Home | History | Annotate | Line # | Download | only in pci
if_sk.c revision 1.50
      1 /*	$NetBSD: if_sk.c,v 1.50 2008/06/20 16:28:36 cube Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
     30 
     31 /*
     32  * Copyright (c) 1997, 1998, 1999, 2000
     33  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *	This product includes software developed by Bill Paul.
     46  * 4. Neither the name of the author nor the names of any co-contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     60  * THE POSSIBILITY OF SUCH DAMAGE.
     61  *
     62  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
     63  */
     64 
     65 /*
     66  * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
     67  *
     68  * Permission to use, copy, modify, and distribute this software for any
     69  * purpose with or without fee is hereby granted, provided that the above
     70  * copyright notice and this permission notice appear in all copies.
     71  *
     72  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     73  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     74  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     75  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     76  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     77  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     78  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     79  */
     80 
     81 /*
     82  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
     83  * the SK-984x series adapters, both single port and dual port.
     84  * References:
     85  * 	The XaQti XMAC II datasheet,
     86  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     87  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
     88  *
     89  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
     90  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
     91  * convenience to others until Vitesse corrects this problem:
     92  *
     93  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     94  *
     95  * Written by Bill Paul <wpaul (at) ee.columbia.edu>
     96  * Department of Electrical Engineering
     97  * Columbia University, New York City
     98  */
     99 
    100 /*
    101  * The SysKonnect gigabit ethernet adapters consist of two main
    102  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
    103  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
    104  * components and a PHY while the GEnesis controller provides a PCI
    105  * interface with DMA support. Each card may have between 512K and
    106  * 2MB of SRAM on board depending on the configuration.
    107  *
    108  * The SysKonnect GEnesis controller can have either one or two XMAC
    109  * chips connected to it, allowing single or dual port NIC configurations.
    110  * SysKonnect has the distinction of being the only vendor on the market
    111  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
    112  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
    113  * XMAC registers. This driver takes advantage of these features to allow
    114  * both XMACs to operate as independent interfaces.
    115  */
    116 
    117 #include <sys/cdefs.h>
    118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.50 2008/06/20 16:28:36 cube Exp $");
    119 
    120 #include "bpfilter.h"
    121 #include "rnd.h"
    122 
    123 #include <sys/param.h>
    124 #include <sys/systm.h>
    125 #include <sys/sockio.h>
    126 #include <sys/mbuf.h>
    127 #include <sys/malloc.h>
    128 #include <sys/mutex.h>
    129 #include <sys/kernel.h>
    130 #include <sys/socket.h>
    131 #include <sys/device.h>
    132 #include <sys/queue.h>
    133 #include <sys/callout.h>
    134 #include <sys/sysctl.h>
    135 #include <sys/endian.h>
    136 
    137 #include <net/if.h>
    138 #include <net/if_dl.h>
    139 #include <net/if_types.h>
    140 
    141 #include <net/if_media.h>
    142 
    143 #if NBPFILTER > 0
    144 #include <net/bpf.h>
    145 #endif
    146 #if NRND > 0
    147 #include <sys/rnd.h>
    148 #endif
    149 
    150 #include <dev/mii/mii.h>
    151 #include <dev/mii/miivar.h>
    152 #include <dev/mii/brgphyreg.h>
    153 
    154 #include <dev/pci/pcireg.h>
    155 #include <dev/pci/pcivar.h>
    156 #include <dev/pci/pcidevs.h>
    157 
    158 /* #define SK_USEIOSPACE */
    159 
    160 #include <dev/pci/if_skreg.h>
    161 #include <dev/pci/if_skvar.h>
    162 
    163 int skc_probe(struct device *, struct cfdata *, void *);
    164 void skc_attach(struct device *, struct device *self, void *aux);
    165 int sk_probe(struct device *, struct cfdata *, void *);
    166 void sk_attach(struct device *, struct device *self, void *aux);
    167 int skcprint(void *, const char *);
    168 int sk_intr(void *);
    169 void sk_intr_bcom(struct sk_if_softc *);
    170 void sk_intr_xmac(struct sk_if_softc *);
    171 void sk_intr_yukon(struct sk_if_softc *);
    172 void sk_rxeof(struct sk_if_softc *);
    173 void sk_txeof(struct sk_if_softc *);
    174 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
    175 void sk_start(struct ifnet *);
    176 int sk_ioctl(struct ifnet *, u_long, void *);
    177 int sk_init(struct ifnet *);
    178 void sk_init_xmac(struct sk_if_softc *);
    179 void sk_init_yukon(struct sk_if_softc *);
    180 void sk_stop(struct ifnet *, int);
    181 void sk_watchdog(struct ifnet *);
    182 void sk_shutdown(void *);
    183 int sk_ifmedia_upd(struct ifnet *);
    184 void sk_reset(struct sk_softc *);
    185 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
    186 int sk_alloc_jumbo_mem(struct sk_if_softc *);
    187 void sk_free_jumbo_mem(struct sk_if_softc *);
    188 void *sk_jalloc(struct sk_if_softc *);
    189 void sk_jfree(struct mbuf *, void *, size_t, void *);
    190 int sk_init_rx_ring(struct sk_if_softc *);
    191 int sk_init_tx_ring(struct sk_if_softc *);
    192 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
    193 void sk_vpd_read_res(struct sk_softc *,
    194 					struct vpd_res *, int);
    195 void sk_vpd_read(struct sk_softc *);
    196 
    197 void sk_update_int_mod(struct sk_softc *);
    198 
    199 int sk_xmac_miibus_readreg(struct device *, int, int);
    200 void sk_xmac_miibus_writereg(struct device *, int, int, int);
    201 void sk_xmac_miibus_statchg(struct device *);
    202 
    203 int sk_marv_miibus_readreg(struct device *, int, int);
    204 void sk_marv_miibus_writereg(struct device *, int, int, int);
    205 void sk_marv_miibus_statchg(struct device *);
    206 
    207 u_int32_t sk_xmac_hash(void *);
    208 u_int32_t sk_yukon_hash(void *);
    209 void sk_setfilt(struct sk_if_softc *, void *, int);
    210 void sk_setmulti(struct sk_if_softc *);
    211 void sk_tick(void *);
    212 
    213 /* #define SK_DEBUG 2 */
    214 #ifdef SK_DEBUG
    215 #define DPRINTF(x)	if (skdebug) printf x
    216 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
    217 int	skdebug = SK_DEBUG;
    218 
    219 void sk_dump_txdesc(struct sk_tx_desc *, int);
    220 void sk_dump_mbuf(struct mbuf *);
    221 void sk_dump_bytes(const char *, int);
    222 #else
    223 #define DPRINTF(x)
    224 #define DPRINTFN(n,x)
    225 #endif
    226 
    227 static int sk_sysctl_handler(SYSCTLFN_PROTO);
    228 static int sk_root_num;
    229 
    230 /* supported device vendors */
    231 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
    232 static const struct sk_product {
    233 	pci_vendor_id_t		sk_vendor;
    234 	pci_product_id_t	sk_product;
    235 } sk_products[] = {
    236 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
    237 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
    238 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
    239 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
    240 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
    241 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
    242 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
    243 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
    244 	{ 0, 0, }
    245 };
    246 
    247 #define SK_LINKSYS_EG1032_SUBID	0x00151737
    248 
    249 static inline u_int32_t
    250 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
    251 {
    252 #ifdef SK_USEIOSPACE
    253 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    254 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
    255 #else
    256 	return CSR_READ_4(sc, reg);
    257 #endif
    258 }
    259 
    260 static inline u_int16_t
    261 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
    262 {
    263 #ifdef SK_USEIOSPACE
    264 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    265 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
    266 #else
    267 	return CSR_READ_2(sc, reg);
    268 #endif
    269 }
    270 
    271 static inline u_int8_t
    272 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
    273 {
    274 #ifdef SK_USEIOSPACE
    275 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    276 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
    277 #else
    278 	return CSR_READ_1(sc, reg);
    279 #endif
    280 }
    281 
    282 static inline void
    283 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
    284 {
    285 #ifdef SK_USEIOSPACE
    286 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    287 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
    288 #else
    289 	CSR_WRITE_4(sc, reg, x);
    290 #endif
    291 }
    292 
    293 static inline void
    294 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
    295 {
    296 #ifdef SK_USEIOSPACE
    297 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    298 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
    299 #else
    300 	CSR_WRITE_2(sc, reg, x);
    301 #endif
    302 }
    303 
    304 static inline void
    305 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
    306 {
    307 #ifdef SK_USEIOSPACE
    308 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    309 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
    310 #else
    311 	CSR_WRITE_1(sc, reg, x);
    312 #endif
    313 }
    314 
    315 /*
    316  * The VPD EEPROM contains Vital Product Data, as suggested in
    317  * the PCI 2.1 specification. The VPD data is separared into areas
    318  * denoted by resource IDs. The SysKonnect VPD contains an ID string
    319  * resource (the name of the adapter), a read-only area resource
    320  * containing various key/data fields and a read/write area which
    321  * can be used to store asset management information or log messages.
    322  * We read the ID string and read-only into buffers attached to
    323  * the controller softc structure for later use. At the moment,
    324  * we only use the ID string during sk_attach().
    325  */
    326 u_int8_t
    327 sk_vpd_readbyte(struct sk_softc *sc, int addr)
    328 {
    329 	int			i;
    330 
    331 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
    332 	for (i = 0; i < SK_TIMEOUT; i++) {
    333 		DELAY(1);
    334 		if (sk_win_read_2(sc,
    335 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
    336 			break;
    337 	}
    338 
    339 	if (i == SK_TIMEOUT)
    340 		return 0;
    341 
    342 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
    343 }
    344 
    345 void
    346 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
    347 {
    348 	int			i;
    349 	u_int8_t		*ptr;
    350 
    351 	ptr = (u_int8_t *)res;
    352 	for (i = 0; i < sizeof(struct vpd_res); i++)
    353 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
    354 }
    355 
    356 void
    357 sk_vpd_read(struct sk_softc *sc)
    358 {
    359 	int			pos = 0, i;
    360 	struct vpd_res		res;
    361 
    362 	if (sc->sk_vpd_prodname != NULL)
    363 		free(sc->sk_vpd_prodname, M_DEVBUF);
    364 	if (sc->sk_vpd_readonly != NULL)
    365 		free(sc->sk_vpd_readonly, M_DEVBUF);
    366 	sc->sk_vpd_prodname = NULL;
    367 	sc->sk_vpd_readonly = NULL;
    368 
    369 	sk_vpd_read_res(sc, &res, pos);
    370 
    371 	if (res.vr_id != VPD_RES_ID) {
    372 		aprint_error_dev(&sc->sk_dev, "bad VPD resource id: expected %x got %x\n",
    373 		    VPD_RES_ID, res.vr_id);
    374 		return;
    375 	}
    376 
    377 	pos += sizeof(res);
    378 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    379 	if (sc->sk_vpd_prodname == NULL)
    380 		panic("sk_vpd_read");
    381 	for (i = 0; i < res.vr_len; i++)
    382 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
    383 	sc->sk_vpd_prodname[i] = '\0';
    384 	pos += i;
    385 
    386 	sk_vpd_read_res(sc, &res, pos);
    387 
    388 	if (res.vr_id != VPD_RES_READ) {
    389 		aprint_error_dev(&sc->sk_dev, "bad VPD resource id: expected %x got %x\n",
    390 		    VPD_RES_READ, res.vr_id);
    391 		return;
    392 	}
    393 
    394 	pos += sizeof(res);
    395 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    396 	if (sc->sk_vpd_readonly == NULL)
    397 		panic("sk_vpd_read");
    398 	for (i = 0; i < res.vr_len ; i++)
    399 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
    400 }
    401 
    402 int
    403 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
    404 {
    405 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    406 	int i;
    407 
    408 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
    409 
    410 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
    411 		return 0;
    412 
    413 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    414 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
    415 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    416 		for (i = 0; i < SK_TIMEOUT; i++) {
    417 			DELAY(1);
    418 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
    419 			    XM_MMUCMD_PHYDATARDY)
    420 				break;
    421 		}
    422 
    423 		if (i == SK_TIMEOUT) {
    424 			aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
    425 			return 0;
    426 		}
    427 	}
    428 	DELAY(1);
    429 	return SK_XM_READ_2(sc_if, XM_PHY_DATA);
    430 }
    431 
    432 void
    433 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
    434 {
    435 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    436 	int i;
    437 
    438 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
    439 
    440 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    441 	for (i = 0; i < SK_TIMEOUT; i++) {
    442 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    443 			break;
    444 	}
    445 
    446 	if (i == SK_TIMEOUT) {
    447 		aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
    448 		return;
    449 	}
    450 
    451 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
    452 	for (i = 0; i < SK_TIMEOUT; i++) {
    453 		DELAY(1);
    454 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    455 			break;
    456 	}
    457 
    458 	if (i == SK_TIMEOUT)
    459 		aprint_error_dev(&sc_if->sk_dev, "phy write timed out\n");
    460 }
    461 
    462 void
    463 sk_xmac_miibus_statchg(struct device *dev)
    464 {
    465 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    466 	struct mii_data *mii = &sc_if->sk_mii;
    467 
    468 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
    469 
    470 	/*
    471 	 * If this is a GMII PHY, manually set the XMAC's
    472 	 * duplex mode accordingly.
    473 	 */
    474 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    475 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
    476 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    477 		else
    478 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    479 	}
    480 }
    481 
    482 int
    483 sk_marv_miibus_readreg(struct device *dev, int phy, int reg)
    484 {
    485 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    486 	u_int16_t val;
    487 	int i;
    488 
    489 	if (phy != 0 ||
    490 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
    491 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
    492 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
    493 			     phy, reg));
    494 		return 0;
    495 	}
    496 
    497         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    498 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
    499 
    500 	for (i = 0; i < SK_TIMEOUT; i++) {
    501 		DELAY(1);
    502 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
    503 		if (val & YU_SMICR_READ_VALID)
    504 			break;
    505 	}
    506 
    507 	if (i == SK_TIMEOUT) {
    508 		aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
    509 		return 0;
    510 	}
    511 
    512  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
    513 		     SK_TIMEOUT));
    514 
    515         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
    516 
    517 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
    518 		     phy, reg, val));
    519 
    520 	return val;
    521 }
    522 
    523 void
    524 sk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
    525 {
    526 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    527 	int i;
    528 
    529 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
    530 		     phy, reg, val));
    531 
    532 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
    533 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    534 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
    535 
    536 	for (i = 0; i < SK_TIMEOUT; i++) {
    537 		DELAY(1);
    538 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
    539 			break;
    540 	}
    541 
    542 	if (i == SK_TIMEOUT)
    543 		printf("%s: phy write timed out\n", device_xname(&sc_if->sk_dev));
    544 }
    545 
    546 void
    547 sk_marv_miibus_statchg(struct device *dev)
    548 {
    549 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
    550 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
    551 }
    552 
    553 #define SK_HASH_BITS		6
    554 
    555 u_int32_t
    556 sk_xmac_hash(void *addr)
    557 {
    558 	u_int32_t		crc;
    559 
    560 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
    561 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
    562 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    563 	return crc;
    564 }
    565 
    566 u_int32_t
    567 sk_yukon_hash(void *addr)
    568 {
    569 	u_int32_t		crc;
    570 
    571 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
    572 	crc &= ((1 << SK_HASH_BITS) - 1);
    573 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    574 	return crc;
    575 }
    576 
    577 void
    578 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
    579 {
    580 	char *addr = addrv;
    581 	int base = XM_RXFILT_ENTRY(slot);
    582 
    583 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
    584 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
    585 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
    586 }
    587 
    588 void
    589 sk_setmulti(struct sk_if_softc *sc_if)
    590 {
    591 	struct sk_softc *sc = sc_if->sk_softc;
    592 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
    593 	u_int32_t hashes[2] = { 0, 0 };
    594 	int h = 0, i;
    595 	struct ethercom *ec = &sc_if->sk_ethercom;
    596 	struct ether_multi *enm;
    597 	struct ether_multistep step;
    598 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
    599 
    600 	/* First, zot all the existing filters. */
    601 	switch (sc->sk_type) {
    602 	case SK_GENESIS:
    603 		for (i = 1; i < XM_RXFILT_MAX; i++)
    604 			sk_setfilt(sc_if, (void *)&dummy, i);
    605 
    606 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
    607 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
    608 		break;
    609 	case SK_YUKON:
    610 	case SK_YUKON_LITE:
    611 	case SK_YUKON_LP:
    612 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
    613 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
    614 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
    615 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
    616 		break;
    617 	}
    618 
    619 	/* Now program new ones. */
    620 allmulti:
    621 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    622 		hashes[0] = 0xFFFFFFFF;
    623 		hashes[1] = 0xFFFFFFFF;
    624 	} else {
    625 		i = 1;
    626 		/* First find the tail of the list. */
    627 		ETHER_FIRST_MULTI(step, ec, enm);
    628 		while (enm != NULL) {
    629 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
    630 				 ETHER_ADDR_LEN)) {
    631 				ifp->if_flags |= IFF_ALLMULTI;
    632 				goto allmulti;
    633 			}
    634 			DPRINTFN(2,("multicast address %s\n",
    635 	    			ether_sprintf(enm->enm_addrlo)));
    636 			/*
    637 			 * Program the first XM_RXFILT_MAX multicast groups
    638 			 * into the perfect filter. For all others,
    639 			 * use the hash table.
    640 			 */
    641 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
    642 				sk_setfilt(sc_if, enm->enm_addrlo, i);
    643 				i++;
    644 			}
    645 			else {
    646 				switch (sc->sk_type) {
    647 				case SK_GENESIS:
    648 					h = sk_xmac_hash(enm->enm_addrlo);
    649 					break;
    650 				case SK_YUKON:
    651 				case SK_YUKON_LITE:
    652 				case SK_YUKON_LP:
    653 					h = sk_yukon_hash(enm->enm_addrlo);
    654 					break;
    655 				}
    656 				if (h < 32)
    657 					hashes[0] |= (1 << h);
    658 				else
    659 					hashes[1] |= (1 << (h - 32));
    660 			}
    661 
    662 			ETHER_NEXT_MULTI(step, enm);
    663 		}
    664 	}
    665 
    666 	switch (sc->sk_type) {
    667 	case SK_GENESIS:
    668 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
    669 			       XM_MODE_RX_USE_PERFECT);
    670 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
    671 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
    672 		break;
    673 	case SK_YUKON:
    674 	case SK_YUKON_LITE:
    675 	case SK_YUKON_LP:
    676 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
    677 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
    678 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
    679 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
    680 		break;
    681 	}
    682 }
    683 
    684 int
    685 sk_init_rx_ring(struct sk_if_softc *sc_if)
    686 {
    687 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    688 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    689 	int			i;
    690 
    691 	bzero((char *)rd->sk_rx_ring,
    692 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
    693 
    694 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    695 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
    696 		if (i == (SK_RX_RING_CNT - 1)) {
    697 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
    698 			rd->sk_rx_ring[i].sk_next =
    699 				htole32(SK_RX_RING_ADDR(sc_if, 0));
    700 		} else {
    701 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
    702 			rd->sk_rx_ring[i].sk_next =
    703 				htole32(SK_RX_RING_ADDR(sc_if,i+1));
    704 		}
    705 	}
    706 
    707 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    708 		if (sk_newbuf(sc_if, i, NULL,
    709 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
    710 			aprint_error_dev(&sc_if->sk_dev, "failed alloc of %dth mbuf\n", i);
    711 			return ENOBUFS;
    712 		}
    713 	}
    714 	sc_if->sk_cdata.sk_rx_prod = 0;
    715 	sc_if->sk_cdata.sk_rx_cons = 0;
    716 
    717 	return 0;
    718 }
    719 
    720 int
    721 sk_init_tx_ring(struct sk_if_softc *sc_if)
    722 {
    723 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    724 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    725 	int			i;
    726 
    727 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
    728 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
    729 
    730 	for (i = 0; i < SK_TX_RING_CNT; i++) {
    731 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
    732 		if (i == (SK_TX_RING_CNT - 1)) {
    733 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
    734 			rd->sk_tx_ring[i].sk_next =
    735 				htole32(SK_TX_RING_ADDR(sc_if, 0));
    736 		} else {
    737 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
    738 			rd->sk_tx_ring[i].sk_next =
    739 				htole32(SK_TX_RING_ADDR(sc_if,i+1));
    740 		}
    741 	}
    742 
    743 	sc_if->sk_cdata.sk_tx_prod = 0;
    744 	sc_if->sk_cdata.sk_tx_cons = 0;
    745 	sc_if->sk_cdata.sk_tx_cnt = 0;
    746 
    747 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
    748 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    749 
    750 	return 0;
    751 }
    752 
    753 int
    754 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
    755 	  bus_dmamap_t dmamap)
    756 {
    757 	struct mbuf		*m_new = NULL;
    758 	struct sk_chain		*c;
    759 	struct sk_rx_desc	*r;
    760 
    761 	if (m == NULL) {
    762 		void *buf = NULL;
    763 
    764 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    765 		if (m_new == NULL) {
    766 			aprint_error_dev(&sc_if->sk_dev, "no memory for rx list -- "
    767 			    "packet dropped!\n");
    768 			return ENOBUFS;
    769 		}
    770 
    771 		/* Allocate the jumbo buffer */
    772 		buf = sk_jalloc(sc_if);
    773 		if (buf == NULL) {
    774 			m_freem(m_new);
    775 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
    776 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
    777 			return ENOBUFS;
    778 		}
    779 
    780 		/* Attach the buffer to the mbuf */
    781 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    782 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
    783 
    784 	} else {
    785 		/*
    786 	 	 * We're re-using a previously allocated mbuf;
    787 		 * be sure to re-init pointers and lengths to
    788 		 * default values.
    789 		 */
    790 		m_new = m;
    791 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    792 		m_new->m_data = m_new->m_ext.ext_buf;
    793 	}
    794 	m_adj(m_new, ETHER_ALIGN);
    795 
    796 	c = &sc_if->sk_cdata.sk_rx_chain[i];
    797 	r = c->sk_desc;
    798 	c->sk_mbuf = m_new;
    799 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
    800 	    (((vaddr_t)m_new->m_data
    801 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
    802 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
    803 
    804 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    805 
    806 	return 0;
    807 }
    808 
    809 /*
    810  * Memory management for jumbo frames.
    811  */
    812 
    813 int
    814 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
    815 {
    816 	struct sk_softc		*sc = sc_if->sk_softc;
    817 	char *ptr, *kva;
    818 	bus_dma_segment_t	seg;
    819 	int		i, rseg, state, error;
    820 	struct sk_jpool_entry   *entry;
    821 
    822 	state = error = 0;
    823 
    824 	/* Grab a big chunk o' storage. */
    825 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
    826 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    827 		aprint_error_dev(&sc->sk_dev, "can't alloc rx buffers\n");
    828 		return ENOBUFS;
    829 	}
    830 
    831 	state = 1;
    832 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
    833 			   BUS_DMA_NOWAIT)) {
    834 		aprint_error_dev(&sc->sk_dev, "can't map dma buffers (%d bytes)\n",
    835 		    SK_JMEM);
    836 		error = ENOBUFS;
    837 		goto out;
    838 	}
    839 
    840 	state = 2;
    841 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
    842 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
    843 		aprint_error_dev(&sc->sk_dev, "can't create dma map\n");
    844 		error = ENOBUFS;
    845 		goto out;
    846 	}
    847 
    848 	state = 3;
    849 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
    850 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
    851 		aprint_error_dev(&sc->sk_dev, "can't load dma map\n");
    852 		error = ENOBUFS;
    853 		goto out;
    854 	}
    855 
    856 	state = 4;
    857 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
    858 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
    859 
    860 	LIST_INIT(&sc_if->sk_jfree_listhead);
    861 	LIST_INIT(&sc_if->sk_jinuse_listhead);
    862 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
    863 
    864 	/*
    865 	 * Now divide it up into 9K pieces and save the addresses
    866 	 * in an array.
    867 	 */
    868 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
    869 	for (i = 0; i < SK_JSLOTS; i++) {
    870 		sc_if->sk_cdata.sk_jslots[i] = ptr;
    871 		ptr += SK_JLEN;
    872 		entry = malloc(sizeof(struct sk_jpool_entry),
    873 		    M_DEVBUF, M_NOWAIT);
    874 		if (entry == NULL) {
    875 			aprint_error_dev(&sc->sk_dev, "no memory for jumbo buffer queue!\n");
    876 			error = ENOBUFS;
    877 			goto out;
    878 		}
    879 		entry->slot = i;
    880 		if (i)
    881 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
    882 				 entry, jpool_entries);
    883 		else
    884 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
    885 				 entry, jpool_entries);
    886 	}
    887 out:
    888 	if (error != 0) {
    889 		switch (state) {
    890 		case 4:
    891 			bus_dmamap_unload(sc->sc_dmatag,
    892 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    893 		case 3:
    894 			bus_dmamap_destroy(sc->sc_dmatag,
    895 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    896 		case 2:
    897 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
    898 		case 1:
    899 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
    900 			break;
    901 		default:
    902 			break;
    903 		}
    904 	}
    905 
    906 	return error;
    907 }
    908 
    909 /*
    910  * Allocate a jumbo buffer.
    911  */
    912 void *
    913 sk_jalloc(struct sk_if_softc *sc_if)
    914 {
    915 	struct sk_jpool_entry   *entry;
    916 
    917 	mutex_enter(&sc_if->sk_jpool_mtx);
    918 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
    919 
    920 	if (entry == NULL) {
    921 		mutex_exit(&sc_if->sk_jpool_mtx);
    922 		return NULL;
    923 	}
    924 
    925 	LIST_REMOVE(entry, jpool_entries);
    926 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
    927 	mutex_exit(&sc_if->sk_jpool_mtx);
    928 	return sc_if->sk_cdata.sk_jslots[entry->slot];
    929 }
    930 
    931 /*
    932  * Release a jumbo buffer.
    933  */
    934 void
    935 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
    936 {
    937 	struct sk_jpool_entry *entry;
    938 	struct sk_if_softc *sc;
    939 	int i;
    940 
    941 	/* Extract the softc struct pointer. */
    942 	sc = (struct sk_if_softc *)arg;
    943 
    944 	if (sc == NULL)
    945 		panic("sk_jfree: can't find softc pointer!");
    946 
    947 	/* calculate the slot this buffer belongs to */
    948 
    949 	i = ((vaddr_t)buf
    950 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
    951 
    952 	if ((i < 0) || (i >= SK_JSLOTS))
    953 		panic("sk_jfree: asked to free buffer that we don't manage!");
    954 
    955 	mutex_enter(&sc->sk_jpool_mtx);
    956 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
    957 	if (entry == NULL)
    958 		panic("sk_jfree: buffer not in use!");
    959 	entry->slot = i;
    960 	LIST_REMOVE(entry, jpool_entries);
    961 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
    962 	mutex_exit(&sc->sk_jpool_mtx);
    963 
    964 	if (__predict_true(m != NULL))
    965 		pool_cache_put(mb_cache, m);
    966 }
    967 
    968 /*
    969  * Set media options.
    970  */
    971 int
    972 sk_ifmedia_upd(struct ifnet *ifp)
    973 {
    974 	struct sk_if_softc *sc_if = ifp->if_softc;
    975 	int rc;
    976 
    977 	(void) sk_init(ifp);
    978 	if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
    979 		return 0;
    980 	return rc;
    981 }
    982 
    983 int
    984 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
    985 {
    986 	struct sk_if_softc *sc_if = ifp->if_softc;
    987 	struct sk_softc *sc = sc_if->sk_softc;
    988 	int s, error = 0;
    989 
    990 	/* DPRINTFN(2, ("sk_ioctl\n")); */
    991 
    992 	s = splnet();
    993 
    994 	switch (command) {
    995 
    996 	case SIOCSIFFLAGS:
    997 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
    998 		if (ifp->if_flags & IFF_UP) {
    999 			if (ifp->if_flags & IFF_RUNNING &&
   1000 			    ifp->if_flags & IFF_PROMISC &&
   1001 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
   1002 				switch (sc->sk_type) {
   1003 				case SK_GENESIS:
   1004 					SK_XM_SETBIT_4(sc_if, XM_MODE,
   1005 					    XM_MODE_RX_PROMISC);
   1006 					break;
   1007 				case SK_YUKON:
   1008 				case SK_YUKON_LITE:
   1009 				case SK_YUKON_LP:
   1010 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
   1011 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1012 					break;
   1013 				}
   1014 				sk_setmulti(sc_if);
   1015 			} else if (ifp->if_flags & IFF_RUNNING &&
   1016 			    !(ifp->if_flags & IFF_PROMISC) &&
   1017 			    sc_if->sk_if_flags & IFF_PROMISC) {
   1018 				switch (sc->sk_type) {
   1019 				case SK_GENESIS:
   1020 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
   1021 					    XM_MODE_RX_PROMISC);
   1022 					break;
   1023 				case SK_YUKON:
   1024 				case SK_YUKON_LITE:
   1025 				case SK_YUKON_LP:
   1026 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
   1027 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1028 					break;
   1029 				}
   1030 
   1031 				sk_setmulti(sc_if);
   1032 			} else
   1033 				(void) sk_init(ifp);
   1034 		} else {
   1035 			if (ifp->if_flags & IFF_RUNNING)
   1036 				sk_stop(ifp,0);
   1037 		}
   1038 		sc_if->sk_if_flags = ifp->if_flags;
   1039 		error = 0;
   1040 		break;
   1041 
   1042 	default:
   1043 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
   1044 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   1045 			break;
   1046 
   1047 		error = 0;
   1048 
   1049 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   1050 			;
   1051 		else if (ifp->if_flags & IFF_RUNNING) {
   1052 			sk_setmulti(sc_if);
   1053 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
   1054 		}
   1055 		break;
   1056 	}
   1057 
   1058 	splx(s);
   1059 	return error;
   1060 }
   1061 
   1062 void
   1063 sk_update_int_mod(struct sk_softc *sc)
   1064 {
   1065 	u_int32_t imtimer_ticks;
   1066 
   1067 	/*
   1068          * Configure interrupt moderation. The moderation timer
   1069 	 * defers interrupts specified in the interrupt moderation
   1070 	 * timer mask based on the timeout specified in the interrupt
   1071 	 * moderation timer init register. Each bit in the timer
   1072 	 * register represents one tick, so to specify a timeout in
   1073 	 * microseconds, we have to multiply by the correct number of
   1074 	 * ticks-per-microsecond.
   1075 	 */
   1076 	switch (sc->sk_type) {
   1077 	case SK_GENESIS:
   1078 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   1079 		break;
   1080 	case SK_YUKON_EC:
   1081 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   1082 		break;
   1083 	default:
   1084 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   1085 	}
   1086 	aprint_verbose_dev(&sc->sk_dev, "interrupt moderation is %d us\n",
   1087 	    sc->sk_int_mod);
   1088         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
   1089         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
   1090 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
   1091         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
   1092 	sc->sk_int_mod_pending = 0;
   1093 }
   1094 
   1095 /*
   1096  * Lookup: Check the PCI vendor and device, and return a pointer to
   1097  * The structure if the IDs match against our list.
   1098  */
   1099 
   1100 static const struct sk_product *
   1101 sk_lookup(const struct pci_attach_args *pa)
   1102 {
   1103 	const struct sk_product *psk;
   1104 
   1105 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
   1106 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
   1107 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
   1108 			return psk;
   1109 	}
   1110 	return NULL;
   1111 }
   1112 
   1113 /*
   1114  * Probe for a SysKonnect GEnesis chip.
   1115  */
   1116 
   1117 int
   1118 skc_probe(struct device *parent, struct cfdata *match,
   1119     void *aux)
   1120 {
   1121 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1122 	const struct sk_product *psk;
   1123 	pcireg_t subid;
   1124 
   1125 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
   1126 
   1127 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
   1128 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
   1129 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
   1130 	    subid == SK_LINKSYS_EG1032_SUBID)
   1131 		return 1;
   1132 
   1133 	if ((psk = sk_lookup(pa))) {
   1134 		return 1;
   1135 	}
   1136 	return 0;
   1137 }
   1138 
   1139 /*
   1140  * Force the GEnesis into reset, then bring it out of reset.
   1141  */
   1142 void sk_reset(struct sk_softc *sc)
   1143 {
   1144 	DPRINTFN(2, ("sk_reset\n"));
   1145 
   1146 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
   1147 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
   1148 	if (SK_YUKON_FAMILY(sc->sk_type))
   1149 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
   1150 
   1151 	DELAY(1000);
   1152 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
   1153 	DELAY(2);
   1154 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
   1155 	if (SK_YUKON_FAMILY(sc->sk_type))
   1156 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
   1157 
   1158 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
   1159 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
   1160 		     CSR_READ_2(sc, SK_LINK_CTRL)));
   1161 
   1162 	if (sc->sk_type == SK_GENESIS) {
   1163 		/* Configure packet arbiter */
   1164 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
   1165 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1166 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1167 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1168 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1169 	}
   1170 
   1171 	/* Enable RAM interface */
   1172 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
   1173 
   1174 	sk_update_int_mod(sc);
   1175 }
   1176 
   1177 int
   1178 sk_probe(struct device *parent, struct cfdata *match,
   1179     void *aux)
   1180 {
   1181 	struct skc_attach_args *sa = aux;
   1182 
   1183 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
   1184 		return 0;
   1185 
   1186 	return 1;
   1187 }
   1188 
   1189 /*
   1190  * Each XMAC chip is attached as a separate logical IP interface.
   1191  * Single port cards will have only one logical interface of course.
   1192  */
   1193 void
   1194 sk_attach(struct device *parent, struct device *self, void *aux)
   1195 {
   1196 	struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
   1197 	struct sk_softc *sc = (struct sk_softc *)parent;
   1198 	struct skc_attach_args *sa = aux;
   1199 	struct sk_txmap_entry	*entry;
   1200 	struct ifnet *ifp;
   1201 	bus_dma_segment_t seg;
   1202 	bus_dmamap_t dmamap;
   1203 	void *kva;
   1204 	int i, rseg;
   1205 
   1206 	aprint_naive("\n");
   1207 
   1208 	sc_if->sk_port = sa->skc_port;
   1209 	sc_if->sk_softc = sc;
   1210 	sc->sk_if[sa->skc_port] = sc_if;
   1211 
   1212 	if (sa->skc_port == SK_PORT_A)
   1213 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
   1214 	if (sa->skc_port == SK_PORT_B)
   1215 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
   1216 
   1217 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
   1218 
   1219 	/*
   1220 	 * Get station address for this interface. Note that
   1221 	 * dual port cards actually come with three station
   1222 	 * addresses: one for each port, plus an extra. The
   1223 	 * extra one is used by the SysKonnect driver software
   1224 	 * as a 'virtual' station address for when both ports
   1225 	 * are operating in failover mode. Currently we don't
   1226 	 * use this extra address.
   1227 	 */
   1228 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1229 		sc_if->sk_enaddr[i] =
   1230 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
   1231 
   1232 
   1233 	aprint_normal(": Ethernet address %s\n",
   1234 	    ether_sprintf(sc_if->sk_enaddr));
   1235 
   1236 	/*
   1237 	 * Set up RAM buffer addresses. The NIC will have a certain
   1238 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
   1239 	 * need to divide this up a) between the transmitter and
   1240  	 * receiver and b) between the two XMACs, if this is a
   1241 	 * dual port NIC. Our algorithm is to divide up the memory
   1242 	 * evenly so that everyone gets a fair share.
   1243 	 */
   1244 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
   1245 		u_int32_t		chunk, val;
   1246 
   1247 		chunk = sc->sk_ramsize / 2;
   1248 		val = sc->sk_rboff / sizeof(u_int64_t);
   1249 		sc_if->sk_rx_ramstart = val;
   1250 		val += (chunk / sizeof(u_int64_t));
   1251 		sc_if->sk_rx_ramend = val - 1;
   1252 		sc_if->sk_tx_ramstart = val;
   1253 		val += (chunk / sizeof(u_int64_t));
   1254 		sc_if->sk_tx_ramend = val - 1;
   1255 	} else {
   1256 		u_int32_t		chunk, val;
   1257 
   1258 		chunk = sc->sk_ramsize / 4;
   1259 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
   1260 		    sizeof(u_int64_t);
   1261 		sc_if->sk_rx_ramstart = val;
   1262 		val += (chunk / sizeof(u_int64_t));
   1263 		sc_if->sk_rx_ramend = val - 1;
   1264 		sc_if->sk_tx_ramstart = val;
   1265 		val += (chunk / sizeof(u_int64_t));
   1266 		sc_if->sk_tx_ramend = val - 1;
   1267 	}
   1268 
   1269 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
   1270 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
   1271 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
   1272 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
   1273 
   1274 	/* Read and save PHY type and set PHY address */
   1275 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
   1276 	switch (sc_if->sk_phytype) {
   1277 	case SK_PHYTYPE_XMAC:
   1278 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
   1279 		break;
   1280 	case SK_PHYTYPE_BCOM:
   1281 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
   1282 		break;
   1283 	case SK_PHYTYPE_MARV_COPPER:
   1284 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
   1285 		break;
   1286 	default:
   1287 		aprint_error_dev(&sc->sk_dev, "unsupported PHY type: %d\n",
   1288 		    sc_if->sk_phytype);
   1289 		return;
   1290 	}
   1291 
   1292 	/* Allocate the descriptor queues. */
   1293 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
   1294 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1295 		aprint_error_dev(&sc->sk_dev, "can't alloc rx buffers\n");
   1296 		goto fail;
   1297 	}
   1298 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
   1299 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
   1300 		aprint_error_dev(&sc_if->sk_dev, "can't map dma buffers (%lu bytes)\n",
   1301 		       (u_long) sizeof(struct sk_ring_data));
   1302 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1303 		goto fail;
   1304 	}
   1305 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
   1306 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
   1307             &sc_if->sk_ring_map)) {
   1308 		aprint_error_dev(&sc_if->sk_dev, "can't create dma map\n");
   1309 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1310 		    sizeof(struct sk_ring_data));
   1311 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1312 		goto fail;
   1313 	}
   1314 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
   1315 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
   1316 		aprint_error_dev(&sc_if->sk_dev, "can't load dma map\n");
   1317 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1318 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1319 		    sizeof(struct sk_ring_data));
   1320 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1321 		goto fail;
   1322 	}
   1323 
   1324 	for (i = 0; i < SK_RX_RING_CNT; i++)
   1325 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   1326 
   1327 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
   1328 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   1329 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   1330 
   1331 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
   1332 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
   1333 			aprint_error_dev(&sc_if->sk_dev, "Can't create TX dmamap\n");
   1334 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1335 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1336 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1337 			    sizeof(struct sk_ring_data));
   1338 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1339 			goto fail;
   1340 		}
   1341 
   1342 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
   1343 		if (!entry) {
   1344 			aprint_error_dev(&sc_if->sk_dev, "Can't alloc txmap entry\n");
   1345 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
   1346 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1347 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1348 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1349 			    sizeof(struct sk_ring_data));
   1350 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1351 			goto fail;
   1352 		}
   1353 		entry->dmamap = dmamap;
   1354 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
   1355 	}
   1356 
   1357         sc_if->sk_rdata = (struct sk_ring_data *)kva;
   1358 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
   1359 
   1360 	ifp = &sc_if->sk_ethercom.ec_if;
   1361 	/* Try to allocate memory for jumbo buffers. */
   1362 	if (sk_alloc_jumbo_mem(sc_if)) {
   1363 		aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
   1364 		goto fail;
   1365 	}
   1366 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
   1367 		| ETHERCAP_JUMBO_MTU;
   1368 
   1369 	ifp->if_softc = sc_if;
   1370 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1371 	ifp->if_ioctl = sk_ioctl;
   1372 	ifp->if_start = sk_start;
   1373 	ifp->if_stop = sk_stop;
   1374 	ifp->if_init = sk_init;
   1375 	ifp->if_watchdog = sk_watchdog;
   1376 	ifp->if_capabilities = 0;
   1377 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
   1378 	IFQ_SET_READY(&ifp->if_snd);
   1379 	strlcpy(ifp->if_xname, device_xname(&sc_if->sk_dev), IFNAMSIZ);
   1380 
   1381 	/*
   1382 	 * Do miibus setup.
   1383 	 */
   1384 	switch (sc->sk_type) {
   1385 	case SK_GENESIS:
   1386 		sk_init_xmac(sc_if);
   1387 		break;
   1388 	case SK_YUKON:
   1389 	case SK_YUKON_LITE:
   1390 	case SK_YUKON_LP:
   1391 		sk_init_yukon(sc_if);
   1392 		break;
   1393 	default:
   1394 		aprint_error_dev(&sc->sk_dev, "unknown device type %d\n",
   1395 			sc->sk_type);
   1396 		goto fail;
   1397 	}
   1398 
   1399  	DPRINTFN(2, ("sk_attach: 1\n"));
   1400 
   1401 	sc_if->sk_mii.mii_ifp = ifp;
   1402 	switch (sc->sk_type) {
   1403 	case SK_GENESIS:
   1404 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
   1405 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
   1406 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
   1407 		break;
   1408 	case SK_YUKON:
   1409 	case SK_YUKON_LITE:
   1410 	case SK_YUKON_LP:
   1411 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
   1412 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
   1413 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
   1414 		break;
   1415 	}
   1416 
   1417 	sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
   1418 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
   1419 	    sk_ifmedia_upd, ether_mediastatus);
   1420 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
   1421 	    MII_OFFSET_ANY, 0);
   1422 	if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
   1423 		aprint_error_dev(&sc_if->sk_dev, "no PHY found!\n");
   1424 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
   1425 			    0, NULL);
   1426 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
   1427 	} else
   1428 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1429 
   1430 	callout_init(&sc_if->sk_tick_ch, 0);
   1431 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
   1432 
   1433 	DPRINTFN(2, ("sk_attach: 1\n"));
   1434 
   1435 	/*
   1436 	 * Call MI attach routines.
   1437 	 */
   1438 	if_attach(ifp);
   1439 
   1440 	ether_ifattach(ifp, sc_if->sk_enaddr);
   1441 
   1442 #if NRND > 0
   1443         rnd_attach_source(&sc->rnd_source, device_xname(&sc->sk_dev),
   1444             RND_TYPE_NET, 0);
   1445 #endif
   1446 
   1447 	DPRINTFN(2, ("sk_attach: end\n"));
   1448 
   1449 	return;
   1450 
   1451 fail:
   1452 	sc->sk_if[sa->skc_port] = NULL;
   1453 }
   1454 
   1455 int
   1456 skcprint(void *aux, const char *pnp)
   1457 {
   1458 	struct skc_attach_args *sa = aux;
   1459 
   1460 	if (pnp)
   1461 		aprint_normal("sk port %c at %s",
   1462 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
   1463 	else
   1464 		aprint_normal(" port %c",
   1465 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
   1466 	return UNCONF;
   1467 }
   1468 
   1469 /*
   1470  * Attach the interface. Allocate softc structures, do ifmedia
   1471  * setup and ethernet/BPF attach.
   1472  */
   1473 void
   1474 skc_attach(struct device *parent, struct device *self, void *aux)
   1475 {
   1476 	struct sk_softc *sc = (struct sk_softc *)self;
   1477 	struct pci_attach_args *pa = aux;
   1478 	struct skc_attach_args skca;
   1479 	pci_chipset_tag_t pc = pa->pa_pc;
   1480 #ifndef SK_USEIOSPACE
   1481 	pcireg_t memtype;
   1482 #endif
   1483 	pci_intr_handle_t ih;
   1484 	const char *intrstr = NULL;
   1485 	bus_addr_t iobase;
   1486 	bus_size_t iosize;
   1487 	int rc, sk_nodenum;
   1488 	u_int32_t command;
   1489 	const char *revstr;
   1490 	const struct sysctlnode *node;
   1491 
   1492 	aprint_naive("\n");
   1493 
   1494 	DPRINTFN(2, ("begin skc_attach\n"));
   1495 
   1496 	/*
   1497 	 * Handle power management nonsense.
   1498 	 */
   1499 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
   1500 
   1501 	if (command == 0x01) {
   1502 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
   1503 		if (command & SK_PSTATE_MASK) {
   1504 			u_int32_t		xiobase, membase, irq;
   1505 
   1506 			/* Save important PCI config data. */
   1507 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
   1508 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
   1509 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
   1510 
   1511 			/* Reset the power state. */
   1512 			aprint_normal_dev(&sc->sk_dev, "chip is in D%d power mode "
   1513 			    "-- setting to D0\n",
   1514 			    command & SK_PSTATE_MASK);
   1515 			command &= 0xFFFFFFFC;
   1516 			pci_conf_write(pc, pa->pa_tag,
   1517 			    SK_PCI_PWRMGMTCTRL, command);
   1518 
   1519 			/* Restore PCI config data. */
   1520 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
   1521 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
   1522 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
   1523 		}
   1524 	}
   1525 
   1526 	/*
   1527 	 * Map control/status registers.
   1528 	 */
   1529 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1530 	command |= PCI_COMMAND_IO_ENABLE |
   1531 	    PCI_COMMAND_MEM_ENABLE |
   1532 	    PCI_COMMAND_MASTER_ENABLE;
   1533 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1534 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1535 
   1536 #ifdef SK_USEIOSPACE
   1537 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
   1538 		aprint_error(": failed to enable I/O ports!\n");
   1539 		return;
   1540 	}
   1541 	/*
   1542 	 * Map control/status registers.
   1543 	 */
   1544 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
   1545 			&sc->sk_btag, &sc->sk_bhandle,
   1546 			&iobase, &iosize)) {
   1547 		aprint_error(": can't find i/o space\n");
   1548 		return;
   1549 	}
   1550 #else
   1551 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1552 		aprint_error(": failed to enable memory mapping!\n");
   1553 		return;
   1554 	}
   1555 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
   1556 	switch (memtype) {
   1557         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1558         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1559                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
   1560 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
   1561 				   &iobase, &iosize) == 0)
   1562                         break;
   1563         default:
   1564                 aprint_error_dev(&sc->sk_dev, "can't find mem space\n");
   1565                 return;
   1566 	}
   1567 
   1568 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
   1569 #endif
   1570 	sc->sc_dmatag = pa->pa_dmat;
   1571 
   1572 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
   1573 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
   1574 
   1575 	/* bail out here if chip is not recognized */
   1576 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
   1577 		aprint_error_dev(&sc->sk_dev, "unknown chip type\n");
   1578 		goto fail;
   1579 	}
   1580 	if (SK_IS_YUKON2(sc)) {
   1581 		aprint_error_dev(&sc->sk_dev, "Does not support Yukon2--try msk(4).\n");
   1582 		goto fail;
   1583 	}
   1584 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
   1585 
   1586 	/* Allocate interrupt */
   1587 	if (pci_intr_map(pa, &ih)) {
   1588 		aprint_error(": couldn't map interrupt\n");
   1589 		goto fail;
   1590 	}
   1591 
   1592 	intrstr = pci_intr_string(pc, ih);
   1593 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
   1594 	if (sc->sk_intrhand == NULL) {
   1595 		aprint_error(": couldn't establish interrupt");
   1596 		if (intrstr != NULL)
   1597 			aprint_normal(" at %s", intrstr);
   1598 		goto fail;
   1599 	}
   1600 	aprint_normal(": %s\n", intrstr);
   1601 
   1602 	/* Reset the adapter. */
   1603 	sk_reset(sc);
   1604 
   1605 	/* Read and save vital product data from EEPROM. */
   1606 	sk_vpd_read(sc);
   1607 
   1608 	if (sc->sk_type == SK_GENESIS) {
   1609 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1610 		/* Read and save RAM size and RAMbuffer offset */
   1611 		switch (val) {
   1612 		case SK_RAMSIZE_512K_64:
   1613 			sc->sk_ramsize = 0x80000;
   1614 			sc->sk_rboff = SK_RBOFF_0;
   1615 			break;
   1616 		case SK_RAMSIZE_1024K_64:
   1617 			sc->sk_ramsize = 0x100000;
   1618 			sc->sk_rboff = SK_RBOFF_80000;
   1619 			break;
   1620 		case SK_RAMSIZE_1024K_128:
   1621 			sc->sk_ramsize = 0x100000;
   1622 			sc->sk_rboff = SK_RBOFF_0;
   1623 			break;
   1624 		case SK_RAMSIZE_2048K_128:
   1625 			sc->sk_ramsize = 0x200000;
   1626 			sc->sk_rboff = SK_RBOFF_0;
   1627 			break;
   1628 		default:
   1629 			aprint_error_dev(&sc->sk_dev, "unknown ram size: %d\n",
   1630 			       val);
   1631 			goto fail_1;
   1632 			break;
   1633 		}
   1634 
   1635 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
   1636 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
   1637 			     sc->sk_rboff));
   1638 	} else {
   1639 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1640 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
   1641 		sc->sk_rboff = SK_RBOFF_0;
   1642 
   1643 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
   1644 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
   1645 			     sc->sk_rboff));
   1646 	}
   1647 
   1648 	/* Read and save physical media type */
   1649 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
   1650 	case SK_PMD_1000BASESX:
   1651 		sc->sk_pmd = IFM_1000_SX;
   1652 		break;
   1653 	case SK_PMD_1000BASELX:
   1654 		sc->sk_pmd = IFM_1000_LX;
   1655 		break;
   1656 	case SK_PMD_1000BASECX:
   1657 		sc->sk_pmd = IFM_1000_CX;
   1658 		break;
   1659 	case SK_PMD_1000BASETX:
   1660 	case SK_PMD_1000BASETX_ALT:
   1661 		sc->sk_pmd = IFM_1000_T;
   1662 		break;
   1663 	default:
   1664 		aprint_error_dev(&sc->sk_dev, "unknown media type: 0x%x\n",
   1665 		    sk_win_read_1(sc, SK_PMDTYPE));
   1666 		goto fail_1;
   1667 	}
   1668 
   1669 	/* determine whether to name it with vpd or just make it up */
   1670 	/* Marvell Yukon VPD's can freqently be bogus */
   1671 
   1672 	switch (pa->pa_id) {
   1673 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1674 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
   1675 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
   1676 	case PCI_PRODUCT_3COM_3C940:
   1677 	case PCI_PRODUCT_DLINK_DGE530T:
   1678 	case PCI_PRODUCT_DLINK_DGE560T:
   1679 	case PCI_PRODUCT_DLINK_DGE560T_2:
   1680 	case PCI_PRODUCT_LINKSYS_EG1032:
   1681 	case PCI_PRODUCT_LINKSYS_EG1064:
   1682 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1683 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
   1684 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
   1685 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
   1686 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
   1687 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
   1688 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
   1689 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
   1690  		sc->sk_name = sc->sk_vpd_prodname;
   1691  		break;
   1692 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
   1693 	/* whoops yukon vpd prodname bears no resemblance to reality */
   1694 		switch (sc->sk_type) {
   1695 		case SK_GENESIS:
   1696 			sc->sk_name = sc->sk_vpd_prodname;
   1697 			break;
   1698 		case SK_YUKON:
   1699 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
   1700 			break;
   1701 		case SK_YUKON_LITE:
   1702 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
   1703 			break;
   1704 		case SK_YUKON_LP:
   1705 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
   1706 			break;
   1707 		default:
   1708 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
   1709 		}
   1710 
   1711 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
   1712 
   1713 		if ( sc->sk_type == SK_YUKON ) {
   1714 			uint32_t flashaddr;
   1715 			uint8_t testbyte;
   1716 
   1717 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
   1718 
   1719 			/* test Flash-Address Register */
   1720 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
   1721 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
   1722 
   1723 			if (testbyte != 0) {
   1724 				/* this is yukon lite Rev. A0 */
   1725 				sc->sk_type = SK_YUKON_LITE;
   1726 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
   1727 				/* restore Flash-Address Register */
   1728 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
   1729 			}
   1730 		}
   1731 		break;
   1732 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
   1733 		sc->sk_name = sc->sk_vpd_prodname;
   1734 		break;
   1735  	default:
   1736 		sc->sk_name = "Unknown Marvell";
   1737 	}
   1738 
   1739 
   1740 	if ( sc->sk_type == SK_YUKON_LITE ) {
   1741 		switch (sc->sk_rev) {
   1742 		case SK_YUKON_LITE_REV_A0:
   1743 			revstr = "A0";
   1744 			break;
   1745 		case SK_YUKON_LITE_REV_A1:
   1746 			revstr = "A1";
   1747 			break;
   1748 		case SK_YUKON_LITE_REV_A3:
   1749 			revstr = "A3";
   1750 			break;
   1751 		default:
   1752 			revstr = "";
   1753 		}
   1754 	} else {
   1755 		revstr = "";
   1756 	}
   1757 
   1758 	/* Announce the product name. */
   1759 	aprint_normal_dev(&sc->sk_dev, "%s rev. %s(0x%x)\n",
   1760 			      sc->sk_name, revstr, sc->sk_rev);
   1761 
   1762 	skca.skc_port = SK_PORT_A;
   1763 	(void)config_found(&sc->sk_dev, &skca, skcprint);
   1764 
   1765 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
   1766 		skca.skc_port = SK_PORT_B;
   1767 		(void)config_found(&sc->sk_dev, &skca, skcprint);
   1768 	}
   1769 
   1770 	/* Turn on the 'driver is loaded' LED. */
   1771 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   1772 
   1773 	/* skc sysctl setup */
   1774 
   1775 	sc->sk_int_mod = SK_IM_DEFAULT;
   1776 	sc->sk_int_mod_pending = 0;
   1777 
   1778 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1779 	    0, CTLTYPE_NODE, device_xname(&sc->sk_dev),
   1780 	    SYSCTL_DESCR("skc per-controller controls"),
   1781 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
   1782 	    CTL_EOL)) != 0) {
   1783 		aprint_normal_dev(&sc->sk_dev, "couldn't create sysctl node\n");
   1784 		goto fail_1;
   1785 	}
   1786 
   1787 	sk_nodenum = node->sysctl_num;
   1788 
   1789 	/* interrupt moderation time in usecs */
   1790 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1791 	    CTLFLAG_READWRITE,
   1792 	    CTLTYPE_INT, "int_mod",
   1793 	    SYSCTL_DESCR("sk interrupt moderation timer"),
   1794 	    sk_sysctl_handler, 0, sc,
   1795 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
   1796 	    CTL_EOL)) != 0) {
   1797 		aprint_normal_dev(&sc->sk_dev, "couldn't create int_mod sysctl node\n");
   1798 		goto fail_1;
   1799 	}
   1800 
   1801 	return;
   1802 
   1803 fail_1:
   1804 	pci_intr_disestablish(pc, sc->sk_intrhand);
   1805 fail:
   1806 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
   1807 }
   1808 
   1809 int
   1810 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
   1811 {
   1812 	struct sk_softc		*sc = sc_if->sk_softc;
   1813 	struct sk_tx_desc	*f = NULL;
   1814 	u_int32_t		frag, cur, cnt = 0, sk_ctl;
   1815 	int			i;
   1816 	struct sk_txmap_entry	*entry;
   1817 	bus_dmamap_t		txmap;
   1818 
   1819 	DPRINTFN(3, ("sk_encap\n"));
   1820 
   1821 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
   1822 	if (entry == NULL) {
   1823 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
   1824 		return ENOBUFS;
   1825 	}
   1826 	txmap = entry->dmamap;
   1827 
   1828 	cur = frag = *txidx;
   1829 
   1830 #ifdef SK_DEBUG
   1831 	if (skdebug >= 3)
   1832 		sk_dump_mbuf(m_head);
   1833 #endif
   1834 
   1835 	/*
   1836 	 * Start packing the mbufs in this chain into
   1837 	 * the fragment pointers. Stop when we run out
   1838 	 * of fragments or hit the end of the mbuf chain.
   1839 	 */
   1840 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
   1841 	    BUS_DMA_NOWAIT)) {
   1842 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
   1843 		return ENOBUFS;
   1844 	}
   1845 
   1846 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
   1847 
   1848 	/* Sync the DMA map. */
   1849 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
   1850 	    BUS_DMASYNC_PREWRITE);
   1851 
   1852 	for (i = 0; i < txmap->dm_nsegs; i++) {
   1853 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
   1854 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
   1855 			return ENOBUFS;
   1856 		}
   1857 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
   1858 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
   1859 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
   1860 		if (cnt == 0)
   1861 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
   1862 		else
   1863 			sk_ctl |= SK_TXCTL_OWN;
   1864 		f->sk_ctl = htole32(sk_ctl);
   1865 		cur = frag;
   1866 		SK_INC(frag, SK_TX_RING_CNT);
   1867 		cnt++;
   1868 	}
   1869 
   1870 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
   1871 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
   1872 
   1873 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
   1874 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
   1875 		htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
   1876 
   1877 	/* Sync descriptors before handing to chip */
   1878 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
   1879 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1880 
   1881 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
   1882 		htole32(SK_TXCTL_OWN);
   1883 
   1884 	/* Sync first descriptor to hand it off */
   1885 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1886 
   1887 	sc_if->sk_cdata.sk_tx_cnt += cnt;
   1888 
   1889 #ifdef SK_DEBUG
   1890 	if (skdebug >= 3) {
   1891 		struct sk_tx_desc *desc;
   1892 		u_int32_t idx;
   1893 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
   1894 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
   1895 			sk_dump_txdesc(desc, idx);
   1896 		}
   1897 	}
   1898 #endif
   1899 
   1900 	*txidx = frag;
   1901 
   1902 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
   1903 
   1904 	return 0;
   1905 }
   1906 
   1907 void
   1908 sk_start(struct ifnet *ifp)
   1909 {
   1910         struct sk_if_softc	*sc_if = ifp->if_softc;
   1911         struct sk_softc		*sc = sc_if->sk_softc;
   1912         struct mbuf		*m_head = NULL;
   1913         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
   1914 	int			pkts = 0;
   1915 
   1916 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
   1917 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
   1918 
   1919 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
   1920 		IFQ_POLL(&ifp->if_snd, m_head);
   1921 		if (m_head == NULL)
   1922 			break;
   1923 
   1924 		/*
   1925 		 * Pack the data into the transmit ring. If we
   1926 		 * don't have room, set the OACTIVE flag and wait
   1927 		 * for the NIC to drain the ring.
   1928 		 */
   1929 		if (sk_encap(sc_if, m_head, &idx)) {
   1930 			ifp->if_flags |= IFF_OACTIVE;
   1931 			break;
   1932 		}
   1933 
   1934 		/* now we are committed to transmit the packet */
   1935 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1936 		pkts++;
   1937 
   1938 		/*
   1939 		 * If there's a BPF listener, bounce a copy of this frame
   1940 		 * to him.
   1941 		 */
   1942 #if NBPFILTER > 0
   1943 		if (ifp->if_bpf)
   1944 			bpf_mtap(ifp->if_bpf, m_head);
   1945 #endif
   1946 	}
   1947 	if (pkts == 0)
   1948 		return;
   1949 
   1950 	/* Transmit */
   1951 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
   1952 		sc_if->sk_cdata.sk_tx_prod = idx;
   1953 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   1954 
   1955 		/* Set a timeout in case the chip goes out to lunch. */
   1956 		ifp->if_timer = 5;
   1957 	}
   1958 }
   1959 
   1960 
   1961 void
   1962 sk_watchdog(struct ifnet *ifp)
   1963 {
   1964 	struct sk_if_softc *sc_if = ifp->if_softc;
   1965 
   1966 	/*
   1967 	 * Reclaim first as there is a possibility of losing Tx completion
   1968 	 * interrupts.
   1969 	 */
   1970 	sk_txeof(sc_if);
   1971 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
   1972 		aprint_error_dev(&sc_if->sk_dev, "watchdog timeout\n");
   1973 
   1974 		ifp->if_oerrors++;
   1975 
   1976 		sk_init(ifp);
   1977 	}
   1978 }
   1979 
   1980 void
   1981 sk_shutdown(void *v)
   1982 {
   1983 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
   1984 	struct sk_softc		*sc = sc_if->sk_softc;
   1985 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
   1986 
   1987 	DPRINTFN(2, ("sk_shutdown\n"));
   1988 	sk_stop(ifp,1);
   1989 
   1990 	/* Turn off the 'driver is loaded' LED. */
   1991 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   1992 
   1993 	/*
   1994 	 * Reset the GEnesis controller. Doing this should also
   1995 	 * assert the resets on the attached XMAC(s).
   1996 	 */
   1997 	sk_reset(sc);
   1998 }
   1999 
   2000 void
   2001 sk_rxeof(struct sk_if_softc *sc_if)
   2002 {
   2003 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2004 	struct mbuf		*m;
   2005 	struct sk_chain		*cur_rx;
   2006 	struct sk_rx_desc	*cur_desc;
   2007 	int			i, cur, total_len = 0;
   2008 	u_int32_t		rxstat, sk_ctl;
   2009 	bus_dmamap_t		dmamap;
   2010 
   2011 	i = sc_if->sk_cdata.sk_rx_prod;
   2012 
   2013 	DPRINTFN(3, ("sk_rxeof %d\n", i));
   2014 
   2015 	for (;;) {
   2016 		cur = i;
   2017 
   2018 		/* Sync the descriptor */
   2019 		SK_CDRXSYNC(sc_if, cur,
   2020 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2021 
   2022 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
   2023 		if (sk_ctl & SK_RXCTL_OWN) {
   2024 			/* Invalidate the descriptor -- it's not ready yet */
   2025 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
   2026 			sc_if->sk_cdata.sk_rx_prod = i;
   2027 			break;
   2028 		}
   2029 
   2030 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
   2031 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
   2032 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
   2033 
   2034 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
   2035 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2036 
   2037 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
   2038 		m = cur_rx->sk_mbuf;
   2039 		cur_rx->sk_mbuf = NULL;
   2040 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
   2041 
   2042 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
   2043 
   2044 		SK_INC(i, SK_RX_RING_CNT);
   2045 
   2046 		if (rxstat & XM_RXSTAT_ERRFRAME) {
   2047 			ifp->if_ierrors++;
   2048 			sk_newbuf(sc_if, cur, m, dmamap);
   2049 			continue;
   2050 		}
   2051 
   2052 		/*
   2053 		 * Try to allocate a new jumbo buffer. If that
   2054 		 * fails, copy the packet to mbufs and put the
   2055 		 * jumbo buffer back in the ring so it can be
   2056 		 * re-used. If allocating mbufs fails, then we
   2057 		 * have to drop the packet.
   2058 		 */
   2059 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
   2060 			struct mbuf		*m0;
   2061 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
   2062 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
   2063 			sk_newbuf(sc_if, cur, m, dmamap);
   2064 			if (m0 == NULL) {
   2065 				aprint_error_dev(&sc_if->sk_dev, "no receive buffers "
   2066 				    "available -- packet dropped!\n");
   2067 				ifp->if_ierrors++;
   2068 				continue;
   2069 			}
   2070 			m_adj(m0, ETHER_ALIGN);
   2071 			m = m0;
   2072 		} else {
   2073 			m->m_pkthdr.rcvif = ifp;
   2074 			m->m_pkthdr.len = m->m_len = total_len;
   2075 		}
   2076 
   2077 		ifp->if_ipackets++;
   2078 
   2079 #if NBPFILTER > 0
   2080 		if (ifp->if_bpf)
   2081 			bpf_mtap(ifp->if_bpf, m);
   2082 #endif
   2083 		/* pass it on. */
   2084 		(*ifp->if_input)(ifp, m);
   2085 	}
   2086 }
   2087 
   2088 void
   2089 sk_txeof(struct sk_if_softc *sc_if)
   2090 {
   2091 	struct sk_softc		*sc = sc_if->sk_softc;
   2092 	struct sk_tx_desc	*cur_tx;
   2093 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2094 	u_int32_t		idx, sk_ctl;
   2095 	struct sk_txmap_entry	*entry;
   2096 
   2097 	DPRINTFN(3, ("sk_txeof\n"));
   2098 
   2099 	/*
   2100 	 * Go through our tx ring and free mbufs for those
   2101 	 * frames that have been sent.
   2102 	 */
   2103 	idx = sc_if->sk_cdata.sk_tx_cons;
   2104 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
   2105 		SK_CDTXSYNC(sc_if, idx, 1,
   2106 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2107 
   2108 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
   2109 		sk_ctl = le32toh(cur_tx->sk_ctl);
   2110 #ifdef SK_DEBUG
   2111 		if (skdebug >= 3)
   2112 			sk_dump_txdesc(cur_tx, idx);
   2113 #endif
   2114 		if (sk_ctl & SK_TXCTL_OWN) {
   2115 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
   2116 			break;
   2117 		}
   2118 		if (sk_ctl & SK_TXCTL_LASTFRAG)
   2119 			ifp->if_opackets++;
   2120 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
   2121 			entry = sc_if->sk_cdata.sk_tx_map[idx];
   2122 
   2123 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
   2124 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
   2125 
   2126 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
   2127 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2128 
   2129 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
   2130 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
   2131 					  link);
   2132 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
   2133 		}
   2134 		sc_if->sk_cdata.sk_tx_cnt--;
   2135 		SK_INC(idx, SK_TX_RING_CNT);
   2136 	}
   2137 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
   2138 		ifp->if_timer = 0;
   2139 	else /* nudge chip to keep tx ring moving */
   2140 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   2141 
   2142 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
   2143 		ifp->if_flags &= ~IFF_OACTIVE;
   2144 
   2145 	sc_if->sk_cdata.sk_tx_cons = idx;
   2146 }
   2147 
   2148 void
   2149 sk_tick(void *xsc_if)
   2150 {
   2151 	struct sk_if_softc *sc_if = xsc_if;
   2152 	struct mii_data *mii = &sc_if->sk_mii;
   2153 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2154 	int i;
   2155 
   2156 	DPRINTFN(3, ("sk_tick\n"));
   2157 
   2158 	if (!(ifp->if_flags & IFF_UP))
   2159 		return;
   2160 
   2161 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2162 		sk_intr_bcom(sc_if);
   2163 		return;
   2164 	}
   2165 
   2166 	/*
   2167 	 * According to SysKonnect, the correct way to verify that
   2168 	 * the link has come back up is to poll bit 0 of the GPIO
   2169 	 * register three times. This pin has the signal from the
   2170 	 * link sync pin connected to it; if we read the same link
   2171 	 * state 3 times in a row, we know the link is up.
   2172 	 */
   2173 	for (i = 0; i < 3; i++) {
   2174 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
   2175 			break;
   2176 	}
   2177 
   2178 	if (i != 3) {
   2179 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2180 		return;
   2181 	}
   2182 
   2183 	/* Turn the GP0 interrupt back on. */
   2184 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2185 	SK_XM_READ_2(sc_if, XM_ISR);
   2186 	mii_tick(mii);
   2187 	mii_pollstat(mii);
   2188 	callout_stop(&sc_if->sk_tick_ch);
   2189 }
   2190 
   2191 void
   2192 sk_intr_bcom(struct sk_if_softc *sc_if)
   2193 {
   2194 	struct mii_data *mii = &sc_if->sk_mii;
   2195 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2196 	int status;
   2197 
   2198 
   2199 	DPRINTFN(3, ("sk_intr_bcom\n"));
   2200 
   2201 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2202 
   2203 	/*
   2204 	 * Read the PHY interrupt register to make sure
   2205 	 * we clear any pending interrupts.
   2206 	 */
   2207 	status = sk_xmac_miibus_readreg((struct device *)sc_if,
   2208 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
   2209 
   2210 	if (!(ifp->if_flags & IFF_RUNNING)) {
   2211 		sk_init_xmac(sc_if);
   2212 		return;
   2213 	}
   2214 
   2215 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
   2216 		int lstat;
   2217 		lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
   2218 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
   2219 
   2220 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
   2221 			(void)mii_mediachg(mii);
   2222 			/* Turn off the link LED. */
   2223 			SK_IF_WRITE_1(sc_if, 0,
   2224 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2225 			sc_if->sk_link = 0;
   2226 		} else if (status & BRGPHY_ISR_LNK_CHG) {
   2227 			sk_xmac_miibus_writereg((struct device *)sc_if,
   2228 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
   2229 			mii_tick(mii);
   2230 			sc_if->sk_link = 1;
   2231 			/* Turn on the link LED. */
   2232 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2233 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
   2234 			    SK_LINKLED_BLINK_OFF);
   2235 			mii_pollstat(mii);
   2236 		} else {
   2237 			mii_tick(mii);
   2238 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
   2239 		}
   2240 	}
   2241 
   2242 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2243 }
   2244 
   2245 void
   2246 sk_intr_xmac(struct sk_if_softc	*sc_if)
   2247 {
   2248 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
   2249 
   2250 	DPRINTFN(3, ("sk_intr_xmac\n"));
   2251 
   2252 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
   2253 		if (status & XM_ISR_GP0_SET) {
   2254 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2255 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2256 		}
   2257 
   2258 		if (status & XM_ISR_AUTONEG_DONE) {
   2259 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2260 		}
   2261 	}
   2262 
   2263 	if (status & XM_IMR_TX_UNDERRUN)
   2264 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
   2265 
   2266 	if (status & XM_IMR_RX_OVERRUN)
   2267 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
   2268 }
   2269 
   2270 void
   2271 sk_intr_yukon(struct sk_if_softc *sc_if)
   2272 {
   2273 	int status;
   2274 
   2275 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2276 
   2277 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
   2278 }
   2279 
   2280 int
   2281 sk_intr(void *xsc)
   2282 {
   2283 	struct sk_softc		*sc = xsc;
   2284 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
   2285 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
   2286 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
   2287 	u_int32_t		status;
   2288 	int			claimed = 0;
   2289 
   2290 	if (sc_if0 != NULL)
   2291 		ifp0 = &sc_if0->sk_ethercom.ec_if;
   2292 	if (sc_if1 != NULL)
   2293 		ifp1 = &sc_if1->sk_ethercom.ec_if;
   2294 
   2295 	for (;;) {
   2296 		status = CSR_READ_4(sc, SK_ISSR);
   2297 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
   2298 
   2299 		if (!(status & sc->sk_intrmask))
   2300 			break;
   2301 
   2302 		claimed = 1;
   2303 
   2304 		/* Handle receive interrupts first. */
   2305 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
   2306 			sk_rxeof(sc_if0);
   2307 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
   2308 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2309 		}
   2310 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
   2311 			sk_rxeof(sc_if1);
   2312 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
   2313 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2314 		}
   2315 
   2316 		/* Then transmit interrupts. */
   2317 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
   2318 			sk_txeof(sc_if0);
   2319 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
   2320 			    SK_TXBMU_CLR_IRQ_EOF);
   2321 		}
   2322 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
   2323 			sk_txeof(sc_if1);
   2324 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
   2325 			    SK_TXBMU_CLR_IRQ_EOF);
   2326 		}
   2327 
   2328 		/* Then MAC interrupts. */
   2329 		if (sc_if0 && (status & SK_ISR_MAC1) &&
   2330 		    (ifp0->if_flags & IFF_RUNNING)) {
   2331 			if (sc->sk_type == SK_GENESIS)
   2332 				sk_intr_xmac(sc_if0);
   2333 			else
   2334 				sk_intr_yukon(sc_if0);
   2335 		}
   2336 
   2337 		if (sc_if1 && (status & SK_ISR_MAC2) &&
   2338 		    (ifp1->if_flags & IFF_RUNNING)) {
   2339 			if (sc->sk_type == SK_GENESIS)
   2340 				sk_intr_xmac(sc_if1);
   2341 			else
   2342 				sk_intr_yukon(sc_if1);
   2343 
   2344 		}
   2345 
   2346 		if (status & SK_ISR_EXTERNAL_REG) {
   2347 			if (sc_if0 != NULL &&
   2348 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
   2349 				sk_intr_bcom(sc_if0);
   2350 
   2351 			if (sc_if1 != NULL &&
   2352 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
   2353 				sk_intr_bcom(sc_if1);
   2354 		}
   2355 	}
   2356 
   2357 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2358 
   2359 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
   2360 		sk_start(ifp0);
   2361 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
   2362 		sk_start(ifp1);
   2363 
   2364 #if NRND > 0
   2365 	if (RND_ENABLED(&sc->rnd_source))
   2366 		rnd_add_uint32(&sc->rnd_source, status);
   2367 #endif
   2368 
   2369 	if (sc->sk_int_mod_pending)
   2370 		sk_update_int_mod(sc);
   2371 
   2372 	return claimed;
   2373 }
   2374 
   2375 void
   2376 sk_init_xmac(struct sk_if_softc	*sc_if)
   2377 {
   2378 	struct sk_softc		*sc = sc_if->sk_softc;
   2379 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2380 	static const struct sk_bcom_hack     bhack[] = {
   2381 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
   2382 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
   2383 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
   2384 	{ 0, 0 } };
   2385 
   2386 	DPRINTFN(1, ("sk_init_xmac\n"));
   2387 
   2388 	/* Unreset the XMAC. */
   2389 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
   2390 	DELAY(1000);
   2391 
   2392 	/* Reset the XMAC's internal state. */
   2393 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2394 
   2395 	/* Save the XMAC II revision */
   2396 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
   2397 
   2398 	/*
   2399 	 * Perform additional initialization for external PHYs,
   2400 	 * namely for the 1000baseTX cards that use the XMAC's
   2401 	 * GMII mode.
   2402 	 */
   2403 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2404 		int			i = 0;
   2405 		u_int32_t		val;
   2406 
   2407 		/* Take PHY out of reset. */
   2408 		val = sk_win_read_4(sc, SK_GPIO);
   2409 		if (sc_if->sk_port == SK_PORT_A)
   2410 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
   2411 		else
   2412 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
   2413 		sk_win_write_4(sc, SK_GPIO, val);
   2414 
   2415 		/* Enable GMII mode on the XMAC. */
   2416 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
   2417 
   2418 		sk_xmac_miibus_writereg((struct device *)sc_if,
   2419 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
   2420 		DELAY(10000);
   2421 		sk_xmac_miibus_writereg((struct device *)sc_if,
   2422 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
   2423 
   2424 		/*
   2425 		 * Early versions of the BCM5400 apparently have
   2426 		 * a bug that requires them to have their reserved
   2427 		 * registers initialized to some magic values. I don't
   2428 		 * know what the numbers do, I'm just the messenger.
   2429 		 */
   2430 		if (sk_xmac_miibus_readreg((struct device *)sc_if,
   2431 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
   2432 			while (bhack[i].reg) {
   2433 				sk_xmac_miibus_writereg((struct device *)sc_if,
   2434 				    SK_PHYADDR_BCOM, bhack[i].reg,
   2435 				    bhack[i].val);
   2436 				i++;
   2437 			}
   2438 		}
   2439 	}
   2440 
   2441 	/* Set station address */
   2442 	SK_XM_WRITE_2(sc_if, XM_PAR0,
   2443 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
   2444 	SK_XM_WRITE_2(sc_if, XM_PAR1,
   2445 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
   2446 	SK_XM_WRITE_2(sc_if, XM_PAR2,
   2447 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
   2448 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
   2449 
   2450 	if (ifp->if_flags & IFF_PROMISC)
   2451 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2452 	else
   2453 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2454 
   2455 	if (ifp->if_flags & IFF_BROADCAST)
   2456 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2457 	else
   2458 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2459 
   2460 	/* We don't need the FCS appended to the packet. */
   2461 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
   2462 
   2463 	/* We want short frames padded to 60 bytes. */
   2464 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
   2465 
   2466 	/*
   2467 	 * Enable the reception of all error frames. This is is
   2468 	 * a necessary evil due to the design of the XMAC. The
   2469 	 * XMAC's receive FIFO is only 8K in size, however jumbo
   2470 	 * frames can be up to 9000 bytes in length. When bad
   2471 	 * frame filtering is enabled, the XMAC's RX FIFO operates
   2472 	 * in 'store and forward' mode. For this to work, the
   2473 	 * entire frame has to fit into the FIFO, but that means
   2474 	 * that jumbo frames larger than 8192 bytes will be
   2475 	 * truncated. Disabling all bad frame filtering causes
   2476 	 * the RX FIFO to operate in streaming mode, in which
   2477 	 * case the XMAC will start transfering frames out of the
   2478 	 * RX FIFO as soon as the FIFO threshold is reached.
   2479 	 */
   2480 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
   2481 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
   2482 	    XM_MODE_RX_INRANGELEN);
   2483 
   2484 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2485 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2486 	else
   2487 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2488 
   2489 	/*
   2490 	 * Bump up the transmit threshold. This helps hold off transmit
   2491 	 * underruns when we're blasting traffic from both ports at once.
   2492 	 */
   2493 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
   2494 
   2495 	/* Set multicast filter */
   2496 	sk_setmulti(sc_if);
   2497 
   2498 	/* Clear and enable interrupts */
   2499 	SK_XM_READ_2(sc_if, XM_ISR);
   2500 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
   2501 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
   2502 	else
   2503 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2504 
   2505 	/* Configure MAC arbiter */
   2506 	switch (sc_if->sk_xmac_rev) {
   2507 	case XM_XMAC_REV_B2:
   2508 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
   2509 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
   2510 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
   2511 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
   2512 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
   2513 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
   2514 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
   2515 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
   2516 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2517 		break;
   2518 	case XM_XMAC_REV_C1:
   2519 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
   2520 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
   2521 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
   2522 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
   2523 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
   2524 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
   2525 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
   2526 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
   2527 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2528 		break;
   2529 	default:
   2530 		break;
   2531 	}
   2532 	sk_win_write_2(sc, SK_MACARB_CTL,
   2533 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
   2534 
   2535 	sc_if->sk_link = 1;
   2536 }
   2537 
   2538 void sk_init_yukon(struct sk_if_softc *sc_if)
   2539 {
   2540 	u_int32_t		/*mac, */phy;
   2541 	u_int16_t		reg;
   2542 	struct sk_softc		*sc;
   2543 	int			i;
   2544 
   2545 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
   2546 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
   2547 
   2548 	sc = sc_if->sk_softc;
   2549 	if (sc->sk_type == SK_YUKON_LITE &&
   2550 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
   2551 		/* Take PHY out of reset. */
   2552 		sk_win_write_4(sc, SK_GPIO,
   2553 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
   2554 	}
   2555 
   2556 
   2557 	/* GMAC and GPHY Reset */
   2558 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
   2559 
   2560 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
   2561 
   2562 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2563 	DELAY(1000);
   2564 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
   2565 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2566 	DELAY(1000);
   2567 
   2568 
   2569 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
   2570 
   2571 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
   2572 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
   2573 
   2574 	switch (sc_if->sk_softc->sk_pmd) {
   2575 	case IFM_1000_SX:
   2576 	case IFM_1000_LX:
   2577 		phy |= SK_GPHY_FIBER;
   2578 		break;
   2579 
   2580 	case IFM_1000_CX:
   2581 	case IFM_1000_T:
   2582 		phy |= SK_GPHY_COPPER;
   2583 		break;
   2584 	}
   2585 
   2586 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
   2587 
   2588 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
   2589 	DELAY(1000);
   2590 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
   2591 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
   2592 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
   2593 
   2594 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
   2595 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
   2596 
   2597 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
   2598 
   2599 	/* unused read of the interrupt source register */
   2600 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
   2601 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2602 
   2603 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
   2604 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
   2605 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2606 
   2607 	/* MIB Counter Clear Mode set */
   2608         reg |= YU_PAR_MIB_CLR;
   2609 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2610 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
   2611 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2612 
   2613 	/* MIB Counter Clear Mode clear */
   2614 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
   2615         reg &= ~YU_PAR_MIB_CLR;
   2616 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2617 
   2618 	/* receive control reg */
   2619 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
   2620 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
   2621 		      YU_RCR_CRCR);
   2622 
   2623 	/* transmit parameter register */
   2624 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
   2625 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
   2626 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
   2627 
   2628 	/* serial mode register */
   2629 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
   2630 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
   2631 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
   2632 		      YU_SMR_IPG_DATA(0x1e));
   2633 
   2634 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
   2635 	/* Setup Yukon's address */
   2636 	for (i = 0; i < 3; i++) {
   2637 		/* Write Source Address 1 (unicast filter) */
   2638 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
   2639 			      sc_if->sk_enaddr[i * 2] |
   2640 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
   2641 	}
   2642 
   2643 	for (i = 0; i < 3; i++) {
   2644 		reg = sk_win_read_2(sc_if->sk_softc,
   2645 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
   2646 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
   2647 	}
   2648 
   2649 	/* Set multicast filter */
   2650 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
   2651 	sk_setmulti(sc_if);
   2652 
   2653 	/* enable interrupt mask for counter overflows */
   2654 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
   2655 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
   2656 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
   2657 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
   2658 
   2659 	/* Configure RX MAC FIFO */
   2660 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
   2661 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
   2662 
   2663 	/* Configure TX MAC FIFO */
   2664 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
   2665 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
   2666 
   2667 	DPRINTFN(6, ("sk_init_yukon: end\n"));
   2668 }
   2669 
   2670 /*
   2671  * Note that to properly initialize any part of the GEnesis chip,
   2672  * you first have to take it out of reset mode.
   2673  */
   2674 int
   2675 sk_init(struct ifnet *ifp)
   2676 {
   2677 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2678 	struct sk_softc		*sc = sc_if->sk_softc;
   2679 	struct mii_data		*mii = &sc_if->sk_mii;
   2680 	int			rc = 0, s;
   2681 	u_int32_t		imr, imtimer_ticks;
   2682 
   2683 	DPRINTFN(1, ("sk_init\n"));
   2684 
   2685 	s = splnet();
   2686 
   2687 	if (ifp->if_flags & IFF_RUNNING) {
   2688 		splx(s);
   2689 		return 0;
   2690 	}
   2691 
   2692 	/* Cancel pending I/O and free all RX/TX buffers. */
   2693 	sk_stop(ifp,0);
   2694 
   2695 	if (sc->sk_type == SK_GENESIS) {
   2696 		/* Configure LINK_SYNC LED */
   2697 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
   2698 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2699 			      SK_LINKLED_LINKSYNC_ON);
   2700 
   2701 		/* Configure RX LED */
   2702 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
   2703 			      SK_RXLEDCTL_COUNTER_START);
   2704 
   2705 		/* Configure TX LED */
   2706 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
   2707 			      SK_TXLEDCTL_COUNTER_START);
   2708 	}
   2709 
   2710 	/* Configure I2C registers */
   2711 
   2712 	/* Configure XMAC(s) */
   2713 	switch (sc->sk_type) {
   2714 	case SK_GENESIS:
   2715 		sk_init_xmac(sc_if);
   2716 		break;
   2717 	case SK_YUKON:
   2718 	case SK_YUKON_LITE:
   2719 	case SK_YUKON_LP:
   2720 		sk_init_yukon(sc_if);
   2721 		break;
   2722 	}
   2723 	if ((rc = mii_mediachg(mii)) == ENXIO)
   2724 		rc = 0;
   2725 	else if (rc != 0)
   2726 		goto out;
   2727 
   2728 	if (sc->sk_type == SK_GENESIS) {
   2729 		/* Configure MAC FIFOs */
   2730 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
   2731 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
   2732 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
   2733 
   2734 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
   2735 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
   2736 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
   2737 	}
   2738 
   2739 	/* Configure transmit arbiter(s) */
   2740 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
   2741 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
   2742 
   2743 	/* Configure RAMbuffers */
   2744 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
   2745 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
   2746 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
   2747 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
   2748 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
   2749 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
   2750 
   2751 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
   2752 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
   2753 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
   2754 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
   2755 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
   2756 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
   2757 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
   2758 
   2759 	/* Configure BMUs */
   2760 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
   2761 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
   2762 	    SK_RX_RING_ADDR(sc_if, 0));
   2763 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
   2764 
   2765 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
   2766 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
   2767             SK_TX_RING_ADDR(sc_if, 0));
   2768 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
   2769 
   2770 	/* Init descriptors */
   2771 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
   2772 		aprint_error_dev(&sc_if->sk_dev, "initialization failed: no "
   2773 		    "memory for rx buffers\n");
   2774 		sk_stop(ifp,0);
   2775 		splx(s);
   2776 		return ENOBUFS;
   2777 	}
   2778 
   2779 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
   2780 		aprint_error_dev(&sc_if->sk_dev, "initialization failed: no "
   2781 		    "memory for tx buffers\n");
   2782 		sk_stop(ifp,0);
   2783 		splx(s);
   2784 		return ENOBUFS;
   2785 	}
   2786 
   2787 	/* Set interrupt moderation if changed via sysctl. */
   2788 	switch (sc->sk_type) {
   2789 	case SK_GENESIS:
   2790 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   2791 		break;
   2792 	case SK_YUKON_EC:
   2793 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   2794 		break;
   2795 	default:
   2796 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   2797 	}
   2798 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
   2799 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
   2800 		sk_win_write_4(sc, SK_IMTIMERINIT,
   2801 		    SK_IM_USECS(sc->sk_int_mod));
   2802 		aprint_verbose_dev(&sc->sk_dev, "interrupt moderation is %d us\n",
   2803 		    sc->sk_int_mod);
   2804 	}
   2805 
   2806 	/* Configure interrupt handling */
   2807 	CSR_READ_4(sc, SK_ISSR);
   2808 	if (sc_if->sk_port == SK_PORT_A)
   2809 		sc->sk_intrmask |= SK_INTRS1;
   2810 	else
   2811 		sc->sk_intrmask |= SK_INTRS2;
   2812 
   2813 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
   2814 
   2815 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2816 
   2817 	/* Start BMUs. */
   2818 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
   2819 
   2820 	if (sc->sk_type == SK_GENESIS) {
   2821 		/* Enable XMACs TX and RX state machines */
   2822 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
   2823 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
   2824 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2825 	}
   2826 
   2827 	if (SK_YUKON_FAMILY(sc->sk_type)) {
   2828 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
   2829 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
   2830 #if 0
   2831 		/* XXX disable 100Mbps and full duplex mode? */
   2832 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
   2833 #endif
   2834 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
   2835 	}
   2836 
   2837 
   2838 	ifp->if_flags |= IFF_RUNNING;
   2839 	ifp->if_flags &= ~IFF_OACTIVE;
   2840 
   2841 out:
   2842 	splx(s);
   2843 	return rc;
   2844 }
   2845 
   2846 void
   2847 sk_stop(struct ifnet *ifp, int disable)
   2848 {
   2849         struct sk_if_softc	*sc_if = ifp->if_softc;
   2850 	struct sk_softc		*sc = sc_if->sk_softc;
   2851 	int			i;
   2852 
   2853 	DPRINTFN(1, ("sk_stop\n"));
   2854 
   2855 	callout_stop(&sc_if->sk_tick_ch);
   2856 
   2857 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2858 		u_int32_t		val;
   2859 
   2860 		/* Put PHY back into reset. */
   2861 		val = sk_win_read_4(sc, SK_GPIO);
   2862 		if (sc_if->sk_port == SK_PORT_A) {
   2863 			val |= SK_GPIO_DIR0;
   2864 			val &= ~SK_GPIO_DAT0;
   2865 		} else {
   2866 			val |= SK_GPIO_DIR2;
   2867 			val &= ~SK_GPIO_DAT2;
   2868 		}
   2869 		sk_win_write_4(sc, SK_GPIO, val);
   2870 	}
   2871 
   2872 	/* Turn off various components of this interface. */
   2873 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2874 	switch (sc->sk_type) {
   2875 	case SK_GENESIS:
   2876 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
   2877 			      SK_TXMACCTL_XMAC_RESET);
   2878 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
   2879 		break;
   2880 	case SK_YUKON:
   2881 	case SK_YUKON_LITE:
   2882 	case SK_YUKON_LP:
   2883 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
   2884 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
   2885 		break;
   2886 	}
   2887 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
   2888 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2889 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
   2890 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2891 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
   2892 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2893 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2894 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2895 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
   2896 
   2897 	/* Disable interrupts */
   2898 	if (sc_if->sk_port == SK_PORT_A)
   2899 		sc->sk_intrmask &= ~SK_INTRS1;
   2900 	else
   2901 		sc->sk_intrmask &= ~SK_INTRS2;
   2902 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2903 
   2904 	SK_XM_READ_2(sc_if, XM_ISR);
   2905 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2906 
   2907 	/* Free RX and TX mbufs still in the queues. */
   2908 	for (i = 0; i < SK_RX_RING_CNT; i++) {
   2909 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
   2910 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
   2911 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   2912 		}
   2913 	}
   2914 
   2915 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   2916 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
   2917 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
   2918 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   2919 		}
   2920 	}
   2921 
   2922 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
   2923 }
   2924 
   2925 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
   2926 
   2927 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
   2928 
   2929 #ifdef SK_DEBUG
   2930 void
   2931 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
   2932 {
   2933 #define DESC_PRINT(X)					\
   2934 	if (X)					\
   2935 		printf("txdesc[%d]." #X "=%#x\n",	\
   2936 		       idx, X);
   2937 
   2938 	DESC_PRINT(le32toh(desc->sk_ctl));
   2939 	DESC_PRINT(le32toh(desc->sk_next));
   2940 	DESC_PRINT(le32toh(desc->sk_data_lo));
   2941 	DESC_PRINT(le32toh(desc->sk_data_hi));
   2942 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
   2943 	DESC_PRINT(le16toh(desc->sk_rsvd0));
   2944 	DESC_PRINT(le16toh(desc->sk_csum_startval));
   2945 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
   2946 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
   2947 	DESC_PRINT(le16toh(desc->sk_rsvd1));
   2948 #undef PRINT
   2949 }
   2950 
   2951 void
   2952 sk_dump_bytes(const char *data, int len)
   2953 {
   2954 	int c, i, j;
   2955 
   2956 	for (i = 0; i < len; i += 16) {
   2957 		printf("%08x  ", i);
   2958 		c = len - i;
   2959 		if (c > 16) c = 16;
   2960 
   2961 		for (j = 0; j < c; j++) {
   2962 			printf("%02x ", data[i + j] & 0xff);
   2963 			if ((j & 0xf) == 7 && j > 0)
   2964 				printf(" ");
   2965 		}
   2966 
   2967 		for (; j < 16; j++)
   2968 			printf("   ");
   2969 		printf("  ");
   2970 
   2971 		for (j = 0; j < c; j++) {
   2972 			int ch = data[i + j] & 0xff;
   2973 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
   2974 		}
   2975 
   2976 		printf("\n");
   2977 
   2978 		if (c < 16)
   2979 			break;
   2980 	}
   2981 }
   2982 
   2983 void
   2984 sk_dump_mbuf(struct mbuf *m)
   2985 {
   2986 	int count = m->m_pkthdr.len;
   2987 
   2988 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
   2989 
   2990 	while (count > 0 && m) {
   2991 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
   2992 		       m, m->m_data, m->m_len);
   2993 		sk_dump_bytes(mtod(m, char *), m->m_len);
   2994 
   2995 		count -= m->m_len;
   2996 		m = m->m_next;
   2997 	}
   2998 }
   2999 #endif
   3000 
   3001 static int
   3002 sk_sysctl_handler(SYSCTLFN_ARGS)
   3003 {
   3004 	int error, t;
   3005 	struct sysctlnode node;
   3006 	struct sk_softc *sc;
   3007 
   3008 	node = *rnode;
   3009 	sc = node.sysctl_data;
   3010 	t = sc->sk_int_mod;
   3011 	node.sysctl_data = &t;
   3012 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3013 	if (error || newp == NULL)
   3014 		return error;
   3015 
   3016 	if (t < SK_IM_MIN || t > SK_IM_MAX)
   3017 		return EINVAL;
   3018 
   3019 	/* update the softc with sysctl-changed value, and mark
   3020 	   for hardware update */
   3021 	sc->sk_int_mod = t;
   3022 	sc->sk_int_mod_pending = 1;
   3023 	return 0;
   3024 }
   3025 
   3026 /*
   3027  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
   3028  * set up in skc_attach()
   3029  */
   3030 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
   3031 {
   3032 	int rc;
   3033 	const struct sysctlnode *node;
   3034 
   3035 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   3036 	    0, CTLTYPE_NODE, "hw", NULL,
   3037 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   3038 		goto err;
   3039 	}
   3040 
   3041 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   3042 	    0, CTLTYPE_NODE, "sk",
   3043 	    SYSCTL_DESCR("sk interface controls"),
   3044 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   3045 		goto err;
   3046 	}
   3047 
   3048 	sk_root_num = node->sysctl_num;
   3049 	return;
   3050 
   3051 err:
   3052 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
   3053 }
   3054