if_sk.c revision 1.51 1 /* $NetBSD: if_sk.c,v 1.51 2008/09/08 21:20:03 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
30
31 /*
32 * Copyright (c) 1997, 1998, 1999, 2000
33 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by Bill Paul.
46 * 4. Neither the name of the author nor the names of any co-contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60 * THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63 */
64
65 /*
66 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
67 *
68 * Permission to use, copy, modify, and distribute this software for any
69 * purpose with or without fee is hereby granted, provided that the above
70 * copyright notice and this permission notice appear in all copies.
71 *
72 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79 */
80
81 /*
82 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83 * the SK-984x series adapters, both single port and dual port.
84 * References:
85 * The XaQti XMAC II datasheet,
86 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87 * The SysKonnect GEnesis manual, http://www.syskonnect.com
88 *
89 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91 * convenience to others until Vitesse corrects this problem:
92 *
93 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 *
95 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
96 * Department of Electrical Engineering
97 * Columbia University, New York City
98 */
99
100 /*
101 * The SysKonnect gigabit ethernet adapters consist of two main
102 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104 * components and a PHY while the GEnesis controller provides a PCI
105 * interface with DMA support. Each card may have between 512K and
106 * 2MB of SRAM on board depending on the configuration.
107 *
108 * The SysKonnect GEnesis controller can have either one or two XMAC
109 * chips connected to it, allowing single or dual port NIC configurations.
110 * SysKonnect has the distinction of being the only vendor on the market
111 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113 * XMAC registers. This driver takes advantage of these features to allow
114 * both XMACs to operate as independent interfaces.
115 */
116
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.51 2008/09/08 21:20:03 christos Exp $");
119
120 #include "bpfilter.h"
121 #include "rnd.h"
122
123 #include <sys/param.h>
124 #include <sys/systm.h>
125 #include <sys/sockio.h>
126 #include <sys/mbuf.h>
127 #include <sys/malloc.h>
128 #include <sys/mutex.h>
129 #include <sys/kernel.h>
130 #include <sys/socket.h>
131 #include <sys/device.h>
132 #include <sys/queue.h>
133 #include <sys/callout.h>
134 #include <sys/sysctl.h>
135 #include <sys/endian.h>
136
137 #include <net/if.h>
138 #include <net/if_dl.h>
139 #include <net/if_types.h>
140
141 #include <net/if_media.h>
142
143 #if NBPFILTER > 0
144 #include <net/bpf.h>
145 #endif
146 #if NRND > 0
147 #include <sys/rnd.h>
148 #endif
149
150 #include <dev/mii/mii.h>
151 #include <dev/mii/miivar.h>
152 #include <dev/mii/brgphyreg.h>
153
154 #include <dev/pci/pcireg.h>
155 #include <dev/pci/pcivar.h>
156 #include <dev/pci/pcidevs.h>
157
158 /* #define SK_USEIOSPACE */
159
160 #include <dev/pci/if_skreg.h>
161 #include <dev/pci/if_skvar.h>
162
163 int skc_probe(device_t, cfdata_t, void *);
164 void skc_attach(device_t, device_t, void *aux);
165 int sk_probe(device_t, cfdata_t, void *);
166 void sk_attach(device_t, device_t, void *aux);
167 int skcprint(void *, const char *);
168 int sk_intr(void *);
169 void sk_intr_bcom(struct sk_if_softc *);
170 void sk_intr_xmac(struct sk_if_softc *);
171 void sk_intr_yukon(struct sk_if_softc *);
172 void sk_rxeof(struct sk_if_softc *);
173 void sk_txeof(struct sk_if_softc *);
174 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
175 void sk_start(struct ifnet *);
176 int sk_ioctl(struct ifnet *, u_long, void *);
177 int sk_init(struct ifnet *);
178 void sk_init_xmac(struct sk_if_softc *);
179 void sk_init_yukon(struct sk_if_softc *);
180 void sk_stop(struct ifnet *, int);
181 void sk_watchdog(struct ifnet *);
182 void sk_shutdown(void *);
183 int sk_ifmedia_upd(struct ifnet *);
184 void sk_reset(struct sk_softc *);
185 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
186 int sk_alloc_jumbo_mem(struct sk_if_softc *);
187 void sk_free_jumbo_mem(struct sk_if_softc *);
188 void *sk_jalloc(struct sk_if_softc *);
189 void sk_jfree(struct mbuf *, void *, size_t, void *);
190 int sk_init_rx_ring(struct sk_if_softc *);
191 int sk_init_tx_ring(struct sk_if_softc *);
192 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
193 void sk_vpd_read_res(struct sk_softc *,
194 struct vpd_res *, int);
195 void sk_vpd_read(struct sk_softc *);
196
197 void sk_update_int_mod(struct sk_softc *);
198
199 int sk_xmac_miibus_readreg(device_t, int, int);
200 void sk_xmac_miibus_writereg(device_t, int, int, int);
201 void sk_xmac_miibus_statchg(device_t);
202
203 int sk_marv_miibus_readreg(device_t, int, int);
204 void sk_marv_miibus_writereg(device_t, int, int, int);
205 void sk_marv_miibus_statchg(device_t);
206
207 u_int32_t sk_xmac_hash(void *);
208 u_int32_t sk_yukon_hash(void *);
209 void sk_setfilt(struct sk_if_softc *, void *, int);
210 void sk_setmulti(struct sk_if_softc *);
211 void sk_tick(void *);
212
213 /* #define SK_DEBUG 2 */
214 #ifdef SK_DEBUG
215 #define DPRINTF(x) if (skdebug) printf x
216 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
217 int skdebug = SK_DEBUG;
218
219 void sk_dump_txdesc(struct sk_tx_desc *, int);
220 void sk_dump_mbuf(struct mbuf *);
221 void sk_dump_bytes(const char *, int);
222 #else
223 #define DPRINTF(x)
224 #define DPRINTFN(n,x)
225 #endif
226
227 static int sk_sysctl_handler(SYSCTLFN_PROTO);
228 static int sk_root_num;
229
230 /* supported device vendors */
231 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
232 static const struct sk_product {
233 pci_vendor_id_t sk_vendor;
234 pci_product_id_t sk_product;
235 } sk_products[] = {
236 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
237 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
238 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
239 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
240 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
241 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
242 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
243 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
244 { 0, 0, }
245 };
246
247 #define SK_LINKSYS_EG1032_SUBID 0x00151737
248
249 static inline u_int32_t
250 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
251 {
252 #ifdef SK_USEIOSPACE
253 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
254 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
255 #else
256 return CSR_READ_4(sc, reg);
257 #endif
258 }
259
260 static inline u_int16_t
261 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
262 {
263 #ifdef SK_USEIOSPACE
264 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
265 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
266 #else
267 return CSR_READ_2(sc, reg);
268 #endif
269 }
270
271 static inline u_int8_t
272 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
273 {
274 #ifdef SK_USEIOSPACE
275 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
276 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
277 #else
278 return CSR_READ_1(sc, reg);
279 #endif
280 }
281
282 static inline void
283 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
284 {
285 #ifdef SK_USEIOSPACE
286 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
287 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
288 #else
289 CSR_WRITE_4(sc, reg, x);
290 #endif
291 }
292
293 static inline void
294 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
295 {
296 #ifdef SK_USEIOSPACE
297 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
298 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
299 #else
300 CSR_WRITE_2(sc, reg, x);
301 #endif
302 }
303
304 static inline void
305 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
306 {
307 #ifdef SK_USEIOSPACE
308 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
309 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
310 #else
311 CSR_WRITE_1(sc, reg, x);
312 #endif
313 }
314
315 /*
316 * The VPD EEPROM contains Vital Product Data, as suggested in
317 * the PCI 2.1 specification. The VPD data is separared into areas
318 * denoted by resource IDs. The SysKonnect VPD contains an ID string
319 * resource (the name of the adapter), a read-only area resource
320 * containing various key/data fields and a read/write area which
321 * can be used to store asset management information or log messages.
322 * We read the ID string and read-only into buffers attached to
323 * the controller softc structure for later use. At the moment,
324 * we only use the ID string during sk_attach().
325 */
326 u_int8_t
327 sk_vpd_readbyte(struct sk_softc *sc, int addr)
328 {
329 int i;
330
331 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
332 for (i = 0; i < SK_TIMEOUT; i++) {
333 DELAY(1);
334 if (sk_win_read_2(sc,
335 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
336 break;
337 }
338
339 if (i == SK_TIMEOUT)
340 return 0;
341
342 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
343 }
344
345 void
346 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
347 {
348 int i;
349 u_int8_t *ptr;
350
351 ptr = (u_int8_t *)res;
352 for (i = 0; i < sizeof(struct vpd_res); i++)
353 ptr[i] = sk_vpd_readbyte(sc, i + addr);
354 }
355
356 void
357 sk_vpd_read(struct sk_softc *sc)
358 {
359 int pos = 0, i;
360 struct vpd_res res;
361
362 if (sc->sk_vpd_prodname != NULL)
363 free(sc->sk_vpd_prodname, M_DEVBUF);
364 if (sc->sk_vpd_readonly != NULL)
365 free(sc->sk_vpd_readonly, M_DEVBUF);
366 sc->sk_vpd_prodname = NULL;
367 sc->sk_vpd_readonly = NULL;
368
369 sk_vpd_read_res(sc, &res, pos);
370
371 if (res.vr_id != VPD_RES_ID) {
372 aprint_error_dev(sc->sk_dev,
373 "bad VPD resource id: expected %x got %x\n",
374 VPD_RES_ID, res.vr_id);
375 return;
376 }
377
378 pos += sizeof(res);
379 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
380 if (sc->sk_vpd_prodname == NULL)
381 panic("sk_vpd_read");
382 for (i = 0; i < res.vr_len; i++)
383 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
384 sc->sk_vpd_prodname[i] = '\0';
385 pos += i;
386
387 sk_vpd_read_res(sc, &res, pos);
388
389 if (res.vr_id != VPD_RES_READ) {
390 aprint_error_dev(sc->sk_dev,
391 "bad VPD resource id: expected %x got %x\n",
392 VPD_RES_READ, res.vr_id);
393 return;
394 }
395
396 pos += sizeof(res);
397 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
398 if (sc->sk_vpd_readonly == NULL)
399 panic("sk_vpd_read");
400 for (i = 0; i < res.vr_len ; i++)
401 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
402 }
403
404 int
405 sk_xmac_miibus_readreg(device_t dev, int phy, int reg)
406 {
407 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
408 int i;
409
410 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
411
412 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
413 return 0;
414
415 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
416 SK_XM_READ_2(sc_if, XM_PHY_DATA);
417 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
418 for (i = 0; i < SK_TIMEOUT; i++) {
419 DELAY(1);
420 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
421 XM_MMUCMD_PHYDATARDY)
422 break;
423 }
424
425 if (i == SK_TIMEOUT) {
426 aprint_error_dev(sc_if->sk_dev,
427 "phy failed to come ready\n");
428 return 0;
429 }
430 }
431 DELAY(1);
432 return SK_XM_READ_2(sc_if, XM_PHY_DATA);
433 }
434
435 void
436 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, int val)
437 {
438 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
439 int i;
440
441 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
442
443 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
444 for (i = 0; i < SK_TIMEOUT; i++) {
445 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
446 break;
447 }
448
449 if (i == SK_TIMEOUT) {
450 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
451 return;
452 }
453
454 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
455 for (i = 0; i < SK_TIMEOUT; i++) {
456 DELAY(1);
457 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
458 break;
459 }
460
461 if (i == SK_TIMEOUT)
462 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
463 }
464
465 void
466 sk_xmac_miibus_statchg(device_t dev)
467 {
468 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
469 struct mii_data *mii = &sc_if->sk_mii;
470
471 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
472
473 /*
474 * If this is a GMII PHY, manually set the XMAC's
475 * duplex mode accordingly.
476 */
477 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
478 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
479 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
480 else
481 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
482 }
483 }
484
485 int
486 sk_marv_miibus_readreg(device_t dev, int phy, int reg)
487 {
488 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
489 u_int16_t val;
490 int i;
491
492 if (phy != 0 ||
493 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
494 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
495 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
496 phy, reg));
497 return 0;
498 }
499
500 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
501 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
502
503 for (i = 0; i < SK_TIMEOUT; i++) {
504 DELAY(1);
505 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
506 if (val & YU_SMICR_READ_VALID)
507 break;
508 }
509
510 if (i == SK_TIMEOUT) {
511 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
512 return 0;
513 }
514
515 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
516 SK_TIMEOUT));
517
518 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
519
520 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
521 phy, reg, val));
522
523 return val;
524 }
525
526 void
527 sk_marv_miibus_writereg(device_t dev, int phy, int reg, int val)
528 {
529 struct sk_if_softc *sc_if = device_private(dev);
530 int i;
531
532 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
533 phy, reg, val));
534
535 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
536 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
537 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
538
539 for (i = 0; i < SK_TIMEOUT; i++) {
540 DELAY(1);
541 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
542 break;
543 }
544
545 if (i == SK_TIMEOUT)
546 printf("%s: phy write timed out\n",
547 device_xname(sc_if->sk_dev));
548 }
549
550 void
551 sk_marv_miibus_statchg(device_t dev)
552 {
553 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
554 SK_YU_READ_2((device_private(dev)), YUKON_GPCR)));
555 }
556
557 #define SK_HASH_BITS 6
558
559 u_int32_t
560 sk_xmac_hash(void *addr)
561 {
562 u_int32_t crc;
563
564 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
565 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
566 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
567 return crc;
568 }
569
570 u_int32_t
571 sk_yukon_hash(void *addr)
572 {
573 u_int32_t crc;
574
575 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
576 crc &= ((1 << SK_HASH_BITS) - 1);
577 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
578 return crc;
579 }
580
581 void
582 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
583 {
584 char *addr = addrv;
585 int base = XM_RXFILT_ENTRY(slot);
586
587 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
588 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
589 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
590 }
591
592 void
593 sk_setmulti(struct sk_if_softc *sc_if)
594 {
595 struct sk_softc *sc = sc_if->sk_softc;
596 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
597 u_int32_t hashes[2] = { 0, 0 };
598 int h = 0, i;
599 struct ethercom *ec = &sc_if->sk_ethercom;
600 struct ether_multi *enm;
601 struct ether_multistep step;
602 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
603
604 /* First, zot all the existing filters. */
605 switch (sc->sk_type) {
606 case SK_GENESIS:
607 for (i = 1; i < XM_RXFILT_MAX; i++)
608 sk_setfilt(sc_if, (void *)&dummy, i);
609
610 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
611 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
612 break;
613 case SK_YUKON:
614 case SK_YUKON_LITE:
615 case SK_YUKON_LP:
616 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
617 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
618 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
619 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
620 break;
621 }
622
623 /* Now program new ones. */
624 allmulti:
625 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
626 hashes[0] = 0xFFFFFFFF;
627 hashes[1] = 0xFFFFFFFF;
628 } else {
629 i = 1;
630 /* First find the tail of the list. */
631 ETHER_FIRST_MULTI(step, ec, enm);
632 while (enm != NULL) {
633 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
634 ETHER_ADDR_LEN)) {
635 ifp->if_flags |= IFF_ALLMULTI;
636 goto allmulti;
637 }
638 DPRINTFN(2,("multicast address %s\n",
639 ether_sprintf(enm->enm_addrlo)));
640 /*
641 * Program the first XM_RXFILT_MAX multicast groups
642 * into the perfect filter. For all others,
643 * use the hash table.
644 */
645 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
646 sk_setfilt(sc_if, enm->enm_addrlo, i);
647 i++;
648 }
649 else {
650 switch (sc->sk_type) {
651 case SK_GENESIS:
652 h = sk_xmac_hash(enm->enm_addrlo);
653 break;
654 case SK_YUKON:
655 case SK_YUKON_LITE:
656 case SK_YUKON_LP:
657 h = sk_yukon_hash(enm->enm_addrlo);
658 break;
659 }
660 if (h < 32)
661 hashes[0] |= (1 << h);
662 else
663 hashes[1] |= (1 << (h - 32));
664 }
665
666 ETHER_NEXT_MULTI(step, enm);
667 }
668 }
669
670 switch (sc->sk_type) {
671 case SK_GENESIS:
672 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
673 XM_MODE_RX_USE_PERFECT);
674 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
675 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
676 break;
677 case SK_YUKON:
678 case SK_YUKON_LITE:
679 case SK_YUKON_LP:
680 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
681 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
682 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
683 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
684 break;
685 }
686 }
687
688 int
689 sk_init_rx_ring(struct sk_if_softc *sc_if)
690 {
691 struct sk_chain_data *cd = &sc_if->sk_cdata;
692 struct sk_ring_data *rd = sc_if->sk_rdata;
693 int i;
694
695 bzero((char *)rd->sk_rx_ring,
696 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
697
698 for (i = 0; i < SK_RX_RING_CNT; i++) {
699 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
700 if (i == (SK_RX_RING_CNT - 1)) {
701 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
702 rd->sk_rx_ring[i].sk_next =
703 htole32(SK_RX_RING_ADDR(sc_if, 0));
704 } else {
705 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
706 rd->sk_rx_ring[i].sk_next =
707 htole32(SK_RX_RING_ADDR(sc_if,i+1));
708 }
709 }
710
711 for (i = 0; i < SK_RX_RING_CNT; i++) {
712 if (sk_newbuf(sc_if, i, NULL,
713 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
714 aprint_error_dev(sc_if->sk_dev,
715 "failed alloc of %dth mbuf\n", i);
716 return ENOBUFS;
717 }
718 }
719 sc_if->sk_cdata.sk_rx_prod = 0;
720 sc_if->sk_cdata.sk_rx_cons = 0;
721
722 return 0;
723 }
724
725 int
726 sk_init_tx_ring(struct sk_if_softc *sc_if)
727 {
728 struct sk_chain_data *cd = &sc_if->sk_cdata;
729 struct sk_ring_data *rd = sc_if->sk_rdata;
730 int i;
731
732 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
733 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
734
735 for (i = 0; i < SK_TX_RING_CNT; i++) {
736 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
737 if (i == (SK_TX_RING_CNT - 1)) {
738 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
739 rd->sk_tx_ring[i].sk_next =
740 htole32(SK_TX_RING_ADDR(sc_if, 0));
741 } else {
742 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
743 rd->sk_tx_ring[i].sk_next =
744 htole32(SK_TX_RING_ADDR(sc_if,i+1));
745 }
746 }
747
748 sc_if->sk_cdata.sk_tx_prod = 0;
749 sc_if->sk_cdata.sk_tx_cons = 0;
750 sc_if->sk_cdata.sk_tx_cnt = 0;
751
752 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
753 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
754
755 return 0;
756 }
757
758 int
759 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
760 bus_dmamap_t dmamap)
761 {
762 struct mbuf *m_new = NULL;
763 struct sk_chain *c;
764 struct sk_rx_desc *r;
765
766 if (m == NULL) {
767 void *buf = NULL;
768
769 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
770 if (m_new == NULL) {
771 aprint_error_dev(sc_if->sk_dev,
772 "no memory for rx list -- packet dropped!\n");
773 return ENOBUFS;
774 }
775
776 /* Allocate the jumbo buffer */
777 buf = sk_jalloc(sc_if);
778 if (buf == NULL) {
779 m_freem(m_new);
780 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
781 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
782 return ENOBUFS;
783 }
784
785 /* Attach the buffer to the mbuf */
786 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
787 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
788
789 } else {
790 /*
791 * We're re-using a previously allocated mbuf;
792 * be sure to re-init pointers and lengths to
793 * default values.
794 */
795 m_new = m;
796 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
797 m_new->m_data = m_new->m_ext.ext_buf;
798 }
799 m_adj(m_new, ETHER_ALIGN);
800
801 c = &sc_if->sk_cdata.sk_rx_chain[i];
802 r = c->sk_desc;
803 c->sk_mbuf = m_new;
804 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
805 (((vaddr_t)m_new->m_data
806 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
807 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
808
809 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
810
811 return 0;
812 }
813
814 /*
815 * Memory management for jumbo frames.
816 */
817
818 int
819 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
820 {
821 struct sk_softc *sc = sc_if->sk_softc;
822 char *ptr, *kva;
823 bus_dma_segment_t seg;
824 int i, rseg, state, error;
825 struct sk_jpool_entry *entry;
826
827 state = error = 0;
828
829 /* Grab a big chunk o' storage. */
830 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
831 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
832 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
833 return ENOBUFS;
834 }
835
836 state = 1;
837 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
838 BUS_DMA_NOWAIT)) {
839 aprint_error_dev(sc->sk_dev,
840 "can't map dma buffers (%d bytes)\n",
841 SK_JMEM);
842 error = ENOBUFS;
843 goto out;
844 }
845
846 state = 2;
847 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
848 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
849 aprint_error_dev(sc->sk_dev, "can't create dma map\n");
850 error = ENOBUFS;
851 goto out;
852 }
853
854 state = 3;
855 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
856 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
857 aprint_error_dev(sc->sk_dev, "can't load dma map\n");
858 error = ENOBUFS;
859 goto out;
860 }
861
862 state = 4;
863 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
864 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
865
866 LIST_INIT(&sc_if->sk_jfree_listhead);
867 LIST_INIT(&sc_if->sk_jinuse_listhead);
868 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
869
870 /*
871 * Now divide it up into 9K pieces and save the addresses
872 * in an array.
873 */
874 ptr = sc_if->sk_cdata.sk_jumbo_buf;
875 for (i = 0; i < SK_JSLOTS; i++) {
876 sc_if->sk_cdata.sk_jslots[i] = ptr;
877 ptr += SK_JLEN;
878 entry = malloc(sizeof(struct sk_jpool_entry),
879 M_DEVBUF, M_NOWAIT);
880 if (entry == NULL) {
881 aprint_error_dev(sc->sk_dev,
882 "no memory for jumbo buffer queue!\n");
883 error = ENOBUFS;
884 goto out;
885 }
886 entry->slot = i;
887 if (i)
888 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
889 entry, jpool_entries);
890 else
891 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
892 entry, jpool_entries);
893 }
894 out:
895 if (error != 0) {
896 switch (state) {
897 case 4:
898 bus_dmamap_unload(sc->sc_dmatag,
899 sc_if->sk_cdata.sk_rx_jumbo_map);
900 case 3:
901 bus_dmamap_destroy(sc->sc_dmatag,
902 sc_if->sk_cdata.sk_rx_jumbo_map);
903 case 2:
904 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
905 case 1:
906 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
907 break;
908 default:
909 break;
910 }
911 }
912
913 return error;
914 }
915
916 /*
917 * Allocate a jumbo buffer.
918 */
919 void *
920 sk_jalloc(struct sk_if_softc *sc_if)
921 {
922 struct sk_jpool_entry *entry;
923
924 mutex_enter(&sc_if->sk_jpool_mtx);
925 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
926
927 if (entry == NULL) {
928 mutex_exit(&sc_if->sk_jpool_mtx);
929 return NULL;
930 }
931
932 LIST_REMOVE(entry, jpool_entries);
933 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
934 mutex_exit(&sc_if->sk_jpool_mtx);
935 return sc_if->sk_cdata.sk_jslots[entry->slot];
936 }
937
938 /*
939 * Release a jumbo buffer.
940 */
941 void
942 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
943 {
944 struct sk_jpool_entry *entry;
945 struct sk_if_softc *sc;
946 int i;
947
948 /* Extract the softc struct pointer. */
949 sc = (struct sk_if_softc *)arg;
950
951 if (sc == NULL)
952 panic("sk_jfree: can't find softc pointer!");
953
954 /* calculate the slot this buffer belongs to */
955
956 i = ((vaddr_t)buf
957 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
958
959 if ((i < 0) || (i >= SK_JSLOTS))
960 panic("sk_jfree: asked to free buffer that we don't manage!");
961
962 mutex_enter(&sc->sk_jpool_mtx);
963 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
964 if (entry == NULL)
965 panic("sk_jfree: buffer not in use!");
966 entry->slot = i;
967 LIST_REMOVE(entry, jpool_entries);
968 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
969 mutex_exit(&sc->sk_jpool_mtx);
970
971 if (__predict_true(m != NULL))
972 pool_cache_put(mb_cache, m);
973 }
974
975 /*
976 * Set media options.
977 */
978 int
979 sk_ifmedia_upd(struct ifnet *ifp)
980 {
981 struct sk_if_softc *sc_if = ifp->if_softc;
982 int rc;
983
984 (void) sk_init(ifp);
985 if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
986 return 0;
987 return rc;
988 }
989
990 int
991 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
992 {
993 struct sk_if_softc *sc_if = ifp->if_softc;
994 struct sk_softc *sc = sc_if->sk_softc;
995 int s, error = 0;
996
997 /* DPRINTFN(2, ("sk_ioctl\n")); */
998
999 s = splnet();
1000
1001 switch (command) {
1002
1003 case SIOCSIFFLAGS:
1004 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1005 if (ifp->if_flags & IFF_UP) {
1006 if (ifp->if_flags & IFF_RUNNING &&
1007 ifp->if_flags & IFF_PROMISC &&
1008 !(sc_if->sk_if_flags & IFF_PROMISC)) {
1009 switch (sc->sk_type) {
1010 case SK_GENESIS:
1011 SK_XM_SETBIT_4(sc_if, XM_MODE,
1012 XM_MODE_RX_PROMISC);
1013 break;
1014 case SK_YUKON:
1015 case SK_YUKON_LITE:
1016 case SK_YUKON_LP:
1017 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1018 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1019 break;
1020 }
1021 sk_setmulti(sc_if);
1022 } else if (ifp->if_flags & IFF_RUNNING &&
1023 !(ifp->if_flags & IFF_PROMISC) &&
1024 sc_if->sk_if_flags & IFF_PROMISC) {
1025 switch (sc->sk_type) {
1026 case SK_GENESIS:
1027 SK_XM_CLRBIT_4(sc_if, XM_MODE,
1028 XM_MODE_RX_PROMISC);
1029 break;
1030 case SK_YUKON:
1031 case SK_YUKON_LITE:
1032 case SK_YUKON_LP:
1033 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1034 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1035 break;
1036 }
1037
1038 sk_setmulti(sc_if);
1039 } else
1040 (void) sk_init(ifp);
1041 } else {
1042 if (ifp->if_flags & IFF_RUNNING)
1043 sk_stop(ifp,0);
1044 }
1045 sc_if->sk_if_flags = ifp->if_flags;
1046 error = 0;
1047 break;
1048
1049 default:
1050 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1051 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1052 break;
1053
1054 error = 0;
1055
1056 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1057 ;
1058 else if (ifp->if_flags & IFF_RUNNING) {
1059 sk_setmulti(sc_if);
1060 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1061 }
1062 break;
1063 }
1064
1065 splx(s);
1066 return error;
1067 }
1068
1069 void
1070 sk_update_int_mod(struct sk_softc *sc)
1071 {
1072 u_int32_t imtimer_ticks;
1073
1074 /*
1075 * Configure interrupt moderation. The moderation timer
1076 * defers interrupts specified in the interrupt moderation
1077 * timer mask based on the timeout specified in the interrupt
1078 * moderation timer init register. Each bit in the timer
1079 * register represents one tick, so to specify a timeout in
1080 * microseconds, we have to multiply by the correct number of
1081 * ticks-per-microsecond.
1082 */
1083 switch (sc->sk_type) {
1084 case SK_GENESIS:
1085 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1086 break;
1087 case SK_YUKON_EC:
1088 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1089 break;
1090 default:
1091 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1092 }
1093 aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
1094 sc->sk_int_mod);
1095 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1096 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1097 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1098 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1099 sc->sk_int_mod_pending = 0;
1100 }
1101
1102 /*
1103 * Lookup: Check the PCI vendor and device, and return a pointer to
1104 * The structure if the IDs match against our list.
1105 */
1106
1107 static const struct sk_product *
1108 sk_lookup(const struct pci_attach_args *pa)
1109 {
1110 const struct sk_product *psk;
1111
1112 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1113 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1114 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1115 return psk;
1116 }
1117 return NULL;
1118 }
1119
1120 /*
1121 * Probe for a SysKonnect GEnesis chip.
1122 */
1123
1124 int
1125 skc_probe(device_t parent, cfdata_t match, void *aux)
1126 {
1127 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1128 const struct sk_product *psk;
1129 pcireg_t subid;
1130
1131 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1132
1133 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1134 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1135 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1136 subid == SK_LINKSYS_EG1032_SUBID)
1137 return 1;
1138
1139 if ((psk = sk_lookup(pa))) {
1140 return 1;
1141 }
1142 return 0;
1143 }
1144
1145 /*
1146 * Force the GEnesis into reset, then bring it out of reset.
1147 */
1148 void sk_reset(struct sk_softc *sc)
1149 {
1150 DPRINTFN(2, ("sk_reset\n"));
1151
1152 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1153 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1154 if (SK_YUKON_FAMILY(sc->sk_type))
1155 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1156
1157 DELAY(1000);
1158 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1159 DELAY(2);
1160 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1161 if (SK_YUKON_FAMILY(sc->sk_type))
1162 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1163
1164 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1165 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1166 CSR_READ_2(sc, SK_LINK_CTRL)));
1167
1168 if (sc->sk_type == SK_GENESIS) {
1169 /* Configure packet arbiter */
1170 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1171 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1172 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1173 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1174 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1175 }
1176
1177 /* Enable RAM interface */
1178 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1179
1180 sk_update_int_mod(sc);
1181 }
1182
1183 int
1184 sk_probe(device_t parent, cfdata_t match, void *aux)
1185 {
1186 struct skc_attach_args *sa = aux;
1187
1188 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1189 return 0;
1190
1191 return 1;
1192 }
1193
1194 /*
1195 * Each XMAC chip is attached as a separate logical IP interface.
1196 * Single port cards will have only one logical interface of course.
1197 */
1198 void
1199 sk_attach(device_t parent, device_t self, void *aux)
1200 {
1201 struct sk_if_softc *sc_if = device_private(self);
1202 struct sk_softc *sc = device_private(parent);
1203 struct skc_attach_args *sa = aux;
1204 struct sk_txmap_entry *entry;
1205 struct ifnet *ifp;
1206 bus_dma_segment_t seg;
1207 bus_dmamap_t dmamap;
1208 void *kva;
1209 int i, rseg;
1210
1211 aprint_naive("\n");
1212
1213 sc_if->sk_dev = self;
1214 sc_if->sk_port = sa->skc_port;
1215 sc_if->sk_softc = sc;
1216 sc->sk_if[sa->skc_port] = sc_if;
1217
1218 if (sa->skc_port == SK_PORT_A)
1219 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1220 if (sa->skc_port == SK_PORT_B)
1221 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1222
1223 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1224
1225 /*
1226 * Get station address for this interface. Note that
1227 * dual port cards actually come with three station
1228 * addresses: one for each port, plus an extra. The
1229 * extra one is used by the SysKonnect driver software
1230 * as a 'virtual' station address for when both ports
1231 * are operating in failover mode. Currently we don't
1232 * use this extra address.
1233 */
1234 for (i = 0; i < ETHER_ADDR_LEN; i++)
1235 sc_if->sk_enaddr[i] =
1236 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1237
1238
1239 aprint_normal(": Ethernet address %s\n",
1240 ether_sprintf(sc_if->sk_enaddr));
1241
1242 /*
1243 * Set up RAM buffer addresses. The NIC will have a certain
1244 * amount of SRAM on it, somewhere between 512K and 2MB. We
1245 * need to divide this up a) between the transmitter and
1246 * receiver and b) between the two XMACs, if this is a
1247 * dual port NIC. Our algorithm is to divide up the memory
1248 * evenly so that everyone gets a fair share.
1249 */
1250 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1251 u_int32_t chunk, val;
1252
1253 chunk = sc->sk_ramsize / 2;
1254 val = sc->sk_rboff / sizeof(u_int64_t);
1255 sc_if->sk_rx_ramstart = val;
1256 val += (chunk / sizeof(u_int64_t));
1257 sc_if->sk_rx_ramend = val - 1;
1258 sc_if->sk_tx_ramstart = val;
1259 val += (chunk / sizeof(u_int64_t));
1260 sc_if->sk_tx_ramend = val - 1;
1261 } else {
1262 u_int32_t chunk, val;
1263
1264 chunk = sc->sk_ramsize / 4;
1265 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1266 sizeof(u_int64_t);
1267 sc_if->sk_rx_ramstart = val;
1268 val += (chunk / sizeof(u_int64_t));
1269 sc_if->sk_rx_ramend = val - 1;
1270 sc_if->sk_tx_ramstart = val;
1271 val += (chunk / sizeof(u_int64_t));
1272 sc_if->sk_tx_ramend = val - 1;
1273 }
1274
1275 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1276 " tx_ramstart=%#x tx_ramend=%#x\n",
1277 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1278 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1279
1280 /* Read and save PHY type and set PHY address */
1281 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1282 switch (sc_if->sk_phytype) {
1283 case SK_PHYTYPE_XMAC:
1284 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1285 break;
1286 case SK_PHYTYPE_BCOM:
1287 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1288 break;
1289 case SK_PHYTYPE_MARV_COPPER:
1290 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1291 break;
1292 default:
1293 aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
1294 sc_if->sk_phytype);
1295 return;
1296 }
1297
1298 /* Allocate the descriptor queues. */
1299 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1300 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1301 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
1302 goto fail;
1303 }
1304 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1305 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1306 aprint_error_dev(sc_if->sk_dev,
1307 "can't map dma buffers (%lu bytes)\n",
1308 (u_long) sizeof(struct sk_ring_data));
1309 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1310 goto fail;
1311 }
1312 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1313 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1314 &sc_if->sk_ring_map)) {
1315 aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
1316 bus_dmamem_unmap(sc->sc_dmatag, kva,
1317 sizeof(struct sk_ring_data));
1318 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1319 goto fail;
1320 }
1321 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1322 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1323 aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
1324 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1325 bus_dmamem_unmap(sc->sc_dmatag, kva,
1326 sizeof(struct sk_ring_data));
1327 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1328 goto fail;
1329 }
1330
1331 for (i = 0; i < SK_RX_RING_CNT; i++)
1332 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1333
1334 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1335 for (i = 0; i < SK_TX_RING_CNT; i++) {
1336 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1337
1338 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1339 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1340 aprint_error_dev(sc_if->sk_dev,
1341 "Can't create TX dmamap\n");
1342 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1343 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1344 bus_dmamem_unmap(sc->sc_dmatag, kva,
1345 sizeof(struct sk_ring_data));
1346 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1347 goto fail;
1348 }
1349
1350 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1351 if (!entry) {
1352 aprint_error_dev(sc_if->sk_dev,
1353 "Can't alloc txmap entry\n");
1354 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1355 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1356 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1357 bus_dmamem_unmap(sc->sc_dmatag, kva,
1358 sizeof(struct sk_ring_data));
1359 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1360 goto fail;
1361 }
1362 entry->dmamap = dmamap;
1363 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1364 }
1365
1366 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1367 bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1368
1369 ifp = &sc_if->sk_ethercom.ec_if;
1370 /* Try to allocate memory for jumbo buffers. */
1371 if (sk_alloc_jumbo_mem(sc_if)) {
1372 aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1373 goto fail;
1374 }
1375 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1376 | ETHERCAP_JUMBO_MTU;
1377
1378 ifp->if_softc = sc_if;
1379 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1380 ifp->if_ioctl = sk_ioctl;
1381 ifp->if_start = sk_start;
1382 ifp->if_stop = sk_stop;
1383 ifp->if_init = sk_init;
1384 ifp->if_watchdog = sk_watchdog;
1385 ifp->if_capabilities = 0;
1386 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1387 IFQ_SET_READY(&ifp->if_snd);
1388 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1389
1390 /*
1391 * Do miibus setup.
1392 */
1393 switch (sc->sk_type) {
1394 case SK_GENESIS:
1395 sk_init_xmac(sc_if);
1396 break;
1397 case SK_YUKON:
1398 case SK_YUKON_LITE:
1399 case SK_YUKON_LP:
1400 sk_init_yukon(sc_if);
1401 break;
1402 default:
1403 aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
1404 sc->sk_type);
1405 goto fail;
1406 }
1407
1408 DPRINTFN(2, ("sk_attach: 1\n"));
1409
1410 sc_if->sk_mii.mii_ifp = ifp;
1411 switch (sc->sk_type) {
1412 case SK_GENESIS:
1413 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1414 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1415 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1416 break;
1417 case SK_YUKON:
1418 case SK_YUKON_LITE:
1419 case SK_YUKON_LP:
1420 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1421 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1422 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1423 break;
1424 }
1425
1426 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1427 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1428 sk_ifmedia_upd, ether_mediastatus);
1429 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1430 MII_OFFSET_ANY, 0);
1431 if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
1432 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1433 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1434 0, NULL);
1435 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1436 } else
1437 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1438
1439 callout_init(&sc_if->sk_tick_ch, 0);
1440 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1441
1442 DPRINTFN(2, ("sk_attach: 1\n"));
1443
1444 /*
1445 * Call MI attach routines.
1446 */
1447 if_attach(ifp);
1448
1449 ether_ifattach(ifp, sc_if->sk_enaddr);
1450
1451 #if NRND > 0
1452 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1453 RND_TYPE_NET, 0);
1454 #endif
1455
1456 DPRINTFN(2, ("sk_attach: end\n"));
1457
1458 return;
1459
1460 fail:
1461 sc->sk_if[sa->skc_port] = NULL;
1462 }
1463
1464 int
1465 skcprint(void *aux, const char *pnp)
1466 {
1467 struct skc_attach_args *sa = aux;
1468
1469 if (pnp)
1470 aprint_normal("sk port %c at %s",
1471 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1472 else
1473 aprint_normal(" port %c",
1474 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1475 return UNCONF;
1476 }
1477
1478 /*
1479 * Attach the interface. Allocate softc structures, do ifmedia
1480 * setup and ethernet/BPF attach.
1481 */
1482 void
1483 skc_attach(device_t parent, device_t self, void *aux)
1484 {
1485 struct sk_softc *sc = device_private(self);
1486 struct pci_attach_args *pa = aux;
1487 struct skc_attach_args skca;
1488 pci_chipset_tag_t pc = pa->pa_pc;
1489 #ifndef SK_USEIOSPACE
1490 pcireg_t memtype;
1491 #endif
1492 pci_intr_handle_t ih;
1493 const char *intrstr = NULL;
1494 bus_addr_t iobase;
1495 bus_size_t iosize;
1496 int rc, sk_nodenum;
1497 u_int32_t command;
1498 const char *revstr;
1499 const struct sysctlnode *node;
1500
1501 sc->sk_dev = self;
1502 aprint_naive("\n");
1503
1504 DPRINTFN(2, ("begin skc_attach\n"));
1505
1506 /*
1507 * Handle power management nonsense.
1508 */
1509 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1510
1511 if (command == 0x01) {
1512 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1513 if (command & SK_PSTATE_MASK) {
1514 u_int32_t xiobase, membase, irq;
1515
1516 /* Save important PCI config data. */
1517 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1518 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1519 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1520
1521 /* Reset the power state. */
1522 aprint_normal_dev(sc->sk_dev,
1523 "chip is in D%d power mode -- setting to D0\n",
1524 command & SK_PSTATE_MASK);
1525 command &= 0xFFFFFFFC;
1526 pci_conf_write(pc, pa->pa_tag,
1527 SK_PCI_PWRMGMTCTRL, command);
1528
1529 /* Restore PCI config data. */
1530 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1531 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1532 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1533 }
1534 }
1535
1536 /*
1537 * Map control/status registers.
1538 */
1539 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1540 command |= PCI_COMMAND_IO_ENABLE |
1541 PCI_COMMAND_MEM_ENABLE |
1542 PCI_COMMAND_MASTER_ENABLE;
1543 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1544 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1545
1546 #ifdef SK_USEIOSPACE
1547 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1548 aprint_error(": failed to enable I/O ports!\n");
1549 return;
1550 }
1551 /*
1552 * Map control/status registers.
1553 */
1554 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1555 &sc->sk_btag, &sc->sk_bhandle,
1556 &iobase, &iosize)) {
1557 aprint_error(": can't find i/o space\n");
1558 return;
1559 }
1560 #else
1561 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1562 aprint_error(": failed to enable memory mapping!\n");
1563 return;
1564 }
1565 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1566 switch (memtype) {
1567 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1568 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1569 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1570 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1571 &iobase, &iosize) == 0)
1572 break;
1573 default:
1574 aprint_error_dev(sc->sk_dev, "can't find mem space\n");
1575 return;
1576 }
1577
1578 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1579 #endif
1580 sc->sc_dmatag = pa->pa_dmat;
1581
1582 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1583 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1584
1585 /* bail out here if chip is not recognized */
1586 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1587 aprint_error_dev(sc->sk_dev, "unknown chip type\n");
1588 goto fail;
1589 }
1590 if (SK_IS_YUKON2(sc)) {
1591 aprint_error_dev(sc->sk_dev,
1592 "Does not support Yukon2--try msk(4).\n");
1593 goto fail;
1594 }
1595 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1596
1597 /* Allocate interrupt */
1598 if (pci_intr_map(pa, &ih)) {
1599 aprint_error(": couldn't map interrupt\n");
1600 goto fail;
1601 }
1602
1603 intrstr = pci_intr_string(pc, ih);
1604 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1605 if (sc->sk_intrhand == NULL) {
1606 aprint_error(": couldn't establish interrupt");
1607 if (intrstr != NULL)
1608 aprint_normal(" at %s", intrstr);
1609 goto fail;
1610 }
1611 aprint_normal(": %s\n", intrstr);
1612
1613 /* Reset the adapter. */
1614 sk_reset(sc);
1615
1616 /* Read and save vital product data from EEPROM. */
1617 sk_vpd_read(sc);
1618
1619 if (sc->sk_type == SK_GENESIS) {
1620 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1621 /* Read and save RAM size and RAMbuffer offset */
1622 switch (val) {
1623 case SK_RAMSIZE_512K_64:
1624 sc->sk_ramsize = 0x80000;
1625 sc->sk_rboff = SK_RBOFF_0;
1626 break;
1627 case SK_RAMSIZE_1024K_64:
1628 sc->sk_ramsize = 0x100000;
1629 sc->sk_rboff = SK_RBOFF_80000;
1630 break;
1631 case SK_RAMSIZE_1024K_128:
1632 sc->sk_ramsize = 0x100000;
1633 sc->sk_rboff = SK_RBOFF_0;
1634 break;
1635 case SK_RAMSIZE_2048K_128:
1636 sc->sk_ramsize = 0x200000;
1637 sc->sk_rboff = SK_RBOFF_0;
1638 break;
1639 default:
1640 aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
1641 val);
1642 goto fail_1;
1643 break;
1644 }
1645
1646 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1647 sc->sk_ramsize, sc->sk_ramsize / 1024,
1648 sc->sk_rboff));
1649 } else {
1650 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1651 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1652 sc->sk_rboff = SK_RBOFF_0;
1653
1654 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1655 sc->sk_ramsize / 1024, sc->sk_ramsize,
1656 sc->sk_rboff));
1657 }
1658
1659 /* Read and save physical media type */
1660 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1661 case SK_PMD_1000BASESX:
1662 sc->sk_pmd = IFM_1000_SX;
1663 break;
1664 case SK_PMD_1000BASELX:
1665 sc->sk_pmd = IFM_1000_LX;
1666 break;
1667 case SK_PMD_1000BASECX:
1668 sc->sk_pmd = IFM_1000_CX;
1669 break;
1670 case SK_PMD_1000BASETX:
1671 case SK_PMD_1000BASETX_ALT:
1672 sc->sk_pmd = IFM_1000_T;
1673 break;
1674 default:
1675 aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
1676 sk_win_read_1(sc, SK_PMDTYPE));
1677 goto fail_1;
1678 }
1679
1680 /* determine whether to name it with vpd or just make it up */
1681 /* Marvell Yukon VPD's can freqently be bogus */
1682
1683 switch (pa->pa_id) {
1684 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1685 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1686 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1687 case PCI_PRODUCT_3COM_3C940:
1688 case PCI_PRODUCT_DLINK_DGE530T:
1689 case PCI_PRODUCT_DLINK_DGE560T:
1690 case PCI_PRODUCT_DLINK_DGE560T_2:
1691 case PCI_PRODUCT_LINKSYS_EG1032:
1692 case PCI_PRODUCT_LINKSYS_EG1064:
1693 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1694 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1695 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1696 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1697 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1698 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1699 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1700 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1701 sc->sk_name = sc->sk_vpd_prodname;
1702 break;
1703 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1704 /* whoops yukon vpd prodname bears no resemblance to reality */
1705 switch (sc->sk_type) {
1706 case SK_GENESIS:
1707 sc->sk_name = sc->sk_vpd_prodname;
1708 break;
1709 case SK_YUKON:
1710 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1711 break;
1712 case SK_YUKON_LITE:
1713 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1714 break;
1715 case SK_YUKON_LP:
1716 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1717 break;
1718 default:
1719 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1720 }
1721
1722 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1723
1724 if ( sc->sk_type == SK_YUKON ) {
1725 uint32_t flashaddr;
1726 uint8_t testbyte;
1727
1728 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1729
1730 /* test Flash-Address Register */
1731 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1732 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1733
1734 if (testbyte != 0) {
1735 /* this is yukon lite Rev. A0 */
1736 sc->sk_type = SK_YUKON_LITE;
1737 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1738 /* restore Flash-Address Register */
1739 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1740 }
1741 }
1742 break;
1743 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1744 sc->sk_name = sc->sk_vpd_prodname;
1745 break;
1746 default:
1747 sc->sk_name = "Unknown Marvell";
1748 }
1749
1750
1751 if ( sc->sk_type == SK_YUKON_LITE ) {
1752 switch (sc->sk_rev) {
1753 case SK_YUKON_LITE_REV_A0:
1754 revstr = "A0";
1755 break;
1756 case SK_YUKON_LITE_REV_A1:
1757 revstr = "A1";
1758 break;
1759 case SK_YUKON_LITE_REV_A3:
1760 revstr = "A3";
1761 break;
1762 default:
1763 revstr = "";
1764 }
1765 } else {
1766 revstr = "";
1767 }
1768
1769 /* Announce the product name. */
1770 aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
1771 sc->sk_name, revstr, sc->sk_rev);
1772
1773 skca.skc_port = SK_PORT_A;
1774 (void)config_found(sc->sk_dev, &skca, skcprint);
1775
1776 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1777 skca.skc_port = SK_PORT_B;
1778 (void)config_found(sc->sk_dev, &skca, skcprint);
1779 }
1780
1781 /* Turn on the 'driver is loaded' LED. */
1782 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1783
1784 /* skc sysctl setup */
1785
1786 sc->sk_int_mod = SK_IM_DEFAULT;
1787 sc->sk_int_mod_pending = 0;
1788
1789 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1790 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1791 SYSCTL_DESCR("skc per-controller controls"),
1792 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1793 CTL_EOL)) != 0) {
1794 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1795 goto fail_1;
1796 }
1797
1798 sk_nodenum = node->sysctl_num;
1799
1800 /* interrupt moderation time in usecs */
1801 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1802 CTLFLAG_READWRITE,
1803 CTLTYPE_INT, "int_mod",
1804 SYSCTL_DESCR("sk interrupt moderation timer"),
1805 sk_sysctl_handler, 0, sc,
1806 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1807 CTL_EOL)) != 0) {
1808 aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1809 goto fail_1;
1810 }
1811
1812 return;
1813
1814 fail_1:
1815 pci_intr_disestablish(pc, sc->sk_intrhand);
1816 fail:
1817 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1818 }
1819
1820 int
1821 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1822 {
1823 struct sk_softc *sc = sc_if->sk_softc;
1824 struct sk_tx_desc *f = NULL;
1825 u_int32_t frag, cur, cnt = 0, sk_ctl;
1826 int i;
1827 struct sk_txmap_entry *entry;
1828 bus_dmamap_t txmap;
1829
1830 DPRINTFN(3, ("sk_encap\n"));
1831
1832 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1833 if (entry == NULL) {
1834 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1835 return ENOBUFS;
1836 }
1837 txmap = entry->dmamap;
1838
1839 cur = frag = *txidx;
1840
1841 #ifdef SK_DEBUG
1842 if (skdebug >= 3)
1843 sk_dump_mbuf(m_head);
1844 #endif
1845
1846 /*
1847 * Start packing the mbufs in this chain into
1848 * the fragment pointers. Stop when we run out
1849 * of fragments or hit the end of the mbuf chain.
1850 */
1851 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1852 BUS_DMA_NOWAIT)) {
1853 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1854 return ENOBUFS;
1855 }
1856
1857 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1858
1859 /* Sync the DMA map. */
1860 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1861 BUS_DMASYNC_PREWRITE);
1862
1863 for (i = 0; i < txmap->dm_nsegs; i++) {
1864 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1865 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1866 return ENOBUFS;
1867 }
1868 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1869 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1870 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1871 if (cnt == 0)
1872 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1873 else
1874 sk_ctl |= SK_TXCTL_OWN;
1875 f->sk_ctl = htole32(sk_ctl);
1876 cur = frag;
1877 SK_INC(frag, SK_TX_RING_CNT);
1878 cnt++;
1879 }
1880
1881 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1882 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1883
1884 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1885 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1886 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1887
1888 /* Sync descriptors before handing to chip */
1889 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1890 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1891
1892 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1893 htole32(SK_TXCTL_OWN);
1894
1895 /* Sync first descriptor to hand it off */
1896 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1897
1898 sc_if->sk_cdata.sk_tx_cnt += cnt;
1899
1900 #ifdef SK_DEBUG
1901 if (skdebug >= 3) {
1902 struct sk_tx_desc *desc;
1903 u_int32_t idx;
1904 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1905 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1906 sk_dump_txdesc(desc, idx);
1907 }
1908 }
1909 #endif
1910
1911 *txidx = frag;
1912
1913 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1914
1915 return 0;
1916 }
1917
1918 void
1919 sk_start(struct ifnet *ifp)
1920 {
1921 struct sk_if_softc *sc_if = ifp->if_softc;
1922 struct sk_softc *sc = sc_if->sk_softc;
1923 struct mbuf *m_head = NULL;
1924 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1925 int pkts = 0;
1926
1927 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1928 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1929
1930 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1931 IFQ_POLL(&ifp->if_snd, m_head);
1932 if (m_head == NULL)
1933 break;
1934
1935 /*
1936 * Pack the data into the transmit ring. If we
1937 * don't have room, set the OACTIVE flag and wait
1938 * for the NIC to drain the ring.
1939 */
1940 if (sk_encap(sc_if, m_head, &idx)) {
1941 ifp->if_flags |= IFF_OACTIVE;
1942 break;
1943 }
1944
1945 /* now we are committed to transmit the packet */
1946 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1947 pkts++;
1948
1949 /*
1950 * If there's a BPF listener, bounce a copy of this frame
1951 * to him.
1952 */
1953 #if NBPFILTER > 0
1954 if (ifp->if_bpf)
1955 bpf_mtap(ifp->if_bpf, m_head);
1956 #endif
1957 }
1958 if (pkts == 0)
1959 return;
1960
1961 /* Transmit */
1962 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1963 sc_if->sk_cdata.sk_tx_prod = idx;
1964 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1965
1966 /* Set a timeout in case the chip goes out to lunch. */
1967 ifp->if_timer = 5;
1968 }
1969 }
1970
1971
1972 void
1973 sk_watchdog(struct ifnet *ifp)
1974 {
1975 struct sk_if_softc *sc_if = ifp->if_softc;
1976
1977 /*
1978 * Reclaim first as there is a possibility of losing Tx completion
1979 * interrupts.
1980 */
1981 sk_txeof(sc_if);
1982 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1983 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1984
1985 ifp->if_oerrors++;
1986
1987 sk_init(ifp);
1988 }
1989 }
1990
1991 void
1992 sk_shutdown(void *v)
1993 {
1994 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
1995 struct sk_softc *sc = sc_if->sk_softc;
1996 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1997
1998 DPRINTFN(2, ("sk_shutdown\n"));
1999 sk_stop(ifp,1);
2000
2001 /* Turn off the 'driver is loaded' LED. */
2002 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2003
2004 /*
2005 * Reset the GEnesis controller. Doing this should also
2006 * assert the resets on the attached XMAC(s).
2007 */
2008 sk_reset(sc);
2009 }
2010
2011 void
2012 sk_rxeof(struct sk_if_softc *sc_if)
2013 {
2014 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2015 struct mbuf *m;
2016 struct sk_chain *cur_rx;
2017 struct sk_rx_desc *cur_desc;
2018 int i, cur, total_len = 0;
2019 u_int32_t rxstat, sk_ctl;
2020 bus_dmamap_t dmamap;
2021
2022 i = sc_if->sk_cdata.sk_rx_prod;
2023
2024 DPRINTFN(3, ("sk_rxeof %d\n", i));
2025
2026 for (;;) {
2027 cur = i;
2028
2029 /* Sync the descriptor */
2030 SK_CDRXSYNC(sc_if, cur,
2031 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2032
2033 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2034 if (sk_ctl & SK_RXCTL_OWN) {
2035 /* Invalidate the descriptor -- it's not ready yet */
2036 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2037 sc_if->sk_cdata.sk_rx_prod = i;
2038 break;
2039 }
2040
2041 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2042 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2043 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2044
2045 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2046 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2047
2048 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2049 m = cur_rx->sk_mbuf;
2050 cur_rx->sk_mbuf = NULL;
2051 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2052
2053 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2054
2055 SK_INC(i, SK_RX_RING_CNT);
2056
2057 if (rxstat & XM_RXSTAT_ERRFRAME) {
2058 ifp->if_ierrors++;
2059 sk_newbuf(sc_if, cur, m, dmamap);
2060 continue;
2061 }
2062
2063 /*
2064 * Try to allocate a new jumbo buffer. If that
2065 * fails, copy the packet to mbufs and put the
2066 * jumbo buffer back in the ring so it can be
2067 * re-used. If allocating mbufs fails, then we
2068 * have to drop the packet.
2069 */
2070 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2071 struct mbuf *m0;
2072 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2073 total_len + ETHER_ALIGN, 0, ifp, NULL);
2074 sk_newbuf(sc_if, cur, m, dmamap);
2075 if (m0 == NULL) {
2076 aprint_error_dev(sc_if->sk_dev, "no receive "
2077 "buffers available -- packet dropped!\n");
2078 ifp->if_ierrors++;
2079 continue;
2080 }
2081 m_adj(m0, ETHER_ALIGN);
2082 m = m0;
2083 } else {
2084 m->m_pkthdr.rcvif = ifp;
2085 m->m_pkthdr.len = m->m_len = total_len;
2086 }
2087
2088 ifp->if_ipackets++;
2089
2090 #if NBPFILTER > 0
2091 if (ifp->if_bpf)
2092 bpf_mtap(ifp->if_bpf, m);
2093 #endif
2094 /* pass it on. */
2095 (*ifp->if_input)(ifp, m);
2096 }
2097 }
2098
2099 void
2100 sk_txeof(struct sk_if_softc *sc_if)
2101 {
2102 struct sk_softc *sc = sc_if->sk_softc;
2103 struct sk_tx_desc *cur_tx;
2104 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2105 u_int32_t idx, sk_ctl;
2106 struct sk_txmap_entry *entry;
2107
2108 DPRINTFN(3, ("sk_txeof\n"));
2109
2110 /*
2111 * Go through our tx ring and free mbufs for those
2112 * frames that have been sent.
2113 */
2114 idx = sc_if->sk_cdata.sk_tx_cons;
2115 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2116 SK_CDTXSYNC(sc_if, idx, 1,
2117 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2118
2119 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2120 sk_ctl = le32toh(cur_tx->sk_ctl);
2121 #ifdef SK_DEBUG
2122 if (skdebug >= 3)
2123 sk_dump_txdesc(cur_tx, idx);
2124 #endif
2125 if (sk_ctl & SK_TXCTL_OWN) {
2126 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2127 break;
2128 }
2129 if (sk_ctl & SK_TXCTL_LASTFRAG)
2130 ifp->if_opackets++;
2131 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2132 entry = sc_if->sk_cdata.sk_tx_map[idx];
2133
2134 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2135 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2136
2137 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2138 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2139
2140 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2141 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2142 link);
2143 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2144 }
2145 sc_if->sk_cdata.sk_tx_cnt--;
2146 SK_INC(idx, SK_TX_RING_CNT);
2147 }
2148 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2149 ifp->if_timer = 0;
2150 else /* nudge chip to keep tx ring moving */
2151 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2152
2153 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2154 ifp->if_flags &= ~IFF_OACTIVE;
2155
2156 sc_if->sk_cdata.sk_tx_cons = idx;
2157 }
2158
2159 void
2160 sk_tick(void *xsc_if)
2161 {
2162 struct sk_if_softc *sc_if = xsc_if;
2163 struct mii_data *mii = &sc_if->sk_mii;
2164 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2165 int i;
2166
2167 DPRINTFN(3, ("sk_tick\n"));
2168
2169 if (!(ifp->if_flags & IFF_UP))
2170 return;
2171
2172 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2173 sk_intr_bcom(sc_if);
2174 return;
2175 }
2176
2177 /*
2178 * According to SysKonnect, the correct way to verify that
2179 * the link has come back up is to poll bit 0 of the GPIO
2180 * register three times. This pin has the signal from the
2181 * link sync pin connected to it; if we read the same link
2182 * state 3 times in a row, we know the link is up.
2183 */
2184 for (i = 0; i < 3; i++) {
2185 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2186 break;
2187 }
2188
2189 if (i != 3) {
2190 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2191 return;
2192 }
2193
2194 /* Turn the GP0 interrupt back on. */
2195 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2196 SK_XM_READ_2(sc_if, XM_ISR);
2197 mii_tick(mii);
2198 mii_pollstat(mii);
2199 callout_stop(&sc_if->sk_tick_ch);
2200 }
2201
2202 void
2203 sk_intr_bcom(struct sk_if_softc *sc_if)
2204 {
2205 struct mii_data *mii = &sc_if->sk_mii;
2206 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2207 int status;
2208
2209
2210 DPRINTFN(3, ("sk_intr_bcom\n"));
2211
2212 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2213
2214 /*
2215 * Read the PHY interrupt register to make sure
2216 * we clear any pending interrupts.
2217 */
2218 status = sk_xmac_miibus_readreg((device_t)sc_if,
2219 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2220
2221 if (!(ifp->if_flags & IFF_RUNNING)) {
2222 sk_init_xmac(sc_if);
2223 return;
2224 }
2225
2226 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2227 int lstat;
2228 lstat = sk_xmac_miibus_readreg((device_t)sc_if,
2229 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2230
2231 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2232 (void)mii_mediachg(mii);
2233 /* Turn off the link LED. */
2234 SK_IF_WRITE_1(sc_if, 0,
2235 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2236 sc_if->sk_link = 0;
2237 } else if (status & BRGPHY_ISR_LNK_CHG) {
2238 sk_xmac_miibus_writereg((device_t)sc_if,
2239 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2240 mii_tick(mii);
2241 sc_if->sk_link = 1;
2242 /* Turn on the link LED. */
2243 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2244 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2245 SK_LINKLED_BLINK_OFF);
2246 mii_pollstat(mii);
2247 } else {
2248 mii_tick(mii);
2249 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2250 }
2251 }
2252
2253 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2254 }
2255
2256 void
2257 sk_intr_xmac(struct sk_if_softc *sc_if)
2258 {
2259 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2260
2261 DPRINTFN(3, ("sk_intr_xmac\n"));
2262
2263 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2264 if (status & XM_ISR_GP0_SET) {
2265 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2266 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2267 }
2268
2269 if (status & XM_ISR_AUTONEG_DONE) {
2270 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2271 }
2272 }
2273
2274 if (status & XM_IMR_TX_UNDERRUN)
2275 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2276
2277 if (status & XM_IMR_RX_OVERRUN)
2278 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2279 }
2280
2281 void
2282 sk_intr_yukon(struct sk_if_softc *sc_if)
2283 {
2284 int status;
2285
2286 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2287
2288 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2289 }
2290
2291 int
2292 sk_intr(void *xsc)
2293 {
2294 struct sk_softc *sc = xsc;
2295 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2296 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2297 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2298 u_int32_t status;
2299 int claimed = 0;
2300
2301 if (sc_if0 != NULL)
2302 ifp0 = &sc_if0->sk_ethercom.ec_if;
2303 if (sc_if1 != NULL)
2304 ifp1 = &sc_if1->sk_ethercom.ec_if;
2305
2306 for (;;) {
2307 status = CSR_READ_4(sc, SK_ISSR);
2308 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2309
2310 if (!(status & sc->sk_intrmask))
2311 break;
2312
2313 claimed = 1;
2314
2315 /* Handle receive interrupts first. */
2316 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2317 sk_rxeof(sc_if0);
2318 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2319 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2320 }
2321 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2322 sk_rxeof(sc_if1);
2323 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2324 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2325 }
2326
2327 /* Then transmit interrupts. */
2328 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2329 sk_txeof(sc_if0);
2330 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2331 SK_TXBMU_CLR_IRQ_EOF);
2332 }
2333 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2334 sk_txeof(sc_if1);
2335 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2336 SK_TXBMU_CLR_IRQ_EOF);
2337 }
2338
2339 /* Then MAC interrupts. */
2340 if (sc_if0 && (status & SK_ISR_MAC1) &&
2341 (ifp0->if_flags & IFF_RUNNING)) {
2342 if (sc->sk_type == SK_GENESIS)
2343 sk_intr_xmac(sc_if0);
2344 else
2345 sk_intr_yukon(sc_if0);
2346 }
2347
2348 if (sc_if1 && (status & SK_ISR_MAC2) &&
2349 (ifp1->if_flags & IFF_RUNNING)) {
2350 if (sc->sk_type == SK_GENESIS)
2351 sk_intr_xmac(sc_if1);
2352 else
2353 sk_intr_yukon(sc_if1);
2354
2355 }
2356
2357 if (status & SK_ISR_EXTERNAL_REG) {
2358 if (sc_if0 != NULL &&
2359 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2360 sk_intr_bcom(sc_if0);
2361
2362 if (sc_if1 != NULL &&
2363 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2364 sk_intr_bcom(sc_if1);
2365 }
2366 }
2367
2368 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2369
2370 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2371 sk_start(ifp0);
2372 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2373 sk_start(ifp1);
2374
2375 #if NRND > 0
2376 if (RND_ENABLED(&sc->rnd_source))
2377 rnd_add_uint32(&sc->rnd_source, status);
2378 #endif
2379
2380 if (sc->sk_int_mod_pending)
2381 sk_update_int_mod(sc);
2382
2383 return claimed;
2384 }
2385
2386 void
2387 sk_init_xmac(struct sk_if_softc *sc_if)
2388 {
2389 struct sk_softc *sc = sc_if->sk_softc;
2390 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2391 static const struct sk_bcom_hack bhack[] = {
2392 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2393 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2394 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2395 { 0, 0 } };
2396
2397 DPRINTFN(1, ("sk_init_xmac\n"));
2398
2399 /* Unreset the XMAC. */
2400 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2401 DELAY(1000);
2402
2403 /* Reset the XMAC's internal state. */
2404 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2405
2406 /* Save the XMAC II revision */
2407 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2408
2409 /*
2410 * Perform additional initialization for external PHYs,
2411 * namely for the 1000baseTX cards that use the XMAC's
2412 * GMII mode.
2413 */
2414 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2415 int i = 0;
2416 u_int32_t val;
2417
2418 /* Take PHY out of reset. */
2419 val = sk_win_read_4(sc, SK_GPIO);
2420 if (sc_if->sk_port == SK_PORT_A)
2421 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2422 else
2423 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2424 sk_win_write_4(sc, SK_GPIO, val);
2425
2426 /* Enable GMII mode on the XMAC. */
2427 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2428
2429 sk_xmac_miibus_writereg((device_t)sc_if,
2430 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2431 DELAY(10000);
2432 sk_xmac_miibus_writereg((device_t)sc_if,
2433 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2434
2435 /*
2436 * Early versions of the BCM5400 apparently have
2437 * a bug that requires them to have their reserved
2438 * registers initialized to some magic values. I don't
2439 * know what the numbers do, I'm just the messenger.
2440 */
2441 if (sk_xmac_miibus_readreg((device_t)sc_if,
2442 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2443 while (bhack[i].reg) {
2444 sk_xmac_miibus_writereg((device_t)sc_if,
2445 SK_PHYADDR_BCOM, bhack[i].reg,
2446 bhack[i].val);
2447 i++;
2448 }
2449 }
2450 }
2451
2452 /* Set station address */
2453 SK_XM_WRITE_2(sc_if, XM_PAR0,
2454 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2455 SK_XM_WRITE_2(sc_if, XM_PAR1,
2456 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2457 SK_XM_WRITE_2(sc_if, XM_PAR2,
2458 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2459 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2460
2461 if (ifp->if_flags & IFF_PROMISC)
2462 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2463 else
2464 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2465
2466 if (ifp->if_flags & IFF_BROADCAST)
2467 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2468 else
2469 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2470
2471 /* We don't need the FCS appended to the packet. */
2472 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2473
2474 /* We want short frames padded to 60 bytes. */
2475 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2476
2477 /*
2478 * Enable the reception of all error frames. This is is
2479 * a necessary evil due to the design of the XMAC. The
2480 * XMAC's receive FIFO is only 8K in size, however jumbo
2481 * frames can be up to 9000 bytes in length. When bad
2482 * frame filtering is enabled, the XMAC's RX FIFO operates
2483 * in 'store and forward' mode. For this to work, the
2484 * entire frame has to fit into the FIFO, but that means
2485 * that jumbo frames larger than 8192 bytes will be
2486 * truncated. Disabling all bad frame filtering causes
2487 * the RX FIFO to operate in streaming mode, in which
2488 * case the XMAC will start transfering frames out of the
2489 * RX FIFO as soon as the FIFO threshold is reached.
2490 */
2491 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2492 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2493 XM_MODE_RX_INRANGELEN);
2494
2495 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2496 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2497 else
2498 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2499
2500 /*
2501 * Bump up the transmit threshold. This helps hold off transmit
2502 * underruns when we're blasting traffic from both ports at once.
2503 */
2504 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2505
2506 /* Set multicast filter */
2507 sk_setmulti(sc_if);
2508
2509 /* Clear and enable interrupts */
2510 SK_XM_READ_2(sc_if, XM_ISR);
2511 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2512 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2513 else
2514 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2515
2516 /* Configure MAC arbiter */
2517 switch (sc_if->sk_xmac_rev) {
2518 case XM_XMAC_REV_B2:
2519 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2520 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2521 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2522 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2523 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2524 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2525 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2526 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2527 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2528 break;
2529 case XM_XMAC_REV_C1:
2530 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2531 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2532 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2533 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2534 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2535 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2536 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2537 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2538 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2539 break;
2540 default:
2541 break;
2542 }
2543 sk_win_write_2(sc, SK_MACARB_CTL,
2544 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2545
2546 sc_if->sk_link = 1;
2547 }
2548
2549 void sk_init_yukon(struct sk_if_softc *sc_if)
2550 {
2551 u_int32_t /*mac, */phy;
2552 u_int16_t reg;
2553 struct sk_softc *sc;
2554 int i;
2555
2556 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2557 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2558
2559 sc = sc_if->sk_softc;
2560 if (sc->sk_type == SK_YUKON_LITE &&
2561 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2562 /* Take PHY out of reset. */
2563 sk_win_write_4(sc, SK_GPIO,
2564 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2565 }
2566
2567
2568 /* GMAC and GPHY Reset */
2569 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2570
2571 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2572
2573 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2574 DELAY(1000);
2575 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2576 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2577 DELAY(1000);
2578
2579
2580 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2581
2582 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2583 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2584
2585 switch (sc_if->sk_softc->sk_pmd) {
2586 case IFM_1000_SX:
2587 case IFM_1000_LX:
2588 phy |= SK_GPHY_FIBER;
2589 break;
2590
2591 case IFM_1000_CX:
2592 case IFM_1000_T:
2593 phy |= SK_GPHY_COPPER;
2594 break;
2595 }
2596
2597 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2598
2599 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2600 DELAY(1000);
2601 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2602 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2603 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2604
2605 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2606 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2607
2608 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2609
2610 /* unused read of the interrupt source register */
2611 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2612 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2613
2614 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2615 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2616 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2617
2618 /* MIB Counter Clear Mode set */
2619 reg |= YU_PAR_MIB_CLR;
2620 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2621 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2622 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2623
2624 /* MIB Counter Clear Mode clear */
2625 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2626 reg &= ~YU_PAR_MIB_CLR;
2627 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2628
2629 /* receive control reg */
2630 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2631 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2632 YU_RCR_CRCR);
2633
2634 /* transmit parameter register */
2635 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2636 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2637 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2638
2639 /* serial mode register */
2640 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2641 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2642 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2643 YU_SMR_IPG_DATA(0x1e));
2644
2645 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2646 /* Setup Yukon's address */
2647 for (i = 0; i < 3; i++) {
2648 /* Write Source Address 1 (unicast filter) */
2649 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2650 sc_if->sk_enaddr[i * 2] |
2651 sc_if->sk_enaddr[i * 2 + 1] << 8);
2652 }
2653
2654 for (i = 0; i < 3; i++) {
2655 reg = sk_win_read_2(sc_if->sk_softc,
2656 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2657 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2658 }
2659
2660 /* Set multicast filter */
2661 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2662 sk_setmulti(sc_if);
2663
2664 /* enable interrupt mask for counter overflows */
2665 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2666 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2667 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2668 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2669
2670 /* Configure RX MAC FIFO */
2671 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2672 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2673
2674 /* Configure TX MAC FIFO */
2675 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2676 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2677
2678 DPRINTFN(6, ("sk_init_yukon: end\n"));
2679 }
2680
2681 /*
2682 * Note that to properly initialize any part of the GEnesis chip,
2683 * you first have to take it out of reset mode.
2684 */
2685 int
2686 sk_init(struct ifnet *ifp)
2687 {
2688 struct sk_if_softc *sc_if = ifp->if_softc;
2689 struct sk_softc *sc = sc_if->sk_softc;
2690 struct mii_data *mii = &sc_if->sk_mii;
2691 int rc = 0, s;
2692 u_int32_t imr, imtimer_ticks;
2693
2694 DPRINTFN(1, ("sk_init\n"));
2695
2696 s = splnet();
2697
2698 if (ifp->if_flags & IFF_RUNNING) {
2699 splx(s);
2700 return 0;
2701 }
2702
2703 /* Cancel pending I/O and free all RX/TX buffers. */
2704 sk_stop(ifp,0);
2705
2706 if (sc->sk_type == SK_GENESIS) {
2707 /* Configure LINK_SYNC LED */
2708 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2709 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2710 SK_LINKLED_LINKSYNC_ON);
2711
2712 /* Configure RX LED */
2713 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2714 SK_RXLEDCTL_COUNTER_START);
2715
2716 /* Configure TX LED */
2717 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2718 SK_TXLEDCTL_COUNTER_START);
2719 }
2720
2721 /* Configure I2C registers */
2722
2723 /* Configure XMAC(s) */
2724 switch (sc->sk_type) {
2725 case SK_GENESIS:
2726 sk_init_xmac(sc_if);
2727 break;
2728 case SK_YUKON:
2729 case SK_YUKON_LITE:
2730 case SK_YUKON_LP:
2731 sk_init_yukon(sc_if);
2732 break;
2733 }
2734 if ((rc = mii_mediachg(mii)) == ENXIO)
2735 rc = 0;
2736 else if (rc != 0)
2737 goto out;
2738
2739 if (sc->sk_type == SK_GENESIS) {
2740 /* Configure MAC FIFOs */
2741 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2742 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2743 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2744
2745 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2746 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2747 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2748 }
2749
2750 /* Configure transmit arbiter(s) */
2751 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2752 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2753
2754 /* Configure RAMbuffers */
2755 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2756 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2757 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2758 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2759 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2760 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2761
2762 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2763 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2764 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2765 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2766 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2767 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2768 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2769
2770 /* Configure BMUs */
2771 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2772 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2773 SK_RX_RING_ADDR(sc_if, 0));
2774 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2775
2776 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2777 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2778 SK_TX_RING_ADDR(sc_if, 0));
2779 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2780
2781 /* Init descriptors */
2782 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2783 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2784 "memory for rx buffers\n");
2785 sk_stop(ifp,0);
2786 splx(s);
2787 return ENOBUFS;
2788 }
2789
2790 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2791 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2792 "memory for tx buffers\n");
2793 sk_stop(ifp,0);
2794 splx(s);
2795 return ENOBUFS;
2796 }
2797
2798 /* Set interrupt moderation if changed via sysctl. */
2799 switch (sc->sk_type) {
2800 case SK_GENESIS:
2801 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2802 break;
2803 case SK_YUKON_EC:
2804 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2805 break;
2806 default:
2807 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2808 }
2809 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2810 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2811 sk_win_write_4(sc, SK_IMTIMERINIT,
2812 SK_IM_USECS(sc->sk_int_mod));
2813 aprint_verbose_dev(sc->sk_dev,
2814 "interrupt moderation is %d us\n", sc->sk_int_mod);
2815 }
2816
2817 /* Configure interrupt handling */
2818 CSR_READ_4(sc, SK_ISSR);
2819 if (sc_if->sk_port == SK_PORT_A)
2820 sc->sk_intrmask |= SK_INTRS1;
2821 else
2822 sc->sk_intrmask |= SK_INTRS2;
2823
2824 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2825
2826 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2827
2828 /* Start BMUs. */
2829 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2830
2831 if (sc->sk_type == SK_GENESIS) {
2832 /* Enable XMACs TX and RX state machines */
2833 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2834 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2835 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2836 }
2837
2838 if (SK_YUKON_FAMILY(sc->sk_type)) {
2839 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2840 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2841 #if 0
2842 /* XXX disable 100Mbps and full duplex mode? */
2843 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2844 #endif
2845 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2846 }
2847
2848
2849 ifp->if_flags |= IFF_RUNNING;
2850 ifp->if_flags &= ~IFF_OACTIVE;
2851
2852 out:
2853 splx(s);
2854 return rc;
2855 }
2856
2857 void
2858 sk_stop(struct ifnet *ifp, int disable)
2859 {
2860 struct sk_if_softc *sc_if = ifp->if_softc;
2861 struct sk_softc *sc = sc_if->sk_softc;
2862 int i;
2863
2864 DPRINTFN(1, ("sk_stop\n"));
2865
2866 callout_stop(&sc_if->sk_tick_ch);
2867
2868 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2869 u_int32_t val;
2870
2871 /* Put PHY back into reset. */
2872 val = sk_win_read_4(sc, SK_GPIO);
2873 if (sc_if->sk_port == SK_PORT_A) {
2874 val |= SK_GPIO_DIR0;
2875 val &= ~SK_GPIO_DAT0;
2876 } else {
2877 val |= SK_GPIO_DIR2;
2878 val &= ~SK_GPIO_DAT2;
2879 }
2880 sk_win_write_4(sc, SK_GPIO, val);
2881 }
2882
2883 /* Turn off various components of this interface. */
2884 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2885 switch (sc->sk_type) {
2886 case SK_GENESIS:
2887 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2888 SK_TXMACCTL_XMAC_RESET);
2889 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2890 break;
2891 case SK_YUKON:
2892 case SK_YUKON_LITE:
2893 case SK_YUKON_LP:
2894 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2895 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2896 break;
2897 }
2898 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2899 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2900 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2901 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2902 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2903 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2904 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2905 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2906 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2907
2908 /* Disable interrupts */
2909 if (sc_if->sk_port == SK_PORT_A)
2910 sc->sk_intrmask &= ~SK_INTRS1;
2911 else
2912 sc->sk_intrmask &= ~SK_INTRS2;
2913 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2914
2915 SK_XM_READ_2(sc_if, XM_ISR);
2916 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2917
2918 /* Free RX and TX mbufs still in the queues. */
2919 for (i = 0; i < SK_RX_RING_CNT; i++) {
2920 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2921 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2922 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2923 }
2924 }
2925
2926 for (i = 0; i < SK_TX_RING_CNT; i++) {
2927 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2928 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2929 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2930 }
2931 }
2932
2933 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2934 }
2935
2936 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
2937 skc_probe, skc_attach, NULL, NULL);
2938
2939 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
2940 sk_probe, sk_attach, NULL, NULL);
2941
2942 #ifdef SK_DEBUG
2943 void
2944 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2945 {
2946 #define DESC_PRINT(X) \
2947 if (X) \
2948 printf("txdesc[%d]." #X "=%#x\n", \
2949 idx, X);
2950
2951 DESC_PRINT(le32toh(desc->sk_ctl));
2952 DESC_PRINT(le32toh(desc->sk_next));
2953 DESC_PRINT(le32toh(desc->sk_data_lo));
2954 DESC_PRINT(le32toh(desc->sk_data_hi));
2955 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2956 DESC_PRINT(le16toh(desc->sk_rsvd0));
2957 DESC_PRINT(le16toh(desc->sk_csum_startval));
2958 DESC_PRINT(le16toh(desc->sk_csum_startpos));
2959 DESC_PRINT(le16toh(desc->sk_csum_writepos));
2960 DESC_PRINT(le16toh(desc->sk_rsvd1));
2961 #undef PRINT
2962 }
2963
2964 void
2965 sk_dump_bytes(const char *data, int len)
2966 {
2967 int c, i, j;
2968
2969 for (i = 0; i < len; i += 16) {
2970 printf("%08x ", i);
2971 c = len - i;
2972 if (c > 16) c = 16;
2973
2974 for (j = 0; j < c; j++) {
2975 printf("%02x ", data[i + j] & 0xff);
2976 if ((j & 0xf) == 7 && j > 0)
2977 printf(" ");
2978 }
2979
2980 for (; j < 16; j++)
2981 printf(" ");
2982 printf(" ");
2983
2984 for (j = 0; j < c; j++) {
2985 int ch = data[i + j] & 0xff;
2986 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2987 }
2988
2989 printf("\n");
2990
2991 if (c < 16)
2992 break;
2993 }
2994 }
2995
2996 void
2997 sk_dump_mbuf(struct mbuf *m)
2998 {
2999 int count = m->m_pkthdr.len;
3000
3001 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3002
3003 while (count > 0 && m) {
3004 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3005 m, m->m_data, m->m_len);
3006 sk_dump_bytes(mtod(m, char *), m->m_len);
3007
3008 count -= m->m_len;
3009 m = m->m_next;
3010 }
3011 }
3012 #endif
3013
3014 static int
3015 sk_sysctl_handler(SYSCTLFN_ARGS)
3016 {
3017 int error, t;
3018 struct sysctlnode node;
3019 struct sk_softc *sc;
3020
3021 node = *rnode;
3022 sc = node.sysctl_data;
3023 t = sc->sk_int_mod;
3024 node.sysctl_data = &t;
3025 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3026 if (error || newp == NULL)
3027 return error;
3028
3029 if (t < SK_IM_MIN || t > SK_IM_MAX)
3030 return EINVAL;
3031
3032 /* update the softc with sysctl-changed value, and mark
3033 for hardware update */
3034 sc->sk_int_mod = t;
3035 sc->sk_int_mod_pending = 1;
3036 return 0;
3037 }
3038
3039 /*
3040 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3041 * set up in skc_attach()
3042 */
3043 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3044 {
3045 int rc;
3046 const struct sysctlnode *node;
3047
3048 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3049 0, CTLTYPE_NODE, "hw", NULL,
3050 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3051 goto err;
3052 }
3053
3054 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3055 0, CTLTYPE_NODE, "sk",
3056 SYSCTL_DESCR("sk interface controls"),
3057 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3058 goto err;
3059 }
3060
3061 sk_root_num = node->sysctl_num;
3062 return;
3063
3064 err:
3065 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3066 }
3067