Home | History | Annotate | Line # | Download | only in pci
if_sk.c revision 1.56
      1 /*	$NetBSD: if_sk.c,v 1.56 2009/02/12 10:22:30 cegger Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
     30 
     31 /*
     32  * Copyright (c) 1997, 1998, 1999, 2000
     33  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *	This product includes software developed by Bill Paul.
     46  * 4. Neither the name of the author nor the names of any co-contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     60  * THE POSSIBILITY OF SUCH DAMAGE.
     61  *
     62  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
     63  */
     64 
     65 /*
     66  * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
     67  *
     68  * Permission to use, copy, modify, and distribute this software for any
     69  * purpose with or without fee is hereby granted, provided that the above
     70  * copyright notice and this permission notice appear in all copies.
     71  *
     72  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     73  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     74  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     75  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     76  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     77  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     78  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     79  */
     80 
     81 /*
     82  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
     83  * the SK-984x series adapters, both single port and dual port.
     84  * References:
     85  * 	The XaQti XMAC II datasheet,
     86  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     87  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
     88  *
     89  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
     90  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
     91  * convenience to others until Vitesse corrects this problem:
     92  *
     93  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     94  *
     95  * Written by Bill Paul <wpaul (at) ee.columbia.edu>
     96  * Department of Electrical Engineering
     97  * Columbia University, New York City
     98  */
     99 
    100 /*
    101  * The SysKonnect gigabit ethernet adapters consist of two main
    102  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
    103  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
    104  * components and a PHY while the GEnesis controller provides a PCI
    105  * interface with DMA support. Each card may have between 512K and
    106  * 2MB of SRAM on board depending on the configuration.
    107  *
    108  * The SysKonnect GEnesis controller can have either one or two XMAC
    109  * chips connected to it, allowing single or dual port NIC configurations.
    110  * SysKonnect has the distinction of being the only vendor on the market
    111  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
    112  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
    113  * XMAC registers. This driver takes advantage of these features to allow
    114  * both XMACs to operate as independent interfaces.
    115  */
    116 
    117 #include <sys/cdefs.h>
    118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.56 2009/02/12 10:22:30 cegger Exp $");
    119 
    120 #include "bpfilter.h"
    121 #include "rnd.h"
    122 
    123 #include <sys/param.h>
    124 #include <sys/systm.h>
    125 #include <sys/sockio.h>
    126 #include <sys/mbuf.h>
    127 #include <sys/malloc.h>
    128 #include <sys/mutex.h>
    129 #include <sys/kernel.h>
    130 #include <sys/socket.h>
    131 #include <sys/device.h>
    132 #include <sys/queue.h>
    133 #include <sys/callout.h>
    134 #include <sys/sysctl.h>
    135 #include <sys/endian.h>
    136 
    137 #include <net/if.h>
    138 #include <net/if_dl.h>
    139 #include <net/if_types.h>
    140 
    141 #include <net/if_media.h>
    142 
    143 #if NBPFILTER > 0
    144 #include <net/bpf.h>
    145 #endif
    146 #if NRND > 0
    147 #include <sys/rnd.h>
    148 #endif
    149 
    150 #include <dev/mii/mii.h>
    151 #include <dev/mii/miivar.h>
    152 #include <dev/mii/brgphyreg.h>
    153 
    154 #include <dev/pci/pcireg.h>
    155 #include <dev/pci/pcivar.h>
    156 #include <dev/pci/pcidevs.h>
    157 
    158 /* #define SK_USEIOSPACE */
    159 
    160 #include <dev/pci/if_skreg.h>
    161 #include <dev/pci/if_skvar.h>
    162 
    163 int skc_probe(device_t, cfdata_t, void *);
    164 void skc_attach(device_t, device_t, void *aux);
    165 int sk_probe(device_t, cfdata_t, void *);
    166 void sk_attach(device_t, device_t, void *aux);
    167 int skcprint(void *, const char *);
    168 int sk_intr(void *);
    169 void sk_intr_bcom(struct sk_if_softc *);
    170 void sk_intr_xmac(struct sk_if_softc *);
    171 void sk_intr_yukon(struct sk_if_softc *);
    172 void sk_rxeof(struct sk_if_softc *);
    173 void sk_txeof(struct sk_if_softc *);
    174 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
    175 void sk_start(struct ifnet *);
    176 int sk_ioctl(struct ifnet *, u_long, void *);
    177 int sk_init(struct ifnet *);
    178 void sk_init_xmac(struct sk_if_softc *);
    179 void sk_init_yukon(struct sk_if_softc *);
    180 void sk_stop(struct ifnet *, int);
    181 void sk_watchdog(struct ifnet *);
    182 void sk_shutdown(void *);
    183 int sk_ifmedia_upd(struct ifnet *);
    184 void sk_reset(struct sk_softc *);
    185 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
    186 int sk_alloc_jumbo_mem(struct sk_if_softc *);
    187 void sk_free_jumbo_mem(struct sk_if_softc *);
    188 void *sk_jalloc(struct sk_if_softc *);
    189 void sk_jfree(struct mbuf *, void *, size_t, void *);
    190 int sk_init_rx_ring(struct sk_if_softc *);
    191 int sk_init_tx_ring(struct sk_if_softc *);
    192 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
    193 void sk_vpd_read_res(struct sk_softc *,
    194 					struct vpd_res *, int);
    195 void sk_vpd_read(struct sk_softc *);
    196 
    197 void sk_update_int_mod(struct sk_softc *);
    198 
    199 int sk_xmac_miibus_readreg(device_t, int, int);
    200 void sk_xmac_miibus_writereg(device_t, int, int, int);
    201 void sk_xmac_miibus_statchg(device_t);
    202 
    203 int sk_marv_miibus_readreg(device_t, int, int);
    204 void sk_marv_miibus_writereg(device_t, int, int, int);
    205 void sk_marv_miibus_statchg(device_t);
    206 
    207 u_int32_t sk_xmac_hash(void *);
    208 u_int32_t sk_yukon_hash(void *);
    209 void sk_setfilt(struct sk_if_softc *, void *, int);
    210 void sk_setmulti(struct sk_if_softc *);
    211 void sk_tick(void *);
    212 
    213 /* #define SK_DEBUG 2 */
    214 #ifdef SK_DEBUG
    215 #define DPRINTF(x)	if (skdebug) printf x
    216 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
    217 int	skdebug = SK_DEBUG;
    218 
    219 void sk_dump_txdesc(struct sk_tx_desc *, int);
    220 void sk_dump_mbuf(struct mbuf *);
    221 void sk_dump_bytes(const char *, int);
    222 #else
    223 #define DPRINTF(x)
    224 #define DPRINTFN(n,x)
    225 #endif
    226 
    227 static int sk_sysctl_handler(SYSCTLFN_PROTO);
    228 static int sk_root_num;
    229 
    230 /* supported device vendors */
    231 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
    232 static const struct sk_product {
    233 	pci_vendor_id_t		sk_vendor;
    234 	pci_product_id_t	sk_product;
    235 } sk_products[] = {
    236 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
    237 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
    238 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
    239 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
    240 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
    241 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
    242 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
    243 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
    244 	{ 0, 0, }
    245 };
    246 
    247 #define SK_LINKSYS_EG1032_SUBID	0x00151737
    248 
    249 static inline u_int32_t
    250 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
    251 {
    252 #ifdef SK_USEIOSPACE
    253 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    254 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
    255 #else
    256 	return CSR_READ_4(sc, reg);
    257 #endif
    258 }
    259 
    260 static inline u_int16_t
    261 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
    262 {
    263 #ifdef SK_USEIOSPACE
    264 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    265 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
    266 #else
    267 	return CSR_READ_2(sc, reg);
    268 #endif
    269 }
    270 
    271 static inline u_int8_t
    272 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
    273 {
    274 #ifdef SK_USEIOSPACE
    275 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    276 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
    277 #else
    278 	return CSR_READ_1(sc, reg);
    279 #endif
    280 }
    281 
    282 static inline void
    283 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
    284 {
    285 #ifdef SK_USEIOSPACE
    286 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    287 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
    288 #else
    289 	CSR_WRITE_4(sc, reg, x);
    290 #endif
    291 }
    292 
    293 static inline void
    294 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
    295 {
    296 #ifdef SK_USEIOSPACE
    297 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    298 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
    299 #else
    300 	CSR_WRITE_2(sc, reg, x);
    301 #endif
    302 }
    303 
    304 static inline void
    305 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
    306 {
    307 #ifdef SK_USEIOSPACE
    308 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    309 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
    310 #else
    311 	CSR_WRITE_1(sc, reg, x);
    312 #endif
    313 }
    314 
    315 /*
    316  * The VPD EEPROM contains Vital Product Data, as suggested in
    317  * the PCI 2.1 specification. The VPD data is separared into areas
    318  * denoted by resource IDs. The SysKonnect VPD contains an ID string
    319  * resource (the name of the adapter), a read-only area resource
    320  * containing various key/data fields and a read/write area which
    321  * can be used to store asset management information or log messages.
    322  * We read the ID string and read-only into buffers attached to
    323  * the controller softc structure for later use. At the moment,
    324  * we only use the ID string during sk_attach().
    325  */
    326 u_int8_t
    327 sk_vpd_readbyte(struct sk_softc *sc, int addr)
    328 {
    329 	int			i;
    330 
    331 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
    332 	for (i = 0; i < SK_TIMEOUT; i++) {
    333 		DELAY(1);
    334 		if (sk_win_read_2(sc,
    335 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
    336 			break;
    337 	}
    338 
    339 	if (i == SK_TIMEOUT)
    340 		return 0;
    341 
    342 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
    343 }
    344 
    345 void
    346 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
    347 {
    348 	int			i;
    349 	u_int8_t		*ptr;
    350 
    351 	ptr = (u_int8_t *)res;
    352 	for (i = 0; i < sizeof(struct vpd_res); i++)
    353 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
    354 }
    355 
    356 void
    357 sk_vpd_read(struct sk_softc *sc)
    358 {
    359 	int			pos = 0, i;
    360 	struct vpd_res		res;
    361 
    362 	if (sc->sk_vpd_prodname != NULL)
    363 		free(sc->sk_vpd_prodname, M_DEVBUF);
    364 	if (sc->sk_vpd_readonly != NULL)
    365 		free(sc->sk_vpd_readonly, M_DEVBUF);
    366 	sc->sk_vpd_prodname = NULL;
    367 	sc->sk_vpd_readonly = NULL;
    368 
    369 	sk_vpd_read_res(sc, &res, pos);
    370 
    371 	if (res.vr_id != VPD_RES_ID) {
    372 		aprint_error_dev(sc->sk_dev,
    373 		    "bad VPD resource id: expected %x got %x\n",
    374 		    VPD_RES_ID, res.vr_id);
    375 		return;
    376 	}
    377 
    378 	pos += sizeof(res);
    379 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    380 	if (sc->sk_vpd_prodname == NULL)
    381 		panic("sk_vpd_read");
    382 	for (i = 0; i < res.vr_len; i++)
    383 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
    384 	sc->sk_vpd_prodname[i] = '\0';
    385 	pos += i;
    386 
    387 	sk_vpd_read_res(sc, &res, pos);
    388 
    389 	if (res.vr_id != VPD_RES_READ) {
    390 		aprint_error_dev(sc->sk_dev,
    391 		    "bad VPD resource id: expected %x got %x\n",
    392 		    VPD_RES_READ, res.vr_id);
    393 		return;
    394 	}
    395 
    396 	pos += sizeof(res);
    397 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    398 	if (sc->sk_vpd_readonly == NULL)
    399 		panic("sk_vpd_read");
    400 	for (i = 0; i < res.vr_len ; i++)
    401 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
    402 }
    403 
    404 int
    405 sk_xmac_miibus_readreg(device_t dev, int phy, int reg)
    406 {
    407 	struct sk_if_softc *sc_if = device_private(dev);
    408 	int i;
    409 
    410 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
    411 
    412 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
    413 		return 0;
    414 
    415 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    416 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
    417 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    418 		for (i = 0; i < SK_TIMEOUT; i++) {
    419 			DELAY(1);
    420 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
    421 			    XM_MMUCMD_PHYDATARDY)
    422 				break;
    423 		}
    424 
    425 		if (i == SK_TIMEOUT) {
    426 			aprint_error_dev(sc_if->sk_dev,
    427 			    "phy failed to come ready\n");
    428 			return 0;
    429 		}
    430 	}
    431 	DELAY(1);
    432 	return SK_XM_READ_2(sc_if, XM_PHY_DATA);
    433 }
    434 
    435 void
    436 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, int val)
    437 {
    438 	struct sk_if_softc *sc_if = device_private(dev);
    439 	int i;
    440 
    441 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
    442 
    443 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    444 	for (i = 0; i < SK_TIMEOUT; i++) {
    445 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    446 			break;
    447 	}
    448 
    449 	if (i == SK_TIMEOUT) {
    450 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
    451 		return;
    452 	}
    453 
    454 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
    455 	for (i = 0; i < SK_TIMEOUT; i++) {
    456 		DELAY(1);
    457 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    458 			break;
    459 	}
    460 
    461 	if (i == SK_TIMEOUT)
    462 		aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
    463 }
    464 
    465 void
    466 sk_xmac_miibus_statchg(device_t dev)
    467 {
    468 	struct sk_if_softc *sc_if = device_private(dev);
    469 	struct mii_data *mii = &sc_if->sk_mii;
    470 
    471 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
    472 
    473 	/*
    474 	 * If this is a GMII PHY, manually set the XMAC's
    475 	 * duplex mode accordingly.
    476 	 */
    477 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    478 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
    479 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    480 		else
    481 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    482 	}
    483 }
    484 
    485 int
    486 sk_marv_miibus_readreg(device_t dev, int phy, int reg)
    487 {
    488 	struct sk_if_softc *sc_if = device_private(dev);
    489 	u_int16_t val;
    490 	int i;
    491 
    492 	if (phy != 0 ||
    493 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
    494 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
    495 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
    496 			     phy, reg));
    497 		return 0;
    498 	}
    499 
    500         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    501 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
    502 
    503 	for (i = 0; i < SK_TIMEOUT; i++) {
    504 		DELAY(1);
    505 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
    506 		if (val & YU_SMICR_READ_VALID)
    507 			break;
    508 	}
    509 
    510 	if (i == SK_TIMEOUT) {
    511 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
    512 		return 0;
    513 	}
    514 
    515  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
    516 		     SK_TIMEOUT));
    517 
    518         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
    519 
    520 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
    521 		     phy, reg, val));
    522 
    523 	return val;
    524 }
    525 
    526 void
    527 sk_marv_miibus_writereg(device_t dev, int phy, int reg, int val)
    528 {
    529 	struct sk_if_softc *sc_if = device_private(dev);
    530 	int i;
    531 
    532 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
    533 		     phy, reg, val));
    534 
    535 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
    536 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    537 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
    538 
    539 	for (i = 0; i < SK_TIMEOUT; i++) {
    540 		DELAY(1);
    541 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
    542 			break;
    543 	}
    544 
    545 	if (i == SK_TIMEOUT)
    546 		printf("%s: phy write timed out\n",
    547 		    device_xname(sc_if->sk_dev));
    548 }
    549 
    550 void
    551 sk_marv_miibus_statchg(device_t dev)
    552 {
    553 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
    554 		     SK_YU_READ_2(((struct sk_if_softc *)device_private(dev)),
    555 		     YUKON_GPCR)));
    556 }
    557 
    558 #define SK_HASH_BITS		6
    559 
    560 u_int32_t
    561 sk_xmac_hash(void *addr)
    562 {
    563 	u_int32_t		crc;
    564 
    565 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
    566 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
    567 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    568 	return crc;
    569 }
    570 
    571 u_int32_t
    572 sk_yukon_hash(void *addr)
    573 {
    574 	u_int32_t		crc;
    575 
    576 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
    577 	crc &= ((1 << SK_HASH_BITS) - 1);
    578 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    579 	return crc;
    580 }
    581 
    582 void
    583 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
    584 {
    585 	char *addr = addrv;
    586 	int base = XM_RXFILT_ENTRY(slot);
    587 
    588 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
    589 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
    590 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
    591 }
    592 
    593 void
    594 sk_setmulti(struct sk_if_softc *sc_if)
    595 {
    596 	struct sk_softc *sc = sc_if->sk_softc;
    597 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
    598 	u_int32_t hashes[2] = { 0, 0 };
    599 	int h = 0, i;
    600 	struct ethercom *ec = &sc_if->sk_ethercom;
    601 	struct ether_multi *enm;
    602 	struct ether_multistep step;
    603 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
    604 
    605 	/* First, zot all the existing filters. */
    606 	switch (sc->sk_type) {
    607 	case SK_GENESIS:
    608 		for (i = 1; i < XM_RXFILT_MAX; i++)
    609 			sk_setfilt(sc_if, (void *)&dummy, i);
    610 
    611 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
    612 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
    613 		break;
    614 	case SK_YUKON:
    615 	case SK_YUKON_LITE:
    616 	case SK_YUKON_LP:
    617 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
    618 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
    619 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
    620 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
    621 		break;
    622 	}
    623 
    624 	/* Now program new ones. */
    625 allmulti:
    626 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    627 		hashes[0] = 0xFFFFFFFF;
    628 		hashes[1] = 0xFFFFFFFF;
    629 	} else {
    630 		i = 1;
    631 		/* First find the tail of the list. */
    632 		ETHER_FIRST_MULTI(step, ec, enm);
    633 		while (enm != NULL) {
    634 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
    635 				 ETHER_ADDR_LEN)) {
    636 				ifp->if_flags |= IFF_ALLMULTI;
    637 				goto allmulti;
    638 			}
    639 			DPRINTFN(2,("multicast address %s\n",
    640 	    			ether_sprintf(enm->enm_addrlo)));
    641 			/*
    642 			 * Program the first XM_RXFILT_MAX multicast groups
    643 			 * into the perfect filter. For all others,
    644 			 * use the hash table.
    645 			 */
    646 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
    647 				sk_setfilt(sc_if, enm->enm_addrlo, i);
    648 				i++;
    649 			}
    650 			else {
    651 				switch (sc->sk_type) {
    652 				case SK_GENESIS:
    653 					h = sk_xmac_hash(enm->enm_addrlo);
    654 					break;
    655 				case SK_YUKON:
    656 				case SK_YUKON_LITE:
    657 				case SK_YUKON_LP:
    658 					h = sk_yukon_hash(enm->enm_addrlo);
    659 					break;
    660 				}
    661 				if (h < 32)
    662 					hashes[0] |= (1 << h);
    663 				else
    664 					hashes[1] |= (1 << (h - 32));
    665 			}
    666 
    667 			ETHER_NEXT_MULTI(step, enm);
    668 		}
    669 	}
    670 
    671 	switch (sc->sk_type) {
    672 	case SK_GENESIS:
    673 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
    674 			       XM_MODE_RX_USE_PERFECT);
    675 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
    676 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
    677 		break;
    678 	case SK_YUKON:
    679 	case SK_YUKON_LITE:
    680 	case SK_YUKON_LP:
    681 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
    682 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
    683 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
    684 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
    685 		break;
    686 	}
    687 }
    688 
    689 int
    690 sk_init_rx_ring(struct sk_if_softc *sc_if)
    691 {
    692 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    693 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    694 	int			i;
    695 
    696 	bzero((char *)rd->sk_rx_ring,
    697 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
    698 
    699 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    700 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
    701 		if (i == (SK_RX_RING_CNT - 1)) {
    702 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
    703 			rd->sk_rx_ring[i].sk_next =
    704 				htole32(SK_RX_RING_ADDR(sc_if, 0));
    705 		} else {
    706 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
    707 			rd->sk_rx_ring[i].sk_next =
    708 				htole32(SK_RX_RING_ADDR(sc_if,i+1));
    709 		}
    710 	}
    711 
    712 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    713 		if (sk_newbuf(sc_if, i, NULL,
    714 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
    715 			aprint_error_dev(sc_if->sk_dev,
    716 			    "failed alloc of %dth mbuf\n", i);
    717 			return ENOBUFS;
    718 		}
    719 	}
    720 	sc_if->sk_cdata.sk_rx_prod = 0;
    721 	sc_if->sk_cdata.sk_rx_cons = 0;
    722 
    723 	return 0;
    724 }
    725 
    726 int
    727 sk_init_tx_ring(struct sk_if_softc *sc_if)
    728 {
    729 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    730 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    731 	int			i;
    732 
    733 	memset(sc_if->sk_rdata->sk_tx_ring, 0,
    734 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
    735 
    736 	for (i = 0; i < SK_TX_RING_CNT; i++) {
    737 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
    738 		if (i == (SK_TX_RING_CNT - 1)) {
    739 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
    740 			rd->sk_tx_ring[i].sk_next =
    741 				htole32(SK_TX_RING_ADDR(sc_if, 0));
    742 		} else {
    743 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
    744 			rd->sk_tx_ring[i].sk_next =
    745 				htole32(SK_TX_RING_ADDR(sc_if,i+1));
    746 		}
    747 	}
    748 
    749 	sc_if->sk_cdata.sk_tx_prod = 0;
    750 	sc_if->sk_cdata.sk_tx_cons = 0;
    751 	sc_if->sk_cdata.sk_tx_cnt = 0;
    752 
    753 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
    754 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    755 
    756 	return 0;
    757 }
    758 
    759 int
    760 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
    761 	  bus_dmamap_t dmamap)
    762 {
    763 	struct mbuf		*m_new = NULL;
    764 	struct sk_chain		*c;
    765 	struct sk_rx_desc	*r;
    766 
    767 	if (m == NULL) {
    768 		void *buf = NULL;
    769 
    770 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    771 		if (m_new == NULL) {
    772 			aprint_error_dev(sc_if->sk_dev,
    773 			    "no memory for rx list -- packet dropped!\n");
    774 			return ENOBUFS;
    775 		}
    776 
    777 		/* Allocate the jumbo buffer */
    778 		buf = sk_jalloc(sc_if);
    779 		if (buf == NULL) {
    780 			m_freem(m_new);
    781 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
    782 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
    783 			return ENOBUFS;
    784 		}
    785 
    786 		/* Attach the buffer to the mbuf */
    787 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    788 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
    789 
    790 	} else {
    791 		/*
    792 	 	 * We're re-using a previously allocated mbuf;
    793 		 * be sure to re-init pointers and lengths to
    794 		 * default values.
    795 		 */
    796 		m_new = m;
    797 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    798 		m_new->m_data = m_new->m_ext.ext_buf;
    799 	}
    800 	m_adj(m_new, ETHER_ALIGN);
    801 
    802 	c = &sc_if->sk_cdata.sk_rx_chain[i];
    803 	r = c->sk_desc;
    804 	c->sk_mbuf = m_new;
    805 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
    806 	    (((vaddr_t)m_new->m_data
    807 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
    808 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
    809 
    810 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    811 
    812 	return 0;
    813 }
    814 
    815 /*
    816  * Memory management for jumbo frames.
    817  */
    818 
    819 int
    820 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
    821 {
    822 	struct sk_softc		*sc = sc_if->sk_softc;
    823 	char *ptr, *kva;
    824 	bus_dma_segment_t	seg;
    825 	int		i, rseg, state, error;
    826 	struct sk_jpool_entry   *entry;
    827 
    828 	state = error = 0;
    829 
    830 	/* Grab a big chunk o' storage. */
    831 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
    832 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    833 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
    834 		return ENOBUFS;
    835 	}
    836 
    837 	state = 1;
    838 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
    839 			   BUS_DMA_NOWAIT)) {
    840 		aprint_error_dev(sc->sk_dev,
    841 		    "can't map dma buffers (%d bytes)\n",
    842 		    SK_JMEM);
    843 		error = ENOBUFS;
    844 		goto out;
    845 	}
    846 
    847 	state = 2;
    848 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
    849 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
    850 		aprint_error_dev(sc->sk_dev, "can't create dma map\n");
    851 		error = ENOBUFS;
    852 		goto out;
    853 	}
    854 
    855 	state = 3;
    856 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
    857 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
    858 		aprint_error_dev(sc->sk_dev, "can't load dma map\n");
    859 		error = ENOBUFS;
    860 		goto out;
    861 	}
    862 
    863 	state = 4;
    864 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
    865 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
    866 
    867 	LIST_INIT(&sc_if->sk_jfree_listhead);
    868 	LIST_INIT(&sc_if->sk_jinuse_listhead);
    869 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
    870 
    871 	/*
    872 	 * Now divide it up into 9K pieces and save the addresses
    873 	 * in an array.
    874 	 */
    875 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
    876 	for (i = 0; i < SK_JSLOTS; i++) {
    877 		sc_if->sk_cdata.sk_jslots[i] = ptr;
    878 		ptr += SK_JLEN;
    879 		entry = malloc(sizeof(struct sk_jpool_entry),
    880 		    M_DEVBUF, M_NOWAIT);
    881 		if (entry == NULL) {
    882 			aprint_error_dev(sc->sk_dev,
    883 			    "no memory for jumbo buffer queue!\n");
    884 			error = ENOBUFS;
    885 			goto out;
    886 		}
    887 		entry->slot = i;
    888 		if (i)
    889 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
    890 				 entry, jpool_entries);
    891 		else
    892 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
    893 				 entry, jpool_entries);
    894 	}
    895 out:
    896 	if (error != 0) {
    897 		switch (state) {
    898 		case 4:
    899 			bus_dmamap_unload(sc->sc_dmatag,
    900 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    901 		case 3:
    902 			bus_dmamap_destroy(sc->sc_dmatag,
    903 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    904 		case 2:
    905 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
    906 		case 1:
    907 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
    908 			break;
    909 		default:
    910 			break;
    911 		}
    912 	}
    913 
    914 	return error;
    915 }
    916 
    917 /*
    918  * Allocate a jumbo buffer.
    919  */
    920 void *
    921 sk_jalloc(struct sk_if_softc *sc_if)
    922 {
    923 	struct sk_jpool_entry   *entry;
    924 
    925 	mutex_enter(&sc_if->sk_jpool_mtx);
    926 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
    927 
    928 	if (entry == NULL) {
    929 		mutex_exit(&sc_if->sk_jpool_mtx);
    930 		return NULL;
    931 	}
    932 
    933 	LIST_REMOVE(entry, jpool_entries);
    934 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
    935 	mutex_exit(&sc_if->sk_jpool_mtx);
    936 	return sc_if->sk_cdata.sk_jslots[entry->slot];
    937 }
    938 
    939 /*
    940  * Release a jumbo buffer.
    941  */
    942 void
    943 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
    944 {
    945 	struct sk_jpool_entry *entry;
    946 	struct sk_if_softc *sc;
    947 	int i;
    948 
    949 	/* Extract the softc struct pointer. */
    950 	sc = (struct sk_if_softc *)arg;
    951 
    952 	if (sc == NULL)
    953 		panic("sk_jfree: can't find softc pointer!");
    954 
    955 	/* calculate the slot this buffer belongs to */
    956 
    957 	i = ((vaddr_t)buf
    958 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
    959 
    960 	if ((i < 0) || (i >= SK_JSLOTS))
    961 		panic("sk_jfree: asked to free buffer that we don't manage!");
    962 
    963 	mutex_enter(&sc->sk_jpool_mtx);
    964 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
    965 	if (entry == NULL)
    966 		panic("sk_jfree: buffer not in use!");
    967 	entry->slot = i;
    968 	LIST_REMOVE(entry, jpool_entries);
    969 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
    970 	mutex_exit(&sc->sk_jpool_mtx);
    971 
    972 	if (__predict_true(m != NULL))
    973 		pool_cache_put(mb_cache, m);
    974 }
    975 
    976 /*
    977  * Set media options.
    978  */
    979 int
    980 sk_ifmedia_upd(struct ifnet *ifp)
    981 {
    982 	struct sk_if_softc *sc_if = ifp->if_softc;
    983 	int rc;
    984 
    985 	(void) sk_init(ifp);
    986 	if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
    987 		return 0;
    988 	return rc;
    989 }
    990 
    991 int
    992 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
    993 {
    994 	struct sk_if_softc *sc_if = ifp->if_softc;
    995 	struct sk_softc *sc = sc_if->sk_softc;
    996 	int s, error = 0;
    997 
    998 	/* DPRINTFN(2, ("sk_ioctl\n")); */
    999 
   1000 	s = splnet();
   1001 
   1002 	switch (command) {
   1003 
   1004 	case SIOCSIFFLAGS:
   1005 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
   1006 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   1007 			break;
   1008 		if (ifp->if_flags & IFF_UP) {
   1009 			if (ifp->if_flags & IFF_RUNNING &&
   1010 			    ifp->if_flags & IFF_PROMISC &&
   1011 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
   1012 				switch (sc->sk_type) {
   1013 				case SK_GENESIS:
   1014 					SK_XM_SETBIT_4(sc_if, XM_MODE,
   1015 					    XM_MODE_RX_PROMISC);
   1016 					break;
   1017 				case SK_YUKON:
   1018 				case SK_YUKON_LITE:
   1019 				case SK_YUKON_LP:
   1020 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
   1021 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1022 					break;
   1023 				}
   1024 				sk_setmulti(sc_if);
   1025 			} else if (ifp->if_flags & IFF_RUNNING &&
   1026 			    !(ifp->if_flags & IFF_PROMISC) &&
   1027 			    sc_if->sk_if_flags & IFF_PROMISC) {
   1028 				switch (sc->sk_type) {
   1029 				case SK_GENESIS:
   1030 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
   1031 					    XM_MODE_RX_PROMISC);
   1032 					break;
   1033 				case SK_YUKON:
   1034 				case SK_YUKON_LITE:
   1035 				case SK_YUKON_LP:
   1036 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
   1037 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1038 					break;
   1039 				}
   1040 
   1041 				sk_setmulti(sc_if);
   1042 			} else
   1043 				(void) sk_init(ifp);
   1044 		} else {
   1045 			if (ifp->if_flags & IFF_RUNNING)
   1046 				sk_stop(ifp,0);
   1047 		}
   1048 		sc_if->sk_if_flags = ifp->if_flags;
   1049 		error = 0;
   1050 		break;
   1051 
   1052 	default:
   1053 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
   1054 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   1055 			break;
   1056 
   1057 		error = 0;
   1058 
   1059 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   1060 			;
   1061 		else if (ifp->if_flags & IFF_RUNNING) {
   1062 			sk_setmulti(sc_if);
   1063 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
   1064 		}
   1065 		break;
   1066 	}
   1067 
   1068 	splx(s);
   1069 	return error;
   1070 }
   1071 
   1072 void
   1073 sk_update_int_mod(struct sk_softc *sc)
   1074 {
   1075 	u_int32_t imtimer_ticks;
   1076 
   1077 	/*
   1078          * Configure interrupt moderation. The moderation timer
   1079 	 * defers interrupts specified in the interrupt moderation
   1080 	 * timer mask based on the timeout specified in the interrupt
   1081 	 * moderation timer init register. Each bit in the timer
   1082 	 * register represents one tick, so to specify a timeout in
   1083 	 * microseconds, we have to multiply by the correct number of
   1084 	 * ticks-per-microsecond.
   1085 	 */
   1086 	switch (sc->sk_type) {
   1087 	case SK_GENESIS:
   1088 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   1089 		break;
   1090 	case SK_YUKON_EC:
   1091 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   1092 		break;
   1093 	default:
   1094 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   1095 	}
   1096 	aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
   1097 	    sc->sk_int_mod);
   1098         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
   1099         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
   1100 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
   1101         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
   1102 	sc->sk_int_mod_pending = 0;
   1103 }
   1104 
   1105 /*
   1106  * Lookup: Check the PCI vendor and device, and return a pointer to
   1107  * The structure if the IDs match against our list.
   1108  */
   1109 
   1110 static const struct sk_product *
   1111 sk_lookup(const struct pci_attach_args *pa)
   1112 {
   1113 	const struct sk_product *psk;
   1114 
   1115 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
   1116 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
   1117 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
   1118 			return psk;
   1119 	}
   1120 	return NULL;
   1121 }
   1122 
   1123 /*
   1124  * Probe for a SysKonnect GEnesis chip.
   1125  */
   1126 
   1127 int
   1128 skc_probe(device_t parent, cfdata_t match, void *aux)
   1129 {
   1130 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1131 	const struct sk_product *psk;
   1132 	pcireg_t subid;
   1133 
   1134 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
   1135 
   1136 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
   1137 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
   1138 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
   1139 	    subid == SK_LINKSYS_EG1032_SUBID)
   1140 		return 1;
   1141 
   1142 	if ((psk = sk_lookup(pa))) {
   1143 		return 1;
   1144 	}
   1145 	return 0;
   1146 }
   1147 
   1148 /*
   1149  * Force the GEnesis into reset, then bring it out of reset.
   1150  */
   1151 void sk_reset(struct sk_softc *sc)
   1152 {
   1153 	DPRINTFN(2, ("sk_reset\n"));
   1154 
   1155 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
   1156 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
   1157 	if (SK_YUKON_FAMILY(sc->sk_type))
   1158 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
   1159 
   1160 	DELAY(1000);
   1161 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
   1162 	DELAY(2);
   1163 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
   1164 	if (SK_YUKON_FAMILY(sc->sk_type))
   1165 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
   1166 
   1167 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
   1168 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
   1169 		     CSR_READ_2(sc, SK_LINK_CTRL)));
   1170 
   1171 	if (sc->sk_type == SK_GENESIS) {
   1172 		/* Configure packet arbiter */
   1173 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
   1174 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1175 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1176 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1177 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1178 	}
   1179 
   1180 	/* Enable RAM interface */
   1181 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
   1182 
   1183 	sk_update_int_mod(sc);
   1184 }
   1185 
   1186 int
   1187 sk_probe(device_t parent, cfdata_t match, void *aux)
   1188 {
   1189 	struct skc_attach_args *sa = aux;
   1190 
   1191 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
   1192 		return 0;
   1193 
   1194 	return 1;
   1195 }
   1196 
   1197 /*
   1198  * Each XMAC chip is attached as a separate logical IP interface.
   1199  * Single port cards will have only one logical interface of course.
   1200  */
   1201 void
   1202 sk_attach(device_t parent, device_t self, void *aux)
   1203 {
   1204 	struct sk_if_softc *sc_if = device_private(self);
   1205 	struct sk_softc *sc = device_private(parent);
   1206 	struct skc_attach_args *sa = aux;
   1207 	struct sk_txmap_entry	*entry;
   1208 	struct ifnet *ifp;
   1209 	bus_dma_segment_t seg;
   1210 	bus_dmamap_t dmamap;
   1211 	void *kva;
   1212 	int i, rseg;
   1213 	int mii_flags = 0;
   1214 
   1215 	aprint_naive("\n");
   1216 
   1217 	sc_if->sk_dev = self;
   1218 	sc_if->sk_port = sa->skc_port;
   1219 	sc_if->sk_softc = sc;
   1220 	sc->sk_if[sa->skc_port] = sc_if;
   1221 
   1222 	if (sa->skc_port == SK_PORT_A)
   1223 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
   1224 	if (sa->skc_port == SK_PORT_B)
   1225 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
   1226 
   1227 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
   1228 
   1229 	/*
   1230 	 * Get station address for this interface. Note that
   1231 	 * dual port cards actually come with three station
   1232 	 * addresses: one for each port, plus an extra. The
   1233 	 * extra one is used by the SysKonnect driver software
   1234 	 * as a 'virtual' station address for when both ports
   1235 	 * are operating in failover mode. Currently we don't
   1236 	 * use this extra address.
   1237 	 */
   1238 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1239 		sc_if->sk_enaddr[i] =
   1240 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
   1241 
   1242 
   1243 	aprint_normal(": Ethernet address %s\n",
   1244 	    ether_sprintf(sc_if->sk_enaddr));
   1245 
   1246 	/*
   1247 	 * Set up RAM buffer addresses. The NIC will have a certain
   1248 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
   1249 	 * need to divide this up a) between the transmitter and
   1250  	 * receiver and b) between the two XMACs, if this is a
   1251 	 * dual port NIC. Our algorithm is to divide up the memory
   1252 	 * evenly so that everyone gets a fair share.
   1253 	 */
   1254 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
   1255 		u_int32_t		chunk, val;
   1256 
   1257 		chunk = sc->sk_ramsize / 2;
   1258 		val = sc->sk_rboff / sizeof(u_int64_t);
   1259 		sc_if->sk_rx_ramstart = val;
   1260 		val += (chunk / sizeof(u_int64_t));
   1261 		sc_if->sk_rx_ramend = val - 1;
   1262 		sc_if->sk_tx_ramstart = val;
   1263 		val += (chunk / sizeof(u_int64_t));
   1264 		sc_if->sk_tx_ramend = val - 1;
   1265 	} else {
   1266 		u_int32_t		chunk, val;
   1267 
   1268 		chunk = sc->sk_ramsize / 4;
   1269 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
   1270 		    sizeof(u_int64_t);
   1271 		sc_if->sk_rx_ramstart = val;
   1272 		val += (chunk / sizeof(u_int64_t));
   1273 		sc_if->sk_rx_ramend = val - 1;
   1274 		sc_if->sk_tx_ramstart = val;
   1275 		val += (chunk / sizeof(u_int64_t));
   1276 		sc_if->sk_tx_ramend = val - 1;
   1277 	}
   1278 
   1279 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
   1280 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
   1281 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
   1282 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
   1283 
   1284 	/* Read and save PHY type and set PHY address */
   1285 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
   1286 	switch (sc_if->sk_phytype) {
   1287 	case SK_PHYTYPE_XMAC:
   1288 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
   1289 		break;
   1290 	case SK_PHYTYPE_BCOM:
   1291 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
   1292 		break;
   1293 	case SK_PHYTYPE_MARV_COPPER:
   1294 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
   1295 		break;
   1296 	default:
   1297 		aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
   1298 		    sc_if->sk_phytype);
   1299 		return;
   1300 	}
   1301 
   1302 	/* Allocate the descriptor queues. */
   1303 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
   1304 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1305 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
   1306 		goto fail;
   1307 	}
   1308 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
   1309 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
   1310 		aprint_error_dev(sc_if->sk_dev,
   1311 		    "can't map dma buffers (%lu bytes)\n",
   1312 		    (u_long) sizeof(struct sk_ring_data));
   1313 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1314 		goto fail;
   1315 	}
   1316 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
   1317 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
   1318             &sc_if->sk_ring_map)) {
   1319 		aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
   1320 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1321 		    sizeof(struct sk_ring_data));
   1322 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1323 		goto fail;
   1324 	}
   1325 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
   1326 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
   1327 		aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
   1328 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1329 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1330 		    sizeof(struct sk_ring_data));
   1331 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1332 		goto fail;
   1333 	}
   1334 
   1335 	for (i = 0; i < SK_RX_RING_CNT; i++)
   1336 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   1337 
   1338 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
   1339 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   1340 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   1341 
   1342 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
   1343 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
   1344 			aprint_error_dev(sc_if->sk_dev,
   1345 			    "Can't create TX dmamap\n");
   1346 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1347 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1348 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1349 			    sizeof(struct sk_ring_data));
   1350 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1351 			goto fail;
   1352 		}
   1353 
   1354 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
   1355 		if (!entry) {
   1356 			aprint_error_dev(sc_if->sk_dev,
   1357 			    "Can't alloc txmap entry\n");
   1358 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
   1359 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1360 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1361 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1362 			    sizeof(struct sk_ring_data));
   1363 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1364 			goto fail;
   1365 		}
   1366 		entry->dmamap = dmamap;
   1367 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
   1368 	}
   1369 
   1370         sc_if->sk_rdata = (struct sk_ring_data *)kva;
   1371 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
   1372 
   1373 	ifp = &sc_if->sk_ethercom.ec_if;
   1374 	/* Try to allocate memory for jumbo buffers. */
   1375 	if (sk_alloc_jumbo_mem(sc_if)) {
   1376 		aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
   1377 		goto fail;
   1378 	}
   1379 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
   1380 		| ETHERCAP_JUMBO_MTU;
   1381 
   1382 	ifp->if_softc = sc_if;
   1383 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1384 	ifp->if_ioctl = sk_ioctl;
   1385 	ifp->if_start = sk_start;
   1386 	ifp->if_stop = sk_stop;
   1387 	ifp->if_init = sk_init;
   1388 	ifp->if_watchdog = sk_watchdog;
   1389 	ifp->if_capabilities = 0;
   1390 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
   1391 	IFQ_SET_READY(&ifp->if_snd);
   1392 	strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
   1393 
   1394 	/*
   1395 	 * Do miibus setup.
   1396 	 */
   1397 	switch (sc->sk_type) {
   1398 	case SK_GENESIS:
   1399 		sk_init_xmac(sc_if);
   1400 		break;
   1401 	case SK_YUKON:
   1402 	case SK_YUKON_LITE:
   1403 	case SK_YUKON_LP:
   1404 		sk_init_yukon(sc_if);
   1405 		break;
   1406 	default:
   1407 		aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
   1408 			sc->sk_type);
   1409 		goto fail;
   1410 	}
   1411 
   1412  	DPRINTFN(2, ("sk_attach: 1\n"));
   1413 
   1414 	sc_if->sk_mii.mii_ifp = ifp;
   1415 	switch (sc->sk_type) {
   1416 	case SK_GENESIS:
   1417 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
   1418 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
   1419 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
   1420 		break;
   1421 	case SK_YUKON:
   1422 	case SK_YUKON_LITE:
   1423 	case SK_YUKON_LP:
   1424 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
   1425 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
   1426 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
   1427 		mii_flags = MIIF_DOPAUSE;
   1428 		break;
   1429 	}
   1430 
   1431 	sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
   1432 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
   1433 	    sk_ifmedia_upd, ether_mediastatus);
   1434 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
   1435 	    MII_OFFSET_ANY, mii_flags);
   1436 	if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
   1437 		aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
   1438 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
   1439 			    0, NULL);
   1440 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
   1441 	} else
   1442 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1443 
   1444 	callout_init(&sc_if->sk_tick_ch, 0);
   1445 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
   1446 
   1447 	DPRINTFN(2, ("sk_attach: 1\n"));
   1448 
   1449 	/*
   1450 	 * Call MI attach routines.
   1451 	 */
   1452 	if_attach(ifp);
   1453 
   1454 	ether_ifattach(ifp, sc_if->sk_enaddr);
   1455 
   1456 #if NRND > 0
   1457         rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
   1458             RND_TYPE_NET, 0);
   1459 #endif
   1460 
   1461 	DPRINTFN(2, ("sk_attach: end\n"));
   1462 
   1463 	return;
   1464 
   1465 fail:
   1466 	sc->sk_if[sa->skc_port] = NULL;
   1467 }
   1468 
   1469 int
   1470 skcprint(void *aux, const char *pnp)
   1471 {
   1472 	struct skc_attach_args *sa = aux;
   1473 
   1474 	if (pnp)
   1475 		aprint_normal("sk port %c at %s",
   1476 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
   1477 	else
   1478 		aprint_normal(" port %c",
   1479 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
   1480 	return UNCONF;
   1481 }
   1482 
   1483 /*
   1484  * Attach the interface. Allocate softc structures, do ifmedia
   1485  * setup and ethernet/BPF attach.
   1486  */
   1487 void
   1488 skc_attach(device_t parent, device_t self, void *aux)
   1489 {
   1490 	struct sk_softc *sc = device_private(self);
   1491 	struct pci_attach_args *pa = aux;
   1492 	struct skc_attach_args skca;
   1493 	pci_chipset_tag_t pc = pa->pa_pc;
   1494 #ifndef SK_USEIOSPACE
   1495 	pcireg_t memtype;
   1496 #endif
   1497 	pci_intr_handle_t ih;
   1498 	const char *intrstr = NULL;
   1499 	bus_addr_t iobase;
   1500 	bus_size_t iosize;
   1501 	int rc, sk_nodenum;
   1502 	u_int32_t command;
   1503 	const char *revstr;
   1504 	const struct sysctlnode *node;
   1505 
   1506 	sc->sk_dev = self;
   1507 	aprint_naive("\n");
   1508 
   1509 	DPRINTFN(2, ("begin skc_attach\n"));
   1510 
   1511 	/*
   1512 	 * Handle power management nonsense.
   1513 	 */
   1514 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
   1515 
   1516 	if (command == 0x01) {
   1517 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
   1518 		if (command & SK_PSTATE_MASK) {
   1519 			u_int32_t		xiobase, membase, irq;
   1520 
   1521 			/* Save important PCI config data. */
   1522 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
   1523 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
   1524 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
   1525 
   1526 			/* Reset the power state. */
   1527 			aprint_normal_dev(sc->sk_dev,
   1528 			    "chip is in D%d power mode -- setting to D0\n",
   1529 			    command & SK_PSTATE_MASK);
   1530 			command &= 0xFFFFFFFC;
   1531 			pci_conf_write(pc, pa->pa_tag,
   1532 			    SK_PCI_PWRMGMTCTRL, command);
   1533 
   1534 			/* Restore PCI config data. */
   1535 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
   1536 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
   1537 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
   1538 		}
   1539 	}
   1540 
   1541 	/*
   1542 	 * Map control/status registers.
   1543 	 */
   1544 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1545 	command |= PCI_COMMAND_IO_ENABLE |
   1546 	    PCI_COMMAND_MEM_ENABLE |
   1547 	    PCI_COMMAND_MASTER_ENABLE;
   1548 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1549 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1550 
   1551 #ifdef SK_USEIOSPACE
   1552 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
   1553 		aprint_error(": failed to enable I/O ports!\n");
   1554 		return;
   1555 	}
   1556 	/*
   1557 	 * Map control/status registers.
   1558 	 */
   1559 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
   1560 			&sc->sk_btag, &sc->sk_bhandle,
   1561 			&iobase, &iosize)) {
   1562 		aprint_error(": can't find i/o space\n");
   1563 		return;
   1564 	}
   1565 #else
   1566 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1567 		aprint_error(": failed to enable memory mapping!\n");
   1568 		return;
   1569 	}
   1570 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
   1571 	switch (memtype) {
   1572         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1573         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1574                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
   1575 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
   1576 				   &iobase, &iosize) == 0)
   1577                         break;
   1578         default:
   1579                 aprint_error_dev(sc->sk_dev, "can't find mem space\n");
   1580                 return;
   1581 	}
   1582 
   1583 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
   1584 #endif
   1585 	sc->sc_dmatag = pa->pa_dmat;
   1586 
   1587 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
   1588 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
   1589 
   1590 	/* bail out here if chip is not recognized */
   1591 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
   1592 		aprint_error_dev(sc->sk_dev, "unknown chip type\n");
   1593 		goto fail;
   1594 	}
   1595 	if (SK_IS_YUKON2(sc)) {
   1596 		aprint_error_dev(sc->sk_dev,
   1597 		    "Does not support Yukon2--try msk(4).\n");
   1598 		goto fail;
   1599 	}
   1600 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
   1601 
   1602 	/* Allocate interrupt */
   1603 	if (pci_intr_map(pa, &ih)) {
   1604 		aprint_error(": couldn't map interrupt\n");
   1605 		goto fail;
   1606 	}
   1607 
   1608 	intrstr = pci_intr_string(pc, ih);
   1609 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
   1610 	if (sc->sk_intrhand == NULL) {
   1611 		aprint_error(": couldn't establish interrupt");
   1612 		if (intrstr != NULL)
   1613 			aprint_normal(" at %s", intrstr);
   1614 		goto fail;
   1615 	}
   1616 	aprint_normal(": %s\n", intrstr);
   1617 
   1618 	/* Reset the adapter. */
   1619 	sk_reset(sc);
   1620 
   1621 	/* Read and save vital product data from EEPROM. */
   1622 	sk_vpd_read(sc);
   1623 
   1624 	if (sc->sk_type == SK_GENESIS) {
   1625 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1626 		/* Read and save RAM size and RAMbuffer offset */
   1627 		switch (val) {
   1628 		case SK_RAMSIZE_512K_64:
   1629 			sc->sk_ramsize = 0x80000;
   1630 			sc->sk_rboff = SK_RBOFF_0;
   1631 			break;
   1632 		case SK_RAMSIZE_1024K_64:
   1633 			sc->sk_ramsize = 0x100000;
   1634 			sc->sk_rboff = SK_RBOFF_80000;
   1635 			break;
   1636 		case SK_RAMSIZE_1024K_128:
   1637 			sc->sk_ramsize = 0x100000;
   1638 			sc->sk_rboff = SK_RBOFF_0;
   1639 			break;
   1640 		case SK_RAMSIZE_2048K_128:
   1641 			sc->sk_ramsize = 0x200000;
   1642 			sc->sk_rboff = SK_RBOFF_0;
   1643 			break;
   1644 		default:
   1645 			aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
   1646 			       val);
   1647 			goto fail_1;
   1648 			break;
   1649 		}
   1650 
   1651 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
   1652 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
   1653 			     sc->sk_rboff));
   1654 	} else {
   1655 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1656 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
   1657 		sc->sk_rboff = SK_RBOFF_0;
   1658 
   1659 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
   1660 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
   1661 			     sc->sk_rboff));
   1662 	}
   1663 
   1664 	/* Read and save physical media type */
   1665 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
   1666 	case SK_PMD_1000BASESX:
   1667 		sc->sk_pmd = IFM_1000_SX;
   1668 		break;
   1669 	case SK_PMD_1000BASELX:
   1670 		sc->sk_pmd = IFM_1000_LX;
   1671 		break;
   1672 	case SK_PMD_1000BASECX:
   1673 		sc->sk_pmd = IFM_1000_CX;
   1674 		break;
   1675 	case SK_PMD_1000BASETX:
   1676 	case SK_PMD_1000BASETX_ALT:
   1677 		sc->sk_pmd = IFM_1000_T;
   1678 		break;
   1679 	default:
   1680 		aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
   1681 		    sk_win_read_1(sc, SK_PMDTYPE));
   1682 		goto fail_1;
   1683 	}
   1684 
   1685 	/* determine whether to name it with vpd or just make it up */
   1686 	/* Marvell Yukon VPD's can freqently be bogus */
   1687 
   1688 	switch (pa->pa_id) {
   1689 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1690 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
   1691 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
   1692 	case PCI_PRODUCT_3COM_3C940:
   1693 	case PCI_PRODUCT_DLINK_DGE530T:
   1694 	case PCI_PRODUCT_DLINK_DGE560T:
   1695 	case PCI_PRODUCT_DLINK_DGE560T_2:
   1696 	case PCI_PRODUCT_LINKSYS_EG1032:
   1697 	case PCI_PRODUCT_LINKSYS_EG1064:
   1698 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1699 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
   1700 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
   1701 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
   1702 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
   1703 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
   1704 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
   1705 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
   1706  		sc->sk_name = sc->sk_vpd_prodname;
   1707  		break;
   1708 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
   1709 	/* whoops yukon vpd prodname bears no resemblance to reality */
   1710 		switch (sc->sk_type) {
   1711 		case SK_GENESIS:
   1712 			sc->sk_name = sc->sk_vpd_prodname;
   1713 			break;
   1714 		case SK_YUKON:
   1715 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
   1716 			break;
   1717 		case SK_YUKON_LITE:
   1718 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
   1719 			break;
   1720 		case SK_YUKON_LP:
   1721 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
   1722 			break;
   1723 		default:
   1724 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
   1725 		}
   1726 
   1727 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
   1728 
   1729 		if ( sc->sk_type == SK_YUKON ) {
   1730 			uint32_t flashaddr;
   1731 			uint8_t testbyte;
   1732 
   1733 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
   1734 
   1735 			/* test Flash-Address Register */
   1736 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
   1737 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
   1738 
   1739 			if (testbyte != 0) {
   1740 				/* this is yukon lite Rev. A0 */
   1741 				sc->sk_type = SK_YUKON_LITE;
   1742 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
   1743 				/* restore Flash-Address Register */
   1744 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
   1745 			}
   1746 		}
   1747 		break;
   1748 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
   1749 		sc->sk_name = sc->sk_vpd_prodname;
   1750 		break;
   1751  	default:
   1752 		sc->sk_name = "Unknown Marvell";
   1753 	}
   1754 
   1755 
   1756 	if ( sc->sk_type == SK_YUKON_LITE ) {
   1757 		switch (sc->sk_rev) {
   1758 		case SK_YUKON_LITE_REV_A0:
   1759 			revstr = "A0";
   1760 			break;
   1761 		case SK_YUKON_LITE_REV_A1:
   1762 			revstr = "A1";
   1763 			break;
   1764 		case SK_YUKON_LITE_REV_A3:
   1765 			revstr = "A3";
   1766 			break;
   1767 		default:
   1768 			revstr = "";
   1769 		}
   1770 	} else {
   1771 		revstr = "";
   1772 	}
   1773 
   1774 	/* Announce the product name. */
   1775 	aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
   1776 			      sc->sk_name, revstr, sc->sk_rev);
   1777 
   1778 	skca.skc_port = SK_PORT_A;
   1779 	(void)config_found(sc->sk_dev, &skca, skcprint);
   1780 
   1781 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
   1782 		skca.skc_port = SK_PORT_B;
   1783 		(void)config_found(sc->sk_dev, &skca, skcprint);
   1784 	}
   1785 
   1786 	/* Turn on the 'driver is loaded' LED. */
   1787 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   1788 
   1789 	/* skc sysctl setup */
   1790 
   1791 	sc->sk_int_mod = SK_IM_DEFAULT;
   1792 	sc->sk_int_mod_pending = 0;
   1793 
   1794 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1795 	    0, CTLTYPE_NODE, device_xname(sc->sk_dev),
   1796 	    SYSCTL_DESCR("skc per-controller controls"),
   1797 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
   1798 	    CTL_EOL)) != 0) {
   1799 		aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
   1800 		goto fail_1;
   1801 	}
   1802 
   1803 	sk_nodenum = node->sysctl_num;
   1804 
   1805 	/* interrupt moderation time in usecs */
   1806 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1807 	    CTLFLAG_READWRITE,
   1808 	    CTLTYPE_INT, "int_mod",
   1809 	    SYSCTL_DESCR("sk interrupt moderation timer"),
   1810 	    sk_sysctl_handler, 0, sc,
   1811 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
   1812 	    CTL_EOL)) != 0) {
   1813 		aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
   1814 		goto fail_1;
   1815 	}
   1816 
   1817 	return;
   1818 
   1819 fail_1:
   1820 	pci_intr_disestablish(pc, sc->sk_intrhand);
   1821 fail:
   1822 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
   1823 }
   1824 
   1825 int
   1826 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
   1827 {
   1828 	struct sk_softc		*sc = sc_if->sk_softc;
   1829 	struct sk_tx_desc	*f = NULL;
   1830 	u_int32_t		frag, cur, cnt = 0, sk_ctl;
   1831 	int			i;
   1832 	struct sk_txmap_entry	*entry;
   1833 	bus_dmamap_t		txmap;
   1834 
   1835 	DPRINTFN(3, ("sk_encap\n"));
   1836 
   1837 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
   1838 	if (entry == NULL) {
   1839 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
   1840 		return ENOBUFS;
   1841 	}
   1842 	txmap = entry->dmamap;
   1843 
   1844 	cur = frag = *txidx;
   1845 
   1846 #ifdef SK_DEBUG
   1847 	if (skdebug >= 3)
   1848 		sk_dump_mbuf(m_head);
   1849 #endif
   1850 
   1851 	/*
   1852 	 * Start packing the mbufs in this chain into
   1853 	 * the fragment pointers. Stop when we run out
   1854 	 * of fragments or hit the end of the mbuf chain.
   1855 	 */
   1856 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
   1857 	    BUS_DMA_NOWAIT)) {
   1858 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
   1859 		return ENOBUFS;
   1860 	}
   1861 
   1862 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
   1863 
   1864 	/* Sync the DMA map. */
   1865 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
   1866 	    BUS_DMASYNC_PREWRITE);
   1867 
   1868 	for (i = 0; i < txmap->dm_nsegs; i++) {
   1869 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
   1870 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
   1871 			return ENOBUFS;
   1872 		}
   1873 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
   1874 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
   1875 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
   1876 		if (cnt == 0)
   1877 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
   1878 		else
   1879 			sk_ctl |= SK_TXCTL_OWN;
   1880 		f->sk_ctl = htole32(sk_ctl);
   1881 		cur = frag;
   1882 		SK_INC(frag, SK_TX_RING_CNT);
   1883 		cnt++;
   1884 	}
   1885 
   1886 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
   1887 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
   1888 
   1889 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
   1890 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
   1891 		htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
   1892 
   1893 	/* Sync descriptors before handing to chip */
   1894 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
   1895 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1896 
   1897 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
   1898 		htole32(SK_TXCTL_OWN);
   1899 
   1900 	/* Sync first descriptor to hand it off */
   1901 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1902 
   1903 	sc_if->sk_cdata.sk_tx_cnt += cnt;
   1904 
   1905 #ifdef SK_DEBUG
   1906 	if (skdebug >= 3) {
   1907 		struct sk_tx_desc *desc;
   1908 		u_int32_t idx;
   1909 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
   1910 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
   1911 			sk_dump_txdesc(desc, idx);
   1912 		}
   1913 	}
   1914 #endif
   1915 
   1916 	*txidx = frag;
   1917 
   1918 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
   1919 
   1920 	return 0;
   1921 }
   1922 
   1923 void
   1924 sk_start(struct ifnet *ifp)
   1925 {
   1926         struct sk_if_softc	*sc_if = ifp->if_softc;
   1927         struct sk_softc		*sc = sc_if->sk_softc;
   1928         struct mbuf		*m_head = NULL;
   1929         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
   1930 	int			pkts = 0;
   1931 
   1932 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
   1933 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
   1934 
   1935 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
   1936 		IFQ_POLL(&ifp->if_snd, m_head);
   1937 		if (m_head == NULL)
   1938 			break;
   1939 
   1940 		/*
   1941 		 * Pack the data into the transmit ring. If we
   1942 		 * don't have room, set the OACTIVE flag and wait
   1943 		 * for the NIC to drain the ring.
   1944 		 */
   1945 		if (sk_encap(sc_if, m_head, &idx)) {
   1946 			ifp->if_flags |= IFF_OACTIVE;
   1947 			break;
   1948 		}
   1949 
   1950 		/* now we are committed to transmit the packet */
   1951 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1952 		pkts++;
   1953 
   1954 		/*
   1955 		 * If there's a BPF listener, bounce a copy of this frame
   1956 		 * to him.
   1957 		 */
   1958 #if NBPFILTER > 0
   1959 		if (ifp->if_bpf)
   1960 			bpf_mtap(ifp->if_bpf, m_head);
   1961 #endif
   1962 	}
   1963 	if (pkts == 0)
   1964 		return;
   1965 
   1966 	/* Transmit */
   1967 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
   1968 		sc_if->sk_cdata.sk_tx_prod = idx;
   1969 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   1970 
   1971 		/* Set a timeout in case the chip goes out to lunch. */
   1972 		ifp->if_timer = 5;
   1973 	}
   1974 }
   1975 
   1976 
   1977 void
   1978 sk_watchdog(struct ifnet *ifp)
   1979 {
   1980 	struct sk_if_softc *sc_if = ifp->if_softc;
   1981 
   1982 	/*
   1983 	 * Reclaim first as there is a possibility of losing Tx completion
   1984 	 * interrupts.
   1985 	 */
   1986 	sk_txeof(sc_if);
   1987 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
   1988 		aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
   1989 
   1990 		ifp->if_oerrors++;
   1991 
   1992 		sk_init(ifp);
   1993 	}
   1994 }
   1995 
   1996 void
   1997 sk_shutdown(void *v)
   1998 {
   1999 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
   2000 	struct sk_softc		*sc = sc_if->sk_softc;
   2001 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
   2002 
   2003 	DPRINTFN(2, ("sk_shutdown\n"));
   2004 	sk_stop(ifp,1);
   2005 
   2006 	/* Turn off the 'driver is loaded' LED. */
   2007 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   2008 
   2009 	/*
   2010 	 * Reset the GEnesis controller. Doing this should also
   2011 	 * assert the resets on the attached XMAC(s).
   2012 	 */
   2013 	sk_reset(sc);
   2014 }
   2015 
   2016 void
   2017 sk_rxeof(struct sk_if_softc *sc_if)
   2018 {
   2019 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2020 	struct mbuf		*m;
   2021 	struct sk_chain		*cur_rx;
   2022 	struct sk_rx_desc	*cur_desc;
   2023 	int			i, cur, total_len = 0;
   2024 	u_int32_t		rxstat, sk_ctl;
   2025 	bus_dmamap_t		dmamap;
   2026 
   2027 	i = sc_if->sk_cdata.sk_rx_prod;
   2028 
   2029 	DPRINTFN(3, ("sk_rxeof %d\n", i));
   2030 
   2031 	for (;;) {
   2032 		cur = i;
   2033 
   2034 		/* Sync the descriptor */
   2035 		SK_CDRXSYNC(sc_if, cur,
   2036 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2037 
   2038 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
   2039 		if (sk_ctl & SK_RXCTL_OWN) {
   2040 			/* Invalidate the descriptor -- it's not ready yet */
   2041 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
   2042 			sc_if->sk_cdata.sk_rx_prod = i;
   2043 			break;
   2044 		}
   2045 
   2046 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
   2047 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
   2048 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
   2049 
   2050 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
   2051 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2052 
   2053 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
   2054 		m = cur_rx->sk_mbuf;
   2055 		cur_rx->sk_mbuf = NULL;
   2056 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
   2057 
   2058 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
   2059 
   2060 		SK_INC(i, SK_RX_RING_CNT);
   2061 
   2062 		if (rxstat & XM_RXSTAT_ERRFRAME) {
   2063 			ifp->if_ierrors++;
   2064 			sk_newbuf(sc_if, cur, m, dmamap);
   2065 			continue;
   2066 		}
   2067 
   2068 		/*
   2069 		 * Try to allocate a new jumbo buffer. If that
   2070 		 * fails, copy the packet to mbufs and put the
   2071 		 * jumbo buffer back in the ring so it can be
   2072 		 * re-used. If allocating mbufs fails, then we
   2073 		 * have to drop the packet.
   2074 		 */
   2075 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
   2076 			struct mbuf		*m0;
   2077 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
   2078 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
   2079 			sk_newbuf(sc_if, cur, m, dmamap);
   2080 			if (m0 == NULL) {
   2081 				aprint_error_dev(sc_if->sk_dev, "no receive "
   2082 				    "buffers available -- packet dropped!\n");
   2083 				ifp->if_ierrors++;
   2084 				continue;
   2085 			}
   2086 			m_adj(m0, ETHER_ALIGN);
   2087 			m = m0;
   2088 		} else {
   2089 			m->m_pkthdr.rcvif = ifp;
   2090 			m->m_pkthdr.len = m->m_len = total_len;
   2091 		}
   2092 
   2093 		ifp->if_ipackets++;
   2094 
   2095 #if NBPFILTER > 0
   2096 		if (ifp->if_bpf)
   2097 			bpf_mtap(ifp->if_bpf, m);
   2098 #endif
   2099 		/* pass it on. */
   2100 		(*ifp->if_input)(ifp, m);
   2101 	}
   2102 }
   2103 
   2104 void
   2105 sk_txeof(struct sk_if_softc *sc_if)
   2106 {
   2107 	struct sk_softc		*sc = sc_if->sk_softc;
   2108 	struct sk_tx_desc	*cur_tx;
   2109 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2110 	u_int32_t		idx, sk_ctl;
   2111 	struct sk_txmap_entry	*entry;
   2112 
   2113 	DPRINTFN(3, ("sk_txeof\n"));
   2114 
   2115 	/*
   2116 	 * Go through our tx ring and free mbufs for those
   2117 	 * frames that have been sent.
   2118 	 */
   2119 	idx = sc_if->sk_cdata.sk_tx_cons;
   2120 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
   2121 		SK_CDTXSYNC(sc_if, idx, 1,
   2122 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2123 
   2124 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
   2125 		sk_ctl = le32toh(cur_tx->sk_ctl);
   2126 #ifdef SK_DEBUG
   2127 		if (skdebug >= 3)
   2128 			sk_dump_txdesc(cur_tx, idx);
   2129 #endif
   2130 		if (sk_ctl & SK_TXCTL_OWN) {
   2131 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
   2132 			break;
   2133 		}
   2134 		if (sk_ctl & SK_TXCTL_LASTFRAG)
   2135 			ifp->if_opackets++;
   2136 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
   2137 			entry = sc_if->sk_cdata.sk_tx_map[idx];
   2138 
   2139 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
   2140 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
   2141 
   2142 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
   2143 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2144 
   2145 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
   2146 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
   2147 					  link);
   2148 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
   2149 		}
   2150 		sc_if->sk_cdata.sk_tx_cnt--;
   2151 		SK_INC(idx, SK_TX_RING_CNT);
   2152 	}
   2153 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
   2154 		ifp->if_timer = 0;
   2155 	else /* nudge chip to keep tx ring moving */
   2156 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   2157 
   2158 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
   2159 		ifp->if_flags &= ~IFF_OACTIVE;
   2160 
   2161 	sc_if->sk_cdata.sk_tx_cons = idx;
   2162 }
   2163 
   2164 void
   2165 sk_tick(void *xsc_if)
   2166 {
   2167 	struct sk_if_softc *sc_if = xsc_if;
   2168 	struct mii_data *mii = &sc_if->sk_mii;
   2169 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2170 	int i;
   2171 
   2172 	DPRINTFN(3, ("sk_tick\n"));
   2173 
   2174 	if (!(ifp->if_flags & IFF_UP))
   2175 		return;
   2176 
   2177 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2178 		sk_intr_bcom(sc_if);
   2179 		return;
   2180 	}
   2181 
   2182 	/*
   2183 	 * According to SysKonnect, the correct way to verify that
   2184 	 * the link has come back up is to poll bit 0 of the GPIO
   2185 	 * register three times. This pin has the signal from the
   2186 	 * link sync pin connected to it; if we read the same link
   2187 	 * state 3 times in a row, we know the link is up.
   2188 	 */
   2189 	for (i = 0; i < 3; i++) {
   2190 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
   2191 			break;
   2192 	}
   2193 
   2194 	if (i != 3) {
   2195 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2196 		return;
   2197 	}
   2198 
   2199 	/* Turn the GP0 interrupt back on. */
   2200 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2201 	SK_XM_READ_2(sc_if, XM_ISR);
   2202 	mii_tick(mii);
   2203 	mii_pollstat(mii);
   2204 	callout_stop(&sc_if->sk_tick_ch);
   2205 }
   2206 
   2207 void
   2208 sk_intr_bcom(struct sk_if_softc *sc_if)
   2209 {
   2210 	struct mii_data *mii = &sc_if->sk_mii;
   2211 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2212 	int status;
   2213 
   2214 
   2215 	DPRINTFN(3, ("sk_intr_bcom\n"));
   2216 
   2217 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2218 
   2219 	/*
   2220 	 * Read the PHY interrupt register to make sure
   2221 	 * we clear any pending interrupts.
   2222 	 */
   2223 	status = sk_xmac_miibus_readreg(sc_if->sk_dev,
   2224 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
   2225 
   2226 	if (!(ifp->if_flags & IFF_RUNNING)) {
   2227 		sk_init_xmac(sc_if);
   2228 		return;
   2229 	}
   2230 
   2231 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
   2232 		int lstat;
   2233 		lstat = sk_xmac_miibus_readreg(sc_if->sk_dev,
   2234 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
   2235 
   2236 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
   2237 			(void)mii_mediachg(mii);
   2238 			/* Turn off the link LED. */
   2239 			SK_IF_WRITE_1(sc_if, 0,
   2240 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2241 			sc_if->sk_link = 0;
   2242 		} else if (status & BRGPHY_ISR_LNK_CHG) {
   2243 			sk_xmac_miibus_writereg(sc_if->sk_dev,
   2244 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
   2245 			mii_tick(mii);
   2246 			sc_if->sk_link = 1;
   2247 			/* Turn on the link LED. */
   2248 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2249 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
   2250 			    SK_LINKLED_BLINK_OFF);
   2251 			mii_pollstat(mii);
   2252 		} else {
   2253 			mii_tick(mii);
   2254 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
   2255 		}
   2256 	}
   2257 
   2258 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2259 }
   2260 
   2261 void
   2262 sk_intr_xmac(struct sk_if_softc	*sc_if)
   2263 {
   2264 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
   2265 
   2266 	DPRINTFN(3, ("sk_intr_xmac\n"));
   2267 
   2268 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
   2269 		if (status & XM_ISR_GP0_SET) {
   2270 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2271 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2272 		}
   2273 
   2274 		if (status & XM_ISR_AUTONEG_DONE) {
   2275 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2276 		}
   2277 	}
   2278 
   2279 	if (status & XM_IMR_TX_UNDERRUN)
   2280 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
   2281 
   2282 	if (status & XM_IMR_RX_OVERRUN)
   2283 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
   2284 }
   2285 
   2286 void
   2287 sk_intr_yukon(struct sk_if_softc *sc_if)
   2288 {
   2289 	int status;
   2290 
   2291 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2292 
   2293 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
   2294 }
   2295 
   2296 int
   2297 sk_intr(void *xsc)
   2298 {
   2299 	struct sk_softc		*sc = xsc;
   2300 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
   2301 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
   2302 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
   2303 	u_int32_t		status;
   2304 	int			claimed = 0;
   2305 
   2306 	if (sc_if0 != NULL)
   2307 		ifp0 = &sc_if0->sk_ethercom.ec_if;
   2308 	if (sc_if1 != NULL)
   2309 		ifp1 = &sc_if1->sk_ethercom.ec_if;
   2310 
   2311 	for (;;) {
   2312 		status = CSR_READ_4(sc, SK_ISSR);
   2313 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
   2314 
   2315 		if (!(status & sc->sk_intrmask))
   2316 			break;
   2317 
   2318 		claimed = 1;
   2319 
   2320 		/* Handle receive interrupts first. */
   2321 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
   2322 			sk_rxeof(sc_if0);
   2323 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
   2324 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2325 		}
   2326 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
   2327 			sk_rxeof(sc_if1);
   2328 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
   2329 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2330 		}
   2331 
   2332 		/* Then transmit interrupts. */
   2333 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
   2334 			sk_txeof(sc_if0);
   2335 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
   2336 			    SK_TXBMU_CLR_IRQ_EOF);
   2337 		}
   2338 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
   2339 			sk_txeof(sc_if1);
   2340 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
   2341 			    SK_TXBMU_CLR_IRQ_EOF);
   2342 		}
   2343 
   2344 		/* Then MAC interrupts. */
   2345 		if (sc_if0 && (status & SK_ISR_MAC1) &&
   2346 		    (ifp0->if_flags & IFF_RUNNING)) {
   2347 			if (sc->sk_type == SK_GENESIS)
   2348 				sk_intr_xmac(sc_if0);
   2349 			else
   2350 				sk_intr_yukon(sc_if0);
   2351 		}
   2352 
   2353 		if (sc_if1 && (status & SK_ISR_MAC2) &&
   2354 		    (ifp1->if_flags & IFF_RUNNING)) {
   2355 			if (sc->sk_type == SK_GENESIS)
   2356 				sk_intr_xmac(sc_if1);
   2357 			else
   2358 				sk_intr_yukon(sc_if1);
   2359 
   2360 		}
   2361 
   2362 		if (status & SK_ISR_EXTERNAL_REG) {
   2363 			if (sc_if0 != NULL &&
   2364 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
   2365 				sk_intr_bcom(sc_if0);
   2366 
   2367 			if (sc_if1 != NULL &&
   2368 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
   2369 				sk_intr_bcom(sc_if1);
   2370 		}
   2371 	}
   2372 
   2373 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2374 
   2375 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
   2376 		sk_start(ifp0);
   2377 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
   2378 		sk_start(ifp1);
   2379 
   2380 #if NRND > 0
   2381 	if (RND_ENABLED(&sc->rnd_source))
   2382 		rnd_add_uint32(&sc->rnd_source, status);
   2383 #endif
   2384 
   2385 	if (sc->sk_int_mod_pending)
   2386 		sk_update_int_mod(sc);
   2387 
   2388 	return claimed;
   2389 }
   2390 
   2391 void
   2392 sk_init_xmac(struct sk_if_softc	*sc_if)
   2393 {
   2394 	struct sk_softc		*sc = sc_if->sk_softc;
   2395 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2396 	static const struct sk_bcom_hack     bhack[] = {
   2397 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
   2398 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
   2399 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
   2400 	{ 0, 0 } };
   2401 
   2402 	DPRINTFN(1, ("sk_init_xmac\n"));
   2403 
   2404 	/* Unreset the XMAC. */
   2405 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
   2406 	DELAY(1000);
   2407 
   2408 	/* Reset the XMAC's internal state. */
   2409 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2410 
   2411 	/* Save the XMAC II revision */
   2412 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
   2413 
   2414 	/*
   2415 	 * Perform additional initialization for external PHYs,
   2416 	 * namely for the 1000baseTX cards that use the XMAC's
   2417 	 * GMII mode.
   2418 	 */
   2419 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2420 		int			i = 0;
   2421 		u_int32_t		val;
   2422 
   2423 		/* Take PHY out of reset. */
   2424 		val = sk_win_read_4(sc, SK_GPIO);
   2425 		if (sc_if->sk_port == SK_PORT_A)
   2426 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
   2427 		else
   2428 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
   2429 		sk_win_write_4(sc, SK_GPIO, val);
   2430 
   2431 		/* Enable GMII mode on the XMAC. */
   2432 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
   2433 
   2434 		sk_xmac_miibus_writereg(sc_if->sk_dev,
   2435 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
   2436 		DELAY(10000);
   2437 		sk_xmac_miibus_writereg(sc_if->sk_dev,
   2438 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
   2439 
   2440 		/*
   2441 		 * Early versions of the BCM5400 apparently have
   2442 		 * a bug that requires them to have their reserved
   2443 		 * registers initialized to some magic values. I don't
   2444 		 * know what the numbers do, I'm just the messenger.
   2445 		 */
   2446 		if (sk_xmac_miibus_readreg(sc_if->sk_dev,
   2447 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
   2448 			while (bhack[i].reg) {
   2449 				sk_xmac_miibus_writereg(sc_if->sk_dev,
   2450 				    SK_PHYADDR_BCOM, bhack[i].reg,
   2451 				    bhack[i].val);
   2452 				i++;
   2453 			}
   2454 		}
   2455 	}
   2456 
   2457 	/* Set station address */
   2458 	SK_XM_WRITE_2(sc_if, XM_PAR0,
   2459 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
   2460 	SK_XM_WRITE_2(sc_if, XM_PAR1,
   2461 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
   2462 	SK_XM_WRITE_2(sc_if, XM_PAR2,
   2463 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
   2464 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
   2465 
   2466 	if (ifp->if_flags & IFF_PROMISC)
   2467 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2468 	else
   2469 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2470 
   2471 	if (ifp->if_flags & IFF_BROADCAST)
   2472 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2473 	else
   2474 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2475 
   2476 	/* We don't need the FCS appended to the packet. */
   2477 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
   2478 
   2479 	/* We want short frames padded to 60 bytes. */
   2480 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
   2481 
   2482 	/*
   2483 	 * Enable the reception of all error frames. This is is
   2484 	 * a necessary evil due to the design of the XMAC. The
   2485 	 * XMAC's receive FIFO is only 8K in size, however jumbo
   2486 	 * frames can be up to 9000 bytes in length. When bad
   2487 	 * frame filtering is enabled, the XMAC's RX FIFO operates
   2488 	 * in 'store and forward' mode. For this to work, the
   2489 	 * entire frame has to fit into the FIFO, but that means
   2490 	 * that jumbo frames larger than 8192 bytes will be
   2491 	 * truncated. Disabling all bad frame filtering causes
   2492 	 * the RX FIFO to operate in streaming mode, in which
   2493 	 * case the XMAC will start transfering frames out of the
   2494 	 * RX FIFO as soon as the FIFO threshold is reached.
   2495 	 */
   2496 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
   2497 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
   2498 	    XM_MODE_RX_INRANGELEN);
   2499 
   2500 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2501 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2502 	else
   2503 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2504 
   2505 	/*
   2506 	 * Bump up the transmit threshold. This helps hold off transmit
   2507 	 * underruns when we're blasting traffic from both ports at once.
   2508 	 */
   2509 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
   2510 
   2511 	/* Set multicast filter */
   2512 	sk_setmulti(sc_if);
   2513 
   2514 	/* Clear and enable interrupts */
   2515 	SK_XM_READ_2(sc_if, XM_ISR);
   2516 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
   2517 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
   2518 	else
   2519 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2520 
   2521 	/* Configure MAC arbiter */
   2522 	switch (sc_if->sk_xmac_rev) {
   2523 	case XM_XMAC_REV_B2:
   2524 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
   2525 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
   2526 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
   2527 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
   2528 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
   2529 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
   2530 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
   2531 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
   2532 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2533 		break;
   2534 	case XM_XMAC_REV_C1:
   2535 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
   2536 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
   2537 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
   2538 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
   2539 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
   2540 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
   2541 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
   2542 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
   2543 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2544 		break;
   2545 	default:
   2546 		break;
   2547 	}
   2548 	sk_win_write_2(sc, SK_MACARB_CTL,
   2549 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
   2550 
   2551 	sc_if->sk_link = 1;
   2552 }
   2553 
   2554 void sk_init_yukon(struct sk_if_softc *sc_if)
   2555 {
   2556 	u_int32_t		/*mac, */phy;
   2557 	u_int16_t		reg;
   2558 	struct sk_softc		*sc;
   2559 	int			i;
   2560 
   2561 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
   2562 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
   2563 
   2564 	sc = sc_if->sk_softc;
   2565 	if (sc->sk_type == SK_YUKON_LITE &&
   2566 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
   2567 		/* Take PHY out of reset. */
   2568 		sk_win_write_4(sc, SK_GPIO,
   2569 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
   2570 	}
   2571 
   2572 
   2573 	/* GMAC and GPHY Reset */
   2574 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
   2575 
   2576 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
   2577 
   2578 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2579 	DELAY(1000);
   2580 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
   2581 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2582 	DELAY(1000);
   2583 
   2584 
   2585 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
   2586 
   2587 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
   2588 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
   2589 
   2590 	switch (sc_if->sk_softc->sk_pmd) {
   2591 	case IFM_1000_SX:
   2592 	case IFM_1000_LX:
   2593 		phy |= SK_GPHY_FIBER;
   2594 		break;
   2595 
   2596 	case IFM_1000_CX:
   2597 	case IFM_1000_T:
   2598 		phy |= SK_GPHY_COPPER;
   2599 		break;
   2600 	}
   2601 
   2602 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
   2603 
   2604 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
   2605 	DELAY(1000);
   2606 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
   2607 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
   2608 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
   2609 
   2610 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
   2611 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
   2612 
   2613 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
   2614 
   2615 	/* unused read of the interrupt source register */
   2616 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
   2617 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2618 
   2619 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
   2620 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
   2621 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2622 
   2623 	/* MIB Counter Clear Mode set */
   2624         reg |= YU_PAR_MIB_CLR;
   2625 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2626 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
   2627 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2628 
   2629 	/* MIB Counter Clear Mode clear */
   2630 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
   2631         reg &= ~YU_PAR_MIB_CLR;
   2632 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2633 
   2634 	/* receive control reg */
   2635 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
   2636 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
   2637 		      YU_RCR_CRCR);
   2638 
   2639 	/* transmit parameter register */
   2640 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
   2641 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
   2642 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
   2643 
   2644 	/* serial mode register */
   2645 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
   2646 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
   2647 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
   2648 		      YU_SMR_IPG_DATA(0x1e));
   2649 
   2650 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
   2651 	/* Setup Yukon's address */
   2652 	for (i = 0; i < 3; i++) {
   2653 		/* Write Source Address 1 (unicast filter) */
   2654 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
   2655 			      sc_if->sk_enaddr[i * 2] |
   2656 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
   2657 	}
   2658 
   2659 	for (i = 0; i < 3; i++) {
   2660 		reg = sk_win_read_2(sc_if->sk_softc,
   2661 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
   2662 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
   2663 	}
   2664 
   2665 	/* Set multicast filter */
   2666 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
   2667 	sk_setmulti(sc_if);
   2668 
   2669 	/* enable interrupt mask for counter overflows */
   2670 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
   2671 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
   2672 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
   2673 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
   2674 
   2675 	/* Configure RX MAC FIFO */
   2676 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
   2677 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
   2678 
   2679 	/* Configure TX MAC FIFO */
   2680 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
   2681 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
   2682 
   2683 	DPRINTFN(6, ("sk_init_yukon: end\n"));
   2684 }
   2685 
   2686 /*
   2687  * Note that to properly initialize any part of the GEnesis chip,
   2688  * you first have to take it out of reset mode.
   2689  */
   2690 int
   2691 sk_init(struct ifnet *ifp)
   2692 {
   2693 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2694 	struct sk_softc		*sc = sc_if->sk_softc;
   2695 	struct mii_data		*mii = &sc_if->sk_mii;
   2696 	int			rc = 0, s;
   2697 	u_int32_t		imr, imtimer_ticks;
   2698 
   2699 	DPRINTFN(1, ("sk_init\n"));
   2700 
   2701 	s = splnet();
   2702 
   2703 	if (ifp->if_flags & IFF_RUNNING) {
   2704 		splx(s);
   2705 		return 0;
   2706 	}
   2707 
   2708 	/* Cancel pending I/O and free all RX/TX buffers. */
   2709 	sk_stop(ifp,0);
   2710 
   2711 	if (sc->sk_type == SK_GENESIS) {
   2712 		/* Configure LINK_SYNC LED */
   2713 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
   2714 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2715 			      SK_LINKLED_LINKSYNC_ON);
   2716 
   2717 		/* Configure RX LED */
   2718 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
   2719 			      SK_RXLEDCTL_COUNTER_START);
   2720 
   2721 		/* Configure TX LED */
   2722 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
   2723 			      SK_TXLEDCTL_COUNTER_START);
   2724 	}
   2725 
   2726 	/* Configure I2C registers */
   2727 
   2728 	/* Configure XMAC(s) */
   2729 	switch (sc->sk_type) {
   2730 	case SK_GENESIS:
   2731 		sk_init_xmac(sc_if);
   2732 		break;
   2733 	case SK_YUKON:
   2734 	case SK_YUKON_LITE:
   2735 	case SK_YUKON_LP:
   2736 		sk_init_yukon(sc_if);
   2737 		break;
   2738 	}
   2739 	if ((rc = mii_mediachg(mii)) == ENXIO)
   2740 		rc = 0;
   2741 	else if (rc != 0)
   2742 		goto out;
   2743 
   2744 	if (sc->sk_type == SK_GENESIS) {
   2745 		/* Configure MAC FIFOs */
   2746 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
   2747 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
   2748 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
   2749 
   2750 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
   2751 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
   2752 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
   2753 	}
   2754 
   2755 	/* Configure transmit arbiter(s) */
   2756 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
   2757 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
   2758 
   2759 	/* Configure RAMbuffers */
   2760 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
   2761 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
   2762 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
   2763 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
   2764 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
   2765 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
   2766 
   2767 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
   2768 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
   2769 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
   2770 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
   2771 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
   2772 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
   2773 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
   2774 
   2775 	/* Configure BMUs */
   2776 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
   2777 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
   2778 	    SK_RX_RING_ADDR(sc_if, 0));
   2779 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
   2780 
   2781 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
   2782 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
   2783             SK_TX_RING_ADDR(sc_if, 0));
   2784 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
   2785 
   2786 	/* Init descriptors */
   2787 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
   2788 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
   2789 		    "memory for rx buffers\n");
   2790 		sk_stop(ifp,0);
   2791 		splx(s);
   2792 		return ENOBUFS;
   2793 	}
   2794 
   2795 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
   2796 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
   2797 		    "memory for tx buffers\n");
   2798 		sk_stop(ifp,0);
   2799 		splx(s);
   2800 		return ENOBUFS;
   2801 	}
   2802 
   2803 	/* Set interrupt moderation if changed via sysctl. */
   2804 	switch (sc->sk_type) {
   2805 	case SK_GENESIS:
   2806 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   2807 		break;
   2808 	case SK_YUKON_EC:
   2809 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   2810 		break;
   2811 	default:
   2812 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   2813 	}
   2814 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
   2815 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
   2816 		sk_win_write_4(sc, SK_IMTIMERINIT,
   2817 		    SK_IM_USECS(sc->sk_int_mod));
   2818 		aprint_verbose_dev(sc->sk_dev,
   2819 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
   2820 	}
   2821 
   2822 	/* Configure interrupt handling */
   2823 	CSR_READ_4(sc, SK_ISSR);
   2824 	if (sc_if->sk_port == SK_PORT_A)
   2825 		sc->sk_intrmask |= SK_INTRS1;
   2826 	else
   2827 		sc->sk_intrmask |= SK_INTRS2;
   2828 
   2829 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
   2830 
   2831 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2832 
   2833 	/* Start BMUs. */
   2834 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
   2835 
   2836 	if (sc->sk_type == SK_GENESIS) {
   2837 		/* Enable XMACs TX and RX state machines */
   2838 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
   2839 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
   2840 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2841 	}
   2842 
   2843 	if (SK_YUKON_FAMILY(sc->sk_type)) {
   2844 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
   2845 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
   2846 #if 0
   2847 		/* XXX disable 100Mbps and full duplex mode? */
   2848 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
   2849 #endif
   2850 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
   2851 	}
   2852 
   2853 
   2854 	ifp->if_flags |= IFF_RUNNING;
   2855 	ifp->if_flags &= ~IFF_OACTIVE;
   2856 
   2857 out:
   2858 	splx(s);
   2859 	return rc;
   2860 }
   2861 
   2862 void
   2863 sk_stop(struct ifnet *ifp, int disable)
   2864 {
   2865         struct sk_if_softc	*sc_if = ifp->if_softc;
   2866 	struct sk_softc		*sc = sc_if->sk_softc;
   2867 	int			i;
   2868 
   2869 	DPRINTFN(1, ("sk_stop\n"));
   2870 
   2871 	callout_stop(&sc_if->sk_tick_ch);
   2872 
   2873 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2874 		u_int32_t		val;
   2875 
   2876 		/* Put PHY back into reset. */
   2877 		val = sk_win_read_4(sc, SK_GPIO);
   2878 		if (sc_if->sk_port == SK_PORT_A) {
   2879 			val |= SK_GPIO_DIR0;
   2880 			val &= ~SK_GPIO_DAT0;
   2881 		} else {
   2882 			val |= SK_GPIO_DIR2;
   2883 			val &= ~SK_GPIO_DAT2;
   2884 		}
   2885 		sk_win_write_4(sc, SK_GPIO, val);
   2886 	}
   2887 
   2888 	/* Turn off various components of this interface. */
   2889 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2890 	switch (sc->sk_type) {
   2891 	case SK_GENESIS:
   2892 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
   2893 			      SK_TXMACCTL_XMAC_RESET);
   2894 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
   2895 		break;
   2896 	case SK_YUKON:
   2897 	case SK_YUKON_LITE:
   2898 	case SK_YUKON_LP:
   2899 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
   2900 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
   2901 		break;
   2902 	}
   2903 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
   2904 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2905 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
   2906 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2907 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
   2908 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2909 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2910 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2911 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
   2912 
   2913 	/* Disable interrupts */
   2914 	if (sc_if->sk_port == SK_PORT_A)
   2915 		sc->sk_intrmask &= ~SK_INTRS1;
   2916 	else
   2917 		sc->sk_intrmask &= ~SK_INTRS2;
   2918 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2919 
   2920 	SK_XM_READ_2(sc_if, XM_ISR);
   2921 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2922 
   2923 	/* Free RX and TX mbufs still in the queues. */
   2924 	for (i = 0; i < SK_RX_RING_CNT; i++) {
   2925 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
   2926 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
   2927 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   2928 		}
   2929 	}
   2930 
   2931 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   2932 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
   2933 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
   2934 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   2935 		}
   2936 	}
   2937 
   2938 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
   2939 }
   2940 
   2941 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
   2942     skc_probe, skc_attach, NULL, NULL);
   2943 
   2944 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
   2945     sk_probe, sk_attach, NULL, NULL);
   2946 
   2947 #ifdef SK_DEBUG
   2948 void
   2949 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
   2950 {
   2951 #define DESC_PRINT(X)					\
   2952 	if (X)					\
   2953 		printf("txdesc[%d]." #X "=%#x\n",	\
   2954 		       idx, X);
   2955 
   2956 	DESC_PRINT(le32toh(desc->sk_ctl));
   2957 	DESC_PRINT(le32toh(desc->sk_next));
   2958 	DESC_PRINT(le32toh(desc->sk_data_lo));
   2959 	DESC_PRINT(le32toh(desc->sk_data_hi));
   2960 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
   2961 	DESC_PRINT(le16toh(desc->sk_rsvd0));
   2962 	DESC_PRINT(le16toh(desc->sk_csum_startval));
   2963 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
   2964 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
   2965 	DESC_PRINT(le16toh(desc->sk_rsvd1));
   2966 #undef PRINT
   2967 }
   2968 
   2969 void
   2970 sk_dump_bytes(const char *data, int len)
   2971 {
   2972 	int c, i, j;
   2973 
   2974 	for (i = 0; i < len; i += 16) {
   2975 		printf("%08x  ", i);
   2976 		c = len - i;
   2977 		if (c > 16) c = 16;
   2978 
   2979 		for (j = 0; j < c; j++) {
   2980 			printf("%02x ", data[i + j] & 0xff);
   2981 			if ((j & 0xf) == 7 && j > 0)
   2982 				printf(" ");
   2983 		}
   2984 
   2985 		for (; j < 16; j++)
   2986 			printf("   ");
   2987 		printf("  ");
   2988 
   2989 		for (j = 0; j < c; j++) {
   2990 			int ch = data[i + j] & 0xff;
   2991 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
   2992 		}
   2993 
   2994 		printf("\n");
   2995 
   2996 		if (c < 16)
   2997 			break;
   2998 	}
   2999 }
   3000 
   3001 void
   3002 sk_dump_mbuf(struct mbuf *m)
   3003 {
   3004 	int count = m->m_pkthdr.len;
   3005 
   3006 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
   3007 
   3008 	while (count > 0 && m) {
   3009 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
   3010 		       m, m->m_data, m->m_len);
   3011 		sk_dump_bytes(mtod(m, char *), m->m_len);
   3012 
   3013 		count -= m->m_len;
   3014 		m = m->m_next;
   3015 	}
   3016 }
   3017 #endif
   3018 
   3019 static int
   3020 sk_sysctl_handler(SYSCTLFN_ARGS)
   3021 {
   3022 	int error, t;
   3023 	struct sysctlnode node;
   3024 	struct sk_softc *sc;
   3025 
   3026 	node = *rnode;
   3027 	sc = node.sysctl_data;
   3028 	t = sc->sk_int_mod;
   3029 	node.sysctl_data = &t;
   3030 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3031 	if (error || newp == NULL)
   3032 		return error;
   3033 
   3034 	if (t < SK_IM_MIN || t > SK_IM_MAX)
   3035 		return EINVAL;
   3036 
   3037 	/* update the softc with sysctl-changed value, and mark
   3038 	   for hardware update */
   3039 	sc->sk_int_mod = t;
   3040 	sc->sk_int_mod_pending = 1;
   3041 	return 0;
   3042 }
   3043 
   3044 /*
   3045  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
   3046  * set up in skc_attach()
   3047  */
   3048 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
   3049 {
   3050 	int rc;
   3051 	const struct sysctlnode *node;
   3052 
   3053 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   3054 	    0, CTLTYPE_NODE, "hw", NULL,
   3055 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   3056 		goto err;
   3057 	}
   3058 
   3059 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   3060 	    0, CTLTYPE_NODE, "sk",
   3061 	    SYSCTL_DESCR("sk interface controls"),
   3062 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   3063 		goto err;
   3064 	}
   3065 
   3066 	sk_root_num = node->sysctl_num;
   3067 	return;
   3068 
   3069 err:
   3070 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
   3071 }
   3072