if_sk.c revision 1.56 1 /* $NetBSD: if_sk.c,v 1.56 2009/02/12 10:22:30 cegger Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
30
31 /*
32 * Copyright (c) 1997, 1998, 1999, 2000
33 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by Bill Paul.
46 * 4. Neither the name of the author nor the names of any co-contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60 * THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63 */
64
65 /*
66 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
67 *
68 * Permission to use, copy, modify, and distribute this software for any
69 * purpose with or without fee is hereby granted, provided that the above
70 * copyright notice and this permission notice appear in all copies.
71 *
72 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79 */
80
81 /*
82 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83 * the SK-984x series adapters, both single port and dual port.
84 * References:
85 * The XaQti XMAC II datasheet,
86 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87 * The SysKonnect GEnesis manual, http://www.syskonnect.com
88 *
89 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91 * convenience to others until Vitesse corrects this problem:
92 *
93 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 *
95 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
96 * Department of Electrical Engineering
97 * Columbia University, New York City
98 */
99
100 /*
101 * The SysKonnect gigabit ethernet adapters consist of two main
102 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104 * components and a PHY while the GEnesis controller provides a PCI
105 * interface with DMA support. Each card may have between 512K and
106 * 2MB of SRAM on board depending on the configuration.
107 *
108 * The SysKonnect GEnesis controller can have either one or two XMAC
109 * chips connected to it, allowing single or dual port NIC configurations.
110 * SysKonnect has the distinction of being the only vendor on the market
111 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113 * XMAC registers. This driver takes advantage of these features to allow
114 * both XMACs to operate as independent interfaces.
115 */
116
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.56 2009/02/12 10:22:30 cegger Exp $");
119
120 #include "bpfilter.h"
121 #include "rnd.h"
122
123 #include <sys/param.h>
124 #include <sys/systm.h>
125 #include <sys/sockio.h>
126 #include <sys/mbuf.h>
127 #include <sys/malloc.h>
128 #include <sys/mutex.h>
129 #include <sys/kernel.h>
130 #include <sys/socket.h>
131 #include <sys/device.h>
132 #include <sys/queue.h>
133 #include <sys/callout.h>
134 #include <sys/sysctl.h>
135 #include <sys/endian.h>
136
137 #include <net/if.h>
138 #include <net/if_dl.h>
139 #include <net/if_types.h>
140
141 #include <net/if_media.h>
142
143 #if NBPFILTER > 0
144 #include <net/bpf.h>
145 #endif
146 #if NRND > 0
147 #include <sys/rnd.h>
148 #endif
149
150 #include <dev/mii/mii.h>
151 #include <dev/mii/miivar.h>
152 #include <dev/mii/brgphyreg.h>
153
154 #include <dev/pci/pcireg.h>
155 #include <dev/pci/pcivar.h>
156 #include <dev/pci/pcidevs.h>
157
158 /* #define SK_USEIOSPACE */
159
160 #include <dev/pci/if_skreg.h>
161 #include <dev/pci/if_skvar.h>
162
163 int skc_probe(device_t, cfdata_t, void *);
164 void skc_attach(device_t, device_t, void *aux);
165 int sk_probe(device_t, cfdata_t, void *);
166 void sk_attach(device_t, device_t, void *aux);
167 int skcprint(void *, const char *);
168 int sk_intr(void *);
169 void sk_intr_bcom(struct sk_if_softc *);
170 void sk_intr_xmac(struct sk_if_softc *);
171 void sk_intr_yukon(struct sk_if_softc *);
172 void sk_rxeof(struct sk_if_softc *);
173 void sk_txeof(struct sk_if_softc *);
174 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
175 void sk_start(struct ifnet *);
176 int sk_ioctl(struct ifnet *, u_long, void *);
177 int sk_init(struct ifnet *);
178 void sk_init_xmac(struct sk_if_softc *);
179 void sk_init_yukon(struct sk_if_softc *);
180 void sk_stop(struct ifnet *, int);
181 void sk_watchdog(struct ifnet *);
182 void sk_shutdown(void *);
183 int sk_ifmedia_upd(struct ifnet *);
184 void sk_reset(struct sk_softc *);
185 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
186 int sk_alloc_jumbo_mem(struct sk_if_softc *);
187 void sk_free_jumbo_mem(struct sk_if_softc *);
188 void *sk_jalloc(struct sk_if_softc *);
189 void sk_jfree(struct mbuf *, void *, size_t, void *);
190 int sk_init_rx_ring(struct sk_if_softc *);
191 int sk_init_tx_ring(struct sk_if_softc *);
192 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
193 void sk_vpd_read_res(struct sk_softc *,
194 struct vpd_res *, int);
195 void sk_vpd_read(struct sk_softc *);
196
197 void sk_update_int_mod(struct sk_softc *);
198
199 int sk_xmac_miibus_readreg(device_t, int, int);
200 void sk_xmac_miibus_writereg(device_t, int, int, int);
201 void sk_xmac_miibus_statchg(device_t);
202
203 int sk_marv_miibus_readreg(device_t, int, int);
204 void sk_marv_miibus_writereg(device_t, int, int, int);
205 void sk_marv_miibus_statchg(device_t);
206
207 u_int32_t sk_xmac_hash(void *);
208 u_int32_t sk_yukon_hash(void *);
209 void sk_setfilt(struct sk_if_softc *, void *, int);
210 void sk_setmulti(struct sk_if_softc *);
211 void sk_tick(void *);
212
213 /* #define SK_DEBUG 2 */
214 #ifdef SK_DEBUG
215 #define DPRINTF(x) if (skdebug) printf x
216 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
217 int skdebug = SK_DEBUG;
218
219 void sk_dump_txdesc(struct sk_tx_desc *, int);
220 void sk_dump_mbuf(struct mbuf *);
221 void sk_dump_bytes(const char *, int);
222 #else
223 #define DPRINTF(x)
224 #define DPRINTFN(n,x)
225 #endif
226
227 static int sk_sysctl_handler(SYSCTLFN_PROTO);
228 static int sk_root_num;
229
230 /* supported device vendors */
231 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
232 static const struct sk_product {
233 pci_vendor_id_t sk_vendor;
234 pci_product_id_t sk_product;
235 } sk_products[] = {
236 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
237 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
238 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
239 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
240 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
241 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
242 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
243 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
244 { 0, 0, }
245 };
246
247 #define SK_LINKSYS_EG1032_SUBID 0x00151737
248
249 static inline u_int32_t
250 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
251 {
252 #ifdef SK_USEIOSPACE
253 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
254 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
255 #else
256 return CSR_READ_4(sc, reg);
257 #endif
258 }
259
260 static inline u_int16_t
261 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
262 {
263 #ifdef SK_USEIOSPACE
264 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
265 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
266 #else
267 return CSR_READ_2(sc, reg);
268 #endif
269 }
270
271 static inline u_int8_t
272 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
273 {
274 #ifdef SK_USEIOSPACE
275 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
276 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
277 #else
278 return CSR_READ_1(sc, reg);
279 #endif
280 }
281
282 static inline void
283 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
284 {
285 #ifdef SK_USEIOSPACE
286 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
287 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
288 #else
289 CSR_WRITE_4(sc, reg, x);
290 #endif
291 }
292
293 static inline void
294 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
295 {
296 #ifdef SK_USEIOSPACE
297 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
298 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
299 #else
300 CSR_WRITE_2(sc, reg, x);
301 #endif
302 }
303
304 static inline void
305 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
306 {
307 #ifdef SK_USEIOSPACE
308 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
309 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
310 #else
311 CSR_WRITE_1(sc, reg, x);
312 #endif
313 }
314
315 /*
316 * The VPD EEPROM contains Vital Product Data, as suggested in
317 * the PCI 2.1 specification. The VPD data is separared into areas
318 * denoted by resource IDs. The SysKonnect VPD contains an ID string
319 * resource (the name of the adapter), a read-only area resource
320 * containing various key/data fields and a read/write area which
321 * can be used to store asset management information or log messages.
322 * We read the ID string and read-only into buffers attached to
323 * the controller softc structure for later use. At the moment,
324 * we only use the ID string during sk_attach().
325 */
326 u_int8_t
327 sk_vpd_readbyte(struct sk_softc *sc, int addr)
328 {
329 int i;
330
331 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
332 for (i = 0; i < SK_TIMEOUT; i++) {
333 DELAY(1);
334 if (sk_win_read_2(sc,
335 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
336 break;
337 }
338
339 if (i == SK_TIMEOUT)
340 return 0;
341
342 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
343 }
344
345 void
346 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
347 {
348 int i;
349 u_int8_t *ptr;
350
351 ptr = (u_int8_t *)res;
352 for (i = 0; i < sizeof(struct vpd_res); i++)
353 ptr[i] = sk_vpd_readbyte(sc, i + addr);
354 }
355
356 void
357 sk_vpd_read(struct sk_softc *sc)
358 {
359 int pos = 0, i;
360 struct vpd_res res;
361
362 if (sc->sk_vpd_prodname != NULL)
363 free(sc->sk_vpd_prodname, M_DEVBUF);
364 if (sc->sk_vpd_readonly != NULL)
365 free(sc->sk_vpd_readonly, M_DEVBUF);
366 sc->sk_vpd_prodname = NULL;
367 sc->sk_vpd_readonly = NULL;
368
369 sk_vpd_read_res(sc, &res, pos);
370
371 if (res.vr_id != VPD_RES_ID) {
372 aprint_error_dev(sc->sk_dev,
373 "bad VPD resource id: expected %x got %x\n",
374 VPD_RES_ID, res.vr_id);
375 return;
376 }
377
378 pos += sizeof(res);
379 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
380 if (sc->sk_vpd_prodname == NULL)
381 panic("sk_vpd_read");
382 for (i = 0; i < res.vr_len; i++)
383 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
384 sc->sk_vpd_prodname[i] = '\0';
385 pos += i;
386
387 sk_vpd_read_res(sc, &res, pos);
388
389 if (res.vr_id != VPD_RES_READ) {
390 aprint_error_dev(sc->sk_dev,
391 "bad VPD resource id: expected %x got %x\n",
392 VPD_RES_READ, res.vr_id);
393 return;
394 }
395
396 pos += sizeof(res);
397 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
398 if (sc->sk_vpd_readonly == NULL)
399 panic("sk_vpd_read");
400 for (i = 0; i < res.vr_len ; i++)
401 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
402 }
403
404 int
405 sk_xmac_miibus_readreg(device_t dev, int phy, int reg)
406 {
407 struct sk_if_softc *sc_if = device_private(dev);
408 int i;
409
410 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
411
412 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
413 return 0;
414
415 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
416 SK_XM_READ_2(sc_if, XM_PHY_DATA);
417 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
418 for (i = 0; i < SK_TIMEOUT; i++) {
419 DELAY(1);
420 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
421 XM_MMUCMD_PHYDATARDY)
422 break;
423 }
424
425 if (i == SK_TIMEOUT) {
426 aprint_error_dev(sc_if->sk_dev,
427 "phy failed to come ready\n");
428 return 0;
429 }
430 }
431 DELAY(1);
432 return SK_XM_READ_2(sc_if, XM_PHY_DATA);
433 }
434
435 void
436 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, int val)
437 {
438 struct sk_if_softc *sc_if = device_private(dev);
439 int i;
440
441 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
442
443 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
444 for (i = 0; i < SK_TIMEOUT; i++) {
445 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
446 break;
447 }
448
449 if (i == SK_TIMEOUT) {
450 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
451 return;
452 }
453
454 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
455 for (i = 0; i < SK_TIMEOUT; i++) {
456 DELAY(1);
457 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
458 break;
459 }
460
461 if (i == SK_TIMEOUT)
462 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
463 }
464
465 void
466 sk_xmac_miibus_statchg(device_t dev)
467 {
468 struct sk_if_softc *sc_if = device_private(dev);
469 struct mii_data *mii = &sc_if->sk_mii;
470
471 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
472
473 /*
474 * If this is a GMII PHY, manually set the XMAC's
475 * duplex mode accordingly.
476 */
477 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
478 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
479 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
480 else
481 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
482 }
483 }
484
485 int
486 sk_marv_miibus_readreg(device_t dev, int phy, int reg)
487 {
488 struct sk_if_softc *sc_if = device_private(dev);
489 u_int16_t val;
490 int i;
491
492 if (phy != 0 ||
493 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
494 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
495 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
496 phy, reg));
497 return 0;
498 }
499
500 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
501 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
502
503 for (i = 0; i < SK_TIMEOUT; i++) {
504 DELAY(1);
505 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
506 if (val & YU_SMICR_READ_VALID)
507 break;
508 }
509
510 if (i == SK_TIMEOUT) {
511 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
512 return 0;
513 }
514
515 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
516 SK_TIMEOUT));
517
518 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
519
520 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
521 phy, reg, val));
522
523 return val;
524 }
525
526 void
527 sk_marv_miibus_writereg(device_t dev, int phy, int reg, int val)
528 {
529 struct sk_if_softc *sc_if = device_private(dev);
530 int i;
531
532 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
533 phy, reg, val));
534
535 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
536 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
537 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
538
539 for (i = 0; i < SK_TIMEOUT; i++) {
540 DELAY(1);
541 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
542 break;
543 }
544
545 if (i == SK_TIMEOUT)
546 printf("%s: phy write timed out\n",
547 device_xname(sc_if->sk_dev));
548 }
549
550 void
551 sk_marv_miibus_statchg(device_t dev)
552 {
553 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
554 SK_YU_READ_2(((struct sk_if_softc *)device_private(dev)),
555 YUKON_GPCR)));
556 }
557
558 #define SK_HASH_BITS 6
559
560 u_int32_t
561 sk_xmac_hash(void *addr)
562 {
563 u_int32_t crc;
564
565 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
566 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
567 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
568 return crc;
569 }
570
571 u_int32_t
572 sk_yukon_hash(void *addr)
573 {
574 u_int32_t crc;
575
576 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
577 crc &= ((1 << SK_HASH_BITS) - 1);
578 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
579 return crc;
580 }
581
582 void
583 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
584 {
585 char *addr = addrv;
586 int base = XM_RXFILT_ENTRY(slot);
587
588 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
589 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
590 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
591 }
592
593 void
594 sk_setmulti(struct sk_if_softc *sc_if)
595 {
596 struct sk_softc *sc = sc_if->sk_softc;
597 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
598 u_int32_t hashes[2] = { 0, 0 };
599 int h = 0, i;
600 struct ethercom *ec = &sc_if->sk_ethercom;
601 struct ether_multi *enm;
602 struct ether_multistep step;
603 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
604
605 /* First, zot all the existing filters. */
606 switch (sc->sk_type) {
607 case SK_GENESIS:
608 for (i = 1; i < XM_RXFILT_MAX; i++)
609 sk_setfilt(sc_if, (void *)&dummy, i);
610
611 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
612 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
613 break;
614 case SK_YUKON:
615 case SK_YUKON_LITE:
616 case SK_YUKON_LP:
617 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
618 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
619 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
620 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
621 break;
622 }
623
624 /* Now program new ones. */
625 allmulti:
626 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
627 hashes[0] = 0xFFFFFFFF;
628 hashes[1] = 0xFFFFFFFF;
629 } else {
630 i = 1;
631 /* First find the tail of the list. */
632 ETHER_FIRST_MULTI(step, ec, enm);
633 while (enm != NULL) {
634 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
635 ETHER_ADDR_LEN)) {
636 ifp->if_flags |= IFF_ALLMULTI;
637 goto allmulti;
638 }
639 DPRINTFN(2,("multicast address %s\n",
640 ether_sprintf(enm->enm_addrlo)));
641 /*
642 * Program the first XM_RXFILT_MAX multicast groups
643 * into the perfect filter. For all others,
644 * use the hash table.
645 */
646 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
647 sk_setfilt(sc_if, enm->enm_addrlo, i);
648 i++;
649 }
650 else {
651 switch (sc->sk_type) {
652 case SK_GENESIS:
653 h = sk_xmac_hash(enm->enm_addrlo);
654 break;
655 case SK_YUKON:
656 case SK_YUKON_LITE:
657 case SK_YUKON_LP:
658 h = sk_yukon_hash(enm->enm_addrlo);
659 break;
660 }
661 if (h < 32)
662 hashes[0] |= (1 << h);
663 else
664 hashes[1] |= (1 << (h - 32));
665 }
666
667 ETHER_NEXT_MULTI(step, enm);
668 }
669 }
670
671 switch (sc->sk_type) {
672 case SK_GENESIS:
673 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
674 XM_MODE_RX_USE_PERFECT);
675 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
676 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
677 break;
678 case SK_YUKON:
679 case SK_YUKON_LITE:
680 case SK_YUKON_LP:
681 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
682 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
683 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
684 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
685 break;
686 }
687 }
688
689 int
690 sk_init_rx_ring(struct sk_if_softc *sc_if)
691 {
692 struct sk_chain_data *cd = &sc_if->sk_cdata;
693 struct sk_ring_data *rd = sc_if->sk_rdata;
694 int i;
695
696 bzero((char *)rd->sk_rx_ring,
697 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
698
699 for (i = 0; i < SK_RX_RING_CNT; i++) {
700 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
701 if (i == (SK_RX_RING_CNT - 1)) {
702 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
703 rd->sk_rx_ring[i].sk_next =
704 htole32(SK_RX_RING_ADDR(sc_if, 0));
705 } else {
706 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
707 rd->sk_rx_ring[i].sk_next =
708 htole32(SK_RX_RING_ADDR(sc_if,i+1));
709 }
710 }
711
712 for (i = 0; i < SK_RX_RING_CNT; i++) {
713 if (sk_newbuf(sc_if, i, NULL,
714 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
715 aprint_error_dev(sc_if->sk_dev,
716 "failed alloc of %dth mbuf\n", i);
717 return ENOBUFS;
718 }
719 }
720 sc_if->sk_cdata.sk_rx_prod = 0;
721 sc_if->sk_cdata.sk_rx_cons = 0;
722
723 return 0;
724 }
725
726 int
727 sk_init_tx_ring(struct sk_if_softc *sc_if)
728 {
729 struct sk_chain_data *cd = &sc_if->sk_cdata;
730 struct sk_ring_data *rd = sc_if->sk_rdata;
731 int i;
732
733 memset(sc_if->sk_rdata->sk_tx_ring, 0,
734 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
735
736 for (i = 0; i < SK_TX_RING_CNT; i++) {
737 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
738 if (i == (SK_TX_RING_CNT - 1)) {
739 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
740 rd->sk_tx_ring[i].sk_next =
741 htole32(SK_TX_RING_ADDR(sc_if, 0));
742 } else {
743 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
744 rd->sk_tx_ring[i].sk_next =
745 htole32(SK_TX_RING_ADDR(sc_if,i+1));
746 }
747 }
748
749 sc_if->sk_cdata.sk_tx_prod = 0;
750 sc_if->sk_cdata.sk_tx_cons = 0;
751 sc_if->sk_cdata.sk_tx_cnt = 0;
752
753 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
754 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
755
756 return 0;
757 }
758
759 int
760 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
761 bus_dmamap_t dmamap)
762 {
763 struct mbuf *m_new = NULL;
764 struct sk_chain *c;
765 struct sk_rx_desc *r;
766
767 if (m == NULL) {
768 void *buf = NULL;
769
770 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
771 if (m_new == NULL) {
772 aprint_error_dev(sc_if->sk_dev,
773 "no memory for rx list -- packet dropped!\n");
774 return ENOBUFS;
775 }
776
777 /* Allocate the jumbo buffer */
778 buf = sk_jalloc(sc_if);
779 if (buf == NULL) {
780 m_freem(m_new);
781 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
782 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
783 return ENOBUFS;
784 }
785
786 /* Attach the buffer to the mbuf */
787 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
788 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
789
790 } else {
791 /*
792 * We're re-using a previously allocated mbuf;
793 * be sure to re-init pointers and lengths to
794 * default values.
795 */
796 m_new = m;
797 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
798 m_new->m_data = m_new->m_ext.ext_buf;
799 }
800 m_adj(m_new, ETHER_ALIGN);
801
802 c = &sc_if->sk_cdata.sk_rx_chain[i];
803 r = c->sk_desc;
804 c->sk_mbuf = m_new;
805 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
806 (((vaddr_t)m_new->m_data
807 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
808 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
809
810 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
811
812 return 0;
813 }
814
815 /*
816 * Memory management for jumbo frames.
817 */
818
819 int
820 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
821 {
822 struct sk_softc *sc = sc_if->sk_softc;
823 char *ptr, *kva;
824 bus_dma_segment_t seg;
825 int i, rseg, state, error;
826 struct sk_jpool_entry *entry;
827
828 state = error = 0;
829
830 /* Grab a big chunk o' storage. */
831 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
832 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
833 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
834 return ENOBUFS;
835 }
836
837 state = 1;
838 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
839 BUS_DMA_NOWAIT)) {
840 aprint_error_dev(sc->sk_dev,
841 "can't map dma buffers (%d bytes)\n",
842 SK_JMEM);
843 error = ENOBUFS;
844 goto out;
845 }
846
847 state = 2;
848 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
849 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
850 aprint_error_dev(sc->sk_dev, "can't create dma map\n");
851 error = ENOBUFS;
852 goto out;
853 }
854
855 state = 3;
856 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
857 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
858 aprint_error_dev(sc->sk_dev, "can't load dma map\n");
859 error = ENOBUFS;
860 goto out;
861 }
862
863 state = 4;
864 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
865 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
866
867 LIST_INIT(&sc_if->sk_jfree_listhead);
868 LIST_INIT(&sc_if->sk_jinuse_listhead);
869 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
870
871 /*
872 * Now divide it up into 9K pieces and save the addresses
873 * in an array.
874 */
875 ptr = sc_if->sk_cdata.sk_jumbo_buf;
876 for (i = 0; i < SK_JSLOTS; i++) {
877 sc_if->sk_cdata.sk_jslots[i] = ptr;
878 ptr += SK_JLEN;
879 entry = malloc(sizeof(struct sk_jpool_entry),
880 M_DEVBUF, M_NOWAIT);
881 if (entry == NULL) {
882 aprint_error_dev(sc->sk_dev,
883 "no memory for jumbo buffer queue!\n");
884 error = ENOBUFS;
885 goto out;
886 }
887 entry->slot = i;
888 if (i)
889 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
890 entry, jpool_entries);
891 else
892 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
893 entry, jpool_entries);
894 }
895 out:
896 if (error != 0) {
897 switch (state) {
898 case 4:
899 bus_dmamap_unload(sc->sc_dmatag,
900 sc_if->sk_cdata.sk_rx_jumbo_map);
901 case 3:
902 bus_dmamap_destroy(sc->sc_dmatag,
903 sc_if->sk_cdata.sk_rx_jumbo_map);
904 case 2:
905 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
906 case 1:
907 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
908 break;
909 default:
910 break;
911 }
912 }
913
914 return error;
915 }
916
917 /*
918 * Allocate a jumbo buffer.
919 */
920 void *
921 sk_jalloc(struct sk_if_softc *sc_if)
922 {
923 struct sk_jpool_entry *entry;
924
925 mutex_enter(&sc_if->sk_jpool_mtx);
926 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
927
928 if (entry == NULL) {
929 mutex_exit(&sc_if->sk_jpool_mtx);
930 return NULL;
931 }
932
933 LIST_REMOVE(entry, jpool_entries);
934 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
935 mutex_exit(&sc_if->sk_jpool_mtx);
936 return sc_if->sk_cdata.sk_jslots[entry->slot];
937 }
938
939 /*
940 * Release a jumbo buffer.
941 */
942 void
943 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
944 {
945 struct sk_jpool_entry *entry;
946 struct sk_if_softc *sc;
947 int i;
948
949 /* Extract the softc struct pointer. */
950 sc = (struct sk_if_softc *)arg;
951
952 if (sc == NULL)
953 panic("sk_jfree: can't find softc pointer!");
954
955 /* calculate the slot this buffer belongs to */
956
957 i = ((vaddr_t)buf
958 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
959
960 if ((i < 0) || (i >= SK_JSLOTS))
961 panic("sk_jfree: asked to free buffer that we don't manage!");
962
963 mutex_enter(&sc->sk_jpool_mtx);
964 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
965 if (entry == NULL)
966 panic("sk_jfree: buffer not in use!");
967 entry->slot = i;
968 LIST_REMOVE(entry, jpool_entries);
969 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
970 mutex_exit(&sc->sk_jpool_mtx);
971
972 if (__predict_true(m != NULL))
973 pool_cache_put(mb_cache, m);
974 }
975
976 /*
977 * Set media options.
978 */
979 int
980 sk_ifmedia_upd(struct ifnet *ifp)
981 {
982 struct sk_if_softc *sc_if = ifp->if_softc;
983 int rc;
984
985 (void) sk_init(ifp);
986 if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
987 return 0;
988 return rc;
989 }
990
991 int
992 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
993 {
994 struct sk_if_softc *sc_if = ifp->if_softc;
995 struct sk_softc *sc = sc_if->sk_softc;
996 int s, error = 0;
997
998 /* DPRINTFN(2, ("sk_ioctl\n")); */
999
1000 s = splnet();
1001
1002 switch (command) {
1003
1004 case SIOCSIFFLAGS:
1005 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1006 if ((error = ifioctl_common(ifp, command, data)) != 0)
1007 break;
1008 if (ifp->if_flags & IFF_UP) {
1009 if (ifp->if_flags & IFF_RUNNING &&
1010 ifp->if_flags & IFF_PROMISC &&
1011 !(sc_if->sk_if_flags & IFF_PROMISC)) {
1012 switch (sc->sk_type) {
1013 case SK_GENESIS:
1014 SK_XM_SETBIT_4(sc_if, XM_MODE,
1015 XM_MODE_RX_PROMISC);
1016 break;
1017 case SK_YUKON:
1018 case SK_YUKON_LITE:
1019 case SK_YUKON_LP:
1020 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1021 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1022 break;
1023 }
1024 sk_setmulti(sc_if);
1025 } else if (ifp->if_flags & IFF_RUNNING &&
1026 !(ifp->if_flags & IFF_PROMISC) &&
1027 sc_if->sk_if_flags & IFF_PROMISC) {
1028 switch (sc->sk_type) {
1029 case SK_GENESIS:
1030 SK_XM_CLRBIT_4(sc_if, XM_MODE,
1031 XM_MODE_RX_PROMISC);
1032 break;
1033 case SK_YUKON:
1034 case SK_YUKON_LITE:
1035 case SK_YUKON_LP:
1036 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1037 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1038 break;
1039 }
1040
1041 sk_setmulti(sc_if);
1042 } else
1043 (void) sk_init(ifp);
1044 } else {
1045 if (ifp->if_flags & IFF_RUNNING)
1046 sk_stop(ifp,0);
1047 }
1048 sc_if->sk_if_flags = ifp->if_flags;
1049 error = 0;
1050 break;
1051
1052 default:
1053 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1054 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1055 break;
1056
1057 error = 0;
1058
1059 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1060 ;
1061 else if (ifp->if_flags & IFF_RUNNING) {
1062 sk_setmulti(sc_if);
1063 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1064 }
1065 break;
1066 }
1067
1068 splx(s);
1069 return error;
1070 }
1071
1072 void
1073 sk_update_int_mod(struct sk_softc *sc)
1074 {
1075 u_int32_t imtimer_ticks;
1076
1077 /*
1078 * Configure interrupt moderation. The moderation timer
1079 * defers interrupts specified in the interrupt moderation
1080 * timer mask based on the timeout specified in the interrupt
1081 * moderation timer init register. Each bit in the timer
1082 * register represents one tick, so to specify a timeout in
1083 * microseconds, we have to multiply by the correct number of
1084 * ticks-per-microsecond.
1085 */
1086 switch (sc->sk_type) {
1087 case SK_GENESIS:
1088 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1089 break;
1090 case SK_YUKON_EC:
1091 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1092 break;
1093 default:
1094 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1095 }
1096 aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
1097 sc->sk_int_mod);
1098 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1099 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1100 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1101 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1102 sc->sk_int_mod_pending = 0;
1103 }
1104
1105 /*
1106 * Lookup: Check the PCI vendor and device, and return a pointer to
1107 * The structure if the IDs match against our list.
1108 */
1109
1110 static const struct sk_product *
1111 sk_lookup(const struct pci_attach_args *pa)
1112 {
1113 const struct sk_product *psk;
1114
1115 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1116 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1117 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1118 return psk;
1119 }
1120 return NULL;
1121 }
1122
1123 /*
1124 * Probe for a SysKonnect GEnesis chip.
1125 */
1126
1127 int
1128 skc_probe(device_t parent, cfdata_t match, void *aux)
1129 {
1130 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1131 const struct sk_product *psk;
1132 pcireg_t subid;
1133
1134 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1135
1136 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1137 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1138 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1139 subid == SK_LINKSYS_EG1032_SUBID)
1140 return 1;
1141
1142 if ((psk = sk_lookup(pa))) {
1143 return 1;
1144 }
1145 return 0;
1146 }
1147
1148 /*
1149 * Force the GEnesis into reset, then bring it out of reset.
1150 */
1151 void sk_reset(struct sk_softc *sc)
1152 {
1153 DPRINTFN(2, ("sk_reset\n"));
1154
1155 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1156 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1157 if (SK_YUKON_FAMILY(sc->sk_type))
1158 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1159
1160 DELAY(1000);
1161 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1162 DELAY(2);
1163 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1164 if (SK_YUKON_FAMILY(sc->sk_type))
1165 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1166
1167 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1168 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1169 CSR_READ_2(sc, SK_LINK_CTRL)));
1170
1171 if (sc->sk_type == SK_GENESIS) {
1172 /* Configure packet arbiter */
1173 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1174 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1175 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1176 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1177 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1178 }
1179
1180 /* Enable RAM interface */
1181 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1182
1183 sk_update_int_mod(sc);
1184 }
1185
1186 int
1187 sk_probe(device_t parent, cfdata_t match, void *aux)
1188 {
1189 struct skc_attach_args *sa = aux;
1190
1191 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1192 return 0;
1193
1194 return 1;
1195 }
1196
1197 /*
1198 * Each XMAC chip is attached as a separate logical IP interface.
1199 * Single port cards will have only one logical interface of course.
1200 */
1201 void
1202 sk_attach(device_t parent, device_t self, void *aux)
1203 {
1204 struct sk_if_softc *sc_if = device_private(self);
1205 struct sk_softc *sc = device_private(parent);
1206 struct skc_attach_args *sa = aux;
1207 struct sk_txmap_entry *entry;
1208 struct ifnet *ifp;
1209 bus_dma_segment_t seg;
1210 bus_dmamap_t dmamap;
1211 void *kva;
1212 int i, rseg;
1213 int mii_flags = 0;
1214
1215 aprint_naive("\n");
1216
1217 sc_if->sk_dev = self;
1218 sc_if->sk_port = sa->skc_port;
1219 sc_if->sk_softc = sc;
1220 sc->sk_if[sa->skc_port] = sc_if;
1221
1222 if (sa->skc_port == SK_PORT_A)
1223 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1224 if (sa->skc_port == SK_PORT_B)
1225 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1226
1227 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1228
1229 /*
1230 * Get station address for this interface. Note that
1231 * dual port cards actually come with three station
1232 * addresses: one for each port, plus an extra. The
1233 * extra one is used by the SysKonnect driver software
1234 * as a 'virtual' station address for when both ports
1235 * are operating in failover mode. Currently we don't
1236 * use this extra address.
1237 */
1238 for (i = 0; i < ETHER_ADDR_LEN; i++)
1239 sc_if->sk_enaddr[i] =
1240 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1241
1242
1243 aprint_normal(": Ethernet address %s\n",
1244 ether_sprintf(sc_if->sk_enaddr));
1245
1246 /*
1247 * Set up RAM buffer addresses. The NIC will have a certain
1248 * amount of SRAM on it, somewhere between 512K and 2MB. We
1249 * need to divide this up a) between the transmitter and
1250 * receiver and b) between the two XMACs, if this is a
1251 * dual port NIC. Our algorithm is to divide up the memory
1252 * evenly so that everyone gets a fair share.
1253 */
1254 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1255 u_int32_t chunk, val;
1256
1257 chunk = sc->sk_ramsize / 2;
1258 val = sc->sk_rboff / sizeof(u_int64_t);
1259 sc_if->sk_rx_ramstart = val;
1260 val += (chunk / sizeof(u_int64_t));
1261 sc_if->sk_rx_ramend = val - 1;
1262 sc_if->sk_tx_ramstart = val;
1263 val += (chunk / sizeof(u_int64_t));
1264 sc_if->sk_tx_ramend = val - 1;
1265 } else {
1266 u_int32_t chunk, val;
1267
1268 chunk = sc->sk_ramsize / 4;
1269 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1270 sizeof(u_int64_t);
1271 sc_if->sk_rx_ramstart = val;
1272 val += (chunk / sizeof(u_int64_t));
1273 sc_if->sk_rx_ramend = val - 1;
1274 sc_if->sk_tx_ramstart = val;
1275 val += (chunk / sizeof(u_int64_t));
1276 sc_if->sk_tx_ramend = val - 1;
1277 }
1278
1279 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1280 " tx_ramstart=%#x tx_ramend=%#x\n",
1281 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1282 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1283
1284 /* Read and save PHY type and set PHY address */
1285 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1286 switch (sc_if->sk_phytype) {
1287 case SK_PHYTYPE_XMAC:
1288 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1289 break;
1290 case SK_PHYTYPE_BCOM:
1291 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1292 break;
1293 case SK_PHYTYPE_MARV_COPPER:
1294 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1295 break;
1296 default:
1297 aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
1298 sc_if->sk_phytype);
1299 return;
1300 }
1301
1302 /* Allocate the descriptor queues. */
1303 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1304 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1305 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
1306 goto fail;
1307 }
1308 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1309 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1310 aprint_error_dev(sc_if->sk_dev,
1311 "can't map dma buffers (%lu bytes)\n",
1312 (u_long) sizeof(struct sk_ring_data));
1313 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1314 goto fail;
1315 }
1316 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1317 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1318 &sc_if->sk_ring_map)) {
1319 aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
1320 bus_dmamem_unmap(sc->sc_dmatag, kva,
1321 sizeof(struct sk_ring_data));
1322 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1323 goto fail;
1324 }
1325 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1326 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1327 aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
1328 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1329 bus_dmamem_unmap(sc->sc_dmatag, kva,
1330 sizeof(struct sk_ring_data));
1331 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1332 goto fail;
1333 }
1334
1335 for (i = 0; i < SK_RX_RING_CNT; i++)
1336 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1337
1338 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1339 for (i = 0; i < SK_TX_RING_CNT; i++) {
1340 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1341
1342 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1343 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1344 aprint_error_dev(sc_if->sk_dev,
1345 "Can't create TX dmamap\n");
1346 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1347 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1348 bus_dmamem_unmap(sc->sc_dmatag, kva,
1349 sizeof(struct sk_ring_data));
1350 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1351 goto fail;
1352 }
1353
1354 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1355 if (!entry) {
1356 aprint_error_dev(sc_if->sk_dev,
1357 "Can't alloc txmap entry\n");
1358 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1359 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1360 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1361 bus_dmamem_unmap(sc->sc_dmatag, kva,
1362 sizeof(struct sk_ring_data));
1363 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1364 goto fail;
1365 }
1366 entry->dmamap = dmamap;
1367 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1368 }
1369
1370 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1371 bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1372
1373 ifp = &sc_if->sk_ethercom.ec_if;
1374 /* Try to allocate memory for jumbo buffers. */
1375 if (sk_alloc_jumbo_mem(sc_if)) {
1376 aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1377 goto fail;
1378 }
1379 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1380 | ETHERCAP_JUMBO_MTU;
1381
1382 ifp->if_softc = sc_if;
1383 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1384 ifp->if_ioctl = sk_ioctl;
1385 ifp->if_start = sk_start;
1386 ifp->if_stop = sk_stop;
1387 ifp->if_init = sk_init;
1388 ifp->if_watchdog = sk_watchdog;
1389 ifp->if_capabilities = 0;
1390 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1391 IFQ_SET_READY(&ifp->if_snd);
1392 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1393
1394 /*
1395 * Do miibus setup.
1396 */
1397 switch (sc->sk_type) {
1398 case SK_GENESIS:
1399 sk_init_xmac(sc_if);
1400 break;
1401 case SK_YUKON:
1402 case SK_YUKON_LITE:
1403 case SK_YUKON_LP:
1404 sk_init_yukon(sc_if);
1405 break;
1406 default:
1407 aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
1408 sc->sk_type);
1409 goto fail;
1410 }
1411
1412 DPRINTFN(2, ("sk_attach: 1\n"));
1413
1414 sc_if->sk_mii.mii_ifp = ifp;
1415 switch (sc->sk_type) {
1416 case SK_GENESIS:
1417 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1418 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1419 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1420 break;
1421 case SK_YUKON:
1422 case SK_YUKON_LITE:
1423 case SK_YUKON_LP:
1424 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1425 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1426 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1427 mii_flags = MIIF_DOPAUSE;
1428 break;
1429 }
1430
1431 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1432 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1433 sk_ifmedia_upd, ether_mediastatus);
1434 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1435 MII_OFFSET_ANY, mii_flags);
1436 if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
1437 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1438 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1439 0, NULL);
1440 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1441 } else
1442 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1443
1444 callout_init(&sc_if->sk_tick_ch, 0);
1445 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1446
1447 DPRINTFN(2, ("sk_attach: 1\n"));
1448
1449 /*
1450 * Call MI attach routines.
1451 */
1452 if_attach(ifp);
1453
1454 ether_ifattach(ifp, sc_if->sk_enaddr);
1455
1456 #if NRND > 0
1457 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1458 RND_TYPE_NET, 0);
1459 #endif
1460
1461 DPRINTFN(2, ("sk_attach: end\n"));
1462
1463 return;
1464
1465 fail:
1466 sc->sk_if[sa->skc_port] = NULL;
1467 }
1468
1469 int
1470 skcprint(void *aux, const char *pnp)
1471 {
1472 struct skc_attach_args *sa = aux;
1473
1474 if (pnp)
1475 aprint_normal("sk port %c at %s",
1476 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1477 else
1478 aprint_normal(" port %c",
1479 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1480 return UNCONF;
1481 }
1482
1483 /*
1484 * Attach the interface. Allocate softc structures, do ifmedia
1485 * setup and ethernet/BPF attach.
1486 */
1487 void
1488 skc_attach(device_t parent, device_t self, void *aux)
1489 {
1490 struct sk_softc *sc = device_private(self);
1491 struct pci_attach_args *pa = aux;
1492 struct skc_attach_args skca;
1493 pci_chipset_tag_t pc = pa->pa_pc;
1494 #ifndef SK_USEIOSPACE
1495 pcireg_t memtype;
1496 #endif
1497 pci_intr_handle_t ih;
1498 const char *intrstr = NULL;
1499 bus_addr_t iobase;
1500 bus_size_t iosize;
1501 int rc, sk_nodenum;
1502 u_int32_t command;
1503 const char *revstr;
1504 const struct sysctlnode *node;
1505
1506 sc->sk_dev = self;
1507 aprint_naive("\n");
1508
1509 DPRINTFN(2, ("begin skc_attach\n"));
1510
1511 /*
1512 * Handle power management nonsense.
1513 */
1514 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1515
1516 if (command == 0x01) {
1517 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1518 if (command & SK_PSTATE_MASK) {
1519 u_int32_t xiobase, membase, irq;
1520
1521 /* Save important PCI config data. */
1522 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1523 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1524 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1525
1526 /* Reset the power state. */
1527 aprint_normal_dev(sc->sk_dev,
1528 "chip is in D%d power mode -- setting to D0\n",
1529 command & SK_PSTATE_MASK);
1530 command &= 0xFFFFFFFC;
1531 pci_conf_write(pc, pa->pa_tag,
1532 SK_PCI_PWRMGMTCTRL, command);
1533
1534 /* Restore PCI config data. */
1535 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1536 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1537 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1538 }
1539 }
1540
1541 /*
1542 * Map control/status registers.
1543 */
1544 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1545 command |= PCI_COMMAND_IO_ENABLE |
1546 PCI_COMMAND_MEM_ENABLE |
1547 PCI_COMMAND_MASTER_ENABLE;
1548 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1549 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1550
1551 #ifdef SK_USEIOSPACE
1552 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1553 aprint_error(": failed to enable I/O ports!\n");
1554 return;
1555 }
1556 /*
1557 * Map control/status registers.
1558 */
1559 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1560 &sc->sk_btag, &sc->sk_bhandle,
1561 &iobase, &iosize)) {
1562 aprint_error(": can't find i/o space\n");
1563 return;
1564 }
1565 #else
1566 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1567 aprint_error(": failed to enable memory mapping!\n");
1568 return;
1569 }
1570 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1571 switch (memtype) {
1572 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1573 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1574 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1575 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1576 &iobase, &iosize) == 0)
1577 break;
1578 default:
1579 aprint_error_dev(sc->sk_dev, "can't find mem space\n");
1580 return;
1581 }
1582
1583 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1584 #endif
1585 sc->sc_dmatag = pa->pa_dmat;
1586
1587 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1588 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1589
1590 /* bail out here if chip is not recognized */
1591 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1592 aprint_error_dev(sc->sk_dev, "unknown chip type\n");
1593 goto fail;
1594 }
1595 if (SK_IS_YUKON2(sc)) {
1596 aprint_error_dev(sc->sk_dev,
1597 "Does not support Yukon2--try msk(4).\n");
1598 goto fail;
1599 }
1600 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1601
1602 /* Allocate interrupt */
1603 if (pci_intr_map(pa, &ih)) {
1604 aprint_error(": couldn't map interrupt\n");
1605 goto fail;
1606 }
1607
1608 intrstr = pci_intr_string(pc, ih);
1609 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1610 if (sc->sk_intrhand == NULL) {
1611 aprint_error(": couldn't establish interrupt");
1612 if (intrstr != NULL)
1613 aprint_normal(" at %s", intrstr);
1614 goto fail;
1615 }
1616 aprint_normal(": %s\n", intrstr);
1617
1618 /* Reset the adapter. */
1619 sk_reset(sc);
1620
1621 /* Read and save vital product data from EEPROM. */
1622 sk_vpd_read(sc);
1623
1624 if (sc->sk_type == SK_GENESIS) {
1625 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1626 /* Read and save RAM size and RAMbuffer offset */
1627 switch (val) {
1628 case SK_RAMSIZE_512K_64:
1629 sc->sk_ramsize = 0x80000;
1630 sc->sk_rboff = SK_RBOFF_0;
1631 break;
1632 case SK_RAMSIZE_1024K_64:
1633 sc->sk_ramsize = 0x100000;
1634 sc->sk_rboff = SK_RBOFF_80000;
1635 break;
1636 case SK_RAMSIZE_1024K_128:
1637 sc->sk_ramsize = 0x100000;
1638 sc->sk_rboff = SK_RBOFF_0;
1639 break;
1640 case SK_RAMSIZE_2048K_128:
1641 sc->sk_ramsize = 0x200000;
1642 sc->sk_rboff = SK_RBOFF_0;
1643 break;
1644 default:
1645 aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
1646 val);
1647 goto fail_1;
1648 break;
1649 }
1650
1651 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1652 sc->sk_ramsize, sc->sk_ramsize / 1024,
1653 sc->sk_rboff));
1654 } else {
1655 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1656 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1657 sc->sk_rboff = SK_RBOFF_0;
1658
1659 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1660 sc->sk_ramsize / 1024, sc->sk_ramsize,
1661 sc->sk_rboff));
1662 }
1663
1664 /* Read and save physical media type */
1665 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1666 case SK_PMD_1000BASESX:
1667 sc->sk_pmd = IFM_1000_SX;
1668 break;
1669 case SK_PMD_1000BASELX:
1670 sc->sk_pmd = IFM_1000_LX;
1671 break;
1672 case SK_PMD_1000BASECX:
1673 sc->sk_pmd = IFM_1000_CX;
1674 break;
1675 case SK_PMD_1000BASETX:
1676 case SK_PMD_1000BASETX_ALT:
1677 sc->sk_pmd = IFM_1000_T;
1678 break;
1679 default:
1680 aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
1681 sk_win_read_1(sc, SK_PMDTYPE));
1682 goto fail_1;
1683 }
1684
1685 /* determine whether to name it with vpd or just make it up */
1686 /* Marvell Yukon VPD's can freqently be bogus */
1687
1688 switch (pa->pa_id) {
1689 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1690 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1691 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1692 case PCI_PRODUCT_3COM_3C940:
1693 case PCI_PRODUCT_DLINK_DGE530T:
1694 case PCI_PRODUCT_DLINK_DGE560T:
1695 case PCI_PRODUCT_DLINK_DGE560T_2:
1696 case PCI_PRODUCT_LINKSYS_EG1032:
1697 case PCI_PRODUCT_LINKSYS_EG1064:
1698 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1699 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1700 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1701 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1702 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1703 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1704 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1705 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1706 sc->sk_name = sc->sk_vpd_prodname;
1707 break;
1708 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1709 /* whoops yukon vpd prodname bears no resemblance to reality */
1710 switch (sc->sk_type) {
1711 case SK_GENESIS:
1712 sc->sk_name = sc->sk_vpd_prodname;
1713 break;
1714 case SK_YUKON:
1715 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1716 break;
1717 case SK_YUKON_LITE:
1718 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1719 break;
1720 case SK_YUKON_LP:
1721 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1722 break;
1723 default:
1724 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1725 }
1726
1727 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1728
1729 if ( sc->sk_type == SK_YUKON ) {
1730 uint32_t flashaddr;
1731 uint8_t testbyte;
1732
1733 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1734
1735 /* test Flash-Address Register */
1736 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1737 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1738
1739 if (testbyte != 0) {
1740 /* this is yukon lite Rev. A0 */
1741 sc->sk_type = SK_YUKON_LITE;
1742 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1743 /* restore Flash-Address Register */
1744 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1745 }
1746 }
1747 break;
1748 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1749 sc->sk_name = sc->sk_vpd_prodname;
1750 break;
1751 default:
1752 sc->sk_name = "Unknown Marvell";
1753 }
1754
1755
1756 if ( sc->sk_type == SK_YUKON_LITE ) {
1757 switch (sc->sk_rev) {
1758 case SK_YUKON_LITE_REV_A0:
1759 revstr = "A0";
1760 break;
1761 case SK_YUKON_LITE_REV_A1:
1762 revstr = "A1";
1763 break;
1764 case SK_YUKON_LITE_REV_A3:
1765 revstr = "A3";
1766 break;
1767 default:
1768 revstr = "";
1769 }
1770 } else {
1771 revstr = "";
1772 }
1773
1774 /* Announce the product name. */
1775 aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
1776 sc->sk_name, revstr, sc->sk_rev);
1777
1778 skca.skc_port = SK_PORT_A;
1779 (void)config_found(sc->sk_dev, &skca, skcprint);
1780
1781 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1782 skca.skc_port = SK_PORT_B;
1783 (void)config_found(sc->sk_dev, &skca, skcprint);
1784 }
1785
1786 /* Turn on the 'driver is loaded' LED. */
1787 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1788
1789 /* skc sysctl setup */
1790
1791 sc->sk_int_mod = SK_IM_DEFAULT;
1792 sc->sk_int_mod_pending = 0;
1793
1794 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1795 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1796 SYSCTL_DESCR("skc per-controller controls"),
1797 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1798 CTL_EOL)) != 0) {
1799 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1800 goto fail_1;
1801 }
1802
1803 sk_nodenum = node->sysctl_num;
1804
1805 /* interrupt moderation time in usecs */
1806 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1807 CTLFLAG_READWRITE,
1808 CTLTYPE_INT, "int_mod",
1809 SYSCTL_DESCR("sk interrupt moderation timer"),
1810 sk_sysctl_handler, 0, sc,
1811 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1812 CTL_EOL)) != 0) {
1813 aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1814 goto fail_1;
1815 }
1816
1817 return;
1818
1819 fail_1:
1820 pci_intr_disestablish(pc, sc->sk_intrhand);
1821 fail:
1822 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1823 }
1824
1825 int
1826 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1827 {
1828 struct sk_softc *sc = sc_if->sk_softc;
1829 struct sk_tx_desc *f = NULL;
1830 u_int32_t frag, cur, cnt = 0, sk_ctl;
1831 int i;
1832 struct sk_txmap_entry *entry;
1833 bus_dmamap_t txmap;
1834
1835 DPRINTFN(3, ("sk_encap\n"));
1836
1837 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1838 if (entry == NULL) {
1839 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1840 return ENOBUFS;
1841 }
1842 txmap = entry->dmamap;
1843
1844 cur = frag = *txidx;
1845
1846 #ifdef SK_DEBUG
1847 if (skdebug >= 3)
1848 sk_dump_mbuf(m_head);
1849 #endif
1850
1851 /*
1852 * Start packing the mbufs in this chain into
1853 * the fragment pointers. Stop when we run out
1854 * of fragments or hit the end of the mbuf chain.
1855 */
1856 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1857 BUS_DMA_NOWAIT)) {
1858 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1859 return ENOBUFS;
1860 }
1861
1862 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1863
1864 /* Sync the DMA map. */
1865 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1866 BUS_DMASYNC_PREWRITE);
1867
1868 for (i = 0; i < txmap->dm_nsegs; i++) {
1869 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1870 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1871 return ENOBUFS;
1872 }
1873 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1874 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1875 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1876 if (cnt == 0)
1877 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1878 else
1879 sk_ctl |= SK_TXCTL_OWN;
1880 f->sk_ctl = htole32(sk_ctl);
1881 cur = frag;
1882 SK_INC(frag, SK_TX_RING_CNT);
1883 cnt++;
1884 }
1885
1886 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1887 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1888
1889 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1890 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1891 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1892
1893 /* Sync descriptors before handing to chip */
1894 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1895 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1896
1897 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1898 htole32(SK_TXCTL_OWN);
1899
1900 /* Sync first descriptor to hand it off */
1901 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1902
1903 sc_if->sk_cdata.sk_tx_cnt += cnt;
1904
1905 #ifdef SK_DEBUG
1906 if (skdebug >= 3) {
1907 struct sk_tx_desc *desc;
1908 u_int32_t idx;
1909 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1910 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1911 sk_dump_txdesc(desc, idx);
1912 }
1913 }
1914 #endif
1915
1916 *txidx = frag;
1917
1918 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1919
1920 return 0;
1921 }
1922
1923 void
1924 sk_start(struct ifnet *ifp)
1925 {
1926 struct sk_if_softc *sc_if = ifp->if_softc;
1927 struct sk_softc *sc = sc_if->sk_softc;
1928 struct mbuf *m_head = NULL;
1929 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1930 int pkts = 0;
1931
1932 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1933 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1934
1935 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1936 IFQ_POLL(&ifp->if_snd, m_head);
1937 if (m_head == NULL)
1938 break;
1939
1940 /*
1941 * Pack the data into the transmit ring. If we
1942 * don't have room, set the OACTIVE flag and wait
1943 * for the NIC to drain the ring.
1944 */
1945 if (sk_encap(sc_if, m_head, &idx)) {
1946 ifp->if_flags |= IFF_OACTIVE;
1947 break;
1948 }
1949
1950 /* now we are committed to transmit the packet */
1951 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1952 pkts++;
1953
1954 /*
1955 * If there's a BPF listener, bounce a copy of this frame
1956 * to him.
1957 */
1958 #if NBPFILTER > 0
1959 if (ifp->if_bpf)
1960 bpf_mtap(ifp->if_bpf, m_head);
1961 #endif
1962 }
1963 if (pkts == 0)
1964 return;
1965
1966 /* Transmit */
1967 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1968 sc_if->sk_cdata.sk_tx_prod = idx;
1969 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1970
1971 /* Set a timeout in case the chip goes out to lunch. */
1972 ifp->if_timer = 5;
1973 }
1974 }
1975
1976
1977 void
1978 sk_watchdog(struct ifnet *ifp)
1979 {
1980 struct sk_if_softc *sc_if = ifp->if_softc;
1981
1982 /*
1983 * Reclaim first as there is a possibility of losing Tx completion
1984 * interrupts.
1985 */
1986 sk_txeof(sc_if);
1987 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1988 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1989
1990 ifp->if_oerrors++;
1991
1992 sk_init(ifp);
1993 }
1994 }
1995
1996 void
1997 sk_shutdown(void *v)
1998 {
1999 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
2000 struct sk_softc *sc = sc_if->sk_softc;
2001 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2002
2003 DPRINTFN(2, ("sk_shutdown\n"));
2004 sk_stop(ifp,1);
2005
2006 /* Turn off the 'driver is loaded' LED. */
2007 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2008
2009 /*
2010 * Reset the GEnesis controller. Doing this should also
2011 * assert the resets on the attached XMAC(s).
2012 */
2013 sk_reset(sc);
2014 }
2015
2016 void
2017 sk_rxeof(struct sk_if_softc *sc_if)
2018 {
2019 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2020 struct mbuf *m;
2021 struct sk_chain *cur_rx;
2022 struct sk_rx_desc *cur_desc;
2023 int i, cur, total_len = 0;
2024 u_int32_t rxstat, sk_ctl;
2025 bus_dmamap_t dmamap;
2026
2027 i = sc_if->sk_cdata.sk_rx_prod;
2028
2029 DPRINTFN(3, ("sk_rxeof %d\n", i));
2030
2031 for (;;) {
2032 cur = i;
2033
2034 /* Sync the descriptor */
2035 SK_CDRXSYNC(sc_if, cur,
2036 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2037
2038 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2039 if (sk_ctl & SK_RXCTL_OWN) {
2040 /* Invalidate the descriptor -- it's not ready yet */
2041 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2042 sc_if->sk_cdata.sk_rx_prod = i;
2043 break;
2044 }
2045
2046 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2047 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2048 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2049
2050 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2051 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2052
2053 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2054 m = cur_rx->sk_mbuf;
2055 cur_rx->sk_mbuf = NULL;
2056 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2057
2058 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2059
2060 SK_INC(i, SK_RX_RING_CNT);
2061
2062 if (rxstat & XM_RXSTAT_ERRFRAME) {
2063 ifp->if_ierrors++;
2064 sk_newbuf(sc_if, cur, m, dmamap);
2065 continue;
2066 }
2067
2068 /*
2069 * Try to allocate a new jumbo buffer. If that
2070 * fails, copy the packet to mbufs and put the
2071 * jumbo buffer back in the ring so it can be
2072 * re-used. If allocating mbufs fails, then we
2073 * have to drop the packet.
2074 */
2075 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2076 struct mbuf *m0;
2077 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2078 total_len + ETHER_ALIGN, 0, ifp, NULL);
2079 sk_newbuf(sc_if, cur, m, dmamap);
2080 if (m0 == NULL) {
2081 aprint_error_dev(sc_if->sk_dev, "no receive "
2082 "buffers available -- packet dropped!\n");
2083 ifp->if_ierrors++;
2084 continue;
2085 }
2086 m_adj(m0, ETHER_ALIGN);
2087 m = m0;
2088 } else {
2089 m->m_pkthdr.rcvif = ifp;
2090 m->m_pkthdr.len = m->m_len = total_len;
2091 }
2092
2093 ifp->if_ipackets++;
2094
2095 #if NBPFILTER > 0
2096 if (ifp->if_bpf)
2097 bpf_mtap(ifp->if_bpf, m);
2098 #endif
2099 /* pass it on. */
2100 (*ifp->if_input)(ifp, m);
2101 }
2102 }
2103
2104 void
2105 sk_txeof(struct sk_if_softc *sc_if)
2106 {
2107 struct sk_softc *sc = sc_if->sk_softc;
2108 struct sk_tx_desc *cur_tx;
2109 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2110 u_int32_t idx, sk_ctl;
2111 struct sk_txmap_entry *entry;
2112
2113 DPRINTFN(3, ("sk_txeof\n"));
2114
2115 /*
2116 * Go through our tx ring and free mbufs for those
2117 * frames that have been sent.
2118 */
2119 idx = sc_if->sk_cdata.sk_tx_cons;
2120 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2121 SK_CDTXSYNC(sc_if, idx, 1,
2122 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2123
2124 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2125 sk_ctl = le32toh(cur_tx->sk_ctl);
2126 #ifdef SK_DEBUG
2127 if (skdebug >= 3)
2128 sk_dump_txdesc(cur_tx, idx);
2129 #endif
2130 if (sk_ctl & SK_TXCTL_OWN) {
2131 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2132 break;
2133 }
2134 if (sk_ctl & SK_TXCTL_LASTFRAG)
2135 ifp->if_opackets++;
2136 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2137 entry = sc_if->sk_cdata.sk_tx_map[idx];
2138
2139 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2140 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2141
2142 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2143 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2144
2145 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2146 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2147 link);
2148 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2149 }
2150 sc_if->sk_cdata.sk_tx_cnt--;
2151 SK_INC(idx, SK_TX_RING_CNT);
2152 }
2153 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2154 ifp->if_timer = 0;
2155 else /* nudge chip to keep tx ring moving */
2156 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2157
2158 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2159 ifp->if_flags &= ~IFF_OACTIVE;
2160
2161 sc_if->sk_cdata.sk_tx_cons = idx;
2162 }
2163
2164 void
2165 sk_tick(void *xsc_if)
2166 {
2167 struct sk_if_softc *sc_if = xsc_if;
2168 struct mii_data *mii = &sc_if->sk_mii;
2169 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2170 int i;
2171
2172 DPRINTFN(3, ("sk_tick\n"));
2173
2174 if (!(ifp->if_flags & IFF_UP))
2175 return;
2176
2177 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2178 sk_intr_bcom(sc_if);
2179 return;
2180 }
2181
2182 /*
2183 * According to SysKonnect, the correct way to verify that
2184 * the link has come back up is to poll bit 0 of the GPIO
2185 * register three times. This pin has the signal from the
2186 * link sync pin connected to it; if we read the same link
2187 * state 3 times in a row, we know the link is up.
2188 */
2189 for (i = 0; i < 3; i++) {
2190 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2191 break;
2192 }
2193
2194 if (i != 3) {
2195 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2196 return;
2197 }
2198
2199 /* Turn the GP0 interrupt back on. */
2200 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2201 SK_XM_READ_2(sc_if, XM_ISR);
2202 mii_tick(mii);
2203 mii_pollstat(mii);
2204 callout_stop(&sc_if->sk_tick_ch);
2205 }
2206
2207 void
2208 sk_intr_bcom(struct sk_if_softc *sc_if)
2209 {
2210 struct mii_data *mii = &sc_if->sk_mii;
2211 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2212 int status;
2213
2214
2215 DPRINTFN(3, ("sk_intr_bcom\n"));
2216
2217 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2218
2219 /*
2220 * Read the PHY interrupt register to make sure
2221 * we clear any pending interrupts.
2222 */
2223 status = sk_xmac_miibus_readreg(sc_if->sk_dev,
2224 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2225
2226 if (!(ifp->if_flags & IFF_RUNNING)) {
2227 sk_init_xmac(sc_if);
2228 return;
2229 }
2230
2231 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2232 int lstat;
2233 lstat = sk_xmac_miibus_readreg(sc_if->sk_dev,
2234 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2235
2236 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2237 (void)mii_mediachg(mii);
2238 /* Turn off the link LED. */
2239 SK_IF_WRITE_1(sc_if, 0,
2240 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2241 sc_if->sk_link = 0;
2242 } else if (status & BRGPHY_ISR_LNK_CHG) {
2243 sk_xmac_miibus_writereg(sc_if->sk_dev,
2244 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2245 mii_tick(mii);
2246 sc_if->sk_link = 1;
2247 /* Turn on the link LED. */
2248 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2249 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2250 SK_LINKLED_BLINK_OFF);
2251 mii_pollstat(mii);
2252 } else {
2253 mii_tick(mii);
2254 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2255 }
2256 }
2257
2258 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2259 }
2260
2261 void
2262 sk_intr_xmac(struct sk_if_softc *sc_if)
2263 {
2264 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2265
2266 DPRINTFN(3, ("sk_intr_xmac\n"));
2267
2268 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2269 if (status & XM_ISR_GP0_SET) {
2270 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2271 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2272 }
2273
2274 if (status & XM_ISR_AUTONEG_DONE) {
2275 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2276 }
2277 }
2278
2279 if (status & XM_IMR_TX_UNDERRUN)
2280 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2281
2282 if (status & XM_IMR_RX_OVERRUN)
2283 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2284 }
2285
2286 void
2287 sk_intr_yukon(struct sk_if_softc *sc_if)
2288 {
2289 int status;
2290
2291 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2292
2293 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2294 }
2295
2296 int
2297 sk_intr(void *xsc)
2298 {
2299 struct sk_softc *sc = xsc;
2300 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2301 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2302 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2303 u_int32_t status;
2304 int claimed = 0;
2305
2306 if (sc_if0 != NULL)
2307 ifp0 = &sc_if0->sk_ethercom.ec_if;
2308 if (sc_if1 != NULL)
2309 ifp1 = &sc_if1->sk_ethercom.ec_if;
2310
2311 for (;;) {
2312 status = CSR_READ_4(sc, SK_ISSR);
2313 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2314
2315 if (!(status & sc->sk_intrmask))
2316 break;
2317
2318 claimed = 1;
2319
2320 /* Handle receive interrupts first. */
2321 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2322 sk_rxeof(sc_if0);
2323 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2324 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2325 }
2326 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2327 sk_rxeof(sc_if1);
2328 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2329 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2330 }
2331
2332 /* Then transmit interrupts. */
2333 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2334 sk_txeof(sc_if0);
2335 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2336 SK_TXBMU_CLR_IRQ_EOF);
2337 }
2338 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2339 sk_txeof(sc_if1);
2340 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2341 SK_TXBMU_CLR_IRQ_EOF);
2342 }
2343
2344 /* Then MAC interrupts. */
2345 if (sc_if0 && (status & SK_ISR_MAC1) &&
2346 (ifp0->if_flags & IFF_RUNNING)) {
2347 if (sc->sk_type == SK_GENESIS)
2348 sk_intr_xmac(sc_if0);
2349 else
2350 sk_intr_yukon(sc_if0);
2351 }
2352
2353 if (sc_if1 && (status & SK_ISR_MAC2) &&
2354 (ifp1->if_flags & IFF_RUNNING)) {
2355 if (sc->sk_type == SK_GENESIS)
2356 sk_intr_xmac(sc_if1);
2357 else
2358 sk_intr_yukon(sc_if1);
2359
2360 }
2361
2362 if (status & SK_ISR_EXTERNAL_REG) {
2363 if (sc_if0 != NULL &&
2364 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2365 sk_intr_bcom(sc_if0);
2366
2367 if (sc_if1 != NULL &&
2368 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2369 sk_intr_bcom(sc_if1);
2370 }
2371 }
2372
2373 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2374
2375 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2376 sk_start(ifp0);
2377 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2378 sk_start(ifp1);
2379
2380 #if NRND > 0
2381 if (RND_ENABLED(&sc->rnd_source))
2382 rnd_add_uint32(&sc->rnd_source, status);
2383 #endif
2384
2385 if (sc->sk_int_mod_pending)
2386 sk_update_int_mod(sc);
2387
2388 return claimed;
2389 }
2390
2391 void
2392 sk_init_xmac(struct sk_if_softc *sc_if)
2393 {
2394 struct sk_softc *sc = sc_if->sk_softc;
2395 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2396 static const struct sk_bcom_hack bhack[] = {
2397 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2398 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2399 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2400 { 0, 0 } };
2401
2402 DPRINTFN(1, ("sk_init_xmac\n"));
2403
2404 /* Unreset the XMAC. */
2405 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2406 DELAY(1000);
2407
2408 /* Reset the XMAC's internal state. */
2409 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2410
2411 /* Save the XMAC II revision */
2412 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2413
2414 /*
2415 * Perform additional initialization for external PHYs,
2416 * namely for the 1000baseTX cards that use the XMAC's
2417 * GMII mode.
2418 */
2419 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2420 int i = 0;
2421 u_int32_t val;
2422
2423 /* Take PHY out of reset. */
2424 val = sk_win_read_4(sc, SK_GPIO);
2425 if (sc_if->sk_port == SK_PORT_A)
2426 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2427 else
2428 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2429 sk_win_write_4(sc, SK_GPIO, val);
2430
2431 /* Enable GMII mode on the XMAC. */
2432 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2433
2434 sk_xmac_miibus_writereg(sc_if->sk_dev,
2435 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2436 DELAY(10000);
2437 sk_xmac_miibus_writereg(sc_if->sk_dev,
2438 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2439
2440 /*
2441 * Early versions of the BCM5400 apparently have
2442 * a bug that requires them to have their reserved
2443 * registers initialized to some magic values. I don't
2444 * know what the numbers do, I'm just the messenger.
2445 */
2446 if (sk_xmac_miibus_readreg(sc_if->sk_dev,
2447 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2448 while (bhack[i].reg) {
2449 sk_xmac_miibus_writereg(sc_if->sk_dev,
2450 SK_PHYADDR_BCOM, bhack[i].reg,
2451 bhack[i].val);
2452 i++;
2453 }
2454 }
2455 }
2456
2457 /* Set station address */
2458 SK_XM_WRITE_2(sc_if, XM_PAR0,
2459 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2460 SK_XM_WRITE_2(sc_if, XM_PAR1,
2461 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2462 SK_XM_WRITE_2(sc_if, XM_PAR2,
2463 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2464 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2465
2466 if (ifp->if_flags & IFF_PROMISC)
2467 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2468 else
2469 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2470
2471 if (ifp->if_flags & IFF_BROADCAST)
2472 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2473 else
2474 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2475
2476 /* We don't need the FCS appended to the packet. */
2477 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2478
2479 /* We want short frames padded to 60 bytes. */
2480 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2481
2482 /*
2483 * Enable the reception of all error frames. This is is
2484 * a necessary evil due to the design of the XMAC. The
2485 * XMAC's receive FIFO is only 8K in size, however jumbo
2486 * frames can be up to 9000 bytes in length. When bad
2487 * frame filtering is enabled, the XMAC's RX FIFO operates
2488 * in 'store and forward' mode. For this to work, the
2489 * entire frame has to fit into the FIFO, but that means
2490 * that jumbo frames larger than 8192 bytes will be
2491 * truncated. Disabling all bad frame filtering causes
2492 * the RX FIFO to operate in streaming mode, in which
2493 * case the XMAC will start transfering frames out of the
2494 * RX FIFO as soon as the FIFO threshold is reached.
2495 */
2496 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2497 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2498 XM_MODE_RX_INRANGELEN);
2499
2500 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2501 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2502 else
2503 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2504
2505 /*
2506 * Bump up the transmit threshold. This helps hold off transmit
2507 * underruns when we're blasting traffic from both ports at once.
2508 */
2509 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2510
2511 /* Set multicast filter */
2512 sk_setmulti(sc_if);
2513
2514 /* Clear and enable interrupts */
2515 SK_XM_READ_2(sc_if, XM_ISR);
2516 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2517 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2518 else
2519 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2520
2521 /* Configure MAC arbiter */
2522 switch (sc_if->sk_xmac_rev) {
2523 case XM_XMAC_REV_B2:
2524 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2525 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2526 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2527 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2528 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2529 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2530 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2531 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2532 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2533 break;
2534 case XM_XMAC_REV_C1:
2535 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2536 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2537 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2538 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2539 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2540 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2541 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2542 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2543 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2544 break;
2545 default:
2546 break;
2547 }
2548 sk_win_write_2(sc, SK_MACARB_CTL,
2549 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2550
2551 sc_if->sk_link = 1;
2552 }
2553
2554 void sk_init_yukon(struct sk_if_softc *sc_if)
2555 {
2556 u_int32_t /*mac, */phy;
2557 u_int16_t reg;
2558 struct sk_softc *sc;
2559 int i;
2560
2561 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2562 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2563
2564 sc = sc_if->sk_softc;
2565 if (sc->sk_type == SK_YUKON_LITE &&
2566 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2567 /* Take PHY out of reset. */
2568 sk_win_write_4(sc, SK_GPIO,
2569 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2570 }
2571
2572
2573 /* GMAC and GPHY Reset */
2574 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2575
2576 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2577
2578 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2579 DELAY(1000);
2580 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2581 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2582 DELAY(1000);
2583
2584
2585 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2586
2587 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2588 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2589
2590 switch (sc_if->sk_softc->sk_pmd) {
2591 case IFM_1000_SX:
2592 case IFM_1000_LX:
2593 phy |= SK_GPHY_FIBER;
2594 break;
2595
2596 case IFM_1000_CX:
2597 case IFM_1000_T:
2598 phy |= SK_GPHY_COPPER;
2599 break;
2600 }
2601
2602 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2603
2604 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2605 DELAY(1000);
2606 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2607 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2608 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2609
2610 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2611 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2612
2613 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2614
2615 /* unused read of the interrupt source register */
2616 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2617 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2618
2619 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2620 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2621 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2622
2623 /* MIB Counter Clear Mode set */
2624 reg |= YU_PAR_MIB_CLR;
2625 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2626 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2627 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2628
2629 /* MIB Counter Clear Mode clear */
2630 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2631 reg &= ~YU_PAR_MIB_CLR;
2632 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2633
2634 /* receive control reg */
2635 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2636 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2637 YU_RCR_CRCR);
2638
2639 /* transmit parameter register */
2640 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2641 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2642 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2643
2644 /* serial mode register */
2645 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2646 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2647 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2648 YU_SMR_IPG_DATA(0x1e));
2649
2650 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2651 /* Setup Yukon's address */
2652 for (i = 0; i < 3; i++) {
2653 /* Write Source Address 1 (unicast filter) */
2654 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2655 sc_if->sk_enaddr[i * 2] |
2656 sc_if->sk_enaddr[i * 2 + 1] << 8);
2657 }
2658
2659 for (i = 0; i < 3; i++) {
2660 reg = sk_win_read_2(sc_if->sk_softc,
2661 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2662 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2663 }
2664
2665 /* Set multicast filter */
2666 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2667 sk_setmulti(sc_if);
2668
2669 /* enable interrupt mask for counter overflows */
2670 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2671 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2672 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2673 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2674
2675 /* Configure RX MAC FIFO */
2676 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2677 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2678
2679 /* Configure TX MAC FIFO */
2680 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2681 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2682
2683 DPRINTFN(6, ("sk_init_yukon: end\n"));
2684 }
2685
2686 /*
2687 * Note that to properly initialize any part of the GEnesis chip,
2688 * you first have to take it out of reset mode.
2689 */
2690 int
2691 sk_init(struct ifnet *ifp)
2692 {
2693 struct sk_if_softc *sc_if = ifp->if_softc;
2694 struct sk_softc *sc = sc_if->sk_softc;
2695 struct mii_data *mii = &sc_if->sk_mii;
2696 int rc = 0, s;
2697 u_int32_t imr, imtimer_ticks;
2698
2699 DPRINTFN(1, ("sk_init\n"));
2700
2701 s = splnet();
2702
2703 if (ifp->if_flags & IFF_RUNNING) {
2704 splx(s);
2705 return 0;
2706 }
2707
2708 /* Cancel pending I/O and free all RX/TX buffers. */
2709 sk_stop(ifp,0);
2710
2711 if (sc->sk_type == SK_GENESIS) {
2712 /* Configure LINK_SYNC LED */
2713 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2714 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2715 SK_LINKLED_LINKSYNC_ON);
2716
2717 /* Configure RX LED */
2718 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2719 SK_RXLEDCTL_COUNTER_START);
2720
2721 /* Configure TX LED */
2722 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2723 SK_TXLEDCTL_COUNTER_START);
2724 }
2725
2726 /* Configure I2C registers */
2727
2728 /* Configure XMAC(s) */
2729 switch (sc->sk_type) {
2730 case SK_GENESIS:
2731 sk_init_xmac(sc_if);
2732 break;
2733 case SK_YUKON:
2734 case SK_YUKON_LITE:
2735 case SK_YUKON_LP:
2736 sk_init_yukon(sc_if);
2737 break;
2738 }
2739 if ((rc = mii_mediachg(mii)) == ENXIO)
2740 rc = 0;
2741 else if (rc != 0)
2742 goto out;
2743
2744 if (sc->sk_type == SK_GENESIS) {
2745 /* Configure MAC FIFOs */
2746 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2747 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2748 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2749
2750 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2751 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2752 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2753 }
2754
2755 /* Configure transmit arbiter(s) */
2756 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2757 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2758
2759 /* Configure RAMbuffers */
2760 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2761 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2762 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2763 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2764 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2765 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2766
2767 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2768 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2769 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2770 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2771 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2772 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2773 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2774
2775 /* Configure BMUs */
2776 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2777 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2778 SK_RX_RING_ADDR(sc_if, 0));
2779 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2780
2781 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2782 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2783 SK_TX_RING_ADDR(sc_if, 0));
2784 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2785
2786 /* Init descriptors */
2787 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2788 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2789 "memory for rx buffers\n");
2790 sk_stop(ifp,0);
2791 splx(s);
2792 return ENOBUFS;
2793 }
2794
2795 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2796 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2797 "memory for tx buffers\n");
2798 sk_stop(ifp,0);
2799 splx(s);
2800 return ENOBUFS;
2801 }
2802
2803 /* Set interrupt moderation if changed via sysctl. */
2804 switch (sc->sk_type) {
2805 case SK_GENESIS:
2806 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2807 break;
2808 case SK_YUKON_EC:
2809 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2810 break;
2811 default:
2812 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2813 }
2814 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2815 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2816 sk_win_write_4(sc, SK_IMTIMERINIT,
2817 SK_IM_USECS(sc->sk_int_mod));
2818 aprint_verbose_dev(sc->sk_dev,
2819 "interrupt moderation is %d us\n", sc->sk_int_mod);
2820 }
2821
2822 /* Configure interrupt handling */
2823 CSR_READ_4(sc, SK_ISSR);
2824 if (sc_if->sk_port == SK_PORT_A)
2825 sc->sk_intrmask |= SK_INTRS1;
2826 else
2827 sc->sk_intrmask |= SK_INTRS2;
2828
2829 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2830
2831 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2832
2833 /* Start BMUs. */
2834 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2835
2836 if (sc->sk_type == SK_GENESIS) {
2837 /* Enable XMACs TX and RX state machines */
2838 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2839 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2840 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2841 }
2842
2843 if (SK_YUKON_FAMILY(sc->sk_type)) {
2844 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2845 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2846 #if 0
2847 /* XXX disable 100Mbps and full duplex mode? */
2848 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2849 #endif
2850 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2851 }
2852
2853
2854 ifp->if_flags |= IFF_RUNNING;
2855 ifp->if_flags &= ~IFF_OACTIVE;
2856
2857 out:
2858 splx(s);
2859 return rc;
2860 }
2861
2862 void
2863 sk_stop(struct ifnet *ifp, int disable)
2864 {
2865 struct sk_if_softc *sc_if = ifp->if_softc;
2866 struct sk_softc *sc = sc_if->sk_softc;
2867 int i;
2868
2869 DPRINTFN(1, ("sk_stop\n"));
2870
2871 callout_stop(&sc_if->sk_tick_ch);
2872
2873 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2874 u_int32_t val;
2875
2876 /* Put PHY back into reset. */
2877 val = sk_win_read_4(sc, SK_GPIO);
2878 if (sc_if->sk_port == SK_PORT_A) {
2879 val |= SK_GPIO_DIR0;
2880 val &= ~SK_GPIO_DAT0;
2881 } else {
2882 val |= SK_GPIO_DIR2;
2883 val &= ~SK_GPIO_DAT2;
2884 }
2885 sk_win_write_4(sc, SK_GPIO, val);
2886 }
2887
2888 /* Turn off various components of this interface. */
2889 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2890 switch (sc->sk_type) {
2891 case SK_GENESIS:
2892 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2893 SK_TXMACCTL_XMAC_RESET);
2894 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2895 break;
2896 case SK_YUKON:
2897 case SK_YUKON_LITE:
2898 case SK_YUKON_LP:
2899 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2900 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2901 break;
2902 }
2903 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2904 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2905 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2906 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2907 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2908 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2909 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2910 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2911 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2912
2913 /* Disable interrupts */
2914 if (sc_if->sk_port == SK_PORT_A)
2915 sc->sk_intrmask &= ~SK_INTRS1;
2916 else
2917 sc->sk_intrmask &= ~SK_INTRS2;
2918 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2919
2920 SK_XM_READ_2(sc_if, XM_ISR);
2921 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2922
2923 /* Free RX and TX mbufs still in the queues. */
2924 for (i = 0; i < SK_RX_RING_CNT; i++) {
2925 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2926 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2927 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2928 }
2929 }
2930
2931 for (i = 0; i < SK_TX_RING_CNT; i++) {
2932 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2933 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2934 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2935 }
2936 }
2937
2938 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2939 }
2940
2941 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
2942 skc_probe, skc_attach, NULL, NULL);
2943
2944 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
2945 sk_probe, sk_attach, NULL, NULL);
2946
2947 #ifdef SK_DEBUG
2948 void
2949 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2950 {
2951 #define DESC_PRINT(X) \
2952 if (X) \
2953 printf("txdesc[%d]." #X "=%#x\n", \
2954 idx, X);
2955
2956 DESC_PRINT(le32toh(desc->sk_ctl));
2957 DESC_PRINT(le32toh(desc->sk_next));
2958 DESC_PRINT(le32toh(desc->sk_data_lo));
2959 DESC_PRINT(le32toh(desc->sk_data_hi));
2960 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2961 DESC_PRINT(le16toh(desc->sk_rsvd0));
2962 DESC_PRINT(le16toh(desc->sk_csum_startval));
2963 DESC_PRINT(le16toh(desc->sk_csum_startpos));
2964 DESC_PRINT(le16toh(desc->sk_csum_writepos));
2965 DESC_PRINT(le16toh(desc->sk_rsvd1));
2966 #undef PRINT
2967 }
2968
2969 void
2970 sk_dump_bytes(const char *data, int len)
2971 {
2972 int c, i, j;
2973
2974 for (i = 0; i < len; i += 16) {
2975 printf("%08x ", i);
2976 c = len - i;
2977 if (c > 16) c = 16;
2978
2979 for (j = 0; j < c; j++) {
2980 printf("%02x ", data[i + j] & 0xff);
2981 if ((j & 0xf) == 7 && j > 0)
2982 printf(" ");
2983 }
2984
2985 for (; j < 16; j++)
2986 printf(" ");
2987 printf(" ");
2988
2989 for (j = 0; j < c; j++) {
2990 int ch = data[i + j] & 0xff;
2991 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2992 }
2993
2994 printf("\n");
2995
2996 if (c < 16)
2997 break;
2998 }
2999 }
3000
3001 void
3002 sk_dump_mbuf(struct mbuf *m)
3003 {
3004 int count = m->m_pkthdr.len;
3005
3006 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3007
3008 while (count > 0 && m) {
3009 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3010 m, m->m_data, m->m_len);
3011 sk_dump_bytes(mtod(m, char *), m->m_len);
3012
3013 count -= m->m_len;
3014 m = m->m_next;
3015 }
3016 }
3017 #endif
3018
3019 static int
3020 sk_sysctl_handler(SYSCTLFN_ARGS)
3021 {
3022 int error, t;
3023 struct sysctlnode node;
3024 struct sk_softc *sc;
3025
3026 node = *rnode;
3027 sc = node.sysctl_data;
3028 t = sc->sk_int_mod;
3029 node.sysctl_data = &t;
3030 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3031 if (error || newp == NULL)
3032 return error;
3033
3034 if (t < SK_IM_MIN || t > SK_IM_MAX)
3035 return EINVAL;
3036
3037 /* update the softc with sysctl-changed value, and mark
3038 for hardware update */
3039 sc->sk_int_mod = t;
3040 sc->sk_int_mod_pending = 1;
3041 return 0;
3042 }
3043
3044 /*
3045 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3046 * set up in skc_attach()
3047 */
3048 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3049 {
3050 int rc;
3051 const struct sysctlnode *node;
3052
3053 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3054 0, CTLTYPE_NODE, "hw", NULL,
3055 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3056 goto err;
3057 }
3058
3059 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3060 0, CTLTYPE_NODE, "sk",
3061 SYSCTL_DESCR("sk interface controls"),
3062 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3063 goto err;
3064 }
3065
3066 sk_root_num = node->sysctl_num;
3067 return;
3068
3069 err:
3070 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3071 }
3072