD resource id: expected %x got %x\n",
397 sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
398 return;
399 }
400
401 pos += sizeof(res);
402 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
403 if (sc->sk_vpd_readonly == NULL)
404 panic("sk_vpd_read");
405 for (i = 0; i < res.vr_len + 1; i++)
406 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
407 }
408
409 int
410 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
411 {
412 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
413 int i;
414
415 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
416
417 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
418 return(0);
419
420 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
421 SK_XM_READ_2(sc_if, XM_PHY_DATA);
422 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
423 for (i = 0; i < SK_TIMEOUT; i++) {
424 DELAY(1);
425 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
426 XM_MMUCMD_PHYDATARDY)
427 break;
428 }
429
430 if (i == SK_TIMEOUT) {
431 printf("%s: phy failed to come ready\n",
432 sc_if->sk_dev.dv_xname);
433 return(0);
434 }
435 }
436 DELAY(1);
437 return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
438 }
439
440 void
441 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
442 {
443 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
444 int i;
445
446 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
447
448 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
449 for (i = 0; i < SK_TIMEOUT; i++) {
450 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
451 break;
452 }
453
454 if (i == SK_TIMEOUT) {
455 printf("%s: phy failed to come ready\n",
456 sc_if->sk_dev.dv_xname);
457 return;
458 }
459
460 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
461 for (i = 0; i < SK_TIMEOUT; i++) {
462 DELAY(1);
463 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
464 break;
465 }
466
467 if (i == SK_TIMEOUT)
468 printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
469 }
470
471 void
472 sk_xmac_miibus_statchg(struct device *dev)
473 {
474 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
475 struct mii_data *mii = &sc_if->sk_mii;
476
477 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
478
479 /*
480 * If this is a GMII PHY, manually set the XMAC's
481 * duplex mode accordingly.
482 */
483 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
484 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
485 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
486 } else {
487 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
488 }
489 }
490 }
491
492 int
493 sk_marv_miibus_readreg(dev, phy, reg)
494 struct device *dev;
495 int phy, reg;
496 {
497 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
498 u_int16_t val;
499 int i;
500
501 if (phy != 0 ||
502 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
503 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
504 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
505 phy, reg));
506 return(0);
507 }
508
509 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
510 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
511
512 for (i = 0; i < SK_TIMEOUT; i++) {
513 DELAY(1);
514 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
515 if (val & YU_SMICR_READ_VALID)
516 break;
517 }
518
519 if (i == SK_TIMEOUT) {
520 printf("%s: phy failed to come ready\n",
521 sc_if->sk_dev.dv_xname);
522 return 0;
523 }
524
525 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
526 SK_TIMEOUT));
527
528 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
529
530 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
531 phy, reg, val));
532
533 return val;
534 }
535
536 void
537 sk_marv_miibus_writereg(dev, phy, reg, val)
538 struct device *dev;
539 int phy, reg, val;
540 {
541 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
542 int i;
543
544 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
545 phy, reg, val));
546
547 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
548 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
549 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
550
551 for (i = 0; i < SK_TIMEOUT; i++) {
552 DELAY(1);
553 if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
554 break;
555 }
556 }
557
558 void
559 sk_marv_miibus_statchg(dev)
560 struct device *dev;
561 {
562 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
563 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
564 }
565
566 #define SK_BITS 6
567 #define SK_POLY 0xEDB88320
568
569 u_int32_t
570 sk_calchash(caddr_t addr)
571 {
572 u_int32_t crc;
573
574 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
575 crc = ~crc & ((1<< SK_BITS) - 1);
576 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
577 return (crc);
578 }
579
580 void
581 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
582 {
583 int base = XM_RXFILT_ENTRY(slot);
584
585 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
586 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
587 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
588 }
589
590 void
591 sk_setmulti(struct sk_if_softc *sc_if)
592 {
593 struct sk_softc *sc = sc_if->sk_softc;
594 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
595 u_int32_t hashes[2] = { 0, 0 };
596 int h, i;
597 struct ethercom *ec = &sc_if->sk_ethercom;
598 struct ether_multi *enm;
599 struct ether_multistep step;
600 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
601
602 /* First, zot all the existing filters. */
603 switch(sc->sk_type) {
604 case SK_GENESIS:
605 for (i = 1; i < XM_RXFILT_MAX; i++)
606 sk_setfilt(sc_if, (caddr_t)&dummy, i);
607
608 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
609 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
610 break;
611 case SK_YUKON:
612 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
613 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
614 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
615 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
616 break;
617 }
618
619 /* Now program new ones. */
620 allmulti:
621 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
622 hashes[0] = 0xFFFFFFFF;
623 hashes[1] = 0xFFFFFFFF;
624 } else {
625 i = 1;
626 /* First find the tail of the list. */
627 ETHER_FIRST_MULTI(step, ec, enm);
628 while (enm != NULL) {
629 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
630 ETHER_ADDR_LEN)) {
631 ifp->if_flags |= IFF_ALLMULTI;
632 goto allmulti;
633 }
634 DPRINTFN(2,("multicast address %s\n",
635 ether_sprintf(enm->enm_addrlo)));
636 /*
637 * Program the first XM_RXFILT_MAX multicast groups
638 * into the perfect filter. For all others,
639 * use the hash table.
640 */
641 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
642 sk_setfilt(sc_if, enm->enm_addrlo, i);
643 i++;
644 }
645 else {
646 h = sk_calchash(enm->enm_addrlo);
647 if (h < 32)
648 hashes[0] |= (1 << h);
649 else
650 hashes[1] |= (1 << (h - 32));
651 }
652
653 ETHER_NEXT_MULTI(step, enm);
654 }
655 }
656
657 switch(sc->sk_type) {
658 case SK_GENESIS:
659 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
660 XM_MODE_RX_USE_PERFECT);
661 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
662 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
663 break;
664 case SK_YUKON:
665 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
666 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
667 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
668 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
669 break;
670 }
671 }
672
673 int
674 sk_init_rx_ring(struct sk_if_softc *sc_if)
675 {
676 struct sk_chain_data *cd = &sc_if->sk_cdata;
677 struct sk_ring_data *rd = sc_if->sk_rdata;
678 int i;
679
680 bzero((char *)rd->sk_rx_ring,
681 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
682
683 for (i = 0; i < SK_RX_RING_CNT; i++) {
684 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
685 if (i == (SK_RX_RING_CNT - 1)) {
686 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
687 rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if, 0);
688 } else {
689 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
690 rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if,i+1);
691 }
692 }
693
694 for (i = 0; i < SK_RX_RING_CNT; i++) {
695 if (sk_newbuf(sc_if, i, NULL, NULL) == ENOBUFS) {
696 printf("%s: failed alloc of %dth mbuf\n",
697 sc_if->sk_dev.dv_xname, i);
698 return(ENOBUFS);
699 }
700 }
701 sc_if->sk_cdata.sk_rx_prod = 0;
702 sc_if->sk_cdata.sk_rx_cons = 0;
703
704 return(0);
705 }
706
707 int
708 sk_init_tx_ring(struct sk_if_softc *sc_if)
709 {
710 struct sk_chain_data *cd = &sc_if->sk_cdata;
711 struct sk_ring_data *rd = sc_if->sk_rdata;
712 int i;
713
714 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
715 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
716
717 for (i = 0; i < SK_TX_RING_CNT; i++) {
718 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
719 if (i == (SK_TX_RING_CNT - 1)) {
720 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
721 rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if, 0);
722 } else {
723 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
724 rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if,i+1);
725 }
726 }
727
728 sc_if->sk_cdata.sk_tx_prod = 0;
729 sc_if->sk_cdata.sk_tx_cons = 0;
730 sc_if->sk_cdata.sk_tx_cnt = 0;
731
732 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
733 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
734
735 return (0);
736 }
737
738 int
739 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
740 bus_dmamap_t dmamap)
741 {
742 struct sk_softc *sc = sc_if->sk_softc;
743 struct mbuf *m_new = NULL;
744 struct sk_chain *c;
745 struct sk_rx_desc *r;
746
747 if (dmamap == NULL) {
748 /* if (m) panic() */
749
750 if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1, MCLBYTES,
751 0, BUS_DMA_NOWAIT, &dmamap)) {
752 printf("%s: can't create recv map\n",
753 sc_if->sk_dev.dv_xname);
754 return(ENOMEM);
755 }
756 } else if (m == NULL)
757 bus_dmamap_unload(sc->sc_dmatag, dmamap);
758
759 sc_if->sk_cdata.sk_rx_map[i] = dmamap;
760
761 if (m == NULL) {
762 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
763 if (m_new == NULL) {
764 printf("%s: no memory for rx list -- "
765 "packet dropped!\n", sc_if->sk_dev.dv_xname);
766 return(ENOBUFS);
767 }
768
769 /* Allocate the jumbo buffer */
770 MCLGET(m_new, M_DONTWAIT);
771 if (!(m_new->m_flags & M_EXT)) {
772 m_freem(m_new);
773 return (ENOBUFS);
774 }
775
776 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
777
778 m_adj(m_new, ETHER_ALIGN);
779
780 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m_new,
781 BUS_DMA_NOWAIT))
782 return(ENOBUFS);
783 } else {
784 /*
785 * We're re-using a previously allocated mbuf;
786 * be sure to re-init pointers and lengths to
787 * default values.
788 */
789 m_new = m;
790 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
791 m_adj(m_new, ETHER_ALIGN);
792 m_new->m_data = m_new->m_ext.ext_buf;
793 }
794
795 c = &sc_if->sk_cdata.sk_rx_chain[i];
796 r = c->sk_desc;
797 c->sk_mbuf = m_new;
798 r->sk_data_lo = dmamap->dm_segs[0].ds_addr;
799 r->sk_ctl = dmamap->dm_segs[0].ds_len | SK_RXSTAT;
800
801 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
802
803 return(0);
804 }
805
806 /*
807 * Set media options.
808 */
809 int
810 sk_ifmedia_upd(struct ifnet *ifp)
811 {
812 struct sk_if_softc *sc_if = ifp->if_softc;
813
814 (void) sk_init(ifp);
815 mii_mediachg(&sc_if->sk_mii);
816 return(0);
817 }
818
819 /*
820 * Report current media status.
821 */
822 void
823 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
824 {
825 struct sk_if_softc *sc_if = ifp->if_softc;
826
827 mii_pollstat(&sc_if->sk_mii);
828 ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
829 ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
830 }
831
832 int
833 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
834 {
835 struct sk_if_softc *sc_if = ifp->if_softc;
836 struct sk_softc *sc = sc_if->sk_softc;
837 struct ifreq *ifr = (struct ifreq *) data;
838 /* struct ifaddr *ifa = (struct ifaddr *) data; */
839 struct mii_data *mii;
840 int s, error = 0;
841
842 /* DPRINTFN(2, ("sk_ioctl\n")); */
843
844 s = splnet();
845
846 switch(command) {
847
848 case SIOCSIFFLAGS:
849 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
850 if (ifp->if_flags & IFF_UP) {
851 if (ifp->if_flags & IFF_RUNNING &&
852 ifp->if_flags & IFF_PROMISC &&
853 !(sc_if->sk_if_flags & IFF_PROMISC)) {
854 switch(sc->sk_type) {
855 case SK_GENESIS:
856 SK_XM_SETBIT_4(sc_if, XM_MODE,
857 XM_MODE_RX_PROMISC);
858 break;
859 case SK_YUKON:
860 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
861 YU_RCR_UFLEN | YU_RCR_MUFLEN);
862 break;
863 }
864 sk_setmulti(sc_if);
865 } else if (ifp->if_flags & IFF_RUNNING &&
866 !(ifp->if_flags & IFF_PROMISC) &&
867 sc_if->sk_if_flags & IFF_PROMISC) {
868 switch(sc->sk_type) {
869 case SK_GENESIS:
870 SK_XM_CLRBIT_4(sc_if, XM_MODE,
871 XM_MODE_RX_PROMISC);
872 break;
873 case SK_YUKON:
874 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
875 YU_RCR_UFLEN | YU_RCR_MUFLEN);
876 break;
877 }
878
879 sk_setmulti(sc_if);
880 } else
881 (void) sk_init(ifp);
882 } else {
883 if (ifp->if_flags & IFF_RUNNING)
884 sk_stop(ifp,0);
885 }
886 sc_if->sk_if_flags = ifp->if_flags;
887 error = 0;
888 break;
889
890 case SIOCGIFMEDIA:
891 case SIOCSIFMEDIA:
892 DPRINTFN(2, ("sk_ioctl MEDIA\n"));
893 mii = &sc_if->sk_mii;
894 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
895 break;
896 default:
897 DPRINTFN(2, ("sk_ioctl ETHER\n"));
898 error = ether_ioctl(ifp, command, data);
899
900 if ( error == ENETRESET) {
901 sk_setmulti(sc_if);
902 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
903 error = 0;
904 } else if ( error ) {
905 splx(s);
906 return error;
907 }
908 break;
909 }
910
911 splx(s);
912 return(error);
913 }
914
915 /*
916 * Lookup: Check the PCI vendor and device, and return a pointer to
917 * The structure if the IDs match against our list.
918 */
919
920 static const struct sk_product *
921 sk_lookup(const struct pci_attach_args *pa)
922 {
923 const struct sk_product *psk;
924
925 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
926 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
927 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
928 return (psk);
929 }
930 return (NULL);
931 }
932
933 /*
934 * Probe for a SysKonnect GEnesis chip.
935 */
936
937 int
938 skc_probe(struct device *parent, struct cfdata *match, void *aux)
939 {
940 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
941 const struct sk_product *psk;
942
943 if ((psk = sk_lookup(pa))) {
944 return(1);
945 }
946 return(0);
947 }
948
949 /*
950 * Force the GEnesis into reset, then bring it out of reset.
951 */
952 void sk_reset(struct sk_softc *sc)
953 {
954 DPRINTFN(2, ("sk_reset\n"));
955
956 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
957 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
958 if (sc->sk_type == SK_YUKON)
959 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
960
961 DELAY(1000);
962 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
963 DELAY(2);
964 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
965 if (sc->sk_type == SK_YUKON)
966 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
967
968 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
969 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
970 CSR_READ_2(sc, SK_LINK_CTRL)));
971
972 if (sc->sk_type == SK_GENESIS) {
973 /* Configure packet arbiter */
974 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
975 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
976 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
977 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
978 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
979 }
980
981 /* Enable RAM interface */
982 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
983
984 /*
985 * Configure interrupt moderation. The moderation timer
986 * defers interrupts specified in the interrupt moderation
987 * timer mask based on the timeout specified in the interrupt
988 * moderation timer init register. Each bit in the timer
989 * register represents 18.825ns, so to specify a timeout in
990 * microseconds, we have to multiply by 54.
991 */
992 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
993 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
994 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
995 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
996 }
997
998 int
999 sk_probe(struct device *parent, struct cfdata *match, void *aux)
1000 {
1001 struct skc_attach_args *sa = aux;
1002
1003 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1004 return(0);
1005
1006 return (1);
1007 }
1008
1009 /*
1010 * Each XMAC chip is attached as a separate logical IP interface.
1011 * Single port cards will have only one logical interface of course.
1012 */
1013 void
1014 sk_attach(struct device *parent, struct device *self, void *aux)
1015 {
1016 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1017 struct sk_softc *sc = (struct sk_softc *)parent;
1018 struct skc_attach_args *sa = aux;
1019 struct sk_txmap_entry *entry;
1020 struct ifnet *ifp;
1021 bus_dma_segment_t seg;
1022 bus_dmamap_t dmamap;
1023 caddr_t kva;
1024 int i, rseg;
1025
1026 sc_if->sk_port = sa->skc_port;
1027 sc_if->sk_softc = sc;
1028 sc->sk_if[sa->skc_port] = sc_if;
1029
1030 if (sa->skc_port == SK_PORT_A)
1031 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1032 if (sa->skc_port == SK_PORT_B)
1033 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1034
1035 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1036
1037 /*
1038 * Get station address for this interface. Note that
1039 * dual port cards actually come with three station
1040 * addresses: one for each port, plus an extra. The
1041 * extra one is used by the SysKonnect driver software
1042 * as a 'virtual' station address for when both ports
1043 * are operating in failover mode. Currently we don't
1044 * use this extra address.
1045 */
1046 for (i = 0; i < ETHER_ADDR_LEN; i++)
1047 sc_if->sk_enaddr[i] =
1048 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1049
1050
1051 aprint_normal(": Ethernet address %s\n",
1052 ether_sprintf(sc_if->sk_enaddr));
1053
1054 /*
1055 * Set up RAM buffer addresses. The NIC will have a certain
1056 * amount of SRAM on it, somewhere between 512K and 2MB. We
1057 * need to divide this up a) between the transmitter and
1058 * receiver and b) between the two XMACs, if this is a
1059 * dual port NIC. Our algotithm is to divide up the memory
1060 * evenly so that everyone gets a fair share.
1061 */
1062 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1063 u_int32_t chunk, val;
1064
1065 chunk = sc->sk_ramsize / 2;
1066 val = sc->sk_rboff / sizeof(u_int64_t);
1067 sc_if->sk_rx_ramstart = val;
1068 val += (chunk / sizeof(u_int64_t));
1069 sc_if->sk_rx_ramend = val - 1;
1070 sc_if->sk_tx_ramstart = val;
1071 val += (chunk / sizeof(u_int64_t));
1072 sc_if->sk_tx_ramend = val - 1;
1073 } else {
1074 u_int32_t chunk, val;
1075
1076 chunk = sc->sk_ramsize / 4;
1077 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1078 sizeof(u_int64_t);
1079 sc_if->sk_rx_ramstart = val;
1080 val += (chunk / sizeof(u_int64_t));
1081 sc_if->sk_rx_ramend = val - 1;
1082 sc_if->sk_tx_ramstart = val;
1083 val += (chunk / sizeof(u_int64_t));
1084 sc_if->sk_tx_ramend = val - 1;
1085 }
1086
1087 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1088 " tx_ramstart=%#x tx_ramend=%#x\n",
1089 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1090 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1091
1092 /* Read and save PHY type and set PHY address */
1093 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1094 switch (sc_if->sk_phytype) {
1095 case SK_PHYTYPE_XMAC:
1096 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1097 break;
1098 case SK_PHYTYPE_BCOM:
1099 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1100 break;
1101 case SK_PHYTYPE_MARV_COPPER:
1102 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1103 break;
1104 default:
1105 aprint_error("%s: unsupported PHY type: %d\n",
1106 sc->sk_dev.dv_xname, sc_if->sk_phytype);
1107 return;
1108 }
1109
1110 /* Allocate the descriptor queues. */
1111 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1112 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1113 aprint_error("%s: can't alloc rx buffers\n",
1114 sc->sk_dev.dv_xname);
1115 goto fail;
1116 }
1117 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1118 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1119 aprint_error("%s: can't map dma buffers (%lu bytes)\n",
1120 sc_if->sk_dev.dv_xname,
1121 (u_long) sizeof(struct sk_ring_data));
1122 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1123 goto fail;
1124 }
1125 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1126 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1127 &sc_if->sk_ring_map)) {
1128 aprint_error("%s: can't create dma map\n",
1129 sc_if->sk_dev.dv_xname);
1130 bus_dmamem_unmap(sc->sc_dmatag, kva,
1131 sizeof(struct sk_ring_data));
1132 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1133 goto fail;
1134 }
1135 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1136 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1137 aprint_error("%s: can't load dma map\n",
1138 sc_if->sk_dev.dv_xname);
1139 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1140 bus_dmamem_unmap(sc->sc_dmatag, kva,
1141 sizeof(struct sk_ring_data));
1142 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1143 goto fail;
1144 }
1145
1146 for (i = 0; i < SK_RX_RING_CNT; i++)
1147 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1148
1149 SLIST_INIT(&sc_if->sk_txmap_listhead);
1150 for (i = 0; i < SK_TX_RING_CNT; i++) {
1151 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1152
1153 if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, SK_NTXSEG,
1154 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap)) {
1155 aprint_error("%s: Can't create TX dmamap\n",
1156 sc_if->sk_dev.dv_xname);
1157 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1158 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1159 bus_dmamem_unmap(sc->sc_dmatag, kva,
1160 sizeof(struct sk_ring_data));
1161 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1162 goto fail;
1163 }
1164
1165 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1166 if (!entry) {
1167 aprint_error("%s: Can't alloc txmap entry\n",
1168 sc_if->sk_dev.dv_xname);
1169 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1170 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1171 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1172 bus_dmamem_unmap(sc->sc_dmatag, kva,
1173 sizeof(struct sk_ring_data));
1174 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1175 goto fail;
1176 }
1177 entry->dmamap = dmamap;
1178 SLIST_INSERT_HEAD(&sc_if->sk_txmap_listhead, entry, link);
1179 }
1180
1181 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1182 bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1183
1184 ifp = &sc_if->sk_ethercom.ec_if;
1185 ifp->if_softc = sc_if;
1186 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1187 ifp->if_ioctl = sk_ioctl;
1188 ifp->if_start = sk_start;
1189 ifp->if_stop = sk_stop;
1190 ifp->if_init = sk_init;
1191 ifp->if_watchdog = sk_watchdog;
1192 ifp->if_capabilities |= ETHERCAP_VLAN_MTU;
1193 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1194 IFQ_SET_READY(&ifp->if_snd);
1195 strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1196
1197 /*
1198 * Do miibus setup.
1199 */
1200 switch (sc->sk_type) {
1201 case SK_GENESIS:
1202 sk_init_xmac(sc_if);
1203 break;
1204 case SK_YUKON:
1205 sk_init_yukon(sc_if);
1206 break;
1207 default:
1208 panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
1209 sc->sk_type);
1210 }
1211
1212 DPRINTFN(2, ("sk_attach: 1\n"));
1213
1214 sc_if->sk_mii.mii_ifp = ifp;
1215 switch (sc->sk_type) {
1216 case SK_GENESIS:
1217 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1218 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1219 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1220 break;
1221 case SK_YUKON:
1222 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1223 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1224 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1225 break;
1226 }
1227
1228 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1229 sk_ifmedia_upd, sk_ifmedia_sts);
1230 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1231 MII_OFFSET_ANY, 0);
1232 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1233 printf("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1234 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1235 0, NULL);
1236 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1237 }
1238 else
1239 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1240
1241 callout_init(&sc_if->sk_tick_ch);
1242 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1243
1244 DPRINTFN(2, ("sk_attach: 1\n"));
1245
1246 /*
1247 * Call MI attach routines.
1248 */
1249 if_attach(ifp);
1250
1251 ether_ifattach(ifp, sc_if->sk_enaddr);
1252
1253 #if NRND > 0
1254 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1255 RND_TYPE_NET, 0);
1256 #endif
1257
1258 DPRINTFN(2, ("sk_attach: end\n"));
1259
1260 return;
1261
1262 fail:
1263 sc->sk_if[sa->skc_port] = NULL;
1264 }
1265
1266 int
1267 skcprint(void *aux, const char *pnp)
1268 {
1269 struct skc_attach_args *sa = aux;
1270
1271 if (pnp)
1272 aprint_normal("sk port %c at %s",
1273 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1274 else
1275 aprint_normal(" port %c",
1276 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1277 return (UNCONF);
1278 }
1279
1280 /*
1281 * Attach the interface. Allocate softc structures, do ifmedia
1282 * setup and ethernet/BPF attach.
1283 */
1284 void
1285 skc_attach(struct device *parent, struct device *self, void *aux)
1286 {
1287 struct sk_softc *sc = (struct sk_softc *)self;
1288 struct pci_attach_args *pa = aux;
1289 struct skc_attach_args skca;
1290 pci_chipset_tag_t pc = pa->pa_pc;
1291 pcireg_t memtype;
1292 pci_intr_handle_t ih;
1293 const char *intrstr = NULL;
1294 bus_addr_t iobase;
1295 bus_size_t iosize;
1296 int s;
1297 u_int32_t command;
1298
1299 DPRINTFN(2, ("begin skc_attach\n"));
1300
1301 s = splnet();
1302
1303 /*
1304 * Handle power management nonsense.
1305 */
1306 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1307
1308 if (command == 0x01) {
1309 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1310 if (command & SK_PSTATE_MASK) {
1311 u_int32_t iobase, membase, irq;
1312
1313 /* Save important PCI config data. */
1314 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1315 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1316 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1317
1318 /* Reset the power state. */
1319 aprint_normal("%s chip is in D%d power mode "
1320 "-- setting to D0\n", sc->sk_dev.dv_xname,
1321 command & SK_PSTATE_MASK);
1322 command &= 0xFFFFFFFC;
1323 pci_conf_write(pc, pa->pa_tag,
1324 SK_PCI_PWRMGMTCTRL, command);
1325
1326 /* Restore PCI config data. */
1327 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1328 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1329 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1330 }
1331 }
1332
1333 /*
1334 * Map control/status registers.
1335 */
1336 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1337 command |= PCI_COMMAND_IO_ENABLE |
1338 PCI_COMMAND_MEM_ENABLE |
1339 PCI_COMMAND_MASTER_ENABLE;
1340 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1341 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1342
1343 switch (PCI_PRODUCT(pa->pa_id)) {
1344 case PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE:
1345 sc->sk_type = SK_GENESIS;
1346 break;
1347 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1348 case PCI_PRODUCT_3COM_3C940:
1349 sc->sk_type = SK_YUKON;
1350 break;
1351 default:
1352 aprint_error(": unknown device!\n");
1353 goto fail;
1354 }
1355
1356 #ifdef SK_USEIOSPACE
1357 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1358 aprint_error(": failed to enable I/O ports!\n");
1359 goto fail;
1360 }
1361 /*
1362 * Map control/status registers.
1363 */
1364 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1365 &iobase, &iosize)) {
1366 aprint_error(": can't find i/o space\n");
1367 goto fail;
1368 }
1369 #else
1370 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1371 aprint_error(": failed to enable memory mapping!\n");
1372 goto fail;
1373 }
1374 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1375 switch (memtype) {
1376 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1377 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1378 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1379 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1380 &iobase, &iosize) == 0)
1381 break;
1382 default:
1383 aprint_error("%s: can't find mem space\n",
1384 sc->sk_dev.dv_xname);
1385 return;
1386 }
1387
1388 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1389 #endif
1390 sc->sc_dmatag = pa->pa_dmat;
1391
1392 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1393
1394 /* Allocate interrupt */
1395 if (pci_intr_map(pa, &ih)) {
1396 aprint_error(": couldn't map interrupt\n");
1397 goto fail;
1398 }
1399
1400 intrstr = pci_intr_string(pc, ih);
1401 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1402 if (sc->sk_intrhand == NULL) {
1403 aprint_error(": couldn't establish interrupt");
1404 if (intrstr != NULL)
1405 aprint_normal(" at %s", intrstr);
1406 goto fail;
1407 }
1408 aprint_normal(": %s\n", intrstr);
1409
1410 /* Reset the adapter. */
1411 sk_reset(sc);
1412
1413 /* Read and save vital product data from EEPROM. */
1414 sk_vpd_read(sc);
1415
1416 if (sc->sk_type == SK_GENESIS) {
1417 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1418 /* Read and save RAM size and RAMbuffer offset */
1419 switch(val) {
1420 case SK_RAMSIZE_512K_64:
1421 sc->sk_ramsize = 0x80000;
1422 sc->sk_rboff = SK_RBOFF_0;
1423 break;
1424 case SK_RAMSIZE_1024K_64:
1425 sc->sk_ramsize = 0x100000;
1426 sc->sk_rboff = SK_RBOFF_80000;
1427 break;
1428 case SK_RAMSIZE_1024K_128:
1429 sc->sk_ramsize = 0x100000;
1430 sc->sk_rboff = SK_RBOFF_0;
1431 break;
1432 case SK_RAMSIZE_2048K_128:
1433 sc->sk_ramsize = 0x200000;
1434 sc->sk_rboff = SK_RBOFF_0;
1435 break;
1436 default:
1437 aprint_error("%s: unknown ram size: %d\n",
1438 sc->sk_dev.dv_xname, val);
1439 goto fail;
1440 break;
1441 }
1442
1443 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1444 sc->sk_ramsize, sc->sk_ramsize / 1024,
1445 sc->sk_rboff));
1446 } else {
1447 sc->sk_ramsize = 0x20000;
1448 sc->sk_rboff = SK_RBOFF_0;
1449
1450 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1451 sc->sk_ramsize / 1024, sc->sk_ramsize,
1452 sc->sk_rboff));
1453 }
1454
1455 /* Read and save physical media type */
1456 switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1457 case SK_PMD_1000BASESX:
1458 sc->sk_pmd = IFM_1000_SX;
1459 break;
1460 case SK_PMD_1000BASELX:
1461 sc->sk_pmd = IFM_1000_LX;
1462 break;
1463 case SK_PMD_1000BASECX:
1464 sc->sk_pmd = IFM_1000_CX;
1465 break;
1466 case SK_PMD_1000BASETX:
1467 sc->sk_pmd = IFM_1000_T;
1468 break;
1469 default:
1470 aprint_error("%s: unknown media type: 0x%x\n",
1471 sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
1472 goto fail;
1473 }
1474
1475 /* Announce the product name. */
1476 aprint_normal("%s: %s\n", sc->sk_dev.dv_xname, sc->sk_vpd_prodname);
1477
1478 skca.skc_port = SK_PORT_A;
1479 (void)config_found(&sc->sk_dev, &skca, skcprint);
1480
1481 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1482 skca.skc_port = SK_PORT_B;
1483 (void)config_found(&sc->sk_dev, &skca, skcprint);
1484 }
1485
1486 /* Turn on the 'driver is loaded' LED. */
1487 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1488
1489 fail:
1490 splx(s);
1491 }
1492
1493 int
1494 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1495 {
1496 struct sk_softc *sc = sc_if->sk_softc;
1497 struct sk_tx_desc *f = NULL;
1498 u_int32_t frag, cur, cnt = 0;
1499 int i;
1500 struct sk_txmap_entry *entry;
1501 bus_dmamap_t txmap;
1502
1503 DPRINTFN(3, ("sk_encap\n"));
1504
1505 entry = SLIST_FIRST(&sc_if->sk_txmap_listhead);
1506 if (entry == NULL) {
1507 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1508 return ENOBUFS;
1509 }
1510 txmap = entry->dmamap;
1511
1512 cur = frag = *txidx;
1513
1514 #ifdef SK_DEBUG
1515 if (skdebug >= 3)
1516 sk_dump_mbuf(m_head);
1517 #endif
1518
1519 /*
1520 * Start packing the mbufs in this chain into
1521 * the fragment pointers. Stop when we run out
1522 * of fragments or hit the end of the mbuf chain.
1523 */
1524 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1525 BUS_DMA_NOWAIT)) {
1526 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1527 return(ENOBUFS);
1528 }
1529
1530 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1531
1532 /* Sync the DMA map. */
1533 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1534 BUS_DMASYNC_PREWRITE);
1535
1536 for (i = 0; i < txmap->dm_nsegs; i++) {
1537 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1538 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1539 return(ENOBUFS);
1540 }
1541 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1542 f->sk_data_lo = txmap->dm_segs[i].ds_addr;
1543 f->sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1544 if (cnt == 0)
1545 f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1546 else
1547 f->sk_ctl |= SK_TXCTL_OWN;
1548
1549 cur = frag;
1550 SK_INC(frag, SK_TX_RING_CNT);
1551 cnt++;
1552 }
1553
1554 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1555 SLIST_REMOVE_HEAD(&sc_if->sk_txmap_listhead, link);
1556 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1557 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1558 SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1559
1560 /* Sync descriptors before handing to chip */
1561 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1562 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1563
1564 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1565
1566 /* Sync first descriptor to hand it off */
1567 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1568
1569 sc_if->sk_cdata.sk_tx_cnt += cnt;
1570
1571 #ifdef SK_DEBUG
1572 if (skdebug >= 3) {
1573 struct sk_tx_desc *desc;
1574 u_int32_t idx;
1575 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1576 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1577 sk_dump_txdesc(desc, idx);
1578 }
1579 }
1580 #endif
1581
1582 *txidx = frag;
1583
1584 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1585
1586 return(0);
1587 }
1588
1589 void
1590 sk_start(struct ifnet *ifp)
1591 {
1592 struct sk_if_softc *sc_if = ifp->if_softc;
1593 struct sk_softc *sc = sc_if->sk_softc;
1594 struct mbuf *m_head = NULL;
1595 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1596 int pkts = 0;
1597
1598 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1599 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1600
1601 while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1602
1603 IFQ_POLL(&ifp->if_snd, m_head);
1604 if (m_head == NULL)
1605 break;
1606
1607 /*
1608 * Pack the data into the transmit ring. If we
1609 * don't have room, set the OACTIVE flag and wait
1610 * for the NIC to drain the ring.
1611 */
1612 if (sk_encap(sc_if, m_head, &idx)) {
1613 ifp->if_flags |= IFF_OACTIVE;
1614 break;
1615 }
1616
1617 /* now we are committed to transmit the packet */
1618 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1619 pkts++;
1620
1621 /*
1622 * If there's a BPF listener, bounce a copy of this frame
1623 * to him.
1624 */
1625 #if NBPFILTER > 0
1626 if (ifp->if_bpf)
1627 bpf_mtap(ifp->if_bpf, m_head);
1628 #endif
1629 }
1630 if (pkts == 0)
1631 return;
1632
1633 /* Transmit */
1634 sc_if->sk_cdata.sk_tx_prod = idx;
1635 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1636
1637 /* Set a timeout in case the chip goes out to lunch. */
1638 ifp->if_timer = 5;
1639 }
1640
1641
1642 void
1643 sk_watchdog(struct ifnet *ifp)
1644 {
1645 struct sk_if_softc *sc_if = ifp->if_softc;
1646
1647 printf("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1648 (void) sk_init(ifp);
1649 }
1650
1651 void
1652 sk_shutdown(void * v)
1653 {
1654 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
1655 struct sk_softc *sc = sc_if->sk_softc;
1656 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1657
1658 DPRINTFN(2, ("sk_shutdown\n"));
1659 sk_stop(ifp,1);
1660
1661 /* Turn off the 'driver is loaded' LED. */
1662 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1663
1664 /*
1665 * Reset the GEnesis controller. Doing this should also
1666 * assert the resets on the attached XMAC(s).
1667 */
1668 sk_reset(sc);
1669 }
1670
1671 void
1672 sk_rxeof(struct sk_if_softc *sc_if)
1673 {
1674 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1675 struct mbuf *m;
1676 struct sk_chain *cur_rx;
1677 struct sk_rx_desc *cur_desc;
1678 int i, cur, total_len = 0;
1679 u_int32_t rxstat;
1680 bus_dmamap_t dmamap;
1681
1682 i = sc_if->sk_cdata.sk_rx_prod;
1683
1684 DPRINTFN(3, ("sk_rxeof %d\n", i));
1685
1686 for (;;) {
1687 cur = i;
1688
1689 /* Sync the descriptor */
1690 SK_CDRXSYNC(sc_if, cur,
1691 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1692
1693 if (sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl & SK_RXCTL_OWN) {
1694 /* Invalidate the descriptor -- it's not ready yet */
1695 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
1696 sc_if->sk_cdata.sk_rx_prod = i;
1697 break;
1698 }
1699
1700 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1701 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
1702 dmamap = sc_if->sk_cdata.sk_rx_map[cur];
1703
1704 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1705 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1706
1707 rxstat = cur_desc->sk_xmac_rxstat;
1708 m = cur_rx->sk_mbuf;
1709 cur_rx->sk_mbuf = NULL;
1710 total_len = SK_RXBYTES(cur_desc->sk_ctl);
1711
1712 sc_if->sk_cdata.sk_rx_map[cur] = 0;
1713
1714 SK_INC(i, SK_RX_RING_CNT);
1715
1716 if (rxstat & XM_RXSTAT_ERRFRAME) {
1717 ifp->if_ierrors++;
1718 sk_newbuf(sc_if, cur, m, dmamap);
1719 continue;
1720 }
1721
1722 /*
1723 * Try to allocate a new jumbo buffer. If that
1724 * fails, copy the packet to mbufs and put the
1725 * jumbo buffer back in the ring so it can be
1726 * re-used. If allocating mbufs fails, then we
1727 * have to drop the packet.
1728 */
1729 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1730 struct mbuf *m0;
1731 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1732 total_len + ETHER_ALIGN, 0, ifp, NULL);
1733 sk_newbuf(sc_if, cur, m, dmamap);
1734 if (m0 == NULL) {
1735 printf("%s: no receive buffers "
1736 "available -- packet dropped!\n",
1737 sc_if->sk_dev.dv_xname);
1738 ifp->if_ierrors++;
1739 continue;
1740 }
1741 m_adj(m0, ETHER_ALIGN);
1742 m = m0;
1743 } else {
1744 m->m_pkthdr.rcvif = ifp;
1745 m->m_pkthdr.len = m->m_len = total_len;
1746 }
1747
1748 ifp->if_ipackets++;
1749
1750 #if NBPFILTER > 0
1751 if (ifp->if_bpf)
1752 bpf_mtap(ifp->if_bpf, m);
1753 #endif
1754 /* pass it on. */
1755 (*ifp->if_input)(ifp, m);
1756 }
1757 }
1758
1759 void
1760 sk_txeof(struct sk_if_softc *sc_if)
1761 {
1762 struct sk_softc *sc = sc_if->sk_softc;
1763 struct sk_tx_desc *cur_tx = NULL;
1764 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1765 u_int32_t idx;
1766 struct sk_txmap_entry *entry;
1767
1768 DPRINTFN(3, ("sk_txeof\n"));
1769
1770 /*
1771 * Go through our tx ring and free mbufs for those
1772 * frames that have been sent.
1773 */
1774 idx = sc_if->sk_cdata.sk_tx_cons;
1775 while(idx != sc_if->sk_cdata.sk_tx_prod) {
1776 SK_CDTXSYNC(sc_if, idx, 1,
1777 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1778
1779 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1780 #ifdef SK_DEBUG
1781 if (skdebug >= 3)
1782 sk_dump_txdesc(cur_tx, idx);
1783 #endif
1784 if (cur_tx->sk_ctl & SK_TXCTL_OWN) {
1785 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
1786 break;
1787 }
1788 if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
1789 ifp->if_opackets++;
1790 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1791 entry = sc_if->sk_cdata.sk_tx_map[idx];
1792
1793 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1794 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1795
1796 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1797 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1798
1799 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1800 SLIST_INSERT_HEAD(&sc_if->sk_txmap_listhead, entry,
1801 link);
1802 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
1803 }
1804 sc_if->sk_cdata.sk_tx_cnt--;
1805 SK_INC(idx, SK_TX_RING_CNT);
1806 }
1807 if (sc_if->sk_cdata.sk_tx_cnt == 0)
1808 ifp->if_timer = 0;
1809
1810 sc_if->sk_cdata.sk_tx_cons = idx;
1811
1812 if (cur_tx != NULL)
1813 ifp->if_flags &= ~IFF_OACTIVE;
1814 }
1815
1816 void
1817 sk_tick(void *xsc_if)
1818 {
1819 struct sk_if_softc *sc_if = xsc_if;
1820 struct mii_data *mii = &sc_if->sk_mii;
1821 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1822 int i;
1823
1824 DPRINTFN(3, ("sk_tick\n"));
1825
1826 if (!(ifp->if_flags & IFF_UP))
1827 return;
1828
1829 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
1830 sk_intr_bcom(sc_if);
1831 return;
1832 }
1833
1834 /*
1835 * According to SysKonnect, the correct way to verify that
1836 * the link has come back up is to poll bit 0 of the GPIO
1837 * register three times. This pin has the signal from the
1838 * link sync pin connected to it; if we read the same link
1839 * state 3 times in a row, we know the link is up.
1840 */
1841 for (i = 0; i < 3; i++) {
1842 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
1843 break;
1844 }
1845
1846 if (i != 3) {
1847 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1848 return;
1849 }
1850
1851 /* Turn the GP0 interrupt back on. */
1852 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1853 SK_XM_READ_2(sc_if, XM_ISR);
1854 mii_tick(mii);
1855 mii_pollstat(mii);
1856 callout_stop(&sc_if->sk_tick_ch);
1857 }
1858
1859 void
1860 sk_intr_bcom(struct sk_if_softc *sc_if)
1861 {
1862 struct mii_data *mii = &sc_if->sk_mii;
1863 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1864 int status;
1865
1866
1867 DPRINTFN(3, ("sk_intr_bcom\n"));
1868
1869 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1870
1871 /*
1872 * Read the PHY interrupt register to make sure
1873 * we clear any pending interrupts.
1874 */
1875 status = sk_xmac_miibus_readreg((struct device *)sc_if,
1876 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
1877
1878 if (!(ifp->if_flags & IFF_RUNNING)) {
1879 sk_init_xmac(sc_if);
1880 return;
1881 }
1882
1883 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
1884 int lstat;
1885 lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
1886 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
1887
1888 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
1889 mii_mediachg(mii);
1890 /* Turn off the link LED. */
1891 SK_IF_WRITE_1(sc_if, 0,
1892 SK_LINKLED1_CTL, SK_LINKLED_OFF);
1893 sc_if->sk_link = 0;
1894 } else if (status & BRGPHY_ISR_LNK_CHG) {
1895 sk_xmac_miibus_writereg((struct device *)sc_if,
1896 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
1897 mii_tick(mii);
1898 sc_if->sk_link = 1;
1899 /* Turn on the link LED. */
1900 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
1901 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
1902 SK_LINKLED_BLINK_OFF);
1903 mii_pollstat(mii);
1904 } else {
1905 mii_tick(mii);
1906 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
1907 }
1908 }
1909
1910 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1911 }
1912
1913 void
1914 sk_intr_xmac(struct sk_if_softc *sc_if)
1915 {
1916 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
1917
1918 DPRINTFN(3, ("sk_intr_xmac\n"));
1919
1920 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
1921 if (status & XM_ISR_GP0_SET) {
1922 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1923 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1924 }
1925
1926 if (status & XM_ISR_AUTONEG_DONE) {
1927 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1928 }
1929 }
1930
1931 if (status & XM_IMR_TX_UNDERRUN)
1932 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
1933
1934 if (status & XM_IMR_RX_OVERRUN)
1935 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
1936 }
1937
1938 void
1939 sk_intr_yukon(sc_if)
1940 struct sk_if_softc *sc_if;
1941 {
1942 int status;
1943
1944 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
1945
1946 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
1947 }
1948
1949 int
1950 sk_intr(void *xsc)
1951 {
1952 struct sk_softc *sc = xsc;
1953 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
1954 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
1955 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
1956 u_int32_t status;
1957 int claimed = 0;
1958
1959 if (sc_if0 != NULL)
1960 ifp0 = &sc_if0->sk_ethercom.ec_if;
1961 if (sc_if1 != NULL)
1962 ifp1 = &sc_if1->sk_ethercom.ec_if;
1963
1964 for (;;) {
1965 status = CSR_READ_4(sc, SK_ISSR);
1966 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
1967
1968 if (!(status & sc->sk_intrmask))
1969 break;
1970
1971 claimed = 1;
1972
1973 /* Handle receive interrupts first. */
1974 if (status & SK_ISR_RX1_EOF) {
1975 sk_rxeof(sc_if0);
1976 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
1977 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1978 }
1979 if (status & SK_ISR_RX2_EOF) {
1980 sk_rxeof(sc_if1);
1981 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
1982 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1983 }
1984
1985 /* Then transmit interrupts. */
1986 if (status & SK_ISR_TX1_S_EOF) {
1987 sk_txeof(sc_if0);
1988 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
1989 SK_TXBMU_CLR_IRQ_EOF);
1990 }
1991 if (status & SK_ISR_TX2_S_EOF) {
1992 sk_txeof(sc_if1);
1993 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
1994 SK_TXBMU_CLR_IRQ_EOF);
1995 }
1996
1997 /* Then MAC interrupts. */
1998 if (status & SK_ISR_MAC1 && (ifp0->if_flags & IFF_RUNNING)) {
1999 if (sc->sk_type == SK_GENESIS)
2000 sk_intr_xmac(sc_if0);
2001 else
2002 sk_intr_yukon(sc_if0);
2003 }
2004
2005 if (status & SK_ISR_MAC2 && (ifp1->if_flags & IFF_RUNNING)) {
2006 if (sc->sk_type == SK_GENESIS)
2007 sk_intr_xmac(sc_if1);
2008 else
2009 sk_intr_yukon(sc_if1);
2010
2011 }
2012
2013 if (status & SK_ISR_EXTERNAL_REG) {
2014 if (ifp0 != NULL &&
2015 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2016 sk_intr_bcom(sc_if0);
2017
2018 if (ifp1 != NULL &&
2019 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2020 sk_intr_bcom(sc_if1);
2021 }
2022 }
2023
2024 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2025
2026 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2027 sk_start(ifp0);
2028 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2029 sk_start(ifp1);
2030
2031 return (claimed);
2032 }
2033
2034 void
2035 sk_init_xmac(struct sk_if_softc *sc_if)
2036 {
2037 struct sk_softc *sc = sc_if->sk_softc;
2038 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2039 static const struct sk_bcom_hack bhack[] = {
2040 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2041 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2042 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2043 { 0, 0 } };
2044
2045 DPRINTFN(1, ("sk_init_xmac\n"));
2046
2047 /* Unreset the XMAC. */
2048 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2049 DELAY(1000);
2050
2051 /* Reset the XMAC's internal state. */
2052 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2053
2054 /* Save the XMAC II revision */
2055 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2056
2057 /*
2058 * Perform additional initialization for external PHYs,
2059 * namely for the 1000baseTX cards that use the XMAC's
2060 * GMII mode.
2061 */
2062 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2063 int i = 0;
2064 u_int32_t val;
2065
2066 /* Take PHY out of reset. */
2067 val = sk_win_read_4(sc, SK_GPIO);
2068 if (sc_if->sk_port == SK_PORT_A)
2069 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2070 else
2071 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2072 sk_win_write_4(sc, SK_GPIO, val);
2073
2074 /* Enable GMII mode on the XMAC. */
2075 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2076
2077 sk_xmac_miibus_writereg((struct device *)sc_if,
2078 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2079 DELAY(10000);
2080 sk_xmac_miibus_writereg((struct device *)sc_if,
2081 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2082
2083 /*
2084 * Early versions of the BCM5400 apparently have
2085 * a bug that requires them to have their reserved
2086 * registers initialized to some magic values. I don't
2087 * know what the numbers do, I'm just the messenger.
2088 */
2089 if (sk_xmac_miibus_readreg((struct device *)sc_if,
2090 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2091 while(bhack[i].reg) {
2092 sk_xmac_miibus_writereg((struct device *)sc_if,
2093 SK_PHYADDR_BCOM, bhack[i].reg,
2094 bhack[i].val);
2095 i++;
2096 }
2097 }
2098 }
2099
2100 /* Set station address */
2101 SK_XM_WRITE_2(sc_if, XM_PAR0,
2102 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2103 SK_XM_WRITE_2(sc_if, XM_PAR1,
2104 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2105 SK_XM_WRITE_2(sc_if, XM_PAR2,
2106 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2107 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2108
2109 if (ifp->if_flags & IFF_PROMISC) {
2110 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2111 } else {
2112 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2113 }
2114
2115 if (ifp->if_flags & IFF_BROADCAST) {
2116 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2117 } else {
2118 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2119 }
2120
2121 /* We don't need the FCS appended to the packet. */
2122 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2123
2124 /* We want short frames padded to 60 bytes. */
2125 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2126
2127 /*
2128 * Enable the reception of all error frames. This is is
2129 * a necessary evil due to the design of the XMAC. The
2130 * XMAC's receive FIFO is only 8K in size, however jumbo
2131 * frames can be up to 9000 bytes in length. When bad
2132 * frame filtering is enabled, the XMAC's RX FIFO operates
2133 * in 'store and forward' mode. For this to work, the
2134 * entire frame has to fit into the FIFO, but that means
2135 * that jumbo frames larger than 8192 bytes will be
2136 * truncated. Disabling all bad frame filtering causes
2137 * the RX FIFO to operate in streaming mode, in which
2138 * case the XMAC will start transfering frames out of the
2139 * RX FIFO as soon as the FIFO threshold is reached.
2140 */
2141 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2142 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2143 XM_MODE_RX_INRANGELEN);
2144
2145 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2146 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2147 else
2148 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2149
2150 /*
2151 * Bump up the transmit threshold. This helps hold off transmit
2152 * underruns when we're blasting traffic from both ports at once.
2153 */
2154 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2155
2156 /* Set multicast filter */
2157 sk_setmulti(sc_if);
2158
2159 /* Clear and enable interrupts */
2160 SK_XM_READ_2(sc_if, XM_ISR);
2161 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2162 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2163 else
2164 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2165
2166 /* Configure MAC arbiter */
2167 switch(sc_if->sk_xmac_rev) {
2168 case XM_XMAC_REV_B2:
2169 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2170 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2171 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2172 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2173 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2174 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2175 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2176 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2177 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2178 break;
2179 case XM_XMAC_REV_C1:
2180 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2181 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2182 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2183 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2184 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2185 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2186 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2187 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2188 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2189 break;
2190 default:
2191 break;
2192 }
2193 sk_win_write_2(sc, SK_MACARB_CTL,
2194 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2195
2196 sc_if->sk_link = 1;
2197 }
2198
2199 void sk_init_yukon(sc_if)
2200 struct sk_if_softc *sc_if;
2201 {
2202 u_int32_t /*mac, */phy;
2203 u_int16_t reg;
2204 int i;
2205
2206 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2207 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2208
2209 /* GMAC and GPHY Reset */
2210 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2211
2212 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2213
2214 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2215 DELAY(1000);
2216 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2217 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2218 DELAY(1000);
2219
2220
2221 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2222
2223 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2224 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2225
2226 switch(sc_if->sk_softc->sk_pmd) {
2227 case IFM_1000_SX:
2228 case IFM_1000_LX:
2229 phy |= SK_GPHY_FIBER;
2230 break;
2231
2232 case IFM_1000_CX:
2233 case IFM_1000_T:
2234 phy |= SK_GPHY_COPPER;
2235 break;
2236 }
2237
2238 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2239
2240 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2241 DELAY(1000);
2242 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2243 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2244 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2245
2246 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2247 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2248
2249 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2250
2251 /* unused read of the interrupt source register */
2252 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2253 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2254
2255 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2256 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2257 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2258
2259 /* MIB Counter Clear Mode set */
2260 reg |= YU_PAR_MIB_CLR;
2261 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2262 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2263 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2264
2265 /* MIB Counter Clear Mode clear */
2266 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2267 reg &= ~YU_PAR_MIB_CLR;
2268 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2269
2270 /* receive control reg */
2271 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2272 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2273 YU_RCR_CRCR);
2274
2275 /* transmit parameter register */
2276 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2277 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2278 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2279
2280 /* serial mode register */
2281 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2282 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2283 YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e));
2284
2285 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2286 /* Setup Yukon's address */
2287 for (i = 0; i < 3; i++) {
2288 /* Write Source Address 1 (unicast filter) */
2289 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2290 sc_if->sk_enaddr[i * 2] |
2291 sc_if->sk_enaddr[i * 2 + 1] << 8);
2292 }
2293
2294 for (i = 0; i < 3; i++) {
2295 reg = sk_win_read_2(sc_if->sk_softc,
2296 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2297 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2298 }
2299
2300 /* clear all Multicast filter hash registers */
2301 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2302 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
2303 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
2304 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
2305 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
2306
2307 /* enable interrupt mask for counter overflows */
2308 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2309 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2310 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2311 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2312
2313 /* Configure RX MAC FIFO */
2314 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2315 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2316
2317 /* Configure TX MAC FIFO */
2318 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2319 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2320
2321 DPRINTFN(6, ("sk_init_yukon: end\n"));
2322 }
2323
2324 /*
2325 * Note that to properly initialize any part of the GEnesis chip,
2326 * you first have to take it out of reset mode.
2327 */
2328 int
2329 sk_init(struct ifnet *ifp)
2330 {
2331 struct sk_if_softc *sc_if = ifp->if_softc;
2332 struct sk_softc *sc = sc_if->sk_softc;
2333 struct mii_data *mii = &sc_if->sk_mii;
2334 int s;
2335
2336 DPRINTFN(1, ("sk_init\n"));
2337
2338 s = splnet();
2339
2340 /* Cancel pending I/O and free all RX/TX buffers. */
2341 sk_stop(ifp,0);
2342
2343 if (sc->sk_type == SK_GENESIS) {
2344 /* Configure LINK_SYNC LED */
2345 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2346 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2347 SK_LINKLED_LINKSYNC_ON);
2348
2349 /* Configure RX LED */
2350 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2351 SK_RXLEDCTL_COUNTER_START);
2352
2353 /* Configure TX LED */
2354 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2355 SK_TXLEDCTL_COUNTER_START);
2356 }
2357
2358 /* Configure I2C registers */
2359
2360 /* Configure XMAC(s) */
2361 switch (sc->sk_type) {
2362 case SK_GENESIS:
2363 sk_init_xmac(sc_if);
2364 break;
2365 case SK_YUKON:
2366 sk_init_yukon(sc_if);
2367 break;
2368 }
2369 mii_mediachg(mii);
2370
2371 if (sc->sk_type == SK_GENESIS) {
2372 /* Configure MAC FIFOs */
2373 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2374 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2375 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2376
2377 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2378 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2379 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2380 }
2381
2382 /* Configure transmit arbiter(s) */
2383 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2384 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2385
2386 /* Configure RAMbuffers */
2387 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2388 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2389 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2390 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2391 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2392 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2393
2394 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2395 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2396 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2397 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2398 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2399 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2400 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2401
2402 /* Configure BMUs */
2403 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2404 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2405 SK_RX_RING_ADDR(sc_if, 0));
2406 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2407
2408 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2409 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2410 SK_TX_RING_ADDR(sc_if, 0));
2411 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2412
2413 /* Init descriptors */
2414 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2415 printf("%s: initialization failed: no "
2416 "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2417 sk_stop(ifp,0);
2418 splx(s);
2419 return(ENOBUFS);
2420 }
2421
2422 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2423 printf("%s: initialization failed: no "
2424 "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2425 sk_stop(ifp,0);
2426 splx(s);
2427 return(ENOBUFS);
2428 }
2429
2430 /* Configure interrupt handling */
2431 CSR_READ_4(sc, SK_ISSR);
2432 if (sc_if->sk_port == SK_PORT_A)
2433 sc->sk_intrmask |= SK_INTRS1;
2434 else
2435 sc->sk_intrmask |= SK_INTRS2;
2436
2437 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2438
2439 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2440
2441 /* Start BMUs. */
2442 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2443
2444 if (sc->sk_type == SK_GENESIS) {
2445 /* Enable XMACs TX and RX state machines */
2446 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2447 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2448 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2449 }
2450
2451 if (sc->sk_type == SK_YUKON) {
2452 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2453 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2454 reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2455 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2456 }
2457
2458
2459 ifp->if_flags |= IFF_RUNNING;
2460 ifp->if_flags &= ~IFF_OACTIVE;
2461
2462 splx(s);
2463 return(0);
2464 }
2465
2466 void
2467 sk_stop(struct ifnet *ifp, int disable)
2468 {
2469 struct sk_if_softc *sc_if = ifp->if_softc;
2470 struct sk_softc *sc = sc_if->sk_softc;
2471 int i;
2472
2473 DPRINTFN(1, ("sk_stop\n"));
2474
2475 callout_stop(&sc_if->sk_tick_ch);
2476
2477 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2478 u_int32_t val;
2479
2480 /* Put PHY back into reset. */
2481 val = sk_win_read_4(sc, SK_GPIO);
2482 if (sc_if->sk_port == SK_PORT_A) {
2483 val |= SK_GPIO_DIR0;
2484 val &= ~SK_GPIO_DAT0;
2485 } else {
2486 val |= SK_GPIO_DIR2;
2487 val &= ~SK_GPIO_DAT2;
2488 }
2489 sk_win_write_4(sc, SK_GPIO, val);
2490 }
2491
2492 /* Turn off various components of this interface. */
2493 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2494 switch (sc->sk_type) {
2495 case SK_GENESIS:
2496 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2497 SK_TXMACCTL_XMAC_RESET);
2498 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2499 break;
2500 case SK_YUKON:
2501 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2502 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2503 break;
2504 }
2505 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2506 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2507 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2508 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2509 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2510 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2511 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2512 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2513 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2514
2515 /* Disable interrupts */
2516 if (sc_if->sk_port == SK_PORT_A)
2517 sc->sk_intrmask &= ~SK_INTRS1;
2518 else
2519 sc->sk_intrmask &= ~SK_INTRS2;
2520 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2521
2522 SK_XM_READ_2(sc_if, XM_ISR);
2523 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2524
2525 /* Free RX and TX mbufs still in the queues. */
2526 for (i = 0; i < SK_RX_RING_CNT; i++) {
2527 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2528 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2529 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2530 }
2531 }
2532
2533 for (i = 0; i < SK_TX_RING_CNT; i++) {
2534 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2535 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2536 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2537 }
2538 }
2539
2540 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2541 }
2542
2543 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2544
2545 /*
2546 struct cfdriver skc_cd = {
2547 0, "skc", DV_DULL
2548 };
2549 */
2550
2551 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2552
2553 /*
2554 struct cfdriver sk_cd = {
2555 0, "sk", DV_IFNET
2556 };
2557 */
2558
2559 #ifdef SK_DEBUG
2560 void
2561 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2562 {
2563 #define DESC_PRINT(X) \
2564 if (desc->X) \
2565 printf("txdesc[%d]." #X "=%#x\n", \
2566 idx, desc->X);
2567
2568 DESC_PRINT(sk_ctl);
2569 DESC_PRINT(sk_next);
2570 DESC_PRINT(sk_data_lo);
2571 DESC_PRINT(sk_data_hi);
2572 DESC_PRINT(sk_xmac_txstat);
2573 DESC_PRINT(sk_rsvd0);
2574 DESC_PRINT(sk_csum_startval);
2575 DESC_PRINT(sk_csum_startpos);
2576 DESC_PRINT(sk_csum_writepos);
2577 DESC_PRINT(sk_rsvd1);
2578 #undef PRINT
2579 }
2580
2581 void
2582 sk_dump_bytes(const char *data, int len)
2583 {
2584 int c, i, j;
2585
2586 for (i = 0; i < len; i += 16) {
2587 printf("%08x ", i);
2588 c = len - i;
2589 if (c > 16) c = 16;
2590
2591 for (j = 0; j < c; j++) {
2592 printf("%02x ", data[i + j] & 0xff);
2593 if ((j & 0xf) == 7 && j > 0)
2594 printf(" ");
2595 }
2596
2597 for (; j < 16; j++)
2598 printf(" ");
2599 printf(" ");
2600
2601 for (j = 0; j < c; j++) {
2602 int ch = data[i + j] & 0xff;
2603 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2604 }
2605
2606 printf("\n");
2607
2608 if (c < 16)
2609 break;
2610 }
2611 }
2612
2613 void
2614 sk_dump_mbuf(struct mbuf *m)
2615 {
2616 int count = m->m_pkthdr.len;
2617
2618 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2619
2620 while (count > 0 && m) {
2621 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2622 m, m->m_data, m->m_len);
2623 sk_dump_bytes(mtod(m, char *), m->m_len);
2624
2625 count -= m->m_len;
2626 m = m->m_next;
2627 }
2628 }
2629 #endif
2630