Home | History | Annotate | Line # | Download | only in pci
if_sk.c revision 1.7.2.3.2.2
      1 /*	$NetBSD: if_sk.c,v 1.7.2.3.2.2 2005/01/24 21:42:31 he Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the NetBSD
     18  *	Foundation, Inc. and its contributors.
     19  * 4. Neither the name of The NetBSD Foundation nor the names of its
     20  *    contributors may be used to endorse or promote products derived
     21  *    from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 /*	$OpenBSD: if_sk.c,v 1.33 2003/08/12 05:23:06 nate Exp $	*/
     37 
     38 /*
     39  * Copyright (c) 1997, 1998, 1999, 2000
     40  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by Bill Paul.
     53  * 4. Neither the name of the author nor the names of any co-contributors
     54  *    may be used to endorse or promote products derived from this software
     55  *    without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     61  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     62  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     63  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     64  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     65  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     66  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     67  * THE POSSIBILITY OF SUCH DAMAGE.
     68  *
     69  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
     70  */
     71 
     72 /*
     73  * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
     74  *
     75  * Permission to use, copy, modify, and distribute this software for any
     76  * purpose with or without fee is hereby granted, provided that the above
     77  * copyright notice and this permission notice appear in all copies.
     78  *
     79  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     80  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     81  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     82  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     83  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     84  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     85  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     86  */
     87 
     88 /*
     89  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
     90  * the SK-984x series adapters, both single port and dual port.
     91  * References:
     92  * 	The XaQti XMAC II datasheet,
     93  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     94  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
     95  *
     96  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
     97  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
     98  * convenience to others until Vitesse corrects this problem:
     99  *
    100  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
    101  *
    102  * Written by Bill Paul <wpaul (at) ee.columbia.edu>
    103  * Department of Electrical Engineering
    104  * Columbia University, New York City
    105  */
    106 
    107 /*
    108  * The SysKonnect gigabit ethernet adapters consist of two main
    109  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
    110  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
    111  * components and a PHY while the GEnesis controller provides a PCI
    112  * interface with DMA support. Each card may have between 512K and
    113  * 2MB of SRAM on board depending on the configuration.
    114  *
    115  * The SysKonnect GEnesis controller can have either one or two XMAC
    116  * chips connected to it, allowing single or dual port NIC configurations.
    117  * SysKonnect has the distinction of being the only vendor on the market
    118  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
    119  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
    120  * XMAC registers. This driver takes advantage of these features to allow
    121  * both XMACs to operate as independent interfaces.
    122  */
    123 
    124 #include "bpfilter.h"
    125 
    126 #include <sys/param.h>
    127 #include <sys/systm.h>
    128 #include <sys/sockio.h>
    129 #include <sys/mbuf.h>
    130 #include <sys/malloc.h>
    131 #include <sys/kernel.h>
    132 #include <sys/socket.h>
    133 #include <sys/device.h>
    134 #include <sys/queue.h>
    135 #include <sys/callout.h>
    136 
    137 #include <net/if.h>
    138 #include <net/if_dl.h>
    139 #include <net/if_types.h>
    140 
    141 #ifdef INET
    142 #include <netinet/in.h>
    143 #include <netinet/in_systm.h>
    144 #include <netinet/in_var.h>
    145 #include <netinet/ip.h>
    146 #include <netinet/if_ether.h>
    147 #endif
    148 
    149 #include <net/if_media.h>
    150 
    151 #if NBPFILTER > 0
    152 #include <net/bpf.h>
    153 #endif
    154 
    155 #include <dev/mii/mii.h>
    156 #include <dev/mii/miivar.h>
    157 #include <dev/mii/brgphyreg.h>
    158 
    159 #include <dev/pci/pcireg.h>
    160 #include <dev/pci/pcivar.h>
    161 #include <dev/pci/pcidevs.h>
    162 
    163 #define	SK_VERBOSE
    164 /* #define SK_USEIOSPACE */
    165 
    166 #include <dev/pci/if_skreg.h>
    167 #include <dev/pci/if_skvar.h>
    168 
    169 int skc_probe(struct device *, struct cfdata *, void *);
    170 void skc_attach(struct device *, struct device *self, void *aux);
    171 int sk_probe(struct device *, struct cfdata *, void *);
    172 void sk_attach(struct device *, struct device *self, void *aux);
    173 int skcprint(void *, const char *);
    174 int sk_intr(void *);
    175 void sk_intr_bcom(struct sk_if_softc *);
    176 void sk_intr_xmac(struct sk_if_softc *);
    177 void sk_intr_yukon(struct sk_if_softc *);
    178 void sk_rxeof(struct sk_if_softc *);
    179 void sk_txeof(struct sk_if_softc *);
    180 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
    181 void sk_start(struct ifnet *);
    182 int sk_ioctl(struct ifnet *, u_long, caddr_t);
    183 int sk_init(struct ifnet *);
    184 void sk_init_xmac(struct sk_if_softc *);
    185 void sk_init_yukon(struct sk_if_softc *);
    186 void sk_stop(struct ifnet *, int);
    187 void sk_watchdog(struct ifnet *);
    188 void sk_shutdown(void *);
    189 int sk_ifmedia_upd(struct ifnet *);
    190 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    191 void sk_reset(struct sk_softc *);
    192 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
    193 int sk_init_rx_ring(struct sk_if_softc *);
    194 int sk_init_tx_ring(struct sk_if_softc *);
    195 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
    196 void sk_vpd_read_res(struct sk_softc *,
    197 					struct vpd_res *, int);
    198 void sk_vpd_read(struct sk_softc *);
    199 
    200 int sk_xmac_miibus_readreg(struct device *, int, int);
    201 void sk_xmac_miibus_writereg(struct device *, int, int, int);
    202 void sk_xmac_miibus_statchg(struct device *);
    203 
    204 int sk_marv_miibus_readreg(struct device *, int, int);
    205 void sk_marv_miibus_writereg(struct device *, int, int, int);
    206 void sk_marv_miibus_statchg(struct device *);
    207 
    208 u_int32_t sk_xmac_hash(caddr_t);
    209 u_int32_t sk_yukon_hash(caddr_t);
    210 void sk_setfilt(struct sk_if_softc *, caddr_t, int);
    211 void sk_setmulti(struct sk_if_softc *);
    212 void sk_tick(void *);
    213 
    214 /* #define SK_DEBUG 2 */
    215 #ifdef SK_DEBUG
    216 #define DPRINTF(x)	if (skdebug) printf x
    217 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
    218 int	skdebug = SK_DEBUG;
    219 
    220 void sk_dump_txdesc(struct sk_tx_desc *, int);
    221 void sk_dump_mbuf(struct mbuf *);
    222 void sk_dump_bytes(const char *, int);
    223 #else
    224 #define DPRINTF(x)
    225 #define DPRINTFN(n,x)
    226 #endif
    227 
    228 #define SK_SETBIT(sc, reg, x)		\
    229 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
    230 
    231 #define SK_CLRBIT(sc, reg, x)		\
    232 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
    233 
    234 #define SK_WIN_SETBIT_4(sc, reg, x)	\
    235 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
    236 
    237 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
    238 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
    239 
    240 #define SK_WIN_SETBIT_2(sc, reg, x)	\
    241 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
    242 
    243 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
    244 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
    245 
    246 /* supported device vendors */
    247 static const struct sk_product {
    248 	pci_vendor_id_t		sk_vendor;
    249 	pci_product_id_t	sk_product;
    250 } sk_products[] = {
    251 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
    252 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
    253 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032, },
    254 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
    255 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
    256 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
    257 	{ PCI_VENDOR_GALILEO, PCI_PRODUCT_GALILEO_SKNET, },
    258 	{ 0, 0, }
    259 };
    260 
    261 static inline u_int32_t
    262 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
    263 {
    264 #ifdef SK_USEIOSPACE
    265 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    266 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
    267 #else
    268 	return CSR_READ_4(sc, reg);
    269 #endif
    270 }
    271 
    272 static inline u_int16_t
    273 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
    274 {
    275 #ifdef SK_USEIOSPACE
    276 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    277 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
    278 #else
    279 	return CSR_READ_2(sc, reg);
    280 #endif
    281 }
    282 
    283 static inline u_int8_t
    284 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
    285 {
    286 #ifdef SK_USEIOSPACE
    287 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    288 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
    289 #else
    290 	return CSR_READ_1(sc, reg);
    291 #endif
    292 }
    293 
    294 static inline void
    295 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
    296 {
    297 #ifdef SK_USEIOSPACE
    298 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    299 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
    300 #else
    301 	CSR_WRITE_4(sc, reg, x);
    302 #endif
    303 }
    304 
    305 static inline void
    306 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
    307 {
    308 #ifdef SK_USEIOSPACE
    309 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    310 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
    311 #else
    312 	CSR_WRITE_2(sc, reg, x);
    313 #endif
    314 }
    315 
    316 static inline void
    317 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
    318 {
    319 #ifdef SK_USEIOSPACE
    320 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    321 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
    322 #else
    323 	CSR_WRITE_1(sc, reg, x);
    324 #endif
    325 }
    326 
    327 /*
    328  * The VPD EEPROM contains Vital Product Data, as suggested in
    329  * the PCI 2.1 specification. The VPD data is separared into areas
    330  * denoted by resource IDs. The SysKonnect VPD contains an ID string
    331  * resource (the name of the adapter), a read-only area resource
    332  * containing various key/data fields and a read/write area which
    333  * can be used to store asset management information or log messages.
    334  * We read the ID string and read-only into buffers attached to
    335  * the controller softc structure for later use. At the moment,
    336  * we only use the ID string during sk_attach().
    337  */
    338 u_int8_t
    339 sk_vpd_readbyte(struct sk_softc *sc, int addr)
    340 {
    341 	int			i;
    342 
    343 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
    344 	for (i = 0; i < SK_TIMEOUT; i++) {
    345 		DELAY(1);
    346 		if (sk_win_read_2(sc,
    347 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
    348 			break;
    349 	}
    350 
    351 	if (i == SK_TIMEOUT)
    352 		return(0);
    353 
    354 	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
    355 }
    356 
    357 void
    358 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
    359 {
    360 	int			i;
    361 	u_int8_t		*ptr;
    362 
    363 	ptr = (u_int8_t *)res;
    364 	for (i = 0; i < sizeof(struct vpd_res); i++)
    365 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
    366 }
    367 
    368 void
    369 sk_vpd_read(struct sk_softc *sc)
    370 {
    371 	int			pos = 0, i;
    372 	struct vpd_res		res;
    373 
    374 	if (sc->sk_vpd_prodname != NULL)
    375 		free(sc->sk_vpd_prodname, M_DEVBUF);
    376 	if (sc->sk_vpd_readonly != NULL)
    377 		free(sc->sk_vpd_readonly, M_DEVBUF);
    378 	sc->sk_vpd_prodname = NULL;
    379 	sc->sk_vpd_readonly = NULL;
    380 
    381 	sk_vpd_read_res(sc, &res, pos);
    382 
    383 	if (res.vr_id != VPD_RES_ID) {
    384 		printf("%s: bad VPD resource id: expected %x got %x\n",
    385 		    sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
    386 		return;
    387 	}
    388 
    389 	pos += sizeof(res);
    390 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    391 	if (sc->sk_vpd_prodname == NULL)
    392 		panic("sk_vpd_read");
    393 	for (i = 0; i < res.vr_len; i++)
    394 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
    395 	sc->sk_vpd_prodname[i] = '\0';
    396 	pos += i;
    397 
    398 	sk_vpd_read_res(sc, &res, pos);
    399 
    400 	if (res.vr_id != VPD_RES_READ) {
    401 		printf("%s: bad VPD resource id: expected %x got %x\n",
    402 		    sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
    403 		return;
    404 	}
    405 
    406 	pos += sizeof(res);
    407 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    408 	if (sc->sk_vpd_readonly == NULL)
    409 		panic("sk_vpd_read");
    410 	for (i = 0; i < res.vr_len ; i++)
    411 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
    412 }
    413 
    414 int
    415 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
    416 {
    417 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    418 	int i;
    419 
    420 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
    421 
    422 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
    423 		return(0);
    424 
    425 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    426 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
    427 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    428 		for (i = 0; i < SK_TIMEOUT; i++) {
    429 			DELAY(1);
    430 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
    431 			    XM_MMUCMD_PHYDATARDY)
    432 				break;
    433 		}
    434 
    435 		if (i == SK_TIMEOUT) {
    436 			printf("%s: phy failed to come ready\n",
    437 			    sc_if->sk_dev.dv_xname);
    438 			return(0);
    439 		}
    440 	}
    441 	DELAY(1);
    442 	return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
    443 }
    444 
    445 void
    446 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
    447 {
    448 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    449 	int i;
    450 
    451 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
    452 
    453 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    454 	for (i = 0; i < SK_TIMEOUT; i++) {
    455 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    456 			break;
    457 	}
    458 
    459 	if (i == SK_TIMEOUT) {
    460 		printf("%s: phy failed to come ready\n",
    461 		    sc_if->sk_dev.dv_xname);
    462 		return;
    463 	}
    464 
    465 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
    466 	for (i = 0; i < SK_TIMEOUT; i++) {
    467 		DELAY(1);
    468 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    469 			break;
    470 	}
    471 
    472 	if (i == SK_TIMEOUT)
    473 		printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
    474 }
    475 
    476 void
    477 sk_xmac_miibus_statchg(struct device *dev)
    478 {
    479 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    480 	struct mii_data *mii = &sc_if->sk_mii;
    481 
    482 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
    483 
    484 	/*
    485 	 * If this is a GMII PHY, manually set the XMAC's
    486 	 * duplex mode accordingly.
    487 	 */
    488 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    489 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
    490 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    491 		} else {
    492 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    493 		}
    494 	}
    495 }
    496 
    497 int
    498 sk_marv_miibus_readreg(dev, phy, reg)
    499 	struct device *dev;
    500 	int phy, reg;
    501 {
    502 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    503 	u_int16_t val;
    504 	int i;
    505 
    506 	if (phy != 0 ||
    507 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
    508 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
    509 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
    510 			     phy, reg));
    511 		return(0);
    512 	}
    513 
    514         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    515 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
    516 
    517 	for (i = 0; i < SK_TIMEOUT; i++) {
    518 		DELAY(1);
    519 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
    520 		if (val & YU_SMICR_READ_VALID)
    521 			break;
    522 	}
    523 
    524 	if (i == SK_TIMEOUT) {
    525 		printf("%s: phy failed to come ready\n",
    526 		       sc_if->sk_dev.dv_xname);
    527 		return 0;
    528 	}
    529 
    530  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
    531 		     SK_TIMEOUT));
    532 
    533         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
    534 
    535 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
    536 		     phy, reg, val));
    537 
    538 	return val;
    539 }
    540 
    541 void
    542 sk_marv_miibus_writereg(dev, phy, reg, val)
    543 	struct device *dev;
    544 	int phy, reg, val;
    545 {
    546 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
    547 	int i;
    548 
    549 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
    550 		     phy, reg, val));
    551 
    552 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
    553 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    554 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
    555 
    556 	for (i = 0; i < SK_TIMEOUT; i++) {
    557 		DELAY(1);
    558 		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
    559 			break;
    560 	}
    561 }
    562 
    563 void
    564 sk_marv_miibus_statchg(dev)
    565 	struct device *dev;
    566 {
    567 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
    568 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
    569 }
    570 
    571 #define SK_HASH_BITS		6
    572 
    573 u_int32_t
    574 sk_xmac_hash(caddr_t addr)
    575 {
    576 	u_int32_t		crc;
    577 
    578 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
    579 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
    580 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    581 	return (crc);
    582 }
    583 
    584 u_int32_t
    585 sk_yukon_hash(caddr_t addr)
    586 {
    587 	u_int32_t		crc;
    588 
    589 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
    590 	crc &= ((1 << SK_HASH_BITS) - 1);
    591 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    592 	return (crc);
    593 }
    594 
    595 void
    596 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
    597 {
    598 	int base = XM_RXFILT_ENTRY(slot);
    599 
    600 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
    601 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
    602 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
    603 }
    604 
    605 void
    606 sk_setmulti(struct sk_if_softc *sc_if)
    607 {
    608 	struct sk_softc *sc = sc_if->sk_softc;
    609 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
    610 	u_int32_t hashes[2] = { 0, 0 };
    611 	int h = 0, i;
    612 	struct ethercom *ec = &sc_if->sk_ethercom;
    613 	struct ether_multi *enm;
    614 	struct ether_multistep step;
    615 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
    616 
    617 	/* First, zot all the existing filters. */
    618 	switch(sc->sk_type) {
    619 	case SK_GENESIS:
    620 		for (i = 1; i < XM_RXFILT_MAX; i++)
    621 			sk_setfilt(sc_if, (caddr_t)&dummy, i);
    622 
    623 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
    624 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
    625 		break;
    626 	case SK_YUKON:
    627 	case SK_YUKON_LITE:
    628 	case SK_YUKON_LP:
    629 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
    630 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
    631 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
    632 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
    633 		break;
    634 	}
    635 
    636 	/* Now program new ones. */
    637 allmulti:
    638 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    639 		hashes[0] = 0xFFFFFFFF;
    640 		hashes[1] = 0xFFFFFFFF;
    641 	} else {
    642 		i = 1;
    643 		/* First find the tail of the list. */
    644 		ETHER_FIRST_MULTI(step, ec, enm);
    645 		while (enm != NULL) {
    646 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
    647 				 ETHER_ADDR_LEN)) {
    648 				ifp->if_flags |= IFF_ALLMULTI;
    649 				goto allmulti;
    650 			}
    651 			DPRINTFN(2,("multicast address %s\n",
    652 	    			ether_sprintf(enm->enm_addrlo)));
    653 			/*
    654 			 * Program the first XM_RXFILT_MAX multicast groups
    655 			 * into the perfect filter. For all others,
    656 			 * use the hash table.
    657 			 */
    658 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
    659 				sk_setfilt(sc_if, enm->enm_addrlo, i);
    660 				i++;
    661 			}
    662 			else {
    663 				switch (sc->sk_type) {
    664 				case SK_GENESIS:
    665 					h = sk_xmac_hash(enm->enm_addrlo);
    666 					break;
    667 				case SK_YUKON:
    668 				case SK_YUKON_LITE:
    669 				case SK_YUKON_LP:
    670 					h = sk_yukon_hash(enm->enm_addrlo);
    671 					break;
    672 				}
    673 				if (h < 32)
    674 					hashes[0] |= (1 << h);
    675 				else
    676 					hashes[1] |= (1 << (h - 32));
    677 			}
    678 
    679 			ETHER_NEXT_MULTI(step, enm);
    680 		}
    681 	}
    682 
    683 	switch(sc->sk_type) {
    684 	case SK_GENESIS:
    685 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
    686 			       XM_MODE_RX_USE_PERFECT);
    687 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
    688 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
    689 		break;
    690 	case SK_YUKON:
    691 	case SK_YUKON_LITE:
    692 	case SK_YUKON_LP:
    693 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
    694 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
    695 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
    696 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
    697 		break;
    698 	}
    699 }
    700 
    701 int
    702 sk_init_rx_ring(struct sk_if_softc *sc_if)
    703 {
    704 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    705 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    706 	int			i;
    707 
    708 	bzero((char *)rd->sk_rx_ring,
    709 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
    710 
    711 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    712 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
    713 		if (i == (SK_RX_RING_CNT - 1)) {
    714 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
    715 			rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if, 0);
    716 		} else {
    717 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
    718 			rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if,i+1);
    719 		}
    720 	}
    721 
    722 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    723 		if (sk_newbuf(sc_if, i, NULL, NULL) == ENOBUFS) {
    724 			printf("%s: failed alloc of %dth mbuf\n",
    725 			    sc_if->sk_dev.dv_xname, i);
    726 			return(ENOBUFS);
    727 		}
    728 	}
    729 	sc_if->sk_cdata.sk_rx_prod = 0;
    730 	sc_if->sk_cdata.sk_rx_cons = 0;
    731 
    732 	return(0);
    733 }
    734 
    735 int
    736 sk_init_tx_ring(struct sk_if_softc *sc_if)
    737 {
    738 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    739 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    740 	int			i;
    741 
    742 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
    743 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
    744 
    745 	for (i = 0; i < SK_TX_RING_CNT; i++) {
    746 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
    747 		if (i == (SK_TX_RING_CNT - 1)) {
    748 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
    749 			rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if, 0);
    750 		} else {
    751 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
    752 			rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if,i+1);
    753 		}
    754 	}
    755 
    756 	sc_if->sk_cdata.sk_tx_prod = 0;
    757 	sc_if->sk_cdata.sk_tx_cons = 0;
    758 	sc_if->sk_cdata.sk_tx_cnt = 0;
    759 
    760 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
    761 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    762 
    763 	return (0);
    764 }
    765 
    766 int
    767 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
    768 	  bus_dmamap_t dmamap)
    769 {
    770 	struct sk_softc		*sc = sc_if->sk_softc;
    771 	struct mbuf		*m_new = NULL;
    772 	struct sk_chain		*c;
    773 	struct sk_rx_desc	*r;
    774 
    775 	if (dmamap == NULL) {
    776 		/* if (m) panic() */
    777 
    778 		if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1, MCLBYTES,
    779 				      0, BUS_DMA_NOWAIT, &dmamap)) {
    780 			printf("%s: can't create recv map\n",
    781 			       sc_if->sk_dev.dv_xname);
    782 			return(ENOMEM);
    783 		}
    784 	} else if (m == NULL)
    785 		bus_dmamap_unload(sc->sc_dmatag, dmamap);
    786 
    787 	sc_if->sk_cdata.sk_rx_map[i] = dmamap;
    788 
    789 	if (m == NULL) {
    790 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    791 		if (m_new == NULL) {
    792 			printf("%s: no memory for rx list -- "
    793 			    "packet dropped!\n", sc_if->sk_dev.dv_xname);
    794 			return(ENOBUFS);
    795 		}
    796 
    797 		/* Allocate the jumbo buffer */
    798 		MCLGET(m_new, M_DONTWAIT);
    799 		if (!(m_new->m_flags & M_EXT)) {
    800 			m_freem(m_new);
    801 			return (ENOBUFS);
    802 		}
    803 
    804 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    805 
    806 		m_adj(m_new, ETHER_ALIGN);
    807 
    808 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m_new,
    809 					 BUS_DMA_NOWAIT))
    810 			return(ENOBUFS);
    811 	} else {
    812 		/*
    813 	 	 * We're re-using a previously allocated mbuf;
    814 		 * be sure to re-init pointers and lengths to
    815 		 * default values.
    816 		 */
    817 		m_new = m;
    818 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    819 		m_adj(m_new, ETHER_ALIGN);
    820 		m_new->m_data = m_new->m_ext.ext_buf;
    821 	}
    822 
    823 	c = &sc_if->sk_cdata.sk_rx_chain[i];
    824 	r = c->sk_desc;
    825 	c->sk_mbuf = m_new;
    826 	r->sk_data_lo = dmamap->dm_segs[0].ds_addr;
    827 	r->sk_ctl = dmamap->dm_segs[0].ds_len | SK_RXSTAT;
    828 
    829 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    830 
    831 	return(0);
    832 }
    833 
    834 /*
    835  * Set media options.
    836  */
    837 int
    838 sk_ifmedia_upd(struct ifnet *ifp)
    839 {
    840 	struct sk_if_softc *sc_if = ifp->if_softc;
    841 
    842 	(void) sk_init(ifp);
    843 	mii_mediachg(&sc_if->sk_mii);
    844 	return(0);
    845 }
    846 
    847 /*
    848  * Report current media status.
    849  */
    850 void
    851 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
    852 {
    853 	struct sk_if_softc *sc_if = ifp->if_softc;
    854 
    855 	mii_pollstat(&sc_if->sk_mii);
    856 	ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
    857 	ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
    858 }
    859 
    860 int
    861 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
    862 {
    863 	struct sk_if_softc *sc_if = ifp->if_softc;
    864 	struct sk_softc *sc = sc_if->sk_softc;
    865 	struct ifreq *ifr = (struct ifreq *) data;
    866 	/* struct ifaddr *ifa = (struct ifaddr *) data; */
    867 	struct mii_data *mii;
    868 	int s, error = 0;
    869 
    870 	/* DPRINTFN(2, ("sk_ioctl\n")); */
    871 
    872 	s = splnet();
    873 
    874 	switch(command) {
    875 
    876 	case SIOCSIFFLAGS:
    877 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
    878 		if (ifp->if_flags & IFF_UP) {
    879 			if (ifp->if_flags & IFF_RUNNING &&
    880 			    ifp->if_flags & IFF_PROMISC &&
    881 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
    882 				switch(sc->sk_type) {
    883 				case SK_GENESIS:
    884 					SK_XM_SETBIT_4(sc_if, XM_MODE,
    885 					    XM_MODE_RX_PROMISC);
    886 					break;
    887 				case SK_YUKON:
    888 				case SK_YUKON_LITE:
    889 				case SK_YUKON_LP:
    890 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
    891 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
    892 					break;
    893 				}
    894 				sk_setmulti(sc_if);
    895 			} else if (ifp->if_flags & IFF_RUNNING &&
    896 			    !(ifp->if_flags & IFF_PROMISC) &&
    897 			    sc_if->sk_if_flags & IFF_PROMISC) {
    898 				switch(sc->sk_type) {
    899 				case SK_GENESIS:
    900 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
    901 					    XM_MODE_RX_PROMISC);
    902 					break;
    903 				case SK_YUKON:
    904 				case SK_YUKON_LITE:
    905 				case SK_YUKON_LP:
    906 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
    907 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
    908 					break;
    909 				}
    910 
    911 				sk_setmulti(sc_if);
    912 			} else
    913 				(void) sk_init(ifp);
    914 		} else {
    915 			if (ifp->if_flags & IFF_RUNNING)
    916 				sk_stop(ifp,0);
    917 		}
    918 		sc_if->sk_if_flags = ifp->if_flags;
    919 		error = 0;
    920 		break;
    921 
    922 	case SIOCGIFMEDIA:
    923 	case SIOCSIFMEDIA:
    924 	        DPRINTFN(2, ("sk_ioctl MEDIA\n"));
    925 		mii = &sc_if->sk_mii;
    926 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
    927 		break;
    928 	default:
    929 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
    930 		error = ether_ioctl(ifp, command, data);
    931 
    932 		if ( error == ENETRESET) {
    933 			if (ifp->if_flags & IFF_RUNNING) {
    934 				sk_setmulti(sc_if);
    935 				DPRINTFN(2, ("sk_ioctl setmulti called\n"));
    936 			}
    937 			error = 0;
    938 		} else if ( error ) {
    939 			splx(s);
    940 			return error;
    941 		}
    942 		break;
    943 	}
    944 
    945 	splx(s);
    946 	return(error);
    947 }
    948 
    949 /*
    950  * Lookup: Check the PCI vendor and device, and return a pointer to
    951  * The structure if the IDs match against our list.
    952  */
    953 
    954 static const struct sk_product *
    955 sk_lookup(const struct pci_attach_args *pa)
    956 {
    957 	const struct sk_product *psk;
    958 
    959 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
    960 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
    961 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
    962 			return (psk);
    963 	}
    964 	return (NULL);
    965 }
    966 
    967 /*
    968  * Probe for a SysKonnect GEnesis chip.
    969  */
    970 
    971 int
    972 skc_probe(struct device *parent, struct cfdata *match, void *aux)
    973 {
    974 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    975 	const struct sk_product *psk;
    976 
    977 	if ((psk = sk_lookup(pa))) {
    978 		return(1);
    979 	}
    980 	return(0);
    981 }
    982 
    983 /*
    984  * Force the GEnesis into reset, then bring it out of reset.
    985  */
    986 void sk_reset(struct sk_softc *sc)
    987 {
    988 	DPRINTFN(2, ("sk_reset\n"));
    989 
    990 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
    991 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
    992 	if (SK_YUKON_FAMILY(sc->sk_type))
    993 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
    994 
    995 	DELAY(1000);
    996 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
    997 	DELAY(2);
    998 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
    999 	if (SK_YUKON_FAMILY(sc->sk_type))
   1000 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
   1001 
   1002 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
   1003 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
   1004 		     CSR_READ_2(sc, SK_LINK_CTRL)));
   1005 
   1006 	if (sc->sk_type == SK_GENESIS) {
   1007 		/* Configure packet arbiter */
   1008 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
   1009 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1010 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1011 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1012 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1013 	}
   1014 
   1015 	/* Enable RAM interface */
   1016 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
   1017 
   1018 	/*
   1019          * Configure interrupt moderation. The moderation timer
   1020 	 * defers interrupts specified in the interrupt moderation
   1021 	 * timer mask based on the timeout specified in the interrupt
   1022 	 * moderation timer init register. Each bit in the timer
   1023 	 * register represents 18.825ns, so to specify a timeout in
   1024 	 * microseconds, we have to multiply by 54.
   1025 	 */
   1026         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(100));
   1027         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
   1028 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
   1029         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
   1030 }
   1031 
   1032 int
   1033 sk_probe(struct device *parent, struct cfdata *match, void *aux)
   1034 {
   1035 	struct skc_attach_args *sa = aux;
   1036 
   1037 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
   1038 		return(0);
   1039 
   1040 	return (1);
   1041 }
   1042 
   1043 /*
   1044  * Each XMAC chip is attached as a separate logical IP interface.
   1045  * Single port cards will have only one logical interface of course.
   1046  */
   1047 void
   1048 sk_attach(struct device *parent, struct device *self, void *aux)
   1049 {
   1050 	struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
   1051 	struct sk_softc *sc = (struct sk_softc *)parent;
   1052 	struct skc_attach_args *sa = aux;
   1053 	struct sk_txmap_entry	*entry;
   1054 	struct ifnet *ifp;
   1055 	bus_dma_segment_t seg;
   1056 	bus_dmamap_t dmamap;
   1057 	caddr_t kva;
   1058 	int i, rseg;
   1059 
   1060 	sc_if->sk_port = sa->skc_port;
   1061 	sc_if->sk_softc = sc;
   1062 	sc->sk_if[sa->skc_port] = sc_if;
   1063 
   1064 	if (sa->skc_port == SK_PORT_A)
   1065 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
   1066 	if (sa->skc_port == SK_PORT_B)
   1067 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
   1068 
   1069 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
   1070 
   1071 	/*
   1072 	 * Get station address for this interface. Note that
   1073 	 * dual port cards actually come with three station
   1074 	 * addresses: one for each port, plus an extra. The
   1075 	 * extra one is used by the SysKonnect driver software
   1076 	 * as a 'virtual' station address for when both ports
   1077 	 * are operating in failover mode. Currently we don't
   1078 	 * use this extra address.
   1079 	 */
   1080 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1081 		sc_if->sk_enaddr[i] =
   1082 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
   1083 
   1084 
   1085 	aprint_normal(": Ethernet address %s\n",
   1086 	    ether_sprintf(sc_if->sk_enaddr));
   1087 
   1088 	/*
   1089 	 * Set up RAM buffer addresses. The NIC will have a certain
   1090 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
   1091 	 * need to divide this up a) between the transmitter and
   1092  	 * receiver and b) between the two XMACs, if this is a
   1093 	 * dual port NIC. Our algotithm is to divide up the memory
   1094 	 * evenly so that everyone gets a fair share.
   1095 	 */
   1096 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
   1097 		u_int32_t		chunk, val;
   1098 
   1099 		chunk = sc->sk_ramsize / 2;
   1100 		val = sc->sk_rboff / sizeof(u_int64_t);
   1101 		sc_if->sk_rx_ramstart = val;
   1102 		val += (chunk / sizeof(u_int64_t));
   1103 		sc_if->sk_rx_ramend = val - 1;
   1104 		sc_if->sk_tx_ramstart = val;
   1105 		val += (chunk / sizeof(u_int64_t));
   1106 		sc_if->sk_tx_ramend = val - 1;
   1107 	} else {
   1108 		u_int32_t		chunk, val;
   1109 
   1110 		chunk = sc->sk_ramsize / 4;
   1111 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
   1112 		    sizeof(u_int64_t);
   1113 		sc_if->sk_rx_ramstart = val;
   1114 		val += (chunk / sizeof(u_int64_t));
   1115 		sc_if->sk_rx_ramend = val - 1;
   1116 		sc_if->sk_tx_ramstart = val;
   1117 		val += (chunk / sizeof(u_int64_t));
   1118 		sc_if->sk_tx_ramend = val - 1;
   1119 	}
   1120 
   1121 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
   1122 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
   1123 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
   1124 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
   1125 
   1126 	/* Read and save PHY type and set PHY address */
   1127 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
   1128 	switch (sc_if->sk_phytype) {
   1129 	case SK_PHYTYPE_XMAC:
   1130 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
   1131 		break;
   1132 	case SK_PHYTYPE_BCOM:
   1133 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
   1134 		break;
   1135 	case SK_PHYTYPE_MARV_COPPER:
   1136 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
   1137 		break;
   1138 	default:
   1139 		aprint_error("%s: unsupported PHY type: %d\n",
   1140 		    sc->sk_dev.dv_xname, sc_if->sk_phytype);
   1141 		return;
   1142 	}
   1143 
   1144 	/* Allocate the descriptor queues. */
   1145 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
   1146 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1147 		aprint_error("%s: can't alloc rx buffers\n",
   1148 		    sc->sk_dev.dv_xname);
   1149 		goto fail;
   1150 	}
   1151 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
   1152 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
   1153 		aprint_error("%s: can't map dma buffers (%lu bytes)\n",
   1154 		       sc_if->sk_dev.dv_xname,
   1155 		       (u_long) sizeof(struct sk_ring_data));
   1156 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1157 		goto fail;
   1158 	}
   1159 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
   1160 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
   1161             &sc_if->sk_ring_map)) {
   1162 		aprint_error("%s: can't create dma map\n",
   1163 		    sc_if->sk_dev.dv_xname);
   1164 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1165 		    sizeof(struct sk_ring_data));
   1166 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1167 		goto fail;
   1168 	}
   1169 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
   1170 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
   1171 		aprint_error("%s: can't load dma map\n",
   1172 		    sc_if->sk_dev.dv_xname);
   1173 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1174 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1175 		    sizeof(struct sk_ring_data));
   1176 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1177 		goto fail;
   1178 	}
   1179 
   1180 	for (i = 0; i < SK_RX_RING_CNT; i++)
   1181 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   1182 
   1183 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
   1184 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   1185 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   1186 
   1187 		if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, SK_NTXSEG,
   1188 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap)) {
   1189 			aprint_error("%s: Can't create TX dmamap\n",
   1190 				sc_if->sk_dev.dv_xname);
   1191 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1192 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1193 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1194 			    sizeof(struct sk_ring_data));
   1195 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1196 			goto fail;
   1197 		}
   1198 
   1199 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
   1200 		if (!entry) {
   1201 			aprint_error("%s: Can't alloc txmap entry\n",
   1202 				sc_if->sk_dev.dv_xname);
   1203 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
   1204 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1205 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1206 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1207 			    sizeof(struct sk_ring_data));
   1208 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1209 			goto fail;
   1210 		}
   1211 		entry->dmamap = dmamap;
   1212 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
   1213 	}
   1214 
   1215         sc_if->sk_rdata = (struct sk_ring_data *)kva;
   1216 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
   1217 
   1218 	/* XXX TLS It's not clear what's wrong with the Jumbo MTU
   1219 	   XXX TLS support in this driver, so we don't enable it. */
   1220 
   1221 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
   1222 
   1223 	ifp = &sc_if->sk_ethercom.ec_if;
   1224 	ifp->if_softc = sc_if;
   1225 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1226 	ifp->if_ioctl = sk_ioctl;
   1227 	ifp->if_start = sk_start;
   1228 	ifp->if_stop = sk_stop;
   1229 	ifp->if_init = sk_init;
   1230 	ifp->if_watchdog = sk_watchdog;
   1231 	ifp->if_capabilities = 0;
   1232 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
   1233 	IFQ_SET_READY(&ifp->if_snd);
   1234 	strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
   1235 
   1236 	/*
   1237 	 * Do miibus setup.
   1238 	 */
   1239 	switch (sc->sk_type) {
   1240 	case SK_GENESIS:
   1241 		sk_init_xmac(sc_if);
   1242 		break;
   1243 	case SK_YUKON:
   1244 	case SK_YUKON_LITE:
   1245 	case SK_YUKON_LP:
   1246 		sk_init_yukon(sc_if);
   1247 		break;
   1248 	default:
   1249 		panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
   1250 		      sc->sk_type);
   1251 	}
   1252 
   1253  	DPRINTFN(2, ("sk_attach: 1\n"));
   1254 
   1255 	sc_if->sk_mii.mii_ifp = ifp;
   1256 	switch (sc->sk_type) {
   1257 	case SK_GENESIS:
   1258 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
   1259 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
   1260 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
   1261 		break;
   1262 	case SK_YUKON:
   1263 	case SK_YUKON_LITE:
   1264 	case SK_YUKON_LP:
   1265 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
   1266 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
   1267 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
   1268 		break;
   1269 	}
   1270 
   1271 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
   1272 	    sk_ifmedia_upd, sk_ifmedia_sts);
   1273 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
   1274 	    MII_OFFSET_ANY, 0);
   1275 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
   1276 		printf("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
   1277 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
   1278 			    0, NULL);
   1279 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
   1280 	}
   1281 	else
   1282 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1283 
   1284 	callout_init(&sc_if->sk_tick_ch);
   1285 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
   1286 
   1287 	DPRINTFN(2, ("sk_attach: 1\n"));
   1288 
   1289 	/*
   1290 	 * Call MI attach routines.
   1291 	 */
   1292 	if_attach(ifp);
   1293 
   1294 	ether_ifattach(ifp, sc_if->sk_enaddr);
   1295 
   1296 #if NRND > 0
   1297         rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
   1298             RND_TYPE_NET, 0);
   1299 #endif
   1300 
   1301 	DPRINTFN(2, ("sk_attach: end\n"));
   1302 
   1303 	return;
   1304 
   1305 fail:
   1306 	sc->sk_if[sa->skc_port] = NULL;
   1307 }
   1308 
   1309 int
   1310 skcprint(void *aux, const char *pnp)
   1311 {
   1312 	struct skc_attach_args *sa = aux;
   1313 
   1314 	if (pnp)
   1315 		aprint_normal("sk port %c at %s",
   1316 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
   1317 	else
   1318 		aprint_normal(" port %c",
   1319 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
   1320 	return (UNCONF);
   1321 }
   1322 
   1323 /*
   1324  * Attach the interface. Allocate softc structures, do ifmedia
   1325  * setup and ethernet/BPF attach.
   1326  */
   1327 void
   1328 skc_attach(struct device *parent, struct device *self, void *aux)
   1329 {
   1330 	struct sk_softc *sc = (struct sk_softc *)self;
   1331 	struct pci_attach_args *pa = aux;
   1332 	struct skc_attach_args skca;
   1333 	pci_chipset_tag_t pc = pa->pa_pc;
   1334 	pcireg_t memtype;
   1335 	pci_intr_handle_t ih;
   1336 	const char *intrstr = NULL;
   1337 	bus_addr_t iobase;
   1338 	bus_size_t iosize;
   1339 	int s;
   1340 	u_int32_t command;
   1341 	char *revstr;
   1342 
   1343 	DPRINTFN(2, ("begin skc_attach\n"));
   1344 
   1345 	s = splnet();
   1346 
   1347 	/*
   1348 	 * Handle power management nonsense.
   1349 	 */
   1350 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
   1351 
   1352 	if (command == 0x01) {
   1353 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
   1354 		if (command & SK_PSTATE_MASK) {
   1355 			u_int32_t		iobase, membase, irq;
   1356 
   1357 			/* Save important PCI config data. */
   1358 			iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
   1359 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
   1360 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
   1361 
   1362 			/* Reset the power state. */
   1363 			aprint_normal("%s chip is in D%d power mode "
   1364 			    "-- setting to D0\n", sc->sk_dev.dv_xname,
   1365 			    command & SK_PSTATE_MASK);
   1366 			command &= 0xFFFFFFFC;
   1367 			pci_conf_write(pc, pa->pa_tag,
   1368 			    SK_PCI_PWRMGMTCTRL, command);
   1369 
   1370 			/* Restore PCI config data. */
   1371 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
   1372 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
   1373 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
   1374 		}
   1375 	}
   1376 
   1377 	/*
   1378 	 * Map control/status registers.
   1379 	 */
   1380 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1381 	command |= PCI_COMMAND_IO_ENABLE |
   1382 	    PCI_COMMAND_MEM_ENABLE |
   1383 	    PCI_COMMAND_MASTER_ENABLE;
   1384 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1385 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1386 
   1387 #ifdef SK_USEIOSPACE
   1388 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
   1389 		aprint_error(": failed to enable I/O ports!\n");
   1390 		goto fail;
   1391 	}
   1392 	/*
   1393 	 * Map control/status registers.
   1394 	 */
   1395 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
   1396 			   &iobase, &iosize)) {
   1397 		aprint_error(": can't find i/o space\n");
   1398 		goto fail;
   1399 	}
   1400 #else
   1401 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1402 		aprint_error(": failed to enable memory mapping!\n");
   1403 		goto fail;
   1404 	}
   1405 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
   1406 	switch (memtype) {
   1407         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1408         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1409                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
   1410 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
   1411 				   &iobase, &iosize) == 0)
   1412                         break;
   1413         default:
   1414                 aprint_error("%s: can't find mem space\n",
   1415 		       sc->sk_dev.dv_xname);
   1416                 return;
   1417 	}
   1418 
   1419 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
   1420 #endif
   1421 	sc->sc_dmatag = pa->pa_dmat;
   1422 
   1423 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
   1424 	sc->sk_rev  = (sk_win_read_1(sc, SK_CONFIG) >> 4);
   1425 
   1426 	/* bail out here if chip is not recognized */
   1427 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
   1428 		aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
   1429 		goto fail;
   1430 	}
   1431 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
   1432 
   1433 	/* Allocate interrupt */
   1434 	if (pci_intr_map(pa, &ih)) {
   1435 		aprint_error(": couldn't map interrupt\n");
   1436 		goto fail;
   1437 	}
   1438 
   1439 	intrstr = pci_intr_string(pc, ih);
   1440 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
   1441 	if (sc->sk_intrhand == NULL) {
   1442 		aprint_error(": couldn't establish interrupt");
   1443 		if (intrstr != NULL)
   1444 			aprint_normal(" at %s", intrstr);
   1445 		goto fail;
   1446 	}
   1447 	aprint_normal(": %s\n", intrstr);
   1448 
   1449 	/* Reset the adapter. */
   1450 	sk_reset(sc);
   1451 
   1452 	/* Read and save vital product data from EEPROM. */
   1453 	sk_vpd_read(sc);
   1454 
   1455 	if (sc->sk_type == SK_GENESIS) {
   1456 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1457 		/* Read and save RAM size and RAMbuffer offset */
   1458 		switch(val) {
   1459 		case SK_RAMSIZE_512K_64:
   1460 			sc->sk_ramsize = 0x80000;
   1461 			sc->sk_rboff = SK_RBOFF_0;
   1462 			break;
   1463 		case SK_RAMSIZE_1024K_64:
   1464 			sc->sk_ramsize = 0x100000;
   1465 			sc->sk_rboff = SK_RBOFF_80000;
   1466 			break;
   1467 		case SK_RAMSIZE_1024K_128:
   1468 			sc->sk_ramsize = 0x100000;
   1469 			sc->sk_rboff = SK_RBOFF_0;
   1470 			break;
   1471 		case SK_RAMSIZE_2048K_128:
   1472 			sc->sk_ramsize = 0x200000;
   1473 			sc->sk_rboff = SK_RBOFF_0;
   1474 			break;
   1475 		default:
   1476 			aprint_error("%s: unknown ram size: %d\n",
   1477 			       sc->sk_dev.dv_xname, val);
   1478 			goto fail;
   1479 			break;
   1480 		}
   1481 
   1482 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
   1483 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
   1484 			     sc->sk_rboff));
   1485 	} else {
   1486 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1487 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
   1488 		sc->sk_rboff = SK_RBOFF_0;
   1489 
   1490 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
   1491 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
   1492 			     sc->sk_rboff));
   1493 	}
   1494 
   1495 	/* Read and save physical media type */
   1496 	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
   1497 	case SK_PMD_1000BASESX:
   1498 		sc->sk_pmd = IFM_1000_SX;
   1499 		break;
   1500 	case SK_PMD_1000BASELX:
   1501 		sc->sk_pmd = IFM_1000_LX;
   1502 		break;
   1503 	case SK_PMD_1000BASECX:
   1504 		sc->sk_pmd = IFM_1000_CX;
   1505 		break;
   1506 	case SK_PMD_1000BASETX:
   1507 		sc->sk_pmd = IFM_1000_T;
   1508 		break;
   1509 	default:
   1510 		aprint_error("%s: unknown media type: 0x%x\n",
   1511 		    sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
   1512 		goto fail;
   1513 	}
   1514 
   1515 	/* determine whether to name it with vpd or just make it up */
   1516 	/* Marvell Yukon VPD's can freqently be bogus */
   1517 
   1518 	switch (pa->pa_id) {
   1519 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1520 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
   1521 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
   1522 	case PCI_PRODUCT_3COM_3C940:
   1523 	case PCI_PRODUCT_DLINK_DGE530T:
   1524 	case PCI_PRODUCT_LINKSYS_EG1032:
   1525 	case PCI_PRODUCT_LINKSYS_EG1064:
   1526 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1527 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
   1528 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
   1529 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
   1530 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
   1531 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
   1532  		sc->sk_name = sc->sk_vpd_prodname;
   1533  		break;
   1534 	case PCI_ID_CODE(PCI_VENDOR_GALILEO,PCI_PRODUCT_GALILEO_SKNET):
   1535 	/* whoops yukon vpd prodname bears no resemblance to reality */
   1536 		switch (sc->sk_type) {
   1537 		case SK_GENESIS:
   1538 			sc->sk_name = sc->sk_vpd_prodname;
   1539 			break;
   1540 		case SK_YUKON:
   1541 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
   1542 			break;
   1543 		case SK_YUKON_LITE:
   1544 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
   1545 			break;
   1546 		case SK_YUKON_LP:
   1547 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
   1548 			break;
   1549 		default:
   1550 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
   1551 		}
   1552 
   1553 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
   1554 
   1555 		if ( sc->sk_type == SK_YUKON ) {
   1556 			uint32_t flashaddr;
   1557 			uint8_t testbyte;
   1558 
   1559 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
   1560 
   1561 			/* test Flash-Address Register */
   1562 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
   1563 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
   1564 
   1565 			if (testbyte != 0) {
   1566 				/* this is yukon lite Rev. A0 */
   1567 				sc->sk_type = SK_YUKON_LITE;
   1568 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
   1569 				/* restore Flash-Address Register */
   1570 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
   1571 			}
   1572 		}
   1573 		break;
   1574  	default:
   1575 		sc->sk_name = "Unkown Marvell";
   1576 	}
   1577 
   1578 
   1579 	if ( sc->sk_type == SK_YUKON_LITE ) {
   1580 		switch (sc->sk_rev) {
   1581 		case SK_YUKON_LITE_REV_A0:
   1582 			revstr = "A0";
   1583 			break;
   1584 		case SK_YUKON_LITE_REV_A1:
   1585 			revstr = "A1";
   1586 			break;
   1587 		case SK_YUKON_LITE_REV_A3:
   1588 			revstr = "A3";
   1589 			break;
   1590 		default:
   1591 			revstr = "";
   1592 		}
   1593 	} else {
   1594 		revstr = "";
   1595 	}
   1596 
   1597 	/* Announce the product name. */
   1598 	aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
   1599 			      sc->sk_name, revstr, sc->sk_rev);
   1600 
   1601 	skca.skc_port = SK_PORT_A;
   1602 	(void)config_found(&sc->sk_dev, &skca, skcprint);
   1603 
   1604 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
   1605 		skca.skc_port = SK_PORT_B;
   1606 		(void)config_found(&sc->sk_dev, &skca, skcprint);
   1607 	}
   1608 
   1609 	/* Turn on the 'driver is loaded' LED. */
   1610 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   1611 
   1612 fail:
   1613 	splx(s);
   1614 }
   1615 
   1616 int
   1617 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
   1618 {
   1619 	struct sk_softc		*sc = sc_if->sk_softc;
   1620 	struct sk_tx_desc	*f = NULL;
   1621 	u_int32_t		frag, cur, cnt = 0;
   1622 	int			i;
   1623 	struct sk_txmap_entry	*entry;
   1624 	bus_dmamap_t		txmap;
   1625 
   1626 	DPRINTFN(3, ("sk_encap\n"));
   1627 
   1628 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
   1629 	if (entry == NULL) {
   1630 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
   1631 		return ENOBUFS;
   1632 	}
   1633 	txmap = entry->dmamap;
   1634 
   1635 	cur = frag = *txidx;
   1636 
   1637 #ifdef SK_DEBUG
   1638 	if (skdebug >= 3)
   1639 		sk_dump_mbuf(m_head);
   1640 #endif
   1641 
   1642 	/*
   1643 	 * Start packing the mbufs in this chain into
   1644 	 * the fragment pointers. Stop when we run out
   1645 	 * of fragments or hit the end of the mbuf chain.
   1646 	 */
   1647 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
   1648 	    BUS_DMA_NOWAIT)) {
   1649 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
   1650 		return(ENOBUFS);
   1651 	}
   1652 
   1653 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
   1654 
   1655 	/* Sync the DMA map. */
   1656 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
   1657 	    BUS_DMASYNC_PREWRITE);
   1658 
   1659 	for (i = 0; i < txmap->dm_nsegs; i++) {
   1660 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
   1661 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
   1662 			return(ENOBUFS);
   1663 		}
   1664 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
   1665 		f->sk_data_lo = txmap->dm_segs[i].ds_addr;
   1666 		f->sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
   1667 		if (cnt == 0)
   1668 			f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
   1669 		else
   1670 			f->sk_ctl |= SK_TXCTL_OWN;
   1671 
   1672 		cur = frag;
   1673 		SK_INC(frag, SK_TX_RING_CNT);
   1674 		cnt++;
   1675 	}
   1676 
   1677 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
   1678 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
   1679 
   1680 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
   1681 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
   1682 		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
   1683 
   1684 	/* Sync descriptors before handing to chip */
   1685 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
   1686 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1687 
   1688 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
   1689 
   1690 	/* Sync first descriptor to hand it off */
   1691 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1692 
   1693 	sc_if->sk_cdata.sk_tx_cnt += cnt;
   1694 
   1695 #ifdef SK_DEBUG
   1696 	if (skdebug >= 3) {
   1697 		struct sk_tx_desc *desc;
   1698 		u_int32_t idx;
   1699 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
   1700 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
   1701 			sk_dump_txdesc(desc, idx);
   1702 		}
   1703 	}
   1704 #endif
   1705 
   1706 	*txidx = frag;
   1707 
   1708 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
   1709 
   1710 	return(0);
   1711 }
   1712 
   1713 void
   1714 sk_start(struct ifnet *ifp)
   1715 {
   1716         struct sk_if_softc	*sc_if = ifp->if_softc;
   1717         struct sk_softc		*sc = sc_if->sk_softc;
   1718         struct mbuf		*m_head = NULL;
   1719         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
   1720 	int			pkts = 0;
   1721 
   1722 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
   1723 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
   1724 
   1725 	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
   1726 
   1727 		IFQ_POLL(&ifp->if_snd, m_head);
   1728 		if (m_head == NULL)
   1729 			break;
   1730 
   1731 		/*
   1732 		 * Pack the data into the transmit ring. If we
   1733 		 * don't have room, set the OACTIVE flag and wait
   1734 		 * for the NIC to drain the ring.
   1735 		 */
   1736 		if (sk_encap(sc_if, m_head, &idx)) {
   1737 			ifp->if_flags |= IFF_OACTIVE;
   1738 			break;
   1739 		}
   1740 
   1741 		/* now we are committed to transmit the packet */
   1742 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1743 		pkts++;
   1744 
   1745 		/*
   1746 		 * If there's a BPF listener, bounce a copy of this frame
   1747 		 * to him.
   1748 		 */
   1749 #if NBPFILTER > 0
   1750 		if (ifp->if_bpf)
   1751 			bpf_mtap(ifp->if_bpf, m_head);
   1752 #endif
   1753 	}
   1754 	if (pkts == 0)
   1755 		return;
   1756 
   1757 	/* Transmit */
   1758 	sc_if->sk_cdata.sk_tx_prod = idx;
   1759 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   1760 
   1761 	/* Set a timeout in case the chip goes out to lunch. */
   1762 	ifp->if_timer = 5;
   1763 }
   1764 
   1765 
   1766 void
   1767 sk_watchdog(struct ifnet *ifp)
   1768 {
   1769 	struct sk_if_softc *sc_if = ifp->if_softc;
   1770 
   1771 	printf("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
   1772 	(void) sk_init(ifp);
   1773 }
   1774 
   1775 void
   1776 sk_shutdown(void * v)
   1777 {
   1778 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
   1779 	struct sk_softc		*sc = sc_if->sk_softc;
   1780 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
   1781 
   1782 	DPRINTFN(2, ("sk_shutdown\n"));
   1783 	sk_stop(ifp,1);
   1784 
   1785 	/* Turn off the 'driver is loaded' LED. */
   1786 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   1787 
   1788 	/*
   1789 	 * Reset the GEnesis controller. Doing this should also
   1790 	 * assert the resets on the attached XMAC(s).
   1791 	 */
   1792 	sk_reset(sc);
   1793 }
   1794 
   1795 void
   1796 sk_rxeof(struct sk_if_softc *sc_if)
   1797 {
   1798 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   1799 	struct mbuf		*m;
   1800 	struct sk_chain		*cur_rx;
   1801 	struct sk_rx_desc	*cur_desc;
   1802 	int			i, cur, total_len = 0;
   1803 	u_int32_t		rxstat;
   1804 	bus_dmamap_t		dmamap;
   1805 
   1806 	i = sc_if->sk_cdata.sk_rx_prod;
   1807 
   1808 	DPRINTFN(3, ("sk_rxeof %d\n", i));
   1809 
   1810 	for (;;) {
   1811 		cur = i;
   1812 
   1813 		/* Sync the descriptor */
   1814 		SK_CDRXSYNC(sc_if, cur,
   1815 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1816 
   1817 		if (sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl & SK_RXCTL_OWN) {
   1818 			/* Invalidate the descriptor -- it's not ready yet */
   1819 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
   1820 			sc_if->sk_cdata.sk_rx_prod = i;
   1821 			break;
   1822 		}
   1823 
   1824 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
   1825 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
   1826 		dmamap = sc_if->sk_cdata.sk_rx_map[cur];
   1827 
   1828 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
   1829 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1830 
   1831 		rxstat = cur_desc->sk_xmac_rxstat;
   1832 		m = cur_rx->sk_mbuf;
   1833 		cur_rx->sk_mbuf = NULL;
   1834 		total_len = SK_RXBYTES(cur_desc->sk_ctl);
   1835 
   1836 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
   1837 
   1838 		SK_INC(i, SK_RX_RING_CNT);
   1839 
   1840 		if (rxstat & XM_RXSTAT_ERRFRAME) {
   1841 			ifp->if_ierrors++;
   1842 			sk_newbuf(sc_if, cur, m, dmamap);
   1843 			continue;
   1844 		}
   1845 
   1846 		/*
   1847 		 * Try to allocate a new jumbo buffer. If that
   1848 		 * fails, copy the packet to mbufs and put the
   1849 		 * jumbo buffer back in the ring so it can be
   1850 		 * re-used. If allocating mbufs fails, then we
   1851 		 * have to drop the packet.
   1852 		 */
   1853 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
   1854 			struct mbuf		*m0;
   1855 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
   1856 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
   1857 			sk_newbuf(sc_if, cur, m, dmamap);
   1858 			if (m0 == NULL) {
   1859 				printf("%s: no receive buffers "
   1860 				    "available -- packet dropped!\n",
   1861 				    sc_if->sk_dev.dv_xname);
   1862 				ifp->if_ierrors++;
   1863 				continue;
   1864 			}
   1865 			m_adj(m0, ETHER_ALIGN);
   1866 			m = m0;
   1867 		} else {
   1868 			m->m_pkthdr.rcvif = ifp;
   1869 			m->m_pkthdr.len = m->m_len = total_len;
   1870 		}
   1871 
   1872 		ifp->if_ipackets++;
   1873 
   1874 #if NBPFILTER > 0
   1875 		if (ifp->if_bpf)
   1876 			bpf_mtap(ifp->if_bpf, m);
   1877 #endif
   1878 		/* pass it on. */
   1879 		(*ifp->if_input)(ifp, m);
   1880 	}
   1881 }
   1882 
   1883 void
   1884 sk_txeof(struct sk_if_softc *sc_if)
   1885 {
   1886 	struct sk_softc		*sc = sc_if->sk_softc;
   1887 	struct sk_tx_desc	*cur_tx = NULL;
   1888 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   1889 	u_int32_t		idx;
   1890 	struct sk_txmap_entry	*entry;
   1891 
   1892 	DPRINTFN(3, ("sk_txeof\n"));
   1893 
   1894 	/*
   1895 	 * Go through our tx ring and free mbufs for those
   1896 	 * frames that have been sent.
   1897 	 */
   1898 	idx = sc_if->sk_cdata.sk_tx_cons;
   1899 	while(idx != sc_if->sk_cdata.sk_tx_prod) {
   1900 		SK_CDTXSYNC(sc_if, idx, 1,
   1901 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1902 
   1903 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
   1904 #ifdef SK_DEBUG
   1905 		if (skdebug >= 3)
   1906 			sk_dump_txdesc(cur_tx, idx);
   1907 #endif
   1908 		if (cur_tx->sk_ctl & SK_TXCTL_OWN) {
   1909 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
   1910 			break;
   1911 		}
   1912 		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
   1913 			ifp->if_opackets++;
   1914 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
   1915 			entry = sc_if->sk_cdata.sk_tx_map[idx];
   1916 
   1917 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
   1918 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
   1919 
   1920 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
   1921 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1922 
   1923 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
   1924 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
   1925 					  link);
   1926 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
   1927 		}
   1928 		sc_if->sk_cdata.sk_tx_cnt--;
   1929 		SK_INC(idx, SK_TX_RING_CNT);
   1930 	}
   1931 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
   1932 		ifp->if_timer = 0;
   1933 	else /* nudge chip to keep tx ring moving */
   1934 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   1935 
   1936 	sc_if->sk_cdata.sk_tx_cons = idx;
   1937 
   1938 	if (cur_tx != NULL)
   1939 		ifp->if_flags &= ~IFF_OACTIVE;
   1940 }
   1941 
   1942 void
   1943 sk_tick(void *xsc_if)
   1944 {
   1945 	struct sk_if_softc *sc_if = xsc_if;
   1946 	struct mii_data *mii = &sc_if->sk_mii;
   1947 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   1948 	int i;
   1949 
   1950 	DPRINTFN(3, ("sk_tick\n"));
   1951 
   1952 	if (!(ifp->if_flags & IFF_UP))
   1953 		return;
   1954 
   1955 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   1956 		sk_intr_bcom(sc_if);
   1957 		return;
   1958 	}
   1959 
   1960 	/*
   1961 	 * According to SysKonnect, the correct way to verify that
   1962 	 * the link has come back up is to poll bit 0 of the GPIO
   1963 	 * register three times. This pin has the signal from the
   1964 	 * link sync pin connected to it; if we read the same link
   1965 	 * state 3 times in a row, we know the link is up.
   1966 	 */
   1967 	for (i = 0; i < 3; i++) {
   1968 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
   1969 			break;
   1970 	}
   1971 
   1972 	if (i != 3) {
   1973 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   1974 		return;
   1975 	}
   1976 
   1977 	/* Turn the GP0 interrupt back on. */
   1978 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   1979 	SK_XM_READ_2(sc_if, XM_ISR);
   1980 	mii_tick(mii);
   1981 	mii_pollstat(mii);
   1982 	callout_stop(&sc_if->sk_tick_ch);
   1983 }
   1984 
   1985 void
   1986 sk_intr_bcom(struct sk_if_softc *sc_if)
   1987 {
   1988 	struct mii_data *mii = &sc_if->sk_mii;
   1989 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   1990 	int status;
   1991 
   1992 
   1993 	DPRINTFN(3, ("sk_intr_bcom\n"));
   1994 
   1995 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   1996 
   1997 	/*
   1998 	 * Read the PHY interrupt register to make sure
   1999 	 * we clear any pending interrupts.
   2000 	 */
   2001 	status = sk_xmac_miibus_readreg((struct device *)sc_if,
   2002 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
   2003 
   2004 	if (!(ifp->if_flags & IFF_RUNNING)) {
   2005 		sk_init_xmac(sc_if);
   2006 		return;
   2007 	}
   2008 
   2009 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
   2010 		int lstat;
   2011 		lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
   2012 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
   2013 
   2014 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
   2015 			mii_mediachg(mii);
   2016 			/* Turn off the link LED. */
   2017 			SK_IF_WRITE_1(sc_if, 0,
   2018 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2019 			sc_if->sk_link = 0;
   2020 		} else if (status & BRGPHY_ISR_LNK_CHG) {
   2021 			sk_xmac_miibus_writereg((struct device *)sc_if,
   2022 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
   2023 			mii_tick(mii);
   2024 			sc_if->sk_link = 1;
   2025 			/* Turn on the link LED. */
   2026 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2027 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
   2028 			    SK_LINKLED_BLINK_OFF);
   2029 			mii_pollstat(mii);
   2030 		} else {
   2031 			mii_tick(mii);
   2032 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
   2033 		}
   2034 	}
   2035 
   2036 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2037 }
   2038 
   2039 void
   2040 sk_intr_xmac(struct sk_if_softc	*sc_if)
   2041 {
   2042 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
   2043 
   2044 	DPRINTFN(3, ("sk_intr_xmac\n"));
   2045 
   2046 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
   2047 		if (status & XM_ISR_GP0_SET) {
   2048 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2049 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2050 		}
   2051 
   2052 		if (status & XM_ISR_AUTONEG_DONE) {
   2053 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2054 		}
   2055 	}
   2056 
   2057 	if (status & XM_IMR_TX_UNDERRUN)
   2058 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
   2059 
   2060 	if (status & XM_IMR_RX_OVERRUN)
   2061 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
   2062 }
   2063 
   2064 void
   2065 sk_intr_yukon(sc_if)
   2066 	struct sk_if_softc *sc_if;
   2067 {
   2068 	int status;
   2069 
   2070 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2071 
   2072 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
   2073 }
   2074 
   2075 int
   2076 sk_intr(void *xsc)
   2077 {
   2078 	struct sk_softc		*sc = xsc;
   2079 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
   2080 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
   2081 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
   2082 	u_int32_t		status;
   2083 	int			claimed = 0;
   2084 
   2085 	if (sc_if0 != NULL)
   2086 		ifp0 = &sc_if0->sk_ethercom.ec_if;
   2087 	if (sc_if1 != NULL)
   2088 		ifp1 = &sc_if1->sk_ethercom.ec_if;
   2089 
   2090 	for (;;) {
   2091 		status = CSR_READ_4(sc, SK_ISSR);
   2092 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
   2093 
   2094 		if (!(status & sc->sk_intrmask))
   2095 			break;
   2096 
   2097 		claimed = 1;
   2098 
   2099 		/* Handle receive interrupts first. */
   2100 		if (status & SK_ISR_RX1_EOF) {
   2101 			sk_rxeof(sc_if0);
   2102 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
   2103 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2104 		}
   2105 		if (status & SK_ISR_RX2_EOF) {
   2106 			sk_rxeof(sc_if1);
   2107 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
   2108 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2109 		}
   2110 
   2111 		/* Then transmit interrupts. */
   2112 		if (status & SK_ISR_TX1_S_EOF) {
   2113 			sk_txeof(sc_if0);
   2114 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
   2115 			    SK_TXBMU_CLR_IRQ_EOF);
   2116 		}
   2117 		if (status & SK_ISR_TX2_S_EOF) {
   2118 			sk_txeof(sc_if1);
   2119 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
   2120 			    SK_TXBMU_CLR_IRQ_EOF);
   2121 		}
   2122 
   2123 		/* Then MAC interrupts. */
   2124 		if (status & SK_ISR_MAC1 && (ifp0->if_flags & IFF_RUNNING)) {
   2125 			if (sc->sk_type == SK_GENESIS)
   2126 				sk_intr_xmac(sc_if0);
   2127 			else
   2128 				sk_intr_yukon(sc_if0);
   2129 		}
   2130 
   2131 		if (status & SK_ISR_MAC2 && (ifp1->if_flags & IFF_RUNNING)) {
   2132 			if (sc->sk_type == SK_GENESIS)
   2133 				sk_intr_xmac(sc_if1);
   2134 			else
   2135 				sk_intr_yukon(sc_if1);
   2136 
   2137 		}
   2138 
   2139 		if (status & SK_ISR_EXTERNAL_REG) {
   2140 			if (ifp0 != NULL &&
   2141 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
   2142 				sk_intr_bcom(sc_if0);
   2143 
   2144 			if (ifp1 != NULL &&
   2145 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
   2146 				sk_intr_bcom(sc_if1);
   2147 		}
   2148 	}
   2149 
   2150 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2151 
   2152 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
   2153 		sk_start(ifp0);
   2154 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
   2155 		sk_start(ifp1);
   2156 
   2157 	return (claimed);
   2158 }
   2159 
   2160 void
   2161 sk_init_xmac(struct sk_if_softc	*sc_if)
   2162 {
   2163 	struct sk_softc		*sc = sc_if->sk_softc;
   2164 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2165 	static const struct sk_bcom_hack     bhack[] = {
   2166 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
   2167 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
   2168 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
   2169 	{ 0, 0 } };
   2170 
   2171 	DPRINTFN(1, ("sk_init_xmac\n"));
   2172 
   2173 	/* Unreset the XMAC. */
   2174 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
   2175 	DELAY(1000);
   2176 
   2177 	/* Reset the XMAC's internal state. */
   2178 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2179 
   2180 	/* Save the XMAC II revision */
   2181 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
   2182 
   2183 	/*
   2184 	 * Perform additional initialization for external PHYs,
   2185 	 * namely for the 1000baseTX cards that use the XMAC's
   2186 	 * GMII mode.
   2187 	 */
   2188 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2189 		int			i = 0;
   2190 		u_int32_t		val;
   2191 
   2192 		/* Take PHY out of reset. */
   2193 		val = sk_win_read_4(sc, SK_GPIO);
   2194 		if (sc_if->sk_port == SK_PORT_A)
   2195 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
   2196 		else
   2197 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
   2198 		sk_win_write_4(sc, SK_GPIO, val);
   2199 
   2200 		/* Enable GMII mode on the XMAC. */
   2201 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
   2202 
   2203 		sk_xmac_miibus_writereg((struct device *)sc_if,
   2204 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
   2205 		DELAY(10000);
   2206 		sk_xmac_miibus_writereg((struct device *)sc_if,
   2207 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
   2208 
   2209 		/*
   2210 		 * Early versions of the BCM5400 apparently have
   2211 		 * a bug that requires them to have their reserved
   2212 		 * registers initialized to some magic values. I don't
   2213 		 * know what the numbers do, I'm just the messenger.
   2214 		 */
   2215 		if (sk_xmac_miibus_readreg((struct device *)sc_if,
   2216 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
   2217 			while(bhack[i].reg) {
   2218 				sk_xmac_miibus_writereg((struct device *)sc_if,
   2219 				    SK_PHYADDR_BCOM, bhack[i].reg,
   2220 				    bhack[i].val);
   2221 				i++;
   2222 			}
   2223 		}
   2224 	}
   2225 
   2226 	/* Set station address */
   2227 	SK_XM_WRITE_2(sc_if, XM_PAR0,
   2228 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
   2229 	SK_XM_WRITE_2(sc_if, XM_PAR1,
   2230 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
   2231 	SK_XM_WRITE_2(sc_if, XM_PAR2,
   2232 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
   2233 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
   2234 
   2235 	if (ifp->if_flags & IFF_PROMISC) {
   2236 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2237 	} else {
   2238 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2239 	}
   2240 
   2241 	if (ifp->if_flags & IFF_BROADCAST) {
   2242 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2243 	} else {
   2244 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2245 	}
   2246 
   2247 	/* We don't need the FCS appended to the packet. */
   2248 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
   2249 
   2250 	/* We want short frames padded to 60 bytes. */
   2251 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
   2252 
   2253 	/*
   2254 	 * Enable the reception of all error frames. This is is
   2255 	 * a necessary evil due to the design of the XMAC. The
   2256 	 * XMAC's receive FIFO is only 8K in size, however jumbo
   2257 	 * frames can be up to 9000 bytes in length. When bad
   2258 	 * frame filtering is enabled, the XMAC's RX FIFO operates
   2259 	 * in 'store and forward' mode. For this to work, the
   2260 	 * entire frame has to fit into the FIFO, but that means
   2261 	 * that jumbo frames larger than 8192 bytes will be
   2262 	 * truncated. Disabling all bad frame filtering causes
   2263 	 * the RX FIFO to operate in streaming mode, in which
   2264 	 * case the XMAC will start transfering frames out of the
   2265 	 * RX FIFO as soon as the FIFO threshold is reached.
   2266 	 */
   2267 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
   2268 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
   2269 	    XM_MODE_RX_INRANGELEN);
   2270 
   2271 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2272 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2273 	else
   2274 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2275 
   2276 	/*
   2277 	 * Bump up the transmit threshold. This helps hold off transmit
   2278 	 * underruns when we're blasting traffic from both ports at once.
   2279 	 */
   2280 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
   2281 
   2282 	/* Set multicast filter */
   2283 	sk_setmulti(sc_if);
   2284 
   2285 	/* Clear and enable interrupts */
   2286 	SK_XM_READ_2(sc_if, XM_ISR);
   2287 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
   2288 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
   2289 	else
   2290 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2291 
   2292 	/* Configure MAC arbiter */
   2293 	switch(sc_if->sk_xmac_rev) {
   2294 	case XM_XMAC_REV_B2:
   2295 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
   2296 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
   2297 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
   2298 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
   2299 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
   2300 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
   2301 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
   2302 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
   2303 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2304 		break;
   2305 	case XM_XMAC_REV_C1:
   2306 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
   2307 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
   2308 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
   2309 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
   2310 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
   2311 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
   2312 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
   2313 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
   2314 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2315 		break;
   2316 	default:
   2317 		break;
   2318 	}
   2319 	sk_win_write_2(sc, SK_MACARB_CTL,
   2320 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
   2321 
   2322 	sc_if->sk_link = 1;
   2323 }
   2324 
   2325 void sk_init_yukon(sc_if)
   2326 	struct sk_if_softc	*sc_if;
   2327 {
   2328 	u_int32_t		/*mac, */phy;
   2329 	u_int16_t		reg;
   2330 	int			i;
   2331 
   2332 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
   2333 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
   2334 
   2335 	/* GMAC and GPHY Reset */
   2336 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
   2337 
   2338 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
   2339 
   2340 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2341 	DELAY(1000);
   2342 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
   2343 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2344 	DELAY(1000);
   2345 
   2346 
   2347 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
   2348 
   2349 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
   2350 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
   2351 
   2352 	switch(sc_if->sk_softc->sk_pmd) {
   2353 	case IFM_1000_SX:
   2354 	case IFM_1000_LX:
   2355 		phy |= SK_GPHY_FIBER;
   2356 		break;
   2357 
   2358 	case IFM_1000_CX:
   2359 	case IFM_1000_T:
   2360 		phy |= SK_GPHY_COPPER;
   2361 		break;
   2362 	}
   2363 
   2364 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
   2365 
   2366 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
   2367 	DELAY(1000);
   2368 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
   2369 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
   2370 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
   2371 
   2372 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
   2373 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
   2374 
   2375 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
   2376 
   2377 	/* unused read of the interrupt source register */
   2378 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
   2379 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2380 
   2381 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
   2382 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
   2383 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2384 
   2385 	/* MIB Counter Clear Mode set */
   2386         reg |= YU_PAR_MIB_CLR;
   2387 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2388 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
   2389 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2390 
   2391 	/* MIB Counter Clear Mode clear */
   2392 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
   2393         reg &= ~YU_PAR_MIB_CLR;
   2394 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2395 
   2396 	/* receive control reg */
   2397 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
   2398 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
   2399 		      YU_RCR_CRCR);
   2400 
   2401 	/* transmit parameter register */
   2402 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
   2403 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
   2404 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
   2405 
   2406 	/* serial mode register */
   2407 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
   2408 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
   2409 		      YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e));
   2410 
   2411 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
   2412 	/* Setup Yukon's address */
   2413 	for (i = 0; i < 3; i++) {
   2414 		/* Write Source Address 1 (unicast filter) */
   2415 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
   2416 			      sc_if->sk_enaddr[i * 2] |
   2417 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
   2418 	}
   2419 
   2420 	for (i = 0; i < 3; i++) {
   2421 		reg = sk_win_read_2(sc_if->sk_softc,
   2422 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
   2423 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
   2424 	}
   2425 
   2426 	/* Set multicast filter */
   2427 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
   2428 	sk_setmulti(sc_if);
   2429 
   2430 	/* enable interrupt mask for counter overflows */
   2431 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
   2432 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
   2433 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
   2434 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
   2435 
   2436 	/* Configure RX MAC FIFO */
   2437 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
   2438 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
   2439 
   2440 	/* Configure TX MAC FIFO */
   2441 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
   2442 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
   2443 
   2444 	DPRINTFN(6, ("sk_init_yukon: end\n"));
   2445 }
   2446 
   2447 /*
   2448  * Note that to properly initialize any part of the GEnesis chip,
   2449  * you first have to take it out of reset mode.
   2450  */
   2451 int
   2452 sk_init(struct ifnet *ifp)
   2453 {
   2454 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2455 	struct sk_softc		*sc = sc_if->sk_softc;
   2456 	struct mii_data		*mii = &sc_if->sk_mii;
   2457 	int			s;
   2458 
   2459 	DPRINTFN(1, ("sk_init\n"));
   2460 
   2461 	s = splnet();
   2462 
   2463 	/* Cancel pending I/O and free all RX/TX buffers. */
   2464 	sk_stop(ifp,0);
   2465 
   2466 	if (sc->sk_type == SK_GENESIS) {
   2467 		/* Configure LINK_SYNC LED */
   2468 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
   2469 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2470 			      SK_LINKLED_LINKSYNC_ON);
   2471 
   2472 		/* Configure RX LED */
   2473 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
   2474 			      SK_RXLEDCTL_COUNTER_START);
   2475 
   2476 		/* Configure TX LED */
   2477 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
   2478 			      SK_TXLEDCTL_COUNTER_START);
   2479 	}
   2480 
   2481 	/* Configure I2C registers */
   2482 
   2483 	/* Configure XMAC(s) */
   2484 	switch (sc->sk_type) {
   2485 	case SK_GENESIS:
   2486 		sk_init_xmac(sc_if);
   2487 		break;
   2488 	case SK_YUKON:
   2489 	case SK_YUKON_LITE:
   2490 	case SK_YUKON_LP:
   2491 		sk_init_yukon(sc_if);
   2492 		break;
   2493 	}
   2494 	mii_mediachg(mii);
   2495 
   2496 	if (sc->sk_type == SK_GENESIS) {
   2497 		/* Configure MAC FIFOs */
   2498 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
   2499 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
   2500 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
   2501 
   2502 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
   2503 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
   2504 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
   2505 	}
   2506 
   2507 	/* Configure transmit arbiter(s) */
   2508 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
   2509 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
   2510 
   2511 	/* Configure RAMbuffers */
   2512 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
   2513 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
   2514 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
   2515 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
   2516 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
   2517 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
   2518 
   2519 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
   2520 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
   2521 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
   2522 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
   2523 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
   2524 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
   2525 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
   2526 
   2527 	/* Configure BMUs */
   2528 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
   2529 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
   2530 	    SK_RX_RING_ADDR(sc_if, 0));
   2531 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
   2532 
   2533 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
   2534 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
   2535             SK_TX_RING_ADDR(sc_if, 0));
   2536 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
   2537 
   2538 	/* Init descriptors */
   2539 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
   2540 		printf("%s: initialization failed: no "
   2541 		    "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
   2542 		sk_stop(ifp,0);
   2543 		splx(s);
   2544 		return(ENOBUFS);
   2545 	}
   2546 
   2547 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
   2548 		printf("%s: initialization failed: no "
   2549 		    "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
   2550 		sk_stop(ifp,0);
   2551 		splx(s);
   2552 		return(ENOBUFS);
   2553 	}
   2554 
   2555 	/* Configure interrupt handling */
   2556 	CSR_READ_4(sc, SK_ISSR);
   2557 	if (sc_if->sk_port == SK_PORT_A)
   2558 		sc->sk_intrmask |= SK_INTRS1;
   2559 	else
   2560 		sc->sk_intrmask |= SK_INTRS2;
   2561 
   2562 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
   2563 
   2564 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2565 
   2566 	/* Start BMUs. */
   2567 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
   2568 
   2569 	if (sc->sk_type == SK_GENESIS) {
   2570 		/* Enable XMACs TX and RX state machines */
   2571 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
   2572 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
   2573 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2574 	}
   2575 
   2576 	if (SK_YUKON_FAMILY(sc->sk_type)) {
   2577 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
   2578 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
   2579 		reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
   2580 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
   2581 	}
   2582 
   2583 
   2584 	ifp->if_flags |= IFF_RUNNING;
   2585 	ifp->if_flags &= ~IFF_OACTIVE;
   2586 
   2587 	splx(s);
   2588 	return(0);
   2589 }
   2590 
   2591 void
   2592 sk_stop(struct ifnet *ifp, int disable)
   2593 {
   2594         struct sk_if_softc	*sc_if = ifp->if_softc;
   2595 	struct sk_softc		*sc = sc_if->sk_softc;
   2596 	int			i;
   2597 
   2598 	DPRINTFN(1, ("sk_stop\n"));
   2599 
   2600 	callout_stop(&sc_if->sk_tick_ch);
   2601 
   2602 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2603 		u_int32_t		val;
   2604 
   2605 		/* Put PHY back into reset. */
   2606 		val = sk_win_read_4(sc, SK_GPIO);
   2607 		if (sc_if->sk_port == SK_PORT_A) {
   2608 			val |= SK_GPIO_DIR0;
   2609 			val &= ~SK_GPIO_DAT0;
   2610 		} else {
   2611 			val |= SK_GPIO_DIR2;
   2612 			val &= ~SK_GPIO_DAT2;
   2613 		}
   2614 		sk_win_write_4(sc, SK_GPIO, val);
   2615 	}
   2616 
   2617 	/* Turn off various components of this interface. */
   2618 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2619 	switch (sc->sk_type) {
   2620 	case SK_GENESIS:
   2621 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
   2622 			      SK_TXMACCTL_XMAC_RESET);
   2623 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
   2624 		break;
   2625 	case SK_YUKON:
   2626 	case SK_YUKON_LITE:
   2627 	case SK_YUKON_LP:
   2628 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
   2629 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
   2630 		break;
   2631 	}
   2632 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
   2633 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2634 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
   2635 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2636 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
   2637 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2638 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2639 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2640 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
   2641 
   2642 	/* Disable interrupts */
   2643 	if (sc_if->sk_port == SK_PORT_A)
   2644 		sc->sk_intrmask &= ~SK_INTRS1;
   2645 	else
   2646 		sc->sk_intrmask &= ~SK_INTRS2;
   2647 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2648 
   2649 	SK_XM_READ_2(sc_if, XM_ISR);
   2650 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2651 
   2652 	/* Free RX and TX mbufs still in the queues. */
   2653 	for (i = 0; i < SK_RX_RING_CNT; i++) {
   2654 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
   2655 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
   2656 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   2657 		}
   2658 	}
   2659 
   2660 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   2661 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
   2662 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
   2663 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   2664 		}
   2665 	}
   2666 
   2667 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
   2668 }
   2669 
   2670 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
   2671 
   2672 /*
   2673 struct cfdriver skc_cd = {
   2674 	0, "skc", DV_DULL
   2675 };
   2676 */
   2677 
   2678 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
   2679 
   2680 /*
   2681 struct cfdriver sk_cd = {
   2682 	0, "sk", DV_IFNET
   2683 };
   2684 */
   2685 
   2686 #ifdef SK_DEBUG
   2687 void
   2688 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
   2689 {
   2690 #define DESC_PRINT(X)					\
   2691 	if (desc->X)					\
   2692 		printf("txdesc[%d]." #X "=%#x\n",	\
   2693 		       idx, desc->X);
   2694 
   2695 	DESC_PRINT(sk_ctl);
   2696 	DESC_PRINT(sk_next);
   2697 	DESC_PRINT(sk_data_lo);
   2698 	DESC_PRINT(sk_data_hi);
   2699 	DESC_PRINT(sk_xmac_txstat);
   2700 	DESC_PRINT(sk_rsvd0);
   2701 	DESC_PRINT(sk_csum_startval);
   2702 	DESC_PRINT(sk_csum_startpos);
   2703 	DESC_PRINT(sk_csum_writepos);
   2704 	DESC_PRINT(sk_rsvd1);
   2705 #undef PRINT
   2706 }
   2707 
   2708 void
   2709 sk_dump_bytes(const char *data, int len)
   2710 {
   2711 	int c, i, j;
   2712 
   2713 	for (i = 0; i < len; i += 16) {
   2714 		printf("%08x  ", i);
   2715 		c = len - i;
   2716 		if (c > 16) c = 16;
   2717 
   2718 		for (j = 0; j < c; j++) {
   2719 			printf("%02x ", data[i + j] & 0xff);
   2720 			if ((j & 0xf) == 7 && j > 0)
   2721 				printf(" ");
   2722 		}
   2723 
   2724 		for (; j < 16; j++)
   2725 			printf("   ");
   2726 		printf("  ");
   2727 
   2728 		for (j = 0; j < c; j++) {
   2729 			int ch = data[i + j] & 0xff;
   2730 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
   2731 		}
   2732 
   2733 		printf("\n");
   2734 
   2735 		if (c < 16)
   2736 			break;
   2737 	}
   2738 }
   2739 
   2740 void
   2741 sk_dump_mbuf(struct mbuf *m)
   2742 {
   2743 	int count = m->m_pkthdr.len;
   2744 
   2745 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
   2746 
   2747 	while (count > 0 && m) {
   2748 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
   2749 		       m, m->m_data, m->m_len);
   2750 		sk_dump_bytes(mtod(m, char *), m->m_len);
   2751 
   2752 		count -= m->m_len;
   2753 		m = m->m_next;
   2754 	}
   2755 }
   2756 #endif
   2757