if_sk.c revision 1.7 1 /* $NetBSD: if_sk.c,v 1.7 2004/01/28 17:07:21 chs Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the NetBSD
18 * Foundation, Inc. and its contributors.
19 * 4. Neither the name of The NetBSD Foundation nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /* $OpenBSD: if_sk.c,v 1.33 2003/08/12 05:23:06 nate Exp $ */
37
38 /*
39 * Copyright (c) 1997, 1998, 1999, 2000
40 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Bill Paul.
53 * 4. Neither the name of the author nor the names of any co-contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67 * THE POSSIBILITY OF SUCH DAMAGE.
68 *
69 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70 */
71
72 /*
73 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
74 *
75 * Permission to use, copy, modify, and distribute this software for any
76 * purpose with or without fee is hereby granted, provided that the above
77 * copyright notice and this permission notice appear in all copies.
78 *
79 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86 */
87
88 /*
89 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90 * the SK-984x series adapters, both single port and dual port.
91 * References:
92 * The XaQti XMAC II datasheet,
93 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 * The SysKonnect GEnesis manual, http://www.syskonnect.com
95 *
96 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98 * convenience to others until Vitesse corrects this problem:
99 *
100 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101 *
102 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
103 * Department of Electrical Engineering
104 * Columbia University, New York City
105 */
106
107 /*
108 * The SysKonnect gigabit ethernet adapters consist of two main
109 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111 * components and a PHY while the GEnesis controller provides a PCI
112 * interface with DMA support. Each card may have between 512K and
113 * 2MB of SRAM on board depending on the configuration.
114 *
115 * The SysKonnect GEnesis controller can have either one or two XMAC
116 * chips connected to it, allowing single or dual port NIC configurations.
117 * SysKonnect has the distinction of being the only vendor on the market
118 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120 * XMAC registers. This driver takes advantage of these features to allow
121 * both XMACs to operate as independent interfaces.
122 */
123
124 #include "bpfilter.h"
125
126 #include <sys/param.h>
127 #include <sys/systm.h>
128 #include <sys/sockio.h>
129 #include <sys/mbuf.h>
130 #include <sys/malloc.h>
131 #include <sys/kernel.h>
132 #include <sys/socket.h>
133 #include <sys/device.h>
134 #include <sys/queue.h>
135 #include <sys/callout.h>
136
137 #include <net/if.h>
138 #include <net/if_dl.h>
139 #include <net/if_types.h>
140
141 #ifdef INET
142 #include <netinet/in.h>
143 #include <netinet/in_systm.h>
144 #include <netinet/in_var.h>
145 #include <netinet/ip.h>
146 #include <netinet/if_ether.h>
147 #endif
148
149 #include <net/if_media.h>
150
151 #if NBPFILTER > 0
152 #include <net/bpf.h>
153 #endif
154
155 #include <dev/mii/mii.h>
156 #include <dev/mii/miivar.h>
157 #include <dev/mii/brgphyreg.h>
158
159 #include <dev/pci/pcireg.h>
160 #include <dev/pci/pcivar.h>
161 #include <dev/pci/pcidevs.h>
162
163 #define SK_VERBOSE
164 /* #define SK_USEIOSPACE */
165
166 #include <dev/pci/if_skreg.h>
167 #include <dev/pci/if_skvar.h>
168
169 int skc_probe(struct device *, struct cfdata *, void *);
170 void skc_attach(struct device *, struct device *self, void *aux);
171 int sk_probe(struct device *, struct cfdata *, void *);
172 void sk_attach(struct device *, struct device *self, void *aux);
173 int skcprint(void *, const char *);
174 int sk_intr(void *);
175 void sk_intr_bcom(struct sk_if_softc *);
176 void sk_intr_xmac(struct sk_if_softc *);
177 void sk_intr_yukon(struct sk_if_softc *);
178 void sk_rxeof(struct sk_if_softc *);
179 void sk_txeof(struct sk_if_softc *);
180 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
181 void sk_start(struct ifnet *);
182 int sk_ioctl(struct ifnet *, u_long, caddr_t);
183 int sk_init(struct ifnet *);
184 void sk_init_xmac(struct sk_if_softc *);
185 void sk_init_yukon(struct sk_if_softc *);
186 void sk_stop(struct ifnet *, int);
187 void sk_watchdog(struct ifnet *);
188 void sk_shutdown(void *);
189 int sk_ifmedia_upd(struct ifnet *);
190 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
191 void sk_reset(struct sk_softc *);
192 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
193 int sk_init_rx_ring(struct sk_if_softc *);
194 int sk_init_tx_ring(struct sk_if_softc *);
195 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
196 void sk_vpd_read_res(struct sk_softc *,
197 struct vpd_res *, int);
198 void sk_vpd_read(struct sk_softc *);
199
200 int sk_xmac_miibus_readreg(struct device *, int, int);
201 void sk_xmac_miibus_writereg(struct device *, int, int, int);
202 void sk_xmac_miibus_statchg(struct device *);
203
204 int sk_marv_miibus_readreg(struct device *, int, int);
205 void sk_marv_miibus_writereg(struct device *, int, int, int);
206 void sk_marv_miibus_statchg(struct device *);
207
208 u_int32_t sk_calchash(caddr_t);
209 void sk_setfilt(struct sk_if_softc *, caddr_t, int);
210 void sk_setmulti(struct sk_if_softc *);
211 void sk_tick(void *);
212
213 /* #define SK_DEBUG 2 */
214 #ifdef SK_DEBUG
215 #define DPRINTF(x) if (skdebug) printf x
216 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
217 int skdebug = SK_DEBUG;
218
219 void sk_dump_txdesc(struct sk_tx_desc *, int);
220 void sk_dump_mbuf(struct mbuf *);
221 void sk_dump_bytes(const char *, int);
222 #else
223 #define DPRINTF(x)
224 #define DPRINTFN(n,x)
225 #endif
226
227 #define SK_SETBIT(sc, reg, x) \
228 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
229
230 #define SK_CLRBIT(sc, reg, x) \
231 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
232
233 #define SK_WIN_SETBIT_4(sc, reg, x) \
234 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
235
236 #define SK_WIN_CLRBIT_4(sc, reg, x) \
237 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
238
239 #define SK_WIN_SETBIT_2(sc, reg, x) \
240 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
241
242 #define SK_WIN_CLRBIT_2(sc, reg, x) \
243 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
244
245 /* supported device vendors */
246 static const struct sk_product {
247 pci_vendor_id_t sk_vendor;
248 pci_product_id_t sk_product;
249 } sk_products[] = {
250 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
251 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
252 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032, },
253 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
254 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
255 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
256 { PCI_VENDOR_GALILEO, PCI_PRODUCT_GALILEO_SKNET, },
257 { 0, 0, }
258 };
259
260 static inline u_int32_t
261 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
262 {
263 #ifdef SK_USEIOSPACE
264 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
265 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
266 #else
267 return CSR_READ_4(sc, reg);
268 #endif
269 }
270
271 static inline u_int16_t
272 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
273 {
274 #ifdef SK_USEIOSPACE
275 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
276 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
277 #else
278 return CSR_READ_2(sc, reg);
279 #endif
280 }
281
282 static inline u_int8_t
283 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
284 {
285 #ifdef SK_USEIOSPACE
286 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
287 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
288 #else
289 return CSR_READ_1(sc, reg);
290 #endif
291 }
292
293 static inline void
294 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
295 {
296 #ifdef SK_USEIOSPACE
297 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
298 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
299 #else
300 CSR_WRITE_4(sc, reg, x);
301 #endif
302 }
303
304 static inline void
305 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
306 {
307 #ifdef SK_USEIOSPACE
308 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
309 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
310 #else
311 CSR_WRITE_2(sc, reg, x);
312 #endif
313 }
314
315 static inline void
316 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
317 {
318 #ifdef SK_USEIOSPACE
319 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
320 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
321 #else
322 CSR_WRITE_1(sc, reg, x);
323 #endif
324 }
325
326 /*
327 * The VPD EEPROM contains Vital Product Data, as suggested in
328 * the PCI 2.1 specification. The VPD data is separared into areas
329 * denoted by resource IDs. The SysKonnect VPD contains an ID string
330 * resource (the name of the adapter), a read-only area resource
331 * containing various key/data fields and a read/write area which
332 * can be used to store asset management information or log messages.
333 * We read the ID string and read-only into buffers attached to
334 * the controller softc structure for later use. At the moment,
335 * we only use the ID string during sk_attach().
336 */
337 u_int8_t
338 sk_vpd_readbyte(struct sk_softc *sc, int addr)
339 {
340 int i;
341
342 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
343 for (i = 0; i < SK_TIMEOUT; i++) {
344 DELAY(1);
345 if (sk_win_read_2(sc,
346 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
347 break;
348 }
349
350 if (i == SK_TIMEOUT)
351 return(0);
352
353 return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
354 }
355
356 void
357 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
358 {
359 int i;
360 u_int8_t *ptr;
361
362 ptr = (u_int8_t *)res;
363 for (i = 0; i < sizeof(struct vpd_res); i++)
364 ptr[i] = sk_vpd_readbyte(sc, i + addr);
365 }
366
367 void
368 sk_vpd_read(struct sk_softc *sc)
369 {
370 int pos = 0, i;
371 struct vpd_res res;
372
373 if (sc->sk_vpd_prodname != NULL)
374 free(sc->sk_vpd_prodname, M_DEVBUF);
375 if (sc->sk_vpd_readonly != NULL)
376 free(sc->sk_vpd_readonly, M_DEVBUF);
377 sc->sk_vpd_prodname = NULL;
378 sc->sk_vpd_readonly = NULL;
379
380 sk_vpd_read_res(sc, &res, pos);
381
382 if (res.vr_id != VPD_RES_ID) {
383 printf("%s: bad VPD resource id: expected %x got %x\n",
384 sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
385 return;
386 }
387
388 pos += sizeof(res);
389 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
390 if (sc->sk_vpd_prodname == NULL)
391 panic("sk_vpd_read");
392 for (i = 0; i < res.vr_len; i++)
393 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
394 sc->sk_vpd_prodname[i] = '\0';
395 pos += i;
396
397 sk_vpd_read_res(sc, &res, pos);
398
399 if (res.vr_id != VPD_RES_READ) {
400 printf("%s: bad VPD resource id: expected %x got %x\n",
401 sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
402 return;
403 }
404
405 pos += sizeof(res);
406 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
407 if (sc->sk_vpd_readonly == NULL)
408 panic("sk_vpd_read");
409 for (i = 0; i < res.vr_len + 1; i++)
410 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
411 }
412
413 int
414 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
415 {
416 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
417 int i;
418
419 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
420
421 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
422 return(0);
423
424 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
425 SK_XM_READ_2(sc_if, XM_PHY_DATA);
426 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
427 for (i = 0; i < SK_TIMEOUT; i++) {
428 DELAY(1);
429 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
430 XM_MMUCMD_PHYDATARDY)
431 break;
432 }
433
434 if (i == SK_TIMEOUT) {
435 printf("%s: phy failed to come ready\n",
436 sc_if->sk_dev.dv_xname);
437 return(0);
438 }
439 }
440 DELAY(1);
441 return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
442 }
443
444 void
445 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
446 {
447 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
448 int i;
449
450 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
451
452 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
453 for (i = 0; i < SK_TIMEOUT; i++) {
454 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
455 break;
456 }
457
458 if (i == SK_TIMEOUT) {
459 printf("%s: phy failed to come ready\n",
460 sc_if->sk_dev.dv_xname);
461 return;
462 }
463
464 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
465 for (i = 0; i < SK_TIMEOUT; i++) {
466 DELAY(1);
467 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
468 break;
469 }
470
471 if (i == SK_TIMEOUT)
472 printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
473 }
474
475 void
476 sk_xmac_miibus_statchg(struct device *dev)
477 {
478 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
479 struct mii_data *mii = &sc_if->sk_mii;
480
481 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
482
483 /*
484 * If this is a GMII PHY, manually set the XMAC's
485 * duplex mode accordingly.
486 */
487 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
488 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
489 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
490 } else {
491 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
492 }
493 }
494 }
495
496 int
497 sk_marv_miibus_readreg(dev, phy, reg)
498 struct device *dev;
499 int phy, reg;
500 {
501 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
502 u_int16_t val;
503 int i;
504
505 if (phy != 0 ||
506 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
507 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
508 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
509 phy, reg));
510 return(0);
511 }
512
513 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
514 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
515
516 for (i = 0; i < SK_TIMEOUT; i++) {
517 DELAY(1);
518 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
519 if (val & YU_SMICR_READ_VALID)
520 break;
521 }
522
523 if (i == SK_TIMEOUT) {
524 printf("%s: phy failed to come ready\n",
525 sc_if->sk_dev.dv_xname);
526 return 0;
527 }
528
529 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
530 SK_TIMEOUT));
531
532 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
533
534 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
535 phy, reg, val));
536
537 return val;
538 }
539
540 void
541 sk_marv_miibus_writereg(dev, phy, reg, val)
542 struct device *dev;
543 int phy, reg, val;
544 {
545 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
546 int i;
547
548 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
549 phy, reg, val));
550
551 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
552 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
553 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
554
555 for (i = 0; i < SK_TIMEOUT; i++) {
556 DELAY(1);
557 if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
558 break;
559 }
560 }
561
562 void
563 sk_marv_miibus_statchg(dev)
564 struct device *dev;
565 {
566 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
567 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
568 }
569
570 #define SK_BITS 6
571 #define SK_POLY 0xEDB88320
572
573 u_int32_t
574 sk_calchash(caddr_t addr)
575 {
576 u_int32_t crc;
577
578 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
579 crc = ~crc & ((1<< SK_BITS) - 1);
580 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
581 return (crc);
582 }
583
584 void
585 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
586 {
587 int base = XM_RXFILT_ENTRY(slot);
588
589 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
590 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
591 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
592 }
593
594 void
595 sk_setmulti(struct sk_if_softc *sc_if)
596 {
597 struct sk_softc *sc = sc_if->sk_softc;
598 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
599 u_int32_t hashes[2] = { 0, 0 };
600 int h, i;
601 struct ethercom *ec = &sc_if->sk_ethercom;
602 struct ether_multi *enm;
603 struct ether_multistep step;
604 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
605
606 /* First, zot all the existing filters. */
607 switch(sc->sk_type) {
608 case SK_GENESIS:
609 for (i = 1; i < XM_RXFILT_MAX; i++)
610 sk_setfilt(sc_if, (caddr_t)&dummy, i);
611
612 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
613 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
614 break;
615 case SK_YUKON:
616 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
617 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
618 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
619 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
620 break;
621 }
622
623 /* Now program new ones. */
624 allmulti:
625 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
626 hashes[0] = 0xFFFFFFFF;
627 hashes[1] = 0xFFFFFFFF;
628 } else {
629 i = 1;
630 /* First find the tail of the list. */
631 ETHER_FIRST_MULTI(step, ec, enm);
632 while (enm != NULL) {
633 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
634 ETHER_ADDR_LEN)) {
635 ifp->if_flags |= IFF_ALLMULTI;
636 goto allmulti;
637 }
638 DPRINTFN(2,("multicast address %s\n",
639 ether_sprintf(enm->enm_addrlo)));
640 /*
641 * Program the first XM_RXFILT_MAX multicast groups
642 * into the perfect filter. For all others,
643 * use the hash table.
644 */
645 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
646 sk_setfilt(sc_if, enm->enm_addrlo, i);
647 i++;
648 }
649 else {
650 h = sk_calchash(enm->enm_addrlo);
651 if (h < 32)
652 hashes[0] |= (1 << h);
653 else
654 hashes[1] |= (1 << (h - 32));
655 }
656
657 ETHER_NEXT_MULTI(step, enm);
658 }
659 }
660
661 switch(sc->sk_type) {
662 case SK_GENESIS:
663 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
664 XM_MODE_RX_USE_PERFECT);
665 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
666 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
667 break;
668 case SK_YUKON:
669 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
670 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
671 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
672 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
673 break;
674 }
675 }
676
677 int
678 sk_init_rx_ring(struct sk_if_softc *sc_if)
679 {
680 struct sk_chain_data *cd = &sc_if->sk_cdata;
681 struct sk_ring_data *rd = sc_if->sk_rdata;
682 int i;
683
684 bzero((char *)rd->sk_rx_ring,
685 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
686
687 for (i = 0; i < SK_RX_RING_CNT; i++) {
688 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
689 if (i == (SK_RX_RING_CNT - 1)) {
690 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
691 rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if, 0);
692 } else {
693 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
694 rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if,i+1);
695 }
696 }
697
698 for (i = 0; i < SK_RX_RING_CNT; i++) {
699 if (sk_newbuf(sc_if, i, NULL, NULL) == ENOBUFS) {
700 printf("%s: failed alloc of %dth mbuf\n",
701 sc_if->sk_dev.dv_xname, i);
702 return(ENOBUFS);
703 }
704 }
705 sc_if->sk_cdata.sk_rx_prod = 0;
706 sc_if->sk_cdata.sk_rx_cons = 0;
707
708 return(0);
709 }
710
711 int
712 sk_init_tx_ring(struct sk_if_softc *sc_if)
713 {
714 struct sk_chain_data *cd = &sc_if->sk_cdata;
715 struct sk_ring_data *rd = sc_if->sk_rdata;
716 int i;
717
718 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
719 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
720
721 for (i = 0; i < SK_TX_RING_CNT; i++) {
722 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
723 if (i == (SK_TX_RING_CNT - 1)) {
724 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
725 rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if, 0);
726 } else {
727 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
728 rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if,i+1);
729 }
730 }
731
732 sc_if->sk_cdata.sk_tx_prod = 0;
733 sc_if->sk_cdata.sk_tx_cons = 0;
734 sc_if->sk_cdata.sk_tx_cnt = 0;
735
736 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
737 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
738
739 return (0);
740 }
741
742 int
743 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
744 bus_dmamap_t dmamap)
745 {
746 struct sk_softc *sc = sc_if->sk_softc;
747 struct mbuf *m_new = NULL;
748 struct sk_chain *c;
749 struct sk_rx_desc *r;
750
751 if (dmamap == NULL) {
752 /* if (m) panic() */
753
754 if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1, MCLBYTES,
755 0, BUS_DMA_NOWAIT, &dmamap)) {
756 printf("%s: can't create recv map\n",
757 sc_if->sk_dev.dv_xname);
758 return(ENOMEM);
759 }
760 } else if (m == NULL)
761 bus_dmamap_unload(sc->sc_dmatag, dmamap);
762
763 sc_if->sk_cdata.sk_rx_map[i] = dmamap;
764
765 if (m == NULL) {
766 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
767 if (m_new == NULL) {
768 printf("%s: no memory for rx list -- "
769 "packet dropped!\n", sc_if->sk_dev.dv_xname);
770 return(ENOBUFS);
771 }
772
773 /* Allocate the jumbo buffer */
774 MCLGET(m_new, M_DONTWAIT);
775 if (!(m_new->m_flags & M_EXT)) {
776 m_freem(m_new);
777 return (ENOBUFS);
778 }
779
780 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
781
782 m_adj(m_new, ETHER_ALIGN);
783
784 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m_new,
785 BUS_DMA_NOWAIT))
786 return(ENOBUFS);
787 } else {
788 /*
789 * We're re-using a previously allocated mbuf;
790 * be sure to re-init pointers and lengths to
791 * default values.
792 */
793 m_new = m;
794 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
795 m_adj(m_new, ETHER_ALIGN);
796 m_new->m_data = m_new->m_ext.ext_buf;
797 }
798
799 c = &sc_if->sk_cdata.sk_rx_chain[i];
800 r = c->sk_desc;
801 c->sk_mbuf = m_new;
802 r->sk_data_lo = dmamap->dm_segs[0].ds_addr;
803 r->sk_ctl = dmamap->dm_segs[0].ds_len | SK_RXSTAT;
804
805 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
806
807 return(0);
808 }
809
810 /*
811 * Set media options.
812 */
813 int
814 sk_ifmedia_upd(struct ifnet *ifp)
815 {
816 struct sk_if_softc *sc_if = ifp->if_softc;
817
818 (void) sk_init(ifp);
819 mii_mediachg(&sc_if->sk_mii);
820 return(0);
821 }
822
823 /*
824 * Report current media status.
825 */
826 void
827 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
828 {
829 struct sk_if_softc *sc_if = ifp->if_softc;
830
831 mii_pollstat(&sc_if->sk_mii);
832 ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
833 ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
834 }
835
836 int
837 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
838 {
839 struct sk_if_softc *sc_if = ifp->if_softc;
840 struct sk_softc *sc = sc_if->sk_softc;
841 struct ifreq *ifr = (struct ifreq *) data;
842 /* struct ifaddr *ifa = (struct ifaddr *) data; */
843 struct mii_data *mii;
844 int s, error = 0;
845
846 /* DPRINTFN(2, ("sk_ioctl\n")); */
847
848 s = splnet();
849
850 switch(command) {
851
852 case SIOCSIFFLAGS:
853 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
854 if (ifp->if_flags & IFF_UP) {
855 if (ifp->if_flags & IFF_RUNNING &&
856 ifp->if_flags & IFF_PROMISC &&
857 !(sc_if->sk_if_flags & IFF_PROMISC)) {
858 switch(sc->sk_type) {
859 case SK_GENESIS:
860 SK_XM_SETBIT_4(sc_if, XM_MODE,
861 XM_MODE_RX_PROMISC);
862 break;
863 case SK_YUKON:
864 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
865 YU_RCR_UFLEN | YU_RCR_MUFLEN);
866 break;
867 }
868 sk_setmulti(sc_if);
869 } else if (ifp->if_flags & IFF_RUNNING &&
870 !(ifp->if_flags & IFF_PROMISC) &&
871 sc_if->sk_if_flags & IFF_PROMISC) {
872 switch(sc->sk_type) {
873 case SK_GENESIS:
874 SK_XM_CLRBIT_4(sc_if, XM_MODE,
875 XM_MODE_RX_PROMISC);
876 break;
877 case SK_YUKON:
878 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
879 YU_RCR_UFLEN | YU_RCR_MUFLEN);
880 break;
881 }
882
883 sk_setmulti(sc_if);
884 } else
885 (void) sk_init(ifp);
886 } else {
887 if (ifp->if_flags & IFF_RUNNING)
888 sk_stop(ifp,0);
889 }
890 sc_if->sk_if_flags = ifp->if_flags;
891 error = 0;
892 break;
893
894 case SIOCGIFMEDIA:
895 case SIOCSIFMEDIA:
896 DPRINTFN(2, ("sk_ioctl MEDIA\n"));
897 mii = &sc_if->sk_mii;
898 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
899 break;
900 default:
901 DPRINTFN(2, ("sk_ioctl ETHER\n"));
902 error = ether_ioctl(ifp, command, data);
903
904 if ( error == ENETRESET) {
905 sk_setmulti(sc_if);
906 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
907 error = 0;
908 } else if ( error ) {
909 splx(s);
910 return error;
911 }
912 break;
913 }
914
915 splx(s);
916 return(error);
917 }
918
919 /*
920 * Lookup: Check the PCI vendor and device, and return a pointer to
921 * The structure if the IDs match against our list.
922 */
923
924 static const struct sk_product *
925 sk_lookup(const struct pci_attach_args *pa)
926 {
927 const struct sk_product *psk;
928
929 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
930 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
931 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
932 return (psk);
933 }
934 return (NULL);
935 }
936
937 /*
938 * Probe for a SysKonnect GEnesis chip.
939 */
940
941 int
942 skc_probe(struct device *parent, struct cfdata *match, void *aux)
943 {
944 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
945 const struct sk_product *psk;
946
947 if ((psk = sk_lookup(pa))) {
948 return(1);
949 }
950 return(0);
951 }
952
953 /*
954 * Force the GEnesis into reset, then bring it out of reset.
955 */
956 void sk_reset(struct sk_softc *sc)
957 {
958 DPRINTFN(2, ("sk_reset\n"));
959
960 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
961 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
962 if (sc->sk_type == SK_YUKON)
963 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
964
965 DELAY(1000);
966 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
967 DELAY(2);
968 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
969 if (sc->sk_type == SK_YUKON)
970 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
971
972 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
973 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
974 CSR_READ_2(sc, SK_LINK_CTRL)));
975
976 if (sc->sk_type == SK_GENESIS) {
977 /* Configure packet arbiter */
978 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
979 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
980 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
981 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
982 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
983 }
984
985 /* Enable RAM interface */
986 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
987
988 /*
989 * Configure interrupt moderation. The moderation timer
990 * defers interrupts specified in the interrupt moderation
991 * timer mask based on the timeout specified in the interrupt
992 * moderation timer init register. Each bit in the timer
993 * register represents 18.825ns, so to specify a timeout in
994 * microseconds, we have to multiply by 54.
995 */
996 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
997 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
998 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
999 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1000 }
1001
1002 int
1003 sk_probe(struct device *parent, struct cfdata *match, void *aux)
1004 {
1005 struct skc_attach_args *sa = aux;
1006
1007 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1008 return(0);
1009
1010 return (1);
1011 }
1012
1013 /*
1014 * Each XMAC chip is attached as a separate logical IP interface.
1015 * Single port cards will have only one logical interface of course.
1016 */
1017 void
1018 sk_attach(struct device *parent, struct device *self, void *aux)
1019 {
1020 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1021 struct sk_softc *sc = (struct sk_softc *)parent;
1022 struct skc_attach_args *sa = aux;
1023 struct sk_txmap_entry *entry;
1024 struct ifnet *ifp;
1025 bus_dma_segment_t seg;
1026 bus_dmamap_t dmamap;
1027 caddr_t kva;
1028 int i, rseg;
1029
1030 sc_if->sk_port = sa->skc_port;
1031 sc_if->sk_softc = sc;
1032 sc->sk_if[sa->skc_port] = sc_if;
1033
1034 if (sa->skc_port == SK_PORT_A)
1035 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1036 if (sa->skc_port == SK_PORT_B)
1037 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1038
1039 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1040
1041 /*
1042 * Get station address for this interface. Note that
1043 * dual port cards actually come with three station
1044 * addresses: one for each port, plus an extra. The
1045 * extra one is used by the SysKonnect driver software
1046 * as a 'virtual' station address for when both ports
1047 * are operating in failover mode. Currently we don't
1048 * use this extra address.
1049 */
1050 for (i = 0; i < ETHER_ADDR_LEN; i++)
1051 sc_if->sk_enaddr[i] =
1052 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1053
1054
1055 aprint_normal(": Ethernet address %s\n",
1056 ether_sprintf(sc_if->sk_enaddr));
1057
1058 /*
1059 * Set up RAM buffer addresses. The NIC will have a certain
1060 * amount of SRAM on it, somewhere between 512K and 2MB. We
1061 * need to divide this up a) between the transmitter and
1062 * receiver and b) between the two XMACs, if this is a
1063 * dual port NIC. Our algotithm is to divide up the memory
1064 * evenly so that everyone gets a fair share.
1065 */
1066 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1067 u_int32_t chunk, val;
1068
1069 chunk = sc->sk_ramsize / 2;
1070 val = sc->sk_rboff / sizeof(u_int64_t);
1071 sc_if->sk_rx_ramstart = val;
1072 val += (chunk / sizeof(u_int64_t));
1073 sc_if->sk_rx_ramend = val - 1;
1074 sc_if->sk_tx_ramstart = val;
1075 val += (chunk / sizeof(u_int64_t));
1076 sc_if->sk_tx_ramend = val - 1;
1077 } else {
1078 u_int32_t chunk, val;
1079
1080 chunk = sc->sk_ramsize / 4;
1081 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1082 sizeof(u_int64_t);
1083 sc_if->sk_rx_ramstart = val;
1084 val += (chunk / sizeof(u_int64_t));
1085 sc_if->sk_rx_ramend = val - 1;
1086 sc_if->sk_tx_ramstart = val;
1087 val += (chunk / sizeof(u_int64_t));
1088 sc_if->sk_tx_ramend = val - 1;
1089 }
1090
1091 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1092 " tx_ramstart=%#x tx_ramend=%#x\n",
1093 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1094 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1095
1096 /* Read and save PHY type and set PHY address */
1097 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1098 switch (sc_if->sk_phytype) {
1099 case SK_PHYTYPE_XMAC:
1100 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1101 break;
1102 case SK_PHYTYPE_BCOM:
1103 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1104 break;
1105 case SK_PHYTYPE_MARV_COPPER:
1106 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1107 break;
1108 default:
1109 aprint_error("%s: unsupported PHY type: %d\n",
1110 sc->sk_dev.dv_xname, sc_if->sk_phytype);
1111 return;
1112 }
1113
1114 /* Allocate the descriptor queues. */
1115 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1116 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1117 aprint_error("%s: can't alloc rx buffers\n",
1118 sc->sk_dev.dv_xname);
1119 goto fail;
1120 }
1121 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1122 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1123 aprint_error("%s: can't map dma buffers (%lu bytes)\n",
1124 sc_if->sk_dev.dv_xname,
1125 (u_long) sizeof(struct sk_ring_data));
1126 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1127 goto fail;
1128 }
1129 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1130 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1131 &sc_if->sk_ring_map)) {
1132 aprint_error("%s: can't create dma map\n",
1133 sc_if->sk_dev.dv_xname);
1134 bus_dmamem_unmap(sc->sc_dmatag, kva,
1135 sizeof(struct sk_ring_data));
1136 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1137 goto fail;
1138 }
1139 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1140 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1141 aprint_error("%s: can't load dma map\n",
1142 sc_if->sk_dev.dv_xname);
1143 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1144 bus_dmamem_unmap(sc->sc_dmatag, kva,
1145 sizeof(struct sk_ring_data));
1146 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1147 goto fail;
1148 }
1149
1150 for (i = 0; i < SK_RX_RING_CNT; i++)
1151 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1152
1153 SLIST_INIT(&sc_if->sk_txmap_listhead);
1154 for (i = 0; i < SK_TX_RING_CNT; i++) {
1155 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1156
1157 if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, SK_NTXSEG,
1158 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap)) {
1159 aprint_error("%s: Can't create TX dmamap\n",
1160 sc_if->sk_dev.dv_xname);
1161 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1162 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1163 bus_dmamem_unmap(sc->sc_dmatag, kva,
1164 sizeof(struct sk_ring_data));
1165 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1166 goto fail;
1167 }
1168
1169 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1170 if (!entry) {
1171 aprint_error("%s: Can't alloc txmap entry\n",
1172 sc_if->sk_dev.dv_xname);
1173 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1174 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1175 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1176 bus_dmamem_unmap(sc->sc_dmatag, kva,
1177 sizeof(struct sk_ring_data));
1178 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1179 goto fail;
1180 }
1181 entry->dmamap = dmamap;
1182 SLIST_INSERT_HEAD(&sc_if->sk_txmap_listhead, entry, link);
1183 }
1184
1185 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1186 bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1187
1188 /* XXX TLS It's not clear what's wrong with the Jumbo MTU
1189 XXX TLS support in this driver, so we don't enable it. */
1190
1191 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1192
1193 ifp = &sc_if->sk_ethercom.ec_if;
1194 ifp->if_softc = sc_if;
1195 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1196 ifp->if_ioctl = sk_ioctl;
1197 ifp->if_start = sk_start;
1198 ifp->if_stop = sk_stop;
1199 ifp->if_init = sk_init;
1200 ifp->if_watchdog = sk_watchdog;
1201 ifp->if_capabilities = 0;
1202 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1203 IFQ_SET_READY(&ifp->if_snd);
1204 strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1205
1206 /*
1207 * Do miibus setup.
1208 */
1209 switch (sc->sk_type) {
1210 case SK_GENESIS:
1211 sk_init_xmac(sc_if);
1212 break;
1213 case SK_YUKON:
1214 sk_init_yukon(sc_if);
1215 break;
1216 default:
1217 panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
1218 sc->sk_type);
1219 }
1220
1221 DPRINTFN(2, ("sk_attach: 1\n"));
1222
1223 sc_if->sk_mii.mii_ifp = ifp;
1224 switch (sc->sk_type) {
1225 case SK_GENESIS:
1226 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1227 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1228 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1229 break;
1230 case SK_YUKON:
1231 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1232 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1233 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1234 break;
1235 }
1236
1237 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1238 sk_ifmedia_upd, sk_ifmedia_sts);
1239 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1240 MII_OFFSET_ANY, 0);
1241 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1242 printf("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1243 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1244 0, NULL);
1245 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1246 }
1247 else
1248 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1249
1250 callout_init(&sc_if->sk_tick_ch);
1251 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1252
1253 DPRINTFN(2, ("sk_attach: 1\n"));
1254
1255 /*
1256 * Call MI attach routines.
1257 */
1258 if_attach(ifp);
1259
1260 ether_ifattach(ifp, sc_if->sk_enaddr);
1261
1262 #if NRND > 0
1263 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1264 RND_TYPE_NET, 0);
1265 #endif
1266
1267 DPRINTFN(2, ("sk_attach: end\n"));
1268
1269 return;
1270
1271 fail:
1272 sc->sk_if[sa->skc_port] = NULL;
1273 }
1274
1275 int
1276 skcprint(void *aux, const char *pnp)
1277 {
1278 struct skc_attach_args *sa = aux;
1279
1280 if (pnp)
1281 aprint_normal("sk port %c at %s",
1282 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1283 else
1284 aprint_normal(" port %c",
1285 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1286 return (UNCONF);
1287 }
1288
1289 /*
1290 * Attach the interface. Allocate softc structures, do ifmedia
1291 * setup and ethernet/BPF attach.
1292 */
1293 void
1294 skc_attach(struct device *parent, struct device *self, void *aux)
1295 {
1296 struct sk_softc *sc = (struct sk_softc *)self;
1297 struct pci_attach_args *pa = aux;
1298 struct skc_attach_args skca;
1299 pci_chipset_tag_t pc = pa->pa_pc;
1300 pcireg_t memtype;
1301 pci_intr_handle_t ih;
1302 const char *intrstr = NULL;
1303 bus_addr_t iobase;
1304 bus_size_t iosize;
1305 int s;
1306 u_int32_t command;
1307
1308 DPRINTFN(2, ("begin skc_attach\n"));
1309
1310 s = splnet();
1311
1312 /*
1313 * Handle power management nonsense.
1314 */
1315 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1316
1317 if (command == 0x01) {
1318 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1319 if (command & SK_PSTATE_MASK) {
1320 u_int32_t iobase, membase, irq;
1321
1322 /* Save important PCI config data. */
1323 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1324 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1325 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1326
1327 /* Reset the power state. */
1328 aprint_normal("%s chip is in D%d power mode "
1329 "-- setting to D0\n", sc->sk_dev.dv_xname,
1330 command & SK_PSTATE_MASK);
1331 command &= 0xFFFFFFFC;
1332 pci_conf_write(pc, pa->pa_tag,
1333 SK_PCI_PWRMGMTCTRL, command);
1334
1335 /* Restore PCI config data. */
1336 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1337 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1338 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1339 }
1340 }
1341
1342 /*
1343 * Map control/status registers.
1344 */
1345 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1346 command |= PCI_COMMAND_IO_ENABLE |
1347 PCI_COMMAND_MEM_ENABLE |
1348 PCI_COMMAND_MASTER_ENABLE;
1349 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1350 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1351
1352 switch (PCI_PRODUCT(pa->pa_id)) {
1353 case PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE:
1354 sc->sk_type = SK_GENESIS;
1355 break;
1356 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1357 case PCI_PRODUCT_3COM_3C940:
1358 case PCI_PRODUCT_DLINK_DGE530T:
1359 case PCI_PRODUCT_LINKSYS_EG1032:
1360 case PCI_PRODUCT_LINKSYS_EG1064:
1361 sc->sk_type = SK_YUKON;
1362 break;
1363 default:
1364 aprint_error(": unknown device!\n");
1365 goto fail;
1366 }
1367
1368 #ifdef SK_USEIOSPACE
1369 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1370 aprint_error(": failed to enable I/O ports!\n");
1371 goto fail;
1372 }
1373 /*
1374 * Map control/status registers.
1375 */
1376 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1377 &iobase, &iosize)) {
1378 aprint_error(": can't find i/o space\n");
1379 goto fail;
1380 }
1381 #else
1382 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1383 aprint_error(": failed to enable memory mapping!\n");
1384 goto fail;
1385 }
1386 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1387 switch (memtype) {
1388 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1389 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1390 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1391 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1392 &iobase, &iosize) == 0)
1393 break;
1394 default:
1395 aprint_error("%s: can't find mem space\n",
1396 sc->sk_dev.dv_xname);
1397 return;
1398 }
1399
1400 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1401 #endif
1402 sc->sc_dmatag = pa->pa_dmat;
1403
1404 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1405
1406 /* Allocate interrupt */
1407 if (pci_intr_map(pa, &ih)) {
1408 aprint_error(": couldn't map interrupt\n");
1409 goto fail;
1410 }
1411
1412 intrstr = pci_intr_string(pc, ih);
1413 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1414 if (sc->sk_intrhand == NULL) {
1415 aprint_error(": couldn't establish interrupt");
1416 if (intrstr != NULL)
1417 aprint_normal(" at %s", intrstr);
1418 goto fail;
1419 }
1420 aprint_normal(": %s\n", intrstr);
1421
1422 /* Reset the adapter. */
1423 sk_reset(sc);
1424
1425 /* Read and save vital product data from EEPROM. */
1426 sk_vpd_read(sc);
1427
1428 if (sc->sk_type == SK_GENESIS) {
1429 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1430 /* Read and save RAM size and RAMbuffer offset */
1431 switch(val) {
1432 case SK_RAMSIZE_512K_64:
1433 sc->sk_ramsize = 0x80000;
1434 sc->sk_rboff = SK_RBOFF_0;
1435 break;
1436 case SK_RAMSIZE_1024K_64:
1437 sc->sk_ramsize = 0x100000;
1438 sc->sk_rboff = SK_RBOFF_80000;
1439 break;
1440 case SK_RAMSIZE_1024K_128:
1441 sc->sk_ramsize = 0x100000;
1442 sc->sk_rboff = SK_RBOFF_0;
1443 break;
1444 case SK_RAMSIZE_2048K_128:
1445 sc->sk_ramsize = 0x200000;
1446 sc->sk_rboff = SK_RBOFF_0;
1447 break;
1448 default:
1449 aprint_error("%s: unknown ram size: %d\n",
1450 sc->sk_dev.dv_xname, val);
1451 goto fail;
1452 break;
1453 }
1454
1455 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1456 sc->sk_ramsize, sc->sk_ramsize / 1024,
1457 sc->sk_rboff));
1458 } else {
1459 sc->sk_ramsize = 0x20000;
1460 sc->sk_rboff = SK_RBOFF_0;
1461
1462 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1463 sc->sk_ramsize / 1024, sc->sk_ramsize,
1464 sc->sk_rboff));
1465 }
1466
1467 /* Read and save physical media type */
1468 switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1469 case SK_PMD_1000BASESX:
1470 sc->sk_pmd = IFM_1000_SX;
1471 break;
1472 case SK_PMD_1000BASELX:
1473 sc->sk_pmd = IFM_1000_LX;
1474 break;
1475 case SK_PMD_1000BASECX:
1476 sc->sk_pmd = IFM_1000_CX;
1477 break;
1478 case SK_PMD_1000BASETX:
1479 sc->sk_pmd = IFM_1000_T;
1480 break;
1481 default:
1482 aprint_error("%s: unknown media type: 0x%x\n",
1483 sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
1484 goto fail;
1485 }
1486
1487 /* Announce the product name. */
1488 aprint_normal("%s: %s\n", sc->sk_dev.dv_xname, sc->sk_vpd_prodname);
1489
1490 skca.skc_port = SK_PORT_A;
1491 (void)config_found(&sc->sk_dev, &skca, skcprint);
1492
1493 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1494 skca.skc_port = SK_PORT_B;
1495 (void)config_found(&sc->sk_dev, &skca, skcprint);
1496 }
1497
1498 /* Turn on the 'driver is loaded' LED. */
1499 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1500
1501 fail:
1502 splx(s);
1503 }
1504
1505 int
1506 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1507 {
1508 struct sk_softc *sc = sc_if->sk_softc;
1509 struct sk_tx_desc *f = NULL;
1510 u_int32_t frag, cur, cnt = 0;
1511 int i;
1512 struct sk_txmap_entry *entry;
1513 bus_dmamap_t txmap;
1514
1515 DPRINTFN(3, ("sk_encap\n"));
1516
1517 entry = SLIST_FIRST(&sc_if->sk_txmap_listhead);
1518 if (entry == NULL) {
1519 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1520 return ENOBUFS;
1521 }
1522 txmap = entry->dmamap;
1523
1524 cur = frag = *txidx;
1525
1526 #ifdef SK_DEBUG
1527 if (skdebug >= 3)
1528 sk_dump_mbuf(m_head);
1529 #endif
1530
1531 /*
1532 * Start packing the mbufs in this chain into
1533 * the fragment pointers. Stop when we run out
1534 * of fragments or hit the end of the mbuf chain.
1535 */
1536 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1537 BUS_DMA_NOWAIT)) {
1538 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1539 return(ENOBUFS);
1540 }
1541
1542 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1543
1544 /* Sync the DMA map. */
1545 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1546 BUS_DMASYNC_PREWRITE);
1547
1548 for (i = 0; i < txmap->dm_nsegs; i++) {
1549 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1550 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1551 return(ENOBUFS);
1552 }
1553 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1554 f->sk_data_lo = txmap->dm_segs[i].ds_addr;
1555 f->sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1556 if (cnt == 0)
1557 f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1558 else
1559 f->sk_ctl |= SK_TXCTL_OWN;
1560
1561 cur = frag;
1562 SK_INC(frag, SK_TX_RING_CNT);
1563 cnt++;
1564 }
1565
1566 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1567 SLIST_REMOVE_HEAD(&sc_if->sk_txmap_listhead, link);
1568 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1569 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1570 SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1571
1572 /* Sync descriptors before handing to chip */
1573 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1574 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1575
1576 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1577
1578 /* Sync first descriptor to hand it off */
1579 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1580
1581 sc_if->sk_cdata.sk_tx_cnt += cnt;
1582
1583 #ifdef SK_DEBUG
1584 if (skdebug >= 3) {
1585 struct sk_tx_desc *desc;
1586 u_int32_t idx;
1587 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1588 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1589 sk_dump_txdesc(desc, idx);
1590 }
1591 }
1592 #endif
1593
1594 *txidx = frag;
1595
1596 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1597
1598 return(0);
1599 }
1600
1601 void
1602 sk_start(struct ifnet *ifp)
1603 {
1604 struct sk_if_softc *sc_if = ifp->if_softc;
1605 struct sk_softc *sc = sc_if->sk_softc;
1606 struct mbuf *m_head = NULL;
1607 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1608 int pkts = 0;
1609
1610 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1611 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1612
1613 while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1614
1615 IFQ_POLL(&ifp->if_snd, m_head);
1616 if (m_head == NULL)
1617 break;
1618
1619 /*
1620 * Pack the data into the transmit ring. If we
1621 * don't have room, set the OACTIVE flag and wait
1622 * for the NIC to drain the ring.
1623 */
1624 if (sk_encap(sc_if, m_head, &idx)) {
1625 ifp->if_flags |= IFF_OACTIVE;
1626 break;
1627 }
1628
1629 /* now we are committed to transmit the packet */
1630 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1631 pkts++;
1632
1633 /*
1634 * If there's a BPF listener, bounce a copy of this frame
1635 * to him.
1636 */
1637 #if NBPFILTER > 0
1638 if (ifp->if_bpf)
1639 bpf_mtap(ifp->if_bpf, m_head);
1640 #endif
1641 }
1642 if (pkts == 0)
1643 return;
1644
1645 /* Transmit */
1646 sc_if->sk_cdata.sk_tx_prod = idx;
1647 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1648
1649 /* Set a timeout in case the chip goes out to lunch. */
1650 ifp->if_timer = 5;
1651 }
1652
1653
1654 void
1655 sk_watchdog(struct ifnet *ifp)
1656 {
1657 struct sk_if_softc *sc_if = ifp->if_softc;
1658
1659 printf("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1660 (void) sk_init(ifp);
1661 }
1662
1663 void
1664 sk_shutdown(void * v)
1665 {
1666 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
1667 struct sk_softc *sc = sc_if->sk_softc;
1668 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1669
1670 DPRINTFN(2, ("sk_shutdown\n"));
1671 sk_stop(ifp,1);
1672
1673 /* Turn off the 'driver is loaded' LED. */
1674 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1675
1676 /*
1677 * Reset the GEnesis controller. Doing this should also
1678 * assert the resets on the attached XMAC(s).
1679 */
1680 sk_reset(sc);
1681 }
1682
1683 void
1684 sk_rxeof(struct sk_if_softc *sc_if)
1685 {
1686 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1687 struct mbuf *m;
1688 struct sk_chain *cur_rx;
1689 struct sk_rx_desc *cur_desc;
1690 int i, cur, total_len = 0;
1691 u_int32_t rxstat;
1692 bus_dmamap_t dmamap;
1693
1694 i = sc_if->sk_cdata.sk_rx_prod;
1695
1696 DPRINTFN(3, ("sk_rxeof %d\n", i));
1697
1698 for (;;) {
1699 cur = i;
1700
1701 /* Sync the descriptor */
1702 SK_CDRXSYNC(sc_if, cur,
1703 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1704
1705 if (sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl & SK_RXCTL_OWN) {
1706 /* Invalidate the descriptor -- it's not ready yet */
1707 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
1708 sc_if->sk_cdata.sk_rx_prod = i;
1709 break;
1710 }
1711
1712 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1713 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
1714 dmamap = sc_if->sk_cdata.sk_rx_map[cur];
1715
1716 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1717 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1718
1719 rxstat = cur_desc->sk_xmac_rxstat;
1720 m = cur_rx->sk_mbuf;
1721 cur_rx->sk_mbuf = NULL;
1722 total_len = SK_RXBYTES(cur_desc->sk_ctl);
1723
1724 sc_if->sk_cdata.sk_rx_map[cur] = 0;
1725
1726 SK_INC(i, SK_RX_RING_CNT);
1727
1728 if (rxstat & XM_RXSTAT_ERRFRAME) {
1729 ifp->if_ierrors++;
1730 sk_newbuf(sc_if, cur, m, dmamap);
1731 continue;
1732 }
1733
1734 /*
1735 * Try to allocate a new jumbo buffer. If that
1736 * fails, copy the packet to mbufs and put the
1737 * jumbo buffer back in the ring so it can be
1738 * re-used. If allocating mbufs fails, then we
1739 * have to drop the packet.
1740 */
1741 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1742 struct mbuf *m0;
1743 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1744 total_len + ETHER_ALIGN, 0, ifp, NULL);
1745 sk_newbuf(sc_if, cur, m, dmamap);
1746 if (m0 == NULL) {
1747 printf("%s: no receive buffers "
1748 "available -- packet dropped!\n",
1749 sc_if->sk_dev.dv_xname);
1750 ifp->if_ierrors++;
1751 continue;
1752 }
1753 m_adj(m0, ETHER_ALIGN);
1754 m = m0;
1755 } else {
1756 m->m_pkthdr.rcvif = ifp;
1757 m->m_pkthdr.len = m->m_len = total_len;
1758 }
1759
1760 ifp->if_ipackets++;
1761
1762 #if NBPFILTER > 0
1763 if (ifp->if_bpf)
1764 bpf_mtap(ifp->if_bpf, m);
1765 #endif
1766 /* pass it on. */
1767 (*ifp->if_input)(ifp, m);
1768 }
1769 }
1770
1771 void
1772 sk_txeof(struct sk_if_softc *sc_if)
1773 {
1774 struct sk_softc *sc = sc_if->sk_softc;
1775 struct sk_tx_desc *cur_tx = NULL;
1776 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1777 u_int32_t idx;
1778 struct sk_txmap_entry *entry;
1779
1780 DPRINTFN(3, ("sk_txeof\n"));
1781
1782 /*
1783 * Go through our tx ring and free mbufs for those
1784 * frames that have been sent.
1785 */
1786 idx = sc_if->sk_cdata.sk_tx_cons;
1787 while(idx != sc_if->sk_cdata.sk_tx_prod) {
1788 SK_CDTXSYNC(sc_if, idx, 1,
1789 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1790
1791 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1792 #ifdef SK_DEBUG
1793 if (skdebug >= 3)
1794 sk_dump_txdesc(cur_tx, idx);
1795 #endif
1796 if (cur_tx->sk_ctl & SK_TXCTL_OWN) {
1797 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
1798 break;
1799 }
1800 if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
1801 ifp->if_opackets++;
1802 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1803 entry = sc_if->sk_cdata.sk_tx_map[idx];
1804
1805 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1806 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1807
1808 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1809 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1810
1811 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1812 SLIST_INSERT_HEAD(&sc_if->sk_txmap_listhead, entry,
1813 link);
1814 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
1815 }
1816 sc_if->sk_cdata.sk_tx_cnt--;
1817 SK_INC(idx, SK_TX_RING_CNT);
1818 }
1819 if (sc_if->sk_cdata.sk_tx_cnt == 0)
1820 ifp->if_timer = 0;
1821
1822 sc_if->sk_cdata.sk_tx_cons = idx;
1823
1824 if (cur_tx != NULL)
1825 ifp->if_flags &= ~IFF_OACTIVE;
1826 }
1827
1828 void
1829 sk_tick(void *xsc_if)
1830 {
1831 struct sk_if_softc *sc_if = xsc_if;
1832 struct mii_data *mii = &sc_if->sk_mii;
1833 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1834 int i;
1835
1836 DPRINTFN(3, ("sk_tick\n"));
1837
1838 if (!(ifp->if_flags & IFF_UP))
1839 return;
1840
1841 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
1842 sk_intr_bcom(sc_if);
1843 return;
1844 }
1845
1846 /*
1847 * According to SysKonnect, the correct way to verify that
1848 * the link has come back up is to poll bit 0 of the GPIO
1849 * register three times. This pin has the signal from the
1850 * link sync pin connected to it; if we read the same link
1851 * state 3 times in a row, we know the link is up.
1852 */
1853 for (i = 0; i < 3; i++) {
1854 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
1855 break;
1856 }
1857
1858 if (i != 3) {
1859 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1860 return;
1861 }
1862
1863 /* Turn the GP0 interrupt back on. */
1864 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1865 SK_XM_READ_2(sc_if, XM_ISR);
1866 mii_tick(mii);
1867 mii_pollstat(mii);
1868 callout_stop(&sc_if->sk_tick_ch);
1869 }
1870
1871 void
1872 sk_intr_bcom(struct sk_if_softc *sc_if)
1873 {
1874 struct mii_data *mii = &sc_if->sk_mii;
1875 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1876 int status;
1877
1878
1879 DPRINTFN(3, ("sk_intr_bcom\n"));
1880
1881 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1882
1883 /*
1884 * Read the PHY interrupt register to make sure
1885 * we clear any pending interrupts.
1886 */
1887 status = sk_xmac_miibus_readreg((struct device *)sc_if,
1888 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
1889
1890 if (!(ifp->if_flags & IFF_RUNNING)) {
1891 sk_init_xmac(sc_if);
1892 return;
1893 }
1894
1895 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
1896 int lstat;
1897 lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
1898 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
1899
1900 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
1901 mii_mediachg(mii);
1902 /* Turn off the link LED. */
1903 SK_IF_WRITE_1(sc_if, 0,
1904 SK_LINKLED1_CTL, SK_LINKLED_OFF);
1905 sc_if->sk_link = 0;
1906 } else if (status & BRGPHY_ISR_LNK_CHG) {
1907 sk_xmac_miibus_writereg((struct device *)sc_if,
1908 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
1909 mii_tick(mii);
1910 sc_if->sk_link = 1;
1911 /* Turn on the link LED. */
1912 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
1913 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
1914 SK_LINKLED_BLINK_OFF);
1915 mii_pollstat(mii);
1916 } else {
1917 mii_tick(mii);
1918 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
1919 }
1920 }
1921
1922 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1923 }
1924
1925 void
1926 sk_intr_xmac(struct sk_if_softc *sc_if)
1927 {
1928 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
1929
1930 DPRINTFN(3, ("sk_intr_xmac\n"));
1931
1932 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
1933 if (status & XM_ISR_GP0_SET) {
1934 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1935 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1936 }
1937
1938 if (status & XM_ISR_AUTONEG_DONE) {
1939 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1940 }
1941 }
1942
1943 if (status & XM_IMR_TX_UNDERRUN)
1944 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
1945
1946 if (status & XM_IMR_RX_OVERRUN)
1947 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
1948 }
1949
1950 void
1951 sk_intr_yukon(sc_if)
1952 struct sk_if_softc *sc_if;
1953 {
1954 int status;
1955
1956 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
1957
1958 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
1959 }
1960
1961 int
1962 sk_intr(void *xsc)
1963 {
1964 struct sk_softc *sc = xsc;
1965 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
1966 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
1967 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
1968 u_int32_t status;
1969 int claimed = 0;
1970
1971 if (sc_if0 != NULL)
1972 ifp0 = &sc_if0->sk_ethercom.ec_if;
1973 if (sc_if1 != NULL)
1974 ifp1 = &sc_if1->sk_ethercom.ec_if;
1975
1976 for (;;) {
1977 status = CSR_READ_4(sc, SK_ISSR);
1978 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
1979
1980 if (!(status & sc->sk_intrmask))
1981 break;
1982
1983 claimed = 1;
1984
1985 /* Handle receive interrupts first. */
1986 if (status & SK_ISR_RX1_EOF) {
1987 sk_rxeof(sc_if0);
1988 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
1989 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1990 }
1991 if (status & SK_ISR_RX2_EOF) {
1992 sk_rxeof(sc_if1);
1993 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
1994 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1995 }
1996
1997 /* Then transmit interrupts. */
1998 if (status & SK_ISR_TX1_S_EOF) {
1999 sk_txeof(sc_if0);
2000 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2001 SK_TXBMU_CLR_IRQ_EOF);
2002 }
2003 if (status & SK_ISR_TX2_S_EOF) {
2004 sk_txeof(sc_if1);
2005 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2006 SK_TXBMU_CLR_IRQ_EOF);
2007 }
2008
2009 /* Then MAC interrupts. */
2010 if (status & SK_ISR_MAC1 && (ifp0->if_flags & IFF_RUNNING)) {
2011 if (sc->sk_type == SK_GENESIS)
2012 sk_intr_xmac(sc_if0);
2013 else
2014 sk_intr_yukon(sc_if0);
2015 }
2016
2017 if (status & SK_ISR_MAC2 && (ifp1->if_flags & IFF_RUNNING)) {
2018 if (sc->sk_type == SK_GENESIS)
2019 sk_intr_xmac(sc_if1);
2020 else
2021 sk_intr_yukon(sc_if1);
2022
2023 }
2024
2025 if (status & SK_ISR_EXTERNAL_REG) {
2026 if (ifp0 != NULL &&
2027 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2028 sk_intr_bcom(sc_if0);
2029
2030 if (ifp1 != NULL &&
2031 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2032 sk_intr_bcom(sc_if1);
2033 }
2034 }
2035
2036 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2037
2038 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2039 sk_start(ifp0);
2040 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2041 sk_start(ifp1);
2042
2043 return (claimed);
2044 }
2045
2046 void
2047 sk_init_xmac(struct sk_if_softc *sc_if)
2048 {
2049 struct sk_softc *sc = sc_if->sk_softc;
2050 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2051 static const struct sk_bcom_hack bhack[] = {
2052 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2053 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2054 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2055 { 0, 0 } };
2056
2057 DPRINTFN(1, ("sk_init_xmac\n"));
2058
2059 /* Unreset the XMAC. */
2060 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2061 DELAY(1000);
2062
2063 /* Reset the XMAC's internal state. */
2064 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2065
2066 /* Save the XMAC II revision */
2067 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2068
2069 /*
2070 * Perform additional initialization for external PHYs,
2071 * namely for the 1000baseTX cards that use the XMAC's
2072 * GMII mode.
2073 */
2074 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2075 int i = 0;
2076 u_int32_t val;
2077
2078 /* Take PHY out of reset. */
2079 val = sk_win_read_4(sc, SK_GPIO);
2080 if (sc_if->sk_port == SK_PORT_A)
2081 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2082 else
2083 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2084 sk_win_write_4(sc, SK_GPIO, val);
2085
2086 /* Enable GMII mode on the XMAC. */
2087 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2088
2089 sk_xmac_miibus_writereg((struct device *)sc_if,
2090 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2091 DELAY(10000);
2092 sk_xmac_miibus_writereg((struct device *)sc_if,
2093 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2094
2095 /*
2096 * Early versions of the BCM5400 apparently have
2097 * a bug that requires them to have their reserved
2098 * registers initialized to some magic values. I don't
2099 * know what the numbers do, I'm just the messenger.
2100 */
2101 if (sk_xmac_miibus_readreg((struct device *)sc_if,
2102 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2103 while(bhack[i].reg) {
2104 sk_xmac_miibus_writereg((struct device *)sc_if,
2105 SK_PHYADDR_BCOM, bhack[i].reg,
2106 bhack[i].val);
2107 i++;
2108 }
2109 }
2110 }
2111
2112 /* Set station address */
2113 SK_XM_WRITE_2(sc_if, XM_PAR0,
2114 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2115 SK_XM_WRITE_2(sc_if, XM_PAR1,
2116 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2117 SK_XM_WRITE_2(sc_if, XM_PAR2,
2118 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2119 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2120
2121 if (ifp->if_flags & IFF_PROMISC) {
2122 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2123 } else {
2124 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2125 }
2126
2127 if (ifp->if_flags & IFF_BROADCAST) {
2128 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2129 } else {
2130 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2131 }
2132
2133 /* We don't need the FCS appended to the packet. */
2134 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2135
2136 /* We want short frames padded to 60 bytes. */
2137 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2138
2139 /*
2140 * Enable the reception of all error frames. This is is
2141 * a necessary evil due to the design of the XMAC. The
2142 * XMAC's receive FIFO is only 8K in size, however jumbo
2143 * frames can be up to 9000 bytes in length. When bad
2144 * frame filtering is enabled, the XMAC's RX FIFO operates
2145 * in 'store and forward' mode. For this to work, the
2146 * entire frame has to fit into the FIFO, but that means
2147 * that jumbo frames larger than 8192 bytes will be
2148 * truncated. Disabling all bad frame filtering causes
2149 * the RX FIFO to operate in streaming mode, in which
2150 * case the XMAC will start transfering frames out of the
2151 * RX FIFO as soon as the FIFO threshold is reached.
2152 */
2153 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2154 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2155 XM_MODE_RX_INRANGELEN);
2156
2157 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2158 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2159 else
2160 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2161
2162 /*
2163 * Bump up the transmit threshold. This helps hold off transmit
2164 * underruns when we're blasting traffic from both ports at once.
2165 */
2166 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2167
2168 /* Set multicast filter */
2169 sk_setmulti(sc_if);
2170
2171 /* Clear and enable interrupts */
2172 SK_XM_READ_2(sc_if, XM_ISR);
2173 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2174 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2175 else
2176 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2177
2178 /* Configure MAC arbiter */
2179 switch(sc_if->sk_xmac_rev) {
2180 case XM_XMAC_REV_B2:
2181 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2182 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2183 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2184 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2185 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2186 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2187 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2188 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2189 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2190 break;
2191 case XM_XMAC_REV_C1:
2192 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2193 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2194 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2195 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2196 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2197 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2198 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2199 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2200 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2201 break;
2202 default:
2203 break;
2204 }
2205 sk_win_write_2(sc, SK_MACARB_CTL,
2206 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2207
2208 sc_if->sk_link = 1;
2209 }
2210
2211 void sk_init_yukon(sc_if)
2212 struct sk_if_softc *sc_if;
2213 {
2214 u_int32_t /*mac, */phy;
2215 u_int16_t reg;
2216 int i;
2217
2218 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2219 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2220
2221 /* GMAC and GPHY Reset */
2222 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2223
2224 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2225
2226 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2227 DELAY(1000);
2228 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2229 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2230 DELAY(1000);
2231
2232
2233 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2234
2235 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2236 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2237
2238 switch(sc_if->sk_softc->sk_pmd) {
2239 case IFM_1000_SX:
2240 case IFM_1000_LX:
2241 phy |= SK_GPHY_FIBER;
2242 break;
2243
2244 case IFM_1000_CX:
2245 case IFM_1000_T:
2246 phy |= SK_GPHY_COPPER;
2247 break;
2248 }
2249
2250 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2251
2252 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2253 DELAY(1000);
2254 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2255 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2256 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2257
2258 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2259 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2260
2261 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2262
2263 /* unused read of the interrupt source register */
2264 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2265 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2266
2267 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2268 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2269 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2270
2271 /* MIB Counter Clear Mode set */
2272 reg |= YU_PAR_MIB_CLR;
2273 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2274 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2275 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2276
2277 /* MIB Counter Clear Mode clear */
2278 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2279 reg &= ~YU_PAR_MIB_CLR;
2280 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2281
2282 /* receive control reg */
2283 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2284 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2285 YU_RCR_CRCR);
2286
2287 /* transmit parameter register */
2288 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2289 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2290 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2291
2292 /* serial mode register */
2293 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2294 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2295 YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e));
2296
2297 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2298 /* Setup Yukon's address */
2299 for (i = 0; i < 3; i++) {
2300 /* Write Source Address 1 (unicast filter) */
2301 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2302 sc_if->sk_enaddr[i * 2] |
2303 sc_if->sk_enaddr[i * 2 + 1] << 8);
2304 }
2305
2306 for (i = 0; i < 3; i++) {
2307 reg = sk_win_read_2(sc_if->sk_softc,
2308 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2309 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2310 }
2311
2312 /* clear all Multicast filter hash registers */
2313 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2314 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
2315 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
2316 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
2317 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
2318
2319 /* enable interrupt mask for counter overflows */
2320 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2321 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2322 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2323 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2324
2325 /* Configure RX MAC FIFO */
2326 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2327 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2328
2329 /* Configure TX MAC FIFO */
2330 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2331 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2332
2333 DPRINTFN(6, ("sk_init_yukon: end\n"));
2334 }
2335
2336 /*
2337 * Note that to properly initialize any part of the GEnesis chip,
2338 * you first have to take it out of reset mode.
2339 */
2340 int
2341 sk_init(struct ifnet *ifp)
2342 {
2343 struct sk_if_softc *sc_if = ifp->if_softc;
2344 struct sk_softc *sc = sc_if->sk_softc;
2345 struct mii_data *mii = &sc_if->sk_mii;
2346 int s;
2347
2348 DPRINTFN(1, ("sk_init\n"));
2349
2350 s = splnet();
2351
2352 /* Cancel pending I/O and free all RX/TX buffers. */
2353 sk_stop(ifp,0);
2354
2355 if (sc->sk_type == SK_GENESIS) {
2356 /* Configure LINK_SYNC LED */
2357 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2358 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2359 SK_LINKLED_LINKSYNC_ON);
2360
2361 /* Configure RX LED */
2362 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2363 SK_RXLEDCTL_COUNTER_START);
2364
2365 /* Configure TX LED */
2366 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2367 SK_TXLEDCTL_COUNTER_START);
2368 }
2369
2370 /* Configure I2C registers */
2371
2372 /* Configure XMAC(s) */
2373 switch (sc->sk_type) {
2374 case SK_GENESIS:
2375 sk_init_xmac(sc_if);
2376 break;
2377 case SK_YUKON:
2378 sk_init_yukon(sc_if);
2379 break;
2380 }
2381 mii_mediachg(mii);
2382
2383 if (sc->sk_type == SK_GENESIS) {
2384 /* Configure MAC FIFOs */
2385 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2386 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2387 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2388
2389 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2390 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2391 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2392 }
2393
2394 /* Configure transmit arbiter(s) */
2395 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2396 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2397
2398 /* Configure RAMbuffers */
2399 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2400 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2401 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2402 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2403 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2404 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2405
2406 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2407 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2408 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2409 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2410 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2411 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2412 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2413
2414 /* Configure BMUs */
2415 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2416 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2417 SK_RX_RING_ADDR(sc_if, 0));
2418 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2419
2420 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2421 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2422 SK_TX_RING_ADDR(sc_if, 0));
2423 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2424
2425 /* Init descriptors */
2426 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2427 printf("%s: initialization failed: no "
2428 "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2429 sk_stop(ifp,0);
2430 splx(s);
2431 return(ENOBUFS);
2432 }
2433
2434 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2435 printf("%s: initialization failed: no "
2436 "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2437 sk_stop(ifp,0);
2438 splx(s);
2439 return(ENOBUFS);
2440 }
2441
2442 /* Configure interrupt handling */
2443 CSR_READ_4(sc, SK_ISSR);
2444 if (sc_if->sk_port == SK_PORT_A)
2445 sc->sk_intrmask |= SK_INTRS1;
2446 else
2447 sc->sk_intrmask |= SK_INTRS2;
2448
2449 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2450
2451 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2452
2453 /* Start BMUs. */
2454 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2455
2456 if (sc->sk_type == SK_GENESIS) {
2457 /* Enable XMACs TX and RX state machines */
2458 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2459 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2460 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2461 }
2462
2463 if (sc->sk_type == SK_YUKON) {
2464 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2465 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2466 reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2467 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2468 }
2469
2470
2471 ifp->if_flags |= IFF_RUNNING;
2472 ifp->if_flags &= ~IFF_OACTIVE;
2473
2474 splx(s);
2475 return(0);
2476 }
2477
2478 void
2479 sk_stop(struct ifnet *ifp, int disable)
2480 {
2481 struct sk_if_softc *sc_if = ifp->if_softc;
2482 struct sk_softc *sc = sc_if->sk_softc;
2483 int i;
2484
2485 DPRINTFN(1, ("sk_stop\n"));
2486
2487 callout_stop(&sc_if->sk_tick_ch);
2488
2489 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2490 u_int32_t val;
2491
2492 /* Put PHY back into reset. */
2493 val = sk_win_read_4(sc, SK_GPIO);
2494 if (sc_if->sk_port == SK_PORT_A) {
2495 val |= SK_GPIO_DIR0;
2496 val &= ~SK_GPIO_DAT0;
2497 } else {
2498 val |= SK_GPIO_DIR2;
2499 val &= ~SK_GPIO_DAT2;
2500 }
2501 sk_win_write_4(sc, SK_GPIO, val);
2502 }
2503
2504 /* Turn off various components of this interface. */
2505 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2506 switch (sc->sk_type) {
2507 case SK_GENESIS:
2508 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2509 SK_TXMACCTL_XMAC_RESET);
2510 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2511 break;
2512 case SK_YUKON:
2513 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2514 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2515 break;
2516 }
2517 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2518 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2519 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2520 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2521 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2522 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2523 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2524 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2525 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2526
2527 /* Disable interrupts */
2528 if (sc_if->sk_port == SK_PORT_A)
2529 sc->sk_intrmask &= ~SK_INTRS1;
2530 else
2531 sc->sk_intrmask &= ~SK_INTRS2;
2532 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2533
2534 SK_XM_READ_2(sc_if, XM_ISR);
2535 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2536
2537 /* Free RX and TX mbufs still in the queues. */
2538 for (i = 0; i < SK_RX_RING_CNT; i++) {
2539 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2540 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2541 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2542 }
2543 }
2544
2545 for (i = 0; i < SK_TX_RING_CNT; i++) {
2546 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2547 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2548 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2549 }
2550 }
2551
2552 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2553 }
2554
2555 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2556
2557 /*
2558 struct cfdriver skc_cd = {
2559 0, "skc", DV_DULL
2560 };
2561 */
2562
2563 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2564
2565 /*
2566 struct cfdriver sk_cd = {
2567 0, "sk", DV_IFNET
2568 };
2569 */
2570
2571 #ifdef SK_DEBUG
2572 void
2573 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2574 {
2575 #define DESC_PRINT(X) \
2576 if (desc->X) \
2577 printf("txdesc[%d]." #X "=%#x\n", \
2578 idx, desc->X);
2579
2580 DESC_PRINT(sk_ctl);
2581 DESC_PRINT(sk_next);
2582 DESC_PRINT(sk_data_lo);
2583 DESC_PRINT(sk_data_hi);
2584 DESC_PRINT(sk_xmac_txstat);
2585 DESC_PRINT(sk_rsvd0);
2586 DESC_PRINT(sk_csum_startval);
2587 DESC_PRINT(sk_csum_startpos);
2588 DESC_PRINT(sk_csum_writepos);
2589 DESC_PRINT(sk_rsvd1);
2590 #undef PRINT
2591 }
2592
2593 void
2594 sk_dump_bytes(const char *data, int len)
2595 {
2596 int c, i, j;
2597
2598 for (i = 0; i < len; i += 16) {
2599 printf("%08x ", i);
2600 c = len - i;
2601 if (c > 16) c = 16;
2602
2603 for (j = 0; j < c; j++) {
2604 printf("%02x ", data[i + j] & 0xff);
2605 if ((j & 0xf) == 7 && j > 0)
2606 printf(" ");
2607 }
2608
2609 for (; j < 16; j++)
2610 printf(" ");
2611 printf(" ");
2612
2613 for (j = 0; j < c; j++) {
2614 int ch = data[i + j] & 0xff;
2615 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2616 }
2617
2618 printf("\n");
2619
2620 if (c < 16)
2621 break;
2622 }
2623 }
2624
2625 void
2626 sk_dump_mbuf(struct mbuf *m)
2627 {
2628 int count = m->m_pkthdr.len;
2629
2630 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2631
2632 while (count > 0 && m) {
2633 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2634 m, m->m_data, m->m_len);
2635 sk_dump_bytes(mtod(m, char *), m->m_len);
2636
2637 count -= m->m_len;
2638 m = m->m_next;
2639 }
2640 }
2641 #endif
2642