if_sk.c revision 1.6 1 /* $NetBSD: if_sk.c,v 1.6 2003/12/17 09:17:07 tls Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the NetBSD
18 * Foundation, Inc. and its contributors.
19 * 4. Neither the name of The NetBSD Foundation nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /* $OpenBSD: if_sk.c,v 1.33 2003/08/12 05:23:06 nate Exp $ */
37
38 /*
39 * Copyright (c) 1997, 1998, 1999, 2000
40 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Bill Paul.
53 * 4. Neither the name of the author nor the names of any co-contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67 * THE POSSIBILITY OF SUCH DAMAGE.
68 *
69 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70 */
71
72 /*
73 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
74 *
75 * Permission to use, copy, modify, and distribute this software for any
76 * purpose with or without fee is hereby granted, provided that the above
77 * copyright notice and this permission notice appear in all copies.
78 *
79 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86 */
87
88 /*
89 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90 * the SK-984x series adapters, both single port and dual port.
91 * References:
92 * The XaQti XMAC II datasheet,
93 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 * The SysKonnect GEnesis manual, http://www.syskonnect.com
95 *
96 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98 * convenience to others until Vitesse corrects this problem:
99 *
100 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101 *
102 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
103 * Department of Electrical Engineering
104 * Columbia University, New York City
105 */
106
107 /*
108 * The SysKonnect gigabit ethernet adapters consist of two main
109 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111 * components and a PHY while the GEnesis controller provides a PCI
112 * interface with DMA support. Each card may have between 512K and
113 * 2MB of SRAM on board depending on the configuration.
114 *
115 * The SysKonnect GEnesis controller can have either one or two XMAC
116 * chips connected to it, allowing single or dual port NIC configurations.
117 * SysKonnect has the distinction of being the only vendor on the market
118 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120 * XMAC registers. This driver takes advantage of these features to allow
121 * both XMACs to operate as independent interfaces.
122 */
123
124 #include "bpfilter.h"
125
126 #include <sys/param.h>
127 #include <sys/systm.h>
128 #include <sys/sockio.h>
129 #include <sys/mbuf.h>
130 #include <sys/malloc.h>
131 #include <sys/kernel.h>
132 #include <sys/socket.h>
133 #include <sys/device.h>
134 #include <sys/queue.h>
135 #include <sys/callout.h>
136
137 #include <net/if.h>
138 #include <net/if_dl.h>
139 #include <net/if_types.h>
140
141 #ifdef INET
142 #include <netinet/in.h>
143 #include <netinet/in_systm.h>
144 #include <netinet/in_var.h>
145 #include <netinet/ip.h>
146 #include <netinet/if_ether.h>
147 #endif
148
149 #include <net/if_media.h>
150
151 #if NBPFILTER > 0
152 #include <net/bpf.h>
153 #endif
154
155 #include <dev/mii/mii.h>
156 #include <dev/mii/miivar.h>
157 #include <dev/mii/brgphyreg.h>
158
159 #include <dev/pci/pcireg.h>
160 #include <dev/pci/pcivar.h>
161 #include <dev/pci/pcidevs.h>
162
163 #define SK_VERBOSE
164 /* #define SK_USEIOSPACE */
165
166 #include <dev/pci/if_skreg.h>
167 #include <dev/pci/if_skvar.h>
168
169 int skc_probe(struct device *, struct cfdata *, void *);
170 void skc_attach(struct device *, struct device *self, void *aux);
171 int sk_probe(struct device *, struct cfdata *, void *);
172 void sk_attach(struct device *, struct device *self, void *aux);
173 int skcprint(void *, const char *);
174 int sk_intr(void *);
175 void sk_intr_bcom(struct sk_if_softc *);
176 void sk_intr_xmac(struct sk_if_softc *);
177 void sk_intr_yukon(struct sk_if_softc *);
178 void sk_rxeof(struct sk_if_softc *);
179 void sk_txeof(struct sk_if_softc *);
180 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
181 void sk_start(struct ifnet *);
182 int sk_ioctl(struct ifnet *, u_long, caddr_t);
183 int sk_init(struct ifnet *);
184 void sk_init_xmac(struct sk_if_softc *);
185 void sk_init_yukon(struct sk_if_softc *);
186 void sk_stop(struct ifnet *, int);
187 void sk_watchdog(struct ifnet *);
188 void sk_shutdown(void *);
189 int sk_ifmedia_upd(struct ifnet *);
190 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
191 void sk_reset(struct sk_softc *);
192 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
193 int sk_init_rx_ring(struct sk_if_softc *);
194 int sk_init_tx_ring(struct sk_if_softc *);
195 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
196 void sk_vpd_read_res(struct sk_softc *,
197 struct vpd_res *, int);
198 void sk_vpd_read(struct sk_softc *);
199
200 int sk_xmac_miibus_readreg(struct device *, int, int);
201 void sk_xmac_miibus_writereg(struct device *, int, int, int);
202 void sk_xmac_miibus_statchg(struct device *);
203
204 int sk_marv_miibus_readreg(struct device *, int, int);
205 void sk_marv_miibus_writereg(struct device *, int, int, int);
206 void sk_marv_miibus_statchg(struct device *);
207
208 u_int32_t sk_calchash(caddr_t);
209 void sk_setfilt(struct sk_if_softc *, caddr_t, int);
210 void sk_setmulti(struct sk_if_softc *);
211 void sk_tick(void *);
212
213 /* #define SK_DEBUG 2 */
214 #ifdef SK_DEBUG
215 #define DPRINTF(x) if (skdebug) printf x
216 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
217 int skdebug = SK_DEBUG;
218
219 void sk_dump_txdesc(struct sk_tx_desc *, int);
220 void sk_dump_mbuf(struct mbuf *);
221 void sk_dump_bytes(const char *, int);
222 #else
223 #define DPRINTF(x)
224 #define DPRINTFN(n,x)
225 #endif
226
227 #define SK_SETBIT(sc, reg, x) \
228 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
229
230 #define SK_CLRBIT(sc, reg, x) \
231 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
232
233 #define SK_WIN_SETBIT_4(sc, reg, x) \
234 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
235
236 #define SK_WIN_CLRBIT_4(sc, reg, x) \
237 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
238
239 #define SK_WIN_SETBIT_2(sc, reg, x) \
240 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
241
242 #define SK_WIN_CLRBIT_2(sc, reg, x) \
243 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
244
245 /* supported device vendors */
246 static const struct sk_product {
247 pci_vendor_id_t sk_vendor;
248 pci_product_id_t sk_product;
249 } sk_products[] = {
250 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
251 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
252 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032, },
253 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
254 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
255 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
256 { 0, 0, }
257 };
258
259 static inline u_int32_t
260 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
261 {
262 #ifdef SK_USEIOSPACE
263 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
264 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
265 #else
266 return CSR_READ_4(sc, reg);
267 #endif
268 }
269
270 static inline u_int16_t
271 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
272 {
273 #ifdef SK_USEIOSPACE
274 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
275 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
276 #else
277 return CSR_READ_2(sc, reg);
278 #endif
279 }
280
281 static inline u_int8_t
282 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
283 {
284 #ifdef SK_USEIOSPACE
285 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
286 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
287 #else
288 return CSR_READ_1(sc, reg);
289 #endif
290 }
291
292 static inline void
293 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
294 {
295 #ifdef SK_USEIOSPACE
296 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
297 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
298 #else
299 CSR_WRITE_4(sc, reg, x);
300 #endif
301 }
302
303 static inline void
304 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
305 {
306 #ifdef SK_USEIOSPACE
307 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
308 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
309 #else
310 CSR_WRITE_2(sc, reg, x);
311 #endif
312 }
313
314 static inline void
315 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
316 {
317 #ifdef SK_USEIOSPACE
318 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
319 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
320 #else
321 CSR_WRITE_1(sc, reg, x);
322 #endif
323 }
324
325 /*
326 * The VPD EEPROM contains Vital Product Data, as suggested in
327 * the PCI 2.1 specification. The VPD data is separared into areas
328 * denoted by resource IDs. The SysKonnect VPD contains an ID string
329 * resource (the name of the adapter), a read-only area resource
330 * containing various key/data fields and a read/write area which
331 * can be used to store asset management information or log messages.
332 * We read the ID string and read-only into buffers attached to
333 * the controller softc structure for later use. At the moment,
334 * we only use the ID string during sk_attach().
335 */
336 u_int8_t
337 sk_vpd_readbyte(struct sk_softc *sc, int addr)
338 {
339 int i;
340
341 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
342 for (i = 0; i < SK_TIMEOUT; i++) {
343 DELAY(1);
344 if (sk_win_read_2(sc,
345 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
346 break;
347 }
348
349 if (i == SK_TIMEOUT)
350 return(0);
351
352 return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
353 }
354
355 void
356 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
357 {
358 int i;
359 u_int8_t *ptr;
360
361 ptr = (u_int8_t *)res;
362 for (i = 0; i < sizeof(struct vpd_res); i++)
363 ptr[i] = sk_vpd_readbyte(sc, i + addr);
364 }
365
366 void
367 sk_vpd_read(struct sk_softc *sc)
368 {
369 int pos = 0, i;
370 struct vpd_res res;
371
372 if (sc->sk_vpd_prodname != NULL)
373 free(sc->sk_vpd_prodname, M_DEVBUF);
374 if (sc->sk_vpd_readonly != NULL)
375 free(sc->sk_vpd_readonly, M_DEVBUF);
376 sc->sk_vpd_prodname = NULL;
377 sc->sk_vpd_readonly = NULL;
378
379 sk_vpd_read_res(sc, &res, pos);
380
381 if (res.vr_id != VPD_RES_ID) {
382 printf("%s: bad VPD resource id: expected %x got %x\n",
383 sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
384 return;
385 }
386
387 pos += sizeof(res);
388 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
389 if (sc->sk_vpd_prodname == NULL)
390 panic("sk_vpd_read");
391 for (i = 0; i < res.vr_len; i++)
392 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
393 sc->sk_vpd_prodname[i] = '\0';
394 pos += i;
395
396 sk_vpd_read_res(sc, &res, pos);
397
398 if (res.vr_id != VPD_RES_READ) {
399 printf("%s: bad VPD resource id: expected %x got %x\n",
400 sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
401 return;
402 }
403
404 pos += sizeof(res);
405 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
406 if (sc->sk_vpd_readonly == NULL)
407 panic("sk_vpd_read");
408 for (i = 0; i < res.vr_len + 1; i++)
409 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
410 }
411
412 int
413 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
414 {
415 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
416 int i;
417
418 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
419
420 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
421 return(0);
422
423 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
424 SK_XM_READ_2(sc_if, XM_PHY_DATA);
425 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
426 for (i = 0; i < SK_TIMEOUT; i++) {
427 DELAY(1);
428 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
429 XM_MMUCMD_PHYDATARDY)
430 break;
431 }
432
433 if (i == SK_TIMEOUT) {
434 printf("%s: phy failed to come ready\n",
435 sc_if->sk_dev.dv_xname);
436 return(0);
437 }
438 }
439 DELAY(1);
440 return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
441 }
442
443 void
444 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
445 {
446 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
447 int i;
448
449 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
450
451 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
452 for (i = 0; i < SK_TIMEOUT; i++) {
453 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
454 break;
455 }
456
457 if (i == SK_TIMEOUT) {
458 printf("%s: phy failed to come ready\n",
459 sc_if->sk_dev.dv_xname);
460 return;
461 }
462
463 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
464 for (i = 0; i < SK_TIMEOUT; i++) {
465 DELAY(1);
466 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
467 break;
468 }
469
470 if (i == SK_TIMEOUT)
471 printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
472 }
473
474 void
475 sk_xmac_miibus_statchg(struct device *dev)
476 {
477 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
478 struct mii_data *mii = &sc_if->sk_mii;
479
480 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
481
482 /*
483 * If this is a GMII PHY, manually set the XMAC's
484 * duplex mode accordingly.
485 */
486 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
487 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
488 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
489 } else {
490 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
491 }
492 }
493 }
494
495 int
496 sk_marv_miibus_readreg(dev, phy, reg)
497 struct device *dev;
498 int phy, reg;
499 {
500 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
501 u_int16_t val;
502 int i;
503
504 if (phy != 0 ||
505 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
506 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
507 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
508 phy, reg));
509 return(0);
510 }
511
512 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
513 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
514
515 for (i = 0; i < SK_TIMEOUT; i++) {
516 DELAY(1);
517 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
518 if (val & YU_SMICR_READ_VALID)
519 break;
520 }
521
522 if (i == SK_TIMEOUT) {
523 printf("%s: phy failed to come ready\n",
524 sc_if->sk_dev.dv_xname);
525 return 0;
526 }
527
528 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
529 SK_TIMEOUT));
530
531 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
532
533 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
534 phy, reg, val));
535
536 return val;
537 }
538
539 void
540 sk_marv_miibus_writereg(dev, phy, reg, val)
541 struct device *dev;
542 int phy, reg, val;
543 {
544 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
545 int i;
546
547 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
548 phy, reg, val));
549
550 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
551 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
552 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
553
554 for (i = 0; i < SK_TIMEOUT; i++) {
555 DELAY(1);
556 if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
557 break;
558 }
559 }
560
561 void
562 sk_marv_miibus_statchg(dev)
563 struct device *dev;
564 {
565 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
566 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
567 }
568
569 #define SK_BITS 6
570 #define SK_POLY 0xEDB88320
571
572 u_int32_t
573 sk_calchash(caddr_t addr)
574 {
575 u_int32_t crc;
576
577 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
578 crc = ~crc & ((1<< SK_BITS) - 1);
579 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
580 return (crc);
581 }
582
583 void
584 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
585 {
586 int base = XM_RXFILT_ENTRY(slot);
587
588 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
589 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
590 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
591 }
592
593 void
594 sk_setmulti(struct sk_if_softc *sc_if)
595 {
596 struct sk_softc *sc = sc_if->sk_softc;
597 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
598 u_int32_t hashes[2] = { 0, 0 };
599 int h, i;
600 struct ethercom *ec = &sc_if->sk_ethercom;
601 struct ether_multi *enm;
602 struct ether_multistep step;
603 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
604
605 /* First, zot all the existing filters. */
606 switch(sc->sk_type) {
607 case SK_GENESIS:
608 for (i = 1; i < XM_RXFILT_MAX; i++)
609 sk_setfilt(sc_if, (caddr_t)&dummy, i);
610
611 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
612 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
613 break;
614 case SK_YUKON:
615 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
616 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
617 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
618 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
619 break;
620 }
621
622 /* Now program new ones. */
623 allmulti:
624 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
625 hashes[0] = 0xFFFFFFFF;
626 hashes[1] = 0xFFFFFFFF;
627 } else {
628 i = 1;
629 /* First find the tail of the list. */
630 ETHER_FIRST_MULTI(step, ec, enm);
631 while (enm != NULL) {
632 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
633 ETHER_ADDR_LEN)) {
634 ifp->if_flags |= IFF_ALLMULTI;
635 goto allmulti;
636 }
637 DPRINTFN(2,("multicast address %s\n",
638 ether_sprintf(enm->enm_addrlo)));
639 /*
640 * Program the first XM_RXFILT_MAX multicast groups
641 * into the perfect filter. For all others,
642 * use the hash table.
643 */
644 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
645 sk_setfilt(sc_if, enm->enm_addrlo, i);
646 i++;
647 }
648 else {
649 h = sk_calchash(enm->enm_addrlo);
650 if (h < 32)
651 hashes[0] |= (1 << h);
652 else
653 hashes[1] |= (1 << (h - 32));
654 }
655
656 ETHER_NEXT_MULTI(step, enm);
657 }
658 }
659
660 switch(sc->sk_type) {
661 case SK_GENESIS:
662 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
663 XM_MODE_RX_USE_PERFECT);
664 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
665 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
666 break;
667 case SK_YUKON:
668 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
669 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
670 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
671 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
672 break;
673 }
674 }
675
676 int
677 sk_init_rx_ring(struct sk_if_softc *sc_if)
678 {
679 struct sk_chain_data *cd = &sc_if->sk_cdata;
680 struct sk_ring_data *rd = sc_if->sk_rdata;
681 int i;
682
683 bzero((char *)rd->sk_rx_ring,
684 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
685
686 for (i = 0; i < SK_RX_RING_CNT; i++) {
687 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
688 if (i == (SK_RX_RING_CNT - 1)) {
689 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
690 rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if, 0);
691 } else {
692 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
693 rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if,i+1);
694 }
695 }
696
697 for (i = 0; i < SK_RX_RING_CNT; i++) {
698 if (sk_newbuf(sc_if, i, NULL, NULL) == ENOBUFS) {
699 printf("%s: failed alloc of %dth mbuf\n",
700 sc_if->sk_dev.dv_xname, i);
701 return(ENOBUFS);
702 }
703 }
704 sc_if->sk_cdata.sk_rx_prod = 0;
705 sc_if->sk_cdata.sk_rx_cons = 0;
706
707 return(0);
708 }
709
710 int
711 sk_init_tx_ring(struct sk_if_softc *sc_if)
712 {
713 struct sk_chain_data *cd = &sc_if->sk_cdata;
714 struct sk_ring_data *rd = sc_if->sk_rdata;
715 int i;
716
717 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
718 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
719
720 for (i = 0; i < SK_TX_RING_CNT; i++) {
721 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
722 if (i == (SK_TX_RING_CNT - 1)) {
723 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
724 rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if, 0);
725 } else {
726 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
727 rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if,i+1);
728 }
729 }
730
731 sc_if->sk_cdata.sk_tx_prod = 0;
732 sc_if->sk_cdata.sk_tx_cons = 0;
733 sc_if->sk_cdata.sk_tx_cnt = 0;
734
735 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
736 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
737
738 return (0);
739 }
740
741 int
742 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
743 bus_dmamap_t dmamap)
744 {
745 struct sk_softc *sc = sc_if->sk_softc;
746 struct mbuf *m_new = NULL;
747 struct sk_chain *c;
748 struct sk_rx_desc *r;
749
750 if (dmamap == NULL) {
751 /* if (m) panic() */
752
753 if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1, MCLBYTES,
754 0, BUS_DMA_NOWAIT, &dmamap)) {
755 printf("%s: can't create recv map\n",
756 sc_if->sk_dev.dv_xname);
757 return(ENOMEM);
758 }
759 } else if (m == NULL)
760 bus_dmamap_unload(sc->sc_dmatag, dmamap);
761
762 sc_if->sk_cdata.sk_rx_map[i] = dmamap;
763
764 if (m == NULL) {
765 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
766 if (m_new == NULL) {
767 printf("%s: no memory for rx list -- "
768 "packet dropped!\n", sc_if->sk_dev.dv_xname);
769 return(ENOBUFS);
770 }
771
772 /* Allocate the jumbo buffer */
773 MCLGET(m_new, M_DONTWAIT);
774 if (!(m_new->m_flags & M_EXT)) {
775 m_freem(m_new);
776 return (ENOBUFS);
777 }
778
779 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
780
781 m_adj(m_new, ETHER_ALIGN);
782
783 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m_new,
784 BUS_DMA_NOWAIT))
785 return(ENOBUFS);
786 } else {
787 /*
788 * We're re-using a previously allocated mbuf;
789 * be sure to re-init pointers and lengths to
790 * default values.
791 */
792 m_new = m;
793 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
794 m_adj(m_new, ETHER_ALIGN);
795 m_new->m_data = m_new->m_ext.ext_buf;
796 }
797
798 c = &sc_if->sk_cdata.sk_rx_chain[i];
799 r = c->sk_desc;
800 c->sk_mbuf = m_new;
801 r->sk_data_lo = dmamap->dm_segs[0].ds_addr;
802 r->sk_ctl = dmamap->dm_segs[0].ds_len | SK_RXSTAT;
803
804 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
805
806 return(0);
807 }
808
809 /*
810 * Set media options.
811 */
812 int
813 sk_ifmedia_upd(struct ifnet *ifp)
814 {
815 struct sk_if_softc *sc_if = ifp->if_softc;
816
817 (void) sk_init(ifp);
818 mii_mediachg(&sc_if->sk_mii);
819 return(0);
820 }
821
822 /*
823 * Report current media status.
824 */
825 void
826 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
827 {
828 struct sk_if_softc *sc_if = ifp->if_softc;
829
830 mii_pollstat(&sc_if->sk_mii);
831 ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
832 ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
833 }
834
835 int
836 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
837 {
838 struct sk_if_softc *sc_if = ifp->if_softc;
839 struct sk_softc *sc = sc_if->sk_softc;
840 struct ifreq *ifr = (struct ifreq *) data;
841 /* struct ifaddr *ifa = (struct ifaddr *) data; */
842 struct mii_data *mii;
843 int s, error = 0;
844
845 /* DPRINTFN(2, ("sk_ioctl\n")); */
846
847 s = splnet();
848
849 switch(command) {
850
851 case SIOCSIFFLAGS:
852 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
853 if (ifp->if_flags & IFF_UP) {
854 if (ifp->if_flags & IFF_RUNNING &&
855 ifp->if_flags & IFF_PROMISC &&
856 !(sc_if->sk_if_flags & IFF_PROMISC)) {
857 switch(sc->sk_type) {
858 case SK_GENESIS:
859 SK_XM_SETBIT_4(sc_if, XM_MODE,
860 XM_MODE_RX_PROMISC);
861 break;
862 case SK_YUKON:
863 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
864 YU_RCR_UFLEN | YU_RCR_MUFLEN);
865 break;
866 }
867 sk_setmulti(sc_if);
868 } else if (ifp->if_flags & IFF_RUNNING &&
869 !(ifp->if_flags & IFF_PROMISC) &&
870 sc_if->sk_if_flags & IFF_PROMISC) {
871 switch(sc->sk_type) {
872 case SK_GENESIS:
873 SK_XM_CLRBIT_4(sc_if, XM_MODE,
874 XM_MODE_RX_PROMISC);
875 break;
876 case SK_YUKON:
877 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
878 YU_RCR_UFLEN | YU_RCR_MUFLEN);
879 break;
880 }
881
882 sk_setmulti(sc_if);
883 } else
884 (void) sk_init(ifp);
885 } else {
886 if (ifp->if_flags & IFF_RUNNING)
887 sk_stop(ifp,0);
888 }
889 sc_if->sk_if_flags = ifp->if_flags;
890 error = 0;
891 break;
892
893 case SIOCGIFMEDIA:
894 case SIOCSIFMEDIA:
895 DPRINTFN(2, ("sk_ioctl MEDIA\n"));
896 mii = &sc_if->sk_mii;
897 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
898 break;
899 default:
900 DPRINTFN(2, ("sk_ioctl ETHER\n"));
901 error = ether_ioctl(ifp, command, data);
902
903 if ( error == ENETRESET) {
904 sk_setmulti(sc_if);
905 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
906 error = 0;
907 } else if ( error ) {
908 splx(s);
909 return error;
910 }
911 break;
912 }
913
914 splx(s);
915 return(error);
916 }
917
918 /*
919 * Lookup: Check the PCI vendor and device, and return a pointer to
920 * The structure if the IDs match against our list.
921 */
922
923 static const struct sk_product *
924 sk_lookup(const struct pci_attach_args *pa)
925 {
926 const struct sk_product *psk;
927
928 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
929 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
930 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
931 return (psk);
932 }
933 return (NULL);
934 }
935
936 /*
937 * Probe for a SysKonnect GEnesis chip.
938 */
939
940 int
941 skc_probe(struct device *parent, struct cfdata *match, void *aux)
942 {
943 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
944 const struct sk_product *psk;
945
946 if ((psk = sk_lookup(pa))) {
947 return(1);
948 }
949 return(0);
950 }
951
952 /*
953 * Force the GEnesis into reset, then bring it out of reset.
954 */
955 void sk_reset(struct sk_softc *sc)
956 {
957 DPRINTFN(2, ("sk_reset\n"));
958
959 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
960 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
961 if (sc->sk_type == SK_YUKON)
962 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
963
964 DELAY(1000);
965 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
966 DELAY(2);
967 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
968 if (sc->sk_type == SK_YUKON)
969 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
970
971 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
972 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
973 CSR_READ_2(sc, SK_LINK_CTRL)));
974
975 if (sc->sk_type == SK_GENESIS) {
976 /* Configure packet arbiter */
977 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
978 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
979 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
980 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
981 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
982 }
983
984 /* Enable RAM interface */
985 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
986
987 /*
988 * Configure interrupt moderation. The moderation timer
989 * defers interrupts specified in the interrupt moderation
990 * timer mask based on the timeout specified in the interrupt
991 * moderation timer init register. Each bit in the timer
992 * register represents 18.825ns, so to specify a timeout in
993 * microseconds, we have to multiply by 54.
994 */
995 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
996 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
997 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
998 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
999 }
1000
1001 int
1002 sk_probe(struct device *parent, struct cfdata *match, void *aux)
1003 {
1004 struct skc_attach_args *sa = aux;
1005
1006 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1007 return(0);
1008
1009 return (1);
1010 }
1011
1012 /*
1013 * Each XMAC chip is attached as a separate logical IP interface.
1014 * Single port cards will have only one logical interface of course.
1015 */
1016 void
1017 sk_attach(struct device *parent, struct device *self, void *aux)
1018 {
1019 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1020 struct sk_softc *sc = (struct sk_softc *)parent;
1021 struct skc_attach_args *sa = aux;
1022 struct sk_txmap_entry *entry;
1023 struct ifnet *ifp;
1024 bus_dma_segment_t seg;
1025 bus_dmamap_t dmamap;
1026 caddr_t kva;
1027 int i, rseg;
1028
1029 sc_if->sk_port = sa->skc_port;
1030 sc_if->sk_softc = sc;
1031 sc->sk_if[sa->skc_port] = sc_if;
1032
1033 if (sa->skc_port == SK_PORT_A)
1034 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1035 if (sa->skc_port == SK_PORT_B)
1036 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1037
1038 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1039
1040 /*
1041 * Get station address for this interface. Note that
1042 * dual port cards actually come with three station
1043 * addresses: one for each port, plus an extra. The
1044 * extra one is used by the SysKonnect driver software
1045 * as a 'virtual' station address for when both ports
1046 * are operating in failover mode. Currently we don't
1047 * use this extra address.
1048 */
1049 for (i = 0; i < ETHER_ADDR_LEN; i++)
1050 sc_if->sk_enaddr[i] =
1051 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1052
1053
1054 aprint_normal(": Ethernet address %s\n",
1055 ether_sprintf(sc_if->sk_enaddr));
1056
1057 /*
1058 * Set up RAM buffer addresses. The NIC will have a certain
1059 * amount of SRAM on it, somewhere between 512K and 2MB. We
1060 * need to divide this up a) between the transmitter and
1061 * receiver and b) between the two XMACs, if this is a
1062 * dual port NIC. Our algotithm is to divide up the memory
1063 * evenly so that everyone gets a fair share.
1064 */
1065 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1066 u_int32_t chunk, val;
1067
1068 chunk = sc->sk_ramsize / 2;
1069 val = sc->sk_rboff / sizeof(u_int64_t);
1070 sc_if->sk_rx_ramstart = val;
1071 val += (chunk / sizeof(u_int64_t));
1072 sc_if->sk_rx_ramend = val - 1;
1073 sc_if->sk_tx_ramstart = val;
1074 val += (chunk / sizeof(u_int64_t));
1075 sc_if->sk_tx_ramend = val - 1;
1076 } else {
1077 u_int32_t chunk, val;
1078
1079 chunk = sc->sk_ramsize / 4;
1080 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1081 sizeof(u_int64_t);
1082 sc_if->sk_rx_ramstart = val;
1083 val += (chunk / sizeof(u_int64_t));
1084 sc_if->sk_rx_ramend = val - 1;
1085 sc_if->sk_tx_ramstart = val;
1086 val += (chunk / sizeof(u_int64_t));
1087 sc_if->sk_tx_ramend = val - 1;
1088 }
1089
1090 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1091 " tx_ramstart=%#x tx_ramend=%#x\n",
1092 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1093 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1094
1095 /* Read and save PHY type and set PHY address */
1096 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1097 switch (sc_if->sk_phytype) {
1098 case SK_PHYTYPE_XMAC:
1099 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1100 break;
1101 case SK_PHYTYPE_BCOM:
1102 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1103 break;
1104 case SK_PHYTYPE_MARV_COPPER:
1105 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1106 break;
1107 default:
1108 aprint_error("%s: unsupported PHY type: %d\n",
1109 sc->sk_dev.dv_xname, sc_if->sk_phytype);
1110 return;
1111 }
1112
1113 /* Allocate the descriptor queues. */
1114 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1115 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1116 aprint_error("%s: can't alloc rx buffers\n",
1117 sc->sk_dev.dv_xname);
1118 goto fail;
1119 }
1120 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1121 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1122 aprint_error("%s: can't map dma buffers (%lu bytes)\n",
1123 sc_if->sk_dev.dv_xname,
1124 (u_long) sizeof(struct sk_ring_data));
1125 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1126 goto fail;
1127 }
1128 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1129 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1130 &sc_if->sk_ring_map)) {
1131 aprint_error("%s: can't create dma map\n",
1132 sc_if->sk_dev.dv_xname);
1133 bus_dmamem_unmap(sc->sc_dmatag, kva,
1134 sizeof(struct sk_ring_data));
1135 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1136 goto fail;
1137 }
1138 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1139 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1140 aprint_error("%s: can't load dma map\n",
1141 sc_if->sk_dev.dv_xname);
1142 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1143 bus_dmamem_unmap(sc->sc_dmatag, kva,
1144 sizeof(struct sk_ring_data));
1145 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1146 goto fail;
1147 }
1148
1149 for (i = 0; i < SK_RX_RING_CNT; i++)
1150 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1151
1152 SLIST_INIT(&sc_if->sk_txmap_listhead);
1153 for (i = 0; i < SK_TX_RING_CNT; i++) {
1154 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1155
1156 if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, SK_NTXSEG,
1157 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap)) {
1158 aprint_error("%s: Can't create TX dmamap\n",
1159 sc_if->sk_dev.dv_xname);
1160 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1161 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1162 bus_dmamem_unmap(sc->sc_dmatag, kva,
1163 sizeof(struct sk_ring_data));
1164 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1165 goto fail;
1166 }
1167
1168 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1169 if (!entry) {
1170 aprint_error("%s: Can't alloc txmap entry\n",
1171 sc_if->sk_dev.dv_xname);
1172 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1173 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1174 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1175 bus_dmamem_unmap(sc->sc_dmatag, kva,
1176 sizeof(struct sk_ring_data));
1177 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1178 goto fail;
1179 }
1180 entry->dmamap = dmamap;
1181 SLIST_INSERT_HEAD(&sc_if->sk_txmap_listhead, entry, link);
1182 }
1183
1184 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1185 bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1186
1187 /* XXX TLS It's not clear what's wrong with the Jumbo MTU
1188 XXX TLS support in this driver, so we don't enable it. */
1189
1190 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1191
1192 ifp = &sc_if->sk_ethercom.ec_if;
1193 ifp->if_softc = sc_if;
1194 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1195 ifp->if_ioctl = sk_ioctl;
1196 ifp->if_start = sk_start;
1197 ifp->if_stop = sk_stop;
1198 ifp->if_init = sk_init;
1199 ifp->if_watchdog = sk_watchdog;
1200 ifp->if_capabilities = 0;
1201 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1202 IFQ_SET_READY(&ifp->if_snd);
1203 strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1204
1205 /*
1206 * Do miibus setup.
1207 */
1208 switch (sc->sk_type) {
1209 case SK_GENESIS:
1210 sk_init_xmac(sc_if);
1211 break;
1212 case SK_YUKON:
1213 sk_init_yukon(sc_if);
1214 break;
1215 default:
1216 panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
1217 sc->sk_type);
1218 }
1219
1220 DPRINTFN(2, ("sk_attach: 1\n"));
1221
1222 sc_if->sk_mii.mii_ifp = ifp;
1223 switch (sc->sk_type) {
1224 case SK_GENESIS:
1225 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1226 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1227 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1228 break;
1229 case SK_YUKON:
1230 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1231 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1232 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1233 break;
1234 }
1235
1236 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1237 sk_ifmedia_upd, sk_ifmedia_sts);
1238 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1239 MII_OFFSET_ANY, 0);
1240 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1241 printf("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1242 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1243 0, NULL);
1244 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1245 }
1246 else
1247 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1248
1249 callout_init(&sc_if->sk_tick_ch);
1250 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1251
1252 DPRINTFN(2, ("sk_attach: 1\n"));
1253
1254 /*
1255 * Call MI attach routines.
1256 */
1257 if_attach(ifp);
1258
1259 ether_ifattach(ifp, sc_if->sk_enaddr);
1260
1261 #if NRND > 0
1262 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1263 RND_TYPE_NET, 0);
1264 #endif
1265
1266 DPRINTFN(2, ("sk_attach: end\n"));
1267
1268 return;
1269
1270 fail:
1271 sc->sk_if[sa->skc_port] = NULL;
1272 }
1273
1274 int
1275 skcprint(void *aux, const char *pnp)
1276 {
1277 struct skc_attach_args *sa = aux;
1278
1279 if (pnp)
1280 aprint_normal("sk port %c at %s",
1281 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1282 else
1283 aprint_normal(" port %c",
1284 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1285 return (UNCONF);
1286 }
1287
1288 /*
1289 * Attach the interface. Allocate softc structures, do ifmedia
1290 * setup and ethernet/BPF attach.
1291 */
1292 void
1293 skc_attach(struct device *parent, struct device *self, void *aux)
1294 {
1295 struct sk_softc *sc = (struct sk_softc *)self;
1296 struct pci_attach_args *pa = aux;
1297 struct skc_attach_args skca;
1298 pci_chipset_tag_t pc = pa->pa_pc;
1299 pcireg_t memtype;
1300 pci_intr_handle_t ih;
1301 const char *intrstr = NULL;
1302 bus_addr_t iobase;
1303 bus_size_t iosize;
1304 int s;
1305 u_int32_t command;
1306
1307 DPRINTFN(2, ("begin skc_attach\n"));
1308
1309 s = splnet();
1310
1311 /*
1312 * Handle power management nonsense.
1313 */
1314 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1315
1316 if (command == 0x01) {
1317 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1318 if (command & SK_PSTATE_MASK) {
1319 u_int32_t iobase, membase, irq;
1320
1321 /* Save important PCI config data. */
1322 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1323 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1324 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1325
1326 /* Reset the power state. */
1327 aprint_normal("%s chip is in D%d power mode "
1328 "-- setting to D0\n", sc->sk_dev.dv_xname,
1329 command & SK_PSTATE_MASK);
1330 command &= 0xFFFFFFFC;
1331 pci_conf_write(pc, pa->pa_tag,
1332 SK_PCI_PWRMGMTCTRL, command);
1333
1334 /* Restore PCI config data. */
1335 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1336 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1337 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1338 }
1339 }
1340
1341 /*
1342 * Map control/status registers.
1343 */
1344 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1345 command |= PCI_COMMAND_IO_ENABLE |
1346 PCI_COMMAND_MEM_ENABLE |
1347 PCI_COMMAND_MASTER_ENABLE;
1348 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1349 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1350
1351 switch (PCI_PRODUCT(pa->pa_id)) {
1352 case PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE:
1353 sc->sk_type = SK_GENESIS;
1354 break;
1355 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1356 case PCI_PRODUCT_3COM_3C940:
1357 case PCI_PRODUCT_DLINK_DGE530T:
1358 case PCI_PRODUCT_LINKSYS_EG1032:
1359 case PCI_PRODUCT_LINKSYS_EG1064:
1360 sc->sk_type = SK_YUKON;
1361 break;
1362 default:
1363 aprint_error(": unknown device!\n");
1364 goto fail;
1365 }
1366
1367 #ifdef SK_USEIOSPACE
1368 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1369 aprint_error(": failed to enable I/O ports!\n");
1370 goto fail;
1371 }
1372 /*
1373 * Map control/status registers.
1374 */
1375 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1376 &iobase, &iosize)) {
1377 aprint_error(": can't find i/o space\n");
1378 goto fail;
1379 }
1380 #else
1381 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1382 aprint_error(": failed to enable memory mapping!\n");
1383 goto fail;
1384 }
1385 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1386 switch (memtype) {
1387 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1388 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1389 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1390 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1391 &iobase, &iosize) == 0)
1392 break;
1393 default:
1394 aprint_error("%s: can't find mem space\n",
1395 sc->sk_dev.dv_xname);
1396 return;
1397 }
1398
1399 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1400 #endif
1401 sc->sc_dmatag = pa->pa_dmat;
1402
1403 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1404
1405 /* Allocate interrupt */
1406 if (pci_intr_map(pa, &ih)) {
1407 aprint_error(": couldn't map interrupt\n");
1408 goto fail;
1409 }
1410
1411 intrstr = pci_intr_string(pc, ih);
1412 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1413 if (sc->sk_intrhand == NULL) {
1414 aprint_error(": couldn't establish interrupt");
1415 if (intrstr != NULL)
1416 aprint_normal(" at %s", intrstr);
1417 goto fail;
1418 }
1419 aprint_normal(": %s\n", intrstr);
1420
1421 /* Reset the adapter. */
1422 sk_reset(sc);
1423
1424 /* Read and save vital product data from EEPROM. */
1425 sk_vpd_read(sc);
1426
1427 if (sc->sk_type == SK_GENESIS) {
1428 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1429 /* Read and save RAM size and RAMbuffer offset */
1430 switch(val) {
1431 case SK_RAMSIZE_512K_64:
1432 sc->sk_ramsize = 0x80000;
1433 sc->sk_rboff = SK_RBOFF_0;
1434 break;
1435 case SK_RAMSIZE_1024K_64:
1436 sc->sk_ramsize = 0x100000;
1437 sc->sk_rboff = SK_RBOFF_80000;
1438 break;
1439 case SK_RAMSIZE_1024K_128:
1440 sc->sk_ramsize = 0x100000;
1441 sc->sk_rboff = SK_RBOFF_0;
1442 break;
1443 case SK_RAMSIZE_2048K_128:
1444 sc->sk_ramsize = 0x200000;
1445 sc->sk_rboff = SK_RBOFF_0;
1446 break;
1447 default:
1448 aprint_error("%s: unknown ram size: %d\n",
1449 sc->sk_dev.dv_xname, val);
1450 goto fail;
1451 break;
1452 }
1453
1454 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1455 sc->sk_ramsize, sc->sk_ramsize / 1024,
1456 sc->sk_rboff));
1457 } else {
1458 sc->sk_ramsize = 0x20000;
1459 sc->sk_rboff = SK_RBOFF_0;
1460
1461 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1462 sc->sk_ramsize / 1024, sc->sk_ramsize,
1463 sc->sk_rboff));
1464 }
1465
1466 /* Read and save physical media type */
1467 switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1468 case SK_PMD_1000BASESX:
1469 sc->sk_pmd = IFM_1000_SX;
1470 break;
1471 case SK_PMD_1000BASELX:
1472 sc->sk_pmd = IFM_1000_LX;
1473 break;
1474 case SK_PMD_1000BASECX:
1475 sc->sk_pmd = IFM_1000_CX;
1476 break;
1477 case SK_PMD_1000BASETX:
1478 sc->sk_pmd = IFM_1000_T;
1479 break;
1480 default:
1481 aprint_error("%s: unknown media type: 0x%x\n",
1482 sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
1483 goto fail;
1484 }
1485
1486 /* Announce the product name. */
1487 aprint_normal("%s: %s\n", sc->sk_dev.dv_xname, sc->sk_vpd_prodname);
1488
1489 skca.skc_port = SK_PORT_A;
1490 (void)config_found(&sc->sk_dev, &skca, skcprint);
1491
1492 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1493 skca.skc_port = SK_PORT_B;
1494 (void)config_found(&sc->sk_dev, &skca, skcprint);
1495 }
1496
1497 /* Turn on the 'driver is loaded' LED. */
1498 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1499
1500 fail:
1501 splx(s);
1502 }
1503
1504 int
1505 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1506 {
1507 struct sk_softc *sc = sc_if->sk_softc;
1508 struct sk_tx_desc *f = NULL;
1509 u_int32_t frag, cur, cnt = 0;
1510 int i;
1511 struct sk_txmap_entry *entry;
1512 bus_dmamap_t txmap;
1513
1514 DPRINTFN(3, ("sk_encap\n"));
1515
1516 entry = SLIST_FIRST(&sc_if->sk_txmap_listhead);
1517 if (entry == NULL) {
1518 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1519 return ENOBUFS;
1520 }
1521 txmap = entry->dmamap;
1522
1523 cur = frag = *txidx;
1524
1525 #ifdef SK_DEBUG
1526 if (skdebug >= 3)
1527 sk_dump_mbuf(m_head);
1528 #endif
1529
1530 /*
1531 * Start packing the mbufs in this chain into
1532 * the fragment pointers. Stop when we run out
1533 * of fragments or hit the end of the mbuf chain.
1534 */
1535 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1536 BUS_DMA_NOWAIT)) {
1537 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1538 return(ENOBUFS);
1539 }
1540
1541 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1542
1543 /* Sync the DMA map. */
1544 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1545 BUS_DMASYNC_PREWRITE);
1546
1547 for (i = 0; i < txmap->dm_nsegs; i++) {
1548 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1549 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1550 return(ENOBUFS);
1551 }
1552 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1553 f->sk_data_lo = txmap->dm_segs[i].ds_addr;
1554 f->sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1555 if (cnt == 0)
1556 f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1557 else
1558 f->sk_ctl |= SK_TXCTL_OWN;
1559
1560 cur = frag;
1561 SK_INC(frag, SK_TX_RING_CNT);
1562 cnt++;
1563 }
1564
1565 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1566 SLIST_REMOVE_HEAD(&sc_if->sk_txmap_listhead, link);
1567 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1568 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1569 SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1570
1571 /* Sync descriptors before handing to chip */
1572 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1573 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1574
1575 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1576
1577 /* Sync first descriptor to hand it off */
1578 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1579
1580 sc_if->sk_cdata.sk_tx_cnt += cnt;
1581
1582 #ifdef SK_DEBUG
1583 if (skdebug >= 3) {
1584 struct sk_tx_desc *desc;
1585 u_int32_t idx;
1586 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1587 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1588 sk_dump_txdesc(desc, idx);
1589 }
1590 }
1591 #endif
1592
1593 *txidx = frag;
1594
1595 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1596
1597 return(0);
1598 }
1599
1600 void
1601 sk_start(struct ifnet *ifp)
1602 {
1603 struct sk_if_softc *sc_if = ifp->if_softc;
1604 struct sk_softc *sc = sc_if->sk_softc;
1605 struct mbuf *m_head = NULL;
1606 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1607 int pkts = 0;
1608
1609 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1610 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1611
1612 while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1613
1614 IFQ_POLL(&ifp->if_snd, m_head);
1615 if (m_head == NULL)
1616 break;
1617
1618 /*
1619 * Pack the data into the transmit ring. If we
1620 * don't have room, set the OACTIVE flag and wait
1621 * for the NIC to drain the ring.
1622 */
1623 if (sk_encap(sc_if, m_head, &idx)) {
1624 ifp->if_flags |= IFF_OACTIVE;
1625 break;
1626 }
1627
1628 /* now we are committed to transmit the packet */
1629 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1630 pkts++;
1631
1632 /*
1633 * If there's a BPF listener, bounce a copy of this frame
1634 * to him.
1635 */
1636 #if NBPFILTER > 0
1637 if (ifp->if_bpf)
1638 bpf_mtap(ifp->if_bpf, m_head);
1639 #endif
1640 }
1641 if (pkts == 0)
1642 return;
1643
1644 /* Transmit */
1645 sc_if->sk_cdata.sk_tx_prod = idx;
1646 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1647
1648 /* Set a timeout in case the chip goes out to lunch. */
1649 ifp->if_timer = 5;
1650 }
1651
1652
1653 void
1654 sk_watchdog(struct ifnet *ifp)
1655 {
1656 struct sk_if_softc *sc_if = ifp->if_softc;
1657
1658 printf("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1659 (void) sk_init(ifp);
1660 }
1661
1662 void
1663 sk_shutdown(void * v)
1664 {
1665 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
1666 struct sk_softc *sc = sc_if->sk_softc;
1667 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1668
1669 DPRINTFN(2, ("sk_shutdown\n"));
1670 sk_stop(ifp,1);
1671
1672 /* Turn off the 'driver is loaded' LED. */
1673 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1674
1675 /*
1676 * Reset the GEnesis controller. Doing this should also
1677 * assert the resets on the attached XMAC(s).
1678 */
1679 sk_reset(sc);
1680 }
1681
1682 void
1683 sk_rxeof(struct sk_if_softc *sc_if)
1684 {
1685 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1686 struct mbuf *m;
1687 struct sk_chain *cur_rx;
1688 struct sk_rx_desc *cur_desc;
1689 int i, cur, total_len = 0;
1690 u_int32_t rxstat;
1691 bus_dmamap_t dmamap;
1692
1693 i = sc_if->sk_cdata.sk_rx_prod;
1694
1695 DPRINTFN(3, ("sk_rxeof %d\n", i));
1696
1697 for (;;) {
1698 cur = i;
1699
1700 /* Sync the descriptor */
1701 SK_CDRXSYNC(sc_if, cur,
1702 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1703
1704 if (sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl & SK_RXCTL_OWN) {
1705 /* Invalidate the descriptor -- it's not ready yet */
1706 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
1707 sc_if->sk_cdata.sk_rx_prod = i;
1708 break;
1709 }
1710
1711 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1712 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
1713 dmamap = sc_if->sk_cdata.sk_rx_map[cur];
1714
1715 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1716 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1717
1718 rxstat = cur_desc->sk_xmac_rxstat;
1719 m = cur_rx->sk_mbuf;
1720 cur_rx->sk_mbuf = NULL;
1721 total_len = SK_RXBYTES(cur_desc->sk_ctl);
1722
1723 sc_if->sk_cdata.sk_rx_map[cur] = 0;
1724
1725 SK_INC(i, SK_RX_RING_CNT);
1726
1727 if (rxstat & XM_RXSTAT_ERRFRAME) {
1728 ifp->if_ierrors++;
1729 sk_newbuf(sc_if, cur, m, dmamap);
1730 continue;
1731 }
1732
1733 /*
1734 * Try to allocate a new jumbo buffer. If that
1735 * fails, copy the packet to mbufs and put the
1736 * jumbo buffer back in the ring so it can be
1737 * re-used. If allocating mbufs fails, then we
1738 * have to drop the packet.
1739 */
1740 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1741 struct mbuf *m0;
1742 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1743 total_len + ETHER_ALIGN, 0, ifp, NULL);
1744 sk_newbuf(sc_if, cur, m, dmamap);
1745 if (m0 == NULL) {
1746 printf("%s: no receive buffers "
1747 "available -- packet dropped!\n",
1748 sc_if->sk_dev.dv_xname);
1749 ifp->if_ierrors++;
1750 continue;
1751 }
1752 m_adj(m0, ETHER_ALIGN);
1753 m = m0;
1754 } else {
1755 m->m_pkthdr.rcvif = ifp;
1756 m->m_pkthdr.len = m->m_len = total_len;
1757 }
1758
1759 ifp->if_ipackets++;
1760
1761 #if NBPFILTER > 0
1762 if (ifp->if_bpf)
1763 bpf_mtap(ifp->if_bpf, m);
1764 #endif
1765 /* pass it on. */
1766 (*ifp->if_input)(ifp, m);
1767 }
1768 }
1769
1770 void
1771 sk_txeof(struct sk_if_softc *sc_if)
1772 {
1773 struct sk_softc *sc = sc_if->sk_softc;
1774 struct sk_tx_desc *cur_tx = NULL;
1775 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1776 u_int32_t idx;
1777 struct sk_txmap_entry *entry;
1778
1779 DPRINTFN(3, ("sk_txeof\n"));
1780
1781 /*
1782 * Go through our tx ring and free mbufs for those
1783 * frames that have been sent.
1784 */
1785 idx = sc_if->sk_cdata.sk_tx_cons;
1786 while(idx != sc_if->sk_cdata.sk_tx_prod) {
1787 SK_CDTXSYNC(sc_if, idx, 1,
1788 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1789
1790 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1791 #ifdef SK_DEBUG
1792 if (skdebug >= 3)
1793 sk_dump_txdesc(cur_tx, idx);
1794 #endif
1795 if (cur_tx->sk_ctl & SK_TXCTL_OWN) {
1796 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
1797 break;
1798 }
1799 if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
1800 ifp->if_opackets++;
1801 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1802 entry = sc_if->sk_cdata.sk_tx_map[idx];
1803
1804 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1805 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1806
1807 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1808 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1809
1810 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1811 SLIST_INSERT_HEAD(&sc_if->sk_txmap_listhead, entry,
1812 link);
1813 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
1814 }
1815 sc_if->sk_cdata.sk_tx_cnt--;
1816 SK_INC(idx, SK_TX_RING_CNT);
1817 }
1818 if (sc_if->sk_cdata.sk_tx_cnt == 0)
1819 ifp->if_timer = 0;
1820
1821 sc_if->sk_cdata.sk_tx_cons = idx;
1822
1823 if (cur_tx != NULL)
1824 ifp->if_flags &= ~IFF_OACTIVE;
1825 }
1826
1827 void
1828 sk_tick(void *xsc_if)
1829 {
1830 struct sk_if_softc *sc_if = xsc_if;
1831 struct mii_data *mii = &sc_if->sk_mii;
1832 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1833 int i;
1834
1835 DPRINTFN(3, ("sk_tick\n"));
1836
1837 if (!(ifp->if_flags & IFF_UP))
1838 return;
1839
1840 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
1841 sk_intr_bcom(sc_if);
1842 return;
1843 }
1844
1845 /*
1846 * According to SysKonnect, the correct way to verify that
1847 * the link has come back up is to poll bit 0 of the GPIO
1848 * register three times. This pin has the signal from the
1849 * link sync pin connected to it; if we read the same link
1850 * state 3 times in a row, we know the link is up.
1851 */
1852 for (i = 0; i < 3; i++) {
1853 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
1854 break;
1855 }
1856
1857 if (i != 3) {
1858 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1859 return;
1860 }
1861
1862 /* Turn the GP0 interrupt back on. */
1863 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1864 SK_XM_READ_2(sc_if, XM_ISR);
1865 mii_tick(mii);
1866 mii_pollstat(mii);
1867 callout_stop(&sc_if->sk_tick_ch);
1868 }
1869
1870 void
1871 sk_intr_bcom(struct sk_if_softc *sc_if)
1872 {
1873 struct mii_data *mii = &sc_if->sk_mii;
1874 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1875 int status;
1876
1877
1878 DPRINTFN(3, ("sk_intr_bcom\n"));
1879
1880 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1881
1882 /*
1883 * Read the PHY interrupt register to make sure
1884 * we clear any pending interrupts.
1885 */
1886 status = sk_xmac_miibus_readreg((struct device *)sc_if,
1887 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
1888
1889 if (!(ifp->if_flags & IFF_RUNNING)) {
1890 sk_init_xmac(sc_if);
1891 return;
1892 }
1893
1894 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
1895 int lstat;
1896 lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
1897 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
1898
1899 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
1900 mii_mediachg(mii);
1901 /* Turn off the link LED. */
1902 SK_IF_WRITE_1(sc_if, 0,
1903 SK_LINKLED1_CTL, SK_LINKLED_OFF);
1904 sc_if->sk_link = 0;
1905 } else if (status & BRGPHY_ISR_LNK_CHG) {
1906 sk_xmac_miibus_writereg((struct device *)sc_if,
1907 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
1908 mii_tick(mii);
1909 sc_if->sk_link = 1;
1910 /* Turn on the link LED. */
1911 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
1912 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
1913 SK_LINKLED_BLINK_OFF);
1914 mii_pollstat(mii);
1915 } else {
1916 mii_tick(mii);
1917 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
1918 }
1919 }
1920
1921 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1922 }
1923
1924 void
1925 sk_intr_xmac(struct sk_if_softc *sc_if)
1926 {
1927 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
1928
1929 DPRINTFN(3, ("sk_intr_xmac\n"));
1930
1931 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
1932 if (status & XM_ISR_GP0_SET) {
1933 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1934 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1935 }
1936
1937 if (status & XM_ISR_AUTONEG_DONE) {
1938 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1939 }
1940 }
1941
1942 if (status & XM_IMR_TX_UNDERRUN)
1943 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
1944
1945 if (status & XM_IMR_RX_OVERRUN)
1946 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
1947 }
1948
1949 void
1950 sk_intr_yukon(sc_if)
1951 struct sk_if_softc *sc_if;
1952 {
1953 int status;
1954
1955 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
1956
1957 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
1958 }
1959
1960 int
1961 sk_intr(void *xsc)
1962 {
1963 struct sk_softc *sc = xsc;
1964 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
1965 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
1966 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
1967 u_int32_t status;
1968 int claimed = 0;
1969
1970 if (sc_if0 != NULL)
1971 ifp0 = &sc_if0->sk_ethercom.ec_if;
1972 if (sc_if1 != NULL)
1973 ifp1 = &sc_if1->sk_ethercom.ec_if;
1974
1975 for (;;) {
1976 status = CSR_READ_4(sc, SK_ISSR);
1977 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
1978
1979 if (!(status & sc->sk_intrmask))
1980 break;
1981
1982 claimed = 1;
1983
1984 /* Handle receive interrupts first. */
1985 if (status & SK_ISR_RX1_EOF) {
1986 sk_rxeof(sc_if0);
1987 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
1988 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1989 }
1990 if (status & SK_ISR_RX2_EOF) {
1991 sk_rxeof(sc_if1);
1992 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
1993 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1994 }
1995
1996 /* Then transmit interrupts. */
1997 if (status & SK_ISR_TX1_S_EOF) {
1998 sk_txeof(sc_if0);
1999 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2000 SK_TXBMU_CLR_IRQ_EOF);
2001 }
2002 if (status & SK_ISR_TX2_S_EOF) {
2003 sk_txeof(sc_if1);
2004 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2005 SK_TXBMU_CLR_IRQ_EOF);
2006 }
2007
2008 /* Then MAC interrupts. */
2009 if (status & SK_ISR_MAC1 && (ifp0->if_flags & IFF_RUNNING)) {
2010 if (sc->sk_type == SK_GENESIS)
2011 sk_intr_xmac(sc_if0);
2012 else
2013 sk_intr_yukon(sc_if0);
2014 }
2015
2016 if (status & SK_ISR_MAC2 && (ifp1->if_flags & IFF_RUNNING)) {
2017 if (sc->sk_type == SK_GENESIS)
2018 sk_intr_xmac(sc_if1);
2019 else
2020 sk_intr_yukon(sc_if1);
2021
2022 }
2023
2024 if (status & SK_ISR_EXTERNAL_REG) {
2025 if (ifp0 != NULL &&
2026 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2027 sk_intr_bcom(sc_if0);
2028
2029 if (ifp1 != NULL &&
2030 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2031 sk_intr_bcom(sc_if1);
2032 }
2033 }
2034
2035 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2036
2037 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2038 sk_start(ifp0);
2039 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2040 sk_start(ifp1);
2041
2042 return (claimed);
2043 }
2044
2045 void
2046 sk_init_xmac(struct sk_if_softc *sc_if)
2047 {
2048 struct sk_softc *sc = sc_if->sk_softc;
2049 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2050 static const struct sk_bcom_hack bhack[] = {
2051 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2052 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2053 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2054 { 0, 0 } };
2055
2056 DPRINTFN(1, ("sk_init_xmac\n"));
2057
2058 /* Unreset the XMAC. */
2059 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2060 DELAY(1000);
2061
2062 /* Reset the XMAC's internal state. */
2063 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2064
2065 /* Save the XMAC II revision */
2066 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2067
2068 /*
2069 * Perform additional initialization for external PHYs,
2070 * namely for the 1000baseTX cards that use the XMAC's
2071 * GMII mode.
2072 */
2073 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2074 int i = 0;
2075 u_int32_t val;
2076
2077 /* Take PHY out of reset. */
2078 val = sk_win_read_4(sc, SK_GPIO);
2079 if (sc_if->sk_port == SK_PORT_A)
2080 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2081 else
2082 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2083 sk_win_write_4(sc, SK_GPIO, val);
2084
2085 /* Enable GMII mode on the XMAC. */
2086 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2087
2088 sk_xmac_miibus_writereg((struct device *)sc_if,
2089 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2090 DELAY(10000);
2091 sk_xmac_miibus_writereg((struct device *)sc_if,
2092 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2093
2094 /*
2095 * Early versions of the BCM5400 apparently have
2096 * a bug that requires them to have their reserved
2097 * registers initialized to some magic values. I don't
2098 * know what the numbers do, I'm just the messenger.
2099 */
2100 if (sk_xmac_miibus_readreg((struct device *)sc_if,
2101 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2102 while(bhack[i].reg) {
2103 sk_xmac_miibus_writereg((struct device *)sc_if,
2104 SK_PHYADDR_BCOM, bhack[i].reg,
2105 bhack[i].val);
2106 i++;
2107 }
2108 }
2109 }
2110
2111 /* Set station address */
2112 SK_XM_WRITE_2(sc_if, XM_PAR0,
2113 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2114 SK_XM_WRITE_2(sc_if, XM_PAR1,
2115 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2116 SK_XM_WRITE_2(sc_if, XM_PAR2,
2117 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2118 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2119
2120 if (ifp->if_flags & IFF_PROMISC) {
2121 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2122 } else {
2123 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2124 }
2125
2126 if (ifp->if_flags & IFF_BROADCAST) {
2127 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2128 } else {
2129 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2130 }
2131
2132 /* We don't need the FCS appended to the packet. */
2133 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2134
2135 /* We want short frames padded to 60 bytes. */
2136 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2137
2138 /*
2139 * Enable the reception of all error frames. This is is
2140 * a necessary evil due to the design of the XMAC. The
2141 * XMAC's receive FIFO is only 8K in size, however jumbo
2142 * frames can be up to 9000 bytes in length. When bad
2143 * frame filtering is enabled, the XMAC's RX FIFO operates
2144 * in 'store and forward' mode. For this to work, the
2145 * entire frame has to fit into the FIFO, but that means
2146 * that jumbo frames larger than 8192 bytes will be
2147 * truncated. Disabling all bad frame filtering causes
2148 * the RX FIFO to operate in streaming mode, in which
2149 * case the XMAC will start transfering frames out of the
2150 * RX FIFO as soon as the FIFO threshold is reached.
2151 */
2152 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2153 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2154 XM_MODE_RX_INRANGELEN);
2155
2156 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2157 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2158 else
2159 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2160
2161 /*
2162 * Bump up the transmit threshold. This helps hold off transmit
2163 * underruns when we're blasting traffic from both ports at once.
2164 */
2165 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2166
2167 /* Set multicast filter */
2168 sk_setmulti(sc_if);
2169
2170 /* Clear and enable interrupts */
2171 SK_XM_READ_2(sc_if, XM_ISR);
2172 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2173 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2174 else
2175 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2176
2177 /* Configure MAC arbiter */
2178 switch(sc_if->sk_xmac_rev) {
2179 case XM_XMAC_REV_B2:
2180 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2181 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2182 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2183 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2184 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2185 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2186 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2187 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2188 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2189 break;
2190 case XM_XMAC_REV_C1:
2191 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2192 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2193 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2194 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2195 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2196 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2197 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2198 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2199 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2200 break;
2201 default:
2202 break;
2203 }
2204 sk_win_write_2(sc, SK_MACARB_CTL,
2205 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2206
2207 sc_if->sk_link = 1;
2208 }
2209
2210 void sk_init_yukon(sc_if)
2211 struct sk_if_softc *sc_if;
2212 {
2213 u_int32_t /*mac, */phy;
2214 u_int16_t reg;
2215 int i;
2216
2217 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2218 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2219
2220 /* GMAC and GPHY Reset */
2221 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2222
2223 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2224
2225 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2226 DELAY(1000);
2227 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2228 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2229 DELAY(1000);
2230
2231
2232 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2233
2234 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2235 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2236
2237 switch(sc_if->sk_softc->sk_pmd) {
2238 case IFM_1000_SX:
2239 case IFM_1000_LX:
2240 phy |= SK_GPHY_FIBER;
2241 break;
2242
2243 case IFM_1000_CX:
2244 case IFM_1000_T:
2245 phy |= SK_GPHY_COPPER;
2246 break;
2247 }
2248
2249 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2250
2251 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2252 DELAY(1000);
2253 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2254 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2255 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2256
2257 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2258 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2259
2260 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2261
2262 /* unused read of the interrupt source register */
2263 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2264 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2265
2266 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2267 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2268 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2269
2270 /* MIB Counter Clear Mode set */
2271 reg |= YU_PAR_MIB_CLR;
2272 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2273 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2274 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2275
2276 /* MIB Counter Clear Mode clear */
2277 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2278 reg &= ~YU_PAR_MIB_CLR;
2279 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2280
2281 /* receive control reg */
2282 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2283 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2284 YU_RCR_CRCR);
2285
2286 /* transmit parameter register */
2287 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2288 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2289 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2290
2291 /* serial mode register */
2292 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2293 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2294 YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e));
2295
2296 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2297 /* Setup Yukon's address */
2298 for (i = 0; i < 3; i++) {
2299 /* Write Source Address 1 (unicast filter) */
2300 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2301 sc_if->sk_enaddr[i * 2] |
2302 sc_if->sk_enaddr[i * 2 + 1] << 8);
2303 }
2304
2305 for (i = 0; i < 3; i++) {
2306 reg = sk_win_read_2(sc_if->sk_softc,
2307 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2308 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2309 }
2310
2311 /* clear all Multicast filter hash registers */
2312 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2313 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
2314 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
2315 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
2316 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
2317
2318 /* enable interrupt mask for counter overflows */
2319 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2320 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2321 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2322 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2323
2324 /* Configure RX MAC FIFO */
2325 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2326 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2327
2328 /* Configure TX MAC FIFO */
2329 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2330 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2331
2332 DPRINTFN(6, ("sk_init_yukon: end\n"));
2333 }
2334
2335 /*
2336 * Note that to properly initialize any part of the GEnesis chip,
2337 * you first have to take it out of reset mode.
2338 */
2339 int
2340 sk_init(struct ifnet *ifp)
2341 {
2342 struct sk_if_softc *sc_if = ifp->if_softc;
2343 struct sk_softc *sc = sc_if->sk_softc;
2344 struct mii_data *mii = &sc_if->sk_mii;
2345 int s;
2346
2347 DPRINTFN(1, ("sk_init\n"));
2348
2349 s = splnet();
2350
2351 /* Cancel pending I/O and free all RX/TX buffers. */
2352 sk_stop(ifp,0);
2353
2354 if (sc->sk_type == SK_GENESIS) {
2355 /* Configure LINK_SYNC LED */
2356 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2357 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2358 SK_LINKLED_LINKSYNC_ON);
2359
2360 /* Configure RX LED */
2361 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2362 SK_RXLEDCTL_COUNTER_START);
2363
2364 /* Configure TX LED */
2365 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2366 SK_TXLEDCTL_COUNTER_START);
2367 }
2368
2369 /* Configure I2C registers */
2370
2371 /* Configure XMAC(s) */
2372 switch (sc->sk_type) {
2373 case SK_GENESIS:
2374 sk_init_xmac(sc_if);
2375 break;
2376 case SK_YUKON:
2377 sk_init_yukon(sc_if);
2378 break;
2379 }
2380 mii_mediachg(mii);
2381
2382 if (sc->sk_type == SK_GENESIS) {
2383 /* Configure MAC FIFOs */
2384 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2385 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2386 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2387
2388 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2389 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2390 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2391 }
2392
2393 /* Configure transmit arbiter(s) */
2394 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2395 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2396
2397 /* Configure RAMbuffers */
2398 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2399 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2400 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2401 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2402 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2403 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2404
2405 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2406 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2407 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2408 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2409 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2410 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2411 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2412
2413 /* Configure BMUs */
2414 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2415 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2416 SK_RX_RING_ADDR(sc_if, 0));
2417 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2418
2419 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2420 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2421 SK_TX_RING_ADDR(sc_if, 0));
2422 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2423
2424 /* Init descriptors */
2425 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2426 printf("%s: initialization failed: no "
2427 "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2428 sk_stop(ifp,0);
2429 splx(s);
2430 return(ENOBUFS);
2431 }
2432
2433 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2434 printf("%s: initialization failed: no "
2435 "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2436 sk_stop(ifp,0);
2437 splx(s);
2438 return(ENOBUFS);
2439 }
2440
2441 /* Configure interrupt handling */
2442 CSR_READ_4(sc, SK_ISSR);
2443 if (sc_if->sk_port == SK_PORT_A)
2444 sc->sk_intrmask |= SK_INTRS1;
2445 else
2446 sc->sk_intrmask |= SK_INTRS2;
2447
2448 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2449
2450 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2451
2452 /* Start BMUs. */
2453 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2454
2455 if (sc->sk_type == SK_GENESIS) {
2456 /* Enable XMACs TX and RX state machines */
2457 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2458 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2459 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2460 }
2461
2462 if (sc->sk_type == SK_YUKON) {
2463 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2464 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2465 reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2466 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2467 }
2468
2469
2470 ifp->if_flags |= IFF_RUNNING;
2471 ifp->if_flags &= ~IFF_OACTIVE;
2472
2473 splx(s);
2474 return(0);
2475 }
2476
2477 void
2478 sk_stop(struct ifnet *ifp, int disable)
2479 {
2480 struct sk_if_softc *sc_if = ifp->if_softc;
2481 struct sk_softc *sc = sc_if->sk_softc;
2482 int i;
2483
2484 DPRINTFN(1, ("sk_stop\n"));
2485
2486 callout_stop(&sc_if->sk_tick_ch);
2487
2488 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2489 u_int32_t val;
2490
2491 /* Put PHY back into reset. */
2492 val = sk_win_read_4(sc, SK_GPIO);
2493 if (sc_if->sk_port == SK_PORT_A) {
2494 val |= SK_GPIO_DIR0;
2495 val &= ~SK_GPIO_DAT0;
2496 } else {
2497 val |= SK_GPIO_DIR2;
2498 val &= ~SK_GPIO_DAT2;
2499 }
2500 sk_win_write_4(sc, SK_GPIO, val);
2501 }
2502
2503 /* Turn off various components of this interface. */
2504 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2505 switch (sc->sk_type) {
2506 case SK_GENESIS:
2507 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2508 SK_TXMACCTL_XMAC_RESET);
2509 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2510 break;
2511 case SK_YUKON:
2512 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2513 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2514 break;
2515 }
2516 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2517 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2518 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2519 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2520 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2521 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2522 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2523 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2524 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2525
2526 /* Disable interrupts */
2527 if (sc_if->sk_port == SK_PORT_A)
2528 sc->sk_intrmask &= ~SK_INTRS1;
2529 else
2530 sc->sk_intrmask &= ~SK_INTRS2;
2531 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2532
2533 SK_XM_READ_2(sc_if, XM_ISR);
2534 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2535
2536 /* Free RX and TX mbufs still in the queues. */
2537 for (i = 0; i < SK_RX_RING_CNT; i++) {
2538 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2539 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2540 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2541 }
2542 }
2543
2544 for (i = 0; i < SK_TX_RING_CNT; i++) {
2545 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2546 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2547 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2548 }
2549 }
2550
2551 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2552 }
2553
2554 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2555
2556 /*
2557 struct cfdriver skc_cd = {
2558 0, "skc", DV_DULL
2559 };
2560 */
2561
2562 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2563
2564 /*
2565 struct cfdriver sk_cd = {
2566 0, "sk", DV_IFNET
2567 };
2568 */
2569
2570 #ifdef SK_DEBUG
2571 void
2572 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2573 {
2574 #define DESC_PRINT(X) \
2575 if (desc->X) \
2576 printf("txdesc[%d]." #X "=%#x\n", \
2577 idx, desc->X);
2578
2579 DESC_PRINT(sk_ctl);
2580 DESC_PRINT(sk_next);
2581 DESC_PRINT(sk_data_lo);
2582 DESC_PRINT(sk_data_hi);
2583 DESC_PRINT(sk_xmac_txstat);
2584 DESC_PRINT(sk_rsvd0);
2585 DESC_PRINT(sk_csum_startval);
2586 DESC_PRINT(sk_csum_startpos);
2587 DESC_PRINT(sk_csum_writepos);
2588 DESC_PRINT(sk_rsvd1);
2589 #undef PRINT
2590 }
2591
2592 void
2593 sk_dump_bytes(const char *data, int len)
2594 {
2595 int c, i, j;
2596
2597 for (i = 0; i < len; i += 16) {
2598 printf("%08x ", i);
2599 c = len - i;
2600 if (c > 16) c = 16;
2601
2602 for (j = 0; j < c; j++) {
2603 printf("%02x ", data[i + j] & 0xff);
2604 if ((j & 0xf) == 7 && j > 0)
2605 printf(" ");
2606 }
2607
2608 for (; j < 16; j++)
2609 printf(" ");
2610 printf(" ");
2611
2612 for (j = 0; j < c; j++) {
2613 int ch = data[i + j] & 0xff;
2614 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2615 }
2616
2617 printf("\n");
2618
2619 if (c < 16)
2620 break;
2621 }
2622 }
2623
2624 void
2625 sk_dump_mbuf(struct mbuf *m)
2626 {
2627 int count = m->m_pkthdr.len;
2628
2629 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2630
2631 while (count > 0 && m) {
2632 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2633 m, m->m_data, m->m_len);
2634 sk_dump_bytes(mtod(m, char *), m->m_len);
2635
2636 count -= m->m_len;
2637 m = m->m_next;
2638 }
2639 }
2640 #endif
2641