Home | History | Annotate | Line # | Download | only in pci
if_sk.c revision 1.52
      1 /*	$NetBSD: if_sk.c,v 1.52 2008/09/08 21:44:22 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
     30 
     31 /*
     32  * Copyright (c) 1997, 1998, 1999, 2000
     33  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *	This product includes software developed by Bill Paul.
     46  * 4. Neither the name of the author nor the names of any co-contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     60  * THE POSSIBILITY OF SUCH DAMAGE.
     61  *
     62  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
     63  */
     64 
     65 /*
     66  * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
     67  *
     68  * Permission to use, copy, modify, and distribute this software for any
     69  * purpose with or without fee is hereby granted, provided that the above
     70  * copyright notice and this permission notice appear in all copies.
     71  *
     72  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     73  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     74  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     75  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     76  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     77  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     78  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     79  */
     80 
     81 /*
     82  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
     83  * the SK-984x series adapters, both single port and dual port.
     84  * References:
     85  * 	The XaQti XMAC II datasheet,
     86  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     87  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
     88  *
     89  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
     90  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
     91  * convenience to others until Vitesse corrects this problem:
     92  *
     93  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     94  *
     95  * Written by Bill Paul <wpaul (at) ee.columbia.edu>
     96  * Department of Electrical Engineering
     97  * Columbia University, New York City
     98  */
     99 
    100 /*
    101  * The SysKonnect gigabit ethernet adapters consist of two main
    102  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
    103  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
    104  * components and a PHY while the GEnesis controller provides a PCI
    105  * interface with DMA support. Each card may have between 512K and
    106  * 2MB of SRAM on board depending on the configuration.
    107  *
    108  * The SysKonnect GEnesis controller can have either one or two XMAC
    109  * chips connected to it, allowing single or dual port NIC configurations.
    110  * SysKonnect has the distinction of being the only vendor on the market
    111  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
    112  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
    113  * XMAC registers. This driver takes advantage of these features to allow
    114  * both XMACs to operate as independent interfaces.
    115  */
    116 
    117 #include <sys/cdefs.h>
    118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.52 2008/09/08 21:44:22 christos Exp $");
    119 
    120 #include "bpfilter.h"
    121 #include "rnd.h"
    122 
    123 #include <sys/param.h>
    124 #include <sys/systm.h>
    125 #include <sys/sockio.h>
    126 #include <sys/mbuf.h>
    127 #include <sys/malloc.h>
    128 #include <sys/mutex.h>
    129 #include <sys/kernel.h>
    130 #include <sys/socket.h>
    131 #include <sys/device.h>
    132 #include <sys/queue.h>
    133 #include <sys/callout.h>
    134 #include <sys/sysctl.h>
    135 #include <sys/endian.h>
    136 
    137 #include <net/if.h>
    138 #include <net/if_dl.h>
    139 #include <net/if_types.h>
    140 
    141 #include <net/if_media.h>
    142 
    143 #if NBPFILTER > 0
    144 #include <net/bpf.h>
    145 #endif
    146 #if NRND > 0
    147 #include <sys/rnd.h>
    148 #endif
    149 
    150 #include <dev/mii/mii.h>
    151 #include <dev/mii/miivar.h>
    152 #include <dev/mii/brgphyreg.h>
    153 
    154 #include <dev/pci/pcireg.h>
    155 #include <dev/pci/pcivar.h>
    156 #include <dev/pci/pcidevs.h>
    157 
    158 /* #define SK_USEIOSPACE */
    159 
    160 #include <dev/pci/if_skreg.h>
    161 #include <dev/pci/if_skvar.h>
    162 
    163 int skc_probe(device_t, cfdata_t, void *);
    164 void skc_attach(device_t, device_t, void *aux);
    165 int sk_probe(device_t, cfdata_t, void *);
    166 void sk_attach(device_t, device_t, void *aux);
    167 int skcprint(void *, const char *);
    168 int sk_intr(void *);
    169 void sk_intr_bcom(struct sk_if_softc *);
    170 void sk_intr_xmac(struct sk_if_softc *);
    171 void sk_intr_yukon(struct sk_if_softc *);
    172 void sk_rxeof(struct sk_if_softc *);
    173 void sk_txeof(struct sk_if_softc *);
    174 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
    175 void sk_start(struct ifnet *);
    176 int sk_ioctl(struct ifnet *, u_long, void *);
    177 int sk_init(struct ifnet *);
    178 void sk_init_xmac(struct sk_if_softc *);
    179 void sk_init_yukon(struct sk_if_softc *);
    180 void sk_stop(struct ifnet *, int);
    181 void sk_watchdog(struct ifnet *);
    182 void sk_shutdown(void *);
    183 int sk_ifmedia_upd(struct ifnet *);
    184 void sk_reset(struct sk_softc *);
    185 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
    186 int sk_alloc_jumbo_mem(struct sk_if_softc *);
    187 void sk_free_jumbo_mem(struct sk_if_softc *);
    188 void *sk_jalloc(struct sk_if_softc *);
    189 void sk_jfree(struct mbuf *, void *, size_t, void *);
    190 int sk_init_rx_ring(struct sk_if_softc *);
    191 int sk_init_tx_ring(struct sk_if_softc *);
    192 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
    193 void sk_vpd_read_res(struct sk_softc *,
    194 					struct vpd_res *, int);
    195 void sk_vpd_read(struct sk_softc *);
    196 
    197 void sk_update_int_mod(struct sk_softc *);
    198 
    199 int sk_xmac_miibus_readreg(device_t, int, int);
    200 void sk_xmac_miibus_writereg(device_t, int, int, int);
    201 void sk_xmac_miibus_statchg(device_t);
    202 
    203 int sk_marv_miibus_readreg(device_t, int, int);
    204 void sk_marv_miibus_writereg(device_t, int, int, int);
    205 void sk_marv_miibus_statchg(device_t);
    206 
    207 u_int32_t sk_xmac_hash(void *);
    208 u_int32_t sk_yukon_hash(void *);
    209 void sk_setfilt(struct sk_if_softc *, void *, int);
    210 void sk_setmulti(struct sk_if_softc *);
    211 void sk_tick(void *);
    212 
    213 /* #define SK_DEBUG 2 */
    214 #ifdef SK_DEBUG
    215 #define DPRINTF(x)	if (skdebug) printf x
    216 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
    217 int	skdebug = SK_DEBUG;
    218 
    219 void sk_dump_txdesc(struct sk_tx_desc *, int);
    220 void sk_dump_mbuf(struct mbuf *);
    221 void sk_dump_bytes(const char *, int);
    222 #else
    223 #define DPRINTF(x)
    224 #define DPRINTFN(n,x)
    225 #endif
    226 
    227 static int sk_sysctl_handler(SYSCTLFN_PROTO);
    228 static int sk_root_num;
    229 
    230 /* supported device vendors */
    231 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
    232 static const struct sk_product {
    233 	pci_vendor_id_t		sk_vendor;
    234 	pci_product_id_t	sk_product;
    235 } sk_products[] = {
    236 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
    237 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
    238 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
    239 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
    240 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
    241 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
    242 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
    243 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
    244 	{ 0, 0, }
    245 };
    246 
    247 #define SK_LINKSYS_EG1032_SUBID	0x00151737
    248 
    249 static inline u_int32_t
    250 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
    251 {
    252 #ifdef SK_USEIOSPACE
    253 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    254 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
    255 #else
    256 	return CSR_READ_4(sc, reg);
    257 #endif
    258 }
    259 
    260 static inline u_int16_t
    261 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
    262 {
    263 #ifdef SK_USEIOSPACE
    264 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    265 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
    266 #else
    267 	return CSR_READ_2(sc, reg);
    268 #endif
    269 }
    270 
    271 static inline u_int8_t
    272 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
    273 {
    274 #ifdef SK_USEIOSPACE
    275 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    276 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
    277 #else
    278 	return CSR_READ_1(sc, reg);
    279 #endif
    280 }
    281 
    282 static inline void
    283 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
    284 {
    285 #ifdef SK_USEIOSPACE
    286 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    287 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
    288 #else
    289 	CSR_WRITE_4(sc, reg, x);
    290 #endif
    291 }
    292 
    293 static inline void
    294 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
    295 {
    296 #ifdef SK_USEIOSPACE
    297 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    298 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
    299 #else
    300 	CSR_WRITE_2(sc, reg, x);
    301 #endif
    302 }
    303 
    304 static inline void
    305 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
    306 {
    307 #ifdef SK_USEIOSPACE
    308 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    309 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
    310 #else
    311 	CSR_WRITE_1(sc, reg, x);
    312 #endif
    313 }
    314 
    315 /*
    316  * The VPD EEPROM contains Vital Product Data, as suggested in
    317  * the PCI 2.1 specification. The VPD data is separared into areas
    318  * denoted by resource IDs. The SysKonnect VPD contains an ID string
    319  * resource (the name of the adapter), a read-only area resource
    320  * containing various key/data fields and a read/write area which
    321  * can be used to store asset management information or log messages.
    322  * We read the ID string and read-only into buffers attached to
    323  * the controller softc structure for later use. At the moment,
    324  * we only use the ID string during sk_attach().
    325  */
    326 u_int8_t
    327 sk_vpd_readbyte(struct sk_softc *sc, int addr)
    328 {
    329 	int			i;
    330 
    331 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
    332 	for (i = 0; i < SK_TIMEOUT; i++) {
    333 		DELAY(1);
    334 		if (sk_win_read_2(sc,
    335 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
    336 			break;
    337 	}
    338 
    339 	if (i == SK_TIMEOUT)
    340 		return 0;
    341 
    342 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
    343 }
    344 
    345 void
    346 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
    347 {
    348 	int			i;
    349 	u_int8_t		*ptr;
    350 
    351 	ptr = (u_int8_t *)res;
    352 	for (i = 0; i < sizeof(struct vpd_res); i++)
    353 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
    354 }
    355 
    356 void
    357 sk_vpd_read(struct sk_softc *sc)
    358 {
    359 	int			pos = 0, i;
    360 	struct vpd_res		res;
    361 
    362 	if (sc->sk_vpd_prodname != NULL)
    363 		free(sc->sk_vpd_prodname, M_DEVBUF);
    364 	if (sc->sk_vpd_readonly != NULL)
    365 		free(sc->sk_vpd_readonly, M_DEVBUF);
    366 	sc->sk_vpd_prodname = NULL;
    367 	sc->sk_vpd_readonly = NULL;
    368 
    369 	sk_vpd_read_res(sc, &res, pos);
    370 
    371 	if (res.vr_id != VPD_RES_ID) {
    372 		aprint_error_dev(sc->sk_dev,
    373 		    "bad VPD resource id: expected %x got %x\n",
    374 		    VPD_RES_ID, res.vr_id);
    375 		return;
    376 	}
    377 
    378 	pos += sizeof(res);
    379 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    380 	if (sc->sk_vpd_prodname == NULL)
    381 		panic("sk_vpd_read");
    382 	for (i = 0; i < res.vr_len; i++)
    383 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
    384 	sc->sk_vpd_prodname[i] = '\0';
    385 	pos += i;
    386 
    387 	sk_vpd_read_res(sc, &res, pos);
    388 
    389 	if (res.vr_id != VPD_RES_READ) {
    390 		aprint_error_dev(sc->sk_dev,
    391 		    "bad VPD resource id: expected %x got %x\n",
    392 		    VPD_RES_READ, res.vr_id);
    393 		return;
    394 	}
    395 
    396 	pos += sizeof(res);
    397 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    398 	if (sc->sk_vpd_readonly == NULL)
    399 		panic("sk_vpd_read");
    400 	for (i = 0; i < res.vr_len ; i++)
    401 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
    402 }
    403 
    404 int
    405 sk_xmac_miibus_readreg(device_t dev, int phy, int reg)
    406 {
    407 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    408 	int i;
    409 
    410 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
    411 
    412 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
    413 		return 0;
    414 
    415 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    416 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
    417 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    418 		for (i = 0; i < SK_TIMEOUT; i++) {
    419 			DELAY(1);
    420 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
    421 			    XM_MMUCMD_PHYDATARDY)
    422 				break;
    423 		}
    424 
    425 		if (i == SK_TIMEOUT) {
    426 			aprint_error_dev(sc_if->sk_dev,
    427 			    "phy failed to come ready\n");
    428 			return 0;
    429 		}
    430 	}
    431 	DELAY(1);
    432 	return SK_XM_READ_2(sc_if, XM_PHY_DATA);
    433 }
    434 
    435 void
    436 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, int val)
    437 {
    438 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    439 	int i;
    440 
    441 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
    442 
    443 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    444 	for (i = 0; i < SK_TIMEOUT; i++) {
    445 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    446 			break;
    447 	}
    448 
    449 	if (i == SK_TIMEOUT) {
    450 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
    451 		return;
    452 	}
    453 
    454 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
    455 	for (i = 0; i < SK_TIMEOUT; i++) {
    456 		DELAY(1);
    457 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    458 			break;
    459 	}
    460 
    461 	if (i == SK_TIMEOUT)
    462 		aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
    463 }
    464 
    465 void
    466 sk_xmac_miibus_statchg(device_t dev)
    467 {
    468 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    469 	struct mii_data *mii = &sc_if->sk_mii;
    470 
    471 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
    472 
    473 	/*
    474 	 * If this is a GMII PHY, manually set the XMAC's
    475 	 * duplex mode accordingly.
    476 	 */
    477 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    478 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
    479 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    480 		else
    481 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    482 	}
    483 }
    484 
    485 int
    486 sk_marv_miibus_readreg(device_t dev, int phy, int reg)
    487 {
    488 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    489 	u_int16_t val;
    490 	int i;
    491 
    492 	if (phy != 0 ||
    493 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
    494 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
    495 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
    496 			     phy, reg));
    497 		return 0;
    498 	}
    499 
    500         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    501 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
    502 
    503 	for (i = 0; i < SK_TIMEOUT; i++) {
    504 		DELAY(1);
    505 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
    506 		if (val & YU_SMICR_READ_VALID)
    507 			break;
    508 	}
    509 
    510 	if (i == SK_TIMEOUT) {
    511 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
    512 		return 0;
    513 	}
    514 
    515  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
    516 		     SK_TIMEOUT));
    517 
    518         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
    519 
    520 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
    521 		     phy, reg, val));
    522 
    523 	return val;
    524 }
    525 
    526 void
    527 sk_marv_miibus_writereg(device_t dev, int phy, int reg, int val)
    528 {
    529 	struct sk_if_softc *sc_if = device_private(dev);
    530 	int i;
    531 
    532 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
    533 		     phy, reg, val));
    534 
    535 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
    536 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    537 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
    538 
    539 	for (i = 0; i < SK_TIMEOUT; i++) {
    540 		DELAY(1);
    541 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
    542 			break;
    543 	}
    544 
    545 	if (i == SK_TIMEOUT)
    546 		printf("%s: phy write timed out\n",
    547 		    device_xname(sc_if->sk_dev));
    548 }
    549 
    550 void
    551 sk_marv_miibus_statchg(device_t dev)
    552 {
    553 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
    554 		     SK_YU_READ_2((device_private(dev)), YUKON_GPCR)));
    555 }
    556 
    557 #define SK_HASH_BITS		6
    558 
    559 u_int32_t
    560 sk_xmac_hash(void *addr)
    561 {
    562 	u_int32_t		crc;
    563 
    564 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
    565 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
    566 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    567 	return crc;
    568 }
    569 
    570 u_int32_t
    571 sk_yukon_hash(void *addr)
    572 {
    573 	u_int32_t		crc;
    574 
    575 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
    576 	crc &= ((1 << SK_HASH_BITS) - 1);
    577 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    578 	return crc;
    579 }
    580 
    581 void
    582 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
    583 {
    584 	char *addr = addrv;
    585 	int base = XM_RXFILT_ENTRY(slot);
    586 
    587 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
    588 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
    589 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
    590 }
    591 
    592 void
    593 sk_setmulti(struct sk_if_softc *sc_if)
    594 {
    595 	struct sk_softc *sc = sc_if->sk_softc;
    596 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
    597 	u_int32_t hashes[2] = { 0, 0 };
    598 	int h = 0, i;
    599 	struct ethercom *ec = &sc_if->sk_ethercom;
    600 	struct ether_multi *enm;
    601 	struct ether_multistep step;
    602 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
    603 
    604 	/* First, zot all the existing filters. */
    605 	switch (sc->sk_type) {
    606 	case SK_GENESIS:
    607 		for (i = 1; i < XM_RXFILT_MAX; i++)
    608 			sk_setfilt(sc_if, (void *)&dummy, i);
    609 
    610 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
    611 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
    612 		break;
    613 	case SK_YUKON:
    614 	case SK_YUKON_LITE:
    615 	case SK_YUKON_LP:
    616 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
    617 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
    618 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
    619 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
    620 		break;
    621 	}
    622 
    623 	/* Now program new ones. */
    624 allmulti:
    625 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    626 		hashes[0] = 0xFFFFFFFF;
    627 		hashes[1] = 0xFFFFFFFF;
    628 	} else {
    629 		i = 1;
    630 		/* First find the tail of the list. */
    631 		ETHER_FIRST_MULTI(step, ec, enm);
    632 		while (enm != NULL) {
    633 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
    634 				 ETHER_ADDR_LEN)) {
    635 				ifp->if_flags |= IFF_ALLMULTI;
    636 				goto allmulti;
    637 			}
    638 			DPRINTFN(2,("multicast address %s\n",
    639 	    			ether_sprintf(enm->enm_addrlo)));
    640 			/*
    641 			 * Program the first XM_RXFILT_MAX multicast groups
    642 			 * into the perfect filter. For all others,
    643 			 * use the hash table.
    644 			 */
    645 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
    646 				sk_setfilt(sc_if, enm->enm_addrlo, i);
    647 				i++;
    648 			}
    649 			else {
    650 				switch (sc->sk_type) {
    651 				case SK_GENESIS:
    652 					h = sk_xmac_hash(enm->enm_addrlo);
    653 					break;
    654 				case SK_YUKON:
    655 				case SK_YUKON_LITE:
    656 				case SK_YUKON_LP:
    657 					h = sk_yukon_hash(enm->enm_addrlo);
    658 					break;
    659 				}
    660 				if (h < 32)
    661 					hashes[0] |= (1 << h);
    662 				else
    663 					hashes[1] |= (1 << (h - 32));
    664 			}
    665 
    666 			ETHER_NEXT_MULTI(step, enm);
    667 		}
    668 	}
    669 
    670 	switch (sc->sk_type) {
    671 	case SK_GENESIS:
    672 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
    673 			       XM_MODE_RX_USE_PERFECT);
    674 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
    675 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
    676 		break;
    677 	case SK_YUKON:
    678 	case SK_YUKON_LITE:
    679 	case SK_YUKON_LP:
    680 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
    681 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
    682 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
    683 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
    684 		break;
    685 	}
    686 }
    687 
    688 int
    689 sk_init_rx_ring(struct sk_if_softc *sc_if)
    690 {
    691 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    692 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    693 	int			i;
    694 
    695 	bzero((char *)rd->sk_rx_ring,
    696 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
    697 
    698 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    699 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
    700 		if (i == (SK_RX_RING_CNT - 1)) {
    701 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
    702 			rd->sk_rx_ring[i].sk_next =
    703 				htole32(SK_RX_RING_ADDR(sc_if, 0));
    704 		} else {
    705 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
    706 			rd->sk_rx_ring[i].sk_next =
    707 				htole32(SK_RX_RING_ADDR(sc_if,i+1));
    708 		}
    709 	}
    710 
    711 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    712 		if (sk_newbuf(sc_if, i, NULL,
    713 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
    714 			aprint_error_dev(sc_if->sk_dev,
    715 			    "failed alloc of %dth mbuf\n", i);
    716 			return ENOBUFS;
    717 		}
    718 	}
    719 	sc_if->sk_cdata.sk_rx_prod = 0;
    720 	sc_if->sk_cdata.sk_rx_cons = 0;
    721 
    722 	return 0;
    723 }
    724 
    725 int
    726 sk_init_tx_ring(struct sk_if_softc *sc_if)
    727 {
    728 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    729 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    730 	int			i;
    731 
    732 	memset(sc_if->sk_rdata->sk_tx_ring, 0,
    733 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
    734 
    735 	for (i = 0; i < SK_TX_RING_CNT; i++) {
    736 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
    737 		if (i == (SK_TX_RING_CNT - 1)) {
    738 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
    739 			rd->sk_tx_ring[i].sk_next =
    740 				htole32(SK_TX_RING_ADDR(sc_if, 0));
    741 		} else {
    742 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
    743 			rd->sk_tx_ring[i].sk_next =
    744 				htole32(SK_TX_RING_ADDR(sc_if,i+1));
    745 		}
    746 	}
    747 
    748 	sc_if->sk_cdata.sk_tx_prod = 0;
    749 	sc_if->sk_cdata.sk_tx_cons = 0;
    750 	sc_if->sk_cdata.sk_tx_cnt = 0;
    751 
    752 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
    753 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    754 
    755 	return 0;
    756 }
    757 
    758 int
    759 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
    760 	  bus_dmamap_t dmamap)
    761 {
    762 	struct mbuf		*m_new = NULL;
    763 	struct sk_chain		*c;
    764 	struct sk_rx_desc	*r;
    765 
    766 	if (m == NULL) {
    767 		void *buf = NULL;
    768 
    769 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    770 		if (m_new == NULL) {
    771 			aprint_error_dev(sc_if->sk_dev,
    772 			    "no memory for rx list -- packet dropped!\n");
    773 			return ENOBUFS;
    774 		}
    775 
    776 		/* Allocate the jumbo buffer */
    777 		buf = sk_jalloc(sc_if);
    778 		if (buf == NULL) {
    779 			m_freem(m_new);
    780 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
    781 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
    782 			return ENOBUFS;
    783 		}
    784 
    785 		/* Attach the buffer to the mbuf */
    786 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    787 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
    788 
    789 	} else {
    790 		/*
    791 	 	 * We're re-using a previously allocated mbuf;
    792 		 * be sure to re-init pointers and lengths to
    793 		 * default values.
    794 		 */
    795 		m_new = m;
    796 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    797 		m_new->m_data = m_new->m_ext.ext_buf;
    798 	}
    799 	m_adj(m_new, ETHER_ALIGN);
    800 
    801 	c = &sc_if->sk_cdata.sk_rx_chain[i];
    802 	r = c->sk_desc;
    803 	c->sk_mbuf = m_new;
    804 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
    805 	    (((vaddr_t)m_new->m_data
    806 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
    807 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
    808 
    809 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    810 
    811 	return 0;
    812 }
    813 
    814 /*
    815  * Memory management for jumbo frames.
    816  */
    817 
    818 int
    819 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
    820 {
    821 	struct sk_softc		*sc = sc_if->sk_softc;
    822 	char *ptr, *kva;
    823 	bus_dma_segment_t	seg;
    824 	int		i, rseg, state, error;
    825 	struct sk_jpool_entry   *entry;
    826 
    827 	state = error = 0;
    828 
    829 	/* Grab a big chunk o' storage. */
    830 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
    831 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    832 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
    833 		return ENOBUFS;
    834 	}
    835 
    836 	state = 1;
    837 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
    838 			   BUS_DMA_NOWAIT)) {
    839 		aprint_error_dev(sc->sk_dev,
    840 		    "can't map dma buffers (%d bytes)\n",
    841 		    SK_JMEM);
    842 		error = ENOBUFS;
    843 		goto out;
    844 	}
    845 
    846 	state = 2;
    847 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
    848 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
    849 		aprint_error_dev(sc->sk_dev, "can't create dma map\n");
    850 		error = ENOBUFS;
    851 		goto out;
    852 	}
    853 
    854 	state = 3;
    855 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
    856 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
    857 		aprint_error_dev(sc->sk_dev, "can't load dma map\n");
    858 		error = ENOBUFS;
    859 		goto out;
    860 	}
    861 
    862 	state = 4;
    863 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
    864 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
    865 
    866 	LIST_INIT(&sc_if->sk_jfree_listhead);
    867 	LIST_INIT(&sc_if->sk_jinuse_listhead);
    868 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
    869 
    870 	/*
    871 	 * Now divide it up into 9K pieces and save the addresses
    872 	 * in an array.
    873 	 */
    874 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
    875 	for (i = 0; i < SK_JSLOTS; i++) {
    876 		sc_if->sk_cdata.sk_jslots[i] = ptr;
    877 		ptr += SK_JLEN;
    878 		entry = malloc(sizeof(struct sk_jpool_entry),
    879 		    M_DEVBUF, M_NOWAIT);
    880 		if (entry == NULL) {
    881 			aprint_error_dev(sc->sk_dev,
    882 			    "no memory for jumbo buffer queue!\n");
    883 			error = ENOBUFS;
    884 			goto out;
    885 		}
    886 		entry->slot = i;
    887 		if (i)
    888 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
    889 				 entry, jpool_entries);
    890 		else
    891 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
    892 				 entry, jpool_entries);
    893 	}
    894 out:
    895 	if (error != 0) {
    896 		switch (state) {
    897 		case 4:
    898 			bus_dmamap_unload(sc->sc_dmatag,
    899 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    900 		case 3:
    901 			bus_dmamap_destroy(sc->sc_dmatag,
    902 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    903 		case 2:
    904 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
    905 		case 1:
    906 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
    907 			break;
    908 		default:
    909 			break;
    910 		}
    911 	}
    912 
    913 	return error;
    914 }
    915 
    916 /*
    917  * Allocate a jumbo buffer.
    918  */
    919 void *
    920 sk_jalloc(struct sk_if_softc *sc_if)
    921 {
    922 	struct sk_jpool_entry   *entry;
    923 
    924 	mutex_enter(&sc_if->sk_jpool_mtx);
    925 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
    926 
    927 	if (entry == NULL) {
    928 		mutex_exit(&sc_if->sk_jpool_mtx);
    929 		return NULL;
    930 	}
    931 
    932 	LIST_REMOVE(entry, jpool_entries);
    933 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
    934 	mutex_exit(&sc_if->sk_jpool_mtx);
    935 	return sc_if->sk_cdata.sk_jslots[entry->slot];
    936 }
    937 
    938 /*
    939  * Release a jumbo buffer.
    940  */
    941 void
    942 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
    943 {
    944 	struct sk_jpool_entry *entry;
    945 	struct sk_if_softc *sc;
    946 	int i;
    947 
    948 	/* Extract the softc struct pointer. */
    949 	sc = (struct sk_if_softc *)arg;
    950 
    951 	if (sc == NULL)
    952 		panic("sk_jfree: can't find softc pointer!");
    953 
    954 	/* calculate the slot this buffer belongs to */
    955 
    956 	i = ((vaddr_t)buf
    957 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
    958 
    959 	if ((i < 0) || (i >= SK_JSLOTS))
    960 		panic("sk_jfree: asked to free buffer that we don't manage!");
    961 
    962 	mutex_enter(&sc->sk_jpool_mtx);
    963 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
    964 	if (entry == NULL)
    965 		panic("sk_jfree: buffer not in use!");
    966 	entry->slot = i;
    967 	LIST_REMOVE(entry, jpool_entries);
    968 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
    969 	mutex_exit(&sc->sk_jpool_mtx);
    970 
    971 	if (__predict_true(m != NULL))
    972 		pool_cache_put(mb_cache, m);
    973 }
    974 
    975 /*
    976  * Set media options.
    977  */
    978 int
    979 sk_ifmedia_upd(struct ifnet *ifp)
    980 {
    981 	struct sk_if_softc *sc_if = ifp->if_softc;
    982 	int rc;
    983 
    984 	(void) sk_init(ifp);
    985 	if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
    986 		return 0;
    987 	return rc;
    988 }
    989 
    990 int
    991 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
    992 {
    993 	struct sk_if_softc *sc_if = ifp->if_softc;
    994 	struct sk_softc *sc = sc_if->sk_softc;
    995 	int s, error = 0;
    996 
    997 	/* DPRINTFN(2, ("sk_ioctl\n")); */
    998 
    999 	s = splnet();
   1000 
   1001 	switch (command) {
   1002 
   1003 	case SIOCSIFFLAGS:
   1004 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
   1005 		if (ifp->if_flags & IFF_UP) {
   1006 			if (ifp->if_flags & IFF_RUNNING &&
   1007 			    ifp->if_flags & IFF_PROMISC &&
   1008 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
   1009 				switch (sc->sk_type) {
   1010 				case SK_GENESIS:
   1011 					SK_XM_SETBIT_4(sc_if, XM_MODE,
   1012 					    XM_MODE_RX_PROMISC);
   1013 					break;
   1014 				case SK_YUKON:
   1015 				case SK_YUKON_LITE:
   1016 				case SK_YUKON_LP:
   1017 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
   1018 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1019 					break;
   1020 				}
   1021 				sk_setmulti(sc_if);
   1022 			} else if (ifp->if_flags & IFF_RUNNING &&
   1023 			    !(ifp->if_flags & IFF_PROMISC) &&
   1024 			    sc_if->sk_if_flags & IFF_PROMISC) {
   1025 				switch (sc->sk_type) {
   1026 				case SK_GENESIS:
   1027 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
   1028 					    XM_MODE_RX_PROMISC);
   1029 					break;
   1030 				case SK_YUKON:
   1031 				case SK_YUKON_LITE:
   1032 				case SK_YUKON_LP:
   1033 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
   1034 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1035 					break;
   1036 				}
   1037 
   1038 				sk_setmulti(sc_if);
   1039 			} else
   1040 				(void) sk_init(ifp);
   1041 		} else {
   1042 			if (ifp->if_flags & IFF_RUNNING)
   1043 				sk_stop(ifp,0);
   1044 		}
   1045 		sc_if->sk_if_flags = ifp->if_flags;
   1046 		error = 0;
   1047 		break;
   1048 
   1049 	default:
   1050 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
   1051 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   1052 			break;
   1053 
   1054 		error = 0;
   1055 
   1056 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   1057 			;
   1058 		else if (ifp->if_flags & IFF_RUNNING) {
   1059 			sk_setmulti(sc_if);
   1060 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
   1061 		}
   1062 		break;
   1063 	}
   1064 
   1065 	splx(s);
   1066 	return error;
   1067 }
   1068 
   1069 void
   1070 sk_update_int_mod(struct sk_softc *sc)
   1071 {
   1072 	u_int32_t imtimer_ticks;
   1073 
   1074 	/*
   1075          * Configure interrupt moderation. The moderation timer
   1076 	 * defers interrupts specified in the interrupt moderation
   1077 	 * timer mask based on the timeout specified in the interrupt
   1078 	 * moderation timer init register. Each bit in the timer
   1079 	 * register represents one tick, so to specify a timeout in
   1080 	 * microseconds, we have to multiply by the correct number of
   1081 	 * ticks-per-microsecond.
   1082 	 */
   1083 	switch (sc->sk_type) {
   1084 	case SK_GENESIS:
   1085 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   1086 		break;
   1087 	case SK_YUKON_EC:
   1088 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   1089 		break;
   1090 	default:
   1091 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   1092 	}
   1093 	aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
   1094 	    sc->sk_int_mod);
   1095         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
   1096         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
   1097 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
   1098         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
   1099 	sc->sk_int_mod_pending = 0;
   1100 }
   1101 
   1102 /*
   1103  * Lookup: Check the PCI vendor and device, and return a pointer to
   1104  * The structure if the IDs match against our list.
   1105  */
   1106 
   1107 static const struct sk_product *
   1108 sk_lookup(const struct pci_attach_args *pa)
   1109 {
   1110 	const struct sk_product *psk;
   1111 
   1112 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
   1113 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
   1114 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
   1115 			return psk;
   1116 	}
   1117 	return NULL;
   1118 }
   1119 
   1120 /*
   1121  * Probe for a SysKonnect GEnesis chip.
   1122  */
   1123 
   1124 int
   1125 skc_probe(device_t parent, cfdata_t match, void *aux)
   1126 {
   1127 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1128 	const struct sk_product *psk;
   1129 	pcireg_t subid;
   1130 
   1131 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
   1132 
   1133 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
   1134 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
   1135 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
   1136 	    subid == SK_LINKSYS_EG1032_SUBID)
   1137 		return 1;
   1138 
   1139 	if ((psk = sk_lookup(pa))) {
   1140 		return 1;
   1141 	}
   1142 	return 0;
   1143 }
   1144 
   1145 /*
   1146  * Force the GEnesis into reset, then bring it out of reset.
   1147  */
   1148 void sk_reset(struct sk_softc *sc)
   1149 {
   1150 	DPRINTFN(2, ("sk_reset\n"));
   1151 
   1152 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
   1153 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
   1154 	if (SK_YUKON_FAMILY(sc->sk_type))
   1155 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
   1156 
   1157 	DELAY(1000);
   1158 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
   1159 	DELAY(2);
   1160 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
   1161 	if (SK_YUKON_FAMILY(sc->sk_type))
   1162 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
   1163 
   1164 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
   1165 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
   1166 		     CSR_READ_2(sc, SK_LINK_CTRL)));
   1167 
   1168 	if (sc->sk_type == SK_GENESIS) {
   1169 		/* Configure packet arbiter */
   1170 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
   1171 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1172 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1173 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1174 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1175 	}
   1176 
   1177 	/* Enable RAM interface */
   1178 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
   1179 
   1180 	sk_update_int_mod(sc);
   1181 }
   1182 
   1183 int
   1184 sk_probe(device_t parent, cfdata_t match, void *aux)
   1185 {
   1186 	struct skc_attach_args *sa = aux;
   1187 
   1188 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
   1189 		return 0;
   1190 
   1191 	return 1;
   1192 }
   1193 
   1194 /*
   1195  * Each XMAC chip is attached as a separate logical IP interface.
   1196  * Single port cards will have only one logical interface of course.
   1197  */
   1198 void
   1199 sk_attach(device_t parent, device_t self, void *aux)
   1200 {
   1201 	struct sk_if_softc *sc_if = device_private(self);
   1202 	struct sk_softc *sc = device_private(parent);
   1203 	struct skc_attach_args *sa = aux;
   1204 	struct sk_txmap_entry	*entry;
   1205 	struct ifnet *ifp;
   1206 	bus_dma_segment_t seg;
   1207 	bus_dmamap_t dmamap;
   1208 	void *kva;
   1209 	int i, rseg;
   1210 
   1211 	aprint_naive("\n");
   1212 
   1213 	sc_if->sk_dev = self;
   1214 	sc_if->sk_port = sa->skc_port;
   1215 	sc_if->sk_softc = sc;
   1216 	sc->sk_if[sa->skc_port] = sc_if;
   1217 
   1218 	if (sa->skc_port == SK_PORT_A)
   1219 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
   1220 	if (sa->skc_port == SK_PORT_B)
   1221 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
   1222 
   1223 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
   1224 
   1225 	/*
   1226 	 * Get station address for this interface. Note that
   1227 	 * dual port cards actually come with three station
   1228 	 * addresses: one for each port, plus an extra. The
   1229 	 * extra one is used by the SysKonnect driver software
   1230 	 * as a 'virtual' station address for when both ports
   1231 	 * are operating in failover mode. Currently we don't
   1232 	 * use this extra address.
   1233 	 */
   1234 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1235 		sc_if->sk_enaddr[i] =
   1236 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
   1237 
   1238 
   1239 	aprint_normal(": Ethernet address %s\n",
   1240 	    ether_sprintf(sc_if->sk_enaddr));
   1241 
   1242 	/*
   1243 	 * Set up RAM buffer addresses. The NIC will have a certain
   1244 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
   1245 	 * need to divide this up a) between the transmitter and
   1246  	 * receiver and b) between the two XMACs, if this is a
   1247 	 * dual port NIC. Our algorithm is to divide up the memory
   1248 	 * evenly so that everyone gets a fair share.
   1249 	 */
   1250 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
   1251 		u_int32_t		chunk, val;
   1252 
   1253 		chunk = sc->sk_ramsize / 2;
   1254 		val = sc->sk_rboff / sizeof(u_int64_t);
   1255 		sc_if->sk_rx_ramstart = val;
   1256 		val += (chunk / sizeof(u_int64_t));
   1257 		sc_if->sk_rx_ramend = val - 1;
   1258 		sc_if->sk_tx_ramstart = val;
   1259 		val += (chunk / sizeof(u_int64_t));
   1260 		sc_if->sk_tx_ramend = val - 1;
   1261 	} else {
   1262 		u_int32_t		chunk, val;
   1263 
   1264 		chunk = sc->sk_ramsize / 4;
   1265 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
   1266 		    sizeof(u_int64_t);
   1267 		sc_if->sk_rx_ramstart = val;
   1268 		val += (chunk / sizeof(u_int64_t));
   1269 		sc_if->sk_rx_ramend = val - 1;
   1270 		sc_if->sk_tx_ramstart = val;
   1271 		val += (chunk / sizeof(u_int64_t));
   1272 		sc_if->sk_tx_ramend = val - 1;
   1273 	}
   1274 
   1275 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
   1276 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
   1277 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
   1278 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
   1279 
   1280 	/* Read and save PHY type and set PHY address */
   1281 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
   1282 	switch (sc_if->sk_phytype) {
   1283 	case SK_PHYTYPE_XMAC:
   1284 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
   1285 		break;
   1286 	case SK_PHYTYPE_BCOM:
   1287 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
   1288 		break;
   1289 	case SK_PHYTYPE_MARV_COPPER:
   1290 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
   1291 		break;
   1292 	default:
   1293 		aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
   1294 		    sc_if->sk_phytype);
   1295 		return;
   1296 	}
   1297 
   1298 	/* Allocate the descriptor queues. */
   1299 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
   1300 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1301 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
   1302 		goto fail;
   1303 	}
   1304 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
   1305 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
   1306 		aprint_error_dev(sc_if->sk_dev,
   1307 		    "can't map dma buffers (%lu bytes)\n",
   1308 		    (u_long) sizeof(struct sk_ring_data));
   1309 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1310 		goto fail;
   1311 	}
   1312 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
   1313 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
   1314             &sc_if->sk_ring_map)) {
   1315 		aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
   1316 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1317 		    sizeof(struct sk_ring_data));
   1318 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1319 		goto fail;
   1320 	}
   1321 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
   1322 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
   1323 		aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
   1324 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1325 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1326 		    sizeof(struct sk_ring_data));
   1327 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1328 		goto fail;
   1329 	}
   1330 
   1331 	for (i = 0; i < SK_RX_RING_CNT; i++)
   1332 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   1333 
   1334 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
   1335 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   1336 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   1337 
   1338 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
   1339 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
   1340 			aprint_error_dev(sc_if->sk_dev,
   1341 			    "Can't create TX dmamap\n");
   1342 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1343 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1344 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1345 			    sizeof(struct sk_ring_data));
   1346 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1347 			goto fail;
   1348 		}
   1349 
   1350 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
   1351 		if (!entry) {
   1352 			aprint_error_dev(sc_if->sk_dev,
   1353 			    "Can't alloc txmap entry\n");
   1354 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
   1355 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1356 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1357 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1358 			    sizeof(struct sk_ring_data));
   1359 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1360 			goto fail;
   1361 		}
   1362 		entry->dmamap = dmamap;
   1363 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
   1364 	}
   1365 
   1366         sc_if->sk_rdata = (struct sk_ring_data *)kva;
   1367 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
   1368 
   1369 	ifp = &sc_if->sk_ethercom.ec_if;
   1370 	/* Try to allocate memory for jumbo buffers. */
   1371 	if (sk_alloc_jumbo_mem(sc_if)) {
   1372 		aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
   1373 		goto fail;
   1374 	}
   1375 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
   1376 		| ETHERCAP_JUMBO_MTU;
   1377 
   1378 	ifp->if_softc = sc_if;
   1379 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1380 	ifp->if_ioctl = sk_ioctl;
   1381 	ifp->if_start = sk_start;
   1382 	ifp->if_stop = sk_stop;
   1383 	ifp->if_init = sk_init;
   1384 	ifp->if_watchdog = sk_watchdog;
   1385 	ifp->if_capabilities = 0;
   1386 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
   1387 	IFQ_SET_READY(&ifp->if_snd);
   1388 	strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
   1389 
   1390 	/*
   1391 	 * Do miibus setup.
   1392 	 */
   1393 	switch (sc->sk_type) {
   1394 	case SK_GENESIS:
   1395 		sk_init_xmac(sc_if);
   1396 		break;
   1397 	case SK_YUKON:
   1398 	case SK_YUKON_LITE:
   1399 	case SK_YUKON_LP:
   1400 		sk_init_yukon(sc_if);
   1401 		break;
   1402 	default:
   1403 		aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
   1404 			sc->sk_type);
   1405 		goto fail;
   1406 	}
   1407 
   1408  	DPRINTFN(2, ("sk_attach: 1\n"));
   1409 
   1410 	sc_if->sk_mii.mii_ifp = ifp;
   1411 	switch (sc->sk_type) {
   1412 	case SK_GENESIS:
   1413 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
   1414 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
   1415 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
   1416 		break;
   1417 	case SK_YUKON:
   1418 	case SK_YUKON_LITE:
   1419 	case SK_YUKON_LP:
   1420 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
   1421 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
   1422 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
   1423 		break;
   1424 	}
   1425 
   1426 	sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
   1427 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
   1428 	    sk_ifmedia_upd, ether_mediastatus);
   1429 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
   1430 	    MII_OFFSET_ANY, 0);
   1431 	if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
   1432 		aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
   1433 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
   1434 			    0, NULL);
   1435 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
   1436 	} else
   1437 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1438 
   1439 	callout_init(&sc_if->sk_tick_ch, 0);
   1440 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
   1441 
   1442 	DPRINTFN(2, ("sk_attach: 1\n"));
   1443 
   1444 	/*
   1445 	 * Call MI attach routines.
   1446 	 */
   1447 	if_attach(ifp);
   1448 
   1449 	ether_ifattach(ifp, sc_if->sk_enaddr);
   1450 
   1451 #if NRND > 0
   1452         rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
   1453             RND_TYPE_NET, 0);
   1454 #endif
   1455 
   1456 	DPRINTFN(2, ("sk_attach: end\n"));
   1457 
   1458 	return;
   1459 
   1460 fail:
   1461 	sc->sk_if[sa->skc_port] = NULL;
   1462 }
   1463 
   1464 int
   1465 skcprint(void *aux, const char *pnp)
   1466 {
   1467 	struct skc_attach_args *sa = aux;
   1468 
   1469 	if (pnp)
   1470 		aprint_normal("sk port %c at %s",
   1471 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
   1472 	else
   1473 		aprint_normal(" port %c",
   1474 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
   1475 	return UNCONF;
   1476 }
   1477 
   1478 /*
   1479  * Attach the interface. Allocate softc structures, do ifmedia
   1480  * setup and ethernet/BPF attach.
   1481  */
   1482 void
   1483 skc_attach(device_t parent, device_t self, void *aux)
   1484 {
   1485 	struct sk_softc *sc = device_private(self);
   1486 	struct pci_attach_args *pa = aux;
   1487 	struct skc_attach_args skca;
   1488 	pci_chipset_tag_t pc = pa->pa_pc;
   1489 #ifndef SK_USEIOSPACE
   1490 	pcireg_t memtype;
   1491 #endif
   1492 	pci_intr_handle_t ih;
   1493 	const char *intrstr = NULL;
   1494 	bus_addr_t iobase;
   1495 	bus_size_t iosize;
   1496 	int rc, sk_nodenum;
   1497 	u_int32_t command;
   1498 	const char *revstr;
   1499 	const struct sysctlnode *node;
   1500 
   1501 	sc->sk_dev = self;
   1502 	aprint_naive("\n");
   1503 
   1504 	DPRINTFN(2, ("begin skc_attach\n"));
   1505 
   1506 	/*
   1507 	 * Handle power management nonsense.
   1508 	 */
   1509 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
   1510 
   1511 	if (command == 0x01) {
   1512 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
   1513 		if (command & SK_PSTATE_MASK) {
   1514 			u_int32_t		xiobase, membase, irq;
   1515 
   1516 			/* Save important PCI config data. */
   1517 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
   1518 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
   1519 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
   1520 
   1521 			/* Reset the power state. */
   1522 			aprint_normal_dev(sc->sk_dev,
   1523 			    "chip is in D%d power mode -- setting to D0\n",
   1524 			    command & SK_PSTATE_MASK);
   1525 			command &= 0xFFFFFFFC;
   1526 			pci_conf_write(pc, pa->pa_tag,
   1527 			    SK_PCI_PWRMGMTCTRL, command);
   1528 
   1529 			/* Restore PCI config data. */
   1530 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
   1531 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
   1532 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
   1533 		}
   1534 	}
   1535 
   1536 	/*
   1537 	 * Map control/status registers.
   1538 	 */
   1539 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1540 	command |= PCI_COMMAND_IO_ENABLE |
   1541 	    PCI_COMMAND_MEM_ENABLE |
   1542 	    PCI_COMMAND_MASTER_ENABLE;
   1543 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1544 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1545 
   1546 #ifdef SK_USEIOSPACE
   1547 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
   1548 		aprint_error(": failed to enable I/O ports!\n");
   1549 		return;
   1550 	}
   1551 	/*
   1552 	 * Map control/status registers.
   1553 	 */
   1554 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
   1555 			&sc->sk_btag, &sc->sk_bhandle,
   1556 			&iobase, &iosize)) {
   1557 		aprint_error(": can't find i/o space\n");
   1558 		return;
   1559 	}
   1560 #else
   1561 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1562 		aprint_error(": failed to enable memory mapping!\n");
   1563 		return;
   1564 	}
   1565 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
   1566 	switch (memtype) {
   1567         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1568         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1569                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
   1570 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
   1571 				   &iobase, &iosize) == 0)
   1572                         break;
   1573         default:
   1574                 aprint_error_dev(sc->sk_dev, "can't find mem space\n");
   1575                 return;
   1576 	}
   1577 
   1578 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
   1579 #endif
   1580 	sc->sc_dmatag = pa->pa_dmat;
   1581 
   1582 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
   1583 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
   1584 
   1585 	/* bail out here if chip is not recognized */
   1586 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
   1587 		aprint_error_dev(sc->sk_dev, "unknown chip type\n");
   1588 		goto fail;
   1589 	}
   1590 	if (SK_IS_YUKON2(sc)) {
   1591 		aprint_error_dev(sc->sk_dev,
   1592 		    "Does not support Yukon2--try msk(4).\n");
   1593 		goto fail;
   1594 	}
   1595 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
   1596 
   1597 	/* Allocate interrupt */
   1598 	if (pci_intr_map(pa, &ih)) {
   1599 		aprint_error(": couldn't map interrupt\n");
   1600 		goto fail;
   1601 	}
   1602 
   1603 	intrstr = pci_intr_string(pc, ih);
   1604 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
   1605 	if (sc->sk_intrhand == NULL) {
   1606 		aprint_error(": couldn't establish interrupt");
   1607 		if (intrstr != NULL)
   1608 			aprint_normal(" at %s", intrstr);
   1609 		goto fail;
   1610 	}
   1611 	aprint_normal(": %s\n", intrstr);
   1612 
   1613 	/* Reset the adapter. */
   1614 	sk_reset(sc);
   1615 
   1616 	/* Read and save vital product data from EEPROM. */
   1617 	sk_vpd_read(sc);
   1618 
   1619 	if (sc->sk_type == SK_GENESIS) {
   1620 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1621 		/* Read and save RAM size and RAMbuffer offset */
   1622 		switch (val) {
   1623 		case SK_RAMSIZE_512K_64:
   1624 			sc->sk_ramsize = 0x80000;
   1625 			sc->sk_rboff = SK_RBOFF_0;
   1626 			break;
   1627 		case SK_RAMSIZE_1024K_64:
   1628 			sc->sk_ramsize = 0x100000;
   1629 			sc->sk_rboff = SK_RBOFF_80000;
   1630 			break;
   1631 		case SK_RAMSIZE_1024K_128:
   1632 			sc->sk_ramsize = 0x100000;
   1633 			sc->sk_rboff = SK_RBOFF_0;
   1634 			break;
   1635 		case SK_RAMSIZE_2048K_128:
   1636 			sc->sk_ramsize = 0x200000;
   1637 			sc->sk_rboff = SK_RBOFF_0;
   1638 			break;
   1639 		default:
   1640 			aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
   1641 			       val);
   1642 			goto fail_1;
   1643 			break;
   1644 		}
   1645 
   1646 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
   1647 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
   1648 			     sc->sk_rboff));
   1649 	} else {
   1650 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1651 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
   1652 		sc->sk_rboff = SK_RBOFF_0;
   1653 
   1654 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
   1655 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
   1656 			     sc->sk_rboff));
   1657 	}
   1658 
   1659 	/* Read and save physical media type */
   1660 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
   1661 	case SK_PMD_1000BASESX:
   1662 		sc->sk_pmd = IFM_1000_SX;
   1663 		break;
   1664 	case SK_PMD_1000BASELX:
   1665 		sc->sk_pmd = IFM_1000_LX;
   1666 		break;
   1667 	case SK_PMD_1000BASECX:
   1668 		sc->sk_pmd = IFM_1000_CX;
   1669 		break;
   1670 	case SK_PMD_1000BASETX:
   1671 	case SK_PMD_1000BASETX_ALT:
   1672 		sc->sk_pmd = IFM_1000_T;
   1673 		break;
   1674 	default:
   1675 		aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
   1676 		    sk_win_read_1(sc, SK_PMDTYPE));
   1677 		goto fail_1;
   1678 	}
   1679 
   1680 	/* determine whether to name it with vpd or just make it up */
   1681 	/* Marvell Yukon VPD's can freqently be bogus */
   1682 
   1683 	switch (pa->pa_id) {
   1684 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1685 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
   1686 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
   1687 	case PCI_PRODUCT_3COM_3C940:
   1688 	case PCI_PRODUCT_DLINK_DGE530T:
   1689 	case PCI_PRODUCT_DLINK_DGE560T:
   1690 	case PCI_PRODUCT_DLINK_DGE560T_2:
   1691 	case PCI_PRODUCT_LINKSYS_EG1032:
   1692 	case PCI_PRODUCT_LINKSYS_EG1064:
   1693 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1694 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
   1695 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
   1696 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
   1697 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
   1698 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
   1699 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
   1700 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
   1701  		sc->sk_name = sc->sk_vpd_prodname;
   1702  		break;
   1703 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
   1704 	/* whoops yukon vpd prodname bears no resemblance to reality */
   1705 		switch (sc->sk_type) {
   1706 		case SK_GENESIS:
   1707 			sc->sk_name = sc->sk_vpd_prodname;
   1708 			break;
   1709 		case SK_YUKON:
   1710 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
   1711 			break;
   1712 		case SK_YUKON_LITE:
   1713 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
   1714 			break;
   1715 		case SK_YUKON_LP:
   1716 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
   1717 			break;
   1718 		default:
   1719 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
   1720 		}
   1721 
   1722 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
   1723 
   1724 		if ( sc->sk_type == SK_YUKON ) {
   1725 			uint32_t flashaddr;
   1726 			uint8_t testbyte;
   1727 
   1728 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
   1729 
   1730 			/* test Flash-Address Register */
   1731 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
   1732 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
   1733 
   1734 			if (testbyte != 0) {
   1735 				/* this is yukon lite Rev. A0 */
   1736 				sc->sk_type = SK_YUKON_LITE;
   1737 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
   1738 				/* restore Flash-Address Register */
   1739 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
   1740 			}
   1741 		}
   1742 		break;
   1743 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
   1744 		sc->sk_name = sc->sk_vpd_prodname;
   1745 		break;
   1746  	default:
   1747 		sc->sk_name = "Unknown Marvell";
   1748 	}
   1749 
   1750 
   1751 	if ( sc->sk_type == SK_YUKON_LITE ) {
   1752 		switch (sc->sk_rev) {
   1753 		case SK_YUKON_LITE_REV_A0:
   1754 			revstr = "A0";
   1755 			break;
   1756 		case SK_YUKON_LITE_REV_A1:
   1757 			revstr = "A1";
   1758 			break;
   1759 		case SK_YUKON_LITE_REV_A3:
   1760 			revstr = "A3";
   1761 			break;
   1762 		default:
   1763 			revstr = "";
   1764 		}
   1765 	} else {
   1766 		revstr = "";
   1767 	}
   1768 
   1769 	/* Announce the product name. */
   1770 	aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
   1771 			      sc->sk_name, revstr, sc->sk_rev);
   1772 
   1773 	skca.skc_port = SK_PORT_A;
   1774 	(void)config_found(sc->sk_dev, &skca, skcprint);
   1775 
   1776 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
   1777 		skca.skc_port = SK_PORT_B;
   1778 		(void)config_found(sc->sk_dev, &skca, skcprint);
   1779 	}
   1780 
   1781 	/* Turn on the 'driver is loaded' LED. */
   1782 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   1783 
   1784 	/* skc sysctl setup */
   1785 
   1786 	sc->sk_int_mod = SK_IM_DEFAULT;
   1787 	sc->sk_int_mod_pending = 0;
   1788 
   1789 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1790 	    0, CTLTYPE_NODE, device_xname(sc->sk_dev),
   1791 	    SYSCTL_DESCR("skc per-controller controls"),
   1792 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
   1793 	    CTL_EOL)) != 0) {
   1794 		aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
   1795 		goto fail_1;
   1796 	}
   1797 
   1798 	sk_nodenum = node->sysctl_num;
   1799 
   1800 	/* interrupt moderation time in usecs */
   1801 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1802 	    CTLFLAG_READWRITE,
   1803 	    CTLTYPE_INT, "int_mod",
   1804 	    SYSCTL_DESCR("sk interrupt moderation timer"),
   1805 	    sk_sysctl_handler, 0, sc,
   1806 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
   1807 	    CTL_EOL)) != 0) {
   1808 		aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
   1809 		goto fail_1;
   1810 	}
   1811 
   1812 	return;
   1813 
   1814 fail_1:
   1815 	pci_intr_disestablish(pc, sc->sk_intrhand);
   1816 fail:
   1817 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
   1818 }
   1819 
   1820 int
   1821 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
   1822 {
   1823 	struct sk_softc		*sc = sc_if->sk_softc;
   1824 	struct sk_tx_desc	*f = NULL;
   1825 	u_int32_t		frag, cur, cnt = 0, sk_ctl;
   1826 	int			i;
   1827 	struct sk_txmap_entry	*entry;
   1828 	bus_dmamap_t		txmap;
   1829 
   1830 	DPRINTFN(3, ("sk_encap\n"));
   1831 
   1832 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
   1833 	if (entry == NULL) {
   1834 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
   1835 		return ENOBUFS;
   1836 	}
   1837 	txmap = entry->dmamap;
   1838 
   1839 	cur = frag = *txidx;
   1840 
   1841 #ifdef SK_DEBUG
   1842 	if (skdebug >= 3)
   1843 		sk_dump_mbuf(m_head);
   1844 #endif
   1845 
   1846 	/*
   1847 	 * Start packing the mbufs in this chain into
   1848 	 * the fragment pointers. Stop when we run out
   1849 	 * of fragments or hit the end of the mbuf chain.
   1850 	 */
   1851 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
   1852 	    BUS_DMA_NOWAIT)) {
   1853 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
   1854 		return ENOBUFS;
   1855 	}
   1856 
   1857 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
   1858 
   1859 	/* Sync the DMA map. */
   1860 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
   1861 	    BUS_DMASYNC_PREWRITE);
   1862 
   1863 	for (i = 0; i < txmap->dm_nsegs; i++) {
   1864 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
   1865 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
   1866 			return ENOBUFS;
   1867 		}
   1868 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
   1869 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
   1870 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
   1871 		if (cnt == 0)
   1872 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
   1873 		else
   1874 			sk_ctl |= SK_TXCTL_OWN;
   1875 		f->sk_ctl = htole32(sk_ctl);
   1876 		cur = frag;
   1877 		SK_INC(frag, SK_TX_RING_CNT);
   1878 		cnt++;
   1879 	}
   1880 
   1881 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
   1882 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
   1883 
   1884 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
   1885 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
   1886 		htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
   1887 
   1888 	/* Sync descriptors before handing to chip */
   1889 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
   1890 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1891 
   1892 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
   1893 		htole32(SK_TXCTL_OWN);
   1894 
   1895 	/* Sync first descriptor to hand it off */
   1896 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1897 
   1898 	sc_if->sk_cdata.sk_tx_cnt += cnt;
   1899 
   1900 #ifdef SK_DEBUG
   1901 	if (skdebug >= 3) {
   1902 		struct sk_tx_desc *desc;
   1903 		u_int32_t idx;
   1904 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
   1905 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
   1906 			sk_dump_txdesc(desc, idx);
   1907 		}
   1908 	}
   1909 #endif
   1910 
   1911 	*txidx = frag;
   1912 
   1913 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
   1914 
   1915 	return 0;
   1916 }
   1917 
   1918 void
   1919 sk_start(struct ifnet *ifp)
   1920 {
   1921         struct sk_if_softc	*sc_if = ifp->if_softc;
   1922         struct sk_softc		*sc = sc_if->sk_softc;
   1923         struct mbuf		*m_head = NULL;
   1924         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
   1925 	int			pkts = 0;
   1926 
   1927 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
   1928 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
   1929 
   1930 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
   1931 		IFQ_POLL(&ifp->if_snd, m_head);
   1932 		if (m_head == NULL)
   1933 			break;
   1934 
   1935 		/*
   1936 		 * Pack the data into the transmit ring. If we
   1937 		 * don't have room, set the OACTIVE flag and wait
   1938 		 * for the NIC to drain the ring.
   1939 		 */
   1940 		if (sk_encap(sc_if, m_head, &idx)) {
   1941 			ifp->if_flags |= IFF_OACTIVE;
   1942 			break;
   1943 		}
   1944 
   1945 		/* now we are committed to transmit the packet */
   1946 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1947 		pkts++;
   1948 
   1949 		/*
   1950 		 * If there's a BPF listener, bounce a copy of this frame
   1951 		 * to him.
   1952 		 */
   1953 #if NBPFILTER > 0
   1954 		if (ifp->if_bpf)
   1955 			bpf_mtap(ifp->if_bpf, m_head);
   1956 #endif
   1957 	}
   1958 	if (pkts == 0)
   1959 		return;
   1960 
   1961 	/* Transmit */
   1962 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
   1963 		sc_if->sk_cdata.sk_tx_prod = idx;
   1964 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   1965 
   1966 		/* Set a timeout in case the chip goes out to lunch. */
   1967 		ifp->if_timer = 5;
   1968 	}
   1969 }
   1970 
   1971 
   1972 void
   1973 sk_watchdog(struct ifnet *ifp)
   1974 {
   1975 	struct sk_if_softc *sc_if = ifp->if_softc;
   1976 
   1977 	/*
   1978 	 * Reclaim first as there is a possibility of losing Tx completion
   1979 	 * interrupts.
   1980 	 */
   1981 	sk_txeof(sc_if);
   1982 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
   1983 		aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
   1984 
   1985 		ifp->if_oerrors++;
   1986 
   1987 		sk_init(ifp);
   1988 	}
   1989 }
   1990 
   1991 void
   1992 sk_shutdown(void *v)
   1993 {
   1994 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
   1995 	struct sk_softc		*sc = sc_if->sk_softc;
   1996 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
   1997 
   1998 	DPRINTFN(2, ("sk_shutdown\n"));
   1999 	sk_stop(ifp,1);
   2000 
   2001 	/* Turn off the 'driver is loaded' LED. */
   2002 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   2003 
   2004 	/*
   2005 	 * Reset the GEnesis controller. Doing this should also
   2006 	 * assert the resets on the attached XMAC(s).
   2007 	 */
   2008 	sk_reset(sc);
   2009 }
   2010 
   2011 void
   2012 sk_rxeof(struct sk_if_softc *sc_if)
   2013 {
   2014 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2015 	struct mbuf		*m;
   2016 	struct sk_chain		*cur_rx;
   2017 	struct sk_rx_desc	*cur_desc;
   2018 	int			i, cur, total_len = 0;
   2019 	u_int32_t		rxstat, sk_ctl;
   2020 	bus_dmamap_t		dmamap;
   2021 
   2022 	i = sc_if->sk_cdata.sk_rx_prod;
   2023 
   2024 	DPRINTFN(3, ("sk_rxeof %d\n", i));
   2025 
   2026 	for (;;) {
   2027 		cur = i;
   2028 
   2029 		/* Sync the descriptor */
   2030 		SK_CDRXSYNC(sc_if, cur,
   2031 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2032 
   2033 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
   2034 		if (sk_ctl & SK_RXCTL_OWN) {
   2035 			/* Invalidate the descriptor -- it's not ready yet */
   2036 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
   2037 			sc_if->sk_cdata.sk_rx_prod = i;
   2038 			break;
   2039 		}
   2040 
   2041 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
   2042 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
   2043 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
   2044 
   2045 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
   2046 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2047 
   2048 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
   2049 		m = cur_rx->sk_mbuf;
   2050 		cur_rx->sk_mbuf = NULL;
   2051 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
   2052 
   2053 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
   2054 
   2055 		SK_INC(i, SK_RX_RING_CNT);
   2056 
   2057 		if (rxstat & XM_RXSTAT_ERRFRAME) {
   2058 			ifp->if_ierrors++;
   2059 			sk_newbuf(sc_if, cur, m, dmamap);
   2060 			continue;
   2061 		}
   2062 
   2063 		/*
   2064 		 * Try to allocate a new jumbo buffer. If that
   2065 		 * fails, copy the packet to mbufs and put the
   2066 		 * jumbo buffer back in the ring so it can be
   2067 		 * re-used. If allocating mbufs fails, then we
   2068 		 * have to drop the packet.
   2069 		 */
   2070 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
   2071 			struct mbuf		*m0;
   2072 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
   2073 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
   2074 			sk_newbuf(sc_if, cur, m, dmamap);
   2075 			if (m0 == NULL) {
   2076 				aprint_error_dev(sc_if->sk_dev, "no receive "
   2077 				    "buffers available -- packet dropped!\n");
   2078 				ifp->if_ierrors++;
   2079 				continue;
   2080 			}
   2081 			m_adj(m0, ETHER_ALIGN);
   2082 			m = m0;
   2083 		} else {
   2084 			m->m_pkthdr.rcvif = ifp;
   2085 			m->m_pkthdr.len = m->m_len = total_len;
   2086 		}
   2087 
   2088 		ifp->if_ipackets++;
   2089 
   2090 #if NBPFILTER > 0
   2091 		if (ifp->if_bpf)
   2092 			bpf_mtap(ifp->if_bpf, m);
   2093 #endif
   2094 		/* pass it on. */
   2095 		(*ifp->if_input)(ifp, m);
   2096 	}
   2097 }
   2098 
   2099 void
   2100 sk_txeof(struct sk_if_softc *sc_if)
   2101 {
   2102 	struct sk_softc		*sc = sc_if->sk_softc;
   2103 	struct sk_tx_desc	*cur_tx;
   2104 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2105 	u_int32_t		idx, sk_ctl;
   2106 	struct sk_txmap_entry	*entry;
   2107 
   2108 	DPRINTFN(3, ("sk_txeof\n"));
   2109 
   2110 	/*
   2111 	 * Go through our tx ring and free mbufs for those
   2112 	 * frames that have been sent.
   2113 	 */
   2114 	idx = sc_if->sk_cdata.sk_tx_cons;
   2115 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
   2116 		SK_CDTXSYNC(sc_if, idx, 1,
   2117 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2118 
   2119 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
   2120 		sk_ctl = le32toh(cur_tx->sk_ctl);
   2121 #ifdef SK_DEBUG
   2122 		if (skdebug >= 3)
   2123 			sk_dump_txdesc(cur_tx, idx);
   2124 #endif
   2125 		if (sk_ctl & SK_TXCTL_OWN) {
   2126 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
   2127 			break;
   2128 		}
   2129 		if (sk_ctl & SK_TXCTL_LASTFRAG)
   2130 			ifp->if_opackets++;
   2131 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
   2132 			entry = sc_if->sk_cdata.sk_tx_map[idx];
   2133 
   2134 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
   2135 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
   2136 
   2137 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
   2138 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2139 
   2140 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
   2141 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
   2142 					  link);
   2143 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
   2144 		}
   2145 		sc_if->sk_cdata.sk_tx_cnt--;
   2146 		SK_INC(idx, SK_TX_RING_CNT);
   2147 	}
   2148 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
   2149 		ifp->if_timer = 0;
   2150 	else /* nudge chip to keep tx ring moving */
   2151 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   2152 
   2153 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
   2154 		ifp->if_flags &= ~IFF_OACTIVE;
   2155 
   2156 	sc_if->sk_cdata.sk_tx_cons = idx;
   2157 }
   2158 
   2159 void
   2160 sk_tick(void *xsc_if)
   2161 {
   2162 	struct sk_if_softc *sc_if = xsc_if;
   2163 	struct mii_data *mii = &sc_if->sk_mii;
   2164 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2165 	int i;
   2166 
   2167 	DPRINTFN(3, ("sk_tick\n"));
   2168 
   2169 	if (!(ifp->if_flags & IFF_UP))
   2170 		return;
   2171 
   2172 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2173 		sk_intr_bcom(sc_if);
   2174 		return;
   2175 	}
   2176 
   2177 	/*
   2178 	 * According to SysKonnect, the correct way to verify that
   2179 	 * the link has come back up is to poll bit 0 of the GPIO
   2180 	 * register three times. This pin has the signal from the
   2181 	 * link sync pin connected to it; if we read the same link
   2182 	 * state 3 times in a row, we know the link is up.
   2183 	 */
   2184 	for (i = 0; i < 3; i++) {
   2185 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
   2186 			break;
   2187 	}
   2188 
   2189 	if (i != 3) {
   2190 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2191 		return;
   2192 	}
   2193 
   2194 	/* Turn the GP0 interrupt back on. */
   2195 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2196 	SK_XM_READ_2(sc_if, XM_ISR);
   2197 	mii_tick(mii);
   2198 	mii_pollstat(mii);
   2199 	callout_stop(&sc_if->sk_tick_ch);
   2200 }
   2201 
   2202 void
   2203 sk_intr_bcom(struct sk_if_softc *sc_if)
   2204 {
   2205 	struct mii_data *mii = &sc_if->sk_mii;
   2206 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2207 	int status;
   2208 
   2209 
   2210 	DPRINTFN(3, ("sk_intr_bcom\n"));
   2211 
   2212 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2213 
   2214 	/*
   2215 	 * Read the PHY interrupt register to make sure
   2216 	 * we clear any pending interrupts.
   2217 	 */
   2218 	status = sk_xmac_miibus_readreg(sc_if->sk_dev,
   2219 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
   2220 
   2221 	if (!(ifp->if_flags & IFF_RUNNING)) {
   2222 		sk_init_xmac(sc_if);
   2223 		return;
   2224 	}
   2225 
   2226 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
   2227 		int lstat;
   2228 		lstat = sk_xmac_miibus_readreg(sc_if->sk_dev,
   2229 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
   2230 
   2231 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
   2232 			(void)mii_mediachg(mii);
   2233 			/* Turn off the link LED. */
   2234 			SK_IF_WRITE_1(sc_if, 0,
   2235 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2236 			sc_if->sk_link = 0;
   2237 		} else if (status & BRGPHY_ISR_LNK_CHG) {
   2238 			sk_xmac_miibus_writereg(sc_if->sk_dev,
   2239 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
   2240 			mii_tick(mii);
   2241 			sc_if->sk_link = 1;
   2242 			/* Turn on the link LED. */
   2243 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2244 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
   2245 			    SK_LINKLED_BLINK_OFF);
   2246 			mii_pollstat(mii);
   2247 		} else {
   2248 			mii_tick(mii);
   2249 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
   2250 		}
   2251 	}
   2252 
   2253 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2254 }
   2255 
   2256 void
   2257 sk_intr_xmac(struct sk_if_softc	*sc_if)
   2258 {
   2259 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
   2260 
   2261 	DPRINTFN(3, ("sk_intr_xmac\n"));
   2262 
   2263 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
   2264 		if (status & XM_ISR_GP0_SET) {
   2265 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2266 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2267 		}
   2268 
   2269 		if (status & XM_ISR_AUTONEG_DONE) {
   2270 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2271 		}
   2272 	}
   2273 
   2274 	if (status & XM_IMR_TX_UNDERRUN)
   2275 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
   2276 
   2277 	if (status & XM_IMR_RX_OVERRUN)
   2278 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
   2279 }
   2280 
   2281 void
   2282 sk_intr_yukon(struct sk_if_softc *sc_if)
   2283 {
   2284 	int status;
   2285 
   2286 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2287 
   2288 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
   2289 }
   2290 
   2291 int
   2292 sk_intr(void *xsc)
   2293 {
   2294 	struct sk_softc		*sc = xsc;
   2295 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
   2296 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
   2297 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
   2298 	u_int32_t		status;
   2299 	int			claimed = 0;
   2300 
   2301 	if (sc_if0 != NULL)
   2302 		ifp0 = &sc_if0->sk_ethercom.ec_if;
   2303 	if (sc_if1 != NULL)
   2304 		ifp1 = &sc_if1->sk_ethercom.ec_if;
   2305 
   2306 	for (;;) {
   2307 		status = CSR_READ_4(sc, SK_ISSR);
   2308 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
   2309 
   2310 		if (!(status & sc->sk_intrmask))
   2311 			break;
   2312 
   2313 		claimed = 1;
   2314 
   2315 		/* Handle receive interrupts first. */
   2316 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
   2317 			sk_rxeof(sc_if0);
   2318 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
   2319 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2320 		}
   2321 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
   2322 			sk_rxeof(sc_if1);
   2323 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
   2324 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2325 		}
   2326 
   2327 		/* Then transmit interrupts. */
   2328 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
   2329 			sk_txeof(sc_if0);
   2330 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
   2331 			    SK_TXBMU_CLR_IRQ_EOF);
   2332 		}
   2333 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
   2334 			sk_txeof(sc_if1);
   2335 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
   2336 			    SK_TXBMU_CLR_IRQ_EOF);
   2337 		}
   2338 
   2339 		/* Then MAC interrupts. */
   2340 		if (sc_if0 && (status & SK_ISR_MAC1) &&
   2341 		    (ifp0->if_flags & IFF_RUNNING)) {
   2342 			if (sc->sk_type == SK_GENESIS)
   2343 				sk_intr_xmac(sc_if0);
   2344 			else
   2345 				sk_intr_yukon(sc_if0);
   2346 		}
   2347 
   2348 		if (sc_if1 && (status & SK_ISR_MAC2) &&
   2349 		    (ifp1->if_flags & IFF_RUNNING)) {
   2350 			if (sc->sk_type == SK_GENESIS)
   2351 				sk_intr_xmac(sc_if1);
   2352 			else
   2353 				sk_intr_yukon(sc_if1);
   2354 
   2355 		}
   2356 
   2357 		if (status & SK_ISR_EXTERNAL_REG) {
   2358 			if (sc_if0 != NULL &&
   2359 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
   2360 				sk_intr_bcom(sc_if0);
   2361 
   2362 			if (sc_if1 != NULL &&
   2363 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
   2364 				sk_intr_bcom(sc_if1);
   2365 		}
   2366 	}
   2367 
   2368 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2369 
   2370 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
   2371 		sk_start(ifp0);
   2372 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
   2373 		sk_start(ifp1);
   2374 
   2375 #if NRND > 0
   2376 	if (RND_ENABLED(&sc->rnd_source))
   2377 		rnd_add_uint32(&sc->rnd_source, status);
   2378 #endif
   2379 
   2380 	if (sc->sk_int_mod_pending)
   2381 		sk_update_int_mod(sc);
   2382 
   2383 	return claimed;
   2384 }
   2385 
   2386 void
   2387 sk_init_xmac(struct sk_if_softc	*sc_if)
   2388 {
   2389 	struct sk_softc		*sc = sc_if->sk_softc;
   2390 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2391 	static const struct sk_bcom_hack     bhack[] = {
   2392 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
   2393 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
   2394 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
   2395 	{ 0, 0 } };
   2396 
   2397 	DPRINTFN(1, ("sk_init_xmac\n"));
   2398 
   2399 	/* Unreset the XMAC. */
   2400 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
   2401 	DELAY(1000);
   2402 
   2403 	/* Reset the XMAC's internal state. */
   2404 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2405 
   2406 	/* Save the XMAC II revision */
   2407 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
   2408 
   2409 	/*
   2410 	 * Perform additional initialization for external PHYs,
   2411 	 * namely for the 1000baseTX cards that use the XMAC's
   2412 	 * GMII mode.
   2413 	 */
   2414 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2415 		int			i = 0;
   2416 		u_int32_t		val;
   2417 
   2418 		/* Take PHY out of reset. */
   2419 		val = sk_win_read_4(sc, SK_GPIO);
   2420 		if (sc_if->sk_port == SK_PORT_A)
   2421 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
   2422 		else
   2423 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
   2424 		sk_win_write_4(sc, SK_GPIO, val);
   2425 
   2426 		/* Enable GMII mode on the XMAC. */
   2427 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
   2428 
   2429 		sk_xmac_miibus_writereg(sc_if->sk_dev,
   2430 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
   2431 		DELAY(10000);
   2432 		sk_xmac_miibus_writereg(sc_if->sk_dev,
   2433 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
   2434 
   2435 		/*
   2436 		 * Early versions of the BCM5400 apparently have
   2437 		 * a bug that requires them to have their reserved
   2438 		 * registers initialized to some magic values. I don't
   2439 		 * know what the numbers do, I'm just the messenger.
   2440 		 */
   2441 		if (sk_xmac_miibus_readreg(sc_if->sk_dev,
   2442 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
   2443 			while (bhack[i].reg) {
   2444 				sk_xmac_miibus_writereg(sc_if->sk_dev,
   2445 				    SK_PHYADDR_BCOM, bhack[i].reg,
   2446 				    bhack[i].val);
   2447 				i++;
   2448 			}
   2449 		}
   2450 	}
   2451 
   2452 	/* Set station address */
   2453 	SK_XM_WRITE_2(sc_if, XM_PAR0,
   2454 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
   2455 	SK_XM_WRITE_2(sc_if, XM_PAR1,
   2456 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
   2457 	SK_XM_WRITE_2(sc_if, XM_PAR2,
   2458 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
   2459 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
   2460 
   2461 	if (ifp->if_flags & IFF_PROMISC)
   2462 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2463 	else
   2464 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2465 
   2466 	if (ifp->if_flags & IFF_BROADCAST)
   2467 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2468 	else
   2469 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2470 
   2471 	/* We don't need the FCS appended to the packet. */
   2472 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
   2473 
   2474 	/* We want short frames padded to 60 bytes. */
   2475 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
   2476 
   2477 	/*
   2478 	 * Enable the reception of all error frames. This is is
   2479 	 * a necessary evil due to the design of the XMAC. The
   2480 	 * XMAC's receive FIFO is only 8K in size, however jumbo
   2481 	 * frames can be up to 9000 bytes in length. When bad
   2482 	 * frame filtering is enabled, the XMAC's RX FIFO operates
   2483 	 * in 'store and forward' mode. For this to work, the
   2484 	 * entire frame has to fit into the FIFO, but that means
   2485 	 * that jumbo frames larger than 8192 bytes will be
   2486 	 * truncated. Disabling all bad frame filtering causes
   2487 	 * the RX FIFO to operate in streaming mode, in which
   2488 	 * case the XMAC will start transfering frames out of the
   2489 	 * RX FIFO as soon as the FIFO threshold is reached.
   2490 	 */
   2491 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
   2492 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
   2493 	    XM_MODE_RX_INRANGELEN);
   2494 
   2495 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2496 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2497 	else
   2498 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2499 
   2500 	/*
   2501 	 * Bump up the transmit threshold. This helps hold off transmit
   2502 	 * underruns when we're blasting traffic from both ports at once.
   2503 	 */
   2504 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
   2505 
   2506 	/* Set multicast filter */
   2507 	sk_setmulti(sc_if);
   2508 
   2509 	/* Clear and enable interrupts */
   2510 	SK_XM_READ_2(sc_if, XM_ISR);
   2511 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
   2512 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
   2513 	else
   2514 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2515 
   2516 	/* Configure MAC arbiter */
   2517 	switch (sc_if->sk_xmac_rev) {
   2518 	case XM_XMAC_REV_B2:
   2519 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
   2520 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
   2521 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
   2522 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
   2523 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
   2524 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
   2525 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
   2526 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
   2527 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2528 		break;
   2529 	case XM_XMAC_REV_C1:
   2530 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
   2531 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
   2532 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
   2533 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
   2534 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
   2535 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
   2536 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
   2537 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
   2538 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2539 		break;
   2540 	default:
   2541 		break;
   2542 	}
   2543 	sk_win_write_2(sc, SK_MACARB_CTL,
   2544 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
   2545 
   2546 	sc_if->sk_link = 1;
   2547 }
   2548 
   2549 void sk_init_yukon(struct sk_if_softc *sc_if)
   2550 {
   2551 	u_int32_t		/*mac, */phy;
   2552 	u_int16_t		reg;
   2553 	struct sk_softc		*sc;
   2554 	int			i;
   2555 
   2556 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
   2557 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
   2558 
   2559 	sc = sc_if->sk_softc;
   2560 	if (sc->sk_type == SK_YUKON_LITE &&
   2561 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
   2562 		/* Take PHY out of reset. */
   2563 		sk_win_write_4(sc, SK_GPIO,
   2564 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
   2565 	}
   2566 
   2567 
   2568 	/* GMAC and GPHY Reset */
   2569 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
   2570 
   2571 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
   2572 
   2573 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2574 	DELAY(1000);
   2575 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
   2576 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2577 	DELAY(1000);
   2578 
   2579 
   2580 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
   2581 
   2582 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
   2583 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
   2584 
   2585 	switch (sc_if->sk_softc->sk_pmd) {
   2586 	case IFM_1000_SX:
   2587 	case IFM_1000_LX:
   2588 		phy |= SK_GPHY_FIBER;
   2589 		break;
   2590 
   2591 	case IFM_1000_CX:
   2592 	case IFM_1000_T:
   2593 		phy |= SK_GPHY_COPPER;
   2594 		break;
   2595 	}
   2596 
   2597 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
   2598 
   2599 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
   2600 	DELAY(1000);
   2601 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
   2602 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
   2603 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
   2604 
   2605 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
   2606 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
   2607 
   2608 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
   2609 
   2610 	/* unused read of the interrupt source register */
   2611 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
   2612 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2613 
   2614 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
   2615 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
   2616 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2617 
   2618 	/* MIB Counter Clear Mode set */
   2619         reg |= YU_PAR_MIB_CLR;
   2620 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2621 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
   2622 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2623 
   2624 	/* MIB Counter Clear Mode clear */
   2625 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
   2626         reg &= ~YU_PAR_MIB_CLR;
   2627 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2628 
   2629 	/* receive control reg */
   2630 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
   2631 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
   2632 		      YU_RCR_CRCR);
   2633 
   2634 	/* transmit parameter register */
   2635 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
   2636 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
   2637 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
   2638 
   2639 	/* serial mode register */
   2640 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
   2641 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
   2642 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
   2643 		      YU_SMR_IPG_DATA(0x1e));
   2644 
   2645 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
   2646 	/* Setup Yukon's address */
   2647 	for (i = 0; i < 3; i++) {
   2648 		/* Write Source Address 1 (unicast filter) */
   2649 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
   2650 			      sc_if->sk_enaddr[i * 2] |
   2651 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
   2652 	}
   2653 
   2654 	for (i = 0; i < 3; i++) {
   2655 		reg = sk_win_read_2(sc_if->sk_softc,
   2656 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
   2657 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
   2658 	}
   2659 
   2660 	/* Set multicast filter */
   2661 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
   2662 	sk_setmulti(sc_if);
   2663 
   2664 	/* enable interrupt mask for counter overflows */
   2665 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
   2666 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
   2667 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
   2668 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
   2669 
   2670 	/* Configure RX MAC FIFO */
   2671 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
   2672 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
   2673 
   2674 	/* Configure TX MAC FIFO */
   2675 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
   2676 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
   2677 
   2678 	DPRINTFN(6, ("sk_init_yukon: end\n"));
   2679 }
   2680 
   2681 /*
   2682  * Note that to properly initialize any part of the GEnesis chip,
   2683  * you first have to take it out of reset mode.
   2684  */
   2685 int
   2686 sk_init(struct ifnet *ifp)
   2687 {
   2688 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2689 	struct sk_softc		*sc = sc_if->sk_softc;
   2690 	struct mii_data		*mii = &sc_if->sk_mii;
   2691 	int			rc = 0, s;
   2692 	u_int32_t		imr, imtimer_ticks;
   2693 
   2694 	DPRINTFN(1, ("sk_init\n"));
   2695 
   2696 	s = splnet();
   2697 
   2698 	if (ifp->if_flags & IFF_RUNNING) {
   2699 		splx(s);
   2700 		return 0;
   2701 	}
   2702 
   2703 	/* Cancel pending I/O and free all RX/TX buffers. */
   2704 	sk_stop(ifp,0);
   2705 
   2706 	if (sc->sk_type == SK_GENESIS) {
   2707 		/* Configure LINK_SYNC LED */
   2708 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
   2709 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2710 			      SK_LINKLED_LINKSYNC_ON);
   2711 
   2712 		/* Configure RX LED */
   2713 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
   2714 			      SK_RXLEDCTL_COUNTER_START);
   2715 
   2716 		/* Configure TX LED */
   2717 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
   2718 			      SK_TXLEDCTL_COUNTER_START);
   2719 	}
   2720 
   2721 	/* Configure I2C registers */
   2722 
   2723 	/* Configure XMAC(s) */
   2724 	switch (sc->sk_type) {
   2725 	case SK_GENESIS:
   2726 		sk_init_xmac(sc_if);
   2727 		break;
   2728 	case SK_YUKON:
   2729 	case SK_YUKON_LITE:
   2730 	case SK_YUKON_LP:
   2731 		sk_init_yukon(sc_if);
   2732 		break;
   2733 	}
   2734 	if ((rc = mii_mediachg(mii)) == ENXIO)
   2735 		rc = 0;
   2736 	else if (rc != 0)
   2737 		goto out;
   2738 
   2739 	if (sc->sk_type == SK_GENESIS) {
   2740 		/* Configure MAC FIFOs */
   2741 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
   2742 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
   2743 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
   2744 
   2745 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
   2746 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
   2747 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
   2748 	}
   2749 
   2750 	/* Configure transmit arbiter(s) */
   2751 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
   2752 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
   2753 
   2754 	/* Configure RAMbuffers */
   2755 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
   2756 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
   2757 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
   2758 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
   2759 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
   2760 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
   2761 
   2762 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
   2763 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
   2764 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
   2765 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
   2766 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
   2767 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
   2768 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
   2769 
   2770 	/* Configure BMUs */
   2771 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
   2772 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
   2773 	    SK_RX_RING_ADDR(sc_if, 0));
   2774 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
   2775 
   2776 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
   2777 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
   2778             SK_TX_RING_ADDR(sc_if, 0));
   2779 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
   2780 
   2781 	/* Init descriptors */
   2782 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
   2783 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
   2784 		    "memory for rx buffers\n");
   2785 		sk_stop(ifp,0);
   2786 		splx(s);
   2787 		return ENOBUFS;
   2788 	}
   2789 
   2790 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
   2791 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
   2792 		    "memory for tx buffers\n");
   2793 		sk_stop(ifp,0);
   2794 		splx(s);
   2795 		return ENOBUFS;
   2796 	}
   2797 
   2798 	/* Set interrupt moderation if changed via sysctl. */
   2799 	switch (sc->sk_type) {
   2800 	case SK_GENESIS:
   2801 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   2802 		break;
   2803 	case SK_YUKON_EC:
   2804 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   2805 		break;
   2806 	default:
   2807 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   2808 	}
   2809 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
   2810 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
   2811 		sk_win_write_4(sc, SK_IMTIMERINIT,
   2812 		    SK_IM_USECS(sc->sk_int_mod));
   2813 		aprint_verbose_dev(sc->sk_dev,
   2814 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
   2815 	}
   2816 
   2817 	/* Configure interrupt handling */
   2818 	CSR_READ_4(sc, SK_ISSR);
   2819 	if (sc_if->sk_port == SK_PORT_A)
   2820 		sc->sk_intrmask |= SK_INTRS1;
   2821 	else
   2822 		sc->sk_intrmask |= SK_INTRS2;
   2823 
   2824 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
   2825 
   2826 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2827 
   2828 	/* Start BMUs. */
   2829 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
   2830 
   2831 	if (sc->sk_type == SK_GENESIS) {
   2832 		/* Enable XMACs TX and RX state machines */
   2833 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
   2834 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
   2835 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2836 	}
   2837 
   2838 	if (SK_YUKON_FAMILY(sc->sk_type)) {
   2839 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
   2840 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
   2841 #if 0
   2842 		/* XXX disable 100Mbps and full duplex mode? */
   2843 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
   2844 #endif
   2845 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
   2846 	}
   2847 
   2848 
   2849 	ifp->if_flags |= IFF_RUNNING;
   2850 	ifp->if_flags &= ~IFF_OACTIVE;
   2851 
   2852 out:
   2853 	splx(s);
   2854 	return rc;
   2855 }
   2856 
   2857 void
   2858 sk_stop(struct ifnet *ifp, int disable)
   2859 {
   2860         struct sk_if_softc	*sc_if = ifp->if_softc;
   2861 	struct sk_softc		*sc = sc_if->sk_softc;
   2862 	int			i;
   2863 
   2864 	DPRINTFN(1, ("sk_stop\n"));
   2865 
   2866 	callout_stop(&sc_if->sk_tick_ch);
   2867 
   2868 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2869 		u_int32_t		val;
   2870 
   2871 		/* Put PHY back into reset. */
   2872 		val = sk_win_read_4(sc, SK_GPIO);
   2873 		if (sc_if->sk_port == SK_PORT_A) {
   2874 			val |= SK_GPIO_DIR0;
   2875 			val &= ~SK_GPIO_DAT0;
   2876 		} else {
   2877 			val |= SK_GPIO_DIR2;
   2878 			val &= ~SK_GPIO_DAT2;
   2879 		}
   2880 		sk_win_write_4(sc, SK_GPIO, val);
   2881 	}
   2882 
   2883 	/* Turn off various components of this interface. */
   2884 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2885 	switch (sc->sk_type) {
   2886 	case SK_GENESIS:
   2887 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
   2888 			      SK_TXMACCTL_XMAC_RESET);
   2889 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
   2890 		break;
   2891 	case SK_YUKON:
   2892 	case SK_YUKON_LITE:
   2893 	case SK_YUKON_LP:
   2894 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
   2895 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
   2896 		break;
   2897 	}
   2898 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
   2899 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2900 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
   2901 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2902 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
   2903 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2904 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2905 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2906 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
   2907 
   2908 	/* Disable interrupts */
   2909 	if (sc_if->sk_port == SK_PORT_A)
   2910 		sc->sk_intrmask &= ~SK_INTRS1;
   2911 	else
   2912 		sc->sk_intrmask &= ~SK_INTRS2;
   2913 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2914 
   2915 	SK_XM_READ_2(sc_if, XM_ISR);
   2916 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2917 
   2918 	/* Free RX and TX mbufs still in the queues. */
   2919 	for (i = 0; i < SK_RX_RING_CNT; i++) {
   2920 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
   2921 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
   2922 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   2923 		}
   2924 	}
   2925 
   2926 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   2927 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
   2928 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
   2929 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   2930 		}
   2931 	}
   2932 
   2933 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
   2934 }
   2935 
   2936 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
   2937     skc_probe, skc_attach, NULL, NULL);
   2938 
   2939 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
   2940     sk_probe, sk_attach, NULL, NULL);
   2941 
   2942 #ifdef SK_DEBUG
   2943 void
   2944 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
   2945 {
   2946 #define DESC_PRINT(X)					\
   2947 	if (X)					\
   2948 		printf("txdesc[%d]." #X "=%#x\n",	\
   2949 		       idx, X);
   2950 
   2951 	DESC_PRINT(le32toh(desc->sk_ctl));
   2952 	DESC_PRINT(le32toh(desc->sk_next));
   2953 	DESC_PRINT(le32toh(desc->sk_data_lo));
   2954 	DESC_PRINT(le32toh(desc->sk_data_hi));
   2955 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
   2956 	DESC_PRINT(le16toh(desc->sk_rsvd0));
   2957 	DESC_PRINT(le16toh(desc->sk_csum_startval));
   2958 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
   2959 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
   2960 	DESC_PRINT(le16toh(desc->sk_rsvd1));
   2961 #undef PRINT
   2962 }
   2963 
   2964 void
   2965 sk_dump_bytes(const char *data, int len)
   2966 {
   2967 	int c, i, j;
   2968 
   2969 	for (i = 0; i < len; i += 16) {
   2970 		printf("%08x  ", i);
   2971 		c = len - i;
   2972 		if (c > 16) c = 16;
   2973 
   2974 		for (j = 0; j < c; j++) {
   2975 			printf("%02x ", data[i + j] & 0xff);
   2976 			if ((j & 0xf) == 7 && j > 0)
   2977 				printf(" ");
   2978 		}
   2979 
   2980 		for (; j < 16; j++)
   2981 			printf("   ");
   2982 		printf("  ");
   2983 
   2984 		for (j = 0; j < c; j++) {
   2985 			int ch = data[i + j] & 0xff;
   2986 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
   2987 		}
   2988 
   2989 		printf("\n");
   2990 
   2991 		if (c < 16)
   2992 			break;
   2993 	}
   2994 }
   2995 
   2996 void
   2997 sk_dump_mbuf(struct mbuf *m)
   2998 {
   2999 	int count = m->m_pkthdr.len;
   3000 
   3001 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
   3002 
   3003 	while (count > 0 && m) {
   3004 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
   3005 		       m, m->m_data, m->m_len);
   3006 		sk_dump_bytes(mtod(m, char *), m->m_len);
   3007 
   3008 		count -= m->m_len;
   3009 		m = m->m_next;
   3010 	}
   3011 }
   3012 #endif
   3013 
   3014 static int
   3015 sk_sysctl_handler(SYSCTLFN_ARGS)
   3016 {
   3017 	int error, t;
   3018 	struct sysctlnode node;
   3019 	struct sk_softc *sc;
   3020 
   3021 	node = *rnode;
   3022 	sc = node.sysctl_data;
   3023 	t = sc->sk_int_mod;
   3024 	node.sysctl_data = &t;
   3025 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3026 	if (error || newp == NULL)
   3027 		return error;
   3028 
   3029 	if (t < SK_IM_MIN || t > SK_IM_MAX)
   3030 		return EINVAL;
   3031 
   3032 	/* update the softc with sysctl-changed value, and mark
   3033 	   for hardware update */
   3034 	sc->sk_int_mod = t;
   3035 	sc->sk_int_mod_pending = 1;
   3036 	return 0;
   3037 }
   3038 
   3039 /*
   3040  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
   3041  * set up in skc_attach()
   3042  */
   3043 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
   3044 {
   3045 	int rc;
   3046 	const struct sysctlnode *node;
   3047 
   3048 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   3049 	    0, CTLTYPE_NODE, "hw", NULL,
   3050 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   3051 		goto err;
   3052 	}
   3053 
   3054 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   3055 	    0, CTLTYPE_NODE, "sk",
   3056 	    SYSCTL_DESCR("sk interface controls"),
   3057 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   3058 		goto err;
   3059 	}
   3060 
   3061 	sk_root_num = node->sysctl_num;
   3062 	return;
   3063 
   3064 err:
   3065 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
   3066 }
   3067