if_sk.c revision 1.7.2.3.2.2 1 /* $NetBSD: if_sk.c,v 1.7.2.3.2.2 2005/01/24 21:42:31 he Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the NetBSD
18 * Foundation, Inc. and its contributors.
19 * 4. Neither the name of The NetBSD Foundation nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /* $OpenBSD: if_sk.c,v 1.33 2003/08/12 05:23:06 nate Exp $ */
37
38 /*
39 * Copyright (c) 1997, 1998, 1999, 2000
40 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Bill Paul.
53 * 4. Neither the name of the author nor the names of any co-contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67 * THE POSSIBILITY OF SUCH DAMAGE.
68 *
69 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70 */
71
72 /*
73 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
74 *
75 * Permission to use, copy, modify, and distribute this software for any
76 * purpose with or without fee is hereby granted, provided that the above
77 * copyright notice and this permission notice appear in all copies.
78 *
79 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86 */
87
88 /*
89 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90 * the SK-984x series adapters, both single port and dual port.
91 * References:
92 * The XaQti XMAC II datasheet,
93 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 * The SysKonnect GEnesis manual, http://www.syskonnect.com
95 *
96 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98 * convenience to others until Vitesse corrects this problem:
99 *
100 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101 *
102 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
103 * Department of Electrical Engineering
104 * Columbia University, New York City
105 */
106
107 /*
108 * The SysKonnect gigabit ethernet adapters consist of two main
109 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111 * components and a PHY while the GEnesis controller provides a PCI
112 * interface with DMA support. Each card may have between 512K and
113 * 2MB of SRAM on board depending on the configuration.
114 *
115 * The SysKonnect GEnesis controller can have either one or two XMAC
116 * chips connected to it, allowing single or dual port NIC configurations.
117 * SysKonnect has the distinction of being the only vendor on the market
118 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120 * XMAC registers. This driver takes advantage of these features to allow
121 * both XMACs to operate as independent interfaces.
122 */
123
124 #include "bpfilter.h"
125
126 #include <sys/param.h>
127 #include <sys/systm.h>
128 #include <sys/sockio.h>
129 #include <sys/mbuf.h>
130 #include <sys/malloc.h>
131 #include <sys/kernel.h>
132 #include <sys/socket.h>
133 #include <sys/device.h>
134 #include <sys/queue.h>
135 #include <sys/callout.h>
136
137 #include <net/if.h>
138 #include <net/if_dl.h>
139 #include <net/if_types.h>
140
141 #ifdef INET
142 #include <netinet/in.h>
143 #include <netinet/in_systm.h>
144 #include <netinet/in_var.h>
145 #include <netinet/ip.h>
146 #include <netinet/if_ether.h>
147 #endif
148
149 #include <net/if_media.h>
150
151 #if NBPFILTER > 0
152 #include <net/bpf.h>
153 #endif
154
155 #include <dev/mii/mii.h>
156 #include <dev/mii/miivar.h>
157 #include <dev/mii/brgphyreg.h>
158
159 #include <dev/pci/pcireg.h>
160 #include <dev/pci/pcivar.h>
161 #include <dev/pci/pcidevs.h>
162
163 #define SK_VERBOSE
164 /* #define SK_USEIOSPACE */
165
166 #include <dev/pci/if_skreg.h>
167 #include <dev/pci/if_skvar.h>
168
169 int skc_probe(struct device *, struct cfdata *, void *);
170 void skc_attach(struct device *, struct device *self, void *aux);
171 int sk_probe(struct device *, struct cfdata *, void *);
172 void sk_attach(struct device *, struct device *self, void *aux);
173 int skcprint(void *, const char *);
174 int sk_intr(void *);
175 void sk_intr_bcom(struct sk_if_softc *);
176 void sk_intr_xmac(struct sk_if_softc *);
177 void sk_intr_yukon(struct sk_if_softc *);
178 void sk_rxeof(struct sk_if_softc *);
179 void sk_txeof(struct sk_if_softc *);
180 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
181 void sk_start(struct ifnet *);
182 int sk_ioctl(struct ifnet *, u_long, caddr_t);
183 int sk_init(struct ifnet *);
184 void sk_init_xmac(struct sk_if_softc *);
185 void sk_init_yukon(struct sk_if_softc *);
186 void sk_stop(struct ifnet *, int);
187 void sk_watchdog(struct ifnet *);
188 void sk_shutdown(void *);
189 int sk_ifmedia_upd(struct ifnet *);
190 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
191 void sk_reset(struct sk_softc *);
192 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
193 int sk_init_rx_ring(struct sk_if_softc *);
194 int sk_init_tx_ring(struct sk_if_softc *);
195 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
196 void sk_vpd_read_res(struct sk_softc *,
197 struct vpd_res *, int);
198 void sk_vpd_read(struct sk_softc *);
199
200 int sk_xmac_miibus_readreg(struct device *, int, int);
201 void sk_xmac_miibus_writereg(struct device *, int, int, int);
202 void sk_xmac_miibus_statchg(struct device *);
203
204 int sk_marv_miibus_readreg(struct device *, int, int);
205 void sk_marv_miibus_writereg(struct device *, int, int, int);
206 void sk_marv_miibus_statchg(struct device *);
207
208 u_int32_t sk_xmac_hash(caddr_t);
209 u_int32_t sk_yukon_hash(caddr_t);
210 void sk_setfilt(struct sk_if_softc *, caddr_t, int);
211 void sk_setmulti(struct sk_if_softc *);
212 void sk_tick(void *);
213
214 /* #define SK_DEBUG 2 */
215 #ifdef SK_DEBUG
216 #define DPRINTF(x) if (skdebug) printf x
217 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
218 int skdebug = SK_DEBUG;
219
220 void sk_dump_txdesc(struct sk_tx_desc *, int);
221 void sk_dump_mbuf(struct mbuf *);
222 void sk_dump_bytes(const char *, int);
223 #else
224 #define DPRINTF(x)
225 #define DPRINTFN(n,x)
226 #endif
227
228 #define SK_SETBIT(sc, reg, x) \
229 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
230
231 #define SK_CLRBIT(sc, reg, x) \
232 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
233
234 #define SK_WIN_SETBIT_4(sc, reg, x) \
235 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
236
237 #define SK_WIN_CLRBIT_4(sc, reg, x) \
238 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
239
240 #define SK_WIN_SETBIT_2(sc, reg, x) \
241 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
242
243 #define SK_WIN_CLRBIT_2(sc, reg, x) \
244 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
245
246 /* supported device vendors */
247 static const struct sk_product {
248 pci_vendor_id_t sk_vendor;
249 pci_product_id_t sk_product;
250 } sk_products[] = {
251 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
252 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
253 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032, },
254 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
255 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
256 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
257 { PCI_VENDOR_GALILEO, PCI_PRODUCT_GALILEO_SKNET, },
258 { 0, 0, }
259 };
260
261 static inline u_int32_t
262 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
263 {
264 #ifdef SK_USEIOSPACE
265 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
266 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
267 #else
268 return CSR_READ_4(sc, reg);
269 #endif
270 }
271
272 static inline u_int16_t
273 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
274 {
275 #ifdef SK_USEIOSPACE
276 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
277 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
278 #else
279 return CSR_READ_2(sc, reg);
280 #endif
281 }
282
283 static inline u_int8_t
284 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
285 {
286 #ifdef SK_USEIOSPACE
287 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
288 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
289 #else
290 return CSR_READ_1(sc, reg);
291 #endif
292 }
293
294 static inline void
295 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
296 {
297 #ifdef SK_USEIOSPACE
298 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
299 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
300 #else
301 CSR_WRITE_4(sc, reg, x);
302 #endif
303 }
304
305 static inline void
306 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
307 {
308 #ifdef SK_USEIOSPACE
309 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
310 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
311 #else
312 CSR_WRITE_2(sc, reg, x);
313 #endif
314 }
315
316 static inline void
317 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
318 {
319 #ifdef SK_USEIOSPACE
320 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
321 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
322 #else
323 CSR_WRITE_1(sc, reg, x);
324 #endif
325 }
326
327 /*
328 * The VPD EEPROM contains Vital Product Data, as suggested in
329 * the PCI 2.1 specification. The VPD data is separared into areas
330 * denoted by resource IDs. The SysKonnect VPD contains an ID string
331 * resource (the name of the adapter), a read-only area resource
332 * containing various key/data fields and a read/write area which
333 * can be used to store asset management information or log messages.
334 * We read the ID string and read-only into buffers attached to
335 * the controller softc structure for later use. At the moment,
336 * we only use the ID string during sk_attach().
337 */
338 u_int8_t
339 sk_vpd_readbyte(struct sk_softc *sc, int addr)
340 {
341 int i;
342
343 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
344 for (i = 0; i < SK_TIMEOUT; i++) {
345 DELAY(1);
346 if (sk_win_read_2(sc,
347 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
348 break;
349 }
350
351 if (i == SK_TIMEOUT)
352 return(0);
353
354 return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
355 }
356
357 void
358 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
359 {
360 int i;
361 u_int8_t *ptr;
362
363 ptr = (u_int8_t *)res;
364 for (i = 0; i < sizeof(struct vpd_res); i++)
365 ptr[i] = sk_vpd_readbyte(sc, i + addr);
366 }
367
368 void
369 sk_vpd_read(struct sk_softc *sc)
370 {
371 int pos = 0, i;
372 struct vpd_res res;
373
374 if (sc->sk_vpd_prodname != NULL)
375 free(sc->sk_vpd_prodname, M_DEVBUF);
376 if (sc->sk_vpd_readonly != NULL)
377 free(sc->sk_vpd_readonly, M_DEVBUF);
378 sc->sk_vpd_prodname = NULL;
379 sc->sk_vpd_readonly = NULL;
380
381 sk_vpd_read_res(sc, &res, pos);
382
383 if (res.vr_id != VPD_RES_ID) {
384 printf("%s: bad VPD resource id: expected %x got %x\n",
385 sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
386 return;
387 }
388
389 pos += sizeof(res);
390 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
391 if (sc->sk_vpd_prodname == NULL)
392 panic("sk_vpd_read");
393 for (i = 0; i < res.vr_len; i++)
394 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
395 sc->sk_vpd_prodname[i] = '\0';
396 pos += i;
397
398 sk_vpd_read_res(sc, &res, pos);
399
400 if (res.vr_id != VPD_RES_READ) {
401 printf("%s: bad VPD resource id: expected %x got %x\n",
402 sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
403 return;
404 }
405
406 pos += sizeof(res);
407 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
408 if (sc->sk_vpd_readonly == NULL)
409 panic("sk_vpd_read");
410 for (i = 0; i < res.vr_len ; i++)
411 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
412 }
413
414 int
415 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
416 {
417 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
418 int i;
419
420 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
421
422 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
423 return(0);
424
425 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
426 SK_XM_READ_2(sc_if, XM_PHY_DATA);
427 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
428 for (i = 0; i < SK_TIMEOUT; i++) {
429 DELAY(1);
430 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
431 XM_MMUCMD_PHYDATARDY)
432 break;
433 }
434
435 if (i == SK_TIMEOUT) {
436 printf("%s: phy failed to come ready\n",
437 sc_if->sk_dev.dv_xname);
438 return(0);
439 }
440 }
441 DELAY(1);
442 return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
443 }
444
445 void
446 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
447 {
448 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
449 int i;
450
451 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
452
453 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
454 for (i = 0; i < SK_TIMEOUT; i++) {
455 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
456 break;
457 }
458
459 if (i == SK_TIMEOUT) {
460 printf("%s: phy failed to come ready\n",
461 sc_if->sk_dev.dv_xname);
462 return;
463 }
464
465 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
466 for (i = 0; i < SK_TIMEOUT; i++) {
467 DELAY(1);
468 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
469 break;
470 }
471
472 if (i == SK_TIMEOUT)
473 printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
474 }
475
476 void
477 sk_xmac_miibus_statchg(struct device *dev)
478 {
479 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
480 struct mii_data *mii = &sc_if->sk_mii;
481
482 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
483
484 /*
485 * If this is a GMII PHY, manually set the XMAC's
486 * duplex mode accordingly.
487 */
488 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
489 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
490 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
491 } else {
492 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
493 }
494 }
495 }
496
497 int
498 sk_marv_miibus_readreg(dev, phy, reg)
499 struct device *dev;
500 int phy, reg;
501 {
502 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
503 u_int16_t val;
504 int i;
505
506 if (phy != 0 ||
507 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
508 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
509 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
510 phy, reg));
511 return(0);
512 }
513
514 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
515 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
516
517 for (i = 0; i < SK_TIMEOUT; i++) {
518 DELAY(1);
519 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
520 if (val & YU_SMICR_READ_VALID)
521 break;
522 }
523
524 if (i == SK_TIMEOUT) {
525 printf("%s: phy failed to come ready\n",
526 sc_if->sk_dev.dv_xname);
527 return 0;
528 }
529
530 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
531 SK_TIMEOUT));
532
533 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
534
535 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
536 phy, reg, val));
537
538 return val;
539 }
540
541 void
542 sk_marv_miibus_writereg(dev, phy, reg, val)
543 struct device *dev;
544 int phy, reg, val;
545 {
546 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
547 int i;
548
549 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
550 phy, reg, val));
551
552 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
553 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
554 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
555
556 for (i = 0; i < SK_TIMEOUT; i++) {
557 DELAY(1);
558 if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
559 break;
560 }
561 }
562
563 void
564 sk_marv_miibus_statchg(dev)
565 struct device *dev;
566 {
567 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
568 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
569 }
570
571 #define SK_HASH_BITS 6
572
573 u_int32_t
574 sk_xmac_hash(caddr_t addr)
575 {
576 u_int32_t crc;
577
578 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
579 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
580 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
581 return (crc);
582 }
583
584 u_int32_t
585 sk_yukon_hash(caddr_t addr)
586 {
587 u_int32_t crc;
588
589 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
590 crc &= ((1 << SK_HASH_BITS) - 1);
591 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
592 return (crc);
593 }
594
595 void
596 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
597 {
598 int base = XM_RXFILT_ENTRY(slot);
599
600 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
601 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
602 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
603 }
604
605 void
606 sk_setmulti(struct sk_if_softc *sc_if)
607 {
608 struct sk_softc *sc = sc_if->sk_softc;
609 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
610 u_int32_t hashes[2] = { 0, 0 };
611 int h = 0, i;
612 struct ethercom *ec = &sc_if->sk_ethercom;
613 struct ether_multi *enm;
614 struct ether_multistep step;
615 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
616
617 /* First, zot all the existing filters. */
618 switch(sc->sk_type) {
619 case SK_GENESIS:
620 for (i = 1; i < XM_RXFILT_MAX; i++)
621 sk_setfilt(sc_if, (caddr_t)&dummy, i);
622
623 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
624 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
625 break;
626 case SK_YUKON:
627 case SK_YUKON_LITE:
628 case SK_YUKON_LP:
629 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
630 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
631 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
632 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
633 break;
634 }
635
636 /* Now program new ones. */
637 allmulti:
638 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
639 hashes[0] = 0xFFFFFFFF;
640 hashes[1] = 0xFFFFFFFF;
641 } else {
642 i = 1;
643 /* First find the tail of the list. */
644 ETHER_FIRST_MULTI(step, ec, enm);
645 while (enm != NULL) {
646 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
647 ETHER_ADDR_LEN)) {
648 ifp->if_flags |= IFF_ALLMULTI;
649 goto allmulti;
650 }
651 DPRINTFN(2,("multicast address %s\n",
652 ether_sprintf(enm->enm_addrlo)));
653 /*
654 * Program the first XM_RXFILT_MAX multicast groups
655 * into the perfect filter. For all others,
656 * use the hash table.
657 */
658 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
659 sk_setfilt(sc_if, enm->enm_addrlo, i);
660 i++;
661 }
662 else {
663 switch (sc->sk_type) {
664 case SK_GENESIS:
665 h = sk_xmac_hash(enm->enm_addrlo);
666 break;
667 case SK_YUKON:
668 case SK_YUKON_LITE:
669 case SK_YUKON_LP:
670 h = sk_yukon_hash(enm->enm_addrlo);
671 break;
672 }
673 if (h < 32)
674 hashes[0] |= (1 << h);
675 else
676 hashes[1] |= (1 << (h - 32));
677 }
678
679 ETHER_NEXT_MULTI(step, enm);
680 }
681 }
682
683 switch(sc->sk_type) {
684 case SK_GENESIS:
685 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
686 XM_MODE_RX_USE_PERFECT);
687 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
688 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
689 break;
690 case SK_YUKON:
691 case SK_YUKON_LITE:
692 case SK_YUKON_LP:
693 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
694 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
695 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
696 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
697 break;
698 }
699 }
700
701 int
702 sk_init_rx_ring(struct sk_if_softc *sc_if)
703 {
704 struct sk_chain_data *cd = &sc_if->sk_cdata;
705 struct sk_ring_data *rd = sc_if->sk_rdata;
706 int i;
707
708 bzero((char *)rd->sk_rx_ring,
709 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
710
711 for (i = 0; i < SK_RX_RING_CNT; i++) {
712 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
713 if (i == (SK_RX_RING_CNT - 1)) {
714 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
715 rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if, 0);
716 } else {
717 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
718 rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if,i+1);
719 }
720 }
721
722 for (i = 0; i < SK_RX_RING_CNT; i++) {
723 if (sk_newbuf(sc_if, i, NULL, NULL) == ENOBUFS) {
724 printf("%s: failed alloc of %dth mbuf\n",
725 sc_if->sk_dev.dv_xname, i);
726 return(ENOBUFS);
727 }
728 }
729 sc_if->sk_cdata.sk_rx_prod = 0;
730 sc_if->sk_cdata.sk_rx_cons = 0;
731
732 return(0);
733 }
734
735 int
736 sk_init_tx_ring(struct sk_if_softc *sc_if)
737 {
738 struct sk_chain_data *cd = &sc_if->sk_cdata;
739 struct sk_ring_data *rd = sc_if->sk_rdata;
740 int i;
741
742 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
743 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
744
745 for (i = 0; i < SK_TX_RING_CNT; i++) {
746 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
747 if (i == (SK_TX_RING_CNT - 1)) {
748 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
749 rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if, 0);
750 } else {
751 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
752 rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if,i+1);
753 }
754 }
755
756 sc_if->sk_cdata.sk_tx_prod = 0;
757 sc_if->sk_cdata.sk_tx_cons = 0;
758 sc_if->sk_cdata.sk_tx_cnt = 0;
759
760 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
761 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
762
763 return (0);
764 }
765
766 int
767 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
768 bus_dmamap_t dmamap)
769 {
770 struct sk_softc *sc = sc_if->sk_softc;
771 struct mbuf *m_new = NULL;
772 struct sk_chain *c;
773 struct sk_rx_desc *r;
774
775 if (dmamap == NULL) {
776 /* if (m) panic() */
777
778 if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1, MCLBYTES,
779 0, BUS_DMA_NOWAIT, &dmamap)) {
780 printf("%s: can't create recv map\n",
781 sc_if->sk_dev.dv_xname);
782 return(ENOMEM);
783 }
784 } else if (m == NULL)
785 bus_dmamap_unload(sc->sc_dmatag, dmamap);
786
787 sc_if->sk_cdata.sk_rx_map[i] = dmamap;
788
789 if (m == NULL) {
790 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
791 if (m_new == NULL) {
792 printf("%s: no memory for rx list -- "
793 "packet dropped!\n", sc_if->sk_dev.dv_xname);
794 return(ENOBUFS);
795 }
796
797 /* Allocate the jumbo buffer */
798 MCLGET(m_new, M_DONTWAIT);
799 if (!(m_new->m_flags & M_EXT)) {
800 m_freem(m_new);
801 return (ENOBUFS);
802 }
803
804 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
805
806 m_adj(m_new, ETHER_ALIGN);
807
808 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m_new,
809 BUS_DMA_NOWAIT))
810 return(ENOBUFS);
811 } else {
812 /*
813 * We're re-using a previously allocated mbuf;
814 * be sure to re-init pointers and lengths to
815 * default values.
816 */
817 m_new = m;
818 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
819 m_adj(m_new, ETHER_ALIGN);
820 m_new->m_data = m_new->m_ext.ext_buf;
821 }
822
823 c = &sc_if->sk_cdata.sk_rx_chain[i];
824 r = c->sk_desc;
825 c->sk_mbuf = m_new;
826 r->sk_data_lo = dmamap->dm_segs[0].ds_addr;
827 r->sk_ctl = dmamap->dm_segs[0].ds_len | SK_RXSTAT;
828
829 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
830
831 return(0);
832 }
833
834 /*
835 * Set media options.
836 */
837 int
838 sk_ifmedia_upd(struct ifnet *ifp)
839 {
840 struct sk_if_softc *sc_if = ifp->if_softc;
841
842 (void) sk_init(ifp);
843 mii_mediachg(&sc_if->sk_mii);
844 return(0);
845 }
846
847 /*
848 * Report current media status.
849 */
850 void
851 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
852 {
853 struct sk_if_softc *sc_if = ifp->if_softc;
854
855 mii_pollstat(&sc_if->sk_mii);
856 ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
857 ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
858 }
859
860 int
861 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
862 {
863 struct sk_if_softc *sc_if = ifp->if_softc;
864 struct sk_softc *sc = sc_if->sk_softc;
865 struct ifreq *ifr = (struct ifreq *) data;
866 /* struct ifaddr *ifa = (struct ifaddr *) data; */
867 struct mii_data *mii;
868 int s, error = 0;
869
870 /* DPRINTFN(2, ("sk_ioctl\n")); */
871
872 s = splnet();
873
874 switch(command) {
875
876 case SIOCSIFFLAGS:
877 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
878 if (ifp->if_flags & IFF_UP) {
879 if (ifp->if_flags & IFF_RUNNING &&
880 ifp->if_flags & IFF_PROMISC &&
881 !(sc_if->sk_if_flags & IFF_PROMISC)) {
882 switch(sc->sk_type) {
883 case SK_GENESIS:
884 SK_XM_SETBIT_4(sc_if, XM_MODE,
885 XM_MODE_RX_PROMISC);
886 break;
887 case SK_YUKON:
888 case SK_YUKON_LITE:
889 case SK_YUKON_LP:
890 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
891 YU_RCR_UFLEN | YU_RCR_MUFLEN);
892 break;
893 }
894 sk_setmulti(sc_if);
895 } else if (ifp->if_flags & IFF_RUNNING &&
896 !(ifp->if_flags & IFF_PROMISC) &&
897 sc_if->sk_if_flags & IFF_PROMISC) {
898 switch(sc->sk_type) {
899 case SK_GENESIS:
900 SK_XM_CLRBIT_4(sc_if, XM_MODE,
901 XM_MODE_RX_PROMISC);
902 break;
903 case SK_YUKON:
904 case SK_YUKON_LITE:
905 case SK_YUKON_LP:
906 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
907 YU_RCR_UFLEN | YU_RCR_MUFLEN);
908 break;
909 }
910
911 sk_setmulti(sc_if);
912 } else
913 (void) sk_init(ifp);
914 } else {
915 if (ifp->if_flags & IFF_RUNNING)
916 sk_stop(ifp,0);
917 }
918 sc_if->sk_if_flags = ifp->if_flags;
919 error = 0;
920 break;
921
922 case SIOCGIFMEDIA:
923 case SIOCSIFMEDIA:
924 DPRINTFN(2, ("sk_ioctl MEDIA\n"));
925 mii = &sc_if->sk_mii;
926 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
927 break;
928 default:
929 DPRINTFN(2, ("sk_ioctl ETHER\n"));
930 error = ether_ioctl(ifp, command, data);
931
932 if ( error == ENETRESET) {
933 if (ifp->if_flags & IFF_RUNNING) {
934 sk_setmulti(sc_if);
935 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
936 }
937 error = 0;
938 } else if ( error ) {
939 splx(s);
940 return error;
941 }
942 break;
943 }
944
945 splx(s);
946 return(error);
947 }
948
949 /*
950 * Lookup: Check the PCI vendor and device, and return a pointer to
951 * The structure if the IDs match against our list.
952 */
953
954 static const struct sk_product *
955 sk_lookup(const struct pci_attach_args *pa)
956 {
957 const struct sk_product *psk;
958
959 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
960 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
961 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
962 return (psk);
963 }
964 return (NULL);
965 }
966
967 /*
968 * Probe for a SysKonnect GEnesis chip.
969 */
970
971 int
972 skc_probe(struct device *parent, struct cfdata *match, void *aux)
973 {
974 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
975 const struct sk_product *psk;
976
977 if ((psk = sk_lookup(pa))) {
978 return(1);
979 }
980 return(0);
981 }
982
983 /*
984 * Force the GEnesis into reset, then bring it out of reset.
985 */
986 void sk_reset(struct sk_softc *sc)
987 {
988 DPRINTFN(2, ("sk_reset\n"));
989
990 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
991 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
992 if (SK_YUKON_FAMILY(sc->sk_type))
993 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
994
995 DELAY(1000);
996 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
997 DELAY(2);
998 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
999 if (SK_YUKON_FAMILY(sc->sk_type))
1000 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1001
1002 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1003 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1004 CSR_READ_2(sc, SK_LINK_CTRL)));
1005
1006 if (sc->sk_type == SK_GENESIS) {
1007 /* Configure packet arbiter */
1008 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1009 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1010 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1011 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1012 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1013 }
1014
1015 /* Enable RAM interface */
1016 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1017
1018 /*
1019 * Configure interrupt moderation. The moderation timer
1020 * defers interrupts specified in the interrupt moderation
1021 * timer mask based on the timeout specified in the interrupt
1022 * moderation timer init register. Each bit in the timer
1023 * register represents 18.825ns, so to specify a timeout in
1024 * microseconds, we have to multiply by 54.
1025 */
1026 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(100));
1027 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1028 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1029 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1030 }
1031
1032 int
1033 sk_probe(struct device *parent, struct cfdata *match, void *aux)
1034 {
1035 struct skc_attach_args *sa = aux;
1036
1037 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1038 return(0);
1039
1040 return (1);
1041 }
1042
1043 /*
1044 * Each XMAC chip is attached as a separate logical IP interface.
1045 * Single port cards will have only one logical interface of course.
1046 */
1047 void
1048 sk_attach(struct device *parent, struct device *self, void *aux)
1049 {
1050 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1051 struct sk_softc *sc = (struct sk_softc *)parent;
1052 struct skc_attach_args *sa = aux;
1053 struct sk_txmap_entry *entry;
1054 struct ifnet *ifp;
1055 bus_dma_segment_t seg;
1056 bus_dmamap_t dmamap;
1057 caddr_t kva;
1058 int i, rseg;
1059
1060 sc_if->sk_port = sa->skc_port;
1061 sc_if->sk_softc = sc;
1062 sc->sk_if[sa->skc_port] = sc_if;
1063
1064 if (sa->skc_port == SK_PORT_A)
1065 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1066 if (sa->skc_port == SK_PORT_B)
1067 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1068
1069 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1070
1071 /*
1072 * Get station address for this interface. Note that
1073 * dual port cards actually come with three station
1074 * addresses: one for each port, plus an extra. The
1075 * extra one is used by the SysKonnect driver software
1076 * as a 'virtual' station address for when both ports
1077 * are operating in failover mode. Currently we don't
1078 * use this extra address.
1079 */
1080 for (i = 0; i < ETHER_ADDR_LEN; i++)
1081 sc_if->sk_enaddr[i] =
1082 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1083
1084
1085 aprint_normal(": Ethernet address %s\n",
1086 ether_sprintf(sc_if->sk_enaddr));
1087
1088 /*
1089 * Set up RAM buffer addresses. The NIC will have a certain
1090 * amount of SRAM on it, somewhere between 512K and 2MB. We
1091 * need to divide this up a) between the transmitter and
1092 * receiver and b) between the two XMACs, if this is a
1093 * dual port NIC. Our algotithm is to divide up the memory
1094 * evenly so that everyone gets a fair share.
1095 */
1096 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1097 u_int32_t chunk, val;
1098
1099 chunk = sc->sk_ramsize / 2;
1100 val = sc->sk_rboff / sizeof(u_int64_t);
1101 sc_if->sk_rx_ramstart = val;
1102 val += (chunk / sizeof(u_int64_t));
1103 sc_if->sk_rx_ramend = val - 1;
1104 sc_if->sk_tx_ramstart = val;
1105 val += (chunk / sizeof(u_int64_t));
1106 sc_if->sk_tx_ramend = val - 1;
1107 } else {
1108 u_int32_t chunk, val;
1109
1110 chunk = sc->sk_ramsize / 4;
1111 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1112 sizeof(u_int64_t);
1113 sc_if->sk_rx_ramstart = val;
1114 val += (chunk / sizeof(u_int64_t));
1115 sc_if->sk_rx_ramend = val - 1;
1116 sc_if->sk_tx_ramstart = val;
1117 val += (chunk / sizeof(u_int64_t));
1118 sc_if->sk_tx_ramend = val - 1;
1119 }
1120
1121 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1122 " tx_ramstart=%#x tx_ramend=%#x\n",
1123 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1124 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1125
1126 /* Read and save PHY type and set PHY address */
1127 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1128 switch (sc_if->sk_phytype) {
1129 case SK_PHYTYPE_XMAC:
1130 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1131 break;
1132 case SK_PHYTYPE_BCOM:
1133 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1134 break;
1135 case SK_PHYTYPE_MARV_COPPER:
1136 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1137 break;
1138 default:
1139 aprint_error("%s: unsupported PHY type: %d\n",
1140 sc->sk_dev.dv_xname, sc_if->sk_phytype);
1141 return;
1142 }
1143
1144 /* Allocate the descriptor queues. */
1145 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1146 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1147 aprint_error("%s: can't alloc rx buffers\n",
1148 sc->sk_dev.dv_xname);
1149 goto fail;
1150 }
1151 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1152 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1153 aprint_error("%s: can't map dma buffers (%lu bytes)\n",
1154 sc_if->sk_dev.dv_xname,
1155 (u_long) sizeof(struct sk_ring_data));
1156 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1157 goto fail;
1158 }
1159 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1160 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1161 &sc_if->sk_ring_map)) {
1162 aprint_error("%s: can't create dma map\n",
1163 sc_if->sk_dev.dv_xname);
1164 bus_dmamem_unmap(sc->sc_dmatag, kva,
1165 sizeof(struct sk_ring_data));
1166 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1167 goto fail;
1168 }
1169 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1170 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1171 aprint_error("%s: can't load dma map\n",
1172 sc_if->sk_dev.dv_xname);
1173 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1174 bus_dmamem_unmap(sc->sc_dmatag, kva,
1175 sizeof(struct sk_ring_data));
1176 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1177 goto fail;
1178 }
1179
1180 for (i = 0; i < SK_RX_RING_CNT; i++)
1181 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1182
1183 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1184 for (i = 0; i < SK_TX_RING_CNT; i++) {
1185 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1186
1187 if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, SK_NTXSEG,
1188 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap)) {
1189 aprint_error("%s: Can't create TX dmamap\n",
1190 sc_if->sk_dev.dv_xname);
1191 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1192 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1193 bus_dmamem_unmap(sc->sc_dmatag, kva,
1194 sizeof(struct sk_ring_data));
1195 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1196 goto fail;
1197 }
1198
1199 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1200 if (!entry) {
1201 aprint_error("%s: Can't alloc txmap entry\n",
1202 sc_if->sk_dev.dv_xname);
1203 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1204 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1205 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1206 bus_dmamem_unmap(sc->sc_dmatag, kva,
1207 sizeof(struct sk_ring_data));
1208 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1209 goto fail;
1210 }
1211 entry->dmamap = dmamap;
1212 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1213 }
1214
1215 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1216 bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1217
1218 /* XXX TLS It's not clear what's wrong with the Jumbo MTU
1219 XXX TLS support in this driver, so we don't enable it. */
1220
1221 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1222
1223 ifp = &sc_if->sk_ethercom.ec_if;
1224 ifp->if_softc = sc_if;
1225 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1226 ifp->if_ioctl = sk_ioctl;
1227 ifp->if_start = sk_start;
1228 ifp->if_stop = sk_stop;
1229 ifp->if_init = sk_init;
1230 ifp->if_watchdog = sk_watchdog;
1231 ifp->if_capabilities = 0;
1232 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1233 IFQ_SET_READY(&ifp->if_snd);
1234 strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1235
1236 /*
1237 * Do miibus setup.
1238 */
1239 switch (sc->sk_type) {
1240 case SK_GENESIS:
1241 sk_init_xmac(sc_if);
1242 break;
1243 case SK_YUKON:
1244 case SK_YUKON_LITE:
1245 case SK_YUKON_LP:
1246 sk_init_yukon(sc_if);
1247 break;
1248 default:
1249 panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
1250 sc->sk_type);
1251 }
1252
1253 DPRINTFN(2, ("sk_attach: 1\n"));
1254
1255 sc_if->sk_mii.mii_ifp = ifp;
1256 switch (sc->sk_type) {
1257 case SK_GENESIS:
1258 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1259 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1260 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1261 break;
1262 case SK_YUKON:
1263 case SK_YUKON_LITE:
1264 case SK_YUKON_LP:
1265 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1266 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1267 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1268 break;
1269 }
1270
1271 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1272 sk_ifmedia_upd, sk_ifmedia_sts);
1273 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1274 MII_OFFSET_ANY, 0);
1275 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1276 printf("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1277 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1278 0, NULL);
1279 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1280 }
1281 else
1282 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1283
1284 callout_init(&sc_if->sk_tick_ch);
1285 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1286
1287 DPRINTFN(2, ("sk_attach: 1\n"));
1288
1289 /*
1290 * Call MI attach routines.
1291 */
1292 if_attach(ifp);
1293
1294 ether_ifattach(ifp, sc_if->sk_enaddr);
1295
1296 #if NRND > 0
1297 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1298 RND_TYPE_NET, 0);
1299 #endif
1300
1301 DPRINTFN(2, ("sk_attach: end\n"));
1302
1303 return;
1304
1305 fail:
1306 sc->sk_if[sa->skc_port] = NULL;
1307 }
1308
1309 int
1310 skcprint(void *aux, const char *pnp)
1311 {
1312 struct skc_attach_args *sa = aux;
1313
1314 if (pnp)
1315 aprint_normal("sk port %c at %s",
1316 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1317 else
1318 aprint_normal(" port %c",
1319 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1320 return (UNCONF);
1321 }
1322
1323 /*
1324 * Attach the interface. Allocate softc structures, do ifmedia
1325 * setup and ethernet/BPF attach.
1326 */
1327 void
1328 skc_attach(struct device *parent, struct device *self, void *aux)
1329 {
1330 struct sk_softc *sc = (struct sk_softc *)self;
1331 struct pci_attach_args *pa = aux;
1332 struct skc_attach_args skca;
1333 pci_chipset_tag_t pc = pa->pa_pc;
1334 pcireg_t memtype;
1335 pci_intr_handle_t ih;
1336 const char *intrstr = NULL;
1337 bus_addr_t iobase;
1338 bus_size_t iosize;
1339 int s;
1340 u_int32_t command;
1341 char *revstr;
1342
1343 DPRINTFN(2, ("begin skc_attach\n"));
1344
1345 s = splnet();
1346
1347 /*
1348 * Handle power management nonsense.
1349 */
1350 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1351
1352 if (command == 0x01) {
1353 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1354 if (command & SK_PSTATE_MASK) {
1355 u_int32_t iobase, membase, irq;
1356
1357 /* Save important PCI config data. */
1358 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1359 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1360 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1361
1362 /* Reset the power state. */
1363 aprint_normal("%s chip is in D%d power mode "
1364 "-- setting to D0\n", sc->sk_dev.dv_xname,
1365 command & SK_PSTATE_MASK);
1366 command &= 0xFFFFFFFC;
1367 pci_conf_write(pc, pa->pa_tag,
1368 SK_PCI_PWRMGMTCTRL, command);
1369
1370 /* Restore PCI config data. */
1371 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1372 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1373 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1374 }
1375 }
1376
1377 /*
1378 * Map control/status registers.
1379 */
1380 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1381 command |= PCI_COMMAND_IO_ENABLE |
1382 PCI_COMMAND_MEM_ENABLE |
1383 PCI_COMMAND_MASTER_ENABLE;
1384 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1385 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1386
1387 #ifdef SK_USEIOSPACE
1388 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1389 aprint_error(": failed to enable I/O ports!\n");
1390 goto fail;
1391 }
1392 /*
1393 * Map control/status registers.
1394 */
1395 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1396 &iobase, &iosize)) {
1397 aprint_error(": can't find i/o space\n");
1398 goto fail;
1399 }
1400 #else
1401 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1402 aprint_error(": failed to enable memory mapping!\n");
1403 goto fail;
1404 }
1405 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1406 switch (memtype) {
1407 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1408 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1409 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1410 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1411 &iobase, &iosize) == 0)
1412 break;
1413 default:
1414 aprint_error("%s: can't find mem space\n",
1415 sc->sk_dev.dv_xname);
1416 return;
1417 }
1418
1419 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1420 #endif
1421 sc->sc_dmatag = pa->pa_dmat;
1422
1423 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1424 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1425
1426 /* bail out here if chip is not recognized */
1427 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1428 aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
1429 goto fail;
1430 }
1431 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1432
1433 /* Allocate interrupt */
1434 if (pci_intr_map(pa, &ih)) {
1435 aprint_error(": couldn't map interrupt\n");
1436 goto fail;
1437 }
1438
1439 intrstr = pci_intr_string(pc, ih);
1440 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1441 if (sc->sk_intrhand == NULL) {
1442 aprint_error(": couldn't establish interrupt");
1443 if (intrstr != NULL)
1444 aprint_normal(" at %s", intrstr);
1445 goto fail;
1446 }
1447 aprint_normal(": %s\n", intrstr);
1448
1449 /* Reset the adapter. */
1450 sk_reset(sc);
1451
1452 /* Read and save vital product data from EEPROM. */
1453 sk_vpd_read(sc);
1454
1455 if (sc->sk_type == SK_GENESIS) {
1456 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1457 /* Read and save RAM size and RAMbuffer offset */
1458 switch(val) {
1459 case SK_RAMSIZE_512K_64:
1460 sc->sk_ramsize = 0x80000;
1461 sc->sk_rboff = SK_RBOFF_0;
1462 break;
1463 case SK_RAMSIZE_1024K_64:
1464 sc->sk_ramsize = 0x100000;
1465 sc->sk_rboff = SK_RBOFF_80000;
1466 break;
1467 case SK_RAMSIZE_1024K_128:
1468 sc->sk_ramsize = 0x100000;
1469 sc->sk_rboff = SK_RBOFF_0;
1470 break;
1471 case SK_RAMSIZE_2048K_128:
1472 sc->sk_ramsize = 0x200000;
1473 sc->sk_rboff = SK_RBOFF_0;
1474 break;
1475 default:
1476 aprint_error("%s: unknown ram size: %d\n",
1477 sc->sk_dev.dv_xname, val);
1478 goto fail;
1479 break;
1480 }
1481
1482 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1483 sc->sk_ramsize, sc->sk_ramsize / 1024,
1484 sc->sk_rboff));
1485 } else {
1486 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1487 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1488 sc->sk_rboff = SK_RBOFF_0;
1489
1490 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1491 sc->sk_ramsize / 1024, sc->sk_ramsize,
1492 sc->sk_rboff));
1493 }
1494
1495 /* Read and save physical media type */
1496 switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1497 case SK_PMD_1000BASESX:
1498 sc->sk_pmd = IFM_1000_SX;
1499 break;
1500 case SK_PMD_1000BASELX:
1501 sc->sk_pmd = IFM_1000_LX;
1502 break;
1503 case SK_PMD_1000BASECX:
1504 sc->sk_pmd = IFM_1000_CX;
1505 break;
1506 case SK_PMD_1000BASETX:
1507 sc->sk_pmd = IFM_1000_T;
1508 break;
1509 default:
1510 aprint_error("%s: unknown media type: 0x%x\n",
1511 sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
1512 goto fail;
1513 }
1514
1515 /* determine whether to name it with vpd or just make it up */
1516 /* Marvell Yukon VPD's can freqently be bogus */
1517
1518 switch (pa->pa_id) {
1519 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1520 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1521 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1522 case PCI_PRODUCT_3COM_3C940:
1523 case PCI_PRODUCT_DLINK_DGE530T:
1524 case PCI_PRODUCT_LINKSYS_EG1032:
1525 case PCI_PRODUCT_LINKSYS_EG1064:
1526 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1527 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1528 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1529 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1530 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1531 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1532 sc->sk_name = sc->sk_vpd_prodname;
1533 break;
1534 case PCI_ID_CODE(PCI_VENDOR_GALILEO,PCI_PRODUCT_GALILEO_SKNET):
1535 /* whoops yukon vpd prodname bears no resemblance to reality */
1536 switch (sc->sk_type) {
1537 case SK_GENESIS:
1538 sc->sk_name = sc->sk_vpd_prodname;
1539 break;
1540 case SK_YUKON:
1541 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1542 break;
1543 case SK_YUKON_LITE:
1544 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1545 break;
1546 case SK_YUKON_LP:
1547 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1548 break;
1549 default:
1550 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1551 }
1552
1553 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1554
1555 if ( sc->sk_type == SK_YUKON ) {
1556 uint32_t flashaddr;
1557 uint8_t testbyte;
1558
1559 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1560
1561 /* test Flash-Address Register */
1562 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1563 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1564
1565 if (testbyte != 0) {
1566 /* this is yukon lite Rev. A0 */
1567 sc->sk_type = SK_YUKON_LITE;
1568 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1569 /* restore Flash-Address Register */
1570 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1571 }
1572 }
1573 break;
1574 default:
1575 sc->sk_name = "Unkown Marvell";
1576 }
1577
1578
1579 if ( sc->sk_type == SK_YUKON_LITE ) {
1580 switch (sc->sk_rev) {
1581 case SK_YUKON_LITE_REV_A0:
1582 revstr = "A0";
1583 break;
1584 case SK_YUKON_LITE_REV_A1:
1585 revstr = "A1";
1586 break;
1587 case SK_YUKON_LITE_REV_A3:
1588 revstr = "A3";
1589 break;
1590 default:
1591 revstr = "";
1592 }
1593 } else {
1594 revstr = "";
1595 }
1596
1597 /* Announce the product name. */
1598 aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
1599 sc->sk_name, revstr, sc->sk_rev);
1600
1601 skca.skc_port = SK_PORT_A;
1602 (void)config_found(&sc->sk_dev, &skca, skcprint);
1603
1604 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1605 skca.skc_port = SK_PORT_B;
1606 (void)config_found(&sc->sk_dev, &skca, skcprint);
1607 }
1608
1609 /* Turn on the 'driver is loaded' LED. */
1610 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1611
1612 fail:
1613 splx(s);
1614 }
1615
1616 int
1617 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1618 {
1619 struct sk_softc *sc = sc_if->sk_softc;
1620 struct sk_tx_desc *f = NULL;
1621 u_int32_t frag, cur, cnt = 0;
1622 int i;
1623 struct sk_txmap_entry *entry;
1624 bus_dmamap_t txmap;
1625
1626 DPRINTFN(3, ("sk_encap\n"));
1627
1628 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1629 if (entry == NULL) {
1630 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1631 return ENOBUFS;
1632 }
1633 txmap = entry->dmamap;
1634
1635 cur = frag = *txidx;
1636
1637 #ifdef SK_DEBUG
1638 if (skdebug >= 3)
1639 sk_dump_mbuf(m_head);
1640 #endif
1641
1642 /*
1643 * Start packing the mbufs in this chain into
1644 * the fragment pointers. Stop when we run out
1645 * of fragments or hit the end of the mbuf chain.
1646 */
1647 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1648 BUS_DMA_NOWAIT)) {
1649 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1650 return(ENOBUFS);
1651 }
1652
1653 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1654
1655 /* Sync the DMA map. */
1656 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1657 BUS_DMASYNC_PREWRITE);
1658
1659 for (i = 0; i < txmap->dm_nsegs; i++) {
1660 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1661 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1662 return(ENOBUFS);
1663 }
1664 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1665 f->sk_data_lo = txmap->dm_segs[i].ds_addr;
1666 f->sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1667 if (cnt == 0)
1668 f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1669 else
1670 f->sk_ctl |= SK_TXCTL_OWN;
1671
1672 cur = frag;
1673 SK_INC(frag, SK_TX_RING_CNT);
1674 cnt++;
1675 }
1676
1677 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1678 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1679
1680 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1681 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1682 SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1683
1684 /* Sync descriptors before handing to chip */
1685 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1686 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1687
1688 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1689
1690 /* Sync first descriptor to hand it off */
1691 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1692
1693 sc_if->sk_cdata.sk_tx_cnt += cnt;
1694
1695 #ifdef SK_DEBUG
1696 if (skdebug >= 3) {
1697 struct sk_tx_desc *desc;
1698 u_int32_t idx;
1699 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1700 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1701 sk_dump_txdesc(desc, idx);
1702 }
1703 }
1704 #endif
1705
1706 *txidx = frag;
1707
1708 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1709
1710 return(0);
1711 }
1712
1713 void
1714 sk_start(struct ifnet *ifp)
1715 {
1716 struct sk_if_softc *sc_if = ifp->if_softc;
1717 struct sk_softc *sc = sc_if->sk_softc;
1718 struct mbuf *m_head = NULL;
1719 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1720 int pkts = 0;
1721
1722 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1723 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1724
1725 while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1726
1727 IFQ_POLL(&ifp->if_snd, m_head);
1728 if (m_head == NULL)
1729 break;
1730
1731 /*
1732 * Pack the data into the transmit ring. If we
1733 * don't have room, set the OACTIVE flag and wait
1734 * for the NIC to drain the ring.
1735 */
1736 if (sk_encap(sc_if, m_head, &idx)) {
1737 ifp->if_flags |= IFF_OACTIVE;
1738 break;
1739 }
1740
1741 /* now we are committed to transmit the packet */
1742 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1743 pkts++;
1744
1745 /*
1746 * If there's a BPF listener, bounce a copy of this frame
1747 * to him.
1748 */
1749 #if NBPFILTER > 0
1750 if (ifp->if_bpf)
1751 bpf_mtap(ifp->if_bpf, m_head);
1752 #endif
1753 }
1754 if (pkts == 0)
1755 return;
1756
1757 /* Transmit */
1758 sc_if->sk_cdata.sk_tx_prod = idx;
1759 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1760
1761 /* Set a timeout in case the chip goes out to lunch. */
1762 ifp->if_timer = 5;
1763 }
1764
1765
1766 void
1767 sk_watchdog(struct ifnet *ifp)
1768 {
1769 struct sk_if_softc *sc_if = ifp->if_softc;
1770
1771 printf("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1772 (void) sk_init(ifp);
1773 }
1774
1775 void
1776 sk_shutdown(void * v)
1777 {
1778 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
1779 struct sk_softc *sc = sc_if->sk_softc;
1780 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1781
1782 DPRINTFN(2, ("sk_shutdown\n"));
1783 sk_stop(ifp,1);
1784
1785 /* Turn off the 'driver is loaded' LED. */
1786 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1787
1788 /*
1789 * Reset the GEnesis controller. Doing this should also
1790 * assert the resets on the attached XMAC(s).
1791 */
1792 sk_reset(sc);
1793 }
1794
1795 void
1796 sk_rxeof(struct sk_if_softc *sc_if)
1797 {
1798 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1799 struct mbuf *m;
1800 struct sk_chain *cur_rx;
1801 struct sk_rx_desc *cur_desc;
1802 int i, cur, total_len = 0;
1803 u_int32_t rxstat;
1804 bus_dmamap_t dmamap;
1805
1806 i = sc_if->sk_cdata.sk_rx_prod;
1807
1808 DPRINTFN(3, ("sk_rxeof %d\n", i));
1809
1810 for (;;) {
1811 cur = i;
1812
1813 /* Sync the descriptor */
1814 SK_CDRXSYNC(sc_if, cur,
1815 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1816
1817 if (sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl & SK_RXCTL_OWN) {
1818 /* Invalidate the descriptor -- it's not ready yet */
1819 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
1820 sc_if->sk_cdata.sk_rx_prod = i;
1821 break;
1822 }
1823
1824 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1825 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
1826 dmamap = sc_if->sk_cdata.sk_rx_map[cur];
1827
1828 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1829 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1830
1831 rxstat = cur_desc->sk_xmac_rxstat;
1832 m = cur_rx->sk_mbuf;
1833 cur_rx->sk_mbuf = NULL;
1834 total_len = SK_RXBYTES(cur_desc->sk_ctl);
1835
1836 sc_if->sk_cdata.sk_rx_map[cur] = 0;
1837
1838 SK_INC(i, SK_RX_RING_CNT);
1839
1840 if (rxstat & XM_RXSTAT_ERRFRAME) {
1841 ifp->if_ierrors++;
1842 sk_newbuf(sc_if, cur, m, dmamap);
1843 continue;
1844 }
1845
1846 /*
1847 * Try to allocate a new jumbo buffer. If that
1848 * fails, copy the packet to mbufs and put the
1849 * jumbo buffer back in the ring so it can be
1850 * re-used. If allocating mbufs fails, then we
1851 * have to drop the packet.
1852 */
1853 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1854 struct mbuf *m0;
1855 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1856 total_len + ETHER_ALIGN, 0, ifp, NULL);
1857 sk_newbuf(sc_if, cur, m, dmamap);
1858 if (m0 == NULL) {
1859 printf("%s: no receive buffers "
1860 "available -- packet dropped!\n",
1861 sc_if->sk_dev.dv_xname);
1862 ifp->if_ierrors++;
1863 continue;
1864 }
1865 m_adj(m0, ETHER_ALIGN);
1866 m = m0;
1867 } else {
1868 m->m_pkthdr.rcvif = ifp;
1869 m->m_pkthdr.len = m->m_len = total_len;
1870 }
1871
1872 ifp->if_ipackets++;
1873
1874 #if NBPFILTER > 0
1875 if (ifp->if_bpf)
1876 bpf_mtap(ifp->if_bpf, m);
1877 #endif
1878 /* pass it on. */
1879 (*ifp->if_input)(ifp, m);
1880 }
1881 }
1882
1883 void
1884 sk_txeof(struct sk_if_softc *sc_if)
1885 {
1886 struct sk_softc *sc = sc_if->sk_softc;
1887 struct sk_tx_desc *cur_tx = NULL;
1888 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1889 u_int32_t idx;
1890 struct sk_txmap_entry *entry;
1891
1892 DPRINTFN(3, ("sk_txeof\n"));
1893
1894 /*
1895 * Go through our tx ring and free mbufs for those
1896 * frames that have been sent.
1897 */
1898 idx = sc_if->sk_cdata.sk_tx_cons;
1899 while(idx != sc_if->sk_cdata.sk_tx_prod) {
1900 SK_CDTXSYNC(sc_if, idx, 1,
1901 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1902
1903 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1904 #ifdef SK_DEBUG
1905 if (skdebug >= 3)
1906 sk_dump_txdesc(cur_tx, idx);
1907 #endif
1908 if (cur_tx->sk_ctl & SK_TXCTL_OWN) {
1909 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
1910 break;
1911 }
1912 if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
1913 ifp->if_opackets++;
1914 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1915 entry = sc_if->sk_cdata.sk_tx_map[idx];
1916
1917 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1918 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1919
1920 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1921 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1922
1923 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1924 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
1925 link);
1926 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
1927 }
1928 sc_if->sk_cdata.sk_tx_cnt--;
1929 SK_INC(idx, SK_TX_RING_CNT);
1930 }
1931 if (sc_if->sk_cdata.sk_tx_cnt == 0)
1932 ifp->if_timer = 0;
1933 else /* nudge chip to keep tx ring moving */
1934 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1935
1936 sc_if->sk_cdata.sk_tx_cons = idx;
1937
1938 if (cur_tx != NULL)
1939 ifp->if_flags &= ~IFF_OACTIVE;
1940 }
1941
1942 void
1943 sk_tick(void *xsc_if)
1944 {
1945 struct sk_if_softc *sc_if = xsc_if;
1946 struct mii_data *mii = &sc_if->sk_mii;
1947 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1948 int i;
1949
1950 DPRINTFN(3, ("sk_tick\n"));
1951
1952 if (!(ifp->if_flags & IFF_UP))
1953 return;
1954
1955 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
1956 sk_intr_bcom(sc_if);
1957 return;
1958 }
1959
1960 /*
1961 * According to SysKonnect, the correct way to verify that
1962 * the link has come back up is to poll bit 0 of the GPIO
1963 * register three times. This pin has the signal from the
1964 * link sync pin connected to it; if we read the same link
1965 * state 3 times in a row, we know the link is up.
1966 */
1967 for (i = 0; i < 3; i++) {
1968 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
1969 break;
1970 }
1971
1972 if (i != 3) {
1973 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1974 return;
1975 }
1976
1977 /* Turn the GP0 interrupt back on. */
1978 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1979 SK_XM_READ_2(sc_if, XM_ISR);
1980 mii_tick(mii);
1981 mii_pollstat(mii);
1982 callout_stop(&sc_if->sk_tick_ch);
1983 }
1984
1985 void
1986 sk_intr_bcom(struct sk_if_softc *sc_if)
1987 {
1988 struct mii_data *mii = &sc_if->sk_mii;
1989 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1990 int status;
1991
1992
1993 DPRINTFN(3, ("sk_intr_bcom\n"));
1994
1995 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1996
1997 /*
1998 * Read the PHY interrupt register to make sure
1999 * we clear any pending interrupts.
2000 */
2001 status = sk_xmac_miibus_readreg((struct device *)sc_if,
2002 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2003
2004 if (!(ifp->if_flags & IFF_RUNNING)) {
2005 sk_init_xmac(sc_if);
2006 return;
2007 }
2008
2009 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2010 int lstat;
2011 lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
2012 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2013
2014 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2015 mii_mediachg(mii);
2016 /* Turn off the link LED. */
2017 SK_IF_WRITE_1(sc_if, 0,
2018 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2019 sc_if->sk_link = 0;
2020 } else if (status & BRGPHY_ISR_LNK_CHG) {
2021 sk_xmac_miibus_writereg((struct device *)sc_if,
2022 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2023 mii_tick(mii);
2024 sc_if->sk_link = 1;
2025 /* Turn on the link LED. */
2026 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2027 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2028 SK_LINKLED_BLINK_OFF);
2029 mii_pollstat(mii);
2030 } else {
2031 mii_tick(mii);
2032 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2033 }
2034 }
2035
2036 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2037 }
2038
2039 void
2040 sk_intr_xmac(struct sk_if_softc *sc_if)
2041 {
2042 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2043
2044 DPRINTFN(3, ("sk_intr_xmac\n"));
2045
2046 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2047 if (status & XM_ISR_GP0_SET) {
2048 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2049 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2050 }
2051
2052 if (status & XM_ISR_AUTONEG_DONE) {
2053 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2054 }
2055 }
2056
2057 if (status & XM_IMR_TX_UNDERRUN)
2058 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2059
2060 if (status & XM_IMR_RX_OVERRUN)
2061 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2062 }
2063
2064 void
2065 sk_intr_yukon(sc_if)
2066 struct sk_if_softc *sc_if;
2067 {
2068 int status;
2069
2070 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2071
2072 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2073 }
2074
2075 int
2076 sk_intr(void *xsc)
2077 {
2078 struct sk_softc *sc = xsc;
2079 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2080 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2081 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2082 u_int32_t status;
2083 int claimed = 0;
2084
2085 if (sc_if0 != NULL)
2086 ifp0 = &sc_if0->sk_ethercom.ec_if;
2087 if (sc_if1 != NULL)
2088 ifp1 = &sc_if1->sk_ethercom.ec_if;
2089
2090 for (;;) {
2091 status = CSR_READ_4(sc, SK_ISSR);
2092 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2093
2094 if (!(status & sc->sk_intrmask))
2095 break;
2096
2097 claimed = 1;
2098
2099 /* Handle receive interrupts first. */
2100 if (status & SK_ISR_RX1_EOF) {
2101 sk_rxeof(sc_if0);
2102 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2103 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2104 }
2105 if (status & SK_ISR_RX2_EOF) {
2106 sk_rxeof(sc_if1);
2107 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2108 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2109 }
2110
2111 /* Then transmit interrupts. */
2112 if (status & SK_ISR_TX1_S_EOF) {
2113 sk_txeof(sc_if0);
2114 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2115 SK_TXBMU_CLR_IRQ_EOF);
2116 }
2117 if (status & SK_ISR_TX2_S_EOF) {
2118 sk_txeof(sc_if1);
2119 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2120 SK_TXBMU_CLR_IRQ_EOF);
2121 }
2122
2123 /* Then MAC interrupts. */
2124 if (status & SK_ISR_MAC1 && (ifp0->if_flags & IFF_RUNNING)) {
2125 if (sc->sk_type == SK_GENESIS)
2126 sk_intr_xmac(sc_if0);
2127 else
2128 sk_intr_yukon(sc_if0);
2129 }
2130
2131 if (status & SK_ISR_MAC2 && (ifp1->if_flags & IFF_RUNNING)) {
2132 if (sc->sk_type == SK_GENESIS)
2133 sk_intr_xmac(sc_if1);
2134 else
2135 sk_intr_yukon(sc_if1);
2136
2137 }
2138
2139 if (status & SK_ISR_EXTERNAL_REG) {
2140 if (ifp0 != NULL &&
2141 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2142 sk_intr_bcom(sc_if0);
2143
2144 if (ifp1 != NULL &&
2145 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2146 sk_intr_bcom(sc_if1);
2147 }
2148 }
2149
2150 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2151
2152 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2153 sk_start(ifp0);
2154 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2155 sk_start(ifp1);
2156
2157 return (claimed);
2158 }
2159
2160 void
2161 sk_init_xmac(struct sk_if_softc *sc_if)
2162 {
2163 struct sk_softc *sc = sc_if->sk_softc;
2164 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2165 static const struct sk_bcom_hack bhack[] = {
2166 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2167 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2168 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2169 { 0, 0 } };
2170
2171 DPRINTFN(1, ("sk_init_xmac\n"));
2172
2173 /* Unreset the XMAC. */
2174 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2175 DELAY(1000);
2176
2177 /* Reset the XMAC's internal state. */
2178 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2179
2180 /* Save the XMAC II revision */
2181 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2182
2183 /*
2184 * Perform additional initialization for external PHYs,
2185 * namely for the 1000baseTX cards that use the XMAC's
2186 * GMII mode.
2187 */
2188 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2189 int i = 0;
2190 u_int32_t val;
2191
2192 /* Take PHY out of reset. */
2193 val = sk_win_read_4(sc, SK_GPIO);
2194 if (sc_if->sk_port == SK_PORT_A)
2195 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2196 else
2197 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2198 sk_win_write_4(sc, SK_GPIO, val);
2199
2200 /* Enable GMII mode on the XMAC. */
2201 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2202
2203 sk_xmac_miibus_writereg((struct device *)sc_if,
2204 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2205 DELAY(10000);
2206 sk_xmac_miibus_writereg((struct device *)sc_if,
2207 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2208
2209 /*
2210 * Early versions of the BCM5400 apparently have
2211 * a bug that requires them to have their reserved
2212 * registers initialized to some magic values. I don't
2213 * know what the numbers do, I'm just the messenger.
2214 */
2215 if (sk_xmac_miibus_readreg((struct device *)sc_if,
2216 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2217 while(bhack[i].reg) {
2218 sk_xmac_miibus_writereg((struct device *)sc_if,
2219 SK_PHYADDR_BCOM, bhack[i].reg,
2220 bhack[i].val);
2221 i++;
2222 }
2223 }
2224 }
2225
2226 /* Set station address */
2227 SK_XM_WRITE_2(sc_if, XM_PAR0,
2228 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2229 SK_XM_WRITE_2(sc_if, XM_PAR1,
2230 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2231 SK_XM_WRITE_2(sc_if, XM_PAR2,
2232 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2233 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2234
2235 if (ifp->if_flags & IFF_PROMISC) {
2236 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2237 } else {
2238 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2239 }
2240
2241 if (ifp->if_flags & IFF_BROADCAST) {
2242 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2243 } else {
2244 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2245 }
2246
2247 /* We don't need the FCS appended to the packet. */
2248 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2249
2250 /* We want short frames padded to 60 bytes. */
2251 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2252
2253 /*
2254 * Enable the reception of all error frames. This is is
2255 * a necessary evil due to the design of the XMAC. The
2256 * XMAC's receive FIFO is only 8K in size, however jumbo
2257 * frames can be up to 9000 bytes in length. When bad
2258 * frame filtering is enabled, the XMAC's RX FIFO operates
2259 * in 'store and forward' mode. For this to work, the
2260 * entire frame has to fit into the FIFO, but that means
2261 * that jumbo frames larger than 8192 bytes will be
2262 * truncated. Disabling all bad frame filtering causes
2263 * the RX FIFO to operate in streaming mode, in which
2264 * case the XMAC will start transfering frames out of the
2265 * RX FIFO as soon as the FIFO threshold is reached.
2266 */
2267 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2268 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2269 XM_MODE_RX_INRANGELEN);
2270
2271 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2272 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2273 else
2274 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2275
2276 /*
2277 * Bump up the transmit threshold. This helps hold off transmit
2278 * underruns when we're blasting traffic from both ports at once.
2279 */
2280 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2281
2282 /* Set multicast filter */
2283 sk_setmulti(sc_if);
2284
2285 /* Clear and enable interrupts */
2286 SK_XM_READ_2(sc_if, XM_ISR);
2287 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2288 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2289 else
2290 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2291
2292 /* Configure MAC arbiter */
2293 switch(sc_if->sk_xmac_rev) {
2294 case XM_XMAC_REV_B2:
2295 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2296 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2297 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2298 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2299 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2300 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2301 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2302 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2303 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2304 break;
2305 case XM_XMAC_REV_C1:
2306 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2307 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2308 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2309 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2310 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2311 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2312 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2313 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2314 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2315 break;
2316 default:
2317 break;
2318 }
2319 sk_win_write_2(sc, SK_MACARB_CTL,
2320 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2321
2322 sc_if->sk_link = 1;
2323 }
2324
2325 void sk_init_yukon(sc_if)
2326 struct sk_if_softc *sc_if;
2327 {
2328 u_int32_t /*mac, */phy;
2329 u_int16_t reg;
2330 int i;
2331
2332 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2333 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2334
2335 /* GMAC and GPHY Reset */
2336 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2337
2338 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2339
2340 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2341 DELAY(1000);
2342 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2343 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2344 DELAY(1000);
2345
2346
2347 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2348
2349 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2350 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2351
2352 switch(sc_if->sk_softc->sk_pmd) {
2353 case IFM_1000_SX:
2354 case IFM_1000_LX:
2355 phy |= SK_GPHY_FIBER;
2356 break;
2357
2358 case IFM_1000_CX:
2359 case IFM_1000_T:
2360 phy |= SK_GPHY_COPPER;
2361 break;
2362 }
2363
2364 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2365
2366 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2367 DELAY(1000);
2368 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2369 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2370 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2371
2372 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2373 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2374
2375 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2376
2377 /* unused read of the interrupt source register */
2378 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2379 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2380
2381 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2382 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2383 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2384
2385 /* MIB Counter Clear Mode set */
2386 reg |= YU_PAR_MIB_CLR;
2387 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2388 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2389 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2390
2391 /* MIB Counter Clear Mode clear */
2392 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2393 reg &= ~YU_PAR_MIB_CLR;
2394 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2395
2396 /* receive control reg */
2397 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2398 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2399 YU_RCR_CRCR);
2400
2401 /* transmit parameter register */
2402 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2403 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2404 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2405
2406 /* serial mode register */
2407 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2408 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2409 YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e));
2410
2411 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2412 /* Setup Yukon's address */
2413 for (i = 0; i < 3; i++) {
2414 /* Write Source Address 1 (unicast filter) */
2415 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2416 sc_if->sk_enaddr[i * 2] |
2417 sc_if->sk_enaddr[i * 2 + 1] << 8);
2418 }
2419
2420 for (i = 0; i < 3; i++) {
2421 reg = sk_win_read_2(sc_if->sk_softc,
2422 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2423 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2424 }
2425
2426 /* Set multicast filter */
2427 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2428 sk_setmulti(sc_if);
2429
2430 /* enable interrupt mask for counter overflows */
2431 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2432 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2433 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2434 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2435
2436 /* Configure RX MAC FIFO */
2437 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2438 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2439
2440 /* Configure TX MAC FIFO */
2441 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2442 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2443
2444 DPRINTFN(6, ("sk_init_yukon: end\n"));
2445 }
2446
2447 /*
2448 * Note that to properly initialize any part of the GEnesis chip,
2449 * you first have to take it out of reset mode.
2450 */
2451 int
2452 sk_init(struct ifnet *ifp)
2453 {
2454 struct sk_if_softc *sc_if = ifp->if_softc;
2455 struct sk_softc *sc = sc_if->sk_softc;
2456 struct mii_data *mii = &sc_if->sk_mii;
2457 int s;
2458
2459 DPRINTFN(1, ("sk_init\n"));
2460
2461 s = splnet();
2462
2463 /* Cancel pending I/O and free all RX/TX buffers. */
2464 sk_stop(ifp,0);
2465
2466 if (sc->sk_type == SK_GENESIS) {
2467 /* Configure LINK_SYNC LED */
2468 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2469 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2470 SK_LINKLED_LINKSYNC_ON);
2471
2472 /* Configure RX LED */
2473 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2474 SK_RXLEDCTL_COUNTER_START);
2475
2476 /* Configure TX LED */
2477 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2478 SK_TXLEDCTL_COUNTER_START);
2479 }
2480
2481 /* Configure I2C registers */
2482
2483 /* Configure XMAC(s) */
2484 switch (sc->sk_type) {
2485 case SK_GENESIS:
2486 sk_init_xmac(sc_if);
2487 break;
2488 case SK_YUKON:
2489 case SK_YUKON_LITE:
2490 case SK_YUKON_LP:
2491 sk_init_yukon(sc_if);
2492 break;
2493 }
2494 mii_mediachg(mii);
2495
2496 if (sc->sk_type == SK_GENESIS) {
2497 /* Configure MAC FIFOs */
2498 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2499 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2500 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2501
2502 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2503 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2504 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2505 }
2506
2507 /* Configure transmit arbiter(s) */
2508 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2509 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2510
2511 /* Configure RAMbuffers */
2512 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2513 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2514 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2515 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2516 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2517 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2518
2519 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2520 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2521 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2522 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2523 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2524 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2525 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2526
2527 /* Configure BMUs */
2528 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2529 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2530 SK_RX_RING_ADDR(sc_if, 0));
2531 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2532
2533 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2534 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2535 SK_TX_RING_ADDR(sc_if, 0));
2536 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2537
2538 /* Init descriptors */
2539 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2540 printf("%s: initialization failed: no "
2541 "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2542 sk_stop(ifp,0);
2543 splx(s);
2544 return(ENOBUFS);
2545 }
2546
2547 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2548 printf("%s: initialization failed: no "
2549 "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2550 sk_stop(ifp,0);
2551 splx(s);
2552 return(ENOBUFS);
2553 }
2554
2555 /* Configure interrupt handling */
2556 CSR_READ_4(sc, SK_ISSR);
2557 if (sc_if->sk_port == SK_PORT_A)
2558 sc->sk_intrmask |= SK_INTRS1;
2559 else
2560 sc->sk_intrmask |= SK_INTRS2;
2561
2562 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2563
2564 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2565
2566 /* Start BMUs. */
2567 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2568
2569 if (sc->sk_type == SK_GENESIS) {
2570 /* Enable XMACs TX and RX state machines */
2571 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2572 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2573 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2574 }
2575
2576 if (SK_YUKON_FAMILY(sc->sk_type)) {
2577 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2578 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2579 reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2580 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2581 }
2582
2583
2584 ifp->if_flags |= IFF_RUNNING;
2585 ifp->if_flags &= ~IFF_OACTIVE;
2586
2587 splx(s);
2588 return(0);
2589 }
2590
2591 void
2592 sk_stop(struct ifnet *ifp, int disable)
2593 {
2594 struct sk_if_softc *sc_if = ifp->if_softc;
2595 struct sk_softc *sc = sc_if->sk_softc;
2596 int i;
2597
2598 DPRINTFN(1, ("sk_stop\n"));
2599
2600 callout_stop(&sc_if->sk_tick_ch);
2601
2602 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2603 u_int32_t val;
2604
2605 /* Put PHY back into reset. */
2606 val = sk_win_read_4(sc, SK_GPIO);
2607 if (sc_if->sk_port == SK_PORT_A) {
2608 val |= SK_GPIO_DIR0;
2609 val &= ~SK_GPIO_DAT0;
2610 } else {
2611 val |= SK_GPIO_DIR2;
2612 val &= ~SK_GPIO_DAT2;
2613 }
2614 sk_win_write_4(sc, SK_GPIO, val);
2615 }
2616
2617 /* Turn off various components of this interface. */
2618 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2619 switch (sc->sk_type) {
2620 case SK_GENESIS:
2621 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2622 SK_TXMACCTL_XMAC_RESET);
2623 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2624 break;
2625 case SK_YUKON:
2626 case SK_YUKON_LITE:
2627 case SK_YUKON_LP:
2628 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2629 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2630 break;
2631 }
2632 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2633 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2634 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2635 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2636 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2637 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2638 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2639 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2640 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2641
2642 /* Disable interrupts */
2643 if (sc_if->sk_port == SK_PORT_A)
2644 sc->sk_intrmask &= ~SK_INTRS1;
2645 else
2646 sc->sk_intrmask &= ~SK_INTRS2;
2647 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2648
2649 SK_XM_READ_2(sc_if, XM_ISR);
2650 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2651
2652 /* Free RX and TX mbufs still in the queues. */
2653 for (i = 0; i < SK_RX_RING_CNT; i++) {
2654 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2655 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2656 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2657 }
2658 }
2659
2660 for (i = 0; i < SK_TX_RING_CNT; i++) {
2661 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2662 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2663 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2664 }
2665 }
2666
2667 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2668 }
2669
2670 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2671
2672 /*
2673 struct cfdriver skc_cd = {
2674 0, "skc", DV_DULL
2675 };
2676 */
2677
2678 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2679
2680 /*
2681 struct cfdriver sk_cd = {
2682 0, "sk", DV_IFNET
2683 };
2684 */
2685
2686 #ifdef SK_DEBUG
2687 void
2688 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2689 {
2690 #define DESC_PRINT(X) \
2691 if (desc->X) \
2692 printf("txdesc[%d]." #X "=%#x\n", \
2693 idx, desc->X);
2694
2695 DESC_PRINT(sk_ctl);
2696 DESC_PRINT(sk_next);
2697 DESC_PRINT(sk_data_lo);
2698 DESC_PRINT(sk_data_hi);
2699 DESC_PRINT(sk_xmac_txstat);
2700 DESC_PRINT(sk_rsvd0);
2701 DESC_PRINT(sk_csum_startval);
2702 DESC_PRINT(sk_csum_startpos);
2703 DESC_PRINT(sk_csum_writepos);
2704 DESC_PRINT(sk_rsvd1);
2705 #undef PRINT
2706 }
2707
2708 void
2709 sk_dump_bytes(const char *data, int len)
2710 {
2711 int c, i, j;
2712
2713 for (i = 0; i < len; i += 16) {
2714 printf("%08x ", i);
2715 c = len - i;
2716 if (c > 16) c = 16;
2717
2718 for (j = 0; j < c; j++) {
2719 printf("%02x ", data[i + j] & 0xff);
2720 if ((j & 0xf) == 7 && j > 0)
2721 printf(" ");
2722 }
2723
2724 for (; j < 16; j++)
2725 printf(" ");
2726 printf(" ");
2727
2728 for (j = 0; j < c; j++) {
2729 int ch = data[i + j] & 0xff;
2730 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2731 }
2732
2733 printf("\n");
2734
2735 if (c < 16)
2736 break;
2737 }
2738 }
2739
2740 void
2741 sk_dump_mbuf(struct mbuf *m)
2742 {
2743 int count = m->m_pkthdr.len;
2744
2745 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2746
2747 while (count > 0 && m) {
2748 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2749 m, m->m_data, m->m_len);
2750 sk_dump_bytes(mtod(m, char *), m->m_len);
2751
2752 count -= m->m_len;
2753 m = m->m_next;
2754 }
2755 }
2756 #endif
2757