if_sk.c revision 1.68 1 /* $NetBSD: if_sk.c,v 1.68 2010/07/26 22:33:24 jym Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
30
31 /*
32 * Copyright (c) 1997, 1998, 1999, 2000
33 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by Bill Paul.
46 * 4. Neither the name of the author nor the names of any co-contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60 * THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63 */
64
65 /*
66 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
67 *
68 * Permission to use, copy, modify, and distribute this software for any
69 * purpose with or without fee is hereby granted, provided that the above
70 * copyright notice and this permission notice appear in all copies.
71 *
72 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79 */
80
81 /*
82 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83 * the SK-984x series adapters, both single port and dual port.
84 * References:
85 * The XaQti XMAC II datasheet,
86 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87 * The SysKonnect GEnesis manual, http://www.syskonnect.com
88 *
89 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91 * convenience to others until Vitesse corrects this problem:
92 *
93 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 *
95 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
96 * Department of Electrical Engineering
97 * Columbia University, New York City
98 */
99
100 /*
101 * The SysKonnect gigabit ethernet adapters consist of two main
102 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104 * components and a PHY while the GEnesis controller provides a PCI
105 * interface with DMA support. Each card may have between 512K and
106 * 2MB of SRAM on board depending on the configuration.
107 *
108 * The SysKonnect GEnesis controller can have either one or two XMAC
109 * chips connected to it, allowing single or dual port NIC configurations.
110 * SysKonnect has the distinction of being the only vendor on the market
111 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113 * XMAC registers. This driver takes advantage of these features to allow
114 * both XMACs to operate as independent interfaces.
115 */
116
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.68 2010/07/26 22:33:24 jym Exp $");
119
120 #include "rnd.h"
121
122 #include <sys/param.h>
123 #include <sys/systm.h>
124 #include <sys/sockio.h>
125 #include <sys/mbuf.h>
126 #include <sys/malloc.h>
127 #include <sys/mutex.h>
128 #include <sys/kernel.h>
129 #include <sys/socket.h>
130 #include <sys/device.h>
131 #include <sys/queue.h>
132 #include <sys/callout.h>
133 #include <sys/sysctl.h>
134 #include <sys/endian.h>
135
136 #include <net/if.h>
137 #include <net/if_dl.h>
138 #include <net/if_types.h>
139
140 #include <net/if_media.h>
141
142 #include <net/bpf.h>
143 #if NRND > 0
144 #include <sys/rnd.h>
145 #endif
146
147 #include <dev/mii/mii.h>
148 #include <dev/mii/miivar.h>
149 #include <dev/mii/brgphyreg.h>
150
151 #include <dev/pci/pcireg.h>
152 #include <dev/pci/pcivar.h>
153 #include <dev/pci/pcidevs.h>
154
155 /* #define SK_USEIOSPACE */
156
157 #include <dev/pci/if_skreg.h>
158 #include <dev/pci/if_skvar.h>
159
160 int skc_probe(device_t, cfdata_t, void *);
161 void skc_attach(device_t, device_t, void *aux);
162 int sk_probe(device_t, cfdata_t, void *);
163 void sk_attach(device_t, device_t, void *aux);
164 int skcprint(void *, const char *);
165 int sk_intr(void *);
166 void sk_intr_bcom(struct sk_if_softc *);
167 void sk_intr_xmac(struct sk_if_softc *);
168 void sk_intr_yukon(struct sk_if_softc *);
169 void sk_rxeof(struct sk_if_softc *);
170 void sk_txeof(struct sk_if_softc *);
171 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
172 void sk_start(struct ifnet *);
173 int sk_ioctl(struct ifnet *, u_long, void *);
174 int sk_init(struct ifnet *);
175 void sk_init_xmac(struct sk_if_softc *);
176 void sk_init_yukon(struct sk_if_softc *);
177 void sk_stop(struct ifnet *, int);
178 void sk_watchdog(struct ifnet *);
179 void sk_shutdown(void *);
180 int sk_ifmedia_upd(struct ifnet *);
181 void sk_reset(struct sk_softc *);
182 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
183 int sk_alloc_jumbo_mem(struct sk_if_softc *);
184 void sk_free_jumbo_mem(struct sk_if_softc *);
185 void *sk_jalloc(struct sk_if_softc *);
186 void sk_jfree(struct mbuf *, void *, size_t, void *);
187 int sk_init_rx_ring(struct sk_if_softc *);
188 int sk_init_tx_ring(struct sk_if_softc *);
189 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
190 void sk_vpd_read_res(struct sk_softc *,
191 struct vpd_res *, int);
192 void sk_vpd_read(struct sk_softc *);
193
194 void sk_update_int_mod(struct sk_softc *);
195
196 int sk_xmac_miibus_readreg(device_t, int, int);
197 void sk_xmac_miibus_writereg(device_t, int, int, int);
198 void sk_xmac_miibus_statchg(device_t);
199
200 int sk_marv_miibus_readreg(device_t, int, int);
201 void sk_marv_miibus_writereg(device_t, int, int, int);
202 void sk_marv_miibus_statchg(device_t);
203
204 u_int32_t sk_xmac_hash(void *);
205 u_int32_t sk_yukon_hash(void *);
206 void sk_setfilt(struct sk_if_softc *, void *, int);
207 void sk_setmulti(struct sk_if_softc *);
208 void sk_tick(void *);
209
210 static bool skc_suspend(device_t, const pmf_qual_t *);
211 static bool skc_resume(device_t, const pmf_qual_t *);
212 static bool sk_resume(device_t dv, const pmf_qual_t *);
213
214 /* #define SK_DEBUG 2 */
215 #ifdef SK_DEBUG
216 #define DPRINTF(x) if (skdebug) printf x
217 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
218 int skdebug = SK_DEBUG;
219
220 void sk_dump_txdesc(struct sk_tx_desc *, int);
221 void sk_dump_mbuf(struct mbuf *);
222 void sk_dump_bytes(const char *, int);
223 #else
224 #define DPRINTF(x)
225 #define DPRINTFN(n,x)
226 #endif
227
228 static int sk_sysctl_handler(SYSCTLFN_PROTO);
229 static int sk_root_num;
230
231 /* supported device vendors */
232 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
233 static const struct sk_product {
234 pci_vendor_id_t sk_vendor;
235 pci_product_id_t sk_product;
236 } sk_products[] = {
237 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
238 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
239 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
240 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
241 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
242 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
243 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
244 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
245 { 0, 0, }
246 };
247
248 #define SK_LINKSYS_EG1032_SUBID 0x00151737
249
250 static inline u_int32_t
251 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
252 {
253 #ifdef SK_USEIOSPACE
254 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
255 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
256 #else
257 return CSR_READ_4(sc, reg);
258 #endif
259 }
260
261 static inline u_int16_t
262 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
263 {
264 #ifdef SK_USEIOSPACE
265 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
266 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
267 #else
268 return CSR_READ_2(sc, reg);
269 #endif
270 }
271
272 static inline u_int8_t
273 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
274 {
275 #ifdef SK_USEIOSPACE
276 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
277 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
278 #else
279 return CSR_READ_1(sc, reg);
280 #endif
281 }
282
283 static inline void
284 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
285 {
286 #ifdef SK_USEIOSPACE
287 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
288 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
289 #else
290 CSR_WRITE_4(sc, reg, x);
291 #endif
292 }
293
294 static inline void
295 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
296 {
297 #ifdef SK_USEIOSPACE
298 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
299 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
300 #else
301 CSR_WRITE_2(sc, reg, x);
302 #endif
303 }
304
305 static inline void
306 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
307 {
308 #ifdef SK_USEIOSPACE
309 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
310 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
311 #else
312 CSR_WRITE_1(sc, reg, x);
313 #endif
314 }
315
316 /*
317 * The VPD EEPROM contains Vital Product Data, as suggested in
318 * the PCI 2.1 specification. The VPD data is separared into areas
319 * denoted by resource IDs. The SysKonnect VPD contains an ID string
320 * resource (the name of the adapter), a read-only area resource
321 * containing various key/data fields and a read/write area which
322 * can be used to store asset management information or log messages.
323 * We read the ID string and read-only into buffers attached to
324 * the controller softc structure for later use. At the moment,
325 * we only use the ID string during sk_attach().
326 */
327 u_int8_t
328 sk_vpd_readbyte(struct sk_softc *sc, int addr)
329 {
330 int i;
331
332 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
333 for (i = 0; i < SK_TIMEOUT; i++) {
334 DELAY(1);
335 if (sk_win_read_2(sc,
336 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
337 break;
338 }
339
340 if (i == SK_TIMEOUT)
341 return 0;
342
343 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
344 }
345
346 void
347 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
348 {
349 int i;
350 u_int8_t *ptr;
351
352 ptr = (u_int8_t *)res;
353 for (i = 0; i < sizeof(struct vpd_res); i++)
354 ptr[i] = sk_vpd_readbyte(sc, i + addr);
355 }
356
357 void
358 sk_vpd_read(struct sk_softc *sc)
359 {
360 int pos = 0, i;
361 struct vpd_res res;
362
363 if (sc->sk_vpd_prodname != NULL)
364 free(sc->sk_vpd_prodname, M_DEVBUF);
365 if (sc->sk_vpd_readonly != NULL)
366 free(sc->sk_vpd_readonly, M_DEVBUF);
367 sc->sk_vpd_prodname = NULL;
368 sc->sk_vpd_readonly = NULL;
369
370 sk_vpd_read_res(sc, &res, pos);
371
372 if (res.vr_id != VPD_RES_ID) {
373 aprint_error_dev(sc->sk_dev,
374 "bad VPD resource id: expected %x got %x\n",
375 VPD_RES_ID, res.vr_id);
376 return;
377 }
378
379 pos += sizeof(res);
380 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
381 if (sc->sk_vpd_prodname == NULL)
382 panic("sk_vpd_read");
383 for (i = 0; i < res.vr_len; i++)
384 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
385 sc->sk_vpd_prodname[i] = '\0';
386 pos += i;
387
388 sk_vpd_read_res(sc, &res, pos);
389
390 if (res.vr_id != VPD_RES_READ) {
391 aprint_error_dev(sc->sk_dev,
392 "bad VPD resource id: expected %x got %x\n",
393 VPD_RES_READ, res.vr_id);
394 return;
395 }
396
397 pos += sizeof(res);
398 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
399 if (sc->sk_vpd_readonly == NULL)
400 panic("sk_vpd_read");
401 for (i = 0; i < res.vr_len ; i++)
402 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
403 }
404
405 int
406 sk_xmac_miibus_readreg(device_t dev, int phy, int reg)
407 {
408 struct sk_if_softc *sc_if = device_private(dev);
409 int i;
410
411 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
412
413 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
414 return 0;
415
416 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
417 SK_XM_READ_2(sc_if, XM_PHY_DATA);
418 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
419 for (i = 0; i < SK_TIMEOUT; i++) {
420 DELAY(1);
421 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
422 XM_MMUCMD_PHYDATARDY)
423 break;
424 }
425
426 if (i == SK_TIMEOUT) {
427 aprint_error_dev(sc_if->sk_dev,
428 "phy failed to come ready\n");
429 return 0;
430 }
431 }
432 DELAY(1);
433 return SK_XM_READ_2(sc_if, XM_PHY_DATA);
434 }
435
436 void
437 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, int val)
438 {
439 struct sk_if_softc *sc_if = device_private(dev);
440 int i;
441
442 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
443
444 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
445 for (i = 0; i < SK_TIMEOUT; i++) {
446 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
447 break;
448 }
449
450 if (i == SK_TIMEOUT) {
451 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
452 return;
453 }
454
455 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
456 for (i = 0; i < SK_TIMEOUT; i++) {
457 DELAY(1);
458 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
459 break;
460 }
461
462 if (i == SK_TIMEOUT)
463 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
464 }
465
466 void
467 sk_xmac_miibus_statchg(device_t dev)
468 {
469 struct sk_if_softc *sc_if = device_private(dev);
470 struct mii_data *mii = &sc_if->sk_mii;
471
472 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
473
474 /*
475 * If this is a GMII PHY, manually set the XMAC's
476 * duplex mode accordingly.
477 */
478 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
479 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
480 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
481 else
482 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
483 }
484 }
485
486 int
487 sk_marv_miibus_readreg(device_t dev, int phy, int reg)
488 {
489 struct sk_if_softc *sc_if = device_private(dev);
490 u_int16_t val;
491 int i;
492
493 if (phy != 0 ||
494 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
495 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
496 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
497 phy, reg));
498 return 0;
499 }
500
501 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
502 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
503
504 for (i = 0; i < SK_TIMEOUT; i++) {
505 DELAY(1);
506 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
507 if (val & YU_SMICR_READ_VALID)
508 break;
509 }
510
511 if (i == SK_TIMEOUT) {
512 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
513 return 0;
514 }
515
516 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
517 SK_TIMEOUT));
518
519 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
520
521 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
522 phy, reg, val));
523
524 return val;
525 }
526
527 void
528 sk_marv_miibus_writereg(device_t dev, int phy, int reg, int val)
529 {
530 struct sk_if_softc *sc_if = device_private(dev);
531 int i;
532
533 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
534 phy, reg, val));
535
536 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
537 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
538 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
539
540 for (i = 0; i < SK_TIMEOUT; i++) {
541 DELAY(1);
542 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
543 break;
544 }
545
546 if (i == SK_TIMEOUT)
547 printf("%s: phy write timed out\n",
548 device_xname(sc_if->sk_dev));
549 }
550
551 void
552 sk_marv_miibus_statchg(device_t dev)
553 {
554 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
555 SK_YU_READ_2(((struct sk_if_softc *)device_private(dev)),
556 YUKON_GPCR)));
557 }
558
559 #define SK_HASH_BITS 6
560
561 u_int32_t
562 sk_xmac_hash(void *addr)
563 {
564 u_int32_t crc;
565
566 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
567 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
568 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
569 return crc;
570 }
571
572 u_int32_t
573 sk_yukon_hash(void *addr)
574 {
575 u_int32_t crc;
576
577 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
578 crc &= ((1 << SK_HASH_BITS) - 1);
579 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
580 return crc;
581 }
582
583 void
584 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
585 {
586 char *addr = addrv;
587 int base = XM_RXFILT_ENTRY(slot);
588
589 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
590 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
591 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
592 }
593
594 void
595 sk_setmulti(struct sk_if_softc *sc_if)
596 {
597 struct sk_softc *sc = sc_if->sk_softc;
598 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
599 u_int32_t hashes[2] = { 0, 0 };
600 int h = 0, i;
601 struct ethercom *ec = &sc_if->sk_ethercom;
602 struct ether_multi *enm;
603 struct ether_multistep step;
604 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
605
606 /* First, zot all the existing filters. */
607 switch (sc->sk_type) {
608 case SK_GENESIS:
609 for (i = 1; i < XM_RXFILT_MAX; i++)
610 sk_setfilt(sc_if, (void *)&dummy, i);
611
612 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
613 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
614 break;
615 case SK_YUKON:
616 case SK_YUKON_LITE:
617 case SK_YUKON_LP:
618 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
619 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
620 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
621 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
622 break;
623 }
624
625 /* Now program new ones. */
626 allmulti:
627 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
628 hashes[0] = 0xFFFFFFFF;
629 hashes[1] = 0xFFFFFFFF;
630 } else {
631 i = 1;
632 /* First find the tail of the list. */
633 ETHER_FIRST_MULTI(step, ec, enm);
634 while (enm != NULL) {
635 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
636 ETHER_ADDR_LEN)) {
637 ifp->if_flags |= IFF_ALLMULTI;
638 goto allmulti;
639 }
640 DPRINTFN(2,("multicast address %s\n",
641 ether_sprintf(enm->enm_addrlo)));
642 /*
643 * Program the first XM_RXFILT_MAX multicast groups
644 * into the perfect filter. For all others,
645 * use the hash table.
646 */
647 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
648 sk_setfilt(sc_if, enm->enm_addrlo, i);
649 i++;
650 }
651 else {
652 switch (sc->sk_type) {
653 case SK_GENESIS:
654 h = sk_xmac_hash(enm->enm_addrlo);
655 break;
656 case SK_YUKON:
657 case SK_YUKON_LITE:
658 case SK_YUKON_LP:
659 h = sk_yukon_hash(enm->enm_addrlo);
660 break;
661 }
662 if (h < 32)
663 hashes[0] |= (1 << h);
664 else
665 hashes[1] |= (1 << (h - 32));
666 }
667
668 ETHER_NEXT_MULTI(step, enm);
669 }
670 }
671
672 switch (sc->sk_type) {
673 case SK_GENESIS:
674 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
675 XM_MODE_RX_USE_PERFECT);
676 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
677 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
678 break;
679 case SK_YUKON:
680 case SK_YUKON_LITE:
681 case SK_YUKON_LP:
682 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
683 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
684 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
685 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
686 break;
687 }
688 }
689
690 int
691 sk_init_rx_ring(struct sk_if_softc *sc_if)
692 {
693 struct sk_chain_data *cd = &sc_if->sk_cdata;
694 struct sk_ring_data *rd = sc_if->sk_rdata;
695 int i;
696
697 memset((char *)rd->sk_rx_ring, 0,
698 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
699
700 for (i = 0; i < SK_RX_RING_CNT; i++) {
701 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
702 if (i == (SK_RX_RING_CNT - 1)) {
703 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
704 rd->sk_rx_ring[i].sk_next =
705 htole32(SK_RX_RING_ADDR(sc_if, 0));
706 } else {
707 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
708 rd->sk_rx_ring[i].sk_next =
709 htole32(SK_RX_RING_ADDR(sc_if,i+1));
710 }
711 }
712
713 for (i = 0; i < SK_RX_RING_CNT; i++) {
714 if (sk_newbuf(sc_if, i, NULL,
715 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
716 aprint_error_dev(sc_if->sk_dev,
717 "failed alloc of %dth mbuf\n", i);
718 return ENOBUFS;
719 }
720 }
721 sc_if->sk_cdata.sk_rx_prod = 0;
722 sc_if->sk_cdata.sk_rx_cons = 0;
723
724 return 0;
725 }
726
727 int
728 sk_init_tx_ring(struct sk_if_softc *sc_if)
729 {
730 struct sk_chain_data *cd = &sc_if->sk_cdata;
731 struct sk_ring_data *rd = sc_if->sk_rdata;
732 int i;
733
734 memset(sc_if->sk_rdata->sk_tx_ring, 0,
735 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
736
737 for (i = 0; i < SK_TX_RING_CNT; i++) {
738 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
739 if (i == (SK_TX_RING_CNT - 1)) {
740 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
741 rd->sk_tx_ring[i].sk_next =
742 htole32(SK_TX_RING_ADDR(sc_if, 0));
743 } else {
744 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
745 rd->sk_tx_ring[i].sk_next =
746 htole32(SK_TX_RING_ADDR(sc_if,i+1));
747 }
748 }
749
750 sc_if->sk_cdata.sk_tx_prod = 0;
751 sc_if->sk_cdata.sk_tx_cons = 0;
752 sc_if->sk_cdata.sk_tx_cnt = 0;
753
754 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
755 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
756
757 return 0;
758 }
759
760 int
761 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
762 bus_dmamap_t dmamap)
763 {
764 struct mbuf *m_new = NULL;
765 struct sk_chain *c;
766 struct sk_rx_desc *r;
767
768 if (m == NULL) {
769 void *buf = NULL;
770
771 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
772 if (m_new == NULL) {
773 aprint_error_dev(sc_if->sk_dev,
774 "no memory for rx list -- packet dropped!\n");
775 return ENOBUFS;
776 }
777
778 /* Allocate the jumbo buffer */
779 buf = sk_jalloc(sc_if);
780 if (buf == NULL) {
781 m_freem(m_new);
782 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
783 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
784 return ENOBUFS;
785 }
786
787 /* Attach the buffer to the mbuf */
788 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
789 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
790
791 } else {
792 /*
793 * We're re-using a previously allocated mbuf;
794 * be sure to re-init pointers and lengths to
795 * default values.
796 */
797 m_new = m;
798 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
799 m_new->m_data = m_new->m_ext.ext_buf;
800 }
801 m_adj(m_new, ETHER_ALIGN);
802
803 c = &sc_if->sk_cdata.sk_rx_chain[i];
804 r = c->sk_desc;
805 c->sk_mbuf = m_new;
806 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
807 (((vaddr_t)m_new->m_data
808 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
809 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
810
811 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
812
813 return 0;
814 }
815
816 /*
817 * Memory management for jumbo frames.
818 */
819
820 int
821 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
822 {
823 struct sk_softc *sc = sc_if->sk_softc;
824 char *ptr, *kva;
825 bus_dma_segment_t seg;
826 int i, rseg, state, error;
827 struct sk_jpool_entry *entry;
828
829 state = error = 0;
830
831 /* Grab a big chunk o' storage. */
832 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
833 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
834 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
835 return ENOBUFS;
836 }
837
838 state = 1;
839 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
840 BUS_DMA_NOWAIT)) {
841 aprint_error_dev(sc->sk_dev,
842 "can't map dma buffers (%d bytes)\n",
843 SK_JMEM);
844 error = ENOBUFS;
845 goto out;
846 }
847
848 state = 2;
849 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
850 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
851 aprint_error_dev(sc->sk_dev, "can't create dma map\n");
852 error = ENOBUFS;
853 goto out;
854 }
855
856 state = 3;
857 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
858 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
859 aprint_error_dev(sc->sk_dev, "can't load dma map\n");
860 error = ENOBUFS;
861 goto out;
862 }
863
864 state = 4;
865 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
866 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
867
868 LIST_INIT(&sc_if->sk_jfree_listhead);
869 LIST_INIT(&sc_if->sk_jinuse_listhead);
870 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
871
872 /*
873 * Now divide it up into 9K pieces and save the addresses
874 * in an array.
875 */
876 ptr = sc_if->sk_cdata.sk_jumbo_buf;
877 for (i = 0; i < SK_JSLOTS; i++) {
878 sc_if->sk_cdata.sk_jslots[i] = ptr;
879 ptr += SK_JLEN;
880 entry = malloc(sizeof(struct sk_jpool_entry),
881 M_DEVBUF, M_NOWAIT);
882 if (entry == NULL) {
883 aprint_error_dev(sc->sk_dev,
884 "no memory for jumbo buffer queue!\n");
885 error = ENOBUFS;
886 goto out;
887 }
888 entry->slot = i;
889 if (i)
890 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
891 entry, jpool_entries);
892 else
893 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
894 entry, jpool_entries);
895 }
896 out:
897 if (error != 0) {
898 switch (state) {
899 case 4:
900 bus_dmamap_unload(sc->sc_dmatag,
901 sc_if->sk_cdata.sk_rx_jumbo_map);
902 case 3:
903 bus_dmamap_destroy(sc->sc_dmatag,
904 sc_if->sk_cdata.sk_rx_jumbo_map);
905 case 2:
906 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
907 case 1:
908 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
909 break;
910 default:
911 break;
912 }
913 }
914
915 return error;
916 }
917
918 /*
919 * Allocate a jumbo buffer.
920 */
921 void *
922 sk_jalloc(struct sk_if_softc *sc_if)
923 {
924 struct sk_jpool_entry *entry;
925
926 mutex_enter(&sc_if->sk_jpool_mtx);
927 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
928
929 if (entry == NULL) {
930 mutex_exit(&sc_if->sk_jpool_mtx);
931 return NULL;
932 }
933
934 LIST_REMOVE(entry, jpool_entries);
935 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
936 mutex_exit(&sc_if->sk_jpool_mtx);
937 return sc_if->sk_cdata.sk_jslots[entry->slot];
938 }
939
940 /*
941 * Release a jumbo buffer.
942 */
943 void
944 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
945 {
946 struct sk_jpool_entry *entry;
947 struct sk_if_softc *sc;
948 int i;
949
950 /* Extract the softc struct pointer. */
951 sc = (struct sk_if_softc *)arg;
952
953 if (sc == NULL)
954 panic("sk_jfree: can't find softc pointer!");
955
956 /* calculate the slot this buffer belongs to */
957
958 i = ((vaddr_t)buf
959 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
960
961 if ((i < 0) || (i >= SK_JSLOTS))
962 panic("sk_jfree: asked to free buffer that we don't manage!");
963
964 mutex_enter(&sc->sk_jpool_mtx);
965 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
966 if (entry == NULL)
967 panic("sk_jfree: buffer not in use!");
968 entry->slot = i;
969 LIST_REMOVE(entry, jpool_entries);
970 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
971 mutex_exit(&sc->sk_jpool_mtx);
972
973 if (__predict_true(m != NULL))
974 pool_cache_put(mb_cache, m);
975 }
976
977 /*
978 * Set media options.
979 */
980 int
981 sk_ifmedia_upd(struct ifnet *ifp)
982 {
983 struct sk_if_softc *sc_if = ifp->if_softc;
984 int rc;
985
986 (void) sk_init(ifp);
987 if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
988 return 0;
989 return rc;
990 }
991
992 int
993 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
994 {
995 struct sk_if_softc *sc_if = ifp->if_softc;
996 struct sk_softc *sc = sc_if->sk_softc;
997 int s, error = 0;
998
999 /* DPRINTFN(2, ("sk_ioctl\n")); */
1000
1001 s = splnet();
1002
1003 switch (command) {
1004
1005 case SIOCSIFFLAGS:
1006 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1007 if ((error = ifioctl_common(ifp, command, data)) != 0)
1008 break;
1009 if (ifp->if_flags & IFF_UP) {
1010 if (ifp->if_flags & IFF_RUNNING &&
1011 ifp->if_flags & IFF_PROMISC &&
1012 !(sc_if->sk_if_flags & IFF_PROMISC)) {
1013 switch (sc->sk_type) {
1014 case SK_GENESIS:
1015 SK_XM_SETBIT_4(sc_if, XM_MODE,
1016 XM_MODE_RX_PROMISC);
1017 break;
1018 case SK_YUKON:
1019 case SK_YUKON_LITE:
1020 case SK_YUKON_LP:
1021 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1022 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1023 break;
1024 }
1025 sk_setmulti(sc_if);
1026 } else if (ifp->if_flags & IFF_RUNNING &&
1027 !(ifp->if_flags & IFF_PROMISC) &&
1028 sc_if->sk_if_flags & IFF_PROMISC) {
1029 switch (sc->sk_type) {
1030 case SK_GENESIS:
1031 SK_XM_CLRBIT_4(sc_if, XM_MODE,
1032 XM_MODE_RX_PROMISC);
1033 break;
1034 case SK_YUKON:
1035 case SK_YUKON_LITE:
1036 case SK_YUKON_LP:
1037 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1038 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1039 break;
1040 }
1041
1042 sk_setmulti(sc_if);
1043 } else
1044 (void) sk_init(ifp);
1045 } else {
1046 if (ifp->if_flags & IFF_RUNNING)
1047 sk_stop(ifp,0);
1048 }
1049 sc_if->sk_if_flags = ifp->if_flags;
1050 error = 0;
1051 break;
1052
1053 default:
1054 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1055 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1056 break;
1057
1058 error = 0;
1059
1060 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1061 ;
1062 else if (ifp->if_flags & IFF_RUNNING) {
1063 sk_setmulti(sc_if);
1064 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1065 }
1066 break;
1067 }
1068
1069 splx(s);
1070 return error;
1071 }
1072
1073 void
1074 sk_update_int_mod(struct sk_softc *sc)
1075 {
1076 u_int32_t imtimer_ticks;
1077
1078 /*
1079 * Configure interrupt moderation. The moderation timer
1080 * defers interrupts specified in the interrupt moderation
1081 * timer mask based on the timeout specified in the interrupt
1082 * moderation timer init register. Each bit in the timer
1083 * register represents one tick, so to specify a timeout in
1084 * microseconds, we have to multiply by the correct number of
1085 * ticks-per-microsecond.
1086 */
1087 switch (sc->sk_type) {
1088 case SK_GENESIS:
1089 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1090 break;
1091 case SK_YUKON_EC:
1092 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1093 break;
1094 default:
1095 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1096 }
1097 aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
1098 sc->sk_int_mod);
1099 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1100 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1101 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1102 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1103 sc->sk_int_mod_pending = 0;
1104 }
1105
1106 /*
1107 * Lookup: Check the PCI vendor and device, and return a pointer to
1108 * The structure if the IDs match against our list.
1109 */
1110
1111 static const struct sk_product *
1112 sk_lookup(const struct pci_attach_args *pa)
1113 {
1114 const struct sk_product *psk;
1115
1116 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1117 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1118 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1119 return psk;
1120 }
1121 return NULL;
1122 }
1123
1124 /*
1125 * Probe for a SysKonnect GEnesis chip.
1126 */
1127
1128 int
1129 skc_probe(device_t parent, cfdata_t match, void *aux)
1130 {
1131 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1132 const struct sk_product *psk;
1133 pcireg_t subid;
1134
1135 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1136
1137 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1138 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1139 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1140 subid == SK_LINKSYS_EG1032_SUBID)
1141 return 1;
1142
1143 if ((psk = sk_lookup(pa))) {
1144 return 1;
1145 }
1146 return 0;
1147 }
1148
1149 /*
1150 * Force the GEnesis into reset, then bring it out of reset.
1151 */
1152 void sk_reset(struct sk_softc *sc)
1153 {
1154 DPRINTFN(2, ("sk_reset\n"));
1155
1156 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1157 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1158 if (SK_YUKON_FAMILY(sc->sk_type))
1159 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1160
1161 DELAY(1000);
1162 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1163 DELAY(2);
1164 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1165 if (SK_YUKON_FAMILY(sc->sk_type))
1166 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1167
1168 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1169 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1170 CSR_READ_2(sc, SK_LINK_CTRL)));
1171
1172 if (sc->sk_type == SK_GENESIS) {
1173 /* Configure packet arbiter */
1174 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1175 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1176 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1177 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1178 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1179 }
1180
1181 /* Enable RAM interface */
1182 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1183
1184 sk_update_int_mod(sc);
1185 }
1186
1187 int
1188 sk_probe(device_t parent, cfdata_t match, void *aux)
1189 {
1190 struct skc_attach_args *sa = aux;
1191
1192 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1193 return 0;
1194
1195 return 1;
1196 }
1197
1198 /*
1199 * Each XMAC chip is attached as a separate logical IP interface.
1200 * Single port cards will have only one logical interface of course.
1201 */
1202 void
1203 sk_attach(device_t parent, device_t self, void *aux)
1204 {
1205 struct sk_if_softc *sc_if = device_private(self);
1206 struct sk_softc *sc = device_private(parent);
1207 struct skc_attach_args *sa = aux;
1208 struct sk_txmap_entry *entry;
1209 struct ifnet *ifp;
1210 bus_dma_segment_t seg;
1211 bus_dmamap_t dmamap;
1212 prop_data_t data;
1213 void *kva;
1214 int i, rseg;
1215 int mii_flags = 0;
1216
1217 aprint_naive("\n");
1218
1219 sc_if->sk_dev = self;
1220 sc_if->sk_port = sa->skc_port;
1221 sc_if->sk_softc = sc;
1222 sc->sk_if[sa->skc_port] = sc_if;
1223
1224 if (sa->skc_port == SK_PORT_A)
1225 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1226 if (sa->skc_port == SK_PORT_B)
1227 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1228
1229 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1230
1231 /*
1232 * Get station address for this interface. Note that
1233 * dual port cards actually come with three station
1234 * addresses: one for each port, plus an extra. The
1235 * extra one is used by the SysKonnect driver software
1236 * as a 'virtual' station address for when both ports
1237 * are operating in failover mode. Currently we don't
1238 * use this extra address.
1239 */
1240 data = prop_dictionary_get(device_properties(self), "mac-address");
1241 if (data != NULL) {
1242 /*
1243 * Try to get the station address from device properties
1244 * first, in case the ROM is missing.
1245 */
1246 KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
1247 KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
1248 memcpy(sc_if->sk_enaddr, prop_data_data_nocopy(data),
1249 ETHER_ADDR_LEN);
1250 } else
1251 for (i = 0; i < ETHER_ADDR_LEN; i++)
1252 sc_if->sk_enaddr[i] = sk_win_read_1(sc,
1253 SK_MAC0_0 + (sa->skc_port * 8) + i);
1254
1255 aprint_normal(": Ethernet address %s\n",
1256 ether_sprintf(sc_if->sk_enaddr));
1257
1258 /*
1259 * Set up RAM buffer addresses. The NIC will have a certain
1260 * amount of SRAM on it, somewhere between 512K and 2MB. We
1261 * need to divide this up a) between the transmitter and
1262 * receiver and b) between the two XMACs, if this is a
1263 * dual port NIC. Our algorithm is to divide up the memory
1264 * evenly so that everyone gets a fair share.
1265 */
1266 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1267 u_int32_t chunk, val;
1268
1269 chunk = sc->sk_ramsize / 2;
1270 val = sc->sk_rboff / sizeof(u_int64_t);
1271 sc_if->sk_rx_ramstart = val;
1272 val += (chunk / sizeof(u_int64_t));
1273 sc_if->sk_rx_ramend = val - 1;
1274 sc_if->sk_tx_ramstart = val;
1275 val += (chunk / sizeof(u_int64_t));
1276 sc_if->sk_tx_ramend = val - 1;
1277 } else {
1278 u_int32_t chunk, val;
1279
1280 chunk = sc->sk_ramsize / 4;
1281 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1282 sizeof(u_int64_t);
1283 sc_if->sk_rx_ramstart = val;
1284 val += (chunk / sizeof(u_int64_t));
1285 sc_if->sk_rx_ramend = val - 1;
1286 sc_if->sk_tx_ramstart = val;
1287 val += (chunk / sizeof(u_int64_t));
1288 sc_if->sk_tx_ramend = val - 1;
1289 }
1290
1291 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1292 " tx_ramstart=%#x tx_ramend=%#x\n",
1293 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1294 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1295
1296 /* Read and save PHY type and set PHY address */
1297 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1298 switch (sc_if->sk_phytype) {
1299 case SK_PHYTYPE_XMAC:
1300 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1301 break;
1302 case SK_PHYTYPE_BCOM:
1303 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1304 break;
1305 case SK_PHYTYPE_MARV_COPPER:
1306 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1307 break;
1308 default:
1309 aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
1310 sc_if->sk_phytype);
1311 return;
1312 }
1313
1314 /* Allocate the descriptor queues. */
1315 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1316 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1317 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
1318 goto fail;
1319 }
1320 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1321 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1322 aprint_error_dev(sc_if->sk_dev,
1323 "can't map dma buffers (%lu bytes)\n",
1324 (u_long) sizeof(struct sk_ring_data));
1325 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1326 goto fail;
1327 }
1328 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1329 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1330 &sc_if->sk_ring_map)) {
1331 aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
1332 bus_dmamem_unmap(sc->sc_dmatag, kva,
1333 sizeof(struct sk_ring_data));
1334 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1335 goto fail;
1336 }
1337 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1338 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1339 aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
1340 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1341 bus_dmamem_unmap(sc->sc_dmatag, kva,
1342 sizeof(struct sk_ring_data));
1343 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1344 goto fail;
1345 }
1346
1347 for (i = 0; i < SK_RX_RING_CNT; i++)
1348 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1349
1350 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1351 for (i = 0; i < SK_TX_RING_CNT; i++) {
1352 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1353
1354 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1355 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1356 aprint_error_dev(sc_if->sk_dev,
1357 "Can't create TX dmamap\n");
1358 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1359 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1360 bus_dmamem_unmap(sc->sc_dmatag, kva,
1361 sizeof(struct sk_ring_data));
1362 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1363 goto fail;
1364 }
1365
1366 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1367 if (!entry) {
1368 aprint_error_dev(sc_if->sk_dev,
1369 "Can't alloc txmap entry\n");
1370 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1371 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1372 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1373 bus_dmamem_unmap(sc->sc_dmatag, kva,
1374 sizeof(struct sk_ring_data));
1375 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1376 goto fail;
1377 }
1378 entry->dmamap = dmamap;
1379 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1380 }
1381
1382 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1383 memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
1384
1385 ifp = &sc_if->sk_ethercom.ec_if;
1386 /* Try to allocate memory for jumbo buffers. */
1387 if (sk_alloc_jumbo_mem(sc_if)) {
1388 aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1389 goto fail;
1390 }
1391 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1392 | ETHERCAP_JUMBO_MTU;
1393
1394 ifp->if_softc = sc_if;
1395 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1396 ifp->if_ioctl = sk_ioctl;
1397 ifp->if_start = sk_start;
1398 ifp->if_stop = sk_stop;
1399 ifp->if_init = sk_init;
1400 ifp->if_watchdog = sk_watchdog;
1401 ifp->if_capabilities = 0;
1402 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1403 IFQ_SET_READY(&ifp->if_snd);
1404 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1405
1406 /*
1407 * Do miibus setup.
1408 */
1409 switch (sc->sk_type) {
1410 case SK_GENESIS:
1411 sk_init_xmac(sc_if);
1412 break;
1413 case SK_YUKON:
1414 case SK_YUKON_LITE:
1415 case SK_YUKON_LP:
1416 sk_init_yukon(sc_if);
1417 break;
1418 default:
1419 aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
1420 sc->sk_type);
1421 goto fail;
1422 }
1423
1424 DPRINTFN(2, ("sk_attach: 1\n"));
1425
1426 sc_if->sk_mii.mii_ifp = ifp;
1427 switch (sc->sk_type) {
1428 case SK_GENESIS:
1429 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1430 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1431 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1432 break;
1433 case SK_YUKON:
1434 case SK_YUKON_LITE:
1435 case SK_YUKON_LP:
1436 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1437 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1438 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1439 mii_flags = MIIF_DOPAUSE;
1440 break;
1441 }
1442
1443 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1444 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1445 sk_ifmedia_upd, ether_mediastatus);
1446 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1447 MII_OFFSET_ANY, mii_flags);
1448 if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
1449 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1450 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1451 0, NULL);
1452 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1453 } else
1454 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1455
1456 callout_init(&sc_if->sk_tick_ch, 0);
1457 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1458
1459 DPRINTFN(2, ("sk_attach: 1\n"));
1460
1461 /*
1462 * Call MI attach routines.
1463 */
1464 if_attach(ifp);
1465
1466 ether_ifattach(ifp, sc_if->sk_enaddr);
1467
1468 #if NRND > 0
1469 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1470 RND_TYPE_NET, 0);
1471 #endif
1472
1473 if (pmf_device_register(self, NULL, sk_resume))
1474 pmf_class_network_register(self, ifp);
1475 else
1476 aprint_error_dev(self, "couldn't establish power handler\n");
1477
1478 DPRINTFN(2, ("sk_attach: end\n"));
1479
1480 return;
1481
1482 fail:
1483 sc->sk_if[sa->skc_port] = NULL;
1484 }
1485
1486 int
1487 skcprint(void *aux, const char *pnp)
1488 {
1489 struct skc_attach_args *sa = aux;
1490
1491 if (pnp)
1492 aprint_normal("sk port %c at %s",
1493 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1494 else
1495 aprint_normal(" port %c",
1496 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1497 return UNCONF;
1498 }
1499
1500 /*
1501 * Attach the interface. Allocate softc structures, do ifmedia
1502 * setup and ethernet/BPF attach.
1503 */
1504 void
1505 skc_attach(device_t parent, device_t self, void *aux)
1506 {
1507 struct sk_softc *sc = device_private(self);
1508 struct pci_attach_args *pa = aux;
1509 struct skc_attach_args skca;
1510 pci_chipset_tag_t pc = pa->pa_pc;
1511 #ifndef SK_USEIOSPACE
1512 pcireg_t memtype;
1513 #endif
1514 pci_intr_handle_t ih;
1515 const char *intrstr = NULL;
1516 bus_addr_t iobase;
1517 bus_size_t iosize;
1518 int rc, sk_nodenum;
1519 u_int32_t command;
1520 const char *revstr;
1521 const struct sysctlnode *node;
1522
1523 sc->sk_dev = self;
1524 aprint_naive("\n");
1525
1526 DPRINTFN(2, ("begin skc_attach\n"));
1527
1528 /*
1529 * Handle power management nonsense.
1530 */
1531 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1532
1533 if (command == 0x01) {
1534 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1535 if (command & SK_PSTATE_MASK) {
1536 u_int32_t xiobase, membase, irq;
1537
1538 /* Save important PCI config data. */
1539 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1540 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1541 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1542
1543 /* Reset the power state. */
1544 aprint_normal_dev(sc->sk_dev,
1545 "chip is in D%d power mode -- setting to D0\n",
1546 command & SK_PSTATE_MASK);
1547 command &= 0xFFFFFFFC;
1548 pci_conf_write(pc, pa->pa_tag,
1549 SK_PCI_PWRMGMTCTRL, command);
1550
1551 /* Restore PCI config data. */
1552 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1553 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1554 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1555 }
1556 }
1557
1558 /*
1559 * Map control/status registers.
1560 */
1561 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1562 command |= PCI_COMMAND_IO_ENABLE |
1563 PCI_COMMAND_MEM_ENABLE |
1564 PCI_COMMAND_MASTER_ENABLE;
1565 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1566 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1567
1568 #ifdef SK_USEIOSPACE
1569 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1570 aprint_error(": failed to enable I/O ports!\n");
1571 return;
1572 }
1573 /*
1574 * Map control/status registers.
1575 */
1576 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1577 &sc->sk_btag, &sc->sk_bhandle,
1578 &iobase, &iosize)) {
1579 aprint_error(": can't find i/o space\n");
1580 return;
1581 }
1582 #else
1583 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1584 aprint_error(": failed to enable memory mapping!\n");
1585 return;
1586 }
1587 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1588 switch (memtype) {
1589 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1590 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1591 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1592 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1593 &iobase, &iosize) == 0)
1594 break;
1595 default:
1596 aprint_error_dev(sc->sk_dev, "can't find mem space\n");
1597 return;
1598 }
1599
1600 DPRINTFN(2, ("skc_attach: iobase=%#" PRIxPADDR ", iosize=%zx\n",
1601 iobase, iosize));
1602 #endif
1603 sc->sc_dmatag = pa->pa_dmat;
1604
1605 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1606 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1607
1608 /* bail out here if chip is not recognized */
1609 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1610 aprint_error_dev(sc->sk_dev, "unknown chip type\n");
1611 goto fail;
1612 }
1613 if (SK_IS_YUKON2(sc)) {
1614 aprint_error_dev(sc->sk_dev,
1615 "Does not support Yukon2--try msk(4).\n");
1616 goto fail;
1617 }
1618 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1619
1620 /* Allocate interrupt */
1621 if (pci_intr_map(pa, &ih)) {
1622 aprint_error(": couldn't map interrupt\n");
1623 goto fail;
1624 }
1625
1626 intrstr = pci_intr_string(pc, ih);
1627 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1628 if (sc->sk_intrhand == NULL) {
1629 aprint_error(": couldn't establish interrupt");
1630 if (intrstr != NULL)
1631 aprint_error(" at %s", intrstr);
1632 aprint_error("\n");
1633 goto fail;
1634 }
1635 aprint_normal(": %s\n", intrstr);
1636
1637 /* Reset the adapter. */
1638 sk_reset(sc);
1639
1640 /* Read and save vital product data from EEPROM. */
1641 sk_vpd_read(sc);
1642
1643 if (sc->sk_type == SK_GENESIS) {
1644 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1645 /* Read and save RAM size and RAMbuffer offset */
1646 switch (val) {
1647 case SK_RAMSIZE_512K_64:
1648 sc->sk_ramsize = 0x80000;
1649 sc->sk_rboff = SK_RBOFF_0;
1650 break;
1651 case SK_RAMSIZE_1024K_64:
1652 sc->sk_ramsize = 0x100000;
1653 sc->sk_rboff = SK_RBOFF_80000;
1654 break;
1655 case SK_RAMSIZE_1024K_128:
1656 sc->sk_ramsize = 0x100000;
1657 sc->sk_rboff = SK_RBOFF_0;
1658 break;
1659 case SK_RAMSIZE_2048K_128:
1660 sc->sk_ramsize = 0x200000;
1661 sc->sk_rboff = SK_RBOFF_0;
1662 break;
1663 default:
1664 aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
1665 val);
1666 goto fail_1;
1667 break;
1668 }
1669
1670 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1671 sc->sk_ramsize, sc->sk_ramsize / 1024,
1672 sc->sk_rboff));
1673 } else {
1674 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1675 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1676 sc->sk_rboff = SK_RBOFF_0;
1677
1678 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1679 sc->sk_ramsize / 1024, sc->sk_ramsize,
1680 sc->sk_rboff));
1681 }
1682
1683 /* Read and save physical media type */
1684 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1685 case SK_PMD_1000BASESX:
1686 sc->sk_pmd = IFM_1000_SX;
1687 break;
1688 case SK_PMD_1000BASELX:
1689 sc->sk_pmd = IFM_1000_LX;
1690 break;
1691 case SK_PMD_1000BASECX:
1692 sc->sk_pmd = IFM_1000_CX;
1693 break;
1694 case SK_PMD_1000BASETX:
1695 case SK_PMD_1000BASETX_ALT:
1696 sc->sk_pmd = IFM_1000_T;
1697 break;
1698 default:
1699 aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
1700 sk_win_read_1(sc, SK_PMDTYPE));
1701 goto fail_1;
1702 }
1703
1704 /* determine whether to name it with vpd or just make it up */
1705 /* Marvell Yukon VPD's can freqently be bogus */
1706
1707 switch (pa->pa_id) {
1708 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1709 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1710 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1711 case PCI_PRODUCT_3COM_3C940:
1712 case PCI_PRODUCT_DLINK_DGE530T:
1713 case PCI_PRODUCT_DLINK_DGE560T:
1714 case PCI_PRODUCT_DLINK_DGE560T_2:
1715 case PCI_PRODUCT_LINKSYS_EG1032:
1716 case PCI_PRODUCT_LINKSYS_EG1064:
1717 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1718 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1719 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1720 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1721 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1722 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1723 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1724 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1725 sc->sk_name = sc->sk_vpd_prodname;
1726 break;
1727 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1728 /* whoops yukon vpd prodname bears no resemblance to reality */
1729 switch (sc->sk_type) {
1730 case SK_GENESIS:
1731 sc->sk_name = sc->sk_vpd_prodname;
1732 break;
1733 case SK_YUKON:
1734 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1735 break;
1736 case SK_YUKON_LITE:
1737 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1738 break;
1739 case SK_YUKON_LP:
1740 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1741 break;
1742 default:
1743 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1744 }
1745
1746 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1747
1748 if ( sc->sk_type == SK_YUKON ) {
1749 uint32_t flashaddr;
1750 uint8_t testbyte;
1751
1752 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1753
1754 /* test Flash-Address Register */
1755 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1756 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1757
1758 if (testbyte != 0) {
1759 /* this is yukon lite Rev. A0 */
1760 sc->sk_type = SK_YUKON_LITE;
1761 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1762 /* restore Flash-Address Register */
1763 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1764 }
1765 }
1766 break;
1767 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1768 sc->sk_name = sc->sk_vpd_prodname;
1769 break;
1770 default:
1771 sc->sk_name = "Unknown Marvell";
1772 }
1773
1774
1775 if ( sc->sk_type == SK_YUKON_LITE ) {
1776 switch (sc->sk_rev) {
1777 case SK_YUKON_LITE_REV_A0:
1778 revstr = "A0";
1779 break;
1780 case SK_YUKON_LITE_REV_A1:
1781 revstr = "A1";
1782 break;
1783 case SK_YUKON_LITE_REV_A3:
1784 revstr = "A3";
1785 break;
1786 default:
1787 revstr = "";
1788 }
1789 } else {
1790 revstr = "";
1791 }
1792
1793 /* Announce the product name. */
1794 aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
1795 sc->sk_name, revstr, sc->sk_rev);
1796
1797 skca.skc_port = SK_PORT_A;
1798 (void)config_found(sc->sk_dev, &skca, skcprint);
1799
1800 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1801 skca.skc_port = SK_PORT_B;
1802 (void)config_found(sc->sk_dev, &skca, skcprint);
1803 }
1804
1805 /* Turn on the 'driver is loaded' LED. */
1806 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1807
1808 /* skc sysctl setup */
1809
1810 sc->sk_int_mod = SK_IM_DEFAULT;
1811 sc->sk_int_mod_pending = 0;
1812
1813 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1814 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1815 SYSCTL_DESCR("skc per-controller controls"),
1816 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1817 CTL_EOL)) != 0) {
1818 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1819 goto fail_1;
1820 }
1821
1822 sk_nodenum = node->sysctl_num;
1823
1824 /* interrupt moderation time in usecs */
1825 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1826 CTLFLAG_READWRITE,
1827 CTLTYPE_INT, "int_mod",
1828 SYSCTL_DESCR("sk interrupt moderation timer"),
1829 sk_sysctl_handler, 0, sc,
1830 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1831 CTL_EOL)) != 0) {
1832 aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1833 goto fail_1;
1834 }
1835
1836 if (!pmf_device_register(self, skc_suspend, skc_resume))
1837 aprint_error_dev(self, "couldn't establish power handler\n");
1838
1839 return;
1840
1841 fail_1:
1842 pci_intr_disestablish(pc, sc->sk_intrhand);
1843 fail:
1844 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1845 }
1846
1847 int
1848 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1849 {
1850 struct sk_softc *sc = sc_if->sk_softc;
1851 struct sk_tx_desc *f = NULL;
1852 u_int32_t frag, cur, cnt = 0, sk_ctl;
1853 int i;
1854 struct sk_txmap_entry *entry;
1855 bus_dmamap_t txmap;
1856
1857 DPRINTFN(3, ("sk_encap\n"));
1858
1859 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1860 if (entry == NULL) {
1861 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1862 return ENOBUFS;
1863 }
1864 txmap = entry->dmamap;
1865
1866 cur = frag = *txidx;
1867
1868 #ifdef SK_DEBUG
1869 if (skdebug >= 3)
1870 sk_dump_mbuf(m_head);
1871 #endif
1872
1873 /*
1874 * Start packing the mbufs in this chain into
1875 * the fragment pointers. Stop when we run out
1876 * of fragments or hit the end of the mbuf chain.
1877 */
1878 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1879 BUS_DMA_NOWAIT)) {
1880 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1881 return ENOBUFS;
1882 }
1883
1884 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1885
1886 /* Sync the DMA map. */
1887 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1888 BUS_DMASYNC_PREWRITE);
1889
1890 for (i = 0; i < txmap->dm_nsegs; i++) {
1891 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1892 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1893 return ENOBUFS;
1894 }
1895 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1896 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1897 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1898 if (cnt == 0)
1899 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1900 else
1901 sk_ctl |= SK_TXCTL_OWN;
1902 f->sk_ctl = htole32(sk_ctl);
1903 cur = frag;
1904 SK_INC(frag, SK_TX_RING_CNT);
1905 cnt++;
1906 }
1907
1908 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1909 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1910
1911 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1912 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1913 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1914
1915 /* Sync descriptors before handing to chip */
1916 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1917 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1918
1919 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1920 htole32(SK_TXCTL_OWN);
1921
1922 /* Sync first descriptor to hand it off */
1923 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1924
1925 sc_if->sk_cdata.sk_tx_cnt += cnt;
1926
1927 #ifdef SK_DEBUG
1928 if (skdebug >= 3) {
1929 struct sk_tx_desc *desc;
1930 u_int32_t idx;
1931 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1932 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1933 sk_dump_txdesc(desc, idx);
1934 }
1935 }
1936 #endif
1937
1938 *txidx = frag;
1939
1940 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1941
1942 return 0;
1943 }
1944
1945 void
1946 sk_start(struct ifnet *ifp)
1947 {
1948 struct sk_if_softc *sc_if = ifp->if_softc;
1949 struct sk_softc *sc = sc_if->sk_softc;
1950 struct mbuf *m_head = NULL;
1951 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1952 int pkts = 0;
1953
1954 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1955 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1956
1957 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1958 IFQ_POLL(&ifp->if_snd, m_head);
1959 if (m_head == NULL)
1960 break;
1961
1962 /*
1963 * Pack the data into the transmit ring. If we
1964 * don't have room, set the OACTIVE flag and wait
1965 * for the NIC to drain the ring.
1966 */
1967 if (sk_encap(sc_if, m_head, &idx)) {
1968 ifp->if_flags |= IFF_OACTIVE;
1969 break;
1970 }
1971
1972 /* now we are committed to transmit the packet */
1973 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1974 pkts++;
1975
1976 /*
1977 * If there's a BPF listener, bounce a copy of this frame
1978 * to him.
1979 */
1980 bpf_mtap(ifp, m_head);
1981 }
1982 if (pkts == 0)
1983 return;
1984
1985 /* Transmit */
1986 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1987 sc_if->sk_cdata.sk_tx_prod = idx;
1988 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1989
1990 /* Set a timeout in case the chip goes out to lunch. */
1991 ifp->if_timer = 5;
1992 }
1993 }
1994
1995
1996 void
1997 sk_watchdog(struct ifnet *ifp)
1998 {
1999 struct sk_if_softc *sc_if = ifp->if_softc;
2000
2001 /*
2002 * Reclaim first as there is a possibility of losing Tx completion
2003 * interrupts.
2004 */
2005 sk_txeof(sc_if);
2006 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2007 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
2008
2009 ifp->if_oerrors++;
2010
2011 sk_init(ifp);
2012 }
2013 }
2014
2015 void
2016 sk_shutdown(void *v)
2017 {
2018 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
2019 struct sk_softc *sc = sc_if->sk_softc;
2020 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2021
2022 DPRINTFN(2, ("sk_shutdown\n"));
2023 sk_stop(ifp,1);
2024
2025 /* Turn off the 'driver is loaded' LED. */
2026 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2027
2028 /*
2029 * Reset the GEnesis controller. Doing this should also
2030 * assert the resets on the attached XMAC(s).
2031 */
2032 sk_reset(sc);
2033 }
2034
2035 void
2036 sk_rxeof(struct sk_if_softc *sc_if)
2037 {
2038 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2039 struct mbuf *m;
2040 struct sk_chain *cur_rx;
2041 struct sk_rx_desc *cur_desc;
2042 int i, cur, total_len = 0;
2043 u_int32_t rxstat, sk_ctl;
2044 bus_dmamap_t dmamap;
2045
2046 i = sc_if->sk_cdata.sk_rx_prod;
2047
2048 DPRINTFN(3, ("sk_rxeof %d\n", i));
2049
2050 for (;;) {
2051 cur = i;
2052
2053 /* Sync the descriptor */
2054 SK_CDRXSYNC(sc_if, cur,
2055 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2056
2057 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2058 if (sk_ctl & SK_RXCTL_OWN) {
2059 /* Invalidate the descriptor -- it's not ready yet */
2060 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2061 sc_if->sk_cdata.sk_rx_prod = i;
2062 break;
2063 }
2064
2065 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2066 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2067 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2068
2069 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2070 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2071
2072 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2073 m = cur_rx->sk_mbuf;
2074 cur_rx->sk_mbuf = NULL;
2075 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2076
2077 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2078
2079 SK_INC(i, SK_RX_RING_CNT);
2080
2081 if (rxstat & XM_RXSTAT_ERRFRAME) {
2082 ifp->if_ierrors++;
2083 sk_newbuf(sc_if, cur, m, dmamap);
2084 continue;
2085 }
2086
2087 /*
2088 * Try to allocate a new jumbo buffer. If that
2089 * fails, copy the packet to mbufs and put the
2090 * jumbo buffer back in the ring so it can be
2091 * re-used. If allocating mbufs fails, then we
2092 * have to drop the packet.
2093 */
2094 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2095 struct mbuf *m0;
2096 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2097 total_len + ETHER_ALIGN, 0, ifp, NULL);
2098 sk_newbuf(sc_if, cur, m, dmamap);
2099 if (m0 == NULL) {
2100 aprint_error_dev(sc_if->sk_dev, "no receive "
2101 "buffers available -- packet dropped!\n");
2102 ifp->if_ierrors++;
2103 continue;
2104 }
2105 m_adj(m0, ETHER_ALIGN);
2106 m = m0;
2107 } else {
2108 m->m_pkthdr.rcvif = ifp;
2109 m->m_pkthdr.len = m->m_len = total_len;
2110 }
2111
2112 ifp->if_ipackets++;
2113
2114 bpf_mtap(ifp, m);
2115 /* pass it on. */
2116 (*ifp->if_input)(ifp, m);
2117 }
2118 }
2119
2120 void
2121 sk_txeof(struct sk_if_softc *sc_if)
2122 {
2123 struct sk_softc *sc = sc_if->sk_softc;
2124 struct sk_tx_desc *cur_tx;
2125 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2126 u_int32_t idx, sk_ctl;
2127 struct sk_txmap_entry *entry;
2128
2129 DPRINTFN(3, ("sk_txeof\n"));
2130
2131 /*
2132 * Go through our tx ring and free mbufs for those
2133 * frames that have been sent.
2134 */
2135 idx = sc_if->sk_cdata.sk_tx_cons;
2136 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2137 SK_CDTXSYNC(sc_if, idx, 1,
2138 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2139
2140 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2141 sk_ctl = le32toh(cur_tx->sk_ctl);
2142 #ifdef SK_DEBUG
2143 if (skdebug >= 3)
2144 sk_dump_txdesc(cur_tx, idx);
2145 #endif
2146 if (sk_ctl & SK_TXCTL_OWN) {
2147 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2148 break;
2149 }
2150 if (sk_ctl & SK_TXCTL_LASTFRAG)
2151 ifp->if_opackets++;
2152 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2153 entry = sc_if->sk_cdata.sk_tx_map[idx];
2154
2155 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2156 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2157
2158 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2159 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2160
2161 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2162 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2163 link);
2164 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2165 }
2166 sc_if->sk_cdata.sk_tx_cnt--;
2167 SK_INC(idx, SK_TX_RING_CNT);
2168 }
2169 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2170 ifp->if_timer = 0;
2171 else /* nudge chip to keep tx ring moving */
2172 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2173
2174 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2175 ifp->if_flags &= ~IFF_OACTIVE;
2176
2177 sc_if->sk_cdata.sk_tx_cons = idx;
2178 }
2179
2180 void
2181 sk_tick(void *xsc_if)
2182 {
2183 struct sk_if_softc *sc_if = xsc_if;
2184 struct mii_data *mii = &sc_if->sk_mii;
2185 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2186 int i;
2187
2188 DPRINTFN(3, ("sk_tick\n"));
2189
2190 if (!(ifp->if_flags & IFF_UP))
2191 return;
2192
2193 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2194 sk_intr_bcom(sc_if);
2195 return;
2196 }
2197
2198 /*
2199 * According to SysKonnect, the correct way to verify that
2200 * the link has come back up is to poll bit 0 of the GPIO
2201 * register three times. This pin has the signal from the
2202 * link sync pin connected to it; if we read the same link
2203 * state 3 times in a row, we know the link is up.
2204 */
2205 for (i = 0; i < 3; i++) {
2206 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2207 break;
2208 }
2209
2210 if (i != 3) {
2211 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2212 return;
2213 }
2214
2215 /* Turn the GP0 interrupt back on. */
2216 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2217 SK_XM_READ_2(sc_if, XM_ISR);
2218 mii_tick(mii);
2219 mii_pollstat(mii);
2220 callout_stop(&sc_if->sk_tick_ch);
2221 }
2222
2223 void
2224 sk_intr_bcom(struct sk_if_softc *sc_if)
2225 {
2226 struct mii_data *mii = &sc_if->sk_mii;
2227 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2228 int status;
2229
2230
2231 DPRINTFN(3, ("sk_intr_bcom\n"));
2232
2233 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2234
2235 /*
2236 * Read the PHY interrupt register to make sure
2237 * we clear any pending interrupts.
2238 */
2239 status = sk_xmac_miibus_readreg(sc_if->sk_dev,
2240 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2241
2242 if (!(ifp->if_flags & IFF_RUNNING)) {
2243 sk_init_xmac(sc_if);
2244 return;
2245 }
2246
2247 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2248 int lstat;
2249 lstat = sk_xmac_miibus_readreg(sc_if->sk_dev,
2250 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2251
2252 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2253 (void)mii_mediachg(mii);
2254 /* Turn off the link LED. */
2255 SK_IF_WRITE_1(sc_if, 0,
2256 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2257 sc_if->sk_link = 0;
2258 } else if (status & BRGPHY_ISR_LNK_CHG) {
2259 sk_xmac_miibus_writereg(sc_if->sk_dev,
2260 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2261 mii_tick(mii);
2262 sc_if->sk_link = 1;
2263 /* Turn on the link LED. */
2264 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2265 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2266 SK_LINKLED_BLINK_OFF);
2267 mii_pollstat(mii);
2268 } else {
2269 mii_tick(mii);
2270 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2271 }
2272 }
2273
2274 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2275 }
2276
2277 void
2278 sk_intr_xmac(struct sk_if_softc *sc_if)
2279 {
2280 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2281
2282 DPRINTFN(3, ("sk_intr_xmac\n"));
2283
2284 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2285 if (status & XM_ISR_GP0_SET) {
2286 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2287 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2288 }
2289
2290 if (status & XM_ISR_AUTONEG_DONE) {
2291 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2292 }
2293 }
2294
2295 if (status & XM_IMR_TX_UNDERRUN)
2296 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2297
2298 if (status & XM_IMR_RX_OVERRUN)
2299 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2300 }
2301
2302 void
2303 sk_intr_yukon(struct sk_if_softc *sc_if)
2304 {
2305 int status;
2306
2307 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2308
2309 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2310 }
2311
2312 int
2313 sk_intr(void *xsc)
2314 {
2315 struct sk_softc *sc = xsc;
2316 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2317 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2318 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2319 u_int32_t status;
2320 int claimed = 0;
2321
2322 if (sc_if0 != NULL)
2323 ifp0 = &sc_if0->sk_ethercom.ec_if;
2324 if (sc_if1 != NULL)
2325 ifp1 = &sc_if1->sk_ethercom.ec_if;
2326
2327 for (;;) {
2328 status = CSR_READ_4(sc, SK_ISSR);
2329 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2330
2331 if (!(status & sc->sk_intrmask))
2332 break;
2333
2334 claimed = 1;
2335
2336 /* Handle receive interrupts first. */
2337 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2338 sk_rxeof(sc_if0);
2339 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2340 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2341 }
2342 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2343 sk_rxeof(sc_if1);
2344 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2345 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2346 }
2347
2348 /* Then transmit interrupts. */
2349 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2350 sk_txeof(sc_if0);
2351 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2352 SK_TXBMU_CLR_IRQ_EOF);
2353 }
2354 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2355 sk_txeof(sc_if1);
2356 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2357 SK_TXBMU_CLR_IRQ_EOF);
2358 }
2359
2360 /* Then MAC interrupts. */
2361 if (sc_if0 && (status & SK_ISR_MAC1) &&
2362 (ifp0->if_flags & IFF_RUNNING)) {
2363 if (sc->sk_type == SK_GENESIS)
2364 sk_intr_xmac(sc_if0);
2365 else
2366 sk_intr_yukon(sc_if0);
2367 }
2368
2369 if (sc_if1 && (status & SK_ISR_MAC2) &&
2370 (ifp1->if_flags & IFF_RUNNING)) {
2371 if (sc->sk_type == SK_GENESIS)
2372 sk_intr_xmac(sc_if1);
2373 else
2374 sk_intr_yukon(sc_if1);
2375
2376 }
2377
2378 if (status & SK_ISR_EXTERNAL_REG) {
2379 if (sc_if0 != NULL &&
2380 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2381 sk_intr_bcom(sc_if0);
2382
2383 if (sc_if1 != NULL &&
2384 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2385 sk_intr_bcom(sc_if1);
2386 }
2387 }
2388
2389 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2390
2391 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2392 sk_start(ifp0);
2393 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2394 sk_start(ifp1);
2395
2396 #if NRND > 0
2397 if (RND_ENABLED(&sc->rnd_source))
2398 rnd_add_uint32(&sc->rnd_source, status);
2399 #endif
2400
2401 if (sc->sk_int_mod_pending)
2402 sk_update_int_mod(sc);
2403
2404 return claimed;
2405 }
2406
2407 void
2408 sk_init_xmac(struct sk_if_softc *sc_if)
2409 {
2410 struct sk_softc *sc = sc_if->sk_softc;
2411 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2412 static const struct sk_bcom_hack bhack[] = {
2413 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2414 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2415 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2416 { 0, 0 } };
2417
2418 DPRINTFN(1, ("sk_init_xmac\n"));
2419
2420 /* Unreset the XMAC. */
2421 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2422 DELAY(1000);
2423
2424 /* Reset the XMAC's internal state. */
2425 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2426
2427 /* Save the XMAC II revision */
2428 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2429
2430 /*
2431 * Perform additional initialization for external PHYs,
2432 * namely for the 1000baseTX cards that use the XMAC's
2433 * GMII mode.
2434 */
2435 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2436 int i = 0;
2437 u_int32_t val;
2438
2439 /* Take PHY out of reset. */
2440 val = sk_win_read_4(sc, SK_GPIO);
2441 if (sc_if->sk_port == SK_PORT_A)
2442 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2443 else
2444 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2445 sk_win_write_4(sc, SK_GPIO, val);
2446
2447 /* Enable GMII mode on the XMAC. */
2448 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2449
2450 sk_xmac_miibus_writereg(sc_if->sk_dev,
2451 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2452 DELAY(10000);
2453 sk_xmac_miibus_writereg(sc_if->sk_dev,
2454 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2455
2456 /*
2457 * Early versions of the BCM5400 apparently have
2458 * a bug that requires them to have their reserved
2459 * registers initialized to some magic values. I don't
2460 * know what the numbers do, I'm just the messenger.
2461 */
2462 if (sk_xmac_miibus_readreg(sc_if->sk_dev,
2463 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2464 while (bhack[i].reg) {
2465 sk_xmac_miibus_writereg(sc_if->sk_dev,
2466 SK_PHYADDR_BCOM, bhack[i].reg,
2467 bhack[i].val);
2468 i++;
2469 }
2470 }
2471 }
2472
2473 /* Set station address */
2474 SK_XM_WRITE_2(sc_if, XM_PAR0,
2475 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2476 SK_XM_WRITE_2(sc_if, XM_PAR1,
2477 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2478 SK_XM_WRITE_2(sc_if, XM_PAR2,
2479 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2480 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2481
2482 if (ifp->if_flags & IFF_PROMISC)
2483 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2484 else
2485 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2486
2487 if (ifp->if_flags & IFF_BROADCAST)
2488 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2489 else
2490 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2491
2492 /* We don't need the FCS appended to the packet. */
2493 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2494
2495 /* We want short frames padded to 60 bytes. */
2496 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2497
2498 /*
2499 * Enable the reception of all error frames. This is is
2500 * a necessary evil due to the design of the XMAC. The
2501 * XMAC's receive FIFO is only 8K in size, however jumbo
2502 * frames can be up to 9000 bytes in length. When bad
2503 * frame filtering is enabled, the XMAC's RX FIFO operates
2504 * in 'store and forward' mode. For this to work, the
2505 * entire frame has to fit into the FIFO, but that means
2506 * that jumbo frames larger than 8192 bytes will be
2507 * truncated. Disabling all bad frame filtering causes
2508 * the RX FIFO to operate in streaming mode, in which
2509 * case the XMAC will start transfering frames out of the
2510 * RX FIFO as soon as the FIFO threshold is reached.
2511 */
2512 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2513 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2514 XM_MODE_RX_INRANGELEN);
2515
2516 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2517 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2518 else
2519 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2520
2521 /*
2522 * Bump up the transmit threshold. This helps hold off transmit
2523 * underruns when we're blasting traffic from both ports at once.
2524 */
2525 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2526
2527 /* Set multicast filter */
2528 sk_setmulti(sc_if);
2529
2530 /* Clear and enable interrupts */
2531 SK_XM_READ_2(sc_if, XM_ISR);
2532 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2533 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2534 else
2535 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2536
2537 /* Configure MAC arbiter */
2538 switch (sc_if->sk_xmac_rev) {
2539 case XM_XMAC_REV_B2:
2540 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2541 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2542 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2543 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2544 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2545 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2546 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2547 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2548 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2549 break;
2550 case XM_XMAC_REV_C1:
2551 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2552 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2553 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2554 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2555 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2556 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2557 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2558 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2559 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2560 break;
2561 default:
2562 break;
2563 }
2564 sk_win_write_2(sc, SK_MACARB_CTL,
2565 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2566
2567 sc_if->sk_link = 1;
2568 }
2569
2570 void sk_init_yukon(struct sk_if_softc *sc_if)
2571 {
2572 u_int32_t /*mac, */phy;
2573 u_int16_t reg;
2574 struct sk_softc *sc;
2575 int i;
2576
2577 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2578 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2579
2580 sc = sc_if->sk_softc;
2581 if (sc->sk_type == SK_YUKON_LITE &&
2582 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2583 /* Take PHY out of reset. */
2584 sk_win_write_4(sc, SK_GPIO,
2585 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2586 }
2587
2588
2589 /* GMAC and GPHY Reset */
2590 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2591
2592 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2593
2594 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2595 DELAY(1000);
2596 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2597 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2598 DELAY(1000);
2599
2600
2601 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2602
2603 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2604 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2605
2606 switch (sc_if->sk_softc->sk_pmd) {
2607 case IFM_1000_SX:
2608 case IFM_1000_LX:
2609 phy |= SK_GPHY_FIBER;
2610 break;
2611
2612 case IFM_1000_CX:
2613 case IFM_1000_T:
2614 phy |= SK_GPHY_COPPER;
2615 break;
2616 }
2617
2618 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2619
2620 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2621 DELAY(1000);
2622 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2623 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2624 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2625
2626 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2627 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2628
2629 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2630
2631 /* unused read of the interrupt source register */
2632 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2633 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2634
2635 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2636 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2637 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2638
2639 /* MIB Counter Clear Mode set */
2640 reg |= YU_PAR_MIB_CLR;
2641 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2642 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2643 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2644
2645 /* MIB Counter Clear Mode clear */
2646 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2647 reg &= ~YU_PAR_MIB_CLR;
2648 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2649
2650 /* receive control reg */
2651 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2652 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2653 YU_RCR_CRCR);
2654
2655 /* transmit parameter register */
2656 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2657 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2658 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2659
2660 /* serial mode register */
2661 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2662 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2663 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2664 YU_SMR_IPG_DATA(0x1e));
2665
2666 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2667 /* Setup Yukon's address */
2668 for (i = 0; i < 3; i++) {
2669 /* Write Source Address 1 (unicast filter) */
2670 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2671 sc_if->sk_enaddr[i * 2] |
2672 sc_if->sk_enaddr[i * 2 + 1] << 8);
2673 }
2674
2675 for (i = 0; i < 3; i++) {
2676 reg = sk_win_read_2(sc_if->sk_softc,
2677 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2678 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2679 }
2680
2681 /* Set multicast filter */
2682 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2683 sk_setmulti(sc_if);
2684
2685 /* enable interrupt mask for counter overflows */
2686 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2687 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2688 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2689 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2690
2691 /* Configure RX MAC FIFO */
2692 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2693 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2694
2695 /* Configure TX MAC FIFO */
2696 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2697 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2698
2699 DPRINTFN(6, ("sk_init_yukon: end\n"));
2700 }
2701
2702 /*
2703 * Note that to properly initialize any part of the GEnesis chip,
2704 * you first have to take it out of reset mode.
2705 */
2706 int
2707 sk_init(struct ifnet *ifp)
2708 {
2709 struct sk_if_softc *sc_if = ifp->if_softc;
2710 struct sk_softc *sc = sc_if->sk_softc;
2711 struct mii_data *mii = &sc_if->sk_mii;
2712 int rc = 0, s;
2713 u_int32_t imr, imtimer_ticks;
2714
2715 DPRINTFN(1, ("sk_init\n"));
2716
2717 s = splnet();
2718
2719 if (ifp->if_flags & IFF_RUNNING) {
2720 splx(s);
2721 return 0;
2722 }
2723
2724 /* Cancel pending I/O and free all RX/TX buffers. */
2725 sk_stop(ifp,0);
2726
2727 if (sc->sk_type == SK_GENESIS) {
2728 /* Configure LINK_SYNC LED */
2729 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2730 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2731 SK_LINKLED_LINKSYNC_ON);
2732
2733 /* Configure RX LED */
2734 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2735 SK_RXLEDCTL_COUNTER_START);
2736
2737 /* Configure TX LED */
2738 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2739 SK_TXLEDCTL_COUNTER_START);
2740 }
2741
2742 /* Configure I2C registers */
2743
2744 /* Configure XMAC(s) */
2745 switch (sc->sk_type) {
2746 case SK_GENESIS:
2747 sk_init_xmac(sc_if);
2748 break;
2749 case SK_YUKON:
2750 case SK_YUKON_LITE:
2751 case SK_YUKON_LP:
2752 sk_init_yukon(sc_if);
2753 break;
2754 }
2755 if ((rc = mii_mediachg(mii)) == ENXIO)
2756 rc = 0;
2757 else if (rc != 0)
2758 goto out;
2759
2760 if (sc->sk_type == SK_GENESIS) {
2761 /* Configure MAC FIFOs */
2762 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2763 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2764 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2765
2766 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2767 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2768 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2769 }
2770
2771 /* Configure transmit arbiter(s) */
2772 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2773 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2774
2775 /* Configure RAMbuffers */
2776 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2777 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2778 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2779 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2780 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2781 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2782
2783 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2784 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2785 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2786 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2787 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2788 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2789 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2790
2791 /* Configure BMUs */
2792 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2793 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2794 SK_RX_RING_ADDR(sc_if, 0));
2795 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2796
2797 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2798 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2799 SK_TX_RING_ADDR(sc_if, 0));
2800 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2801
2802 /* Init descriptors */
2803 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2804 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2805 "memory for rx buffers\n");
2806 sk_stop(ifp,0);
2807 splx(s);
2808 return ENOBUFS;
2809 }
2810
2811 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2812 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2813 "memory for tx buffers\n");
2814 sk_stop(ifp,0);
2815 splx(s);
2816 return ENOBUFS;
2817 }
2818
2819 /* Set interrupt moderation if changed via sysctl. */
2820 switch (sc->sk_type) {
2821 case SK_GENESIS:
2822 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2823 break;
2824 case SK_YUKON_EC:
2825 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2826 break;
2827 default:
2828 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2829 }
2830 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2831 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2832 sk_win_write_4(sc, SK_IMTIMERINIT,
2833 SK_IM_USECS(sc->sk_int_mod));
2834 aprint_verbose_dev(sc->sk_dev,
2835 "interrupt moderation is %d us\n", sc->sk_int_mod);
2836 }
2837
2838 /* Configure interrupt handling */
2839 CSR_READ_4(sc, SK_ISSR);
2840 if (sc_if->sk_port == SK_PORT_A)
2841 sc->sk_intrmask |= SK_INTRS1;
2842 else
2843 sc->sk_intrmask |= SK_INTRS2;
2844
2845 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2846
2847 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2848
2849 /* Start BMUs. */
2850 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2851
2852 if (sc->sk_type == SK_GENESIS) {
2853 /* Enable XMACs TX and RX state machines */
2854 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2855 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2856 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2857 }
2858
2859 if (SK_YUKON_FAMILY(sc->sk_type)) {
2860 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2861 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2862 #if 0
2863 /* XXX disable 100Mbps and full duplex mode? */
2864 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2865 #endif
2866 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2867 }
2868
2869
2870 ifp->if_flags |= IFF_RUNNING;
2871 ifp->if_flags &= ~IFF_OACTIVE;
2872
2873 out:
2874 splx(s);
2875 return rc;
2876 }
2877
2878 void
2879 sk_stop(struct ifnet *ifp, int disable)
2880 {
2881 struct sk_if_softc *sc_if = ifp->if_softc;
2882 struct sk_softc *sc = sc_if->sk_softc;
2883 int i;
2884
2885 DPRINTFN(1, ("sk_stop\n"));
2886
2887 callout_stop(&sc_if->sk_tick_ch);
2888
2889 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2890 u_int32_t val;
2891
2892 /* Put PHY back into reset. */
2893 val = sk_win_read_4(sc, SK_GPIO);
2894 if (sc_if->sk_port == SK_PORT_A) {
2895 val |= SK_GPIO_DIR0;
2896 val &= ~SK_GPIO_DAT0;
2897 } else {
2898 val |= SK_GPIO_DIR2;
2899 val &= ~SK_GPIO_DAT2;
2900 }
2901 sk_win_write_4(sc, SK_GPIO, val);
2902 }
2903
2904 /* Turn off various components of this interface. */
2905 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2906 switch (sc->sk_type) {
2907 case SK_GENESIS:
2908 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2909 SK_TXMACCTL_XMAC_RESET);
2910 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2911 break;
2912 case SK_YUKON:
2913 case SK_YUKON_LITE:
2914 case SK_YUKON_LP:
2915 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2916 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2917 break;
2918 }
2919 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2920 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2921 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2922 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2923 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2924 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2925 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2926 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2927 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2928
2929 /* Disable interrupts */
2930 if (sc_if->sk_port == SK_PORT_A)
2931 sc->sk_intrmask &= ~SK_INTRS1;
2932 else
2933 sc->sk_intrmask &= ~SK_INTRS2;
2934 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2935
2936 SK_XM_READ_2(sc_if, XM_ISR);
2937 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2938
2939 /* Free RX and TX mbufs still in the queues. */
2940 for (i = 0; i < SK_RX_RING_CNT; i++) {
2941 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2942 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2943 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2944 }
2945 }
2946
2947 for (i = 0; i < SK_TX_RING_CNT; i++) {
2948 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2949 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2950 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2951 }
2952 }
2953
2954 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2955 }
2956
2957 /* Power Management Framework */
2958
2959 static bool
2960 skc_suspend(device_t dv, const pmf_qual_t *qual)
2961 {
2962 struct sk_softc *sc = device_private(dv);
2963
2964 DPRINTFN(2, ("skc_suspend\n"));
2965
2966 /* Turn off the driver is loaded LED */
2967 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2968
2969 return true;
2970 }
2971
2972 static bool
2973 skc_resume(device_t dv, const pmf_qual_t *qual)
2974 {
2975 struct sk_softc *sc = device_private(dv);
2976
2977 DPRINTFN(2, ("skc_resume\n"));
2978
2979 sk_reset(sc);
2980 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2981
2982 return true;
2983 }
2984
2985 static bool
2986 sk_resume(device_t dv, const pmf_qual_t *qual)
2987 {
2988 struct sk_if_softc *sc_if = device_private(dv);
2989
2990 sk_init_yukon(sc_if);
2991 return true;
2992 }
2993
2994 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
2995 skc_probe, skc_attach, NULL, NULL);
2996
2997 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
2998 sk_probe, sk_attach, NULL, NULL);
2999
3000 #ifdef SK_DEBUG
3001 void
3002 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
3003 {
3004 #define DESC_PRINT(X) \
3005 if (X) \
3006 printf("txdesc[%d]." #X "=%#x\n", \
3007 idx, X);
3008
3009 DESC_PRINT(le32toh(desc->sk_ctl));
3010 DESC_PRINT(le32toh(desc->sk_next));
3011 DESC_PRINT(le32toh(desc->sk_data_lo));
3012 DESC_PRINT(le32toh(desc->sk_data_hi));
3013 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
3014 DESC_PRINT(le16toh(desc->sk_rsvd0));
3015 DESC_PRINT(le16toh(desc->sk_csum_startval));
3016 DESC_PRINT(le16toh(desc->sk_csum_startpos));
3017 DESC_PRINT(le16toh(desc->sk_csum_writepos));
3018 DESC_PRINT(le16toh(desc->sk_rsvd1));
3019 #undef PRINT
3020 }
3021
3022 void
3023 sk_dump_bytes(const char *data, int len)
3024 {
3025 int c, i, j;
3026
3027 for (i = 0; i < len; i += 16) {
3028 printf("%08x ", i);
3029 c = len - i;
3030 if (c > 16) c = 16;
3031
3032 for (j = 0; j < c; j++) {
3033 printf("%02x ", data[i + j] & 0xff);
3034 if ((j & 0xf) == 7 && j > 0)
3035 printf(" ");
3036 }
3037
3038 for (; j < 16; j++)
3039 printf(" ");
3040 printf(" ");
3041
3042 for (j = 0; j < c; j++) {
3043 int ch = data[i + j] & 0xff;
3044 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
3045 }
3046
3047 printf("\n");
3048
3049 if (c < 16)
3050 break;
3051 }
3052 }
3053
3054 void
3055 sk_dump_mbuf(struct mbuf *m)
3056 {
3057 int count = m->m_pkthdr.len;
3058
3059 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3060
3061 while (count > 0 && m) {
3062 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3063 m, m->m_data, m->m_len);
3064 sk_dump_bytes(mtod(m, char *), m->m_len);
3065
3066 count -= m->m_len;
3067 m = m->m_next;
3068 }
3069 }
3070 #endif
3071
3072 static int
3073 sk_sysctl_handler(SYSCTLFN_ARGS)
3074 {
3075 int error, t;
3076 struct sysctlnode node;
3077 struct sk_softc *sc;
3078
3079 node = *rnode;
3080 sc = node.sysctl_data;
3081 t = sc->sk_int_mod;
3082 node.sysctl_data = &t;
3083 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3084 if (error || newp == NULL)
3085 return error;
3086
3087 if (t < SK_IM_MIN || t > SK_IM_MAX)
3088 return EINVAL;
3089
3090 /* update the softc with sysctl-changed value, and mark
3091 for hardware update */
3092 sc->sk_int_mod = t;
3093 sc->sk_int_mod_pending = 1;
3094 return 0;
3095 }
3096
3097 /*
3098 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3099 * set up in skc_attach()
3100 */
3101 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3102 {
3103 int rc;
3104 const struct sysctlnode *node;
3105
3106 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3107 0, CTLTYPE_NODE, "hw", NULL,
3108 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3109 goto err;
3110 }
3111
3112 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3113 0, CTLTYPE_NODE, "sk",
3114 SYSCTL_DESCR("sk interface controls"),
3115 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3116 goto err;
3117 }
3118
3119 sk_root_num = node->sysctl_num;
3120 return;
3121
3122 err:
3123 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3124 }
3125