if_sk.c revision 1.65 1 /* $NetBSD: if_sk.c,v 1.65 2010/02/24 22:38:00 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
30
31 /*
32 * Copyright (c) 1997, 1998, 1999, 2000
33 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by Bill Paul.
46 * 4. Neither the name of the author nor the names of any co-contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60 * THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63 */
64
65 /*
66 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
67 *
68 * Permission to use, copy, modify, and distribute this software for any
69 * purpose with or without fee is hereby granted, provided that the above
70 * copyright notice and this permission notice appear in all copies.
71 *
72 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79 */
80
81 /*
82 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83 * the SK-984x series adapters, both single port and dual port.
84 * References:
85 * The XaQti XMAC II datasheet,
86 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87 * The SysKonnect GEnesis manual, http://www.syskonnect.com
88 *
89 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91 * convenience to others until Vitesse corrects this problem:
92 *
93 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 *
95 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
96 * Department of Electrical Engineering
97 * Columbia University, New York City
98 */
99
100 /*
101 * The SysKonnect gigabit ethernet adapters consist of two main
102 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104 * components and a PHY while the GEnesis controller provides a PCI
105 * interface with DMA support. Each card may have between 512K and
106 * 2MB of SRAM on board depending on the configuration.
107 *
108 * The SysKonnect GEnesis controller can have either one or two XMAC
109 * chips connected to it, allowing single or dual port NIC configurations.
110 * SysKonnect has the distinction of being the only vendor on the market
111 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113 * XMAC registers. This driver takes advantage of these features to allow
114 * both XMACs to operate as independent interfaces.
115 */
116
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.65 2010/02/24 22:38:00 dyoung Exp $");
119
120 #include "rnd.h"
121
122 #include <sys/param.h>
123 #include <sys/systm.h>
124 #include <sys/sockio.h>
125 #include <sys/mbuf.h>
126 #include <sys/malloc.h>
127 #include <sys/mutex.h>
128 #include <sys/kernel.h>
129 #include <sys/socket.h>
130 #include <sys/device.h>
131 #include <sys/queue.h>
132 #include <sys/callout.h>
133 #include <sys/sysctl.h>
134 #include <sys/endian.h>
135
136 #include <net/if.h>
137 #include <net/if_dl.h>
138 #include <net/if_types.h>
139
140 #include <net/if_media.h>
141
142 #include <net/bpf.h>
143 #if NRND > 0
144 #include <sys/rnd.h>
145 #endif
146
147 #include <dev/mii/mii.h>
148 #include <dev/mii/miivar.h>
149 #include <dev/mii/brgphyreg.h>
150
151 #include <dev/pci/pcireg.h>
152 #include <dev/pci/pcivar.h>
153 #include <dev/pci/pcidevs.h>
154
155 /* #define SK_USEIOSPACE */
156
157 #include <dev/pci/if_skreg.h>
158 #include <dev/pci/if_skvar.h>
159
160 int skc_probe(device_t, cfdata_t, void *);
161 void skc_attach(device_t, device_t, void *aux);
162 int sk_probe(device_t, cfdata_t, void *);
163 void sk_attach(device_t, device_t, void *aux);
164 int skcprint(void *, const char *);
165 int sk_intr(void *);
166 void sk_intr_bcom(struct sk_if_softc *);
167 void sk_intr_xmac(struct sk_if_softc *);
168 void sk_intr_yukon(struct sk_if_softc *);
169 void sk_rxeof(struct sk_if_softc *);
170 void sk_txeof(struct sk_if_softc *);
171 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
172 void sk_start(struct ifnet *);
173 int sk_ioctl(struct ifnet *, u_long, void *);
174 int sk_init(struct ifnet *);
175 void sk_init_xmac(struct sk_if_softc *);
176 void sk_init_yukon(struct sk_if_softc *);
177 void sk_stop(struct ifnet *, int);
178 void sk_watchdog(struct ifnet *);
179 void sk_shutdown(void *);
180 int sk_ifmedia_upd(struct ifnet *);
181 void sk_reset(struct sk_softc *);
182 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
183 int sk_alloc_jumbo_mem(struct sk_if_softc *);
184 void sk_free_jumbo_mem(struct sk_if_softc *);
185 void *sk_jalloc(struct sk_if_softc *);
186 void sk_jfree(struct mbuf *, void *, size_t, void *);
187 int sk_init_rx_ring(struct sk_if_softc *);
188 int sk_init_tx_ring(struct sk_if_softc *);
189 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
190 void sk_vpd_read_res(struct sk_softc *,
191 struct vpd_res *, int);
192 void sk_vpd_read(struct sk_softc *);
193
194 void sk_update_int_mod(struct sk_softc *);
195
196 int sk_xmac_miibus_readreg(device_t, int, int);
197 void sk_xmac_miibus_writereg(device_t, int, int, int);
198 void sk_xmac_miibus_statchg(device_t);
199
200 int sk_marv_miibus_readreg(device_t, int, int);
201 void sk_marv_miibus_writereg(device_t, int, int, int);
202 void sk_marv_miibus_statchg(device_t);
203
204 u_int32_t sk_xmac_hash(void *);
205 u_int32_t sk_yukon_hash(void *);
206 void sk_setfilt(struct sk_if_softc *, void *, int);
207 void sk_setmulti(struct sk_if_softc *);
208 void sk_tick(void *);
209
210 static bool skc_suspend(device_t, const pmf_qual_t *);
211 static bool skc_resume(device_t, const pmf_qual_t *);
212 static bool sk_resume(device_t dv, const pmf_qual_t *);
213
214 /* #define SK_DEBUG 2 */
215 #ifdef SK_DEBUG
216 #define DPRINTF(x) if (skdebug) printf x
217 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
218 int skdebug = SK_DEBUG;
219
220 void sk_dump_txdesc(struct sk_tx_desc *, int);
221 void sk_dump_mbuf(struct mbuf *);
222 void sk_dump_bytes(const char *, int);
223 #else
224 #define DPRINTF(x)
225 #define DPRINTFN(n,x)
226 #endif
227
228 static int sk_sysctl_handler(SYSCTLFN_PROTO);
229 static int sk_root_num;
230
231 /* supported device vendors */
232 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
233 static const struct sk_product {
234 pci_vendor_id_t sk_vendor;
235 pci_product_id_t sk_product;
236 } sk_products[] = {
237 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
238 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
239 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
240 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
241 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
242 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
243 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
244 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
245 { 0, 0, }
246 };
247
248 #define SK_LINKSYS_EG1032_SUBID 0x00151737
249
250 static inline u_int32_t
251 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
252 {
253 #ifdef SK_USEIOSPACE
254 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
255 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
256 #else
257 return CSR_READ_4(sc, reg);
258 #endif
259 }
260
261 static inline u_int16_t
262 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
263 {
264 #ifdef SK_USEIOSPACE
265 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
266 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
267 #else
268 return CSR_READ_2(sc, reg);
269 #endif
270 }
271
272 static inline u_int8_t
273 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
274 {
275 #ifdef SK_USEIOSPACE
276 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
277 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
278 #else
279 return CSR_READ_1(sc, reg);
280 #endif
281 }
282
283 static inline void
284 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
285 {
286 #ifdef SK_USEIOSPACE
287 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
288 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
289 #else
290 CSR_WRITE_4(sc, reg, x);
291 #endif
292 }
293
294 static inline void
295 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
296 {
297 #ifdef SK_USEIOSPACE
298 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
299 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
300 #else
301 CSR_WRITE_2(sc, reg, x);
302 #endif
303 }
304
305 static inline void
306 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
307 {
308 #ifdef SK_USEIOSPACE
309 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
310 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
311 #else
312 CSR_WRITE_1(sc, reg, x);
313 #endif
314 }
315
316 /*
317 * The VPD EEPROM contains Vital Product Data, as suggested in
318 * the PCI 2.1 specification. The VPD data is separared into areas
319 * denoted by resource IDs. The SysKonnect VPD contains an ID string
320 * resource (the name of the adapter), a read-only area resource
321 * containing various key/data fields and a read/write area which
322 * can be used to store asset management information or log messages.
323 * We read the ID string and read-only into buffers attached to
324 * the controller softc structure for later use. At the moment,
325 * we only use the ID string during sk_attach().
326 */
327 u_int8_t
328 sk_vpd_readbyte(struct sk_softc *sc, int addr)
329 {
330 int i;
331
332 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
333 for (i = 0; i < SK_TIMEOUT; i++) {
334 DELAY(1);
335 if (sk_win_read_2(sc,
336 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
337 break;
338 }
339
340 if (i == SK_TIMEOUT)
341 return 0;
342
343 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
344 }
345
346 void
347 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
348 {
349 int i;
350 u_int8_t *ptr;
351
352 ptr = (u_int8_t *)res;
353 for (i = 0; i < sizeof(struct vpd_res); i++)
354 ptr[i] = sk_vpd_readbyte(sc, i + addr);
355 }
356
357 void
358 sk_vpd_read(struct sk_softc *sc)
359 {
360 int pos = 0, i;
361 struct vpd_res res;
362
363 if (sc->sk_vpd_prodname != NULL)
364 free(sc->sk_vpd_prodname, M_DEVBUF);
365 if (sc->sk_vpd_readonly != NULL)
366 free(sc->sk_vpd_readonly, M_DEVBUF);
367 sc->sk_vpd_prodname = NULL;
368 sc->sk_vpd_readonly = NULL;
369
370 sk_vpd_read_res(sc, &res, pos);
371
372 if (res.vr_id != VPD_RES_ID) {
373 aprint_error_dev(sc->sk_dev,
374 "bad VPD resource id: expected %x got %x\n",
375 VPD_RES_ID, res.vr_id);
376 return;
377 }
378
379 pos += sizeof(res);
380 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
381 if (sc->sk_vpd_prodname == NULL)
382 panic("sk_vpd_read");
383 for (i = 0; i < res.vr_len; i++)
384 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
385 sc->sk_vpd_prodname[i] = '\0';
386 pos += i;
387
388 sk_vpd_read_res(sc, &res, pos);
389
390 if (res.vr_id != VPD_RES_READ) {
391 aprint_error_dev(sc->sk_dev,
392 "bad VPD resource id: expected %x got %x\n",
393 VPD_RES_READ, res.vr_id);
394 return;
395 }
396
397 pos += sizeof(res);
398 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
399 if (sc->sk_vpd_readonly == NULL)
400 panic("sk_vpd_read");
401 for (i = 0; i < res.vr_len ; i++)
402 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
403 }
404
405 int
406 sk_xmac_miibus_readreg(device_t dev, int phy, int reg)
407 {
408 struct sk_if_softc *sc_if = device_private(dev);
409 int i;
410
411 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
412
413 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
414 return 0;
415
416 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
417 SK_XM_READ_2(sc_if, XM_PHY_DATA);
418 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
419 for (i = 0; i < SK_TIMEOUT; i++) {
420 DELAY(1);
421 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
422 XM_MMUCMD_PHYDATARDY)
423 break;
424 }
425
426 if (i == SK_TIMEOUT) {
427 aprint_error_dev(sc_if->sk_dev,
428 "phy failed to come ready\n");
429 return 0;
430 }
431 }
432 DELAY(1);
433 return SK_XM_READ_2(sc_if, XM_PHY_DATA);
434 }
435
436 void
437 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, int val)
438 {
439 struct sk_if_softc *sc_if = device_private(dev);
440 int i;
441
442 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
443
444 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
445 for (i = 0; i < SK_TIMEOUT; i++) {
446 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
447 break;
448 }
449
450 if (i == SK_TIMEOUT) {
451 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
452 return;
453 }
454
455 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
456 for (i = 0; i < SK_TIMEOUT; i++) {
457 DELAY(1);
458 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
459 break;
460 }
461
462 if (i == SK_TIMEOUT)
463 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
464 }
465
466 void
467 sk_xmac_miibus_statchg(device_t dev)
468 {
469 struct sk_if_softc *sc_if = device_private(dev);
470 struct mii_data *mii = &sc_if->sk_mii;
471
472 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
473
474 /*
475 * If this is a GMII PHY, manually set the XMAC's
476 * duplex mode accordingly.
477 */
478 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
479 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
480 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
481 else
482 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
483 }
484 }
485
486 int
487 sk_marv_miibus_readreg(device_t dev, int phy, int reg)
488 {
489 struct sk_if_softc *sc_if = device_private(dev);
490 u_int16_t val;
491 int i;
492
493 if (phy != 0 ||
494 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
495 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
496 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
497 phy, reg));
498 return 0;
499 }
500
501 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
502 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
503
504 for (i = 0; i < SK_TIMEOUT; i++) {
505 DELAY(1);
506 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
507 if (val & YU_SMICR_READ_VALID)
508 break;
509 }
510
511 if (i == SK_TIMEOUT) {
512 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
513 return 0;
514 }
515
516 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
517 SK_TIMEOUT));
518
519 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
520
521 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
522 phy, reg, val));
523
524 return val;
525 }
526
527 void
528 sk_marv_miibus_writereg(device_t dev, int phy, int reg, int val)
529 {
530 struct sk_if_softc *sc_if = device_private(dev);
531 int i;
532
533 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
534 phy, reg, val));
535
536 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
537 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
538 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
539
540 for (i = 0; i < SK_TIMEOUT; i++) {
541 DELAY(1);
542 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
543 break;
544 }
545
546 if (i == SK_TIMEOUT)
547 printf("%s: phy write timed out\n",
548 device_xname(sc_if->sk_dev));
549 }
550
551 void
552 sk_marv_miibus_statchg(device_t dev)
553 {
554 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
555 SK_YU_READ_2(((struct sk_if_softc *)device_private(dev)),
556 YUKON_GPCR)));
557 }
558
559 #define SK_HASH_BITS 6
560
561 u_int32_t
562 sk_xmac_hash(void *addr)
563 {
564 u_int32_t crc;
565
566 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
567 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
568 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
569 return crc;
570 }
571
572 u_int32_t
573 sk_yukon_hash(void *addr)
574 {
575 u_int32_t crc;
576
577 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
578 crc &= ((1 << SK_HASH_BITS) - 1);
579 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
580 return crc;
581 }
582
583 void
584 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
585 {
586 char *addr = addrv;
587 int base = XM_RXFILT_ENTRY(slot);
588
589 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
590 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
591 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
592 }
593
594 void
595 sk_setmulti(struct sk_if_softc *sc_if)
596 {
597 struct sk_softc *sc = sc_if->sk_softc;
598 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
599 u_int32_t hashes[2] = { 0, 0 };
600 int h = 0, i;
601 struct ethercom *ec = &sc_if->sk_ethercom;
602 struct ether_multi *enm;
603 struct ether_multistep step;
604 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
605
606 /* First, zot all the existing filters. */
607 switch (sc->sk_type) {
608 case SK_GENESIS:
609 for (i = 1; i < XM_RXFILT_MAX; i++)
610 sk_setfilt(sc_if, (void *)&dummy, i);
611
612 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
613 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
614 break;
615 case SK_YUKON:
616 case SK_YUKON_LITE:
617 case SK_YUKON_LP:
618 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
619 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
620 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
621 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
622 break;
623 }
624
625 /* Now program new ones. */
626 allmulti:
627 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
628 hashes[0] = 0xFFFFFFFF;
629 hashes[1] = 0xFFFFFFFF;
630 } else {
631 i = 1;
632 /* First find the tail of the list. */
633 ETHER_FIRST_MULTI(step, ec, enm);
634 while (enm != NULL) {
635 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
636 ETHER_ADDR_LEN)) {
637 ifp->if_flags |= IFF_ALLMULTI;
638 goto allmulti;
639 }
640 DPRINTFN(2,("multicast address %s\n",
641 ether_sprintf(enm->enm_addrlo)));
642 /*
643 * Program the first XM_RXFILT_MAX multicast groups
644 * into the perfect filter. For all others,
645 * use the hash table.
646 */
647 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
648 sk_setfilt(sc_if, enm->enm_addrlo, i);
649 i++;
650 }
651 else {
652 switch (sc->sk_type) {
653 case SK_GENESIS:
654 h = sk_xmac_hash(enm->enm_addrlo);
655 break;
656 case SK_YUKON:
657 case SK_YUKON_LITE:
658 case SK_YUKON_LP:
659 h = sk_yukon_hash(enm->enm_addrlo);
660 break;
661 }
662 if (h < 32)
663 hashes[0] |= (1 << h);
664 else
665 hashes[1] |= (1 << (h - 32));
666 }
667
668 ETHER_NEXT_MULTI(step, enm);
669 }
670 }
671
672 switch (sc->sk_type) {
673 case SK_GENESIS:
674 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
675 XM_MODE_RX_USE_PERFECT);
676 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
677 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
678 break;
679 case SK_YUKON:
680 case SK_YUKON_LITE:
681 case SK_YUKON_LP:
682 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
683 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
684 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
685 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
686 break;
687 }
688 }
689
690 int
691 sk_init_rx_ring(struct sk_if_softc *sc_if)
692 {
693 struct sk_chain_data *cd = &sc_if->sk_cdata;
694 struct sk_ring_data *rd = sc_if->sk_rdata;
695 int i;
696
697 memset((char *)rd->sk_rx_ring, 0,
698 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
699
700 for (i = 0; i < SK_RX_RING_CNT; i++) {
701 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
702 if (i == (SK_RX_RING_CNT - 1)) {
703 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
704 rd->sk_rx_ring[i].sk_next =
705 htole32(SK_RX_RING_ADDR(sc_if, 0));
706 } else {
707 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
708 rd->sk_rx_ring[i].sk_next =
709 htole32(SK_RX_RING_ADDR(sc_if,i+1));
710 }
711 }
712
713 for (i = 0; i < SK_RX_RING_CNT; i++) {
714 if (sk_newbuf(sc_if, i, NULL,
715 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
716 aprint_error_dev(sc_if->sk_dev,
717 "failed alloc of %dth mbuf\n", i);
718 return ENOBUFS;
719 }
720 }
721 sc_if->sk_cdata.sk_rx_prod = 0;
722 sc_if->sk_cdata.sk_rx_cons = 0;
723
724 return 0;
725 }
726
727 int
728 sk_init_tx_ring(struct sk_if_softc *sc_if)
729 {
730 struct sk_chain_data *cd = &sc_if->sk_cdata;
731 struct sk_ring_data *rd = sc_if->sk_rdata;
732 int i;
733
734 memset(sc_if->sk_rdata->sk_tx_ring, 0,
735 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
736
737 for (i = 0; i < SK_TX_RING_CNT; i++) {
738 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
739 if (i == (SK_TX_RING_CNT - 1)) {
740 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
741 rd->sk_tx_ring[i].sk_next =
742 htole32(SK_TX_RING_ADDR(sc_if, 0));
743 } else {
744 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
745 rd->sk_tx_ring[i].sk_next =
746 htole32(SK_TX_RING_ADDR(sc_if,i+1));
747 }
748 }
749
750 sc_if->sk_cdata.sk_tx_prod = 0;
751 sc_if->sk_cdata.sk_tx_cons = 0;
752 sc_if->sk_cdata.sk_tx_cnt = 0;
753
754 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
755 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
756
757 return 0;
758 }
759
760 int
761 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
762 bus_dmamap_t dmamap)
763 {
764 struct mbuf *m_new = NULL;
765 struct sk_chain *c;
766 struct sk_rx_desc *r;
767
768 if (m == NULL) {
769 void *buf = NULL;
770
771 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
772 if (m_new == NULL) {
773 aprint_error_dev(sc_if->sk_dev,
774 "no memory for rx list -- packet dropped!\n");
775 return ENOBUFS;
776 }
777
778 /* Allocate the jumbo buffer */
779 buf = sk_jalloc(sc_if);
780 if (buf == NULL) {
781 m_freem(m_new);
782 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
783 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
784 return ENOBUFS;
785 }
786
787 /* Attach the buffer to the mbuf */
788 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
789 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
790
791 } else {
792 /*
793 * We're re-using a previously allocated mbuf;
794 * be sure to re-init pointers and lengths to
795 * default values.
796 */
797 m_new = m;
798 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
799 m_new->m_data = m_new->m_ext.ext_buf;
800 }
801 m_adj(m_new, ETHER_ALIGN);
802
803 c = &sc_if->sk_cdata.sk_rx_chain[i];
804 r = c->sk_desc;
805 c->sk_mbuf = m_new;
806 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
807 (((vaddr_t)m_new->m_data
808 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
809 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
810
811 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
812
813 return 0;
814 }
815
816 /*
817 * Memory management for jumbo frames.
818 */
819
820 int
821 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
822 {
823 struct sk_softc *sc = sc_if->sk_softc;
824 char *ptr, *kva;
825 bus_dma_segment_t seg;
826 int i, rseg, state, error;
827 struct sk_jpool_entry *entry;
828
829 state = error = 0;
830
831 /* Grab a big chunk o' storage. */
832 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
833 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
834 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
835 return ENOBUFS;
836 }
837
838 state = 1;
839 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
840 BUS_DMA_NOWAIT)) {
841 aprint_error_dev(sc->sk_dev,
842 "can't map dma buffers (%d bytes)\n",
843 SK_JMEM);
844 error = ENOBUFS;
845 goto out;
846 }
847
848 state = 2;
849 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
850 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
851 aprint_error_dev(sc->sk_dev, "can't create dma map\n");
852 error = ENOBUFS;
853 goto out;
854 }
855
856 state = 3;
857 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
858 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
859 aprint_error_dev(sc->sk_dev, "can't load dma map\n");
860 error = ENOBUFS;
861 goto out;
862 }
863
864 state = 4;
865 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
866 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
867
868 LIST_INIT(&sc_if->sk_jfree_listhead);
869 LIST_INIT(&sc_if->sk_jinuse_listhead);
870 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
871
872 /*
873 * Now divide it up into 9K pieces and save the addresses
874 * in an array.
875 */
876 ptr = sc_if->sk_cdata.sk_jumbo_buf;
877 for (i = 0; i < SK_JSLOTS; i++) {
878 sc_if->sk_cdata.sk_jslots[i] = ptr;
879 ptr += SK_JLEN;
880 entry = malloc(sizeof(struct sk_jpool_entry),
881 M_DEVBUF, M_NOWAIT);
882 if (entry == NULL) {
883 aprint_error_dev(sc->sk_dev,
884 "no memory for jumbo buffer queue!\n");
885 error = ENOBUFS;
886 goto out;
887 }
888 entry->slot = i;
889 if (i)
890 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
891 entry, jpool_entries);
892 else
893 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
894 entry, jpool_entries);
895 }
896 out:
897 if (error != 0) {
898 switch (state) {
899 case 4:
900 bus_dmamap_unload(sc->sc_dmatag,
901 sc_if->sk_cdata.sk_rx_jumbo_map);
902 case 3:
903 bus_dmamap_destroy(sc->sc_dmatag,
904 sc_if->sk_cdata.sk_rx_jumbo_map);
905 case 2:
906 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
907 case 1:
908 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
909 break;
910 default:
911 break;
912 }
913 }
914
915 return error;
916 }
917
918 /*
919 * Allocate a jumbo buffer.
920 */
921 void *
922 sk_jalloc(struct sk_if_softc *sc_if)
923 {
924 struct sk_jpool_entry *entry;
925
926 mutex_enter(&sc_if->sk_jpool_mtx);
927 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
928
929 if (entry == NULL) {
930 mutex_exit(&sc_if->sk_jpool_mtx);
931 return NULL;
932 }
933
934 LIST_REMOVE(entry, jpool_entries);
935 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
936 mutex_exit(&sc_if->sk_jpool_mtx);
937 return sc_if->sk_cdata.sk_jslots[entry->slot];
938 }
939
940 /*
941 * Release a jumbo buffer.
942 */
943 void
944 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
945 {
946 struct sk_jpool_entry *entry;
947 struct sk_if_softc *sc;
948 int i;
949
950 /* Extract the softc struct pointer. */
951 sc = (struct sk_if_softc *)arg;
952
953 if (sc == NULL)
954 panic("sk_jfree: can't find softc pointer!");
955
956 /* calculate the slot this buffer belongs to */
957
958 i = ((vaddr_t)buf
959 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
960
961 if ((i < 0) || (i >= SK_JSLOTS))
962 panic("sk_jfree: asked to free buffer that we don't manage!");
963
964 mutex_enter(&sc->sk_jpool_mtx);
965 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
966 if (entry == NULL)
967 panic("sk_jfree: buffer not in use!");
968 entry->slot = i;
969 LIST_REMOVE(entry, jpool_entries);
970 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
971 mutex_exit(&sc->sk_jpool_mtx);
972
973 if (__predict_true(m != NULL))
974 pool_cache_put(mb_cache, m);
975 }
976
977 /*
978 * Set media options.
979 */
980 int
981 sk_ifmedia_upd(struct ifnet *ifp)
982 {
983 struct sk_if_softc *sc_if = ifp->if_softc;
984 int rc;
985
986 (void) sk_init(ifp);
987 if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
988 return 0;
989 return rc;
990 }
991
992 int
993 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
994 {
995 struct sk_if_softc *sc_if = ifp->if_softc;
996 struct sk_softc *sc = sc_if->sk_softc;
997 int s, error = 0;
998
999 /* DPRINTFN(2, ("sk_ioctl\n")); */
1000
1001 s = splnet();
1002
1003 switch (command) {
1004
1005 case SIOCSIFFLAGS:
1006 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1007 if ((error = ifioctl_common(ifp, command, data)) != 0)
1008 break;
1009 if (ifp->if_flags & IFF_UP) {
1010 if (ifp->if_flags & IFF_RUNNING &&
1011 ifp->if_flags & IFF_PROMISC &&
1012 !(sc_if->sk_if_flags & IFF_PROMISC)) {
1013 switch (sc->sk_type) {
1014 case SK_GENESIS:
1015 SK_XM_SETBIT_4(sc_if, XM_MODE,
1016 XM_MODE_RX_PROMISC);
1017 break;
1018 case SK_YUKON:
1019 case SK_YUKON_LITE:
1020 case SK_YUKON_LP:
1021 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1022 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1023 break;
1024 }
1025 sk_setmulti(sc_if);
1026 } else if (ifp->if_flags & IFF_RUNNING &&
1027 !(ifp->if_flags & IFF_PROMISC) &&
1028 sc_if->sk_if_flags & IFF_PROMISC) {
1029 switch (sc->sk_type) {
1030 case SK_GENESIS:
1031 SK_XM_CLRBIT_4(sc_if, XM_MODE,
1032 XM_MODE_RX_PROMISC);
1033 break;
1034 case SK_YUKON:
1035 case SK_YUKON_LITE:
1036 case SK_YUKON_LP:
1037 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1038 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1039 break;
1040 }
1041
1042 sk_setmulti(sc_if);
1043 } else
1044 (void) sk_init(ifp);
1045 } else {
1046 if (ifp->if_flags & IFF_RUNNING)
1047 sk_stop(ifp,0);
1048 }
1049 sc_if->sk_if_flags = ifp->if_flags;
1050 error = 0;
1051 break;
1052
1053 default:
1054 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1055 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1056 break;
1057
1058 error = 0;
1059
1060 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1061 ;
1062 else if (ifp->if_flags & IFF_RUNNING) {
1063 sk_setmulti(sc_if);
1064 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1065 }
1066 break;
1067 }
1068
1069 splx(s);
1070 return error;
1071 }
1072
1073 void
1074 sk_update_int_mod(struct sk_softc *sc)
1075 {
1076 u_int32_t imtimer_ticks;
1077
1078 /*
1079 * Configure interrupt moderation. The moderation timer
1080 * defers interrupts specified in the interrupt moderation
1081 * timer mask based on the timeout specified in the interrupt
1082 * moderation timer init register. Each bit in the timer
1083 * register represents one tick, so to specify a timeout in
1084 * microseconds, we have to multiply by the correct number of
1085 * ticks-per-microsecond.
1086 */
1087 switch (sc->sk_type) {
1088 case SK_GENESIS:
1089 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1090 break;
1091 case SK_YUKON_EC:
1092 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1093 break;
1094 default:
1095 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1096 }
1097 aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
1098 sc->sk_int_mod);
1099 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1100 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1101 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1102 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1103 sc->sk_int_mod_pending = 0;
1104 }
1105
1106 /*
1107 * Lookup: Check the PCI vendor and device, and return a pointer to
1108 * The structure if the IDs match against our list.
1109 */
1110
1111 static const struct sk_product *
1112 sk_lookup(const struct pci_attach_args *pa)
1113 {
1114 const struct sk_product *psk;
1115
1116 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1117 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1118 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1119 return psk;
1120 }
1121 return NULL;
1122 }
1123
1124 /*
1125 * Probe for a SysKonnect GEnesis chip.
1126 */
1127
1128 int
1129 skc_probe(device_t parent, cfdata_t match, void *aux)
1130 {
1131 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1132 const struct sk_product *psk;
1133 pcireg_t subid;
1134
1135 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1136
1137 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1138 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1139 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1140 subid == SK_LINKSYS_EG1032_SUBID)
1141 return 1;
1142
1143 if ((psk = sk_lookup(pa))) {
1144 return 1;
1145 }
1146 return 0;
1147 }
1148
1149 /*
1150 * Force the GEnesis into reset, then bring it out of reset.
1151 */
1152 void sk_reset(struct sk_softc *sc)
1153 {
1154 DPRINTFN(2, ("sk_reset\n"));
1155
1156 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1157 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1158 if (SK_YUKON_FAMILY(sc->sk_type))
1159 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1160
1161 DELAY(1000);
1162 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1163 DELAY(2);
1164 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1165 if (SK_YUKON_FAMILY(sc->sk_type))
1166 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1167
1168 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1169 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1170 CSR_READ_2(sc, SK_LINK_CTRL)));
1171
1172 if (sc->sk_type == SK_GENESIS) {
1173 /* Configure packet arbiter */
1174 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1175 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1176 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1177 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1178 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1179 }
1180
1181 /* Enable RAM interface */
1182 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1183
1184 sk_update_int_mod(sc);
1185 }
1186
1187 int
1188 sk_probe(device_t parent, cfdata_t match, void *aux)
1189 {
1190 struct skc_attach_args *sa = aux;
1191
1192 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1193 return 0;
1194
1195 return 1;
1196 }
1197
1198 /*
1199 * Each XMAC chip is attached as a separate logical IP interface.
1200 * Single port cards will have only one logical interface of course.
1201 */
1202 void
1203 sk_attach(device_t parent, device_t self, void *aux)
1204 {
1205 struct sk_if_softc *sc_if = device_private(self);
1206 struct sk_softc *sc = device_private(parent);
1207 struct skc_attach_args *sa = aux;
1208 struct sk_txmap_entry *entry;
1209 struct ifnet *ifp;
1210 bus_dma_segment_t seg;
1211 bus_dmamap_t dmamap;
1212 void *kva;
1213 int i, rseg;
1214 int mii_flags = 0;
1215
1216 aprint_naive("\n");
1217
1218 sc_if->sk_dev = self;
1219 sc_if->sk_port = sa->skc_port;
1220 sc_if->sk_softc = sc;
1221 sc->sk_if[sa->skc_port] = sc_if;
1222
1223 if (sa->skc_port == SK_PORT_A)
1224 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1225 if (sa->skc_port == SK_PORT_B)
1226 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1227
1228 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1229
1230 /*
1231 * Get station address for this interface. Note that
1232 * dual port cards actually come with three station
1233 * addresses: one for each port, plus an extra. The
1234 * extra one is used by the SysKonnect driver software
1235 * as a 'virtual' station address for when both ports
1236 * are operating in failover mode. Currently we don't
1237 * use this extra address.
1238 */
1239 for (i = 0; i < ETHER_ADDR_LEN; i++)
1240 sc_if->sk_enaddr[i] =
1241 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1242
1243
1244 aprint_normal(": Ethernet address %s\n",
1245 ether_sprintf(sc_if->sk_enaddr));
1246
1247 /*
1248 * Set up RAM buffer addresses. The NIC will have a certain
1249 * amount of SRAM on it, somewhere between 512K and 2MB. We
1250 * need to divide this up a) between the transmitter and
1251 * receiver and b) between the two XMACs, if this is a
1252 * dual port NIC. Our algorithm is to divide up the memory
1253 * evenly so that everyone gets a fair share.
1254 */
1255 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1256 u_int32_t chunk, val;
1257
1258 chunk = sc->sk_ramsize / 2;
1259 val = sc->sk_rboff / sizeof(u_int64_t);
1260 sc_if->sk_rx_ramstart = val;
1261 val += (chunk / sizeof(u_int64_t));
1262 sc_if->sk_rx_ramend = val - 1;
1263 sc_if->sk_tx_ramstart = val;
1264 val += (chunk / sizeof(u_int64_t));
1265 sc_if->sk_tx_ramend = val - 1;
1266 } else {
1267 u_int32_t chunk, val;
1268
1269 chunk = sc->sk_ramsize / 4;
1270 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1271 sizeof(u_int64_t);
1272 sc_if->sk_rx_ramstart = val;
1273 val += (chunk / sizeof(u_int64_t));
1274 sc_if->sk_rx_ramend = val - 1;
1275 sc_if->sk_tx_ramstart = val;
1276 val += (chunk / sizeof(u_int64_t));
1277 sc_if->sk_tx_ramend = val - 1;
1278 }
1279
1280 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1281 " tx_ramstart=%#x tx_ramend=%#x\n",
1282 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1283 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1284
1285 /* Read and save PHY type and set PHY address */
1286 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1287 switch (sc_if->sk_phytype) {
1288 case SK_PHYTYPE_XMAC:
1289 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1290 break;
1291 case SK_PHYTYPE_BCOM:
1292 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1293 break;
1294 case SK_PHYTYPE_MARV_COPPER:
1295 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1296 break;
1297 default:
1298 aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
1299 sc_if->sk_phytype);
1300 return;
1301 }
1302
1303 /* Allocate the descriptor queues. */
1304 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1305 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1306 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
1307 goto fail;
1308 }
1309 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1310 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1311 aprint_error_dev(sc_if->sk_dev,
1312 "can't map dma buffers (%lu bytes)\n",
1313 (u_long) sizeof(struct sk_ring_data));
1314 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1315 goto fail;
1316 }
1317 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1318 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1319 &sc_if->sk_ring_map)) {
1320 aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
1321 bus_dmamem_unmap(sc->sc_dmatag, kva,
1322 sizeof(struct sk_ring_data));
1323 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1324 goto fail;
1325 }
1326 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1327 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1328 aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
1329 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1330 bus_dmamem_unmap(sc->sc_dmatag, kva,
1331 sizeof(struct sk_ring_data));
1332 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1333 goto fail;
1334 }
1335
1336 for (i = 0; i < SK_RX_RING_CNT; i++)
1337 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1338
1339 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1340 for (i = 0; i < SK_TX_RING_CNT; i++) {
1341 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1342
1343 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1344 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1345 aprint_error_dev(sc_if->sk_dev,
1346 "Can't create TX dmamap\n");
1347 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1348 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1349 bus_dmamem_unmap(sc->sc_dmatag, kva,
1350 sizeof(struct sk_ring_data));
1351 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1352 goto fail;
1353 }
1354
1355 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1356 if (!entry) {
1357 aprint_error_dev(sc_if->sk_dev,
1358 "Can't alloc txmap entry\n");
1359 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1360 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1361 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1362 bus_dmamem_unmap(sc->sc_dmatag, kva,
1363 sizeof(struct sk_ring_data));
1364 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1365 goto fail;
1366 }
1367 entry->dmamap = dmamap;
1368 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1369 }
1370
1371 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1372 memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
1373
1374 ifp = &sc_if->sk_ethercom.ec_if;
1375 /* Try to allocate memory for jumbo buffers. */
1376 if (sk_alloc_jumbo_mem(sc_if)) {
1377 aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1378 goto fail;
1379 }
1380 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1381 | ETHERCAP_JUMBO_MTU;
1382
1383 ifp->if_softc = sc_if;
1384 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1385 ifp->if_ioctl = sk_ioctl;
1386 ifp->if_start = sk_start;
1387 ifp->if_stop = sk_stop;
1388 ifp->if_init = sk_init;
1389 ifp->if_watchdog = sk_watchdog;
1390 ifp->if_capabilities = 0;
1391 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1392 IFQ_SET_READY(&ifp->if_snd);
1393 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1394
1395 /*
1396 * Do miibus setup.
1397 */
1398 switch (sc->sk_type) {
1399 case SK_GENESIS:
1400 sk_init_xmac(sc_if);
1401 break;
1402 case SK_YUKON:
1403 case SK_YUKON_LITE:
1404 case SK_YUKON_LP:
1405 sk_init_yukon(sc_if);
1406 break;
1407 default:
1408 aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
1409 sc->sk_type);
1410 goto fail;
1411 }
1412
1413 DPRINTFN(2, ("sk_attach: 1\n"));
1414
1415 sc_if->sk_mii.mii_ifp = ifp;
1416 switch (sc->sk_type) {
1417 case SK_GENESIS:
1418 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1419 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1420 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1421 break;
1422 case SK_YUKON:
1423 case SK_YUKON_LITE:
1424 case SK_YUKON_LP:
1425 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1426 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1427 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1428 mii_flags = MIIF_DOPAUSE;
1429 break;
1430 }
1431
1432 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1433 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1434 sk_ifmedia_upd, ether_mediastatus);
1435 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1436 MII_OFFSET_ANY, mii_flags);
1437 if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
1438 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1439 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1440 0, NULL);
1441 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1442 } else
1443 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1444
1445 callout_init(&sc_if->sk_tick_ch, 0);
1446 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1447
1448 DPRINTFN(2, ("sk_attach: 1\n"));
1449
1450 /*
1451 * Call MI attach routines.
1452 */
1453 if_attach(ifp);
1454
1455 ether_ifattach(ifp, sc_if->sk_enaddr);
1456
1457 #if NRND > 0
1458 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1459 RND_TYPE_NET, 0);
1460 #endif
1461
1462 if (pmf_device_register(self, NULL, sk_resume))
1463 pmf_class_network_register(self, ifp);
1464 else
1465 aprint_error_dev(self, "couldn't establish power handler\n");
1466
1467 DPRINTFN(2, ("sk_attach: end\n"));
1468
1469 return;
1470
1471 fail:
1472 sc->sk_if[sa->skc_port] = NULL;
1473 }
1474
1475 int
1476 skcprint(void *aux, const char *pnp)
1477 {
1478 struct skc_attach_args *sa = aux;
1479
1480 if (pnp)
1481 aprint_normal("sk port %c at %s",
1482 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1483 else
1484 aprint_normal(" port %c",
1485 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1486 return UNCONF;
1487 }
1488
1489 /*
1490 * Attach the interface. Allocate softc structures, do ifmedia
1491 * setup and ethernet/BPF attach.
1492 */
1493 void
1494 skc_attach(device_t parent, device_t self, void *aux)
1495 {
1496 struct sk_softc *sc = device_private(self);
1497 struct pci_attach_args *pa = aux;
1498 struct skc_attach_args skca;
1499 pci_chipset_tag_t pc = pa->pa_pc;
1500 #ifndef SK_USEIOSPACE
1501 pcireg_t memtype;
1502 #endif
1503 pci_intr_handle_t ih;
1504 const char *intrstr = NULL;
1505 bus_addr_t iobase;
1506 bus_size_t iosize;
1507 int rc, sk_nodenum;
1508 u_int32_t command;
1509 const char *revstr;
1510 const struct sysctlnode *node;
1511
1512 sc->sk_dev = self;
1513 aprint_naive("\n");
1514
1515 DPRINTFN(2, ("begin skc_attach\n"));
1516
1517 /*
1518 * Handle power management nonsense.
1519 */
1520 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1521
1522 if (command == 0x01) {
1523 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1524 if (command & SK_PSTATE_MASK) {
1525 u_int32_t xiobase, membase, irq;
1526
1527 /* Save important PCI config data. */
1528 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1529 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1530 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1531
1532 /* Reset the power state. */
1533 aprint_normal_dev(sc->sk_dev,
1534 "chip is in D%d power mode -- setting to D0\n",
1535 command & SK_PSTATE_MASK);
1536 command &= 0xFFFFFFFC;
1537 pci_conf_write(pc, pa->pa_tag,
1538 SK_PCI_PWRMGMTCTRL, command);
1539
1540 /* Restore PCI config data. */
1541 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1542 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1543 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1544 }
1545 }
1546
1547 /*
1548 * Map control/status registers.
1549 */
1550 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1551 command |= PCI_COMMAND_IO_ENABLE |
1552 PCI_COMMAND_MEM_ENABLE |
1553 PCI_COMMAND_MASTER_ENABLE;
1554 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1555 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1556
1557 #ifdef SK_USEIOSPACE
1558 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1559 aprint_error(": failed to enable I/O ports!\n");
1560 return;
1561 }
1562 /*
1563 * Map control/status registers.
1564 */
1565 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1566 &sc->sk_btag, &sc->sk_bhandle,
1567 &iobase, &iosize)) {
1568 aprint_error(": can't find i/o space\n");
1569 return;
1570 }
1571 #else
1572 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1573 aprint_error(": failed to enable memory mapping!\n");
1574 return;
1575 }
1576 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1577 switch (memtype) {
1578 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1579 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1580 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1581 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1582 &iobase, &iosize) == 0)
1583 break;
1584 default:
1585 aprint_error_dev(sc->sk_dev, "can't find mem space\n");
1586 return;
1587 }
1588
1589 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase,
1590 (u_long)iosize));
1591 #endif
1592 sc->sc_dmatag = pa->pa_dmat;
1593
1594 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1595 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1596
1597 /* bail out here if chip is not recognized */
1598 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1599 aprint_error_dev(sc->sk_dev, "unknown chip type\n");
1600 goto fail;
1601 }
1602 if (SK_IS_YUKON2(sc)) {
1603 aprint_error_dev(sc->sk_dev,
1604 "Does not support Yukon2--try msk(4).\n");
1605 goto fail;
1606 }
1607 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1608
1609 /* Allocate interrupt */
1610 if (pci_intr_map(pa, &ih)) {
1611 aprint_error(": couldn't map interrupt\n");
1612 goto fail;
1613 }
1614
1615 intrstr = pci_intr_string(pc, ih);
1616 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1617 if (sc->sk_intrhand == NULL) {
1618 aprint_error(": couldn't establish interrupt");
1619 if (intrstr != NULL)
1620 aprint_error(" at %s", intrstr);
1621 aprint_error("\n");
1622 goto fail;
1623 }
1624 aprint_normal(": %s\n", intrstr);
1625
1626 /* Reset the adapter. */
1627 sk_reset(sc);
1628
1629 /* Read and save vital product data from EEPROM. */
1630 sk_vpd_read(sc);
1631
1632 if (sc->sk_type == SK_GENESIS) {
1633 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1634 /* Read and save RAM size and RAMbuffer offset */
1635 switch (val) {
1636 case SK_RAMSIZE_512K_64:
1637 sc->sk_ramsize = 0x80000;
1638 sc->sk_rboff = SK_RBOFF_0;
1639 break;
1640 case SK_RAMSIZE_1024K_64:
1641 sc->sk_ramsize = 0x100000;
1642 sc->sk_rboff = SK_RBOFF_80000;
1643 break;
1644 case SK_RAMSIZE_1024K_128:
1645 sc->sk_ramsize = 0x100000;
1646 sc->sk_rboff = SK_RBOFF_0;
1647 break;
1648 case SK_RAMSIZE_2048K_128:
1649 sc->sk_ramsize = 0x200000;
1650 sc->sk_rboff = SK_RBOFF_0;
1651 break;
1652 default:
1653 aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
1654 val);
1655 goto fail_1;
1656 break;
1657 }
1658
1659 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1660 sc->sk_ramsize, sc->sk_ramsize / 1024,
1661 sc->sk_rboff));
1662 } else {
1663 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1664 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1665 sc->sk_rboff = SK_RBOFF_0;
1666
1667 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1668 sc->sk_ramsize / 1024, sc->sk_ramsize,
1669 sc->sk_rboff));
1670 }
1671
1672 /* Read and save physical media type */
1673 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1674 case SK_PMD_1000BASESX:
1675 sc->sk_pmd = IFM_1000_SX;
1676 break;
1677 case SK_PMD_1000BASELX:
1678 sc->sk_pmd = IFM_1000_LX;
1679 break;
1680 case SK_PMD_1000BASECX:
1681 sc->sk_pmd = IFM_1000_CX;
1682 break;
1683 case SK_PMD_1000BASETX:
1684 case SK_PMD_1000BASETX_ALT:
1685 sc->sk_pmd = IFM_1000_T;
1686 break;
1687 default:
1688 aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
1689 sk_win_read_1(sc, SK_PMDTYPE));
1690 goto fail_1;
1691 }
1692
1693 /* determine whether to name it with vpd or just make it up */
1694 /* Marvell Yukon VPD's can freqently be bogus */
1695
1696 switch (pa->pa_id) {
1697 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1698 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1699 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1700 case PCI_PRODUCT_3COM_3C940:
1701 case PCI_PRODUCT_DLINK_DGE530T:
1702 case PCI_PRODUCT_DLINK_DGE560T:
1703 case PCI_PRODUCT_DLINK_DGE560T_2:
1704 case PCI_PRODUCT_LINKSYS_EG1032:
1705 case PCI_PRODUCT_LINKSYS_EG1064:
1706 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1707 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1708 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1709 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1710 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1711 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1712 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1713 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1714 sc->sk_name = sc->sk_vpd_prodname;
1715 break;
1716 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1717 /* whoops yukon vpd prodname bears no resemblance to reality */
1718 switch (sc->sk_type) {
1719 case SK_GENESIS:
1720 sc->sk_name = sc->sk_vpd_prodname;
1721 break;
1722 case SK_YUKON:
1723 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1724 break;
1725 case SK_YUKON_LITE:
1726 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1727 break;
1728 case SK_YUKON_LP:
1729 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1730 break;
1731 default:
1732 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1733 }
1734
1735 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1736
1737 if ( sc->sk_type == SK_YUKON ) {
1738 uint32_t flashaddr;
1739 uint8_t testbyte;
1740
1741 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1742
1743 /* test Flash-Address Register */
1744 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1745 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1746
1747 if (testbyte != 0) {
1748 /* this is yukon lite Rev. A0 */
1749 sc->sk_type = SK_YUKON_LITE;
1750 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1751 /* restore Flash-Address Register */
1752 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1753 }
1754 }
1755 break;
1756 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1757 sc->sk_name = sc->sk_vpd_prodname;
1758 break;
1759 default:
1760 sc->sk_name = "Unknown Marvell";
1761 }
1762
1763
1764 if ( sc->sk_type == SK_YUKON_LITE ) {
1765 switch (sc->sk_rev) {
1766 case SK_YUKON_LITE_REV_A0:
1767 revstr = "A0";
1768 break;
1769 case SK_YUKON_LITE_REV_A1:
1770 revstr = "A1";
1771 break;
1772 case SK_YUKON_LITE_REV_A3:
1773 revstr = "A3";
1774 break;
1775 default:
1776 revstr = "";
1777 }
1778 } else {
1779 revstr = "";
1780 }
1781
1782 /* Announce the product name. */
1783 aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
1784 sc->sk_name, revstr, sc->sk_rev);
1785
1786 skca.skc_port = SK_PORT_A;
1787 (void)config_found(sc->sk_dev, &skca, skcprint);
1788
1789 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1790 skca.skc_port = SK_PORT_B;
1791 (void)config_found(sc->sk_dev, &skca, skcprint);
1792 }
1793
1794 /* Turn on the 'driver is loaded' LED. */
1795 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1796
1797 /* skc sysctl setup */
1798
1799 sc->sk_int_mod = SK_IM_DEFAULT;
1800 sc->sk_int_mod_pending = 0;
1801
1802 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1803 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1804 SYSCTL_DESCR("skc per-controller controls"),
1805 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1806 CTL_EOL)) != 0) {
1807 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1808 goto fail_1;
1809 }
1810
1811 sk_nodenum = node->sysctl_num;
1812
1813 /* interrupt moderation time in usecs */
1814 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1815 CTLFLAG_READWRITE,
1816 CTLTYPE_INT, "int_mod",
1817 SYSCTL_DESCR("sk interrupt moderation timer"),
1818 sk_sysctl_handler, 0, sc,
1819 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1820 CTL_EOL)) != 0) {
1821 aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1822 goto fail_1;
1823 }
1824
1825 if (!pmf_device_register(self, skc_suspend, skc_resume))
1826 aprint_error_dev(self, "couldn't establish power handler\n");
1827
1828 return;
1829
1830 fail_1:
1831 pci_intr_disestablish(pc, sc->sk_intrhand);
1832 fail:
1833 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1834 }
1835
1836 int
1837 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1838 {
1839 struct sk_softc *sc = sc_if->sk_softc;
1840 struct sk_tx_desc *f = NULL;
1841 u_int32_t frag, cur, cnt = 0, sk_ctl;
1842 int i;
1843 struct sk_txmap_entry *entry;
1844 bus_dmamap_t txmap;
1845
1846 DPRINTFN(3, ("sk_encap\n"));
1847
1848 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1849 if (entry == NULL) {
1850 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1851 return ENOBUFS;
1852 }
1853 txmap = entry->dmamap;
1854
1855 cur = frag = *txidx;
1856
1857 #ifdef SK_DEBUG
1858 if (skdebug >= 3)
1859 sk_dump_mbuf(m_head);
1860 #endif
1861
1862 /*
1863 * Start packing the mbufs in this chain into
1864 * the fragment pointers. Stop when we run out
1865 * of fragments or hit the end of the mbuf chain.
1866 */
1867 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1868 BUS_DMA_NOWAIT)) {
1869 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1870 return ENOBUFS;
1871 }
1872
1873 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1874
1875 /* Sync the DMA map. */
1876 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1877 BUS_DMASYNC_PREWRITE);
1878
1879 for (i = 0; i < txmap->dm_nsegs; i++) {
1880 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1881 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1882 return ENOBUFS;
1883 }
1884 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1885 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1886 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1887 if (cnt == 0)
1888 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1889 else
1890 sk_ctl |= SK_TXCTL_OWN;
1891 f->sk_ctl = htole32(sk_ctl);
1892 cur = frag;
1893 SK_INC(frag, SK_TX_RING_CNT);
1894 cnt++;
1895 }
1896
1897 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1898 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1899
1900 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1901 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1902 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1903
1904 /* Sync descriptors before handing to chip */
1905 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1906 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1907
1908 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1909 htole32(SK_TXCTL_OWN);
1910
1911 /* Sync first descriptor to hand it off */
1912 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1913
1914 sc_if->sk_cdata.sk_tx_cnt += cnt;
1915
1916 #ifdef SK_DEBUG
1917 if (skdebug >= 3) {
1918 struct sk_tx_desc *desc;
1919 u_int32_t idx;
1920 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1921 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1922 sk_dump_txdesc(desc, idx);
1923 }
1924 }
1925 #endif
1926
1927 *txidx = frag;
1928
1929 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1930
1931 return 0;
1932 }
1933
1934 void
1935 sk_start(struct ifnet *ifp)
1936 {
1937 struct sk_if_softc *sc_if = ifp->if_softc;
1938 struct sk_softc *sc = sc_if->sk_softc;
1939 struct mbuf *m_head = NULL;
1940 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1941 int pkts = 0;
1942
1943 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1944 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1945
1946 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1947 IFQ_POLL(&ifp->if_snd, m_head);
1948 if (m_head == NULL)
1949 break;
1950
1951 /*
1952 * Pack the data into the transmit ring. If we
1953 * don't have room, set the OACTIVE flag and wait
1954 * for the NIC to drain the ring.
1955 */
1956 if (sk_encap(sc_if, m_head, &idx)) {
1957 ifp->if_flags |= IFF_OACTIVE;
1958 break;
1959 }
1960
1961 /* now we are committed to transmit the packet */
1962 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1963 pkts++;
1964
1965 /*
1966 * If there's a BPF listener, bounce a copy of this frame
1967 * to him.
1968 */
1969 if (ifp->if_bpf)
1970 bpf_ops->bpf_mtap(ifp->if_bpf, m_head);
1971 }
1972 if (pkts == 0)
1973 return;
1974
1975 /* Transmit */
1976 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1977 sc_if->sk_cdata.sk_tx_prod = idx;
1978 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1979
1980 /* Set a timeout in case the chip goes out to lunch. */
1981 ifp->if_timer = 5;
1982 }
1983 }
1984
1985
1986 void
1987 sk_watchdog(struct ifnet *ifp)
1988 {
1989 struct sk_if_softc *sc_if = ifp->if_softc;
1990
1991 /*
1992 * Reclaim first as there is a possibility of losing Tx completion
1993 * interrupts.
1994 */
1995 sk_txeof(sc_if);
1996 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1997 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1998
1999 ifp->if_oerrors++;
2000
2001 sk_init(ifp);
2002 }
2003 }
2004
2005 void
2006 sk_shutdown(void *v)
2007 {
2008 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
2009 struct sk_softc *sc = sc_if->sk_softc;
2010 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2011
2012 DPRINTFN(2, ("sk_shutdown\n"));
2013 sk_stop(ifp,1);
2014
2015 /* Turn off the 'driver is loaded' LED. */
2016 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2017
2018 /*
2019 * Reset the GEnesis controller. Doing this should also
2020 * assert the resets on the attached XMAC(s).
2021 */
2022 sk_reset(sc);
2023 }
2024
2025 void
2026 sk_rxeof(struct sk_if_softc *sc_if)
2027 {
2028 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2029 struct mbuf *m;
2030 struct sk_chain *cur_rx;
2031 struct sk_rx_desc *cur_desc;
2032 int i, cur, total_len = 0;
2033 u_int32_t rxstat, sk_ctl;
2034 bus_dmamap_t dmamap;
2035
2036 i = sc_if->sk_cdata.sk_rx_prod;
2037
2038 DPRINTFN(3, ("sk_rxeof %d\n", i));
2039
2040 for (;;) {
2041 cur = i;
2042
2043 /* Sync the descriptor */
2044 SK_CDRXSYNC(sc_if, cur,
2045 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2046
2047 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2048 if (sk_ctl & SK_RXCTL_OWN) {
2049 /* Invalidate the descriptor -- it's not ready yet */
2050 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2051 sc_if->sk_cdata.sk_rx_prod = i;
2052 break;
2053 }
2054
2055 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2056 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2057 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2058
2059 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2060 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2061
2062 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2063 m = cur_rx->sk_mbuf;
2064 cur_rx->sk_mbuf = NULL;
2065 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2066
2067 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2068
2069 SK_INC(i, SK_RX_RING_CNT);
2070
2071 if (rxstat & XM_RXSTAT_ERRFRAME) {
2072 ifp->if_ierrors++;
2073 sk_newbuf(sc_if, cur, m, dmamap);
2074 continue;
2075 }
2076
2077 /*
2078 * Try to allocate a new jumbo buffer. If that
2079 * fails, copy the packet to mbufs and put the
2080 * jumbo buffer back in the ring so it can be
2081 * re-used. If allocating mbufs fails, then we
2082 * have to drop the packet.
2083 */
2084 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2085 struct mbuf *m0;
2086 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2087 total_len + ETHER_ALIGN, 0, ifp, NULL);
2088 sk_newbuf(sc_if, cur, m, dmamap);
2089 if (m0 == NULL) {
2090 aprint_error_dev(sc_if->sk_dev, "no receive "
2091 "buffers available -- packet dropped!\n");
2092 ifp->if_ierrors++;
2093 continue;
2094 }
2095 m_adj(m0, ETHER_ALIGN);
2096 m = m0;
2097 } else {
2098 m->m_pkthdr.rcvif = ifp;
2099 m->m_pkthdr.len = m->m_len = total_len;
2100 }
2101
2102 ifp->if_ipackets++;
2103
2104 if (ifp->if_bpf)
2105 bpf_ops->bpf_mtap(ifp->if_bpf, m);
2106 /* pass it on. */
2107 (*ifp->if_input)(ifp, m);
2108 }
2109 }
2110
2111 void
2112 sk_txeof(struct sk_if_softc *sc_if)
2113 {
2114 struct sk_softc *sc = sc_if->sk_softc;
2115 struct sk_tx_desc *cur_tx;
2116 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2117 u_int32_t idx, sk_ctl;
2118 struct sk_txmap_entry *entry;
2119
2120 DPRINTFN(3, ("sk_txeof\n"));
2121
2122 /*
2123 * Go through our tx ring and free mbufs for those
2124 * frames that have been sent.
2125 */
2126 idx = sc_if->sk_cdata.sk_tx_cons;
2127 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2128 SK_CDTXSYNC(sc_if, idx, 1,
2129 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2130
2131 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2132 sk_ctl = le32toh(cur_tx->sk_ctl);
2133 #ifdef SK_DEBUG
2134 if (skdebug >= 3)
2135 sk_dump_txdesc(cur_tx, idx);
2136 #endif
2137 if (sk_ctl & SK_TXCTL_OWN) {
2138 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2139 break;
2140 }
2141 if (sk_ctl & SK_TXCTL_LASTFRAG)
2142 ifp->if_opackets++;
2143 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2144 entry = sc_if->sk_cdata.sk_tx_map[idx];
2145
2146 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2147 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2148
2149 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2150 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2151
2152 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2153 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2154 link);
2155 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2156 }
2157 sc_if->sk_cdata.sk_tx_cnt--;
2158 SK_INC(idx, SK_TX_RING_CNT);
2159 }
2160 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2161 ifp->if_timer = 0;
2162 else /* nudge chip to keep tx ring moving */
2163 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2164
2165 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2166 ifp->if_flags &= ~IFF_OACTIVE;
2167
2168 sc_if->sk_cdata.sk_tx_cons = idx;
2169 }
2170
2171 void
2172 sk_tick(void *xsc_if)
2173 {
2174 struct sk_if_softc *sc_if = xsc_if;
2175 struct mii_data *mii = &sc_if->sk_mii;
2176 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2177 int i;
2178
2179 DPRINTFN(3, ("sk_tick\n"));
2180
2181 if (!(ifp->if_flags & IFF_UP))
2182 return;
2183
2184 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2185 sk_intr_bcom(sc_if);
2186 return;
2187 }
2188
2189 /*
2190 * According to SysKonnect, the correct way to verify that
2191 * the link has come back up is to poll bit 0 of the GPIO
2192 * register three times. This pin has the signal from the
2193 * link sync pin connected to it; if we read the same link
2194 * state 3 times in a row, we know the link is up.
2195 */
2196 for (i = 0; i < 3; i++) {
2197 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2198 break;
2199 }
2200
2201 if (i != 3) {
2202 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2203 return;
2204 }
2205
2206 /* Turn the GP0 interrupt back on. */
2207 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2208 SK_XM_READ_2(sc_if, XM_ISR);
2209 mii_tick(mii);
2210 mii_pollstat(mii);
2211 callout_stop(&sc_if->sk_tick_ch);
2212 }
2213
2214 void
2215 sk_intr_bcom(struct sk_if_softc *sc_if)
2216 {
2217 struct mii_data *mii = &sc_if->sk_mii;
2218 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2219 int status;
2220
2221
2222 DPRINTFN(3, ("sk_intr_bcom\n"));
2223
2224 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2225
2226 /*
2227 * Read the PHY interrupt register to make sure
2228 * we clear any pending interrupts.
2229 */
2230 status = sk_xmac_miibus_readreg(sc_if->sk_dev,
2231 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2232
2233 if (!(ifp->if_flags & IFF_RUNNING)) {
2234 sk_init_xmac(sc_if);
2235 return;
2236 }
2237
2238 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2239 int lstat;
2240 lstat = sk_xmac_miibus_readreg(sc_if->sk_dev,
2241 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2242
2243 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2244 (void)mii_mediachg(mii);
2245 /* Turn off the link LED. */
2246 SK_IF_WRITE_1(sc_if, 0,
2247 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2248 sc_if->sk_link = 0;
2249 } else if (status & BRGPHY_ISR_LNK_CHG) {
2250 sk_xmac_miibus_writereg(sc_if->sk_dev,
2251 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2252 mii_tick(mii);
2253 sc_if->sk_link = 1;
2254 /* Turn on the link LED. */
2255 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2256 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2257 SK_LINKLED_BLINK_OFF);
2258 mii_pollstat(mii);
2259 } else {
2260 mii_tick(mii);
2261 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2262 }
2263 }
2264
2265 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2266 }
2267
2268 void
2269 sk_intr_xmac(struct sk_if_softc *sc_if)
2270 {
2271 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2272
2273 DPRINTFN(3, ("sk_intr_xmac\n"));
2274
2275 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2276 if (status & XM_ISR_GP0_SET) {
2277 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2278 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2279 }
2280
2281 if (status & XM_ISR_AUTONEG_DONE) {
2282 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2283 }
2284 }
2285
2286 if (status & XM_IMR_TX_UNDERRUN)
2287 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2288
2289 if (status & XM_IMR_RX_OVERRUN)
2290 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2291 }
2292
2293 void
2294 sk_intr_yukon(struct sk_if_softc *sc_if)
2295 {
2296 int status;
2297
2298 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2299
2300 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2301 }
2302
2303 int
2304 sk_intr(void *xsc)
2305 {
2306 struct sk_softc *sc = xsc;
2307 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2308 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2309 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2310 u_int32_t status;
2311 int claimed = 0;
2312
2313 if (sc_if0 != NULL)
2314 ifp0 = &sc_if0->sk_ethercom.ec_if;
2315 if (sc_if1 != NULL)
2316 ifp1 = &sc_if1->sk_ethercom.ec_if;
2317
2318 for (;;) {
2319 status = CSR_READ_4(sc, SK_ISSR);
2320 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2321
2322 if (!(status & sc->sk_intrmask))
2323 break;
2324
2325 claimed = 1;
2326
2327 /* Handle receive interrupts first. */
2328 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2329 sk_rxeof(sc_if0);
2330 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2331 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2332 }
2333 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2334 sk_rxeof(sc_if1);
2335 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2336 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2337 }
2338
2339 /* Then transmit interrupts. */
2340 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2341 sk_txeof(sc_if0);
2342 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2343 SK_TXBMU_CLR_IRQ_EOF);
2344 }
2345 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2346 sk_txeof(sc_if1);
2347 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2348 SK_TXBMU_CLR_IRQ_EOF);
2349 }
2350
2351 /* Then MAC interrupts. */
2352 if (sc_if0 && (status & SK_ISR_MAC1) &&
2353 (ifp0->if_flags & IFF_RUNNING)) {
2354 if (sc->sk_type == SK_GENESIS)
2355 sk_intr_xmac(sc_if0);
2356 else
2357 sk_intr_yukon(sc_if0);
2358 }
2359
2360 if (sc_if1 && (status & SK_ISR_MAC2) &&
2361 (ifp1->if_flags & IFF_RUNNING)) {
2362 if (sc->sk_type == SK_GENESIS)
2363 sk_intr_xmac(sc_if1);
2364 else
2365 sk_intr_yukon(sc_if1);
2366
2367 }
2368
2369 if (status & SK_ISR_EXTERNAL_REG) {
2370 if (sc_if0 != NULL &&
2371 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2372 sk_intr_bcom(sc_if0);
2373
2374 if (sc_if1 != NULL &&
2375 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2376 sk_intr_bcom(sc_if1);
2377 }
2378 }
2379
2380 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2381
2382 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2383 sk_start(ifp0);
2384 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2385 sk_start(ifp1);
2386
2387 #if NRND > 0
2388 if (RND_ENABLED(&sc->rnd_source))
2389 rnd_add_uint32(&sc->rnd_source, status);
2390 #endif
2391
2392 if (sc->sk_int_mod_pending)
2393 sk_update_int_mod(sc);
2394
2395 return claimed;
2396 }
2397
2398 void
2399 sk_init_xmac(struct sk_if_softc *sc_if)
2400 {
2401 struct sk_softc *sc = sc_if->sk_softc;
2402 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2403 static const struct sk_bcom_hack bhack[] = {
2404 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2405 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2406 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2407 { 0, 0 } };
2408
2409 DPRINTFN(1, ("sk_init_xmac\n"));
2410
2411 /* Unreset the XMAC. */
2412 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2413 DELAY(1000);
2414
2415 /* Reset the XMAC's internal state. */
2416 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2417
2418 /* Save the XMAC II revision */
2419 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2420
2421 /*
2422 * Perform additional initialization for external PHYs,
2423 * namely for the 1000baseTX cards that use the XMAC's
2424 * GMII mode.
2425 */
2426 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2427 int i = 0;
2428 u_int32_t val;
2429
2430 /* Take PHY out of reset. */
2431 val = sk_win_read_4(sc, SK_GPIO);
2432 if (sc_if->sk_port == SK_PORT_A)
2433 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2434 else
2435 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2436 sk_win_write_4(sc, SK_GPIO, val);
2437
2438 /* Enable GMII mode on the XMAC. */
2439 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2440
2441 sk_xmac_miibus_writereg(sc_if->sk_dev,
2442 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2443 DELAY(10000);
2444 sk_xmac_miibus_writereg(sc_if->sk_dev,
2445 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2446
2447 /*
2448 * Early versions of the BCM5400 apparently have
2449 * a bug that requires them to have their reserved
2450 * registers initialized to some magic values. I don't
2451 * know what the numbers do, I'm just the messenger.
2452 */
2453 if (sk_xmac_miibus_readreg(sc_if->sk_dev,
2454 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2455 while (bhack[i].reg) {
2456 sk_xmac_miibus_writereg(sc_if->sk_dev,
2457 SK_PHYADDR_BCOM, bhack[i].reg,
2458 bhack[i].val);
2459 i++;
2460 }
2461 }
2462 }
2463
2464 /* Set station address */
2465 SK_XM_WRITE_2(sc_if, XM_PAR0,
2466 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2467 SK_XM_WRITE_2(sc_if, XM_PAR1,
2468 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2469 SK_XM_WRITE_2(sc_if, XM_PAR2,
2470 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2471 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2472
2473 if (ifp->if_flags & IFF_PROMISC)
2474 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2475 else
2476 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2477
2478 if (ifp->if_flags & IFF_BROADCAST)
2479 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2480 else
2481 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2482
2483 /* We don't need the FCS appended to the packet. */
2484 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2485
2486 /* We want short frames padded to 60 bytes. */
2487 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2488
2489 /*
2490 * Enable the reception of all error frames. This is is
2491 * a necessary evil due to the design of the XMAC. The
2492 * XMAC's receive FIFO is only 8K in size, however jumbo
2493 * frames can be up to 9000 bytes in length. When bad
2494 * frame filtering is enabled, the XMAC's RX FIFO operates
2495 * in 'store and forward' mode. For this to work, the
2496 * entire frame has to fit into the FIFO, but that means
2497 * that jumbo frames larger than 8192 bytes will be
2498 * truncated. Disabling all bad frame filtering causes
2499 * the RX FIFO to operate in streaming mode, in which
2500 * case the XMAC will start transfering frames out of the
2501 * RX FIFO as soon as the FIFO threshold is reached.
2502 */
2503 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2504 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2505 XM_MODE_RX_INRANGELEN);
2506
2507 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2508 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2509 else
2510 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2511
2512 /*
2513 * Bump up the transmit threshold. This helps hold off transmit
2514 * underruns when we're blasting traffic from both ports at once.
2515 */
2516 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2517
2518 /* Set multicast filter */
2519 sk_setmulti(sc_if);
2520
2521 /* Clear and enable interrupts */
2522 SK_XM_READ_2(sc_if, XM_ISR);
2523 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2524 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2525 else
2526 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2527
2528 /* Configure MAC arbiter */
2529 switch (sc_if->sk_xmac_rev) {
2530 case XM_XMAC_REV_B2:
2531 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2532 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2533 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2534 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2535 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2536 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2537 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2538 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2539 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2540 break;
2541 case XM_XMAC_REV_C1:
2542 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2543 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2544 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2545 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2546 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2547 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2548 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2549 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2550 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2551 break;
2552 default:
2553 break;
2554 }
2555 sk_win_write_2(sc, SK_MACARB_CTL,
2556 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2557
2558 sc_if->sk_link = 1;
2559 }
2560
2561 void sk_init_yukon(struct sk_if_softc *sc_if)
2562 {
2563 u_int32_t /*mac, */phy;
2564 u_int16_t reg;
2565 struct sk_softc *sc;
2566 int i;
2567
2568 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2569 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2570
2571 sc = sc_if->sk_softc;
2572 if (sc->sk_type == SK_YUKON_LITE &&
2573 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2574 /* Take PHY out of reset. */
2575 sk_win_write_4(sc, SK_GPIO,
2576 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2577 }
2578
2579
2580 /* GMAC and GPHY Reset */
2581 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2582
2583 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2584
2585 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2586 DELAY(1000);
2587 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2588 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2589 DELAY(1000);
2590
2591
2592 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2593
2594 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2595 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2596
2597 switch (sc_if->sk_softc->sk_pmd) {
2598 case IFM_1000_SX:
2599 case IFM_1000_LX:
2600 phy |= SK_GPHY_FIBER;
2601 break;
2602
2603 case IFM_1000_CX:
2604 case IFM_1000_T:
2605 phy |= SK_GPHY_COPPER;
2606 break;
2607 }
2608
2609 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2610
2611 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2612 DELAY(1000);
2613 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2614 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2615 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2616
2617 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2618 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2619
2620 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2621
2622 /* unused read of the interrupt source register */
2623 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2624 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2625
2626 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2627 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2628 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2629
2630 /* MIB Counter Clear Mode set */
2631 reg |= YU_PAR_MIB_CLR;
2632 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2633 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2634 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2635
2636 /* MIB Counter Clear Mode clear */
2637 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2638 reg &= ~YU_PAR_MIB_CLR;
2639 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2640
2641 /* receive control reg */
2642 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2643 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2644 YU_RCR_CRCR);
2645
2646 /* transmit parameter register */
2647 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2648 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2649 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2650
2651 /* serial mode register */
2652 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2653 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2654 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2655 YU_SMR_IPG_DATA(0x1e));
2656
2657 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2658 /* Setup Yukon's address */
2659 for (i = 0; i < 3; i++) {
2660 /* Write Source Address 1 (unicast filter) */
2661 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2662 sc_if->sk_enaddr[i * 2] |
2663 sc_if->sk_enaddr[i * 2 + 1] << 8);
2664 }
2665
2666 for (i = 0; i < 3; i++) {
2667 reg = sk_win_read_2(sc_if->sk_softc,
2668 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2669 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2670 }
2671
2672 /* Set multicast filter */
2673 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2674 sk_setmulti(sc_if);
2675
2676 /* enable interrupt mask for counter overflows */
2677 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2678 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2679 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2680 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2681
2682 /* Configure RX MAC FIFO */
2683 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2684 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2685
2686 /* Configure TX MAC FIFO */
2687 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2688 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2689
2690 DPRINTFN(6, ("sk_init_yukon: end\n"));
2691 }
2692
2693 /*
2694 * Note that to properly initialize any part of the GEnesis chip,
2695 * you first have to take it out of reset mode.
2696 */
2697 int
2698 sk_init(struct ifnet *ifp)
2699 {
2700 struct sk_if_softc *sc_if = ifp->if_softc;
2701 struct sk_softc *sc = sc_if->sk_softc;
2702 struct mii_data *mii = &sc_if->sk_mii;
2703 int rc = 0, s;
2704 u_int32_t imr, imtimer_ticks;
2705
2706 DPRINTFN(1, ("sk_init\n"));
2707
2708 s = splnet();
2709
2710 if (ifp->if_flags & IFF_RUNNING) {
2711 splx(s);
2712 return 0;
2713 }
2714
2715 /* Cancel pending I/O and free all RX/TX buffers. */
2716 sk_stop(ifp,0);
2717
2718 if (sc->sk_type == SK_GENESIS) {
2719 /* Configure LINK_SYNC LED */
2720 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2721 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2722 SK_LINKLED_LINKSYNC_ON);
2723
2724 /* Configure RX LED */
2725 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2726 SK_RXLEDCTL_COUNTER_START);
2727
2728 /* Configure TX LED */
2729 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2730 SK_TXLEDCTL_COUNTER_START);
2731 }
2732
2733 /* Configure I2C registers */
2734
2735 /* Configure XMAC(s) */
2736 switch (sc->sk_type) {
2737 case SK_GENESIS:
2738 sk_init_xmac(sc_if);
2739 break;
2740 case SK_YUKON:
2741 case SK_YUKON_LITE:
2742 case SK_YUKON_LP:
2743 sk_init_yukon(sc_if);
2744 break;
2745 }
2746 if ((rc = mii_mediachg(mii)) == ENXIO)
2747 rc = 0;
2748 else if (rc != 0)
2749 goto out;
2750
2751 if (sc->sk_type == SK_GENESIS) {
2752 /* Configure MAC FIFOs */
2753 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2754 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2755 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2756
2757 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2758 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2759 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2760 }
2761
2762 /* Configure transmit arbiter(s) */
2763 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2764 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2765
2766 /* Configure RAMbuffers */
2767 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2768 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2769 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2770 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2771 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2772 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2773
2774 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2775 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2776 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2777 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2778 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2779 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2780 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2781
2782 /* Configure BMUs */
2783 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2784 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2785 SK_RX_RING_ADDR(sc_if, 0));
2786 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2787
2788 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2789 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2790 SK_TX_RING_ADDR(sc_if, 0));
2791 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2792
2793 /* Init descriptors */
2794 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2795 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2796 "memory for rx buffers\n");
2797 sk_stop(ifp,0);
2798 splx(s);
2799 return ENOBUFS;
2800 }
2801
2802 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2803 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2804 "memory for tx buffers\n");
2805 sk_stop(ifp,0);
2806 splx(s);
2807 return ENOBUFS;
2808 }
2809
2810 /* Set interrupt moderation if changed via sysctl. */
2811 switch (sc->sk_type) {
2812 case SK_GENESIS:
2813 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2814 break;
2815 case SK_YUKON_EC:
2816 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2817 break;
2818 default:
2819 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2820 }
2821 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2822 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2823 sk_win_write_4(sc, SK_IMTIMERINIT,
2824 SK_IM_USECS(sc->sk_int_mod));
2825 aprint_verbose_dev(sc->sk_dev,
2826 "interrupt moderation is %d us\n", sc->sk_int_mod);
2827 }
2828
2829 /* Configure interrupt handling */
2830 CSR_READ_4(sc, SK_ISSR);
2831 if (sc_if->sk_port == SK_PORT_A)
2832 sc->sk_intrmask |= SK_INTRS1;
2833 else
2834 sc->sk_intrmask |= SK_INTRS2;
2835
2836 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2837
2838 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2839
2840 /* Start BMUs. */
2841 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2842
2843 if (sc->sk_type == SK_GENESIS) {
2844 /* Enable XMACs TX and RX state machines */
2845 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2846 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2847 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2848 }
2849
2850 if (SK_YUKON_FAMILY(sc->sk_type)) {
2851 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2852 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2853 #if 0
2854 /* XXX disable 100Mbps and full duplex mode? */
2855 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2856 #endif
2857 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2858 }
2859
2860
2861 ifp->if_flags |= IFF_RUNNING;
2862 ifp->if_flags &= ~IFF_OACTIVE;
2863
2864 out:
2865 splx(s);
2866 return rc;
2867 }
2868
2869 void
2870 sk_stop(struct ifnet *ifp, int disable)
2871 {
2872 struct sk_if_softc *sc_if = ifp->if_softc;
2873 struct sk_softc *sc = sc_if->sk_softc;
2874 int i;
2875
2876 DPRINTFN(1, ("sk_stop\n"));
2877
2878 callout_stop(&sc_if->sk_tick_ch);
2879
2880 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2881 u_int32_t val;
2882
2883 /* Put PHY back into reset. */
2884 val = sk_win_read_4(sc, SK_GPIO);
2885 if (sc_if->sk_port == SK_PORT_A) {
2886 val |= SK_GPIO_DIR0;
2887 val &= ~SK_GPIO_DAT0;
2888 } else {
2889 val |= SK_GPIO_DIR2;
2890 val &= ~SK_GPIO_DAT2;
2891 }
2892 sk_win_write_4(sc, SK_GPIO, val);
2893 }
2894
2895 /* Turn off various components of this interface. */
2896 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2897 switch (sc->sk_type) {
2898 case SK_GENESIS:
2899 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2900 SK_TXMACCTL_XMAC_RESET);
2901 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2902 break;
2903 case SK_YUKON:
2904 case SK_YUKON_LITE:
2905 case SK_YUKON_LP:
2906 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2907 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2908 break;
2909 }
2910 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2911 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2912 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2913 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2914 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2915 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2916 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2917 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2918 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2919
2920 /* Disable interrupts */
2921 if (sc_if->sk_port == SK_PORT_A)
2922 sc->sk_intrmask &= ~SK_INTRS1;
2923 else
2924 sc->sk_intrmask &= ~SK_INTRS2;
2925 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2926
2927 SK_XM_READ_2(sc_if, XM_ISR);
2928 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2929
2930 /* Free RX and TX mbufs still in the queues. */
2931 for (i = 0; i < SK_RX_RING_CNT; i++) {
2932 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2933 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2934 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2935 }
2936 }
2937
2938 for (i = 0; i < SK_TX_RING_CNT; i++) {
2939 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2940 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2941 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2942 }
2943 }
2944
2945 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2946 }
2947
2948 /* Power Management Framework */
2949
2950 static bool
2951 skc_suspend(device_t dv, const pmf_qual_t *qual)
2952 {
2953 struct sk_softc *sc = device_private(dv);
2954
2955 DPRINTFN(2, ("skc_suspend\n"));
2956
2957 /* Turn off the driver is loaded LED */
2958 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2959
2960 return true;
2961 }
2962
2963 static bool
2964 skc_resume(device_t dv, const pmf_qual_t *qual)
2965 {
2966 struct sk_softc *sc = device_private(dv);
2967
2968 DPRINTFN(2, ("skc_resume\n"));
2969
2970 sk_reset(sc);
2971 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2972
2973 return true;
2974 }
2975
2976 static bool
2977 sk_resume(device_t dv, const pmf_qual_t *qual)
2978 {
2979 struct sk_if_softc *sc_if = device_private(dv);
2980
2981 sk_init_yukon(sc_if);
2982 return true;
2983 }
2984
2985 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
2986 skc_probe, skc_attach, NULL, NULL);
2987
2988 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
2989 sk_probe, sk_attach, NULL, NULL);
2990
2991 #ifdef SK_DEBUG
2992 void
2993 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2994 {
2995 #define DESC_PRINT(X) \
2996 if (X) \
2997 printf("txdesc[%d]." #X "=%#x\n", \
2998 idx, X);
2999
3000 DESC_PRINT(le32toh(desc->sk_ctl));
3001 DESC_PRINT(le32toh(desc->sk_next));
3002 DESC_PRINT(le32toh(desc->sk_data_lo));
3003 DESC_PRINT(le32toh(desc->sk_data_hi));
3004 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
3005 DESC_PRINT(le16toh(desc->sk_rsvd0));
3006 DESC_PRINT(le16toh(desc->sk_csum_startval));
3007 DESC_PRINT(le16toh(desc->sk_csum_startpos));
3008 DESC_PRINT(le16toh(desc->sk_csum_writepos));
3009 DESC_PRINT(le16toh(desc->sk_rsvd1));
3010 #undef PRINT
3011 }
3012
3013 void
3014 sk_dump_bytes(const char *data, int len)
3015 {
3016 int c, i, j;
3017
3018 for (i = 0; i < len; i += 16) {
3019 printf("%08x ", i);
3020 c = len - i;
3021 if (c > 16) c = 16;
3022
3023 for (j = 0; j < c; j++) {
3024 printf("%02x ", data[i + j] & 0xff);
3025 if ((j & 0xf) == 7 && j > 0)
3026 printf(" ");
3027 }
3028
3029 for (; j < 16; j++)
3030 printf(" ");
3031 printf(" ");
3032
3033 for (j = 0; j < c; j++) {
3034 int ch = data[i + j] & 0xff;
3035 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
3036 }
3037
3038 printf("\n");
3039
3040 if (c < 16)
3041 break;
3042 }
3043 }
3044
3045 void
3046 sk_dump_mbuf(struct mbuf *m)
3047 {
3048 int count = m->m_pkthdr.len;
3049
3050 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3051
3052 while (count > 0 && m) {
3053 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3054 m, m->m_data, m->m_len);
3055 sk_dump_bytes(mtod(m, char *), m->m_len);
3056
3057 count -= m->m_len;
3058 m = m->m_next;
3059 }
3060 }
3061 #endif
3062
3063 static int
3064 sk_sysctl_handler(SYSCTLFN_ARGS)
3065 {
3066 int error, t;
3067 struct sysctlnode node;
3068 struct sk_softc *sc;
3069
3070 node = *rnode;
3071 sc = node.sysctl_data;
3072 t = sc->sk_int_mod;
3073 node.sysctl_data = &t;
3074 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3075 if (error || newp == NULL)
3076 return error;
3077
3078 if (t < SK_IM_MIN || t > SK_IM_MAX)
3079 return EINVAL;
3080
3081 /* update the softc with sysctl-changed value, and mark
3082 for hardware update */
3083 sc->sk_int_mod = t;
3084 sc->sk_int_mod_pending = 1;
3085 return 0;
3086 }
3087
3088 /*
3089 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3090 * set up in skc_attach()
3091 */
3092 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3093 {
3094 int rc;
3095 const struct sysctlnode *node;
3096
3097 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3098 0, CTLTYPE_NODE, "hw", NULL,
3099 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3100 goto err;
3101 }
3102
3103 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3104 0, CTLTYPE_NODE, "sk",
3105 SYSCTL_DESCR("sk interface controls"),
3106 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3107 goto err;
3108 }
3109
3110 sk_root_num = node->sysctl_num;
3111 return;
3112
3113 err:
3114 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3115 }
3116