if_sk.c revision 1.55 1 /* $NetBSD: if_sk.c,v 1.55 2008/11/07 00:20:07 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
30
31 /*
32 * Copyright (c) 1997, 1998, 1999, 2000
33 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by Bill Paul.
46 * 4. Neither the name of the author nor the names of any co-contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60 * THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63 */
64
65 /*
66 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
67 *
68 * Permission to use, copy, modify, and distribute this software for any
69 * purpose with or without fee is hereby granted, provided that the above
70 * copyright notice and this permission notice appear in all copies.
71 *
72 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79 */
80
81 /*
82 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83 * the SK-984x series adapters, both single port and dual port.
84 * References:
85 * The XaQti XMAC II datasheet,
86 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87 * The SysKonnect GEnesis manual, http://www.syskonnect.com
88 *
89 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91 * convenience to others until Vitesse corrects this problem:
92 *
93 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 *
95 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
96 * Department of Electrical Engineering
97 * Columbia University, New York City
98 */
99
100 /*
101 * The SysKonnect gigabit ethernet adapters consist of two main
102 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104 * components and a PHY while the GEnesis controller provides a PCI
105 * interface with DMA support. Each card may have between 512K and
106 * 2MB of SRAM on board depending on the configuration.
107 *
108 * The SysKonnect GEnesis controller can have either one or two XMAC
109 * chips connected to it, allowing single or dual port NIC configurations.
110 * SysKonnect has the distinction of being the only vendor on the market
111 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113 * XMAC registers. This driver takes advantage of these features to allow
114 * both XMACs to operate as independent interfaces.
115 */
116
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.55 2008/11/07 00:20:07 dyoung Exp $");
119
120 #include "bpfilter.h"
121 #include "rnd.h"
122
123 #include <sys/param.h>
124 #include <sys/systm.h>
125 #include <sys/sockio.h>
126 #include <sys/mbuf.h>
127 #include <sys/malloc.h>
128 #include <sys/mutex.h>
129 #include <sys/kernel.h>
130 #include <sys/socket.h>
131 #include <sys/device.h>
132 #include <sys/queue.h>
133 #include <sys/callout.h>
134 #include <sys/sysctl.h>
135 #include <sys/endian.h>
136
137 #include <net/if.h>
138 #include <net/if_dl.h>
139 #include <net/if_types.h>
140
141 #include <net/if_media.h>
142
143 #if NBPFILTER > 0
144 #include <net/bpf.h>
145 #endif
146 #if NRND > 0
147 #include <sys/rnd.h>
148 #endif
149
150 #include <dev/mii/mii.h>
151 #include <dev/mii/miivar.h>
152 #include <dev/mii/brgphyreg.h>
153
154 #include <dev/pci/pcireg.h>
155 #include <dev/pci/pcivar.h>
156 #include <dev/pci/pcidevs.h>
157
158 /* #define SK_USEIOSPACE */
159
160 #include <dev/pci/if_skreg.h>
161 #include <dev/pci/if_skvar.h>
162
163 int skc_probe(device_t, cfdata_t, void *);
164 void skc_attach(device_t, device_t, void *aux);
165 int sk_probe(device_t, cfdata_t, void *);
166 void sk_attach(device_t, device_t, void *aux);
167 int skcprint(void *, const char *);
168 int sk_intr(void *);
169 void sk_intr_bcom(struct sk_if_softc *);
170 void sk_intr_xmac(struct sk_if_softc *);
171 void sk_intr_yukon(struct sk_if_softc *);
172 void sk_rxeof(struct sk_if_softc *);
173 void sk_txeof(struct sk_if_softc *);
174 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
175 void sk_start(struct ifnet *);
176 int sk_ioctl(struct ifnet *, u_long, void *);
177 int sk_init(struct ifnet *);
178 void sk_init_xmac(struct sk_if_softc *);
179 void sk_init_yukon(struct sk_if_softc *);
180 void sk_stop(struct ifnet *, int);
181 void sk_watchdog(struct ifnet *);
182 void sk_shutdown(void *);
183 int sk_ifmedia_upd(struct ifnet *);
184 void sk_reset(struct sk_softc *);
185 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
186 int sk_alloc_jumbo_mem(struct sk_if_softc *);
187 void sk_free_jumbo_mem(struct sk_if_softc *);
188 void *sk_jalloc(struct sk_if_softc *);
189 void sk_jfree(struct mbuf *, void *, size_t, void *);
190 int sk_init_rx_ring(struct sk_if_softc *);
191 int sk_init_tx_ring(struct sk_if_softc *);
192 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
193 void sk_vpd_read_res(struct sk_softc *,
194 struct vpd_res *, int);
195 void sk_vpd_read(struct sk_softc *);
196
197 void sk_update_int_mod(struct sk_softc *);
198
199 int sk_xmac_miibus_readreg(device_t, int, int);
200 void sk_xmac_miibus_writereg(device_t, int, int, int);
201 void sk_xmac_miibus_statchg(device_t);
202
203 int sk_marv_miibus_readreg(device_t, int, int);
204 void sk_marv_miibus_writereg(device_t, int, int, int);
205 void sk_marv_miibus_statchg(device_t);
206
207 u_int32_t sk_xmac_hash(void *);
208 u_int32_t sk_yukon_hash(void *);
209 void sk_setfilt(struct sk_if_softc *, void *, int);
210 void sk_setmulti(struct sk_if_softc *);
211 void sk_tick(void *);
212
213 /* #define SK_DEBUG 2 */
214 #ifdef SK_DEBUG
215 #define DPRINTF(x) if (skdebug) printf x
216 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
217 int skdebug = SK_DEBUG;
218
219 void sk_dump_txdesc(struct sk_tx_desc *, int);
220 void sk_dump_mbuf(struct mbuf *);
221 void sk_dump_bytes(const char *, int);
222 #else
223 #define DPRINTF(x)
224 #define DPRINTFN(n,x)
225 #endif
226
227 static int sk_sysctl_handler(SYSCTLFN_PROTO);
228 static int sk_root_num;
229
230 /* supported device vendors */
231 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
232 static const struct sk_product {
233 pci_vendor_id_t sk_vendor;
234 pci_product_id_t sk_product;
235 } sk_products[] = {
236 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
237 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
238 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
239 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
240 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
241 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
242 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
243 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
244 { 0, 0, }
245 };
246
247 #define SK_LINKSYS_EG1032_SUBID 0x00151737
248
249 static inline u_int32_t
250 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
251 {
252 #ifdef SK_USEIOSPACE
253 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
254 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
255 #else
256 return CSR_READ_4(sc, reg);
257 #endif
258 }
259
260 static inline u_int16_t
261 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
262 {
263 #ifdef SK_USEIOSPACE
264 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
265 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
266 #else
267 return CSR_READ_2(sc, reg);
268 #endif
269 }
270
271 static inline u_int8_t
272 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
273 {
274 #ifdef SK_USEIOSPACE
275 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
276 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
277 #else
278 return CSR_READ_1(sc, reg);
279 #endif
280 }
281
282 static inline void
283 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
284 {
285 #ifdef SK_USEIOSPACE
286 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
287 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
288 #else
289 CSR_WRITE_4(sc, reg, x);
290 #endif
291 }
292
293 static inline void
294 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
295 {
296 #ifdef SK_USEIOSPACE
297 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
298 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
299 #else
300 CSR_WRITE_2(sc, reg, x);
301 #endif
302 }
303
304 static inline void
305 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
306 {
307 #ifdef SK_USEIOSPACE
308 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
309 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
310 #else
311 CSR_WRITE_1(sc, reg, x);
312 #endif
313 }
314
315 /*
316 * The VPD EEPROM contains Vital Product Data, as suggested in
317 * the PCI 2.1 specification. The VPD data is separared into areas
318 * denoted by resource IDs. The SysKonnect VPD contains an ID string
319 * resource (the name of the adapter), a read-only area resource
320 * containing various key/data fields and a read/write area which
321 * can be used to store asset management information or log messages.
322 * We read the ID string and read-only into buffers attached to
323 * the controller softc structure for later use. At the moment,
324 * we only use the ID string during sk_attach().
325 */
326 u_int8_t
327 sk_vpd_readbyte(struct sk_softc *sc, int addr)
328 {
329 int i;
330
331 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
332 for (i = 0; i < SK_TIMEOUT; i++) {
333 DELAY(1);
334 if (sk_win_read_2(sc,
335 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
336 break;
337 }
338
339 if (i == SK_TIMEOUT)
340 return 0;
341
342 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
343 }
344
345 void
346 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
347 {
348 int i;
349 u_int8_t *ptr;
350
351 ptr = (u_int8_t *)res;
352 for (i = 0; i < sizeof(struct vpd_res); i++)
353 ptr[i] = sk_vpd_readbyte(sc, i + addr);
354 }
355
356 void
357 sk_vpd_read(struct sk_softc *sc)
358 {
359 int pos = 0, i;
360 struct vpd_res res;
361
362 if (sc->sk_vpd_prodname != NULL)
363 free(sc->sk_vpd_prodname, M_DEVBUF);
364 if (sc->sk_vpd_readonly != NULL)
365 free(sc->sk_vpd_readonly, M_DEVBUF);
366 sc->sk_vpd_prodname = NULL;
367 sc->sk_vpd_readonly = NULL;
368
369 sk_vpd_read_res(sc, &res, pos);
370
371 if (res.vr_id != VPD_RES_ID) {
372 aprint_error_dev(sc->sk_dev,
373 "bad VPD resource id: expected %x got %x\n",
374 VPD_RES_ID, res.vr_id);
375 return;
376 }
377
378 pos += sizeof(res);
379 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
380 if (sc->sk_vpd_prodname == NULL)
381 panic("sk_vpd_read");
382 for (i = 0; i < res.vr_len; i++)
383 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
384 sc->sk_vpd_prodname[i] = '\0';
385 pos += i;
386
387 sk_vpd_read_res(sc, &res, pos);
388
389 if (res.vr_id != VPD_RES_READ) {
390 aprint_error_dev(sc->sk_dev,
391 "bad VPD resource id: expected %x got %x\n",
392 VPD_RES_READ, res.vr_id);
393 return;
394 }
395
396 pos += sizeof(res);
397 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
398 if (sc->sk_vpd_readonly == NULL)
399 panic("sk_vpd_read");
400 for (i = 0; i < res.vr_len ; i++)
401 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
402 }
403
404 int
405 sk_xmac_miibus_readreg(device_t dev, int phy, int reg)
406 {
407 struct sk_if_softc *sc_if = device_private(dev);
408 int i;
409
410 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
411
412 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
413 return 0;
414
415 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
416 SK_XM_READ_2(sc_if, XM_PHY_DATA);
417 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
418 for (i = 0; i < SK_TIMEOUT; i++) {
419 DELAY(1);
420 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
421 XM_MMUCMD_PHYDATARDY)
422 break;
423 }
424
425 if (i == SK_TIMEOUT) {
426 aprint_error_dev(sc_if->sk_dev,
427 "phy failed to come ready\n");
428 return 0;
429 }
430 }
431 DELAY(1);
432 return SK_XM_READ_2(sc_if, XM_PHY_DATA);
433 }
434
435 void
436 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, int val)
437 {
438 struct sk_if_softc *sc_if = device_private(dev);
439 int i;
440
441 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
442
443 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
444 for (i = 0; i < SK_TIMEOUT; i++) {
445 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
446 break;
447 }
448
449 if (i == SK_TIMEOUT) {
450 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
451 return;
452 }
453
454 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
455 for (i = 0; i < SK_TIMEOUT; i++) {
456 DELAY(1);
457 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
458 break;
459 }
460
461 if (i == SK_TIMEOUT)
462 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
463 }
464
465 void
466 sk_xmac_miibus_statchg(device_t dev)
467 {
468 struct sk_if_softc *sc_if = device_private(dev);
469 struct mii_data *mii = &sc_if->sk_mii;
470
471 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
472
473 /*
474 * If this is a GMII PHY, manually set the XMAC's
475 * duplex mode accordingly.
476 */
477 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
478 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
479 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
480 else
481 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
482 }
483 }
484
485 int
486 sk_marv_miibus_readreg(device_t dev, int phy, int reg)
487 {
488 struct sk_if_softc *sc_if = device_private(dev);
489 u_int16_t val;
490 int i;
491
492 if (phy != 0 ||
493 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
494 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
495 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
496 phy, reg));
497 return 0;
498 }
499
500 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
501 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
502
503 for (i = 0; i < SK_TIMEOUT; i++) {
504 DELAY(1);
505 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
506 if (val & YU_SMICR_READ_VALID)
507 break;
508 }
509
510 if (i == SK_TIMEOUT) {
511 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
512 return 0;
513 }
514
515 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
516 SK_TIMEOUT));
517
518 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
519
520 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
521 phy, reg, val));
522
523 return val;
524 }
525
526 void
527 sk_marv_miibus_writereg(device_t dev, int phy, int reg, int val)
528 {
529 struct sk_if_softc *sc_if = device_private(dev);
530 int i;
531
532 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
533 phy, reg, val));
534
535 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
536 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
537 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
538
539 for (i = 0; i < SK_TIMEOUT; i++) {
540 DELAY(1);
541 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
542 break;
543 }
544
545 if (i == SK_TIMEOUT)
546 printf("%s: phy write timed out\n",
547 device_xname(sc_if->sk_dev));
548 }
549
550 void
551 sk_marv_miibus_statchg(device_t dev)
552 {
553 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
554 SK_YU_READ_2(((struct sk_if_softc *)device_private(dev)),
555 YUKON_GPCR)));
556 }
557
558 #define SK_HASH_BITS 6
559
560 u_int32_t
561 sk_xmac_hash(void *addr)
562 {
563 u_int32_t crc;
564
565 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
566 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
567 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
568 return crc;
569 }
570
571 u_int32_t
572 sk_yukon_hash(void *addr)
573 {
574 u_int32_t crc;
575
576 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
577 crc &= ((1 << SK_HASH_BITS) - 1);
578 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
579 return crc;
580 }
581
582 void
583 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
584 {
585 char *addr = addrv;
586 int base = XM_RXFILT_ENTRY(slot);
587
588 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
589 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
590 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
591 }
592
593 void
594 sk_setmulti(struct sk_if_softc *sc_if)
595 {
596 struct sk_softc *sc = sc_if->sk_softc;
597 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
598 u_int32_t hashes[2] = { 0, 0 };
599 int h = 0, i;
600 struct ethercom *ec = &sc_if->sk_ethercom;
601 struct ether_multi *enm;
602 struct ether_multistep step;
603 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
604
605 /* First, zot all the existing filters. */
606 switch (sc->sk_type) {
607 case SK_GENESIS:
608 for (i = 1; i < XM_RXFILT_MAX; i++)
609 sk_setfilt(sc_if, (void *)&dummy, i);
610
611 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
612 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
613 break;
614 case SK_YUKON:
615 case SK_YUKON_LITE:
616 case SK_YUKON_LP:
617 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
618 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
619 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
620 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
621 break;
622 }
623
624 /* Now program new ones. */
625 allmulti:
626 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
627 hashes[0] = 0xFFFFFFFF;
628 hashes[1] = 0xFFFFFFFF;
629 } else {
630 i = 1;
631 /* First find the tail of the list. */
632 ETHER_FIRST_MULTI(step, ec, enm);
633 while (enm != NULL) {
634 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
635 ETHER_ADDR_LEN)) {
636 ifp->if_flags |= IFF_ALLMULTI;
637 goto allmulti;
638 }
639 DPRINTFN(2,("multicast address %s\n",
640 ether_sprintf(enm->enm_addrlo)));
641 /*
642 * Program the first XM_RXFILT_MAX multicast groups
643 * into the perfect filter. For all others,
644 * use the hash table.
645 */
646 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
647 sk_setfilt(sc_if, enm->enm_addrlo, i);
648 i++;
649 }
650 else {
651 switch (sc->sk_type) {
652 case SK_GENESIS:
653 h = sk_xmac_hash(enm->enm_addrlo);
654 break;
655 case SK_YUKON:
656 case SK_YUKON_LITE:
657 case SK_YUKON_LP:
658 h = sk_yukon_hash(enm->enm_addrlo);
659 break;
660 }
661 if (h < 32)
662 hashes[0] |= (1 << h);
663 else
664 hashes[1] |= (1 << (h - 32));
665 }
666
667 ETHER_NEXT_MULTI(step, enm);
668 }
669 }
670
671 switch (sc->sk_type) {
672 case SK_GENESIS:
673 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
674 XM_MODE_RX_USE_PERFECT);
675 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
676 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
677 break;
678 case SK_YUKON:
679 case SK_YUKON_LITE:
680 case SK_YUKON_LP:
681 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
682 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
683 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
684 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
685 break;
686 }
687 }
688
689 int
690 sk_init_rx_ring(struct sk_if_softc *sc_if)
691 {
692 struct sk_chain_data *cd = &sc_if->sk_cdata;
693 struct sk_ring_data *rd = sc_if->sk_rdata;
694 int i;
695
696 bzero((char *)rd->sk_rx_ring,
697 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
698
699 for (i = 0; i < SK_RX_RING_CNT; i++) {
700 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
701 if (i == (SK_RX_RING_CNT - 1)) {
702 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
703 rd->sk_rx_ring[i].sk_next =
704 htole32(SK_RX_RING_ADDR(sc_if, 0));
705 } else {
706 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
707 rd->sk_rx_ring[i].sk_next =
708 htole32(SK_RX_RING_ADDR(sc_if,i+1));
709 }
710 }
711
712 for (i = 0; i < SK_RX_RING_CNT; i++) {
713 if (sk_newbuf(sc_if, i, NULL,
714 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
715 aprint_error_dev(sc_if->sk_dev,
716 "failed alloc of %dth mbuf\n", i);
717 return ENOBUFS;
718 }
719 }
720 sc_if->sk_cdata.sk_rx_prod = 0;
721 sc_if->sk_cdata.sk_rx_cons = 0;
722
723 return 0;
724 }
725
726 int
727 sk_init_tx_ring(struct sk_if_softc *sc_if)
728 {
729 struct sk_chain_data *cd = &sc_if->sk_cdata;
730 struct sk_ring_data *rd = sc_if->sk_rdata;
731 int i;
732
733 memset(sc_if->sk_rdata->sk_tx_ring, 0,
734 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
735
736 for (i = 0; i < SK_TX_RING_CNT; i++) {
737 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
738 if (i == (SK_TX_RING_CNT - 1)) {
739 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
740 rd->sk_tx_ring[i].sk_next =
741 htole32(SK_TX_RING_ADDR(sc_if, 0));
742 } else {
743 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
744 rd->sk_tx_ring[i].sk_next =
745 htole32(SK_TX_RING_ADDR(sc_if,i+1));
746 }
747 }
748
749 sc_if->sk_cdata.sk_tx_prod = 0;
750 sc_if->sk_cdata.sk_tx_cons = 0;
751 sc_if->sk_cdata.sk_tx_cnt = 0;
752
753 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
754 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
755
756 return 0;
757 }
758
759 int
760 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
761 bus_dmamap_t dmamap)
762 {
763 struct mbuf *m_new = NULL;
764 struct sk_chain *c;
765 struct sk_rx_desc *r;
766
767 if (m == NULL) {
768 void *buf = NULL;
769
770 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
771 if (m_new == NULL) {
772 aprint_error_dev(sc_if->sk_dev,
773 "no memory for rx list -- packet dropped!\n");
774 return ENOBUFS;
775 }
776
777 /* Allocate the jumbo buffer */
778 buf = sk_jalloc(sc_if);
779 if (buf == NULL) {
780 m_freem(m_new);
781 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
782 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
783 return ENOBUFS;
784 }
785
786 /* Attach the buffer to the mbuf */
787 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
788 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
789
790 } else {
791 /*
792 * We're re-using a previously allocated mbuf;
793 * be sure to re-init pointers and lengths to
794 * default values.
795 */
796 m_new = m;
797 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
798 m_new->m_data = m_new->m_ext.ext_buf;
799 }
800 m_adj(m_new, ETHER_ALIGN);
801
802 c = &sc_if->sk_cdata.sk_rx_chain[i];
803 r = c->sk_desc;
804 c->sk_mbuf = m_new;
805 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
806 (((vaddr_t)m_new->m_data
807 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
808 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
809
810 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
811
812 return 0;
813 }
814
815 /*
816 * Memory management for jumbo frames.
817 */
818
819 int
820 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
821 {
822 struct sk_softc *sc = sc_if->sk_softc;
823 char *ptr, *kva;
824 bus_dma_segment_t seg;
825 int i, rseg, state, error;
826 struct sk_jpool_entry *entry;
827
828 state = error = 0;
829
830 /* Grab a big chunk o' storage. */
831 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
832 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
833 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
834 return ENOBUFS;
835 }
836
837 state = 1;
838 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
839 BUS_DMA_NOWAIT)) {
840 aprint_error_dev(sc->sk_dev,
841 "can't map dma buffers (%d bytes)\n",
842 SK_JMEM);
843 error = ENOBUFS;
844 goto out;
845 }
846
847 state = 2;
848 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
849 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
850 aprint_error_dev(sc->sk_dev, "can't create dma map\n");
851 error = ENOBUFS;
852 goto out;
853 }
854
855 state = 3;
856 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
857 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
858 aprint_error_dev(sc->sk_dev, "can't load dma map\n");
859 error = ENOBUFS;
860 goto out;
861 }
862
863 state = 4;
864 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
865 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
866
867 LIST_INIT(&sc_if->sk_jfree_listhead);
868 LIST_INIT(&sc_if->sk_jinuse_listhead);
869 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
870
871 /*
872 * Now divide it up into 9K pieces and save the addresses
873 * in an array.
874 */
875 ptr = sc_if->sk_cdata.sk_jumbo_buf;
876 for (i = 0; i < SK_JSLOTS; i++) {
877 sc_if->sk_cdata.sk_jslots[i] = ptr;
878 ptr += SK_JLEN;
879 entry = malloc(sizeof(struct sk_jpool_entry),
880 M_DEVBUF, M_NOWAIT);
881 if (entry == NULL) {
882 aprint_error_dev(sc->sk_dev,
883 "no memory for jumbo buffer queue!\n");
884 error = ENOBUFS;
885 goto out;
886 }
887 entry->slot = i;
888 if (i)
889 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
890 entry, jpool_entries);
891 else
892 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
893 entry, jpool_entries);
894 }
895 out:
896 if (error != 0) {
897 switch (state) {
898 case 4:
899 bus_dmamap_unload(sc->sc_dmatag,
900 sc_if->sk_cdata.sk_rx_jumbo_map);
901 case 3:
902 bus_dmamap_destroy(sc->sc_dmatag,
903 sc_if->sk_cdata.sk_rx_jumbo_map);
904 case 2:
905 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
906 case 1:
907 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
908 break;
909 default:
910 break;
911 }
912 }
913
914 return error;
915 }
916
917 /*
918 * Allocate a jumbo buffer.
919 */
920 void *
921 sk_jalloc(struct sk_if_softc *sc_if)
922 {
923 struct sk_jpool_entry *entry;
924
925 mutex_enter(&sc_if->sk_jpool_mtx);
926 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
927
928 if (entry == NULL) {
929 mutex_exit(&sc_if->sk_jpool_mtx);
930 return NULL;
931 }
932
933 LIST_REMOVE(entry, jpool_entries);
934 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
935 mutex_exit(&sc_if->sk_jpool_mtx);
936 return sc_if->sk_cdata.sk_jslots[entry->slot];
937 }
938
939 /*
940 * Release a jumbo buffer.
941 */
942 void
943 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
944 {
945 struct sk_jpool_entry *entry;
946 struct sk_if_softc *sc;
947 int i;
948
949 /* Extract the softc struct pointer. */
950 sc = (struct sk_if_softc *)arg;
951
952 if (sc == NULL)
953 panic("sk_jfree: can't find softc pointer!");
954
955 /* calculate the slot this buffer belongs to */
956
957 i = ((vaddr_t)buf
958 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
959
960 if ((i < 0) || (i >= SK_JSLOTS))
961 panic("sk_jfree: asked to free buffer that we don't manage!");
962
963 mutex_enter(&sc->sk_jpool_mtx);
964 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
965 if (entry == NULL)
966 panic("sk_jfree: buffer not in use!");
967 entry->slot = i;
968 LIST_REMOVE(entry, jpool_entries);
969 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
970 mutex_exit(&sc->sk_jpool_mtx);
971
972 if (__predict_true(m != NULL))
973 pool_cache_put(mb_cache, m);
974 }
975
976 /*
977 * Set media options.
978 */
979 int
980 sk_ifmedia_upd(struct ifnet *ifp)
981 {
982 struct sk_if_softc *sc_if = ifp->if_softc;
983 int rc;
984
985 (void) sk_init(ifp);
986 if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
987 return 0;
988 return rc;
989 }
990
991 int
992 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
993 {
994 struct sk_if_softc *sc_if = ifp->if_softc;
995 struct sk_softc *sc = sc_if->sk_softc;
996 int s, error = 0;
997
998 /* DPRINTFN(2, ("sk_ioctl\n")); */
999
1000 s = splnet();
1001
1002 switch (command) {
1003
1004 case SIOCSIFFLAGS:
1005 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1006 if ((error = ifioctl_common(ifp, command, data)) != 0)
1007 break;
1008 if (ifp->if_flags & IFF_UP) {
1009 if (ifp->if_flags & IFF_RUNNING &&
1010 ifp->if_flags & IFF_PROMISC &&
1011 !(sc_if->sk_if_flags & IFF_PROMISC)) {
1012 switch (sc->sk_type) {
1013 case SK_GENESIS:
1014 SK_XM_SETBIT_4(sc_if, XM_MODE,
1015 XM_MODE_RX_PROMISC);
1016 break;
1017 case SK_YUKON:
1018 case SK_YUKON_LITE:
1019 case SK_YUKON_LP:
1020 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1021 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1022 break;
1023 }
1024 sk_setmulti(sc_if);
1025 } else if (ifp->if_flags & IFF_RUNNING &&
1026 !(ifp->if_flags & IFF_PROMISC) &&
1027 sc_if->sk_if_flags & IFF_PROMISC) {
1028 switch (sc->sk_type) {
1029 case SK_GENESIS:
1030 SK_XM_CLRBIT_4(sc_if, XM_MODE,
1031 XM_MODE_RX_PROMISC);
1032 break;
1033 case SK_YUKON:
1034 case SK_YUKON_LITE:
1035 case SK_YUKON_LP:
1036 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1037 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1038 break;
1039 }
1040
1041 sk_setmulti(sc_if);
1042 } else
1043 (void) sk_init(ifp);
1044 } else {
1045 if (ifp->if_flags & IFF_RUNNING)
1046 sk_stop(ifp,0);
1047 }
1048 sc_if->sk_if_flags = ifp->if_flags;
1049 error = 0;
1050 break;
1051
1052 default:
1053 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1054 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1055 break;
1056
1057 error = 0;
1058
1059 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1060 ;
1061 else if (ifp->if_flags & IFF_RUNNING) {
1062 sk_setmulti(sc_if);
1063 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1064 }
1065 break;
1066 }
1067
1068 splx(s);
1069 return error;
1070 }
1071
1072 void
1073 sk_update_int_mod(struct sk_softc *sc)
1074 {
1075 u_int32_t imtimer_ticks;
1076
1077 /*
1078 * Configure interrupt moderation. The moderation timer
1079 * defers interrupts specified in the interrupt moderation
1080 * timer mask based on the timeout specified in the interrupt
1081 * moderation timer init register. Each bit in the timer
1082 * register represents one tick, so to specify a timeout in
1083 * microseconds, we have to multiply by the correct number of
1084 * ticks-per-microsecond.
1085 */
1086 switch (sc->sk_type) {
1087 case SK_GENESIS:
1088 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1089 break;
1090 case SK_YUKON_EC:
1091 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1092 break;
1093 default:
1094 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1095 }
1096 aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
1097 sc->sk_int_mod);
1098 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1099 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1100 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1101 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1102 sc->sk_int_mod_pending = 0;
1103 }
1104
1105 /*
1106 * Lookup: Check the PCI vendor and device, and return a pointer to
1107 * The structure if the IDs match against our list.
1108 */
1109
1110 static const struct sk_product *
1111 sk_lookup(const struct pci_attach_args *pa)
1112 {
1113 const struct sk_product *psk;
1114
1115 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1116 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1117 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1118 return psk;
1119 }
1120 return NULL;
1121 }
1122
1123 /*
1124 * Probe for a SysKonnect GEnesis chip.
1125 */
1126
1127 int
1128 skc_probe(device_t parent, cfdata_t match, void *aux)
1129 {
1130 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1131 const struct sk_product *psk;
1132 pcireg_t subid;
1133
1134 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1135
1136 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1137 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1138 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1139 subid == SK_LINKSYS_EG1032_SUBID)
1140 return 1;
1141
1142 if ((psk = sk_lookup(pa))) {
1143 return 1;
1144 }
1145 return 0;
1146 }
1147
1148 /*
1149 * Force the GEnesis into reset, then bring it out of reset.
1150 */
1151 void sk_reset(struct sk_softc *sc)
1152 {
1153 DPRINTFN(2, ("sk_reset\n"));
1154
1155 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1156 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1157 if (SK_YUKON_FAMILY(sc->sk_type))
1158 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1159
1160 DELAY(1000);
1161 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1162 DELAY(2);
1163 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1164 if (SK_YUKON_FAMILY(sc->sk_type))
1165 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1166
1167 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1168 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1169 CSR_READ_2(sc, SK_LINK_CTRL)));
1170
1171 if (sc->sk_type == SK_GENESIS) {
1172 /* Configure packet arbiter */
1173 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1174 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1175 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1176 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1177 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1178 }
1179
1180 /* Enable RAM interface */
1181 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1182
1183 sk_update_int_mod(sc);
1184 }
1185
1186 int
1187 sk_probe(device_t parent, cfdata_t match, void *aux)
1188 {
1189 struct skc_attach_args *sa = aux;
1190
1191 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1192 return 0;
1193
1194 return 1;
1195 }
1196
1197 /*
1198 * Each XMAC chip is attached as a separate logical IP interface.
1199 * Single port cards will have only one logical interface of course.
1200 */
1201 void
1202 sk_attach(device_t parent, device_t self, void *aux)
1203 {
1204 struct sk_if_softc *sc_if = device_private(self);
1205 struct sk_softc *sc = device_private(parent);
1206 struct skc_attach_args *sa = aux;
1207 struct sk_txmap_entry *entry;
1208 struct ifnet *ifp;
1209 bus_dma_segment_t seg;
1210 bus_dmamap_t dmamap;
1211 void *kva;
1212 int i, rseg;
1213
1214 aprint_naive("\n");
1215
1216 sc_if->sk_dev = self;
1217 sc_if->sk_port = sa->skc_port;
1218 sc_if->sk_softc = sc;
1219 sc->sk_if[sa->skc_port] = sc_if;
1220
1221 if (sa->skc_port == SK_PORT_A)
1222 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1223 if (sa->skc_port == SK_PORT_B)
1224 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1225
1226 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1227
1228 /*
1229 * Get station address for this interface. Note that
1230 * dual port cards actually come with three station
1231 * addresses: one for each port, plus an extra. The
1232 * extra one is used by the SysKonnect driver software
1233 * as a 'virtual' station address for when both ports
1234 * are operating in failover mode. Currently we don't
1235 * use this extra address.
1236 */
1237 for (i = 0; i < ETHER_ADDR_LEN; i++)
1238 sc_if->sk_enaddr[i] =
1239 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1240
1241
1242 aprint_normal(": Ethernet address %s\n",
1243 ether_sprintf(sc_if->sk_enaddr));
1244
1245 /*
1246 * Set up RAM buffer addresses. The NIC will have a certain
1247 * amount of SRAM on it, somewhere between 512K and 2MB. We
1248 * need to divide this up a) between the transmitter and
1249 * receiver and b) between the two XMACs, if this is a
1250 * dual port NIC. Our algorithm is to divide up the memory
1251 * evenly so that everyone gets a fair share.
1252 */
1253 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1254 u_int32_t chunk, val;
1255
1256 chunk = sc->sk_ramsize / 2;
1257 val = sc->sk_rboff / sizeof(u_int64_t);
1258 sc_if->sk_rx_ramstart = val;
1259 val += (chunk / sizeof(u_int64_t));
1260 sc_if->sk_rx_ramend = val - 1;
1261 sc_if->sk_tx_ramstart = val;
1262 val += (chunk / sizeof(u_int64_t));
1263 sc_if->sk_tx_ramend = val - 1;
1264 } else {
1265 u_int32_t chunk, val;
1266
1267 chunk = sc->sk_ramsize / 4;
1268 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1269 sizeof(u_int64_t);
1270 sc_if->sk_rx_ramstart = val;
1271 val += (chunk / sizeof(u_int64_t));
1272 sc_if->sk_rx_ramend = val - 1;
1273 sc_if->sk_tx_ramstart = val;
1274 val += (chunk / sizeof(u_int64_t));
1275 sc_if->sk_tx_ramend = val - 1;
1276 }
1277
1278 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1279 " tx_ramstart=%#x tx_ramend=%#x\n",
1280 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1281 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1282
1283 /* Read and save PHY type and set PHY address */
1284 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1285 switch (sc_if->sk_phytype) {
1286 case SK_PHYTYPE_XMAC:
1287 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1288 break;
1289 case SK_PHYTYPE_BCOM:
1290 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1291 break;
1292 case SK_PHYTYPE_MARV_COPPER:
1293 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1294 break;
1295 default:
1296 aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
1297 sc_if->sk_phytype);
1298 return;
1299 }
1300
1301 /* Allocate the descriptor queues. */
1302 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1303 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1304 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
1305 goto fail;
1306 }
1307 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1308 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1309 aprint_error_dev(sc_if->sk_dev,
1310 "can't map dma buffers (%lu bytes)\n",
1311 (u_long) sizeof(struct sk_ring_data));
1312 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1313 goto fail;
1314 }
1315 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1316 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1317 &sc_if->sk_ring_map)) {
1318 aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
1319 bus_dmamem_unmap(sc->sc_dmatag, kva,
1320 sizeof(struct sk_ring_data));
1321 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1322 goto fail;
1323 }
1324 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1325 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1326 aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
1327 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1328 bus_dmamem_unmap(sc->sc_dmatag, kva,
1329 sizeof(struct sk_ring_data));
1330 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1331 goto fail;
1332 }
1333
1334 for (i = 0; i < SK_RX_RING_CNT; i++)
1335 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1336
1337 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1338 for (i = 0; i < SK_TX_RING_CNT; i++) {
1339 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1340
1341 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1342 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1343 aprint_error_dev(sc_if->sk_dev,
1344 "Can't create TX dmamap\n");
1345 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1346 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1347 bus_dmamem_unmap(sc->sc_dmatag, kva,
1348 sizeof(struct sk_ring_data));
1349 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1350 goto fail;
1351 }
1352
1353 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1354 if (!entry) {
1355 aprint_error_dev(sc_if->sk_dev,
1356 "Can't alloc txmap entry\n");
1357 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1358 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1359 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1360 bus_dmamem_unmap(sc->sc_dmatag, kva,
1361 sizeof(struct sk_ring_data));
1362 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1363 goto fail;
1364 }
1365 entry->dmamap = dmamap;
1366 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1367 }
1368
1369 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1370 bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1371
1372 ifp = &sc_if->sk_ethercom.ec_if;
1373 /* Try to allocate memory for jumbo buffers. */
1374 if (sk_alloc_jumbo_mem(sc_if)) {
1375 aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1376 goto fail;
1377 }
1378 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1379 | ETHERCAP_JUMBO_MTU;
1380
1381 ifp->if_softc = sc_if;
1382 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1383 ifp->if_ioctl = sk_ioctl;
1384 ifp->if_start = sk_start;
1385 ifp->if_stop = sk_stop;
1386 ifp->if_init = sk_init;
1387 ifp->if_watchdog = sk_watchdog;
1388 ifp->if_capabilities = 0;
1389 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1390 IFQ_SET_READY(&ifp->if_snd);
1391 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1392
1393 /*
1394 * Do miibus setup.
1395 */
1396 switch (sc->sk_type) {
1397 case SK_GENESIS:
1398 sk_init_xmac(sc_if);
1399 break;
1400 case SK_YUKON:
1401 case SK_YUKON_LITE:
1402 case SK_YUKON_LP:
1403 sk_init_yukon(sc_if);
1404 break;
1405 default:
1406 aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
1407 sc->sk_type);
1408 goto fail;
1409 }
1410
1411 DPRINTFN(2, ("sk_attach: 1\n"));
1412
1413 sc_if->sk_mii.mii_ifp = ifp;
1414 switch (sc->sk_type) {
1415 case SK_GENESIS:
1416 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1417 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1418 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1419 break;
1420 case SK_YUKON:
1421 case SK_YUKON_LITE:
1422 case SK_YUKON_LP:
1423 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1424 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1425 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1426 break;
1427 }
1428
1429 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1430 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1431 sk_ifmedia_upd, ether_mediastatus);
1432 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1433 MII_OFFSET_ANY, 0);
1434 if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
1435 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1436 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1437 0, NULL);
1438 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1439 } else
1440 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1441
1442 callout_init(&sc_if->sk_tick_ch, 0);
1443 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1444
1445 DPRINTFN(2, ("sk_attach: 1\n"));
1446
1447 /*
1448 * Call MI attach routines.
1449 */
1450 if_attach(ifp);
1451
1452 ether_ifattach(ifp, sc_if->sk_enaddr);
1453
1454 #if NRND > 0
1455 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1456 RND_TYPE_NET, 0);
1457 #endif
1458
1459 DPRINTFN(2, ("sk_attach: end\n"));
1460
1461 return;
1462
1463 fail:
1464 sc->sk_if[sa->skc_port] = NULL;
1465 }
1466
1467 int
1468 skcprint(void *aux, const char *pnp)
1469 {
1470 struct skc_attach_args *sa = aux;
1471
1472 if (pnp)
1473 aprint_normal("sk port %c at %s",
1474 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1475 else
1476 aprint_normal(" port %c",
1477 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1478 return UNCONF;
1479 }
1480
1481 /*
1482 * Attach the interface. Allocate softc structures, do ifmedia
1483 * setup and ethernet/BPF attach.
1484 */
1485 void
1486 skc_attach(device_t parent, device_t self, void *aux)
1487 {
1488 struct sk_softc *sc = device_private(self);
1489 struct pci_attach_args *pa = aux;
1490 struct skc_attach_args skca;
1491 pci_chipset_tag_t pc = pa->pa_pc;
1492 #ifndef SK_USEIOSPACE
1493 pcireg_t memtype;
1494 #endif
1495 pci_intr_handle_t ih;
1496 const char *intrstr = NULL;
1497 bus_addr_t iobase;
1498 bus_size_t iosize;
1499 int rc, sk_nodenum;
1500 u_int32_t command;
1501 const char *revstr;
1502 const struct sysctlnode *node;
1503
1504 sc->sk_dev = self;
1505 aprint_naive("\n");
1506
1507 DPRINTFN(2, ("begin skc_attach\n"));
1508
1509 /*
1510 * Handle power management nonsense.
1511 */
1512 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1513
1514 if (command == 0x01) {
1515 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1516 if (command & SK_PSTATE_MASK) {
1517 u_int32_t xiobase, membase, irq;
1518
1519 /* Save important PCI config data. */
1520 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1521 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1522 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1523
1524 /* Reset the power state. */
1525 aprint_normal_dev(sc->sk_dev,
1526 "chip is in D%d power mode -- setting to D0\n",
1527 command & SK_PSTATE_MASK);
1528 command &= 0xFFFFFFFC;
1529 pci_conf_write(pc, pa->pa_tag,
1530 SK_PCI_PWRMGMTCTRL, command);
1531
1532 /* Restore PCI config data. */
1533 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1534 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1535 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1536 }
1537 }
1538
1539 /*
1540 * Map control/status registers.
1541 */
1542 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1543 command |= PCI_COMMAND_IO_ENABLE |
1544 PCI_COMMAND_MEM_ENABLE |
1545 PCI_COMMAND_MASTER_ENABLE;
1546 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1547 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1548
1549 #ifdef SK_USEIOSPACE
1550 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1551 aprint_error(": failed to enable I/O ports!\n");
1552 return;
1553 }
1554 /*
1555 * Map control/status registers.
1556 */
1557 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1558 &sc->sk_btag, &sc->sk_bhandle,
1559 &iobase, &iosize)) {
1560 aprint_error(": can't find i/o space\n");
1561 return;
1562 }
1563 #else
1564 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1565 aprint_error(": failed to enable memory mapping!\n");
1566 return;
1567 }
1568 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1569 switch (memtype) {
1570 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1571 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1572 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1573 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1574 &iobase, &iosize) == 0)
1575 break;
1576 default:
1577 aprint_error_dev(sc->sk_dev, "can't find mem space\n");
1578 return;
1579 }
1580
1581 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1582 #endif
1583 sc->sc_dmatag = pa->pa_dmat;
1584
1585 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1586 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1587
1588 /* bail out here if chip is not recognized */
1589 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1590 aprint_error_dev(sc->sk_dev, "unknown chip type\n");
1591 goto fail;
1592 }
1593 if (SK_IS_YUKON2(sc)) {
1594 aprint_error_dev(sc->sk_dev,
1595 "Does not support Yukon2--try msk(4).\n");
1596 goto fail;
1597 }
1598 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1599
1600 /* Allocate interrupt */
1601 if (pci_intr_map(pa, &ih)) {
1602 aprint_error(": couldn't map interrupt\n");
1603 goto fail;
1604 }
1605
1606 intrstr = pci_intr_string(pc, ih);
1607 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1608 if (sc->sk_intrhand == NULL) {
1609 aprint_error(": couldn't establish interrupt");
1610 if (intrstr != NULL)
1611 aprint_normal(" at %s", intrstr);
1612 goto fail;
1613 }
1614 aprint_normal(": %s\n", intrstr);
1615
1616 /* Reset the adapter. */
1617 sk_reset(sc);
1618
1619 /* Read and save vital product data from EEPROM. */
1620 sk_vpd_read(sc);
1621
1622 if (sc->sk_type == SK_GENESIS) {
1623 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1624 /* Read and save RAM size and RAMbuffer offset */
1625 switch (val) {
1626 case SK_RAMSIZE_512K_64:
1627 sc->sk_ramsize = 0x80000;
1628 sc->sk_rboff = SK_RBOFF_0;
1629 break;
1630 case SK_RAMSIZE_1024K_64:
1631 sc->sk_ramsize = 0x100000;
1632 sc->sk_rboff = SK_RBOFF_80000;
1633 break;
1634 case SK_RAMSIZE_1024K_128:
1635 sc->sk_ramsize = 0x100000;
1636 sc->sk_rboff = SK_RBOFF_0;
1637 break;
1638 case SK_RAMSIZE_2048K_128:
1639 sc->sk_ramsize = 0x200000;
1640 sc->sk_rboff = SK_RBOFF_0;
1641 break;
1642 default:
1643 aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
1644 val);
1645 goto fail_1;
1646 break;
1647 }
1648
1649 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1650 sc->sk_ramsize, sc->sk_ramsize / 1024,
1651 sc->sk_rboff));
1652 } else {
1653 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1654 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1655 sc->sk_rboff = SK_RBOFF_0;
1656
1657 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1658 sc->sk_ramsize / 1024, sc->sk_ramsize,
1659 sc->sk_rboff));
1660 }
1661
1662 /* Read and save physical media type */
1663 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1664 case SK_PMD_1000BASESX:
1665 sc->sk_pmd = IFM_1000_SX;
1666 break;
1667 case SK_PMD_1000BASELX:
1668 sc->sk_pmd = IFM_1000_LX;
1669 break;
1670 case SK_PMD_1000BASECX:
1671 sc->sk_pmd = IFM_1000_CX;
1672 break;
1673 case SK_PMD_1000BASETX:
1674 case SK_PMD_1000BASETX_ALT:
1675 sc->sk_pmd = IFM_1000_T;
1676 break;
1677 default:
1678 aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
1679 sk_win_read_1(sc, SK_PMDTYPE));
1680 goto fail_1;
1681 }
1682
1683 /* determine whether to name it with vpd or just make it up */
1684 /* Marvell Yukon VPD's can freqently be bogus */
1685
1686 switch (pa->pa_id) {
1687 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1688 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1689 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1690 case PCI_PRODUCT_3COM_3C940:
1691 case PCI_PRODUCT_DLINK_DGE530T:
1692 case PCI_PRODUCT_DLINK_DGE560T:
1693 case PCI_PRODUCT_DLINK_DGE560T_2:
1694 case PCI_PRODUCT_LINKSYS_EG1032:
1695 case PCI_PRODUCT_LINKSYS_EG1064:
1696 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1697 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1698 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1699 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1700 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1701 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1702 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1703 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1704 sc->sk_name = sc->sk_vpd_prodname;
1705 break;
1706 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1707 /* whoops yukon vpd prodname bears no resemblance to reality */
1708 switch (sc->sk_type) {
1709 case SK_GENESIS:
1710 sc->sk_name = sc->sk_vpd_prodname;
1711 break;
1712 case SK_YUKON:
1713 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1714 break;
1715 case SK_YUKON_LITE:
1716 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1717 break;
1718 case SK_YUKON_LP:
1719 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1720 break;
1721 default:
1722 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1723 }
1724
1725 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1726
1727 if ( sc->sk_type == SK_YUKON ) {
1728 uint32_t flashaddr;
1729 uint8_t testbyte;
1730
1731 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1732
1733 /* test Flash-Address Register */
1734 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1735 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1736
1737 if (testbyte != 0) {
1738 /* this is yukon lite Rev. A0 */
1739 sc->sk_type = SK_YUKON_LITE;
1740 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1741 /* restore Flash-Address Register */
1742 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1743 }
1744 }
1745 break;
1746 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1747 sc->sk_name = sc->sk_vpd_prodname;
1748 break;
1749 default:
1750 sc->sk_name = "Unknown Marvell";
1751 }
1752
1753
1754 if ( sc->sk_type == SK_YUKON_LITE ) {
1755 switch (sc->sk_rev) {
1756 case SK_YUKON_LITE_REV_A0:
1757 revstr = "A0";
1758 break;
1759 case SK_YUKON_LITE_REV_A1:
1760 revstr = "A1";
1761 break;
1762 case SK_YUKON_LITE_REV_A3:
1763 revstr = "A3";
1764 break;
1765 default:
1766 revstr = "";
1767 }
1768 } else {
1769 revstr = "";
1770 }
1771
1772 /* Announce the product name. */
1773 aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
1774 sc->sk_name, revstr, sc->sk_rev);
1775
1776 skca.skc_port = SK_PORT_A;
1777 (void)config_found(sc->sk_dev, &skca, skcprint);
1778
1779 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1780 skca.skc_port = SK_PORT_B;
1781 (void)config_found(sc->sk_dev, &skca, skcprint);
1782 }
1783
1784 /* Turn on the 'driver is loaded' LED. */
1785 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1786
1787 /* skc sysctl setup */
1788
1789 sc->sk_int_mod = SK_IM_DEFAULT;
1790 sc->sk_int_mod_pending = 0;
1791
1792 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1793 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1794 SYSCTL_DESCR("skc per-controller controls"),
1795 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1796 CTL_EOL)) != 0) {
1797 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1798 goto fail_1;
1799 }
1800
1801 sk_nodenum = node->sysctl_num;
1802
1803 /* interrupt moderation time in usecs */
1804 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1805 CTLFLAG_READWRITE,
1806 CTLTYPE_INT, "int_mod",
1807 SYSCTL_DESCR("sk interrupt moderation timer"),
1808 sk_sysctl_handler, 0, sc,
1809 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1810 CTL_EOL)) != 0) {
1811 aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1812 goto fail_1;
1813 }
1814
1815 return;
1816
1817 fail_1:
1818 pci_intr_disestablish(pc, sc->sk_intrhand);
1819 fail:
1820 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1821 }
1822
1823 int
1824 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1825 {
1826 struct sk_softc *sc = sc_if->sk_softc;
1827 struct sk_tx_desc *f = NULL;
1828 u_int32_t frag, cur, cnt = 0, sk_ctl;
1829 int i;
1830 struct sk_txmap_entry *entry;
1831 bus_dmamap_t txmap;
1832
1833 DPRINTFN(3, ("sk_encap\n"));
1834
1835 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1836 if (entry == NULL) {
1837 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1838 return ENOBUFS;
1839 }
1840 txmap = entry->dmamap;
1841
1842 cur = frag = *txidx;
1843
1844 #ifdef SK_DEBUG
1845 if (skdebug >= 3)
1846 sk_dump_mbuf(m_head);
1847 #endif
1848
1849 /*
1850 * Start packing the mbufs in this chain into
1851 * the fragment pointers. Stop when we run out
1852 * of fragments or hit the end of the mbuf chain.
1853 */
1854 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1855 BUS_DMA_NOWAIT)) {
1856 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1857 return ENOBUFS;
1858 }
1859
1860 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1861
1862 /* Sync the DMA map. */
1863 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1864 BUS_DMASYNC_PREWRITE);
1865
1866 for (i = 0; i < txmap->dm_nsegs; i++) {
1867 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1868 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1869 return ENOBUFS;
1870 }
1871 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1872 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1873 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1874 if (cnt == 0)
1875 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1876 else
1877 sk_ctl |= SK_TXCTL_OWN;
1878 f->sk_ctl = htole32(sk_ctl);
1879 cur = frag;
1880 SK_INC(frag, SK_TX_RING_CNT);
1881 cnt++;
1882 }
1883
1884 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1885 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1886
1887 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1888 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1889 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1890
1891 /* Sync descriptors before handing to chip */
1892 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1893 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1894
1895 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1896 htole32(SK_TXCTL_OWN);
1897
1898 /* Sync first descriptor to hand it off */
1899 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1900
1901 sc_if->sk_cdata.sk_tx_cnt += cnt;
1902
1903 #ifdef SK_DEBUG
1904 if (skdebug >= 3) {
1905 struct sk_tx_desc *desc;
1906 u_int32_t idx;
1907 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1908 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1909 sk_dump_txdesc(desc, idx);
1910 }
1911 }
1912 #endif
1913
1914 *txidx = frag;
1915
1916 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1917
1918 return 0;
1919 }
1920
1921 void
1922 sk_start(struct ifnet *ifp)
1923 {
1924 struct sk_if_softc *sc_if = ifp->if_softc;
1925 struct sk_softc *sc = sc_if->sk_softc;
1926 struct mbuf *m_head = NULL;
1927 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1928 int pkts = 0;
1929
1930 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1931 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1932
1933 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1934 IFQ_POLL(&ifp->if_snd, m_head);
1935 if (m_head == NULL)
1936 break;
1937
1938 /*
1939 * Pack the data into the transmit ring. If we
1940 * don't have room, set the OACTIVE flag and wait
1941 * for the NIC to drain the ring.
1942 */
1943 if (sk_encap(sc_if, m_head, &idx)) {
1944 ifp->if_flags |= IFF_OACTIVE;
1945 break;
1946 }
1947
1948 /* now we are committed to transmit the packet */
1949 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1950 pkts++;
1951
1952 /*
1953 * If there's a BPF listener, bounce a copy of this frame
1954 * to him.
1955 */
1956 #if NBPFILTER > 0
1957 if (ifp->if_bpf)
1958 bpf_mtap(ifp->if_bpf, m_head);
1959 #endif
1960 }
1961 if (pkts == 0)
1962 return;
1963
1964 /* Transmit */
1965 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1966 sc_if->sk_cdata.sk_tx_prod = idx;
1967 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1968
1969 /* Set a timeout in case the chip goes out to lunch. */
1970 ifp->if_timer = 5;
1971 }
1972 }
1973
1974
1975 void
1976 sk_watchdog(struct ifnet *ifp)
1977 {
1978 struct sk_if_softc *sc_if = ifp->if_softc;
1979
1980 /*
1981 * Reclaim first as there is a possibility of losing Tx completion
1982 * interrupts.
1983 */
1984 sk_txeof(sc_if);
1985 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1986 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1987
1988 ifp->if_oerrors++;
1989
1990 sk_init(ifp);
1991 }
1992 }
1993
1994 void
1995 sk_shutdown(void *v)
1996 {
1997 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
1998 struct sk_softc *sc = sc_if->sk_softc;
1999 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2000
2001 DPRINTFN(2, ("sk_shutdown\n"));
2002 sk_stop(ifp,1);
2003
2004 /* Turn off the 'driver is loaded' LED. */
2005 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2006
2007 /*
2008 * Reset the GEnesis controller. Doing this should also
2009 * assert the resets on the attached XMAC(s).
2010 */
2011 sk_reset(sc);
2012 }
2013
2014 void
2015 sk_rxeof(struct sk_if_softc *sc_if)
2016 {
2017 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2018 struct mbuf *m;
2019 struct sk_chain *cur_rx;
2020 struct sk_rx_desc *cur_desc;
2021 int i, cur, total_len = 0;
2022 u_int32_t rxstat, sk_ctl;
2023 bus_dmamap_t dmamap;
2024
2025 i = sc_if->sk_cdata.sk_rx_prod;
2026
2027 DPRINTFN(3, ("sk_rxeof %d\n", i));
2028
2029 for (;;) {
2030 cur = i;
2031
2032 /* Sync the descriptor */
2033 SK_CDRXSYNC(sc_if, cur,
2034 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2035
2036 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2037 if (sk_ctl & SK_RXCTL_OWN) {
2038 /* Invalidate the descriptor -- it's not ready yet */
2039 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2040 sc_if->sk_cdata.sk_rx_prod = i;
2041 break;
2042 }
2043
2044 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2045 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2046 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2047
2048 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2049 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2050
2051 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2052 m = cur_rx->sk_mbuf;
2053 cur_rx->sk_mbuf = NULL;
2054 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2055
2056 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2057
2058 SK_INC(i, SK_RX_RING_CNT);
2059
2060 if (rxstat & XM_RXSTAT_ERRFRAME) {
2061 ifp->if_ierrors++;
2062 sk_newbuf(sc_if, cur, m, dmamap);
2063 continue;
2064 }
2065
2066 /*
2067 * Try to allocate a new jumbo buffer. If that
2068 * fails, copy the packet to mbufs and put the
2069 * jumbo buffer back in the ring so it can be
2070 * re-used. If allocating mbufs fails, then we
2071 * have to drop the packet.
2072 */
2073 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2074 struct mbuf *m0;
2075 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2076 total_len + ETHER_ALIGN, 0, ifp, NULL);
2077 sk_newbuf(sc_if, cur, m, dmamap);
2078 if (m0 == NULL) {
2079 aprint_error_dev(sc_if->sk_dev, "no receive "
2080 "buffers available -- packet dropped!\n");
2081 ifp->if_ierrors++;
2082 continue;
2083 }
2084 m_adj(m0, ETHER_ALIGN);
2085 m = m0;
2086 } else {
2087 m->m_pkthdr.rcvif = ifp;
2088 m->m_pkthdr.len = m->m_len = total_len;
2089 }
2090
2091 ifp->if_ipackets++;
2092
2093 #if NBPFILTER > 0
2094 if (ifp->if_bpf)
2095 bpf_mtap(ifp->if_bpf, m);
2096 #endif
2097 /* pass it on. */
2098 (*ifp->if_input)(ifp, m);
2099 }
2100 }
2101
2102 void
2103 sk_txeof(struct sk_if_softc *sc_if)
2104 {
2105 struct sk_softc *sc = sc_if->sk_softc;
2106 struct sk_tx_desc *cur_tx;
2107 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2108 u_int32_t idx, sk_ctl;
2109 struct sk_txmap_entry *entry;
2110
2111 DPRINTFN(3, ("sk_txeof\n"));
2112
2113 /*
2114 * Go through our tx ring and free mbufs for those
2115 * frames that have been sent.
2116 */
2117 idx = sc_if->sk_cdata.sk_tx_cons;
2118 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2119 SK_CDTXSYNC(sc_if, idx, 1,
2120 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2121
2122 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2123 sk_ctl = le32toh(cur_tx->sk_ctl);
2124 #ifdef SK_DEBUG
2125 if (skdebug >= 3)
2126 sk_dump_txdesc(cur_tx, idx);
2127 #endif
2128 if (sk_ctl & SK_TXCTL_OWN) {
2129 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2130 break;
2131 }
2132 if (sk_ctl & SK_TXCTL_LASTFRAG)
2133 ifp->if_opackets++;
2134 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2135 entry = sc_if->sk_cdata.sk_tx_map[idx];
2136
2137 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2138 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2139
2140 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2141 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2142
2143 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2144 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2145 link);
2146 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2147 }
2148 sc_if->sk_cdata.sk_tx_cnt--;
2149 SK_INC(idx, SK_TX_RING_CNT);
2150 }
2151 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2152 ifp->if_timer = 0;
2153 else /* nudge chip to keep tx ring moving */
2154 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2155
2156 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2157 ifp->if_flags &= ~IFF_OACTIVE;
2158
2159 sc_if->sk_cdata.sk_tx_cons = idx;
2160 }
2161
2162 void
2163 sk_tick(void *xsc_if)
2164 {
2165 struct sk_if_softc *sc_if = xsc_if;
2166 struct mii_data *mii = &sc_if->sk_mii;
2167 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2168 int i;
2169
2170 DPRINTFN(3, ("sk_tick\n"));
2171
2172 if (!(ifp->if_flags & IFF_UP))
2173 return;
2174
2175 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2176 sk_intr_bcom(sc_if);
2177 return;
2178 }
2179
2180 /*
2181 * According to SysKonnect, the correct way to verify that
2182 * the link has come back up is to poll bit 0 of the GPIO
2183 * register three times. This pin has the signal from the
2184 * link sync pin connected to it; if we read the same link
2185 * state 3 times in a row, we know the link is up.
2186 */
2187 for (i = 0; i < 3; i++) {
2188 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2189 break;
2190 }
2191
2192 if (i != 3) {
2193 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2194 return;
2195 }
2196
2197 /* Turn the GP0 interrupt back on. */
2198 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2199 SK_XM_READ_2(sc_if, XM_ISR);
2200 mii_tick(mii);
2201 mii_pollstat(mii);
2202 callout_stop(&sc_if->sk_tick_ch);
2203 }
2204
2205 void
2206 sk_intr_bcom(struct sk_if_softc *sc_if)
2207 {
2208 struct mii_data *mii = &sc_if->sk_mii;
2209 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2210 int status;
2211
2212
2213 DPRINTFN(3, ("sk_intr_bcom\n"));
2214
2215 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2216
2217 /*
2218 * Read the PHY interrupt register to make sure
2219 * we clear any pending interrupts.
2220 */
2221 status = sk_xmac_miibus_readreg(sc_if->sk_dev,
2222 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2223
2224 if (!(ifp->if_flags & IFF_RUNNING)) {
2225 sk_init_xmac(sc_if);
2226 return;
2227 }
2228
2229 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2230 int lstat;
2231 lstat = sk_xmac_miibus_readreg(sc_if->sk_dev,
2232 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2233
2234 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2235 (void)mii_mediachg(mii);
2236 /* Turn off the link LED. */
2237 SK_IF_WRITE_1(sc_if, 0,
2238 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2239 sc_if->sk_link = 0;
2240 } else if (status & BRGPHY_ISR_LNK_CHG) {
2241 sk_xmac_miibus_writereg(sc_if->sk_dev,
2242 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2243 mii_tick(mii);
2244 sc_if->sk_link = 1;
2245 /* Turn on the link LED. */
2246 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2247 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2248 SK_LINKLED_BLINK_OFF);
2249 mii_pollstat(mii);
2250 } else {
2251 mii_tick(mii);
2252 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2253 }
2254 }
2255
2256 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2257 }
2258
2259 void
2260 sk_intr_xmac(struct sk_if_softc *sc_if)
2261 {
2262 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2263
2264 DPRINTFN(3, ("sk_intr_xmac\n"));
2265
2266 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2267 if (status & XM_ISR_GP0_SET) {
2268 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2269 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2270 }
2271
2272 if (status & XM_ISR_AUTONEG_DONE) {
2273 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2274 }
2275 }
2276
2277 if (status & XM_IMR_TX_UNDERRUN)
2278 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2279
2280 if (status & XM_IMR_RX_OVERRUN)
2281 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2282 }
2283
2284 void
2285 sk_intr_yukon(struct sk_if_softc *sc_if)
2286 {
2287 int status;
2288
2289 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2290
2291 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2292 }
2293
2294 int
2295 sk_intr(void *xsc)
2296 {
2297 struct sk_softc *sc = xsc;
2298 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2299 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2300 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2301 u_int32_t status;
2302 int claimed = 0;
2303
2304 if (sc_if0 != NULL)
2305 ifp0 = &sc_if0->sk_ethercom.ec_if;
2306 if (sc_if1 != NULL)
2307 ifp1 = &sc_if1->sk_ethercom.ec_if;
2308
2309 for (;;) {
2310 status = CSR_READ_4(sc, SK_ISSR);
2311 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2312
2313 if (!(status & sc->sk_intrmask))
2314 break;
2315
2316 claimed = 1;
2317
2318 /* Handle receive interrupts first. */
2319 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2320 sk_rxeof(sc_if0);
2321 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2322 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2323 }
2324 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2325 sk_rxeof(sc_if1);
2326 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2327 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2328 }
2329
2330 /* Then transmit interrupts. */
2331 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2332 sk_txeof(sc_if0);
2333 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2334 SK_TXBMU_CLR_IRQ_EOF);
2335 }
2336 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2337 sk_txeof(sc_if1);
2338 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2339 SK_TXBMU_CLR_IRQ_EOF);
2340 }
2341
2342 /* Then MAC interrupts. */
2343 if (sc_if0 && (status & SK_ISR_MAC1) &&
2344 (ifp0->if_flags & IFF_RUNNING)) {
2345 if (sc->sk_type == SK_GENESIS)
2346 sk_intr_xmac(sc_if0);
2347 else
2348 sk_intr_yukon(sc_if0);
2349 }
2350
2351 if (sc_if1 && (status & SK_ISR_MAC2) &&
2352 (ifp1->if_flags & IFF_RUNNING)) {
2353 if (sc->sk_type == SK_GENESIS)
2354 sk_intr_xmac(sc_if1);
2355 else
2356 sk_intr_yukon(sc_if1);
2357
2358 }
2359
2360 if (status & SK_ISR_EXTERNAL_REG) {
2361 if (sc_if0 != NULL &&
2362 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2363 sk_intr_bcom(sc_if0);
2364
2365 if (sc_if1 != NULL &&
2366 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2367 sk_intr_bcom(sc_if1);
2368 }
2369 }
2370
2371 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2372
2373 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2374 sk_start(ifp0);
2375 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2376 sk_start(ifp1);
2377
2378 #if NRND > 0
2379 if (RND_ENABLED(&sc->rnd_source))
2380 rnd_add_uint32(&sc->rnd_source, status);
2381 #endif
2382
2383 if (sc->sk_int_mod_pending)
2384 sk_update_int_mod(sc);
2385
2386 return claimed;
2387 }
2388
2389 void
2390 sk_init_xmac(struct sk_if_softc *sc_if)
2391 {
2392 struct sk_softc *sc = sc_if->sk_softc;
2393 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2394 static const struct sk_bcom_hack bhack[] = {
2395 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2396 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2397 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2398 { 0, 0 } };
2399
2400 DPRINTFN(1, ("sk_init_xmac\n"));
2401
2402 /* Unreset the XMAC. */
2403 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2404 DELAY(1000);
2405
2406 /* Reset the XMAC's internal state. */
2407 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2408
2409 /* Save the XMAC II revision */
2410 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2411
2412 /*
2413 * Perform additional initialization for external PHYs,
2414 * namely for the 1000baseTX cards that use the XMAC's
2415 * GMII mode.
2416 */
2417 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2418 int i = 0;
2419 u_int32_t val;
2420
2421 /* Take PHY out of reset. */
2422 val = sk_win_read_4(sc, SK_GPIO);
2423 if (sc_if->sk_port == SK_PORT_A)
2424 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2425 else
2426 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2427 sk_win_write_4(sc, SK_GPIO, val);
2428
2429 /* Enable GMII mode on the XMAC. */
2430 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2431
2432 sk_xmac_miibus_writereg(sc_if->sk_dev,
2433 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2434 DELAY(10000);
2435 sk_xmac_miibus_writereg(sc_if->sk_dev,
2436 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2437
2438 /*
2439 * Early versions of the BCM5400 apparently have
2440 * a bug that requires them to have their reserved
2441 * registers initialized to some magic values. I don't
2442 * know what the numbers do, I'm just the messenger.
2443 */
2444 if (sk_xmac_miibus_readreg(sc_if->sk_dev,
2445 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2446 while (bhack[i].reg) {
2447 sk_xmac_miibus_writereg(sc_if->sk_dev,
2448 SK_PHYADDR_BCOM, bhack[i].reg,
2449 bhack[i].val);
2450 i++;
2451 }
2452 }
2453 }
2454
2455 /* Set station address */
2456 SK_XM_WRITE_2(sc_if, XM_PAR0,
2457 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2458 SK_XM_WRITE_2(sc_if, XM_PAR1,
2459 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2460 SK_XM_WRITE_2(sc_if, XM_PAR2,
2461 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2462 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2463
2464 if (ifp->if_flags & IFF_PROMISC)
2465 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2466 else
2467 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2468
2469 if (ifp->if_flags & IFF_BROADCAST)
2470 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2471 else
2472 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2473
2474 /* We don't need the FCS appended to the packet. */
2475 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2476
2477 /* We want short frames padded to 60 bytes. */
2478 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2479
2480 /*
2481 * Enable the reception of all error frames. This is is
2482 * a necessary evil due to the design of the XMAC. The
2483 * XMAC's receive FIFO is only 8K in size, however jumbo
2484 * frames can be up to 9000 bytes in length. When bad
2485 * frame filtering is enabled, the XMAC's RX FIFO operates
2486 * in 'store and forward' mode. For this to work, the
2487 * entire frame has to fit into the FIFO, but that means
2488 * that jumbo frames larger than 8192 bytes will be
2489 * truncated. Disabling all bad frame filtering causes
2490 * the RX FIFO to operate in streaming mode, in which
2491 * case the XMAC will start transfering frames out of the
2492 * RX FIFO as soon as the FIFO threshold is reached.
2493 */
2494 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2495 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2496 XM_MODE_RX_INRANGELEN);
2497
2498 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2499 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2500 else
2501 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2502
2503 /*
2504 * Bump up the transmit threshold. This helps hold off transmit
2505 * underruns when we're blasting traffic from both ports at once.
2506 */
2507 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2508
2509 /* Set multicast filter */
2510 sk_setmulti(sc_if);
2511
2512 /* Clear and enable interrupts */
2513 SK_XM_READ_2(sc_if, XM_ISR);
2514 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2515 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2516 else
2517 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2518
2519 /* Configure MAC arbiter */
2520 switch (sc_if->sk_xmac_rev) {
2521 case XM_XMAC_REV_B2:
2522 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2523 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2524 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2525 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2526 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2527 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2528 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2529 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2530 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2531 break;
2532 case XM_XMAC_REV_C1:
2533 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2534 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2535 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2536 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2537 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2538 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2539 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2540 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2541 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2542 break;
2543 default:
2544 break;
2545 }
2546 sk_win_write_2(sc, SK_MACARB_CTL,
2547 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2548
2549 sc_if->sk_link = 1;
2550 }
2551
2552 void sk_init_yukon(struct sk_if_softc *sc_if)
2553 {
2554 u_int32_t /*mac, */phy;
2555 u_int16_t reg;
2556 struct sk_softc *sc;
2557 int i;
2558
2559 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2560 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2561
2562 sc = sc_if->sk_softc;
2563 if (sc->sk_type == SK_YUKON_LITE &&
2564 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2565 /* Take PHY out of reset. */
2566 sk_win_write_4(sc, SK_GPIO,
2567 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2568 }
2569
2570
2571 /* GMAC and GPHY Reset */
2572 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2573
2574 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2575
2576 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2577 DELAY(1000);
2578 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2579 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2580 DELAY(1000);
2581
2582
2583 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2584
2585 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2586 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2587
2588 switch (sc_if->sk_softc->sk_pmd) {
2589 case IFM_1000_SX:
2590 case IFM_1000_LX:
2591 phy |= SK_GPHY_FIBER;
2592 break;
2593
2594 case IFM_1000_CX:
2595 case IFM_1000_T:
2596 phy |= SK_GPHY_COPPER;
2597 break;
2598 }
2599
2600 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2601
2602 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2603 DELAY(1000);
2604 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2605 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2606 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2607
2608 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2609 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2610
2611 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2612
2613 /* unused read of the interrupt source register */
2614 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2615 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2616
2617 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2618 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2619 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2620
2621 /* MIB Counter Clear Mode set */
2622 reg |= YU_PAR_MIB_CLR;
2623 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2624 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2625 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2626
2627 /* MIB Counter Clear Mode clear */
2628 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2629 reg &= ~YU_PAR_MIB_CLR;
2630 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2631
2632 /* receive control reg */
2633 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2634 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2635 YU_RCR_CRCR);
2636
2637 /* transmit parameter register */
2638 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2639 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2640 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2641
2642 /* serial mode register */
2643 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2644 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2645 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2646 YU_SMR_IPG_DATA(0x1e));
2647
2648 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2649 /* Setup Yukon's address */
2650 for (i = 0; i < 3; i++) {
2651 /* Write Source Address 1 (unicast filter) */
2652 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2653 sc_if->sk_enaddr[i * 2] |
2654 sc_if->sk_enaddr[i * 2 + 1] << 8);
2655 }
2656
2657 for (i = 0; i < 3; i++) {
2658 reg = sk_win_read_2(sc_if->sk_softc,
2659 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2660 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2661 }
2662
2663 /* Set multicast filter */
2664 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2665 sk_setmulti(sc_if);
2666
2667 /* enable interrupt mask for counter overflows */
2668 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2669 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2670 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2671 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2672
2673 /* Configure RX MAC FIFO */
2674 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2675 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2676
2677 /* Configure TX MAC FIFO */
2678 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2679 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2680
2681 DPRINTFN(6, ("sk_init_yukon: end\n"));
2682 }
2683
2684 /*
2685 * Note that to properly initialize any part of the GEnesis chip,
2686 * you first have to take it out of reset mode.
2687 */
2688 int
2689 sk_init(struct ifnet *ifp)
2690 {
2691 struct sk_if_softc *sc_if = ifp->if_softc;
2692 struct sk_softc *sc = sc_if->sk_softc;
2693 struct mii_data *mii = &sc_if->sk_mii;
2694 int rc = 0, s;
2695 u_int32_t imr, imtimer_ticks;
2696
2697 DPRINTFN(1, ("sk_init\n"));
2698
2699 s = splnet();
2700
2701 if (ifp->if_flags & IFF_RUNNING) {
2702 splx(s);
2703 return 0;
2704 }
2705
2706 /* Cancel pending I/O and free all RX/TX buffers. */
2707 sk_stop(ifp,0);
2708
2709 if (sc->sk_type == SK_GENESIS) {
2710 /* Configure LINK_SYNC LED */
2711 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2712 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2713 SK_LINKLED_LINKSYNC_ON);
2714
2715 /* Configure RX LED */
2716 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2717 SK_RXLEDCTL_COUNTER_START);
2718
2719 /* Configure TX LED */
2720 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2721 SK_TXLEDCTL_COUNTER_START);
2722 }
2723
2724 /* Configure I2C registers */
2725
2726 /* Configure XMAC(s) */
2727 switch (sc->sk_type) {
2728 case SK_GENESIS:
2729 sk_init_xmac(sc_if);
2730 break;
2731 case SK_YUKON:
2732 case SK_YUKON_LITE:
2733 case SK_YUKON_LP:
2734 sk_init_yukon(sc_if);
2735 break;
2736 }
2737 if ((rc = mii_mediachg(mii)) == ENXIO)
2738 rc = 0;
2739 else if (rc != 0)
2740 goto out;
2741
2742 if (sc->sk_type == SK_GENESIS) {
2743 /* Configure MAC FIFOs */
2744 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2745 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2746 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2747
2748 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2749 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2750 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2751 }
2752
2753 /* Configure transmit arbiter(s) */
2754 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2755 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2756
2757 /* Configure RAMbuffers */
2758 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2759 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2760 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2761 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2762 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2763 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2764
2765 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2766 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2767 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2768 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2769 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2770 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2771 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2772
2773 /* Configure BMUs */
2774 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2775 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2776 SK_RX_RING_ADDR(sc_if, 0));
2777 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2778
2779 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2780 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2781 SK_TX_RING_ADDR(sc_if, 0));
2782 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2783
2784 /* Init descriptors */
2785 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2786 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2787 "memory for rx buffers\n");
2788 sk_stop(ifp,0);
2789 splx(s);
2790 return ENOBUFS;
2791 }
2792
2793 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2794 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2795 "memory for tx buffers\n");
2796 sk_stop(ifp,0);
2797 splx(s);
2798 return ENOBUFS;
2799 }
2800
2801 /* Set interrupt moderation if changed via sysctl. */
2802 switch (sc->sk_type) {
2803 case SK_GENESIS:
2804 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2805 break;
2806 case SK_YUKON_EC:
2807 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2808 break;
2809 default:
2810 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2811 }
2812 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2813 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2814 sk_win_write_4(sc, SK_IMTIMERINIT,
2815 SK_IM_USECS(sc->sk_int_mod));
2816 aprint_verbose_dev(sc->sk_dev,
2817 "interrupt moderation is %d us\n", sc->sk_int_mod);
2818 }
2819
2820 /* Configure interrupt handling */
2821 CSR_READ_4(sc, SK_ISSR);
2822 if (sc_if->sk_port == SK_PORT_A)
2823 sc->sk_intrmask |= SK_INTRS1;
2824 else
2825 sc->sk_intrmask |= SK_INTRS2;
2826
2827 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2828
2829 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2830
2831 /* Start BMUs. */
2832 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2833
2834 if (sc->sk_type == SK_GENESIS) {
2835 /* Enable XMACs TX and RX state machines */
2836 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2837 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2838 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2839 }
2840
2841 if (SK_YUKON_FAMILY(sc->sk_type)) {
2842 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2843 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2844 #if 0
2845 /* XXX disable 100Mbps and full duplex mode? */
2846 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2847 #endif
2848 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2849 }
2850
2851
2852 ifp->if_flags |= IFF_RUNNING;
2853 ifp->if_flags &= ~IFF_OACTIVE;
2854
2855 out:
2856 splx(s);
2857 return rc;
2858 }
2859
2860 void
2861 sk_stop(struct ifnet *ifp, int disable)
2862 {
2863 struct sk_if_softc *sc_if = ifp->if_softc;
2864 struct sk_softc *sc = sc_if->sk_softc;
2865 int i;
2866
2867 DPRINTFN(1, ("sk_stop\n"));
2868
2869 callout_stop(&sc_if->sk_tick_ch);
2870
2871 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2872 u_int32_t val;
2873
2874 /* Put PHY back into reset. */
2875 val = sk_win_read_4(sc, SK_GPIO);
2876 if (sc_if->sk_port == SK_PORT_A) {
2877 val |= SK_GPIO_DIR0;
2878 val &= ~SK_GPIO_DAT0;
2879 } else {
2880 val |= SK_GPIO_DIR2;
2881 val &= ~SK_GPIO_DAT2;
2882 }
2883 sk_win_write_4(sc, SK_GPIO, val);
2884 }
2885
2886 /* Turn off various components of this interface. */
2887 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2888 switch (sc->sk_type) {
2889 case SK_GENESIS:
2890 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2891 SK_TXMACCTL_XMAC_RESET);
2892 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2893 break;
2894 case SK_YUKON:
2895 case SK_YUKON_LITE:
2896 case SK_YUKON_LP:
2897 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2898 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2899 break;
2900 }
2901 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2902 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2903 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2904 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2905 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2906 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2907 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2908 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2909 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2910
2911 /* Disable interrupts */
2912 if (sc_if->sk_port == SK_PORT_A)
2913 sc->sk_intrmask &= ~SK_INTRS1;
2914 else
2915 sc->sk_intrmask &= ~SK_INTRS2;
2916 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2917
2918 SK_XM_READ_2(sc_if, XM_ISR);
2919 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2920
2921 /* Free RX and TX mbufs still in the queues. */
2922 for (i = 0; i < SK_RX_RING_CNT; i++) {
2923 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2924 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2925 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2926 }
2927 }
2928
2929 for (i = 0; i < SK_TX_RING_CNT; i++) {
2930 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2931 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2932 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2933 }
2934 }
2935
2936 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2937 }
2938
2939 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
2940 skc_probe, skc_attach, NULL, NULL);
2941
2942 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
2943 sk_probe, sk_attach, NULL, NULL);
2944
2945 #ifdef SK_DEBUG
2946 void
2947 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2948 {
2949 #define DESC_PRINT(X) \
2950 if (X) \
2951 printf("txdesc[%d]." #X "=%#x\n", \
2952 idx, X);
2953
2954 DESC_PRINT(le32toh(desc->sk_ctl));
2955 DESC_PRINT(le32toh(desc->sk_next));
2956 DESC_PRINT(le32toh(desc->sk_data_lo));
2957 DESC_PRINT(le32toh(desc->sk_data_hi));
2958 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2959 DESC_PRINT(le16toh(desc->sk_rsvd0));
2960 DESC_PRINT(le16toh(desc->sk_csum_startval));
2961 DESC_PRINT(le16toh(desc->sk_csum_startpos));
2962 DESC_PRINT(le16toh(desc->sk_csum_writepos));
2963 DESC_PRINT(le16toh(desc->sk_rsvd1));
2964 #undef PRINT
2965 }
2966
2967 void
2968 sk_dump_bytes(const char *data, int len)
2969 {
2970 int c, i, j;
2971
2972 for (i = 0; i < len; i += 16) {
2973 printf("%08x ", i);
2974 c = len - i;
2975 if (c > 16) c = 16;
2976
2977 for (j = 0; j < c; j++) {
2978 printf("%02x ", data[i + j] & 0xff);
2979 if ((j & 0xf) == 7 && j > 0)
2980 printf(" ");
2981 }
2982
2983 for (; j < 16; j++)
2984 printf(" ");
2985 printf(" ");
2986
2987 for (j = 0; j < c; j++) {
2988 int ch = data[i + j] & 0xff;
2989 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2990 }
2991
2992 printf("\n");
2993
2994 if (c < 16)
2995 break;
2996 }
2997 }
2998
2999 void
3000 sk_dump_mbuf(struct mbuf *m)
3001 {
3002 int count = m->m_pkthdr.len;
3003
3004 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3005
3006 while (count > 0 && m) {
3007 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3008 m, m->m_data, m->m_len);
3009 sk_dump_bytes(mtod(m, char *), m->m_len);
3010
3011 count -= m->m_len;
3012 m = m->m_next;
3013 }
3014 }
3015 #endif
3016
3017 static int
3018 sk_sysctl_handler(SYSCTLFN_ARGS)
3019 {
3020 int error, t;
3021 struct sysctlnode node;
3022 struct sk_softc *sc;
3023
3024 node = *rnode;
3025 sc = node.sysctl_data;
3026 t = sc->sk_int_mod;
3027 node.sysctl_data = &t;
3028 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3029 if (error || newp == NULL)
3030 return error;
3031
3032 if (t < SK_IM_MIN || t > SK_IM_MAX)
3033 return EINVAL;
3034
3035 /* update the softc with sysctl-changed value, and mark
3036 for hardware update */
3037 sc->sk_int_mod = t;
3038 sc->sk_int_mod_pending = 1;
3039 return 0;
3040 }
3041
3042 /*
3043 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3044 * set up in skc_attach()
3045 */
3046 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3047 {
3048 int rc;
3049 const struct sysctlnode *node;
3050
3051 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3052 0, CTLTYPE_NODE, "hw", NULL,
3053 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3054 goto err;
3055 }
3056
3057 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3058 0, CTLTYPE_NODE, "sk",
3059 SYSCTL_DESCR("sk interface controls"),
3060 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3061 goto err;
3062 }
3063
3064 sk_root_num = node->sysctl_num;
3065 return;
3066
3067 err:
3068 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3069 }
3070