if_sk.c revision 1.50 1 /* $NetBSD: if_sk.c,v 1.50 2008/06/20 16:28:36 cube Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
30
31 /*
32 * Copyright (c) 1997, 1998, 1999, 2000
33 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by Bill Paul.
46 * 4. Neither the name of the author nor the names of any co-contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60 * THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63 */
64
65 /*
66 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
67 *
68 * Permission to use, copy, modify, and distribute this software for any
69 * purpose with or without fee is hereby granted, provided that the above
70 * copyright notice and this permission notice appear in all copies.
71 *
72 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79 */
80
81 /*
82 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83 * the SK-984x series adapters, both single port and dual port.
84 * References:
85 * The XaQti XMAC II datasheet,
86 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87 * The SysKonnect GEnesis manual, http://www.syskonnect.com
88 *
89 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91 * convenience to others until Vitesse corrects this problem:
92 *
93 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 *
95 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
96 * Department of Electrical Engineering
97 * Columbia University, New York City
98 */
99
100 /*
101 * The SysKonnect gigabit ethernet adapters consist of two main
102 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104 * components and a PHY while the GEnesis controller provides a PCI
105 * interface with DMA support. Each card may have between 512K and
106 * 2MB of SRAM on board depending on the configuration.
107 *
108 * The SysKonnect GEnesis controller can have either one or two XMAC
109 * chips connected to it, allowing single or dual port NIC configurations.
110 * SysKonnect has the distinction of being the only vendor on the market
111 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113 * XMAC registers. This driver takes advantage of these features to allow
114 * both XMACs to operate as independent interfaces.
115 */
116
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.50 2008/06/20 16:28:36 cube Exp $");
119
120 #include "bpfilter.h"
121 #include "rnd.h"
122
123 #include <sys/param.h>
124 #include <sys/systm.h>
125 #include <sys/sockio.h>
126 #include <sys/mbuf.h>
127 #include <sys/malloc.h>
128 #include <sys/mutex.h>
129 #include <sys/kernel.h>
130 #include <sys/socket.h>
131 #include <sys/device.h>
132 #include <sys/queue.h>
133 #include <sys/callout.h>
134 #include <sys/sysctl.h>
135 #include <sys/endian.h>
136
137 #include <net/if.h>
138 #include <net/if_dl.h>
139 #include <net/if_types.h>
140
141 #include <net/if_media.h>
142
143 #if NBPFILTER > 0
144 #include <net/bpf.h>
145 #endif
146 #if NRND > 0
147 #include <sys/rnd.h>
148 #endif
149
150 #include <dev/mii/mii.h>
151 #include <dev/mii/miivar.h>
152 #include <dev/mii/brgphyreg.h>
153
154 #include <dev/pci/pcireg.h>
155 #include <dev/pci/pcivar.h>
156 #include <dev/pci/pcidevs.h>
157
158 /* #define SK_USEIOSPACE */
159
160 #include <dev/pci/if_skreg.h>
161 #include <dev/pci/if_skvar.h>
162
163 int skc_probe(struct device *, struct cfdata *, void *);
164 void skc_attach(struct device *, struct device *self, void *aux);
165 int sk_probe(struct device *, struct cfdata *, void *);
166 void sk_attach(struct device *, struct device *self, void *aux);
167 int skcprint(void *, const char *);
168 int sk_intr(void *);
169 void sk_intr_bcom(struct sk_if_softc *);
170 void sk_intr_xmac(struct sk_if_softc *);
171 void sk_intr_yukon(struct sk_if_softc *);
172 void sk_rxeof(struct sk_if_softc *);
173 void sk_txeof(struct sk_if_softc *);
174 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
175 void sk_start(struct ifnet *);
176 int sk_ioctl(struct ifnet *, u_long, void *);
177 int sk_init(struct ifnet *);
178 void sk_init_xmac(struct sk_if_softc *);
179 void sk_init_yukon(struct sk_if_softc *);
180 void sk_stop(struct ifnet *, int);
181 void sk_watchdog(struct ifnet *);
182 void sk_shutdown(void *);
183 int sk_ifmedia_upd(struct ifnet *);
184 void sk_reset(struct sk_softc *);
185 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
186 int sk_alloc_jumbo_mem(struct sk_if_softc *);
187 void sk_free_jumbo_mem(struct sk_if_softc *);
188 void *sk_jalloc(struct sk_if_softc *);
189 void sk_jfree(struct mbuf *, void *, size_t, void *);
190 int sk_init_rx_ring(struct sk_if_softc *);
191 int sk_init_tx_ring(struct sk_if_softc *);
192 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
193 void sk_vpd_read_res(struct sk_softc *,
194 struct vpd_res *, int);
195 void sk_vpd_read(struct sk_softc *);
196
197 void sk_update_int_mod(struct sk_softc *);
198
199 int sk_xmac_miibus_readreg(struct device *, int, int);
200 void sk_xmac_miibus_writereg(struct device *, int, int, int);
201 void sk_xmac_miibus_statchg(struct device *);
202
203 int sk_marv_miibus_readreg(struct device *, int, int);
204 void sk_marv_miibus_writereg(struct device *, int, int, int);
205 void sk_marv_miibus_statchg(struct device *);
206
207 u_int32_t sk_xmac_hash(void *);
208 u_int32_t sk_yukon_hash(void *);
209 void sk_setfilt(struct sk_if_softc *, void *, int);
210 void sk_setmulti(struct sk_if_softc *);
211 void sk_tick(void *);
212
213 /* #define SK_DEBUG 2 */
214 #ifdef SK_DEBUG
215 #define DPRINTF(x) if (skdebug) printf x
216 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
217 int skdebug = SK_DEBUG;
218
219 void sk_dump_txdesc(struct sk_tx_desc *, int);
220 void sk_dump_mbuf(struct mbuf *);
221 void sk_dump_bytes(const char *, int);
222 #else
223 #define DPRINTF(x)
224 #define DPRINTFN(n,x)
225 #endif
226
227 static int sk_sysctl_handler(SYSCTLFN_PROTO);
228 static int sk_root_num;
229
230 /* supported device vendors */
231 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
232 static const struct sk_product {
233 pci_vendor_id_t sk_vendor;
234 pci_product_id_t sk_product;
235 } sk_products[] = {
236 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
237 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
238 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
239 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
240 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
241 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
242 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
243 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
244 { 0, 0, }
245 };
246
247 #define SK_LINKSYS_EG1032_SUBID 0x00151737
248
249 static inline u_int32_t
250 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
251 {
252 #ifdef SK_USEIOSPACE
253 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
254 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
255 #else
256 return CSR_READ_4(sc, reg);
257 #endif
258 }
259
260 static inline u_int16_t
261 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
262 {
263 #ifdef SK_USEIOSPACE
264 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
265 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
266 #else
267 return CSR_READ_2(sc, reg);
268 #endif
269 }
270
271 static inline u_int8_t
272 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
273 {
274 #ifdef SK_USEIOSPACE
275 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
276 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
277 #else
278 return CSR_READ_1(sc, reg);
279 #endif
280 }
281
282 static inline void
283 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
284 {
285 #ifdef SK_USEIOSPACE
286 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
287 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
288 #else
289 CSR_WRITE_4(sc, reg, x);
290 #endif
291 }
292
293 static inline void
294 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
295 {
296 #ifdef SK_USEIOSPACE
297 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
298 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
299 #else
300 CSR_WRITE_2(sc, reg, x);
301 #endif
302 }
303
304 static inline void
305 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
306 {
307 #ifdef SK_USEIOSPACE
308 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
309 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
310 #else
311 CSR_WRITE_1(sc, reg, x);
312 #endif
313 }
314
315 /*
316 * The VPD EEPROM contains Vital Product Data, as suggested in
317 * the PCI 2.1 specification. The VPD data is separared into areas
318 * denoted by resource IDs. The SysKonnect VPD contains an ID string
319 * resource (the name of the adapter), a read-only area resource
320 * containing various key/data fields and a read/write area which
321 * can be used to store asset management information or log messages.
322 * We read the ID string and read-only into buffers attached to
323 * the controller softc structure for later use. At the moment,
324 * we only use the ID string during sk_attach().
325 */
326 u_int8_t
327 sk_vpd_readbyte(struct sk_softc *sc, int addr)
328 {
329 int i;
330
331 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
332 for (i = 0; i < SK_TIMEOUT; i++) {
333 DELAY(1);
334 if (sk_win_read_2(sc,
335 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
336 break;
337 }
338
339 if (i == SK_TIMEOUT)
340 return 0;
341
342 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
343 }
344
345 void
346 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
347 {
348 int i;
349 u_int8_t *ptr;
350
351 ptr = (u_int8_t *)res;
352 for (i = 0; i < sizeof(struct vpd_res); i++)
353 ptr[i] = sk_vpd_readbyte(sc, i + addr);
354 }
355
356 void
357 sk_vpd_read(struct sk_softc *sc)
358 {
359 int pos = 0, i;
360 struct vpd_res res;
361
362 if (sc->sk_vpd_prodname != NULL)
363 free(sc->sk_vpd_prodname, M_DEVBUF);
364 if (sc->sk_vpd_readonly != NULL)
365 free(sc->sk_vpd_readonly, M_DEVBUF);
366 sc->sk_vpd_prodname = NULL;
367 sc->sk_vpd_readonly = NULL;
368
369 sk_vpd_read_res(sc, &res, pos);
370
371 if (res.vr_id != VPD_RES_ID) {
372 aprint_error_dev(&sc->sk_dev, "bad VPD resource id: expected %x got %x\n",
373 VPD_RES_ID, res.vr_id);
374 return;
375 }
376
377 pos += sizeof(res);
378 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
379 if (sc->sk_vpd_prodname == NULL)
380 panic("sk_vpd_read");
381 for (i = 0; i < res.vr_len; i++)
382 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
383 sc->sk_vpd_prodname[i] = '\0';
384 pos += i;
385
386 sk_vpd_read_res(sc, &res, pos);
387
388 if (res.vr_id != VPD_RES_READ) {
389 aprint_error_dev(&sc->sk_dev, "bad VPD resource id: expected %x got %x\n",
390 VPD_RES_READ, res.vr_id);
391 return;
392 }
393
394 pos += sizeof(res);
395 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
396 if (sc->sk_vpd_readonly == NULL)
397 panic("sk_vpd_read");
398 for (i = 0; i < res.vr_len ; i++)
399 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
400 }
401
402 int
403 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
404 {
405 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
406 int i;
407
408 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
409
410 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
411 return 0;
412
413 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
414 SK_XM_READ_2(sc_if, XM_PHY_DATA);
415 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
416 for (i = 0; i < SK_TIMEOUT; i++) {
417 DELAY(1);
418 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
419 XM_MMUCMD_PHYDATARDY)
420 break;
421 }
422
423 if (i == SK_TIMEOUT) {
424 aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
425 return 0;
426 }
427 }
428 DELAY(1);
429 return SK_XM_READ_2(sc_if, XM_PHY_DATA);
430 }
431
432 void
433 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
434 {
435 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
436 int i;
437
438 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
439
440 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
441 for (i = 0; i < SK_TIMEOUT; i++) {
442 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
443 break;
444 }
445
446 if (i == SK_TIMEOUT) {
447 aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
448 return;
449 }
450
451 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
452 for (i = 0; i < SK_TIMEOUT; i++) {
453 DELAY(1);
454 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
455 break;
456 }
457
458 if (i == SK_TIMEOUT)
459 aprint_error_dev(&sc_if->sk_dev, "phy write timed out\n");
460 }
461
462 void
463 sk_xmac_miibus_statchg(struct device *dev)
464 {
465 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
466 struct mii_data *mii = &sc_if->sk_mii;
467
468 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
469
470 /*
471 * If this is a GMII PHY, manually set the XMAC's
472 * duplex mode accordingly.
473 */
474 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
475 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
476 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
477 else
478 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
479 }
480 }
481
482 int
483 sk_marv_miibus_readreg(struct device *dev, int phy, int reg)
484 {
485 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
486 u_int16_t val;
487 int i;
488
489 if (phy != 0 ||
490 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
491 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
492 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
493 phy, reg));
494 return 0;
495 }
496
497 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
498 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
499
500 for (i = 0; i < SK_TIMEOUT; i++) {
501 DELAY(1);
502 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
503 if (val & YU_SMICR_READ_VALID)
504 break;
505 }
506
507 if (i == SK_TIMEOUT) {
508 aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
509 return 0;
510 }
511
512 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
513 SK_TIMEOUT));
514
515 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
516
517 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
518 phy, reg, val));
519
520 return val;
521 }
522
523 void
524 sk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
525 {
526 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
527 int i;
528
529 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
530 phy, reg, val));
531
532 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
533 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
534 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
535
536 for (i = 0; i < SK_TIMEOUT; i++) {
537 DELAY(1);
538 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
539 break;
540 }
541
542 if (i == SK_TIMEOUT)
543 printf("%s: phy write timed out\n", device_xname(&sc_if->sk_dev));
544 }
545
546 void
547 sk_marv_miibus_statchg(struct device *dev)
548 {
549 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
550 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
551 }
552
553 #define SK_HASH_BITS 6
554
555 u_int32_t
556 sk_xmac_hash(void *addr)
557 {
558 u_int32_t crc;
559
560 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
561 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
562 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
563 return crc;
564 }
565
566 u_int32_t
567 sk_yukon_hash(void *addr)
568 {
569 u_int32_t crc;
570
571 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
572 crc &= ((1 << SK_HASH_BITS) - 1);
573 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
574 return crc;
575 }
576
577 void
578 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
579 {
580 char *addr = addrv;
581 int base = XM_RXFILT_ENTRY(slot);
582
583 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
584 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
585 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
586 }
587
588 void
589 sk_setmulti(struct sk_if_softc *sc_if)
590 {
591 struct sk_softc *sc = sc_if->sk_softc;
592 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
593 u_int32_t hashes[2] = { 0, 0 };
594 int h = 0, i;
595 struct ethercom *ec = &sc_if->sk_ethercom;
596 struct ether_multi *enm;
597 struct ether_multistep step;
598 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
599
600 /* First, zot all the existing filters. */
601 switch (sc->sk_type) {
602 case SK_GENESIS:
603 for (i = 1; i < XM_RXFILT_MAX; i++)
604 sk_setfilt(sc_if, (void *)&dummy, i);
605
606 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
607 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
608 break;
609 case SK_YUKON:
610 case SK_YUKON_LITE:
611 case SK_YUKON_LP:
612 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
613 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
614 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
615 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
616 break;
617 }
618
619 /* Now program new ones. */
620 allmulti:
621 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
622 hashes[0] = 0xFFFFFFFF;
623 hashes[1] = 0xFFFFFFFF;
624 } else {
625 i = 1;
626 /* First find the tail of the list. */
627 ETHER_FIRST_MULTI(step, ec, enm);
628 while (enm != NULL) {
629 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
630 ETHER_ADDR_LEN)) {
631 ifp->if_flags |= IFF_ALLMULTI;
632 goto allmulti;
633 }
634 DPRINTFN(2,("multicast address %s\n",
635 ether_sprintf(enm->enm_addrlo)));
636 /*
637 * Program the first XM_RXFILT_MAX multicast groups
638 * into the perfect filter. For all others,
639 * use the hash table.
640 */
641 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
642 sk_setfilt(sc_if, enm->enm_addrlo, i);
643 i++;
644 }
645 else {
646 switch (sc->sk_type) {
647 case SK_GENESIS:
648 h = sk_xmac_hash(enm->enm_addrlo);
649 break;
650 case SK_YUKON:
651 case SK_YUKON_LITE:
652 case SK_YUKON_LP:
653 h = sk_yukon_hash(enm->enm_addrlo);
654 break;
655 }
656 if (h < 32)
657 hashes[0] |= (1 << h);
658 else
659 hashes[1] |= (1 << (h - 32));
660 }
661
662 ETHER_NEXT_MULTI(step, enm);
663 }
664 }
665
666 switch (sc->sk_type) {
667 case SK_GENESIS:
668 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
669 XM_MODE_RX_USE_PERFECT);
670 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
671 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
672 break;
673 case SK_YUKON:
674 case SK_YUKON_LITE:
675 case SK_YUKON_LP:
676 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
677 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
678 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
679 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
680 break;
681 }
682 }
683
684 int
685 sk_init_rx_ring(struct sk_if_softc *sc_if)
686 {
687 struct sk_chain_data *cd = &sc_if->sk_cdata;
688 struct sk_ring_data *rd = sc_if->sk_rdata;
689 int i;
690
691 bzero((char *)rd->sk_rx_ring,
692 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
693
694 for (i = 0; i < SK_RX_RING_CNT; i++) {
695 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
696 if (i == (SK_RX_RING_CNT - 1)) {
697 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
698 rd->sk_rx_ring[i].sk_next =
699 htole32(SK_RX_RING_ADDR(sc_if, 0));
700 } else {
701 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
702 rd->sk_rx_ring[i].sk_next =
703 htole32(SK_RX_RING_ADDR(sc_if,i+1));
704 }
705 }
706
707 for (i = 0; i < SK_RX_RING_CNT; i++) {
708 if (sk_newbuf(sc_if, i, NULL,
709 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
710 aprint_error_dev(&sc_if->sk_dev, "failed alloc of %dth mbuf\n", i);
711 return ENOBUFS;
712 }
713 }
714 sc_if->sk_cdata.sk_rx_prod = 0;
715 sc_if->sk_cdata.sk_rx_cons = 0;
716
717 return 0;
718 }
719
720 int
721 sk_init_tx_ring(struct sk_if_softc *sc_if)
722 {
723 struct sk_chain_data *cd = &sc_if->sk_cdata;
724 struct sk_ring_data *rd = sc_if->sk_rdata;
725 int i;
726
727 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
728 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
729
730 for (i = 0; i < SK_TX_RING_CNT; i++) {
731 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
732 if (i == (SK_TX_RING_CNT - 1)) {
733 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
734 rd->sk_tx_ring[i].sk_next =
735 htole32(SK_TX_RING_ADDR(sc_if, 0));
736 } else {
737 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
738 rd->sk_tx_ring[i].sk_next =
739 htole32(SK_TX_RING_ADDR(sc_if,i+1));
740 }
741 }
742
743 sc_if->sk_cdata.sk_tx_prod = 0;
744 sc_if->sk_cdata.sk_tx_cons = 0;
745 sc_if->sk_cdata.sk_tx_cnt = 0;
746
747 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
748 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
749
750 return 0;
751 }
752
753 int
754 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
755 bus_dmamap_t dmamap)
756 {
757 struct mbuf *m_new = NULL;
758 struct sk_chain *c;
759 struct sk_rx_desc *r;
760
761 if (m == NULL) {
762 void *buf = NULL;
763
764 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
765 if (m_new == NULL) {
766 aprint_error_dev(&sc_if->sk_dev, "no memory for rx list -- "
767 "packet dropped!\n");
768 return ENOBUFS;
769 }
770
771 /* Allocate the jumbo buffer */
772 buf = sk_jalloc(sc_if);
773 if (buf == NULL) {
774 m_freem(m_new);
775 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
776 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
777 return ENOBUFS;
778 }
779
780 /* Attach the buffer to the mbuf */
781 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
782 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
783
784 } else {
785 /*
786 * We're re-using a previously allocated mbuf;
787 * be sure to re-init pointers and lengths to
788 * default values.
789 */
790 m_new = m;
791 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
792 m_new->m_data = m_new->m_ext.ext_buf;
793 }
794 m_adj(m_new, ETHER_ALIGN);
795
796 c = &sc_if->sk_cdata.sk_rx_chain[i];
797 r = c->sk_desc;
798 c->sk_mbuf = m_new;
799 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
800 (((vaddr_t)m_new->m_data
801 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
802 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
803
804 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
805
806 return 0;
807 }
808
809 /*
810 * Memory management for jumbo frames.
811 */
812
813 int
814 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
815 {
816 struct sk_softc *sc = sc_if->sk_softc;
817 char *ptr, *kva;
818 bus_dma_segment_t seg;
819 int i, rseg, state, error;
820 struct sk_jpool_entry *entry;
821
822 state = error = 0;
823
824 /* Grab a big chunk o' storage. */
825 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
826 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
827 aprint_error_dev(&sc->sk_dev, "can't alloc rx buffers\n");
828 return ENOBUFS;
829 }
830
831 state = 1;
832 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
833 BUS_DMA_NOWAIT)) {
834 aprint_error_dev(&sc->sk_dev, "can't map dma buffers (%d bytes)\n",
835 SK_JMEM);
836 error = ENOBUFS;
837 goto out;
838 }
839
840 state = 2;
841 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
842 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
843 aprint_error_dev(&sc->sk_dev, "can't create dma map\n");
844 error = ENOBUFS;
845 goto out;
846 }
847
848 state = 3;
849 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
850 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
851 aprint_error_dev(&sc->sk_dev, "can't load dma map\n");
852 error = ENOBUFS;
853 goto out;
854 }
855
856 state = 4;
857 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
858 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
859
860 LIST_INIT(&sc_if->sk_jfree_listhead);
861 LIST_INIT(&sc_if->sk_jinuse_listhead);
862 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
863
864 /*
865 * Now divide it up into 9K pieces and save the addresses
866 * in an array.
867 */
868 ptr = sc_if->sk_cdata.sk_jumbo_buf;
869 for (i = 0; i < SK_JSLOTS; i++) {
870 sc_if->sk_cdata.sk_jslots[i] = ptr;
871 ptr += SK_JLEN;
872 entry = malloc(sizeof(struct sk_jpool_entry),
873 M_DEVBUF, M_NOWAIT);
874 if (entry == NULL) {
875 aprint_error_dev(&sc->sk_dev, "no memory for jumbo buffer queue!\n");
876 error = ENOBUFS;
877 goto out;
878 }
879 entry->slot = i;
880 if (i)
881 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
882 entry, jpool_entries);
883 else
884 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
885 entry, jpool_entries);
886 }
887 out:
888 if (error != 0) {
889 switch (state) {
890 case 4:
891 bus_dmamap_unload(sc->sc_dmatag,
892 sc_if->sk_cdata.sk_rx_jumbo_map);
893 case 3:
894 bus_dmamap_destroy(sc->sc_dmatag,
895 sc_if->sk_cdata.sk_rx_jumbo_map);
896 case 2:
897 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
898 case 1:
899 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
900 break;
901 default:
902 break;
903 }
904 }
905
906 return error;
907 }
908
909 /*
910 * Allocate a jumbo buffer.
911 */
912 void *
913 sk_jalloc(struct sk_if_softc *sc_if)
914 {
915 struct sk_jpool_entry *entry;
916
917 mutex_enter(&sc_if->sk_jpool_mtx);
918 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
919
920 if (entry == NULL) {
921 mutex_exit(&sc_if->sk_jpool_mtx);
922 return NULL;
923 }
924
925 LIST_REMOVE(entry, jpool_entries);
926 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
927 mutex_exit(&sc_if->sk_jpool_mtx);
928 return sc_if->sk_cdata.sk_jslots[entry->slot];
929 }
930
931 /*
932 * Release a jumbo buffer.
933 */
934 void
935 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
936 {
937 struct sk_jpool_entry *entry;
938 struct sk_if_softc *sc;
939 int i;
940
941 /* Extract the softc struct pointer. */
942 sc = (struct sk_if_softc *)arg;
943
944 if (sc == NULL)
945 panic("sk_jfree: can't find softc pointer!");
946
947 /* calculate the slot this buffer belongs to */
948
949 i = ((vaddr_t)buf
950 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
951
952 if ((i < 0) || (i >= SK_JSLOTS))
953 panic("sk_jfree: asked to free buffer that we don't manage!");
954
955 mutex_enter(&sc->sk_jpool_mtx);
956 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
957 if (entry == NULL)
958 panic("sk_jfree: buffer not in use!");
959 entry->slot = i;
960 LIST_REMOVE(entry, jpool_entries);
961 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
962 mutex_exit(&sc->sk_jpool_mtx);
963
964 if (__predict_true(m != NULL))
965 pool_cache_put(mb_cache, m);
966 }
967
968 /*
969 * Set media options.
970 */
971 int
972 sk_ifmedia_upd(struct ifnet *ifp)
973 {
974 struct sk_if_softc *sc_if = ifp->if_softc;
975 int rc;
976
977 (void) sk_init(ifp);
978 if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
979 return 0;
980 return rc;
981 }
982
983 int
984 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
985 {
986 struct sk_if_softc *sc_if = ifp->if_softc;
987 struct sk_softc *sc = sc_if->sk_softc;
988 int s, error = 0;
989
990 /* DPRINTFN(2, ("sk_ioctl\n")); */
991
992 s = splnet();
993
994 switch (command) {
995
996 case SIOCSIFFLAGS:
997 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
998 if (ifp->if_flags & IFF_UP) {
999 if (ifp->if_flags & IFF_RUNNING &&
1000 ifp->if_flags & IFF_PROMISC &&
1001 !(sc_if->sk_if_flags & IFF_PROMISC)) {
1002 switch (sc->sk_type) {
1003 case SK_GENESIS:
1004 SK_XM_SETBIT_4(sc_if, XM_MODE,
1005 XM_MODE_RX_PROMISC);
1006 break;
1007 case SK_YUKON:
1008 case SK_YUKON_LITE:
1009 case SK_YUKON_LP:
1010 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1011 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1012 break;
1013 }
1014 sk_setmulti(sc_if);
1015 } else if (ifp->if_flags & IFF_RUNNING &&
1016 !(ifp->if_flags & IFF_PROMISC) &&
1017 sc_if->sk_if_flags & IFF_PROMISC) {
1018 switch (sc->sk_type) {
1019 case SK_GENESIS:
1020 SK_XM_CLRBIT_4(sc_if, XM_MODE,
1021 XM_MODE_RX_PROMISC);
1022 break;
1023 case SK_YUKON:
1024 case SK_YUKON_LITE:
1025 case SK_YUKON_LP:
1026 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1027 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1028 break;
1029 }
1030
1031 sk_setmulti(sc_if);
1032 } else
1033 (void) sk_init(ifp);
1034 } else {
1035 if (ifp->if_flags & IFF_RUNNING)
1036 sk_stop(ifp,0);
1037 }
1038 sc_if->sk_if_flags = ifp->if_flags;
1039 error = 0;
1040 break;
1041
1042 default:
1043 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1044 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1045 break;
1046
1047 error = 0;
1048
1049 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1050 ;
1051 else if (ifp->if_flags & IFF_RUNNING) {
1052 sk_setmulti(sc_if);
1053 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1054 }
1055 break;
1056 }
1057
1058 splx(s);
1059 return error;
1060 }
1061
1062 void
1063 sk_update_int_mod(struct sk_softc *sc)
1064 {
1065 u_int32_t imtimer_ticks;
1066
1067 /*
1068 * Configure interrupt moderation. The moderation timer
1069 * defers interrupts specified in the interrupt moderation
1070 * timer mask based on the timeout specified in the interrupt
1071 * moderation timer init register. Each bit in the timer
1072 * register represents one tick, so to specify a timeout in
1073 * microseconds, we have to multiply by the correct number of
1074 * ticks-per-microsecond.
1075 */
1076 switch (sc->sk_type) {
1077 case SK_GENESIS:
1078 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1079 break;
1080 case SK_YUKON_EC:
1081 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1082 break;
1083 default:
1084 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1085 }
1086 aprint_verbose_dev(&sc->sk_dev, "interrupt moderation is %d us\n",
1087 sc->sk_int_mod);
1088 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1089 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1090 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1091 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1092 sc->sk_int_mod_pending = 0;
1093 }
1094
1095 /*
1096 * Lookup: Check the PCI vendor and device, and return a pointer to
1097 * The structure if the IDs match against our list.
1098 */
1099
1100 static const struct sk_product *
1101 sk_lookup(const struct pci_attach_args *pa)
1102 {
1103 const struct sk_product *psk;
1104
1105 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1106 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1107 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1108 return psk;
1109 }
1110 return NULL;
1111 }
1112
1113 /*
1114 * Probe for a SysKonnect GEnesis chip.
1115 */
1116
1117 int
1118 skc_probe(struct device *parent, struct cfdata *match,
1119 void *aux)
1120 {
1121 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1122 const struct sk_product *psk;
1123 pcireg_t subid;
1124
1125 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1126
1127 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1128 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1129 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1130 subid == SK_LINKSYS_EG1032_SUBID)
1131 return 1;
1132
1133 if ((psk = sk_lookup(pa))) {
1134 return 1;
1135 }
1136 return 0;
1137 }
1138
1139 /*
1140 * Force the GEnesis into reset, then bring it out of reset.
1141 */
1142 void sk_reset(struct sk_softc *sc)
1143 {
1144 DPRINTFN(2, ("sk_reset\n"));
1145
1146 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1147 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1148 if (SK_YUKON_FAMILY(sc->sk_type))
1149 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1150
1151 DELAY(1000);
1152 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1153 DELAY(2);
1154 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1155 if (SK_YUKON_FAMILY(sc->sk_type))
1156 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1157
1158 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1159 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1160 CSR_READ_2(sc, SK_LINK_CTRL)));
1161
1162 if (sc->sk_type == SK_GENESIS) {
1163 /* Configure packet arbiter */
1164 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1165 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1166 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1167 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1168 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1169 }
1170
1171 /* Enable RAM interface */
1172 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1173
1174 sk_update_int_mod(sc);
1175 }
1176
1177 int
1178 sk_probe(struct device *parent, struct cfdata *match,
1179 void *aux)
1180 {
1181 struct skc_attach_args *sa = aux;
1182
1183 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1184 return 0;
1185
1186 return 1;
1187 }
1188
1189 /*
1190 * Each XMAC chip is attached as a separate logical IP interface.
1191 * Single port cards will have only one logical interface of course.
1192 */
1193 void
1194 sk_attach(struct device *parent, struct device *self, void *aux)
1195 {
1196 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1197 struct sk_softc *sc = (struct sk_softc *)parent;
1198 struct skc_attach_args *sa = aux;
1199 struct sk_txmap_entry *entry;
1200 struct ifnet *ifp;
1201 bus_dma_segment_t seg;
1202 bus_dmamap_t dmamap;
1203 void *kva;
1204 int i, rseg;
1205
1206 aprint_naive("\n");
1207
1208 sc_if->sk_port = sa->skc_port;
1209 sc_if->sk_softc = sc;
1210 sc->sk_if[sa->skc_port] = sc_if;
1211
1212 if (sa->skc_port == SK_PORT_A)
1213 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1214 if (sa->skc_port == SK_PORT_B)
1215 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1216
1217 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1218
1219 /*
1220 * Get station address for this interface. Note that
1221 * dual port cards actually come with three station
1222 * addresses: one for each port, plus an extra. The
1223 * extra one is used by the SysKonnect driver software
1224 * as a 'virtual' station address for when both ports
1225 * are operating in failover mode. Currently we don't
1226 * use this extra address.
1227 */
1228 for (i = 0; i < ETHER_ADDR_LEN; i++)
1229 sc_if->sk_enaddr[i] =
1230 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1231
1232
1233 aprint_normal(": Ethernet address %s\n",
1234 ether_sprintf(sc_if->sk_enaddr));
1235
1236 /*
1237 * Set up RAM buffer addresses. The NIC will have a certain
1238 * amount of SRAM on it, somewhere between 512K and 2MB. We
1239 * need to divide this up a) between the transmitter and
1240 * receiver and b) between the two XMACs, if this is a
1241 * dual port NIC. Our algorithm is to divide up the memory
1242 * evenly so that everyone gets a fair share.
1243 */
1244 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1245 u_int32_t chunk, val;
1246
1247 chunk = sc->sk_ramsize / 2;
1248 val = sc->sk_rboff / sizeof(u_int64_t);
1249 sc_if->sk_rx_ramstart = val;
1250 val += (chunk / sizeof(u_int64_t));
1251 sc_if->sk_rx_ramend = val - 1;
1252 sc_if->sk_tx_ramstart = val;
1253 val += (chunk / sizeof(u_int64_t));
1254 sc_if->sk_tx_ramend = val - 1;
1255 } else {
1256 u_int32_t chunk, val;
1257
1258 chunk = sc->sk_ramsize / 4;
1259 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1260 sizeof(u_int64_t);
1261 sc_if->sk_rx_ramstart = val;
1262 val += (chunk / sizeof(u_int64_t));
1263 sc_if->sk_rx_ramend = val - 1;
1264 sc_if->sk_tx_ramstart = val;
1265 val += (chunk / sizeof(u_int64_t));
1266 sc_if->sk_tx_ramend = val - 1;
1267 }
1268
1269 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1270 " tx_ramstart=%#x tx_ramend=%#x\n",
1271 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1272 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1273
1274 /* Read and save PHY type and set PHY address */
1275 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1276 switch (sc_if->sk_phytype) {
1277 case SK_PHYTYPE_XMAC:
1278 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1279 break;
1280 case SK_PHYTYPE_BCOM:
1281 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1282 break;
1283 case SK_PHYTYPE_MARV_COPPER:
1284 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1285 break;
1286 default:
1287 aprint_error_dev(&sc->sk_dev, "unsupported PHY type: %d\n",
1288 sc_if->sk_phytype);
1289 return;
1290 }
1291
1292 /* Allocate the descriptor queues. */
1293 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1294 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1295 aprint_error_dev(&sc->sk_dev, "can't alloc rx buffers\n");
1296 goto fail;
1297 }
1298 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1299 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1300 aprint_error_dev(&sc_if->sk_dev, "can't map dma buffers (%lu bytes)\n",
1301 (u_long) sizeof(struct sk_ring_data));
1302 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1303 goto fail;
1304 }
1305 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1306 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1307 &sc_if->sk_ring_map)) {
1308 aprint_error_dev(&sc_if->sk_dev, "can't create dma map\n");
1309 bus_dmamem_unmap(sc->sc_dmatag, kva,
1310 sizeof(struct sk_ring_data));
1311 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1312 goto fail;
1313 }
1314 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1315 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1316 aprint_error_dev(&sc_if->sk_dev, "can't load dma map\n");
1317 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1318 bus_dmamem_unmap(sc->sc_dmatag, kva,
1319 sizeof(struct sk_ring_data));
1320 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1321 goto fail;
1322 }
1323
1324 for (i = 0; i < SK_RX_RING_CNT; i++)
1325 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1326
1327 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1328 for (i = 0; i < SK_TX_RING_CNT; i++) {
1329 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1330
1331 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1332 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1333 aprint_error_dev(&sc_if->sk_dev, "Can't create TX dmamap\n");
1334 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1335 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1336 bus_dmamem_unmap(sc->sc_dmatag, kva,
1337 sizeof(struct sk_ring_data));
1338 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1339 goto fail;
1340 }
1341
1342 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1343 if (!entry) {
1344 aprint_error_dev(&sc_if->sk_dev, "Can't alloc txmap entry\n");
1345 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1346 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1347 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1348 bus_dmamem_unmap(sc->sc_dmatag, kva,
1349 sizeof(struct sk_ring_data));
1350 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1351 goto fail;
1352 }
1353 entry->dmamap = dmamap;
1354 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1355 }
1356
1357 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1358 bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1359
1360 ifp = &sc_if->sk_ethercom.ec_if;
1361 /* Try to allocate memory for jumbo buffers. */
1362 if (sk_alloc_jumbo_mem(sc_if)) {
1363 aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1364 goto fail;
1365 }
1366 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1367 | ETHERCAP_JUMBO_MTU;
1368
1369 ifp->if_softc = sc_if;
1370 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1371 ifp->if_ioctl = sk_ioctl;
1372 ifp->if_start = sk_start;
1373 ifp->if_stop = sk_stop;
1374 ifp->if_init = sk_init;
1375 ifp->if_watchdog = sk_watchdog;
1376 ifp->if_capabilities = 0;
1377 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1378 IFQ_SET_READY(&ifp->if_snd);
1379 strlcpy(ifp->if_xname, device_xname(&sc_if->sk_dev), IFNAMSIZ);
1380
1381 /*
1382 * Do miibus setup.
1383 */
1384 switch (sc->sk_type) {
1385 case SK_GENESIS:
1386 sk_init_xmac(sc_if);
1387 break;
1388 case SK_YUKON:
1389 case SK_YUKON_LITE:
1390 case SK_YUKON_LP:
1391 sk_init_yukon(sc_if);
1392 break;
1393 default:
1394 aprint_error_dev(&sc->sk_dev, "unknown device type %d\n",
1395 sc->sk_type);
1396 goto fail;
1397 }
1398
1399 DPRINTFN(2, ("sk_attach: 1\n"));
1400
1401 sc_if->sk_mii.mii_ifp = ifp;
1402 switch (sc->sk_type) {
1403 case SK_GENESIS:
1404 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1405 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1406 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1407 break;
1408 case SK_YUKON:
1409 case SK_YUKON_LITE:
1410 case SK_YUKON_LP:
1411 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1412 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1413 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1414 break;
1415 }
1416
1417 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1418 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1419 sk_ifmedia_upd, ether_mediastatus);
1420 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1421 MII_OFFSET_ANY, 0);
1422 if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
1423 aprint_error_dev(&sc_if->sk_dev, "no PHY found!\n");
1424 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1425 0, NULL);
1426 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1427 } else
1428 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1429
1430 callout_init(&sc_if->sk_tick_ch, 0);
1431 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1432
1433 DPRINTFN(2, ("sk_attach: 1\n"));
1434
1435 /*
1436 * Call MI attach routines.
1437 */
1438 if_attach(ifp);
1439
1440 ether_ifattach(ifp, sc_if->sk_enaddr);
1441
1442 #if NRND > 0
1443 rnd_attach_source(&sc->rnd_source, device_xname(&sc->sk_dev),
1444 RND_TYPE_NET, 0);
1445 #endif
1446
1447 DPRINTFN(2, ("sk_attach: end\n"));
1448
1449 return;
1450
1451 fail:
1452 sc->sk_if[sa->skc_port] = NULL;
1453 }
1454
1455 int
1456 skcprint(void *aux, const char *pnp)
1457 {
1458 struct skc_attach_args *sa = aux;
1459
1460 if (pnp)
1461 aprint_normal("sk port %c at %s",
1462 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1463 else
1464 aprint_normal(" port %c",
1465 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1466 return UNCONF;
1467 }
1468
1469 /*
1470 * Attach the interface. Allocate softc structures, do ifmedia
1471 * setup and ethernet/BPF attach.
1472 */
1473 void
1474 skc_attach(struct device *parent, struct device *self, void *aux)
1475 {
1476 struct sk_softc *sc = (struct sk_softc *)self;
1477 struct pci_attach_args *pa = aux;
1478 struct skc_attach_args skca;
1479 pci_chipset_tag_t pc = pa->pa_pc;
1480 #ifndef SK_USEIOSPACE
1481 pcireg_t memtype;
1482 #endif
1483 pci_intr_handle_t ih;
1484 const char *intrstr = NULL;
1485 bus_addr_t iobase;
1486 bus_size_t iosize;
1487 int rc, sk_nodenum;
1488 u_int32_t command;
1489 const char *revstr;
1490 const struct sysctlnode *node;
1491
1492 aprint_naive("\n");
1493
1494 DPRINTFN(2, ("begin skc_attach\n"));
1495
1496 /*
1497 * Handle power management nonsense.
1498 */
1499 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1500
1501 if (command == 0x01) {
1502 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1503 if (command & SK_PSTATE_MASK) {
1504 u_int32_t xiobase, membase, irq;
1505
1506 /* Save important PCI config data. */
1507 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1508 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1509 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1510
1511 /* Reset the power state. */
1512 aprint_normal_dev(&sc->sk_dev, "chip is in D%d power mode "
1513 "-- setting to D0\n",
1514 command & SK_PSTATE_MASK);
1515 command &= 0xFFFFFFFC;
1516 pci_conf_write(pc, pa->pa_tag,
1517 SK_PCI_PWRMGMTCTRL, command);
1518
1519 /* Restore PCI config data. */
1520 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1521 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1522 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1523 }
1524 }
1525
1526 /*
1527 * Map control/status registers.
1528 */
1529 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1530 command |= PCI_COMMAND_IO_ENABLE |
1531 PCI_COMMAND_MEM_ENABLE |
1532 PCI_COMMAND_MASTER_ENABLE;
1533 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1534 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1535
1536 #ifdef SK_USEIOSPACE
1537 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1538 aprint_error(": failed to enable I/O ports!\n");
1539 return;
1540 }
1541 /*
1542 * Map control/status registers.
1543 */
1544 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1545 &sc->sk_btag, &sc->sk_bhandle,
1546 &iobase, &iosize)) {
1547 aprint_error(": can't find i/o space\n");
1548 return;
1549 }
1550 #else
1551 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1552 aprint_error(": failed to enable memory mapping!\n");
1553 return;
1554 }
1555 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1556 switch (memtype) {
1557 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1558 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1559 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1560 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1561 &iobase, &iosize) == 0)
1562 break;
1563 default:
1564 aprint_error_dev(&sc->sk_dev, "can't find mem space\n");
1565 return;
1566 }
1567
1568 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1569 #endif
1570 sc->sc_dmatag = pa->pa_dmat;
1571
1572 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1573 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1574
1575 /* bail out here if chip is not recognized */
1576 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1577 aprint_error_dev(&sc->sk_dev, "unknown chip type\n");
1578 goto fail;
1579 }
1580 if (SK_IS_YUKON2(sc)) {
1581 aprint_error_dev(&sc->sk_dev, "Does not support Yukon2--try msk(4).\n");
1582 goto fail;
1583 }
1584 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1585
1586 /* Allocate interrupt */
1587 if (pci_intr_map(pa, &ih)) {
1588 aprint_error(": couldn't map interrupt\n");
1589 goto fail;
1590 }
1591
1592 intrstr = pci_intr_string(pc, ih);
1593 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1594 if (sc->sk_intrhand == NULL) {
1595 aprint_error(": couldn't establish interrupt");
1596 if (intrstr != NULL)
1597 aprint_normal(" at %s", intrstr);
1598 goto fail;
1599 }
1600 aprint_normal(": %s\n", intrstr);
1601
1602 /* Reset the adapter. */
1603 sk_reset(sc);
1604
1605 /* Read and save vital product data from EEPROM. */
1606 sk_vpd_read(sc);
1607
1608 if (sc->sk_type == SK_GENESIS) {
1609 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1610 /* Read and save RAM size and RAMbuffer offset */
1611 switch (val) {
1612 case SK_RAMSIZE_512K_64:
1613 sc->sk_ramsize = 0x80000;
1614 sc->sk_rboff = SK_RBOFF_0;
1615 break;
1616 case SK_RAMSIZE_1024K_64:
1617 sc->sk_ramsize = 0x100000;
1618 sc->sk_rboff = SK_RBOFF_80000;
1619 break;
1620 case SK_RAMSIZE_1024K_128:
1621 sc->sk_ramsize = 0x100000;
1622 sc->sk_rboff = SK_RBOFF_0;
1623 break;
1624 case SK_RAMSIZE_2048K_128:
1625 sc->sk_ramsize = 0x200000;
1626 sc->sk_rboff = SK_RBOFF_0;
1627 break;
1628 default:
1629 aprint_error_dev(&sc->sk_dev, "unknown ram size: %d\n",
1630 val);
1631 goto fail_1;
1632 break;
1633 }
1634
1635 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1636 sc->sk_ramsize, sc->sk_ramsize / 1024,
1637 sc->sk_rboff));
1638 } else {
1639 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1640 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1641 sc->sk_rboff = SK_RBOFF_0;
1642
1643 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1644 sc->sk_ramsize / 1024, sc->sk_ramsize,
1645 sc->sk_rboff));
1646 }
1647
1648 /* Read and save physical media type */
1649 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1650 case SK_PMD_1000BASESX:
1651 sc->sk_pmd = IFM_1000_SX;
1652 break;
1653 case SK_PMD_1000BASELX:
1654 sc->sk_pmd = IFM_1000_LX;
1655 break;
1656 case SK_PMD_1000BASECX:
1657 sc->sk_pmd = IFM_1000_CX;
1658 break;
1659 case SK_PMD_1000BASETX:
1660 case SK_PMD_1000BASETX_ALT:
1661 sc->sk_pmd = IFM_1000_T;
1662 break;
1663 default:
1664 aprint_error_dev(&sc->sk_dev, "unknown media type: 0x%x\n",
1665 sk_win_read_1(sc, SK_PMDTYPE));
1666 goto fail_1;
1667 }
1668
1669 /* determine whether to name it with vpd or just make it up */
1670 /* Marvell Yukon VPD's can freqently be bogus */
1671
1672 switch (pa->pa_id) {
1673 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1674 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1675 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1676 case PCI_PRODUCT_3COM_3C940:
1677 case PCI_PRODUCT_DLINK_DGE530T:
1678 case PCI_PRODUCT_DLINK_DGE560T:
1679 case PCI_PRODUCT_DLINK_DGE560T_2:
1680 case PCI_PRODUCT_LINKSYS_EG1032:
1681 case PCI_PRODUCT_LINKSYS_EG1064:
1682 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1683 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1684 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1685 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1686 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1687 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1688 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1689 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1690 sc->sk_name = sc->sk_vpd_prodname;
1691 break;
1692 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1693 /* whoops yukon vpd prodname bears no resemblance to reality */
1694 switch (sc->sk_type) {
1695 case SK_GENESIS:
1696 sc->sk_name = sc->sk_vpd_prodname;
1697 break;
1698 case SK_YUKON:
1699 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1700 break;
1701 case SK_YUKON_LITE:
1702 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1703 break;
1704 case SK_YUKON_LP:
1705 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1706 break;
1707 default:
1708 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1709 }
1710
1711 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1712
1713 if ( sc->sk_type == SK_YUKON ) {
1714 uint32_t flashaddr;
1715 uint8_t testbyte;
1716
1717 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1718
1719 /* test Flash-Address Register */
1720 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1721 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1722
1723 if (testbyte != 0) {
1724 /* this is yukon lite Rev. A0 */
1725 sc->sk_type = SK_YUKON_LITE;
1726 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1727 /* restore Flash-Address Register */
1728 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1729 }
1730 }
1731 break;
1732 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1733 sc->sk_name = sc->sk_vpd_prodname;
1734 break;
1735 default:
1736 sc->sk_name = "Unknown Marvell";
1737 }
1738
1739
1740 if ( sc->sk_type == SK_YUKON_LITE ) {
1741 switch (sc->sk_rev) {
1742 case SK_YUKON_LITE_REV_A0:
1743 revstr = "A0";
1744 break;
1745 case SK_YUKON_LITE_REV_A1:
1746 revstr = "A1";
1747 break;
1748 case SK_YUKON_LITE_REV_A3:
1749 revstr = "A3";
1750 break;
1751 default:
1752 revstr = "";
1753 }
1754 } else {
1755 revstr = "";
1756 }
1757
1758 /* Announce the product name. */
1759 aprint_normal_dev(&sc->sk_dev, "%s rev. %s(0x%x)\n",
1760 sc->sk_name, revstr, sc->sk_rev);
1761
1762 skca.skc_port = SK_PORT_A;
1763 (void)config_found(&sc->sk_dev, &skca, skcprint);
1764
1765 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1766 skca.skc_port = SK_PORT_B;
1767 (void)config_found(&sc->sk_dev, &skca, skcprint);
1768 }
1769
1770 /* Turn on the 'driver is loaded' LED. */
1771 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1772
1773 /* skc sysctl setup */
1774
1775 sc->sk_int_mod = SK_IM_DEFAULT;
1776 sc->sk_int_mod_pending = 0;
1777
1778 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1779 0, CTLTYPE_NODE, device_xname(&sc->sk_dev),
1780 SYSCTL_DESCR("skc per-controller controls"),
1781 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1782 CTL_EOL)) != 0) {
1783 aprint_normal_dev(&sc->sk_dev, "couldn't create sysctl node\n");
1784 goto fail_1;
1785 }
1786
1787 sk_nodenum = node->sysctl_num;
1788
1789 /* interrupt moderation time in usecs */
1790 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1791 CTLFLAG_READWRITE,
1792 CTLTYPE_INT, "int_mod",
1793 SYSCTL_DESCR("sk interrupt moderation timer"),
1794 sk_sysctl_handler, 0, sc,
1795 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1796 CTL_EOL)) != 0) {
1797 aprint_normal_dev(&sc->sk_dev, "couldn't create int_mod sysctl node\n");
1798 goto fail_1;
1799 }
1800
1801 return;
1802
1803 fail_1:
1804 pci_intr_disestablish(pc, sc->sk_intrhand);
1805 fail:
1806 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1807 }
1808
1809 int
1810 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1811 {
1812 struct sk_softc *sc = sc_if->sk_softc;
1813 struct sk_tx_desc *f = NULL;
1814 u_int32_t frag, cur, cnt = 0, sk_ctl;
1815 int i;
1816 struct sk_txmap_entry *entry;
1817 bus_dmamap_t txmap;
1818
1819 DPRINTFN(3, ("sk_encap\n"));
1820
1821 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1822 if (entry == NULL) {
1823 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1824 return ENOBUFS;
1825 }
1826 txmap = entry->dmamap;
1827
1828 cur = frag = *txidx;
1829
1830 #ifdef SK_DEBUG
1831 if (skdebug >= 3)
1832 sk_dump_mbuf(m_head);
1833 #endif
1834
1835 /*
1836 * Start packing the mbufs in this chain into
1837 * the fragment pointers. Stop when we run out
1838 * of fragments or hit the end of the mbuf chain.
1839 */
1840 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1841 BUS_DMA_NOWAIT)) {
1842 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1843 return ENOBUFS;
1844 }
1845
1846 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1847
1848 /* Sync the DMA map. */
1849 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1850 BUS_DMASYNC_PREWRITE);
1851
1852 for (i = 0; i < txmap->dm_nsegs; i++) {
1853 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1854 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1855 return ENOBUFS;
1856 }
1857 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1858 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1859 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1860 if (cnt == 0)
1861 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1862 else
1863 sk_ctl |= SK_TXCTL_OWN;
1864 f->sk_ctl = htole32(sk_ctl);
1865 cur = frag;
1866 SK_INC(frag, SK_TX_RING_CNT);
1867 cnt++;
1868 }
1869
1870 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1871 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1872
1873 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1874 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1875 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1876
1877 /* Sync descriptors before handing to chip */
1878 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1879 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1880
1881 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1882 htole32(SK_TXCTL_OWN);
1883
1884 /* Sync first descriptor to hand it off */
1885 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1886
1887 sc_if->sk_cdata.sk_tx_cnt += cnt;
1888
1889 #ifdef SK_DEBUG
1890 if (skdebug >= 3) {
1891 struct sk_tx_desc *desc;
1892 u_int32_t idx;
1893 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1894 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1895 sk_dump_txdesc(desc, idx);
1896 }
1897 }
1898 #endif
1899
1900 *txidx = frag;
1901
1902 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1903
1904 return 0;
1905 }
1906
1907 void
1908 sk_start(struct ifnet *ifp)
1909 {
1910 struct sk_if_softc *sc_if = ifp->if_softc;
1911 struct sk_softc *sc = sc_if->sk_softc;
1912 struct mbuf *m_head = NULL;
1913 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1914 int pkts = 0;
1915
1916 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1917 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1918
1919 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1920 IFQ_POLL(&ifp->if_snd, m_head);
1921 if (m_head == NULL)
1922 break;
1923
1924 /*
1925 * Pack the data into the transmit ring. If we
1926 * don't have room, set the OACTIVE flag and wait
1927 * for the NIC to drain the ring.
1928 */
1929 if (sk_encap(sc_if, m_head, &idx)) {
1930 ifp->if_flags |= IFF_OACTIVE;
1931 break;
1932 }
1933
1934 /* now we are committed to transmit the packet */
1935 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1936 pkts++;
1937
1938 /*
1939 * If there's a BPF listener, bounce a copy of this frame
1940 * to him.
1941 */
1942 #if NBPFILTER > 0
1943 if (ifp->if_bpf)
1944 bpf_mtap(ifp->if_bpf, m_head);
1945 #endif
1946 }
1947 if (pkts == 0)
1948 return;
1949
1950 /* Transmit */
1951 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1952 sc_if->sk_cdata.sk_tx_prod = idx;
1953 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1954
1955 /* Set a timeout in case the chip goes out to lunch. */
1956 ifp->if_timer = 5;
1957 }
1958 }
1959
1960
1961 void
1962 sk_watchdog(struct ifnet *ifp)
1963 {
1964 struct sk_if_softc *sc_if = ifp->if_softc;
1965
1966 /*
1967 * Reclaim first as there is a possibility of losing Tx completion
1968 * interrupts.
1969 */
1970 sk_txeof(sc_if);
1971 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1972 aprint_error_dev(&sc_if->sk_dev, "watchdog timeout\n");
1973
1974 ifp->if_oerrors++;
1975
1976 sk_init(ifp);
1977 }
1978 }
1979
1980 void
1981 sk_shutdown(void *v)
1982 {
1983 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
1984 struct sk_softc *sc = sc_if->sk_softc;
1985 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1986
1987 DPRINTFN(2, ("sk_shutdown\n"));
1988 sk_stop(ifp,1);
1989
1990 /* Turn off the 'driver is loaded' LED. */
1991 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1992
1993 /*
1994 * Reset the GEnesis controller. Doing this should also
1995 * assert the resets on the attached XMAC(s).
1996 */
1997 sk_reset(sc);
1998 }
1999
2000 void
2001 sk_rxeof(struct sk_if_softc *sc_if)
2002 {
2003 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2004 struct mbuf *m;
2005 struct sk_chain *cur_rx;
2006 struct sk_rx_desc *cur_desc;
2007 int i, cur, total_len = 0;
2008 u_int32_t rxstat, sk_ctl;
2009 bus_dmamap_t dmamap;
2010
2011 i = sc_if->sk_cdata.sk_rx_prod;
2012
2013 DPRINTFN(3, ("sk_rxeof %d\n", i));
2014
2015 for (;;) {
2016 cur = i;
2017
2018 /* Sync the descriptor */
2019 SK_CDRXSYNC(sc_if, cur,
2020 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2021
2022 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2023 if (sk_ctl & SK_RXCTL_OWN) {
2024 /* Invalidate the descriptor -- it's not ready yet */
2025 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2026 sc_if->sk_cdata.sk_rx_prod = i;
2027 break;
2028 }
2029
2030 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2031 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2032 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2033
2034 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2035 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2036
2037 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2038 m = cur_rx->sk_mbuf;
2039 cur_rx->sk_mbuf = NULL;
2040 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2041
2042 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2043
2044 SK_INC(i, SK_RX_RING_CNT);
2045
2046 if (rxstat & XM_RXSTAT_ERRFRAME) {
2047 ifp->if_ierrors++;
2048 sk_newbuf(sc_if, cur, m, dmamap);
2049 continue;
2050 }
2051
2052 /*
2053 * Try to allocate a new jumbo buffer. If that
2054 * fails, copy the packet to mbufs and put the
2055 * jumbo buffer back in the ring so it can be
2056 * re-used. If allocating mbufs fails, then we
2057 * have to drop the packet.
2058 */
2059 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2060 struct mbuf *m0;
2061 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2062 total_len + ETHER_ALIGN, 0, ifp, NULL);
2063 sk_newbuf(sc_if, cur, m, dmamap);
2064 if (m0 == NULL) {
2065 aprint_error_dev(&sc_if->sk_dev, "no receive buffers "
2066 "available -- packet dropped!\n");
2067 ifp->if_ierrors++;
2068 continue;
2069 }
2070 m_adj(m0, ETHER_ALIGN);
2071 m = m0;
2072 } else {
2073 m->m_pkthdr.rcvif = ifp;
2074 m->m_pkthdr.len = m->m_len = total_len;
2075 }
2076
2077 ifp->if_ipackets++;
2078
2079 #if NBPFILTER > 0
2080 if (ifp->if_bpf)
2081 bpf_mtap(ifp->if_bpf, m);
2082 #endif
2083 /* pass it on. */
2084 (*ifp->if_input)(ifp, m);
2085 }
2086 }
2087
2088 void
2089 sk_txeof(struct sk_if_softc *sc_if)
2090 {
2091 struct sk_softc *sc = sc_if->sk_softc;
2092 struct sk_tx_desc *cur_tx;
2093 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2094 u_int32_t idx, sk_ctl;
2095 struct sk_txmap_entry *entry;
2096
2097 DPRINTFN(3, ("sk_txeof\n"));
2098
2099 /*
2100 * Go through our tx ring and free mbufs for those
2101 * frames that have been sent.
2102 */
2103 idx = sc_if->sk_cdata.sk_tx_cons;
2104 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2105 SK_CDTXSYNC(sc_if, idx, 1,
2106 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2107
2108 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2109 sk_ctl = le32toh(cur_tx->sk_ctl);
2110 #ifdef SK_DEBUG
2111 if (skdebug >= 3)
2112 sk_dump_txdesc(cur_tx, idx);
2113 #endif
2114 if (sk_ctl & SK_TXCTL_OWN) {
2115 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2116 break;
2117 }
2118 if (sk_ctl & SK_TXCTL_LASTFRAG)
2119 ifp->if_opackets++;
2120 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2121 entry = sc_if->sk_cdata.sk_tx_map[idx];
2122
2123 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2124 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2125
2126 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2127 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2128
2129 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2130 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2131 link);
2132 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2133 }
2134 sc_if->sk_cdata.sk_tx_cnt--;
2135 SK_INC(idx, SK_TX_RING_CNT);
2136 }
2137 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2138 ifp->if_timer = 0;
2139 else /* nudge chip to keep tx ring moving */
2140 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2141
2142 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2143 ifp->if_flags &= ~IFF_OACTIVE;
2144
2145 sc_if->sk_cdata.sk_tx_cons = idx;
2146 }
2147
2148 void
2149 sk_tick(void *xsc_if)
2150 {
2151 struct sk_if_softc *sc_if = xsc_if;
2152 struct mii_data *mii = &sc_if->sk_mii;
2153 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2154 int i;
2155
2156 DPRINTFN(3, ("sk_tick\n"));
2157
2158 if (!(ifp->if_flags & IFF_UP))
2159 return;
2160
2161 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2162 sk_intr_bcom(sc_if);
2163 return;
2164 }
2165
2166 /*
2167 * According to SysKonnect, the correct way to verify that
2168 * the link has come back up is to poll bit 0 of the GPIO
2169 * register three times. This pin has the signal from the
2170 * link sync pin connected to it; if we read the same link
2171 * state 3 times in a row, we know the link is up.
2172 */
2173 for (i = 0; i < 3; i++) {
2174 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2175 break;
2176 }
2177
2178 if (i != 3) {
2179 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2180 return;
2181 }
2182
2183 /* Turn the GP0 interrupt back on. */
2184 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2185 SK_XM_READ_2(sc_if, XM_ISR);
2186 mii_tick(mii);
2187 mii_pollstat(mii);
2188 callout_stop(&sc_if->sk_tick_ch);
2189 }
2190
2191 void
2192 sk_intr_bcom(struct sk_if_softc *sc_if)
2193 {
2194 struct mii_data *mii = &sc_if->sk_mii;
2195 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2196 int status;
2197
2198
2199 DPRINTFN(3, ("sk_intr_bcom\n"));
2200
2201 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2202
2203 /*
2204 * Read the PHY interrupt register to make sure
2205 * we clear any pending interrupts.
2206 */
2207 status = sk_xmac_miibus_readreg((struct device *)sc_if,
2208 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2209
2210 if (!(ifp->if_flags & IFF_RUNNING)) {
2211 sk_init_xmac(sc_if);
2212 return;
2213 }
2214
2215 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2216 int lstat;
2217 lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
2218 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2219
2220 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2221 (void)mii_mediachg(mii);
2222 /* Turn off the link LED. */
2223 SK_IF_WRITE_1(sc_if, 0,
2224 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2225 sc_if->sk_link = 0;
2226 } else if (status & BRGPHY_ISR_LNK_CHG) {
2227 sk_xmac_miibus_writereg((struct device *)sc_if,
2228 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2229 mii_tick(mii);
2230 sc_if->sk_link = 1;
2231 /* Turn on the link LED. */
2232 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2233 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2234 SK_LINKLED_BLINK_OFF);
2235 mii_pollstat(mii);
2236 } else {
2237 mii_tick(mii);
2238 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2239 }
2240 }
2241
2242 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2243 }
2244
2245 void
2246 sk_intr_xmac(struct sk_if_softc *sc_if)
2247 {
2248 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2249
2250 DPRINTFN(3, ("sk_intr_xmac\n"));
2251
2252 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2253 if (status & XM_ISR_GP0_SET) {
2254 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2255 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2256 }
2257
2258 if (status & XM_ISR_AUTONEG_DONE) {
2259 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2260 }
2261 }
2262
2263 if (status & XM_IMR_TX_UNDERRUN)
2264 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2265
2266 if (status & XM_IMR_RX_OVERRUN)
2267 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2268 }
2269
2270 void
2271 sk_intr_yukon(struct sk_if_softc *sc_if)
2272 {
2273 int status;
2274
2275 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2276
2277 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2278 }
2279
2280 int
2281 sk_intr(void *xsc)
2282 {
2283 struct sk_softc *sc = xsc;
2284 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2285 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2286 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2287 u_int32_t status;
2288 int claimed = 0;
2289
2290 if (sc_if0 != NULL)
2291 ifp0 = &sc_if0->sk_ethercom.ec_if;
2292 if (sc_if1 != NULL)
2293 ifp1 = &sc_if1->sk_ethercom.ec_if;
2294
2295 for (;;) {
2296 status = CSR_READ_4(sc, SK_ISSR);
2297 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2298
2299 if (!(status & sc->sk_intrmask))
2300 break;
2301
2302 claimed = 1;
2303
2304 /* Handle receive interrupts first. */
2305 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2306 sk_rxeof(sc_if0);
2307 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2308 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2309 }
2310 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2311 sk_rxeof(sc_if1);
2312 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2313 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2314 }
2315
2316 /* Then transmit interrupts. */
2317 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2318 sk_txeof(sc_if0);
2319 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2320 SK_TXBMU_CLR_IRQ_EOF);
2321 }
2322 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2323 sk_txeof(sc_if1);
2324 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2325 SK_TXBMU_CLR_IRQ_EOF);
2326 }
2327
2328 /* Then MAC interrupts. */
2329 if (sc_if0 && (status & SK_ISR_MAC1) &&
2330 (ifp0->if_flags & IFF_RUNNING)) {
2331 if (sc->sk_type == SK_GENESIS)
2332 sk_intr_xmac(sc_if0);
2333 else
2334 sk_intr_yukon(sc_if0);
2335 }
2336
2337 if (sc_if1 && (status & SK_ISR_MAC2) &&
2338 (ifp1->if_flags & IFF_RUNNING)) {
2339 if (sc->sk_type == SK_GENESIS)
2340 sk_intr_xmac(sc_if1);
2341 else
2342 sk_intr_yukon(sc_if1);
2343
2344 }
2345
2346 if (status & SK_ISR_EXTERNAL_REG) {
2347 if (sc_if0 != NULL &&
2348 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2349 sk_intr_bcom(sc_if0);
2350
2351 if (sc_if1 != NULL &&
2352 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2353 sk_intr_bcom(sc_if1);
2354 }
2355 }
2356
2357 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2358
2359 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2360 sk_start(ifp0);
2361 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2362 sk_start(ifp1);
2363
2364 #if NRND > 0
2365 if (RND_ENABLED(&sc->rnd_source))
2366 rnd_add_uint32(&sc->rnd_source, status);
2367 #endif
2368
2369 if (sc->sk_int_mod_pending)
2370 sk_update_int_mod(sc);
2371
2372 return claimed;
2373 }
2374
2375 void
2376 sk_init_xmac(struct sk_if_softc *sc_if)
2377 {
2378 struct sk_softc *sc = sc_if->sk_softc;
2379 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2380 static const struct sk_bcom_hack bhack[] = {
2381 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2382 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2383 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2384 { 0, 0 } };
2385
2386 DPRINTFN(1, ("sk_init_xmac\n"));
2387
2388 /* Unreset the XMAC. */
2389 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2390 DELAY(1000);
2391
2392 /* Reset the XMAC's internal state. */
2393 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2394
2395 /* Save the XMAC II revision */
2396 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2397
2398 /*
2399 * Perform additional initialization for external PHYs,
2400 * namely for the 1000baseTX cards that use the XMAC's
2401 * GMII mode.
2402 */
2403 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2404 int i = 0;
2405 u_int32_t val;
2406
2407 /* Take PHY out of reset. */
2408 val = sk_win_read_4(sc, SK_GPIO);
2409 if (sc_if->sk_port == SK_PORT_A)
2410 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2411 else
2412 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2413 sk_win_write_4(sc, SK_GPIO, val);
2414
2415 /* Enable GMII mode on the XMAC. */
2416 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2417
2418 sk_xmac_miibus_writereg((struct device *)sc_if,
2419 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2420 DELAY(10000);
2421 sk_xmac_miibus_writereg((struct device *)sc_if,
2422 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2423
2424 /*
2425 * Early versions of the BCM5400 apparently have
2426 * a bug that requires them to have their reserved
2427 * registers initialized to some magic values. I don't
2428 * know what the numbers do, I'm just the messenger.
2429 */
2430 if (sk_xmac_miibus_readreg((struct device *)sc_if,
2431 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2432 while (bhack[i].reg) {
2433 sk_xmac_miibus_writereg((struct device *)sc_if,
2434 SK_PHYADDR_BCOM, bhack[i].reg,
2435 bhack[i].val);
2436 i++;
2437 }
2438 }
2439 }
2440
2441 /* Set station address */
2442 SK_XM_WRITE_2(sc_if, XM_PAR0,
2443 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2444 SK_XM_WRITE_2(sc_if, XM_PAR1,
2445 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2446 SK_XM_WRITE_2(sc_if, XM_PAR2,
2447 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2448 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2449
2450 if (ifp->if_flags & IFF_PROMISC)
2451 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2452 else
2453 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2454
2455 if (ifp->if_flags & IFF_BROADCAST)
2456 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2457 else
2458 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2459
2460 /* We don't need the FCS appended to the packet. */
2461 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2462
2463 /* We want short frames padded to 60 bytes. */
2464 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2465
2466 /*
2467 * Enable the reception of all error frames. This is is
2468 * a necessary evil due to the design of the XMAC. The
2469 * XMAC's receive FIFO is only 8K in size, however jumbo
2470 * frames can be up to 9000 bytes in length. When bad
2471 * frame filtering is enabled, the XMAC's RX FIFO operates
2472 * in 'store and forward' mode. For this to work, the
2473 * entire frame has to fit into the FIFO, but that means
2474 * that jumbo frames larger than 8192 bytes will be
2475 * truncated. Disabling all bad frame filtering causes
2476 * the RX FIFO to operate in streaming mode, in which
2477 * case the XMAC will start transfering frames out of the
2478 * RX FIFO as soon as the FIFO threshold is reached.
2479 */
2480 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2481 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2482 XM_MODE_RX_INRANGELEN);
2483
2484 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2485 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2486 else
2487 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2488
2489 /*
2490 * Bump up the transmit threshold. This helps hold off transmit
2491 * underruns when we're blasting traffic from both ports at once.
2492 */
2493 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2494
2495 /* Set multicast filter */
2496 sk_setmulti(sc_if);
2497
2498 /* Clear and enable interrupts */
2499 SK_XM_READ_2(sc_if, XM_ISR);
2500 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2501 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2502 else
2503 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2504
2505 /* Configure MAC arbiter */
2506 switch (sc_if->sk_xmac_rev) {
2507 case XM_XMAC_REV_B2:
2508 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2509 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2510 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2511 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2512 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2513 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2514 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2515 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2516 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2517 break;
2518 case XM_XMAC_REV_C1:
2519 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2520 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2521 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2522 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2523 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2524 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2525 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2526 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2527 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2528 break;
2529 default:
2530 break;
2531 }
2532 sk_win_write_2(sc, SK_MACARB_CTL,
2533 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2534
2535 sc_if->sk_link = 1;
2536 }
2537
2538 void sk_init_yukon(struct sk_if_softc *sc_if)
2539 {
2540 u_int32_t /*mac, */phy;
2541 u_int16_t reg;
2542 struct sk_softc *sc;
2543 int i;
2544
2545 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2546 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2547
2548 sc = sc_if->sk_softc;
2549 if (sc->sk_type == SK_YUKON_LITE &&
2550 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2551 /* Take PHY out of reset. */
2552 sk_win_write_4(sc, SK_GPIO,
2553 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2554 }
2555
2556
2557 /* GMAC and GPHY Reset */
2558 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2559
2560 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2561
2562 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2563 DELAY(1000);
2564 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2565 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2566 DELAY(1000);
2567
2568
2569 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2570
2571 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2572 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2573
2574 switch (sc_if->sk_softc->sk_pmd) {
2575 case IFM_1000_SX:
2576 case IFM_1000_LX:
2577 phy |= SK_GPHY_FIBER;
2578 break;
2579
2580 case IFM_1000_CX:
2581 case IFM_1000_T:
2582 phy |= SK_GPHY_COPPER;
2583 break;
2584 }
2585
2586 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2587
2588 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2589 DELAY(1000);
2590 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2591 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2592 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2593
2594 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2595 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2596
2597 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2598
2599 /* unused read of the interrupt source register */
2600 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2601 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2602
2603 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2604 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2605 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2606
2607 /* MIB Counter Clear Mode set */
2608 reg |= YU_PAR_MIB_CLR;
2609 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2610 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2611 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2612
2613 /* MIB Counter Clear Mode clear */
2614 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2615 reg &= ~YU_PAR_MIB_CLR;
2616 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2617
2618 /* receive control reg */
2619 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2620 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2621 YU_RCR_CRCR);
2622
2623 /* transmit parameter register */
2624 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2625 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2626 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2627
2628 /* serial mode register */
2629 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2630 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2631 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2632 YU_SMR_IPG_DATA(0x1e));
2633
2634 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2635 /* Setup Yukon's address */
2636 for (i = 0; i < 3; i++) {
2637 /* Write Source Address 1 (unicast filter) */
2638 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2639 sc_if->sk_enaddr[i * 2] |
2640 sc_if->sk_enaddr[i * 2 + 1] << 8);
2641 }
2642
2643 for (i = 0; i < 3; i++) {
2644 reg = sk_win_read_2(sc_if->sk_softc,
2645 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2646 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2647 }
2648
2649 /* Set multicast filter */
2650 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2651 sk_setmulti(sc_if);
2652
2653 /* enable interrupt mask for counter overflows */
2654 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2655 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2656 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2657 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2658
2659 /* Configure RX MAC FIFO */
2660 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2661 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2662
2663 /* Configure TX MAC FIFO */
2664 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2665 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2666
2667 DPRINTFN(6, ("sk_init_yukon: end\n"));
2668 }
2669
2670 /*
2671 * Note that to properly initialize any part of the GEnesis chip,
2672 * you first have to take it out of reset mode.
2673 */
2674 int
2675 sk_init(struct ifnet *ifp)
2676 {
2677 struct sk_if_softc *sc_if = ifp->if_softc;
2678 struct sk_softc *sc = sc_if->sk_softc;
2679 struct mii_data *mii = &sc_if->sk_mii;
2680 int rc = 0, s;
2681 u_int32_t imr, imtimer_ticks;
2682
2683 DPRINTFN(1, ("sk_init\n"));
2684
2685 s = splnet();
2686
2687 if (ifp->if_flags & IFF_RUNNING) {
2688 splx(s);
2689 return 0;
2690 }
2691
2692 /* Cancel pending I/O and free all RX/TX buffers. */
2693 sk_stop(ifp,0);
2694
2695 if (sc->sk_type == SK_GENESIS) {
2696 /* Configure LINK_SYNC LED */
2697 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2698 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2699 SK_LINKLED_LINKSYNC_ON);
2700
2701 /* Configure RX LED */
2702 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2703 SK_RXLEDCTL_COUNTER_START);
2704
2705 /* Configure TX LED */
2706 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2707 SK_TXLEDCTL_COUNTER_START);
2708 }
2709
2710 /* Configure I2C registers */
2711
2712 /* Configure XMAC(s) */
2713 switch (sc->sk_type) {
2714 case SK_GENESIS:
2715 sk_init_xmac(sc_if);
2716 break;
2717 case SK_YUKON:
2718 case SK_YUKON_LITE:
2719 case SK_YUKON_LP:
2720 sk_init_yukon(sc_if);
2721 break;
2722 }
2723 if ((rc = mii_mediachg(mii)) == ENXIO)
2724 rc = 0;
2725 else if (rc != 0)
2726 goto out;
2727
2728 if (sc->sk_type == SK_GENESIS) {
2729 /* Configure MAC FIFOs */
2730 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2731 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2732 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2733
2734 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2735 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2736 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2737 }
2738
2739 /* Configure transmit arbiter(s) */
2740 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2741 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2742
2743 /* Configure RAMbuffers */
2744 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2745 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2746 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2747 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2748 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2749 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2750
2751 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2752 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2753 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2754 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2755 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2756 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2757 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2758
2759 /* Configure BMUs */
2760 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2761 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2762 SK_RX_RING_ADDR(sc_if, 0));
2763 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2764
2765 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2766 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2767 SK_TX_RING_ADDR(sc_if, 0));
2768 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2769
2770 /* Init descriptors */
2771 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2772 aprint_error_dev(&sc_if->sk_dev, "initialization failed: no "
2773 "memory for rx buffers\n");
2774 sk_stop(ifp,0);
2775 splx(s);
2776 return ENOBUFS;
2777 }
2778
2779 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2780 aprint_error_dev(&sc_if->sk_dev, "initialization failed: no "
2781 "memory for tx buffers\n");
2782 sk_stop(ifp,0);
2783 splx(s);
2784 return ENOBUFS;
2785 }
2786
2787 /* Set interrupt moderation if changed via sysctl. */
2788 switch (sc->sk_type) {
2789 case SK_GENESIS:
2790 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2791 break;
2792 case SK_YUKON_EC:
2793 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2794 break;
2795 default:
2796 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2797 }
2798 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2799 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2800 sk_win_write_4(sc, SK_IMTIMERINIT,
2801 SK_IM_USECS(sc->sk_int_mod));
2802 aprint_verbose_dev(&sc->sk_dev, "interrupt moderation is %d us\n",
2803 sc->sk_int_mod);
2804 }
2805
2806 /* Configure interrupt handling */
2807 CSR_READ_4(sc, SK_ISSR);
2808 if (sc_if->sk_port == SK_PORT_A)
2809 sc->sk_intrmask |= SK_INTRS1;
2810 else
2811 sc->sk_intrmask |= SK_INTRS2;
2812
2813 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2814
2815 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2816
2817 /* Start BMUs. */
2818 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2819
2820 if (sc->sk_type == SK_GENESIS) {
2821 /* Enable XMACs TX and RX state machines */
2822 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2823 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2824 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2825 }
2826
2827 if (SK_YUKON_FAMILY(sc->sk_type)) {
2828 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2829 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2830 #if 0
2831 /* XXX disable 100Mbps and full duplex mode? */
2832 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2833 #endif
2834 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2835 }
2836
2837
2838 ifp->if_flags |= IFF_RUNNING;
2839 ifp->if_flags &= ~IFF_OACTIVE;
2840
2841 out:
2842 splx(s);
2843 return rc;
2844 }
2845
2846 void
2847 sk_stop(struct ifnet *ifp, int disable)
2848 {
2849 struct sk_if_softc *sc_if = ifp->if_softc;
2850 struct sk_softc *sc = sc_if->sk_softc;
2851 int i;
2852
2853 DPRINTFN(1, ("sk_stop\n"));
2854
2855 callout_stop(&sc_if->sk_tick_ch);
2856
2857 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2858 u_int32_t val;
2859
2860 /* Put PHY back into reset. */
2861 val = sk_win_read_4(sc, SK_GPIO);
2862 if (sc_if->sk_port == SK_PORT_A) {
2863 val |= SK_GPIO_DIR0;
2864 val &= ~SK_GPIO_DAT0;
2865 } else {
2866 val |= SK_GPIO_DIR2;
2867 val &= ~SK_GPIO_DAT2;
2868 }
2869 sk_win_write_4(sc, SK_GPIO, val);
2870 }
2871
2872 /* Turn off various components of this interface. */
2873 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2874 switch (sc->sk_type) {
2875 case SK_GENESIS:
2876 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2877 SK_TXMACCTL_XMAC_RESET);
2878 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2879 break;
2880 case SK_YUKON:
2881 case SK_YUKON_LITE:
2882 case SK_YUKON_LP:
2883 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2884 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2885 break;
2886 }
2887 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2888 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2889 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2890 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2891 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2892 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2893 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2894 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2895 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2896
2897 /* Disable interrupts */
2898 if (sc_if->sk_port == SK_PORT_A)
2899 sc->sk_intrmask &= ~SK_INTRS1;
2900 else
2901 sc->sk_intrmask &= ~SK_INTRS2;
2902 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2903
2904 SK_XM_READ_2(sc_if, XM_ISR);
2905 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2906
2907 /* Free RX and TX mbufs still in the queues. */
2908 for (i = 0; i < SK_RX_RING_CNT; i++) {
2909 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2910 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2911 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2912 }
2913 }
2914
2915 for (i = 0; i < SK_TX_RING_CNT; i++) {
2916 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2917 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2918 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2919 }
2920 }
2921
2922 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2923 }
2924
2925 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2926
2927 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2928
2929 #ifdef SK_DEBUG
2930 void
2931 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2932 {
2933 #define DESC_PRINT(X) \
2934 if (X) \
2935 printf("txdesc[%d]." #X "=%#x\n", \
2936 idx, X);
2937
2938 DESC_PRINT(le32toh(desc->sk_ctl));
2939 DESC_PRINT(le32toh(desc->sk_next));
2940 DESC_PRINT(le32toh(desc->sk_data_lo));
2941 DESC_PRINT(le32toh(desc->sk_data_hi));
2942 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2943 DESC_PRINT(le16toh(desc->sk_rsvd0));
2944 DESC_PRINT(le16toh(desc->sk_csum_startval));
2945 DESC_PRINT(le16toh(desc->sk_csum_startpos));
2946 DESC_PRINT(le16toh(desc->sk_csum_writepos));
2947 DESC_PRINT(le16toh(desc->sk_rsvd1));
2948 #undef PRINT
2949 }
2950
2951 void
2952 sk_dump_bytes(const char *data, int len)
2953 {
2954 int c, i, j;
2955
2956 for (i = 0; i < len; i += 16) {
2957 printf("%08x ", i);
2958 c = len - i;
2959 if (c > 16) c = 16;
2960
2961 for (j = 0; j < c; j++) {
2962 printf("%02x ", data[i + j] & 0xff);
2963 if ((j & 0xf) == 7 && j > 0)
2964 printf(" ");
2965 }
2966
2967 for (; j < 16; j++)
2968 printf(" ");
2969 printf(" ");
2970
2971 for (j = 0; j < c; j++) {
2972 int ch = data[i + j] & 0xff;
2973 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2974 }
2975
2976 printf("\n");
2977
2978 if (c < 16)
2979 break;
2980 }
2981 }
2982
2983 void
2984 sk_dump_mbuf(struct mbuf *m)
2985 {
2986 int count = m->m_pkthdr.len;
2987
2988 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2989
2990 while (count > 0 && m) {
2991 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2992 m, m->m_data, m->m_len);
2993 sk_dump_bytes(mtod(m, char *), m->m_len);
2994
2995 count -= m->m_len;
2996 m = m->m_next;
2997 }
2998 }
2999 #endif
3000
3001 static int
3002 sk_sysctl_handler(SYSCTLFN_ARGS)
3003 {
3004 int error, t;
3005 struct sysctlnode node;
3006 struct sk_softc *sc;
3007
3008 node = *rnode;
3009 sc = node.sysctl_data;
3010 t = sc->sk_int_mod;
3011 node.sysctl_data = &t;
3012 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3013 if (error || newp == NULL)
3014 return error;
3015
3016 if (t < SK_IM_MIN || t > SK_IM_MAX)
3017 return EINVAL;
3018
3019 /* update the softc with sysctl-changed value, and mark
3020 for hardware update */
3021 sc->sk_int_mod = t;
3022 sc->sk_int_mod_pending = 1;
3023 return 0;
3024 }
3025
3026 /*
3027 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3028 * set up in skc_attach()
3029 */
3030 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3031 {
3032 int rc;
3033 const struct sysctlnode *node;
3034
3035 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3036 0, CTLTYPE_NODE, "hw", NULL,
3037 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3038 goto err;
3039 }
3040
3041 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3042 0, CTLTYPE_NODE, "sk",
3043 SYSCTL_DESCR("sk interface controls"),
3044 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3045 goto err;
3046 }
3047
3048 sk_root_num = node->sysctl_num;
3049 return;
3050
3051 err:
3052 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3053 }
3054