Home | History | Annotate | Line # | Download | only in pci
if_sk.c revision 1.55.4.1
      1 /*	$NetBSD: if_sk.c,v 1.55.4.1 2009/05/13 17:20:26 jym Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
     30 
     31 /*
     32  * Copyright (c) 1997, 1998, 1999, 2000
     33  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *	This product includes software developed by Bill Paul.
     46  * 4. Neither the name of the author nor the names of any co-contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     60  * THE POSSIBILITY OF SUCH DAMAGE.
     61  *
     62  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
     63  */
     64 
     65 /*
     66  * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
     67  *
     68  * Permission to use, copy, modify, and distribute this software for any
     69  * purpose with or without fee is hereby granted, provided that the above
     70  * copyright notice and this permission notice appear in all copies.
     71  *
     72  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     73  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     74  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     75  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     76  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     77  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     78  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     79  */
     80 
     81 /*
     82  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
     83  * the SK-984x series adapters, both single port and dual port.
     84  * References:
     85  * 	The XaQti XMAC II datasheet,
     86  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     87  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
     88  *
     89  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
     90  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
     91  * convenience to others until Vitesse corrects this problem:
     92  *
     93  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     94  *
     95  * Written by Bill Paul <wpaul (at) ee.columbia.edu>
     96  * Department of Electrical Engineering
     97  * Columbia University, New York City
     98  */
     99 
    100 /*
    101  * The SysKonnect gigabit ethernet adapters consist of two main
    102  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
    103  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
    104  * components and a PHY while the GEnesis controller provides a PCI
    105  * interface with DMA support. Each card may have between 512K and
    106  * 2MB of SRAM on board depending on the configuration.
    107  *
    108  * The SysKonnect GEnesis controller can have either one or two XMAC
    109  * chips connected to it, allowing single or dual port NIC configurations.
    110  * SysKonnect has the distinction of being the only vendor on the market
    111  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
    112  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
    113  * XMAC registers. This driver takes advantage of these features to allow
    114  * both XMACs to operate as independent interfaces.
    115  */
    116 
    117 #include <sys/cdefs.h>
    118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.55.4.1 2009/05/13 17:20:26 jym Exp $");
    119 
    120 #include "bpfilter.h"
    121 #include "rnd.h"
    122 
    123 #include <sys/param.h>
    124 #include <sys/systm.h>
    125 #include <sys/sockio.h>
    126 #include <sys/mbuf.h>
    127 #include <sys/malloc.h>
    128 #include <sys/mutex.h>
    129 #include <sys/kernel.h>
    130 #include <sys/socket.h>
    131 #include <sys/device.h>
    132 #include <sys/queue.h>
    133 #include <sys/callout.h>
    134 #include <sys/sysctl.h>
    135 #include <sys/endian.h>
    136 
    137 #include <net/if.h>
    138 #include <net/if_dl.h>
    139 #include <net/if_types.h>
    140 
    141 #include <net/if_media.h>
    142 
    143 #if NBPFILTER > 0
    144 #include <net/bpf.h>
    145 #endif
    146 #if NRND > 0
    147 #include <sys/rnd.h>
    148 #endif
    149 
    150 #include <dev/mii/mii.h>
    151 #include <dev/mii/miivar.h>
    152 #include <dev/mii/brgphyreg.h>
    153 
    154 #include <dev/pci/pcireg.h>
    155 #include <dev/pci/pcivar.h>
    156 #include <dev/pci/pcidevs.h>
    157 
    158 /* #define SK_USEIOSPACE */
    159 
    160 #include <dev/pci/if_skreg.h>
    161 #include <dev/pci/if_skvar.h>
    162 
    163 int skc_probe(device_t, cfdata_t, void *);
    164 void skc_attach(device_t, device_t, void *aux);
    165 int sk_probe(device_t, cfdata_t, void *);
    166 void sk_attach(device_t, device_t, void *aux);
    167 int skcprint(void *, const char *);
    168 int sk_intr(void *);
    169 void sk_intr_bcom(struct sk_if_softc *);
    170 void sk_intr_xmac(struct sk_if_softc *);
    171 void sk_intr_yukon(struct sk_if_softc *);
    172 void sk_rxeof(struct sk_if_softc *);
    173 void sk_txeof(struct sk_if_softc *);
    174 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
    175 void sk_start(struct ifnet *);
    176 int sk_ioctl(struct ifnet *, u_long, void *);
    177 int sk_init(struct ifnet *);
    178 void sk_init_xmac(struct sk_if_softc *);
    179 void sk_init_yukon(struct sk_if_softc *);
    180 void sk_stop(struct ifnet *, int);
    181 void sk_watchdog(struct ifnet *);
    182 void sk_shutdown(void *);
    183 int sk_ifmedia_upd(struct ifnet *);
    184 void sk_reset(struct sk_softc *);
    185 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
    186 int sk_alloc_jumbo_mem(struct sk_if_softc *);
    187 void sk_free_jumbo_mem(struct sk_if_softc *);
    188 void *sk_jalloc(struct sk_if_softc *);
    189 void sk_jfree(struct mbuf *, void *, size_t, void *);
    190 int sk_init_rx_ring(struct sk_if_softc *);
    191 int sk_init_tx_ring(struct sk_if_softc *);
    192 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
    193 void sk_vpd_read_res(struct sk_softc *,
    194 					struct vpd_res *, int);
    195 void sk_vpd_read(struct sk_softc *);
    196 
    197 void sk_update_int_mod(struct sk_softc *);
    198 
    199 int sk_xmac_miibus_readreg(device_t, int, int);
    200 void sk_xmac_miibus_writereg(device_t, int, int, int);
    201 void sk_xmac_miibus_statchg(device_t);
    202 
    203 int sk_marv_miibus_readreg(device_t, int, int);
    204 void sk_marv_miibus_writereg(device_t, int, int, int);
    205 void sk_marv_miibus_statchg(device_t);
    206 
    207 u_int32_t sk_xmac_hash(void *);
    208 u_int32_t sk_yukon_hash(void *);
    209 void sk_setfilt(struct sk_if_softc *, void *, int);
    210 void sk_setmulti(struct sk_if_softc *);
    211 void sk_tick(void *);
    212 
    213 static bool skc_suspend(device_t dv PMF_FN_ARGS);
    214 static bool skc_resume(device_t dv PMF_FN_ARGS);
    215 static bool sk_resume(device_t dv PMF_FN_ARGS);
    216 
    217 /* #define SK_DEBUG 2 */
    218 #ifdef SK_DEBUG
    219 #define DPRINTF(x)	if (skdebug) printf x
    220 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
    221 int	skdebug = SK_DEBUG;
    222 
    223 void sk_dump_txdesc(struct sk_tx_desc *, int);
    224 void sk_dump_mbuf(struct mbuf *);
    225 void sk_dump_bytes(const char *, int);
    226 #else
    227 #define DPRINTF(x)
    228 #define DPRINTFN(n,x)
    229 #endif
    230 
    231 static int sk_sysctl_handler(SYSCTLFN_PROTO);
    232 static int sk_root_num;
    233 
    234 /* supported device vendors */
    235 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
    236 static const struct sk_product {
    237 	pci_vendor_id_t		sk_vendor;
    238 	pci_product_id_t	sk_product;
    239 } sk_products[] = {
    240 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
    241 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
    242 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
    243 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
    244 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
    245 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
    246 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
    247 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
    248 	{ 0, 0, }
    249 };
    250 
    251 #define SK_LINKSYS_EG1032_SUBID	0x00151737
    252 
    253 static inline u_int32_t
    254 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
    255 {
    256 #ifdef SK_USEIOSPACE
    257 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    258 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
    259 #else
    260 	return CSR_READ_4(sc, reg);
    261 #endif
    262 }
    263 
    264 static inline u_int16_t
    265 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
    266 {
    267 #ifdef SK_USEIOSPACE
    268 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    269 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
    270 #else
    271 	return CSR_READ_2(sc, reg);
    272 #endif
    273 }
    274 
    275 static inline u_int8_t
    276 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
    277 {
    278 #ifdef SK_USEIOSPACE
    279 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    280 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
    281 #else
    282 	return CSR_READ_1(sc, reg);
    283 #endif
    284 }
    285 
    286 static inline void
    287 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
    288 {
    289 #ifdef SK_USEIOSPACE
    290 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    291 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
    292 #else
    293 	CSR_WRITE_4(sc, reg, x);
    294 #endif
    295 }
    296 
    297 static inline void
    298 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
    299 {
    300 #ifdef SK_USEIOSPACE
    301 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    302 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
    303 #else
    304 	CSR_WRITE_2(sc, reg, x);
    305 #endif
    306 }
    307 
    308 static inline void
    309 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
    310 {
    311 #ifdef SK_USEIOSPACE
    312 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    313 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
    314 #else
    315 	CSR_WRITE_1(sc, reg, x);
    316 #endif
    317 }
    318 
    319 /*
    320  * The VPD EEPROM contains Vital Product Data, as suggested in
    321  * the PCI 2.1 specification. The VPD data is separared into areas
    322  * denoted by resource IDs. The SysKonnect VPD contains an ID string
    323  * resource (the name of the adapter), a read-only area resource
    324  * containing various key/data fields and a read/write area which
    325  * can be used to store asset management information or log messages.
    326  * We read the ID string and read-only into buffers attached to
    327  * the controller softc structure for later use. At the moment,
    328  * we only use the ID string during sk_attach().
    329  */
    330 u_int8_t
    331 sk_vpd_readbyte(struct sk_softc *sc, int addr)
    332 {
    333 	int			i;
    334 
    335 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
    336 	for (i = 0; i < SK_TIMEOUT; i++) {
    337 		DELAY(1);
    338 		if (sk_win_read_2(sc,
    339 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
    340 			break;
    341 	}
    342 
    343 	if (i == SK_TIMEOUT)
    344 		return 0;
    345 
    346 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
    347 }
    348 
    349 void
    350 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
    351 {
    352 	int			i;
    353 	u_int8_t		*ptr;
    354 
    355 	ptr = (u_int8_t *)res;
    356 	for (i = 0; i < sizeof(struct vpd_res); i++)
    357 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
    358 }
    359 
    360 void
    361 sk_vpd_read(struct sk_softc *sc)
    362 {
    363 	int			pos = 0, i;
    364 	struct vpd_res		res;
    365 
    366 	if (sc->sk_vpd_prodname != NULL)
    367 		free(sc->sk_vpd_prodname, M_DEVBUF);
    368 	if (sc->sk_vpd_readonly != NULL)
    369 		free(sc->sk_vpd_readonly, M_DEVBUF);
    370 	sc->sk_vpd_prodname = NULL;
    371 	sc->sk_vpd_readonly = NULL;
    372 
    373 	sk_vpd_read_res(sc, &res, pos);
    374 
    375 	if (res.vr_id != VPD_RES_ID) {
    376 		aprint_error_dev(sc->sk_dev,
    377 		    "bad VPD resource id: expected %x got %x\n",
    378 		    VPD_RES_ID, res.vr_id);
    379 		return;
    380 	}
    381 
    382 	pos += sizeof(res);
    383 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    384 	if (sc->sk_vpd_prodname == NULL)
    385 		panic("sk_vpd_read");
    386 	for (i = 0; i < res.vr_len; i++)
    387 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
    388 	sc->sk_vpd_prodname[i] = '\0';
    389 	pos += i;
    390 
    391 	sk_vpd_read_res(sc, &res, pos);
    392 
    393 	if (res.vr_id != VPD_RES_READ) {
    394 		aprint_error_dev(sc->sk_dev,
    395 		    "bad VPD resource id: expected %x got %x\n",
    396 		    VPD_RES_READ, res.vr_id);
    397 		return;
    398 	}
    399 
    400 	pos += sizeof(res);
    401 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    402 	if (sc->sk_vpd_readonly == NULL)
    403 		panic("sk_vpd_read");
    404 	for (i = 0; i < res.vr_len ; i++)
    405 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
    406 }
    407 
    408 int
    409 sk_xmac_miibus_readreg(device_t dev, int phy, int reg)
    410 {
    411 	struct sk_if_softc *sc_if = device_private(dev);
    412 	int i;
    413 
    414 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
    415 
    416 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
    417 		return 0;
    418 
    419 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    420 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
    421 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    422 		for (i = 0; i < SK_TIMEOUT; i++) {
    423 			DELAY(1);
    424 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
    425 			    XM_MMUCMD_PHYDATARDY)
    426 				break;
    427 		}
    428 
    429 		if (i == SK_TIMEOUT) {
    430 			aprint_error_dev(sc_if->sk_dev,
    431 			    "phy failed to come ready\n");
    432 			return 0;
    433 		}
    434 	}
    435 	DELAY(1);
    436 	return SK_XM_READ_2(sc_if, XM_PHY_DATA);
    437 }
    438 
    439 void
    440 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, int val)
    441 {
    442 	struct sk_if_softc *sc_if = device_private(dev);
    443 	int i;
    444 
    445 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
    446 
    447 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    448 	for (i = 0; i < SK_TIMEOUT; i++) {
    449 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    450 			break;
    451 	}
    452 
    453 	if (i == SK_TIMEOUT) {
    454 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
    455 		return;
    456 	}
    457 
    458 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
    459 	for (i = 0; i < SK_TIMEOUT; i++) {
    460 		DELAY(1);
    461 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    462 			break;
    463 	}
    464 
    465 	if (i == SK_TIMEOUT)
    466 		aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
    467 }
    468 
    469 void
    470 sk_xmac_miibus_statchg(device_t dev)
    471 {
    472 	struct sk_if_softc *sc_if = device_private(dev);
    473 	struct mii_data *mii = &sc_if->sk_mii;
    474 
    475 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
    476 
    477 	/*
    478 	 * If this is a GMII PHY, manually set the XMAC's
    479 	 * duplex mode accordingly.
    480 	 */
    481 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    482 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
    483 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    484 		else
    485 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    486 	}
    487 }
    488 
    489 int
    490 sk_marv_miibus_readreg(device_t dev, int phy, int reg)
    491 {
    492 	struct sk_if_softc *sc_if = device_private(dev);
    493 	u_int16_t val;
    494 	int i;
    495 
    496 	if (phy != 0 ||
    497 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
    498 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
    499 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
    500 			     phy, reg));
    501 		return 0;
    502 	}
    503 
    504         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    505 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
    506 
    507 	for (i = 0; i < SK_TIMEOUT; i++) {
    508 		DELAY(1);
    509 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
    510 		if (val & YU_SMICR_READ_VALID)
    511 			break;
    512 	}
    513 
    514 	if (i == SK_TIMEOUT) {
    515 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
    516 		return 0;
    517 	}
    518 
    519  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
    520 		     SK_TIMEOUT));
    521 
    522         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
    523 
    524 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
    525 		     phy, reg, val));
    526 
    527 	return val;
    528 }
    529 
    530 void
    531 sk_marv_miibus_writereg(device_t dev, int phy, int reg, int val)
    532 {
    533 	struct sk_if_softc *sc_if = device_private(dev);
    534 	int i;
    535 
    536 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
    537 		     phy, reg, val));
    538 
    539 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
    540 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    541 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
    542 
    543 	for (i = 0; i < SK_TIMEOUT; i++) {
    544 		DELAY(1);
    545 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
    546 			break;
    547 	}
    548 
    549 	if (i == SK_TIMEOUT)
    550 		printf("%s: phy write timed out\n",
    551 		    device_xname(sc_if->sk_dev));
    552 }
    553 
    554 void
    555 sk_marv_miibus_statchg(device_t dev)
    556 {
    557 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
    558 		     SK_YU_READ_2(((struct sk_if_softc *)device_private(dev)),
    559 		     YUKON_GPCR)));
    560 }
    561 
    562 #define SK_HASH_BITS		6
    563 
    564 u_int32_t
    565 sk_xmac_hash(void *addr)
    566 {
    567 	u_int32_t		crc;
    568 
    569 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
    570 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
    571 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    572 	return crc;
    573 }
    574 
    575 u_int32_t
    576 sk_yukon_hash(void *addr)
    577 {
    578 	u_int32_t		crc;
    579 
    580 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
    581 	crc &= ((1 << SK_HASH_BITS) - 1);
    582 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    583 	return crc;
    584 }
    585 
    586 void
    587 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
    588 {
    589 	char *addr = addrv;
    590 	int base = XM_RXFILT_ENTRY(slot);
    591 
    592 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
    593 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
    594 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
    595 }
    596 
    597 void
    598 sk_setmulti(struct sk_if_softc *sc_if)
    599 {
    600 	struct sk_softc *sc = sc_if->sk_softc;
    601 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
    602 	u_int32_t hashes[2] = { 0, 0 };
    603 	int h = 0, i;
    604 	struct ethercom *ec = &sc_if->sk_ethercom;
    605 	struct ether_multi *enm;
    606 	struct ether_multistep step;
    607 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
    608 
    609 	/* First, zot all the existing filters. */
    610 	switch (sc->sk_type) {
    611 	case SK_GENESIS:
    612 		for (i = 1; i < XM_RXFILT_MAX; i++)
    613 			sk_setfilt(sc_if, (void *)&dummy, i);
    614 
    615 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
    616 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
    617 		break;
    618 	case SK_YUKON:
    619 	case SK_YUKON_LITE:
    620 	case SK_YUKON_LP:
    621 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
    622 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
    623 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
    624 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
    625 		break;
    626 	}
    627 
    628 	/* Now program new ones. */
    629 allmulti:
    630 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    631 		hashes[0] = 0xFFFFFFFF;
    632 		hashes[1] = 0xFFFFFFFF;
    633 	} else {
    634 		i = 1;
    635 		/* First find the tail of the list. */
    636 		ETHER_FIRST_MULTI(step, ec, enm);
    637 		while (enm != NULL) {
    638 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    639 				 ETHER_ADDR_LEN)) {
    640 				ifp->if_flags |= IFF_ALLMULTI;
    641 				goto allmulti;
    642 			}
    643 			DPRINTFN(2,("multicast address %s\n",
    644 	    			ether_sprintf(enm->enm_addrlo)));
    645 			/*
    646 			 * Program the first XM_RXFILT_MAX multicast groups
    647 			 * into the perfect filter. For all others,
    648 			 * use the hash table.
    649 			 */
    650 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
    651 				sk_setfilt(sc_if, enm->enm_addrlo, i);
    652 				i++;
    653 			}
    654 			else {
    655 				switch (sc->sk_type) {
    656 				case SK_GENESIS:
    657 					h = sk_xmac_hash(enm->enm_addrlo);
    658 					break;
    659 				case SK_YUKON:
    660 				case SK_YUKON_LITE:
    661 				case SK_YUKON_LP:
    662 					h = sk_yukon_hash(enm->enm_addrlo);
    663 					break;
    664 				}
    665 				if (h < 32)
    666 					hashes[0] |= (1 << h);
    667 				else
    668 					hashes[1] |= (1 << (h - 32));
    669 			}
    670 
    671 			ETHER_NEXT_MULTI(step, enm);
    672 		}
    673 	}
    674 
    675 	switch (sc->sk_type) {
    676 	case SK_GENESIS:
    677 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
    678 			       XM_MODE_RX_USE_PERFECT);
    679 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
    680 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
    681 		break;
    682 	case SK_YUKON:
    683 	case SK_YUKON_LITE:
    684 	case SK_YUKON_LP:
    685 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
    686 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
    687 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
    688 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
    689 		break;
    690 	}
    691 }
    692 
    693 int
    694 sk_init_rx_ring(struct sk_if_softc *sc_if)
    695 {
    696 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    697 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    698 	int			i;
    699 
    700 	memset((char *)rd->sk_rx_ring, 0,
    701 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
    702 
    703 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    704 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
    705 		if (i == (SK_RX_RING_CNT - 1)) {
    706 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
    707 			rd->sk_rx_ring[i].sk_next =
    708 				htole32(SK_RX_RING_ADDR(sc_if, 0));
    709 		} else {
    710 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
    711 			rd->sk_rx_ring[i].sk_next =
    712 				htole32(SK_RX_RING_ADDR(sc_if,i+1));
    713 		}
    714 	}
    715 
    716 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    717 		if (sk_newbuf(sc_if, i, NULL,
    718 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
    719 			aprint_error_dev(sc_if->sk_dev,
    720 			    "failed alloc of %dth mbuf\n", i);
    721 			return ENOBUFS;
    722 		}
    723 	}
    724 	sc_if->sk_cdata.sk_rx_prod = 0;
    725 	sc_if->sk_cdata.sk_rx_cons = 0;
    726 
    727 	return 0;
    728 }
    729 
    730 int
    731 sk_init_tx_ring(struct sk_if_softc *sc_if)
    732 {
    733 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    734 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    735 	int			i;
    736 
    737 	memset(sc_if->sk_rdata->sk_tx_ring, 0,
    738 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
    739 
    740 	for (i = 0; i < SK_TX_RING_CNT; i++) {
    741 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
    742 		if (i == (SK_TX_RING_CNT - 1)) {
    743 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
    744 			rd->sk_tx_ring[i].sk_next =
    745 				htole32(SK_TX_RING_ADDR(sc_if, 0));
    746 		} else {
    747 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
    748 			rd->sk_tx_ring[i].sk_next =
    749 				htole32(SK_TX_RING_ADDR(sc_if,i+1));
    750 		}
    751 	}
    752 
    753 	sc_if->sk_cdata.sk_tx_prod = 0;
    754 	sc_if->sk_cdata.sk_tx_cons = 0;
    755 	sc_if->sk_cdata.sk_tx_cnt = 0;
    756 
    757 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
    758 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    759 
    760 	return 0;
    761 }
    762 
    763 int
    764 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
    765 	  bus_dmamap_t dmamap)
    766 {
    767 	struct mbuf		*m_new = NULL;
    768 	struct sk_chain		*c;
    769 	struct sk_rx_desc	*r;
    770 
    771 	if (m == NULL) {
    772 		void *buf = NULL;
    773 
    774 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    775 		if (m_new == NULL) {
    776 			aprint_error_dev(sc_if->sk_dev,
    777 			    "no memory for rx list -- packet dropped!\n");
    778 			return ENOBUFS;
    779 		}
    780 
    781 		/* Allocate the jumbo buffer */
    782 		buf = sk_jalloc(sc_if);
    783 		if (buf == NULL) {
    784 			m_freem(m_new);
    785 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
    786 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
    787 			return ENOBUFS;
    788 		}
    789 
    790 		/* Attach the buffer to the mbuf */
    791 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    792 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
    793 
    794 	} else {
    795 		/*
    796 	 	 * We're re-using a previously allocated mbuf;
    797 		 * be sure to re-init pointers and lengths to
    798 		 * default values.
    799 		 */
    800 		m_new = m;
    801 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    802 		m_new->m_data = m_new->m_ext.ext_buf;
    803 	}
    804 	m_adj(m_new, ETHER_ALIGN);
    805 
    806 	c = &sc_if->sk_cdata.sk_rx_chain[i];
    807 	r = c->sk_desc;
    808 	c->sk_mbuf = m_new;
    809 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
    810 	    (((vaddr_t)m_new->m_data
    811 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
    812 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
    813 
    814 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    815 
    816 	return 0;
    817 }
    818 
    819 /*
    820  * Memory management for jumbo frames.
    821  */
    822 
    823 int
    824 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
    825 {
    826 	struct sk_softc		*sc = sc_if->sk_softc;
    827 	char *ptr, *kva;
    828 	bus_dma_segment_t	seg;
    829 	int		i, rseg, state, error;
    830 	struct sk_jpool_entry   *entry;
    831 
    832 	state = error = 0;
    833 
    834 	/* Grab a big chunk o' storage. */
    835 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
    836 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    837 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
    838 		return ENOBUFS;
    839 	}
    840 
    841 	state = 1;
    842 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
    843 			   BUS_DMA_NOWAIT)) {
    844 		aprint_error_dev(sc->sk_dev,
    845 		    "can't map dma buffers (%d bytes)\n",
    846 		    SK_JMEM);
    847 		error = ENOBUFS;
    848 		goto out;
    849 	}
    850 
    851 	state = 2;
    852 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
    853 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
    854 		aprint_error_dev(sc->sk_dev, "can't create dma map\n");
    855 		error = ENOBUFS;
    856 		goto out;
    857 	}
    858 
    859 	state = 3;
    860 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
    861 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
    862 		aprint_error_dev(sc->sk_dev, "can't load dma map\n");
    863 		error = ENOBUFS;
    864 		goto out;
    865 	}
    866 
    867 	state = 4;
    868 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
    869 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
    870 
    871 	LIST_INIT(&sc_if->sk_jfree_listhead);
    872 	LIST_INIT(&sc_if->sk_jinuse_listhead);
    873 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
    874 
    875 	/*
    876 	 * Now divide it up into 9K pieces and save the addresses
    877 	 * in an array.
    878 	 */
    879 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
    880 	for (i = 0; i < SK_JSLOTS; i++) {
    881 		sc_if->sk_cdata.sk_jslots[i] = ptr;
    882 		ptr += SK_JLEN;
    883 		entry = malloc(sizeof(struct sk_jpool_entry),
    884 		    M_DEVBUF, M_NOWAIT);
    885 		if (entry == NULL) {
    886 			aprint_error_dev(sc->sk_dev,
    887 			    "no memory for jumbo buffer queue!\n");
    888 			error = ENOBUFS;
    889 			goto out;
    890 		}
    891 		entry->slot = i;
    892 		if (i)
    893 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
    894 				 entry, jpool_entries);
    895 		else
    896 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
    897 				 entry, jpool_entries);
    898 	}
    899 out:
    900 	if (error != 0) {
    901 		switch (state) {
    902 		case 4:
    903 			bus_dmamap_unload(sc->sc_dmatag,
    904 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    905 		case 3:
    906 			bus_dmamap_destroy(sc->sc_dmatag,
    907 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    908 		case 2:
    909 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
    910 		case 1:
    911 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
    912 			break;
    913 		default:
    914 			break;
    915 		}
    916 	}
    917 
    918 	return error;
    919 }
    920 
    921 /*
    922  * Allocate a jumbo buffer.
    923  */
    924 void *
    925 sk_jalloc(struct sk_if_softc *sc_if)
    926 {
    927 	struct sk_jpool_entry   *entry;
    928 
    929 	mutex_enter(&sc_if->sk_jpool_mtx);
    930 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
    931 
    932 	if (entry == NULL) {
    933 		mutex_exit(&sc_if->sk_jpool_mtx);
    934 		return NULL;
    935 	}
    936 
    937 	LIST_REMOVE(entry, jpool_entries);
    938 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
    939 	mutex_exit(&sc_if->sk_jpool_mtx);
    940 	return sc_if->sk_cdata.sk_jslots[entry->slot];
    941 }
    942 
    943 /*
    944  * Release a jumbo buffer.
    945  */
    946 void
    947 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
    948 {
    949 	struct sk_jpool_entry *entry;
    950 	struct sk_if_softc *sc;
    951 	int i;
    952 
    953 	/* Extract the softc struct pointer. */
    954 	sc = (struct sk_if_softc *)arg;
    955 
    956 	if (sc == NULL)
    957 		panic("sk_jfree: can't find softc pointer!");
    958 
    959 	/* calculate the slot this buffer belongs to */
    960 
    961 	i = ((vaddr_t)buf
    962 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
    963 
    964 	if ((i < 0) || (i >= SK_JSLOTS))
    965 		panic("sk_jfree: asked to free buffer that we don't manage!");
    966 
    967 	mutex_enter(&sc->sk_jpool_mtx);
    968 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
    969 	if (entry == NULL)
    970 		panic("sk_jfree: buffer not in use!");
    971 	entry->slot = i;
    972 	LIST_REMOVE(entry, jpool_entries);
    973 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
    974 	mutex_exit(&sc->sk_jpool_mtx);
    975 
    976 	if (__predict_true(m != NULL))
    977 		pool_cache_put(mb_cache, m);
    978 }
    979 
    980 /*
    981  * Set media options.
    982  */
    983 int
    984 sk_ifmedia_upd(struct ifnet *ifp)
    985 {
    986 	struct sk_if_softc *sc_if = ifp->if_softc;
    987 	int rc;
    988 
    989 	(void) sk_init(ifp);
    990 	if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
    991 		return 0;
    992 	return rc;
    993 }
    994 
    995 int
    996 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
    997 {
    998 	struct sk_if_softc *sc_if = ifp->if_softc;
    999 	struct sk_softc *sc = sc_if->sk_softc;
   1000 	int s, error = 0;
   1001 
   1002 	/* DPRINTFN(2, ("sk_ioctl\n")); */
   1003 
   1004 	s = splnet();
   1005 
   1006 	switch (command) {
   1007 
   1008 	case SIOCSIFFLAGS:
   1009 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
   1010 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   1011 			break;
   1012 		if (ifp->if_flags & IFF_UP) {
   1013 			if (ifp->if_flags & IFF_RUNNING &&
   1014 			    ifp->if_flags & IFF_PROMISC &&
   1015 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
   1016 				switch (sc->sk_type) {
   1017 				case SK_GENESIS:
   1018 					SK_XM_SETBIT_4(sc_if, XM_MODE,
   1019 					    XM_MODE_RX_PROMISC);
   1020 					break;
   1021 				case SK_YUKON:
   1022 				case SK_YUKON_LITE:
   1023 				case SK_YUKON_LP:
   1024 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
   1025 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1026 					break;
   1027 				}
   1028 				sk_setmulti(sc_if);
   1029 			} else if (ifp->if_flags & IFF_RUNNING &&
   1030 			    !(ifp->if_flags & IFF_PROMISC) &&
   1031 			    sc_if->sk_if_flags & IFF_PROMISC) {
   1032 				switch (sc->sk_type) {
   1033 				case SK_GENESIS:
   1034 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
   1035 					    XM_MODE_RX_PROMISC);
   1036 					break;
   1037 				case SK_YUKON:
   1038 				case SK_YUKON_LITE:
   1039 				case SK_YUKON_LP:
   1040 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
   1041 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1042 					break;
   1043 				}
   1044 
   1045 				sk_setmulti(sc_if);
   1046 			} else
   1047 				(void) sk_init(ifp);
   1048 		} else {
   1049 			if (ifp->if_flags & IFF_RUNNING)
   1050 				sk_stop(ifp,0);
   1051 		}
   1052 		sc_if->sk_if_flags = ifp->if_flags;
   1053 		error = 0;
   1054 		break;
   1055 
   1056 	default:
   1057 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
   1058 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   1059 			break;
   1060 
   1061 		error = 0;
   1062 
   1063 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   1064 			;
   1065 		else if (ifp->if_flags & IFF_RUNNING) {
   1066 			sk_setmulti(sc_if);
   1067 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
   1068 		}
   1069 		break;
   1070 	}
   1071 
   1072 	splx(s);
   1073 	return error;
   1074 }
   1075 
   1076 void
   1077 sk_update_int_mod(struct sk_softc *sc)
   1078 {
   1079 	u_int32_t imtimer_ticks;
   1080 
   1081 	/*
   1082          * Configure interrupt moderation. The moderation timer
   1083 	 * defers interrupts specified in the interrupt moderation
   1084 	 * timer mask based on the timeout specified in the interrupt
   1085 	 * moderation timer init register. Each bit in the timer
   1086 	 * register represents one tick, so to specify a timeout in
   1087 	 * microseconds, we have to multiply by the correct number of
   1088 	 * ticks-per-microsecond.
   1089 	 */
   1090 	switch (sc->sk_type) {
   1091 	case SK_GENESIS:
   1092 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   1093 		break;
   1094 	case SK_YUKON_EC:
   1095 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   1096 		break;
   1097 	default:
   1098 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   1099 	}
   1100 	aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
   1101 	    sc->sk_int_mod);
   1102         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
   1103         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
   1104 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
   1105         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
   1106 	sc->sk_int_mod_pending = 0;
   1107 }
   1108 
   1109 /*
   1110  * Lookup: Check the PCI vendor and device, and return a pointer to
   1111  * The structure if the IDs match against our list.
   1112  */
   1113 
   1114 static const struct sk_product *
   1115 sk_lookup(const struct pci_attach_args *pa)
   1116 {
   1117 	const struct sk_product *psk;
   1118 
   1119 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
   1120 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
   1121 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
   1122 			return psk;
   1123 	}
   1124 	return NULL;
   1125 }
   1126 
   1127 /*
   1128  * Probe for a SysKonnect GEnesis chip.
   1129  */
   1130 
   1131 int
   1132 skc_probe(device_t parent, cfdata_t match, void *aux)
   1133 {
   1134 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1135 	const struct sk_product *psk;
   1136 	pcireg_t subid;
   1137 
   1138 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
   1139 
   1140 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
   1141 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
   1142 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
   1143 	    subid == SK_LINKSYS_EG1032_SUBID)
   1144 		return 1;
   1145 
   1146 	if ((psk = sk_lookup(pa))) {
   1147 		return 1;
   1148 	}
   1149 	return 0;
   1150 }
   1151 
   1152 /*
   1153  * Force the GEnesis into reset, then bring it out of reset.
   1154  */
   1155 void sk_reset(struct sk_softc *sc)
   1156 {
   1157 	DPRINTFN(2, ("sk_reset\n"));
   1158 
   1159 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
   1160 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
   1161 	if (SK_YUKON_FAMILY(sc->sk_type))
   1162 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
   1163 
   1164 	DELAY(1000);
   1165 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
   1166 	DELAY(2);
   1167 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
   1168 	if (SK_YUKON_FAMILY(sc->sk_type))
   1169 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
   1170 
   1171 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
   1172 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
   1173 		     CSR_READ_2(sc, SK_LINK_CTRL)));
   1174 
   1175 	if (sc->sk_type == SK_GENESIS) {
   1176 		/* Configure packet arbiter */
   1177 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
   1178 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1179 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1180 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1181 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1182 	}
   1183 
   1184 	/* Enable RAM interface */
   1185 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
   1186 
   1187 	sk_update_int_mod(sc);
   1188 }
   1189 
   1190 int
   1191 sk_probe(device_t parent, cfdata_t match, void *aux)
   1192 {
   1193 	struct skc_attach_args *sa = aux;
   1194 
   1195 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
   1196 		return 0;
   1197 
   1198 	return 1;
   1199 }
   1200 
   1201 /*
   1202  * Each XMAC chip is attached as a separate logical IP interface.
   1203  * Single port cards will have only one logical interface of course.
   1204  */
   1205 void
   1206 sk_attach(device_t parent, device_t self, void *aux)
   1207 {
   1208 	struct sk_if_softc *sc_if = device_private(self);
   1209 	struct sk_softc *sc = device_private(parent);
   1210 	struct skc_attach_args *sa = aux;
   1211 	struct sk_txmap_entry	*entry;
   1212 	struct ifnet *ifp;
   1213 	bus_dma_segment_t seg;
   1214 	bus_dmamap_t dmamap;
   1215 	void *kva;
   1216 	int i, rseg;
   1217 	int mii_flags = 0;
   1218 
   1219 	aprint_naive("\n");
   1220 
   1221 	sc_if->sk_dev = self;
   1222 	sc_if->sk_port = sa->skc_port;
   1223 	sc_if->sk_softc = sc;
   1224 	sc->sk_if[sa->skc_port] = sc_if;
   1225 
   1226 	if (sa->skc_port == SK_PORT_A)
   1227 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
   1228 	if (sa->skc_port == SK_PORT_B)
   1229 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
   1230 
   1231 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
   1232 
   1233 	/*
   1234 	 * Get station address for this interface. Note that
   1235 	 * dual port cards actually come with three station
   1236 	 * addresses: one for each port, plus an extra. The
   1237 	 * extra one is used by the SysKonnect driver software
   1238 	 * as a 'virtual' station address for when both ports
   1239 	 * are operating in failover mode. Currently we don't
   1240 	 * use this extra address.
   1241 	 */
   1242 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1243 		sc_if->sk_enaddr[i] =
   1244 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
   1245 
   1246 
   1247 	aprint_normal(": Ethernet address %s\n",
   1248 	    ether_sprintf(sc_if->sk_enaddr));
   1249 
   1250 	/*
   1251 	 * Set up RAM buffer addresses. The NIC will have a certain
   1252 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
   1253 	 * need to divide this up a) between the transmitter and
   1254  	 * receiver and b) between the two XMACs, if this is a
   1255 	 * dual port NIC. Our algorithm is to divide up the memory
   1256 	 * evenly so that everyone gets a fair share.
   1257 	 */
   1258 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
   1259 		u_int32_t		chunk, val;
   1260 
   1261 		chunk = sc->sk_ramsize / 2;
   1262 		val = sc->sk_rboff / sizeof(u_int64_t);
   1263 		sc_if->sk_rx_ramstart = val;
   1264 		val += (chunk / sizeof(u_int64_t));
   1265 		sc_if->sk_rx_ramend = val - 1;
   1266 		sc_if->sk_tx_ramstart = val;
   1267 		val += (chunk / sizeof(u_int64_t));
   1268 		sc_if->sk_tx_ramend = val - 1;
   1269 	} else {
   1270 		u_int32_t		chunk, val;
   1271 
   1272 		chunk = sc->sk_ramsize / 4;
   1273 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
   1274 		    sizeof(u_int64_t);
   1275 		sc_if->sk_rx_ramstart = val;
   1276 		val += (chunk / sizeof(u_int64_t));
   1277 		sc_if->sk_rx_ramend = val - 1;
   1278 		sc_if->sk_tx_ramstart = val;
   1279 		val += (chunk / sizeof(u_int64_t));
   1280 		sc_if->sk_tx_ramend = val - 1;
   1281 	}
   1282 
   1283 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
   1284 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
   1285 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
   1286 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
   1287 
   1288 	/* Read and save PHY type and set PHY address */
   1289 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
   1290 	switch (sc_if->sk_phytype) {
   1291 	case SK_PHYTYPE_XMAC:
   1292 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
   1293 		break;
   1294 	case SK_PHYTYPE_BCOM:
   1295 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
   1296 		break;
   1297 	case SK_PHYTYPE_MARV_COPPER:
   1298 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
   1299 		break;
   1300 	default:
   1301 		aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
   1302 		    sc_if->sk_phytype);
   1303 		return;
   1304 	}
   1305 
   1306 	/* Allocate the descriptor queues. */
   1307 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
   1308 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1309 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
   1310 		goto fail;
   1311 	}
   1312 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
   1313 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
   1314 		aprint_error_dev(sc_if->sk_dev,
   1315 		    "can't map dma buffers (%lu bytes)\n",
   1316 		    (u_long) sizeof(struct sk_ring_data));
   1317 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1318 		goto fail;
   1319 	}
   1320 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
   1321 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
   1322             &sc_if->sk_ring_map)) {
   1323 		aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
   1324 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1325 		    sizeof(struct sk_ring_data));
   1326 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1327 		goto fail;
   1328 	}
   1329 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
   1330 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
   1331 		aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
   1332 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1333 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1334 		    sizeof(struct sk_ring_data));
   1335 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1336 		goto fail;
   1337 	}
   1338 
   1339 	for (i = 0; i < SK_RX_RING_CNT; i++)
   1340 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   1341 
   1342 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
   1343 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   1344 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   1345 
   1346 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
   1347 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
   1348 			aprint_error_dev(sc_if->sk_dev,
   1349 			    "Can't create TX dmamap\n");
   1350 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1351 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1352 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1353 			    sizeof(struct sk_ring_data));
   1354 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1355 			goto fail;
   1356 		}
   1357 
   1358 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
   1359 		if (!entry) {
   1360 			aprint_error_dev(sc_if->sk_dev,
   1361 			    "Can't alloc txmap entry\n");
   1362 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
   1363 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1364 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1365 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1366 			    sizeof(struct sk_ring_data));
   1367 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1368 			goto fail;
   1369 		}
   1370 		entry->dmamap = dmamap;
   1371 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
   1372 	}
   1373 
   1374         sc_if->sk_rdata = (struct sk_ring_data *)kva;
   1375 	memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
   1376 
   1377 	ifp = &sc_if->sk_ethercom.ec_if;
   1378 	/* Try to allocate memory for jumbo buffers. */
   1379 	if (sk_alloc_jumbo_mem(sc_if)) {
   1380 		aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
   1381 		goto fail;
   1382 	}
   1383 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
   1384 		| ETHERCAP_JUMBO_MTU;
   1385 
   1386 	ifp->if_softc = sc_if;
   1387 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1388 	ifp->if_ioctl = sk_ioctl;
   1389 	ifp->if_start = sk_start;
   1390 	ifp->if_stop = sk_stop;
   1391 	ifp->if_init = sk_init;
   1392 	ifp->if_watchdog = sk_watchdog;
   1393 	ifp->if_capabilities = 0;
   1394 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
   1395 	IFQ_SET_READY(&ifp->if_snd);
   1396 	strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
   1397 
   1398 	/*
   1399 	 * Do miibus setup.
   1400 	 */
   1401 	switch (sc->sk_type) {
   1402 	case SK_GENESIS:
   1403 		sk_init_xmac(sc_if);
   1404 		break;
   1405 	case SK_YUKON:
   1406 	case SK_YUKON_LITE:
   1407 	case SK_YUKON_LP:
   1408 		sk_init_yukon(sc_if);
   1409 		break;
   1410 	default:
   1411 		aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
   1412 			sc->sk_type);
   1413 		goto fail;
   1414 	}
   1415 
   1416  	DPRINTFN(2, ("sk_attach: 1\n"));
   1417 
   1418 	sc_if->sk_mii.mii_ifp = ifp;
   1419 	switch (sc->sk_type) {
   1420 	case SK_GENESIS:
   1421 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
   1422 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
   1423 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
   1424 		break;
   1425 	case SK_YUKON:
   1426 	case SK_YUKON_LITE:
   1427 	case SK_YUKON_LP:
   1428 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
   1429 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
   1430 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
   1431 		mii_flags = MIIF_DOPAUSE;
   1432 		break;
   1433 	}
   1434 
   1435 	sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
   1436 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
   1437 	    sk_ifmedia_upd, ether_mediastatus);
   1438 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
   1439 	    MII_OFFSET_ANY, mii_flags);
   1440 	if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
   1441 		aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
   1442 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
   1443 			    0, NULL);
   1444 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
   1445 	} else
   1446 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1447 
   1448 	callout_init(&sc_if->sk_tick_ch, 0);
   1449 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
   1450 
   1451 	DPRINTFN(2, ("sk_attach: 1\n"));
   1452 
   1453 	/*
   1454 	 * Call MI attach routines.
   1455 	 */
   1456 	if_attach(ifp);
   1457 
   1458 	ether_ifattach(ifp, sc_if->sk_enaddr);
   1459 
   1460 #if NRND > 0
   1461         rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
   1462             RND_TYPE_NET, 0);
   1463 #endif
   1464 
   1465 	if (!pmf_device_register(self, NULL, sk_resume))
   1466 		aprint_error_dev(self, "couldn't establish power handler\n");
   1467 	else
   1468 		pmf_class_network_register(self, ifp);
   1469 
   1470 	DPRINTFN(2, ("sk_attach: end\n"));
   1471 
   1472 	return;
   1473 
   1474 fail:
   1475 	sc->sk_if[sa->skc_port] = NULL;
   1476 }
   1477 
   1478 int
   1479 skcprint(void *aux, const char *pnp)
   1480 {
   1481 	struct skc_attach_args *sa = aux;
   1482 
   1483 	if (pnp)
   1484 		aprint_normal("sk port %c at %s",
   1485 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
   1486 	else
   1487 		aprint_normal(" port %c",
   1488 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
   1489 	return UNCONF;
   1490 }
   1491 
   1492 /*
   1493  * Attach the interface. Allocate softc structures, do ifmedia
   1494  * setup and ethernet/BPF attach.
   1495  */
   1496 void
   1497 skc_attach(device_t parent, device_t self, void *aux)
   1498 {
   1499 	struct sk_softc *sc = device_private(self);
   1500 	struct pci_attach_args *pa = aux;
   1501 	struct skc_attach_args skca;
   1502 	pci_chipset_tag_t pc = pa->pa_pc;
   1503 #ifndef SK_USEIOSPACE
   1504 	pcireg_t memtype;
   1505 #endif
   1506 	pci_intr_handle_t ih;
   1507 	const char *intrstr = NULL;
   1508 	bus_addr_t iobase;
   1509 	bus_size_t iosize;
   1510 	int rc, sk_nodenum;
   1511 	u_int32_t command;
   1512 	const char *revstr;
   1513 	const struct sysctlnode *node;
   1514 
   1515 	sc->sk_dev = self;
   1516 	aprint_naive("\n");
   1517 
   1518 	DPRINTFN(2, ("begin skc_attach\n"));
   1519 
   1520 	/*
   1521 	 * Handle power management nonsense.
   1522 	 */
   1523 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
   1524 
   1525 	if (command == 0x01) {
   1526 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
   1527 		if (command & SK_PSTATE_MASK) {
   1528 			u_int32_t		xiobase, membase, irq;
   1529 
   1530 			/* Save important PCI config data. */
   1531 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
   1532 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
   1533 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
   1534 
   1535 			/* Reset the power state. */
   1536 			aprint_normal_dev(sc->sk_dev,
   1537 			    "chip is in D%d power mode -- setting to D0\n",
   1538 			    command & SK_PSTATE_MASK);
   1539 			command &= 0xFFFFFFFC;
   1540 			pci_conf_write(pc, pa->pa_tag,
   1541 			    SK_PCI_PWRMGMTCTRL, command);
   1542 
   1543 			/* Restore PCI config data. */
   1544 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
   1545 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
   1546 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
   1547 		}
   1548 	}
   1549 
   1550 	/*
   1551 	 * Map control/status registers.
   1552 	 */
   1553 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1554 	command |= PCI_COMMAND_IO_ENABLE |
   1555 	    PCI_COMMAND_MEM_ENABLE |
   1556 	    PCI_COMMAND_MASTER_ENABLE;
   1557 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1558 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1559 
   1560 #ifdef SK_USEIOSPACE
   1561 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
   1562 		aprint_error(": failed to enable I/O ports!\n");
   1563 		return;
   1564 	}
   1565 	/*
   1566 	 * Map control/status registers.
   1567 	 */
   1568 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
   1569 			&sc->sk_btag, &sc->sk_bhandle,
   1570 			&iobase, &iosize)) {
   1571 		aprint_error(": can't find i/o space\n");
   1572 		return;
   1573 	}
   1574 #else
   1575 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1576 		aprint_error(": failed to enable memory mapping!\n");
   1577 		return;
   1578 	}
   1579 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
   1580 	switch (memtype) {
   1581         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1582         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1583                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
   1584 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
   1585 				   &iobase, &iosize) == 0)
   1586                         break;
   1587         default:
   1588                 aprint_error_dev(sc->sk_dev, "can't find mem space\n");
   1589                 return;
   1590 	}
   1591 
   1592 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase,
   1593 	    (u_long)iosize));
   1594 #endif
   1595 	sc->sc_dmatag = pa->pa_dmat;
   1596 
   1597 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
   1598 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
   1599 
   1600 	/* bail out here if chip is not recognized */
   1601 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
   1602 		aprint_error_dev(sc->sk_dev, "unknown chip type\n");
   1603 		goto fail;
   1604 	}
   1605 	if (SK_IS_YUKON2(sc)) {
   1606 		aprint_error_dev(sc->sk_dev,
   1607 		    "Does not support Yukon2--try msk(4).\n");
   1608 		goto fail;
   1609 	}
   1610 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
   1611 
   1612 	/* Allocate interrupt */
   1613 	if (pci_intr_map(pa, &ih)) {
   1614 		aprint_error(": couldn't map interrupt\n");
   1615 		goto fail;
   1616 	}
   1617 
   1618 	intrstr = pci_intr_string(pc, ih);
   1619 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
   1620 	if (sc->sk_intrhand == NULL) {
   1621 		aprint_error(": couldn't establish interrupt");
   1622 		if (intrstr != NULL)
   1623 			aprint_normal(" at %s", intrstr);
   1624 		goto fail;
   1625 	}
   1626 	aprint_normal(": %s\n", intrstr);
   1627 
   1628 	/* Reset the adapter. */
   1629 	sk_reset(sc);
   1630 
   1631 	/* Read and save vital product data from EEPROM. */
   1632 	sk_vpd_read(sc);
   1633 
   1634 	if (sc->sk_type == SK_GENESIS) {
   1635 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1636 		/* Read and save RAM size and RAMbuffer offset */
   1637 		switch (val) {
   1638 		case SK_RAMSIZE_512K_64:
   1639 			sc->sk_ramsize = 0x80000;
   1640 			sc->sk_rboff = SK_RBOFF_0;
   1641 			break;
   1642 		case SK_RAMSIZE_1024K_64:
   1643 			sc->sk_ramsize = 0x100000;
   1644 			sc->sk_rboff = SK_RBOFF_80000;
   1645 			break;
   1646 		case SK_RAMSIZE_1024K_128:
   1647 			sc->sk_ramsize = 0x100000;
   1648 			sc->sk_rboff = SK_RBOFF_0;
   1649 			break;
   1650 		case SK_RAMSIZE_2048K_128:
   1651 			sc->sk_ramsize = 0x200000;
   1652 			sc->sk_rboff = SK_RBOFF_0;
   1653 			break;
   1654 		default:
   1655 			aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
   1656 			       val);
   1657 			goto fail_1;
   1658 			break;
   1659 		}
   1660 
   1661 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
   1662 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
   1663 			     sc->sk_rboff));
   1664 	} else {
   1665 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1666 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
   1667 		sc->sk_rboff = SK_RBOFF_0;
   1668 
   1669 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
   1670 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
   1671 			     sc->sk_rboff));
   1672 	}
   1673 
   1674 	/* Read and save physical media type */
   1675 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
   1676 	case SK_PMD_1000BASESX:
   1677 		sc->sk_pmd = IFM_1000_SX;
   1678 		break;
   1679 	case SK_PMD_1000BASELX:
   1680 		sc->sk_pmd = IFM_1000_LX;
   1681 		break;
   1682 	case SK_PMD_1000BASECX:
   1683 		sc->sk_pmd = IFM_1000_CX;
   1684 		break;
   1685 	case SK_PMD_1000BASETX:
   1686 	case SK_PMD_1000BASETX_ALT:
   1687 		sc->sk_pmd = IFM_1000_T;
   1688 		break;
   1689 	default:
   1690 		aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
   1691 		    sk_win_read_1(sc, SK_PMDTYPE));
   1692 		goto fail_1;
   1693 	}
   1694 
   1695 	/* determine whether to name it with vpd or just make it up */
   1696 	/* Marvell Yukon VPD's can freqently be bogus */
   1697 
   1698 	switch (pa->pa_id) {
   1699 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1700 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
   1701 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
   1702 	case PCI_PRODUCT_3COM_3C940:
   1703 	case PCI_PRODUCT_DLINK_DGE530T:
   1704 	case PCI_PRODUCT_DLINK_DGE560T:
   1705 	case PCI_PRODUCT_DLINK_DGE560T_2:
   1706 	case PCI_PRODUCT_LINKSYS_EG1032:
   1707 	case PCI_PRODUCT_LINKSYS_EG1064:
   1708 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1709 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
   1710 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
   1711 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
   1712 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
   1713 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
   1714 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
   1715 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
   1716  		sc->sk_name = sc->sk_vpd_prodname;
   1717  		break;
   1718 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
   1719 	/* whoops yukon vpd prodname bears no resemblance to reality */
   1720 		switch (sc->sk_type) {
   1721 		case SK_GENESIS:
   1722 			sc->sk_name = sc->sk_vpd_prodname;
   1723 			break;
   1724 		case SK_YUKON:
   1725 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
   1726 			break;
   1727 		case SK_YUKON_LITE:
   1728 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
   1729 			break;
   1730 		case SK_YUKON_LP:
   1731 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
   1732 			break;
   1733 		default:
   1734 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
   1735 		}
   1736 
   1737 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
   1738 
   1739 		if ( sc->sk_type == SK_YUKON ) {
   1740 			uint32_t flashaddr;
   1741 			uint8_t testbyte;
   1742 
   1743 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
   1744 
   1745 			/* test Flash-Address Register */
   1746 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
   1747 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
   1748 
   1749 			if (testbyte != 0) {
   1750 				/* this is yukon lite Rev. A0 */
   1751 				sc->sk_type = SK_YUKON_LITE;
   1752 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
   1753 				/* restore Flash-Address Register */
   1754 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
   1755 			}
   1756 		}
   1757 		break;
   1758 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
   1759 		sc->sk_name = sc->sk_vpd_prodname;
   1760 		break;
   1761  	default:
   1762 		sc->sk_name = "Unknown Marvell";
   1763 	}
   1764 
   1765 
   1766 	if ( sc->sk_type == SK_YUKON_LITE ) {
   1767 		switch (sc->sk_rev) {
   1768 		case SK_YUKON_LITE_REV_A0:
   1769 			revstr = "A0";
   1770 			break;
   1771 		case SK_YUKON_LITE_REV_A1:
   1772 			revstr = "A1";
   1773 			break;
   1774 		case SK_YUKON_LITE_REV_A3:
   1775 			revstr = "A3";
   1776 			break;
   1777 		default:
   1778 			revstr = "";
   1779 		}
   1780 	} else {
   1781 		revstr = "";
   1782 	}
   1783 
   1784 	/* Announce the product name. */
   1785 	aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
   1786 			      sc->sk_name, revstr, sc->sk_rev);
   1787 
   1788 	skca.skc_port = SK_PORT_A;
   1789 	(void)config_found(sc->sk_dev, &skca, skcprint);
   1790 
   1791 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
   1792 		skca.skc_port = SK_PORT_B;
   1793 		(void)config_found(sc->sk_dev, &skca, skcprint);
   1794 	}
   1795 
   1796 	/* Turn on the 'driver is loaded' LED. */
   1797 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   1798 
   1799 	/* skc sysctl setup */
   1800 
   1801 	sc->sk_int_mod = SK_IM_DEFAULT;
   1802 	sc->sk_int_mod_pending = 0;
   1803 
   1804 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1805 	    0, CTLTYPE_NODE, device_xname(sc->sk_dev),
   1806 	    SYSCTL_DESCR("skc per-controller controls"),
   1807 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
   1808 	    CTL_EOL)) != 0) {
   1809 		aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
   1810 		goto fail_1;
   1811 	}
   1812 
   1813 	sk_nodenum = node->sysctl_num;
   1814 
   1815 	/* interrupt moderation time in usecs */
   1816 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1817 	    CTLFLAG_READWRITE,
   1818 	    CTLTYPE_INT, "int_mod",
   1819 	    SYSCTL_DESCR("sk interrupt moderation timer"),
   1820 	    sk_sysctl_handler, 0, sc,
   1821 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
   1822 	    CTL_EOL)) != 0) {
   1823 		aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
   1824 		goto fail_1;
   1825 	}
   1826 
   1827 	if (!pmf_device_register(self, skc_suspend, skc_resume))
   1828 		aprint_error_dev(self, "couldn't establish power handler\n");
   1829 
   1830 	return;
   1831 
   1832 fail_1:
   1833 	pci_intr_disestablish(pc, sc->sk_intrhand);
   1834 fail:
   1835 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
   1836 }
   1837 
   1838 int
   1839 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
   1840 {
   1841 	struct sk_softc		*sc = sc_if->sk_softc;
   1842 	struct sk_tx_desc	*f = NULL;
   1843 	u_int32_t		frag, cur, cnt = 0, sk_ctl;
   1844 	int			i;
   1845 	struct sk_txmap_entry	*entry;
   1846 	bus_dmamap_t		txmap;
   1847 
   1848 	DPRINTFN(3, ("sk_encap\n"));
   1849 
   1850 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
   1851 	if (entry == NULL) {
   1852 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
   1853 		return ENOBUFS;
   1854 	}
   1855 	txmap = entry->dmamap;
   1856 
   1857 	cur = frag = *txidx;
   1858 
   1859 #ifdef SK_DEBUG
   1860 	if (skdebug >= 3)
   1861 		sk_dump_mbuf(m_head);
   1862 #endif
   1863 
   1864 	/*
   1865 	 * Start packing the mbufs in this chain into
   1866 	 * the fragment pointers. Stop when we run out
   1867 	 * of fragments or hit the end of the mbuf chain.
   1868 	 */
   1869 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
   1870 	    BUS_DMA_NOWAIT)) {
   1871 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
   1872 		return ENOBUFS;
   1873 	}
   1874 
   1875 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
   1876 
   1877 	/* Sync the DMA map. */
   1878 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
   1879 	    BUS_DMASYNC_PREWRITE);
   1880 
   1881 	for (i = 0; i < txmap->dm_nsegs; i++) {
   1882 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
   1883 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
   1884 			return ENOBUFS;
   1885 		}
   1886 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
   1887 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
   1888 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
   1889 		if (cnt == 0)
   1890 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
   1891 		else
   1892 			sk_ctl |= SK_TXCTL_OWN;
   1893 		f->sk_ctl = htole32(sk_ctl);
   1894 		cur = frag;
   1895 		SK_INC(frag, SK_TX_RING_CNT);
   1896 		cnt++;
   1897 	}
   1898 
   1899 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
   1900 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
   1901 
   1902 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
   1903 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
   1904 		htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
   1905 
   1906 	/* Sync descriptors before handing to chip */
   1907 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
   1908 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1909 
   1910 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
   1911 		htole32(SK_TXCTL_OWN);
   1912 
   1913 	/* Sync first descriptor to hand it off */
   1914 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1915 
   1916 	sc_if->sk_cdata.sk_tx_cnt += cnt;
   1917 
   1918 #ifdef SK_DEBUG
   1919 	if (skdebug >= 3) {
   1920 		struct sk_tx_desc *desc;
   1921 		u_int32_t idx;
   1922 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
   1923 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
   1924 			sk_dump_txdesc(desc, idx);
   1925 		}
   1926 	}
   1927 #endif
   1928 
   1929 	*txidx = frag;
   1930 
   1931 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
   1932 
   1933 	return 0;
   1934 }
   1935 
   1936 void
   1937 sk_start(struct ifnet *ifp)
   1938 {
   1939         struct sk_if_softc	*sc_if = ifp->if_softc;
   1940         struct sk_softc		*sc = sc_if->sk_softc;
   1941         struct mbuf		*m_head = NULL;
   1942         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
   1943 	int			pkts = 0;
   1944 
   1945 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
   1946 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
   1947 
   1948 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
   1949 		IFQ_POLL(&ifp->if_snd, m_head);
   1950 		if (m_head == NULL)
   1951 			break;
   1952 
   1953 		/*
   1954 		 * Pack the data into the transmit ring. If we
   1955 		 * don't have room, set the OACTIVE flag and wait
   1956 		 * for the NIC to drain the ring.
   1957 		 */
   1958 		if (sk_encap(sc_if, m_head, &idx)) {
   1959 			ifp->if_flags |= IFF_OACTIVE;
   1960 			break;
   1961 		}
   1962 
   1963 		/* now we are committed to transmit the packet */
   1964 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1965 		pkts++;
   1966 
   1967 		/*
   1968 		 * If there's a BPF listener, bounce a copy of this frame
   1969 		 * to him.
   1970 		 */
   1971 #if NBPFILTER > 0
   1972 		if (ifp->if_bpf)
   1973 			bpf_mtap(ifp->if_bpf, m_head);
   1974 #endif
   1975 	}
   1976 	if (pkts == 0)
   1977 		return;
   1978 
   1979 	/* Transmit */
   1980 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
   1981 		sc_if->sk_cdata.sk_tx_prod = idx;
   1982 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   1983 
   1984 		/* Set a timeout in case the chip goes out to lunch. */
   1985 		ifp->if_timer = 5;
   1986 	}
   1987 }
   1988 
   1989 
   1990 void
   1991 sk_watchdog(struct ifnet *ifp)
   1992 {
   1993 	struct sk_if_softc *sc_if = ifp->if_softc;
   1994 
   1995 	/*
   1996 	 * Reclaim first as there is a possibility of losing Tx completion
   1997 	 * interrupts.
   1998 	 */
   1999 	sk_txeof(sc_if);
   2000 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
   2001 		aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
   2002 
   2003 		ifp->if_oerrors++;
   2004 
   2005 		sk_init(ifp);
   2006 	}
   2007 }
   2008 
   2009 void
   2010 sk_shutdown(void *v)
   2011 {
   2012 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
   2013 	struct sk_softc		*sc = sc_if->sk_softc;
   2014 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
   2015 
   2016 	DPRINTFN(2, ("sk_shutdown\n"));
   2017 	sk_stop(ifp,1);
   2018 
   2019 	/* Turn off the 'driver is loaded' LED. */
   2020 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   2021 
   2022 	/*
   2023 	 * Reset the GEnesis controller. Doing this should also
   2024 	 * assert the resets on the attached XMAC(s).
   2025 	 */
   2026 	sk_reset(sc);
   2027 }
   2028 
   2029 void
   2030 sk_rxeof(struct sk_if_softc *sc_if)
   2031 {
   2032 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2033 	struct mbuf		*m;
   2034 	struct sk_chain		*cur_rx;
   2035 	struct sk_rx_desc	*cur_desc;
   2036 	int			i, cur, total_len = 0;
   2037 	u_int32_t		rxstat, sk_ctl;
   2038 	bus_dmamap_t		dmamap;
   2039 
   2040 	i = sc_if->sk_cdata.sk_rx_prod;
   2041 
   2042 	DPRINTFN(3, ("sk_rxeof %d\n", i));
   2043 
   2044 	for (;;) {
   2045 		cur = i;
   2046 
   2047 		/* Sync the descriptor */
   2048 		SK_CDRXSYNC(sc_if, cur,
   2049 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2050 
   2051 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
   2052 		if (sk_ctl & SK_RXCTL_OWN) {
   2053 			/* Invalidate the descriptor -- it's not ready yet */
   2054 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
   2055 			sc_if->sk_cdata.sk_rx_prod = i;
   2056 			break;
   2057 		}
   2058 
   2059 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
   2060 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
   2061 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
   2062 
   2063 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
   2064 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2065 
   2066 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
   2067 		m = cur_rx->sk_mbuf;
   2068 		cur_rx->sk_mbuf = NULL;
   2069 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
   2070 
   2071 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
   2072 
   2073 		SK_INC(i, SK_RX_RING_CNT);
   2074 
   2075 		if (rxstat & XM_RXSTAT_ERRFRAME) {
   2076 			ifp->if_ierrors++;
   2077 			sk_newbuf(sc_if, cur, m, dmamap);
   2078 			continue;
   2079 		}
   2080 
   2081 		/*
   2082 		 * Try to allocate a new jumbo buffer. If that
   2083 		 * fails, copy the packet to mbufs and put the
   2084 		 * jumbo buffer back in the ring so it can be
   2085 		 * re-used. If allocating mbufs fails, then we
   2086 		 * have to drop the packet.
   2087 		 */
   2088 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
   2089 			struct mbuf		*m0;
   2090 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
   2091 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
   2092 			sk_newbuf(sc_if, cur, m, dmamap);
   2093 			if (m0 == NULL) {
   2094 				aprint_error_dev(sc_if->sk_dev, "no receive "
   2095 				    "buffers available -- packet dropped!\n");
   2096 				ifp->if_ierrors++;
   2097 				continue;
   2098 			}
   2099 			m_adj(m0, ETHER_ALIGN);
   2100 			m = m0;
   2101 		} else {
   2102 			m->m_pkthdr.rcvif = ifp;
   2103 			m->m_pkthdr.len = m->m_len = total_len;
   2104 		}
   2105 
   2106 		ifp->if_ipackets++;
   2107 
   2108 #if NBPFILTER > 0
   2109 		if (ifp->if_bpf)
   2110 			bpf_mtap(ifp->if_bpf, m);
   2111 #endif
   2112 		/* pass it on. */
   2113 		(*ifp->if_input)(ifp, m);
   2114 	}
   2115 }
   2116 
   2117 void
   2118 sk_txeof(struct sk_if_softc *sc_if)
   2119 {
   2120 	struct sk_softc		*sc = sc_if->sk_softc;
   2121 	struct sk_tx_desc	*cur_tx;
   2122 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2123 	u_int32_t		idx, sk_ctl;
   2124 	struct sk_txmap_entry	*entry;
   2125 
   2126 	DPRINTFN(3, ("sk_txeof\n"));
   2127 
   2128 	/*
   2129 	 * Go through our tx ring and free mbufs for those
   2130 	 * frames that have been sent.
   2131 	 */
   2132 	idx = sc_if->sk_cdata.sk_tx_cons;
   2133 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
   2134 		SK_CDTXSYNC(sc_if, idx, 1,
   2135 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2136 
   2137 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
   2138 		sk_ctl = le32toh(cur_tx->sk_ctl);
   2139 #ifdef SK_DEBUG
   2140 		if (skdebug >= 3)
   2141 			sk_dump_txdesc(cur_tx, idx);
   2142 #endif
   2143 		if (sk_ctl & SK_TXCTL_OWN) {
   2144 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
   2145 			break;
   2146 		}
   2147 		if (sk_ctl & SK_TXCTL_LASTFRAG)
   2148 			ifp->if_opackets++;
   2149 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
   2150 			entry = sc_if->sk_cdata.sk_tx_map[idx];
   2151 
   2152 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
   2153 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
   2154 
   2155 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
   2156 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2157 
   2158 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
   2159 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
   2160 					  link);
   2161 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
   2162 		}
   2163 		sc_if->sk_cdata.sk_tx_cnt--;
   2164 		SK_INC(idx, SK_TX_RING_CNT);
   2165 	}
   2166 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
   2167 		ifp->if_timer = 0;
   2168 	else /* nudge chip to keep tx ring moving */
   2169 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   2170 
   2171 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
   2172 		ifp->if_flags &= ~IFF_OACTIVE;
   2173 
   2174 	sc_if->sk_cdata.sk_tx_cons = idx;
   2175 }
   2176 
   2177 void
   2178 sk_tick(void *xsc_if)
   2179 {
   2180 	struct sk_if_softc *sc_if = xsc_if;
   2181 	struct mii_data *mii = &sc_if->sk_mii;
   2182 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2183 	int i;
   2184 
   2185 	DPRINTFN(3, ("sk_tick\n"));
   2186 
   2187 	if (!(ifp->if_flags & IFF_UP))
   2188 		return;
   2189 
   2190 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2191 		sk_intr_bcom(sc_if);
   2192 		return;
   2193 	}
   2194 
   2195 	/*
   2196 	 * According to SysKonnect, the correct way to verify that
   2197 	 * the link has come back up is to poll bit 0 of the GPIO
   2198 	 * register three times. This pin has the signal from the
   2199 	 * link sync pin connected to it; if we read the same link
   2200 	 * state 3 times in a row, we know the link is up.
   2201 	 */
   2202 	for (i = 0; i < 3; i++) {
   2203 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
   2204 			break;
   2205 	}
   2206 
   2207 	if (i != 3) {
   2208 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2209 		return;
   2210 	}
   2211 
   2212 	/* Turn the GP0 interrupt back on. */
   2213 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2214 	SK_XM_READ_2(sc_if, XM_ISR);
   2215 	mii_tick(mii);
   2216 	mii_pollstat(mii);
   2217 	callout_stop(&sc_if->sk_tick_ch);
   2218 }
   2219 
   2220 void
   2221 sk_intr_bcom(struct sk_if_softc *sc_if)
   2222 {
   2223 	struct mii_data *mii = &sc_if->sk_mii;
   2224 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2225 	int status;
   2226 
   2227 
   2228 	DPRINTFN(3, ("sk_intr_bcom\n"));
   2229 
   2230 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2231 
   2232 	/*
   2233 	 * Read the PHY interrupt register to make sure
   2234 	 * we clear any pending interrupts.
   2235 	 */
   2236 	status = sk_xmac_miibus_readreg(sc_if->sk_dev,
   2237 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
   2238 
   2239 	if (!(ifp->if_flags & IFF_RUNNING)) {
   2240 		sk_init_xmac(sc_if);
   2241 		return;
   2242 	}
   2243 
   2244 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
   2245 		int lstat;
   2246 		lstat = sk_xmac_miibus_readreg(sc_if->sk_dev,
   2247 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
   2248 
   2249 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
   2250 			(void)mii_mediachg(mii);
   2251 			/* Turn off the link LED. */
   2252 			SK_IF_WRITE_1(sc_if, 0,
   2253 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2254 			sc_if->sk_link = 0;
   2255 		} else if (status & BRGPHY_ISR_LNK_CHG) {
   2256 			sk_xmac_miibus_writereg(sc_if->sk_dev,
   2257 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
   2258 			mii_tick(mii);
   2259 			sc_if->sk_link = 1;
   2260 			/* Turn on the link LED. */
   2261 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2262 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
   2263 			    SK_LINKLED_BLINK_OFF);
   2264 			mii_pollstat(mii);
   2265 		} else {
   2266 			mii_tick(mii);
   2267 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
   2268 		}
   2269 	}
   2270 
   2271 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2272 }
   2273 
   2274 void
   2275 sk_intr_xmac(struct sk_if_softc	*sc_if)
   2276 {
   2277 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
   2278 
   2279 	DPRINTFN(3, ("sk_intr_xmac\n"));
   2280 
   2281 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
   2282 		if (status & XM_ISR_GP0_SET) {
   2283 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2284 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2285 		}
   2286 
   2287 		if (status & XM_ISR_AUTONEG_DONE) {
   2288 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2289 		}
   2290 	}
   2291 
   2292 	if (status & XM_IMR_TX_UNDERRUN)
   2293 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
   2294 
   2295 	if (status & XM_IMR_RX_OVERRUN)
   2296 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
   2297 }
   2298 
   2299 void
   2300 sk_intr_yukon(struct sk_if_softc *sc_if)
   2301 {
   2302 	int status;
   2303 
   2304 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2305 
   2306 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
   2307 }
   2308 
   2309 int
   2310 sk_intr(void *xsc)
   2311 {
   2312 	struct sk_softc		*sc = xsc;
   2313 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
   2314 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
   2315 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
   2316 	u_int32_t		status;
   2317 	int			claimed = 0;
   2318 
   2319 	if (sc_if0 != NULL)
   2320 		ifp0 = &sc_if0->sk_ethercom.ec_if;
   2321 	if (sc_if1 != NULL)
   2322 		ifp1 = &sc_if1->sk_ethercom.ec_if;
   2323 
   2324 	for (;;) {
   2325 		status = CSR_READ_4(sc, SK_ISSR);
   2326 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
   2327 
   2328 		if (!(status & sc->sk_intrmask))
   2329 			break;
   2330 
   2331 		claimed = 1;
   2332 
   2333 		/* Handle receive interrupts first. */
   2334 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
   2335 			sk_rxeof(sc_if0);
   2336 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
   2337 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2338 		}
   2339 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
   2340 			sk_rxeof(sc_if1);
   2341 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
   2342 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2343 		}
   2344 
   2345 		/* Then transmit interrupts. */
   2346 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
   2347 			sk_txeof(sc_if0);
   2348 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
   2349 			    SK_TXBMU_CLR_IRQ_EOF);
   2350 		}
   2351 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
   2352 			sk_txeof(sc_if1);
   2353 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
   2354 			    SK_TXBMU_CLR_IRQ_EOF);
   2355 		}
   2356 
   2357 		/* Then MAC interrupts. */
   2358 		if (sc_if0 && (status & SK_ISR_MAC1) &&
   2359 		    (ifp0->if_flags & IFF_RUNNING)) {
   2360 			if (sc->sk_type == SK_GENESIS)
   2361 				sk_intr_xmac(sc_if0);
   2362 			else
   2363 				sk_intr_yukon(sc_if0);
   2364 		}
   2365 
   2366 		if (sc_if1 && (status & SK_ISR_MAC2) &&
   2367 		    (ifp1->if_flags & IFF_RUNNING)) {
   2368 			if (sc->sk_type == SK_GENESIS)
   2369 				sk_intr_xmac(sc_if1);
   2370 			else
   2371 				sk_intr_yukon(sc_if1);
   2372 
   2373 		}
   2374 
   2375 		if (status & SK_ISR_EXTERNAL_REG) {
   2376 			if (sc_if0 != NULL &&
   2377 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
   2378 				sk_intr_bcom(sc_if0);
   2379 
   2380 			if (sc_if1 != NULL &&
   2381 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
   2382 				sk_intr_bcom(sc_if1);
   2383 		}
   2384 	}
   2385 
   2386 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2387 
   2388 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
   2389 		sk_start(ifp0);
   2390 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
   2391 		sk_start(ifp1);
   2392 
   2393 #if NRND > 0
   2394 	if (RND_ENABLED(&sc->rnd_source))
   2395 		rnd_add_uint32(&sc->rnd_source, status);
   2396 #endif
   2397 
   2398 	if (sc->sk_int_mod_pending)
   2399 		sk_update_int_mod(sc);
   2400 
   2401 	return claimed;
   2402 }
   2403 
   2404 void
   2405 sk_init_xmac(struct sk_if_softc	*sc_if)
   2406 {
   2407 	struct sk_softc		*sc = sc_if->sk_softc;
   2408 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2409 	static const struct sk_bcom_hack     bhack[] = {
   2410 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
   2411 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
   2412 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
   2413 	{ 0, 0 } };
   2414 
   2415 	DPRINTFN(1, ("sk_init_xmac\n"));
   2416 
   2417 	/* Unreset the XMAC. */
   2418 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
   2419 	DELAY(1000);
   2420 
   2421 	/* Reset the XMAC's internal state. */
   2422 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2423 
   2424 	/* Save the XMAC II revision */
   2425 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
   2426 
   2427 	/*
   2428 	 * Perform additional initialization for external PHYs,
   2429 	 * namely for the 1000baseTX cards that use the XMAC's
   2430 	 * GMII mode.
   2431 	 */
   2432 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2433 		int			i = 0;
   2434 		u_int32_t		val;
   2435 
   2436 		/* Take PHY out of reset. */
   2437 		val = sk_win_read_4(sc, SK_GPIO);
   2438 		if (sc_if->sk_port == SK_PORT_A)
   2439 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
   2440 		else
   2441 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
   2442 		sk_win_write_4(sc, SK_GPIO, val);
   2443 
   2444 		/* Enable GMII mode on the XMAC. */
   2445 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
   2446 
   2447 		sk_xmac_miibus_writereg(sc_if->sk_dev,
   2448 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
   2449 		DELAY(10000);
   2450 		sk_xmac_miibus_writereg(sc_if->sk_dev,
   2451 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
   2452 
   2453 		/*
   2454 		 * Early versions of the BCM5400 apparently have
   2455 		 * a bug that requires them to have their reserved
   2456 		 * registers initialized to some magic values. I don't
   2457 		 * know what the numbers do, I'm just the messenger.
   2458 		 */
   2459 		if (sk_xmac_miibus_readreg(sc_if->sk_dev,
   2460 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
   2461 			while (bhack[i].reg) {
   2462 				sk_xmac_miibus_writereg(sc_if->sk_dev,
   2463 				    SK_PHYADDR_BCOM, bhack[i].reg,
   2464 				    bhack[i].val);
   2465 				i++;
   2466 			}
   2467 		}
   2468 	}
   2469 
   2470 	/* Set station address */
   2471 	SK_XM_WRITE_2(sc_if, XM_PAR0,
   2472 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
   2473 	SK_XM_WRITE_2(sc_if, XM_PAR1,
   2474 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
   2475 	SK_XM_WRITE_2(sc_if, XM_PAR2,
   2476 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
   2477 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
   2478 
   2479 	if (ifp->if_flags & IFF_PROMISC)
   2480 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2481 	else
   2482 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2483 
   2484 	if (ifp->if_flags & IFF_BROADCAST)
   2485 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2486 	else
   2487 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2488 
   2489 	/* We don't need the FCS appended to the packet. */
   2490 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
   2491 
   2492 	/* We want short frames padded to 60 bytes. */
   2493 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
   2494 
   2495 	/*
   2496 	 * Enable the reception of all error frames. This is is
   2497 	 * a necessary evil due to the design of the XMAC. The
   2498 	 * XMAC's receive FIFO is only 8K in size, however jumbo
   2499 	 * frames can be up to 9000 bytes in length. When bad
   2500 	 * frame filtering is enabled, the XMAC's RX FIFO operates
   2501 	 * in 'store and forward' mode. For this to work, the
   2502 	 * entire frame has to fit into the FIFO, but that means
   2503 	 * that jumbo frames larger than 8192 bytes will be
   2504 	 * truncated. Disabling all bad frame filtering causes
   2505 	 * the RX FIFO to operate in streaming mode, in which
   2506 	 * case the XMAC will start transfering frames out of the
   2507 	 * RX FIFO as soon as the FIFO threshold is reached.
   2508 	 */
   2509 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
   2510 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
   2511 	    XM_MODE_RX_INRANGELEN);
   2512 
   2513 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2514 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2515 	else
   2516 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2517 
   2518 	/*
   2519 	 * Bump up the transmit threshold. This helps hold off transmit
   2520 	 * underruns when we're blasting traffic from both ports at once.
   2521 	 */
   2522 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
   2523 
   2524 	/* Set multicast filter */
   2525 	sk_setmulti(sc_if);
   2526 
   2527 	/* Clear and enable interrupts */
   2528 	SK_XM_READ_2(sc_if, XM_ISR);
   2529 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
   2530 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
   2531 	else
   2532 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2533 
   2534 	/* Configure MAC arbiter */
   2535 	switch (sc_if->sk_xmac_rev) {
   2536 	case XM_XMAC_REV_B2:
   2537 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
   2538 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
   2539 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
   2540 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
   2541 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
   2542 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
   2543 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
   2544 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
   2545 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2546 		break;
   2547 	case XM_XMAC_REV_C1:
   2548 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
   2549 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
   2550 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
   2551 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
   2552 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
   2553 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
   2554 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
   2555 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
   2556 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2557 		break;
   2558 	default:
   2559 		break;
   2560 	}
   2561 	sk_win_write_2(sc, SK_MACARB_CTL,
   2562 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
   2563 
   2564 	sc_if->sk_link = 1;
   2565 }
   2566 
   2567 void sk_init_yukon(struct sk_if_softc *sc_if)
   2568 {
   2569 	u_int32_t		/*mac, */phy;
   2570 	u_int16_t		reg;
   2571 	struct sk_softc		*sc;
   2572 	int			i;
   2573 
   2574 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
   2575 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
   2576 
   2577 	sc = sc_if->sk_softc;
   2578 	if (sc->sk_type == SK_YUKON_LITE &&
   2579 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
   2580 		/* Take PHY out of reset. */
   2581 		sk_win_write_4(sc, SK_GPIO,
   2582 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
   2583 	}
   2584 
   2585 
   2586 	/* GMAC and GPHY Reset */
   2587 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
   2588 
   2589 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
   2590 
   2591 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2592 	DELAY(1000);
   2593 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
   2594 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2595 	DELAY(1000);
   2596 
   2597 
   2598 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
   2599 
   2600 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
   2601 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
   2602 
   2603 	switch (sc_if->sk_softc->sk_pmd) {
   2604 	case IFM_1000_SX:
   2605 	case IFM_1000_LX:
   2606 		phy |= SK_GPHY_FIBER;
   2607 		break;
   2608 
   2609 	case IFM_1000_CX:
   2610 	case IFM_1000_T:
   2611 		phy |= SK_GPHY_COPPER;
   2612 		break;
   2613 	}
   2614 
   2615 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
   2616 
   2617 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
   2618 	DELAY(1000);
   2619 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
   2620 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
   2621 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
   2622 
   2623 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
   2624 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
   2625 
   2626 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
   2627 
   2628 	/* unused read of the interrupt source register */
   2629 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
   2630 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2631 
   2632 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
   2633 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
   2634 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2635 
   2636 	/* MIB Counter Clear Mode set */
   2637         reg |= YU_PAR_MIB_CLR;
   2638 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2639 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
   2640 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2641 
   2642 	/* MIB Counter Clear Mode clear */
   2643 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
   2644         reg &= ~YU_PAR_MIB_CLR;
   2645 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2646 
   2647 	/* receive control reg */
   2648 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
   2649 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
   2650 		      YU_RCR_CRCR);
   2651 
   2652 	/* transmit parameter register */
   2653 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
   2654 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
   2655 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
   2656 
   2657 	/* serial mode register */
   2658 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
   2659 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
   2660 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
   2661 		      YU_SMR_IPG_DATA(0x1e));
   2662 
   2663 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
   2664 	/* Setup Yukon's address */
   2665 	for (i = 0; i < 3; i++) {
   2666 		/* Write Source Address 1 (unicast filter) */
   2667 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
   2668 			      sc_if->sk_enaddr[i * 2] |
   2669 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
   2670 	}
   2671 
   2672 	for (i = 0; i < 3; i++) {
   2673 		reg = sk_win_read_2(sc_if->sk_softc,
   2674 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
   2675 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
   2676 	}
   2677 
   2678 	/* Set multicast filter */
   2679 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
   2680 	sk_setmulti(sc_if);
   2681 
   2682 	/* enable interrupt mask for counter overflows */
   2683 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
   2684 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
   2685 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
   2686 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
   2687 
   2688 	/* Configure RX MAC FIFO */
   2689 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
   2690 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
   2691 
   2692 	/* Configure TX MAC FIFO */
   2693 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
   2694 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
   2695 
   2696 	DPRINTFN(6, ("sk_init_yukon: end\n"));
   2697 }
   2698 
   2699 /*
   2700  * Note that to properly initialize any part of the GEnesis chip,
   2701  * you first have to take it out of reset mode.
   2702  */
   2703 int
   2704 sk_init(struct ifnet *ifp)
   2705 {
   2706 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2707 	struct sk_softc		*sc = sc_if->sk_softc;
   2708 	struct mii_data		*mii = &sc_if->sk_mii;
   2709 	int			rc = 0, s;
   2710 	u_int32_t		imr, imtimer_ticks;
   2711 
   2712 	DPRINTFN(1, ("sk_init\n"));
   2713 
   2714 	s = splnet();
   2715 
   2716 	if (ifp->if_flags & IFF_RUNNING) {
   2717 		splx(s);
   2718 		return 0;
   2719 	}
   2720 
   2721 	/* Cancel pending I/O and free all RX/TX buffers. */
   2722 	sk_stop(ifp,0);
   2723 
   2724 	if (sc->sk_type == SK_GENESIS) {
   2725 		/* Configure LINK_SYNC LED */
   2726 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
   2727 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2728 			      SK_LINKLED_LINKSYNC_ON);
   2729 
   2730 		/* Configure RX LED */
   2731 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
   2732 			      SK_RXLEDCTL_COUNTER_START);
   2733 
   2734 		/* Configure TX LED */
   2735 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
   2736 			      SK_TXLEDCTL_COUNTER_START);
   2737 	}
   2738 
   2739 	/* Configure I2C registers */
   2740 
   2741 	/* Configure XMAC(s) */
   2742 	switch (sc->sk_type) {
   2743 	case SK_GENESIS:
   2744 		sk_init_xmac(sc_if);
   2745 		break;
   2746 	case SK_YUKON:
   2747 	case SK_YUKON_LITE:
   2748 	case SK_YUKON_LP:
   2749 		sk_init_yukon(sc_if);
   2750 		break;
   2751 	}
   2752 	if ((rc = mii_mediachg(mii)) == ENXIO)
   2753 		rc = 0;
   2754 	else if (rc != 0)
   2755 		goto out;
   2756 
   2757 	if (sc->sk_type == SK_GENESIS) {
   2758 		/* Configure MAC FIFOs */
   2759 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
   2760 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
   2761 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
   2762 
   2763 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
   2764 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
   2765 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
   2766 	}
   2767 
   2768 	/* Configure transmit arbiter(s) */
   2769 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
   2770 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
   2771 
   2772 	/* Configure RAMbuffers */
   2773 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
   2774 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
   2775 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
   2776 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
   2777 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
   2778 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
   2779 
   2780 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
   2781 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
   2782 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
   2783 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
   2784 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
   2785 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
   2786 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
   2787 
   2788 	/* Configure BMUs */
   2789 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
   2790 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
   2791 	    SK_RX_RING_ADDR(sc_if, 0));
   2792 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
   2793 
   2794 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
   2795 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
   2796             SK_TX_RING_ADDR(sc_if, 0));
   2797 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
   2798 
   2799 	/* Init descriptors */
   2800 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
   2801 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
   2802 		    "memory for rx buffers\n");
   2803 		sk_stop(ifp,0);
   2804 		splx(s);
   2805 		return ENOBUFS;
   2806 	}
   2807 
   2808 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
   2809 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
   2810 		    "memory for tx buffers\n");
   2811 		sk_stop(ifp,0);
   2812 		splx(s);
   2813 		return ENOBUFS;
   2814 	}
   2815 
   2816 	/* Set interrupt moderation if changed via sysctl. */
   2817 	switch (sc->sk_type) {
   2818 	case SK_GENESIS:
   2819 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   2820 		break;
   2821 	case SK_YUKON_EC:
   2822 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   2823 		break;
   2824 	default:
   2825 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   2826 	}
   2827 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
   2828 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
   2829 		sk_win_write_4(sc, SK_IMTIMERINIT,
   2830 		    SK_IM_USECS(sc->sk_int_mod));
   2831 		aprint_verbose_dev(sc->sk_dev,
   2832 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
   2833 	}
   2834 
   2835 	/* Configure interrupt handling */
   2836 	CSR_READ_4(sc, SK_ISSR);
   2837 	if (sc_if->sk_port == SK_PORT_A)
   2838 		sc->sk_intrmask |= SK_INTRS1;
   2839 	else
   2840 		sc->sk_intrmask |= SK_INTRS2;
   2841 
   2842 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
   2843 
   2844 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2845 
   2846 	/* Start BMUs. */
   2847 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
   2848 
   2849 	if (sc->sk_type == SK_GENESIS) {
   2850 		/* Enable XMACs TX and RX state machines */
   2851 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
   2852 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
   2853 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2854 	}
   2855 
   2856 	if (SK_YUKON_FAMILY(sc->sk_type)) {
   2857 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
   2858 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
   2859 #if 0
   2860 		/* XXX disable 100Mbps and full duplex mode? */
   2861 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
   2862 #endif
   2863 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
   2864 	}
   2865 
   2866 
   2867 	ifp->if_flags |= IFF_RUNNING;
   2868 	ifp->if_flags &= ~IFF_OACTIVE;
   2869 
   2870 out:
   2871 	splx(s);
   2872 	return rc;
   2873 }
   2874 
   2875 void
   2876 sk_stop(struct ifnet *ifp, int disable)
   2877 {
   2878         struct sk_if_softc	*sc_if = ifp->if_softc;
   2879 	struct sk_softc		*sc = sc_if->sk_softc;
   2880 	int			i;
   2881 
   2882 	DPRINTFN(1, ("sk_stop\n"));
   2883 
   2884 	callout_stop(&sc_if->sk_tick_ch);
   2885 
   2886 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2887 		u_int32_t		val;
   2888 
   2889 		/* Put PHY back into reset. */
   2890 		val = sk_win_read_4(sc, SK_GPIO);
   2891 		if (sc_if->sk_port == SK_PORT_A) {
   2892 			val |= SK_GPIO_DIR0;
   2893 			val &= ~SK_GPIO_DAT0;
   2894 		} else {
   2895 			val |= SK_GPIO_DIR2;
   2896 			val &= ~SK_GPIO_DAT2;
   2897 		}
   2898 		sk_win_write_4(sc, SK_GPIO, val);
   2899 	}
   2900 
   2901 	/* Turn off various components of this interface. */
   2902 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2903 	switch (sc->sk_type) {
   2904 	case SK_GENESIS:
   2905 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
   2906 			      SK_TXMACCTL_XMAC_RESET);
   2907 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
   2908 		break;
   2909 	case SK_YUKON:
   2910 	case SK_YUKON_LITE:
   2911 	case SK_YUKON_LP:
   2912 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
   2913 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
   2914 		break;
   2915 	}
   2916 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
   2917 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2918 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
   2919 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2920 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
   2921 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2922 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2923 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2924 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
   2925 
   2926 	/* Disable interrupts */
   2927 	if (sc_if->sk_port == SK_PORT_A)
   2928 		sc->sk_intrmask &= ~SK_INTRS1;
   2929 	else
   2930 		sc->sk_intrmask &= ~SK_INTRS2;
   2931 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2932 
   2933 	SK_XM_READ_2(sc_if, XM_ISR);
   2934 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2935 
   2936 	/* Free RX and TX mbufs still in the queues. */
   2937 	for (i = 0; i < SK_RX_RING_CNT; i++) {
   2938 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
   2939 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
   2940 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   2941 		}
   2942 	}
   2943 
   2944 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   2945 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
   2946 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
   2947 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   2948 		}
   2949 	}
   2950 
   2951 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
   2952 }
   2953 
   2954 /* Power Management Framework */
   2955 
   2956 static bool
   2957 skc_suspend(device_t dv PMF_FN_ARGS)
   2958 {
   2959 	struct sk_softc *sc = device_private(dv);
   2960 
   2961 	DPRINTFN(2, ("skc_suspend\n"));
   2962 
   2963 	/* Turn off the driver is loaded LED */
   2964 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   2965 
   2966 	return true;
   2967 }
   2968 
   2969 static bool
   2970 skc_resume(device_t dv PMF_FN_ARGS)
   2971 {
   2972 	struct sk_softc *sc = device_private(dv);
   2973 
   2974 	DPRINTFN(2, ("skc_resume\n"));
   2975 
   2976 	sk_reset(sc);
   2977 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   2978 
   2979 	return true;
   2980 }
   2981 
   2982 static bool
   2983 sk_resume(device_t dv PMF_FN_ARGS)
   2984 {
   2985 	struct sk_if_softc *sc_if = device_private(dv);
   2986 
   2987 	sk_init_yukon(sc_if);
   2988 	return true;
   2989 }
   2990 
   2991 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
   2992     skc_probe, skc_attach, NULL, NULL);
   2993 
   2994 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
   2995     sk_probe, sk_attach, NULL, NULL);
   2996 
   2997 #ifdef SK_DEBUG
   2998 void
   2999 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
   3000 {
   3001 #define DESC_PRINT(X)					\
   3002 	if (X)					\
   3003 		printf("txdesc[%d]." #X "=%#x\n",	\
   3004 		       idx, X);
   3005 
   3006 	DESC_PRINT(le32toh(desc->sk_ctl));
   3007 	DESC_PRINT(le32toh(desc->sk_next));
   3008 	DESC_PRINT(le32toh(desc->sk_data_lo));
   3009 	DESC_PRINT(le32toh(desc->sk_data_hi));
   3010 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
   3011 	DESC_PRINT(le16toh(desc->sk_rsvd0));
   3012 	DESC_PRINT(le16toh(desc->sk_csum_startval));
   3013 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
   3014 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
   3015 	DESC_PRINT(le16toh(desc->sk_rsvd1));
   3016 #undef PRINT
   3017 }
   3018 
   3019 void
   3020 sk_dump_bytes(const char *data, int len)
   3021 {
   3022 	int c, i, j;
   3023 
   3024 	for (i = 0; i < len; i += 16) {
   3025 		printf("%08x  ", i);
   3026 		c = len - i;
   3027 		if (c > 16) c = 16;
   3028 
   3029 		for (j = 0; j < c; j++) {
   3030 			printf("%02x ", data[i + j] & 0xff);
   3031 			if ((j & 0xf) == 7 && j > 0)
   3032 				printf(" ");
   3033 		}
   3034 
   3035 		for (; j < 16; j++)
   3036 			printf("   ");
   3037 		printf("  ");
   3038 
   3039 		for (j = 0; j < c; j++) {
   3040 			int ch = data[i + j] & 0xff;
   3041 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
   3042 		}
   3043 
   3044 		printf("\n");
   3045 
   3046 		if (c < 16)
   3047 			break;
   3048 	}
   3049 }
   3050 
   3051 void
   3052 sk_dump_mbuf(struct mbuf *m)
   3053 {
   3054 	int count = m->m_pkthdr.len;
   3055 
   3056 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
   3057 
   3058 	while (count > 0 && m) {
   3059 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
   3060 		       m, m->m_data, m->m_len);
   3061 		sk_dump_bytes(mtod(m, char *), m->m_len);
   3062 
   3063 		count -= m->m_len;
   3064 		m = m->m_next;
   3065 	}
   3066 }
   3067 #endif
   3068 
   3069 static int
   3070 sk_sysctl_handler(SYSCTLFN_ARGS)
   3071 {
   3072 	int error, t;
   3073 	struct sysctlnode node;
   3074 	struct sk_softc *sc;
   3075 
   3076 	node = *rnode;
   3077 	sc = node.sysctl_data;
   3078 	t = sc->sk_int_mod;
   3079 	node.sysctl_data = &t;
   3080 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3081 	if (error || newp == NULL)
   3082 		return error;
   3083 
   3084 	if (t < SK_IM_MIN || t > SK_IM_MAX)
   3085 		return EINVAL;
   3086 
   3087 	/* update the softc with sysctl-changed value, and mark
   3088 	   for hardware update */
   3089 	sc->sk_int_mod = t;
   3090 	sc->sk_int_mod_pending = 1;
   3091 	return 0;
   3092 }
   3093 
   3094 /*
   3095  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
   3096  * set up in skc_attach()
   3097  */
   3098 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
   3099 {
   3100 	int rc;
   3101 	const struct sysctlnode *node;
   3102 
   3103 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   3104 	    0, CTLTYPE_NODE, "hw", NULL,
   3105 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   3106 		goto err;
   3107 	}
   3108 
   3109 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   3110 	    0, CTLTYPE_NODE, "sk",
   3111 	    SYSCTL_DESCR("sk interface controls"),
   3112 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   3113 		goto err;
   3114 	}
   3115 
   3116 	sk_root_num = node->sysctl_num;
   3117 	return;
   3118 
   3119 err:
   3120 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
   3121 }
   3122