if_sk.c revision 1.72 1 /* $NetBSD: if_sk.c,v 1.72 2012/07/22 14:33:03 matt Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
30
31 /*
32 * Copyright (c) 1997, 1998, 1999, 2000
33 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by Bill Paul.
46 * 4. Neither the name of the author nor the names of any co-contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60 * THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63 */
64
65 /*
66 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
67 *
68 * Permission to use, copy, modify, and distribute this software for any
69 * purpose with or without fee is hereby granted, provided that the above
70 * copyright notice and this permission notice appear in all copies.
71 *
72 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79 */
80
81 /*
82 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83 * the SK-984x series adapters, both single port and dual port.
84 * References:
85 * The XaQti XMAC II datasheet,
86 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87 * The SysKonnect GEnesis manual, http://www.syskonnect.com
88 *
89 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91 * convenience to others until Vitesse corrects this problem:
92 *
93 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 *
95 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
96 * Department of Electrical Engineering
97 * Columbia University, New York City
98 */
99
100 /*
101 * The SysKonnect gigabit ethernet adapters consist of two main
102 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104 * components and a PHY while the GEnesis controller provides a PCI
105 * interface with DMA support. Each card may have between 512K and
106 * 2MB of SRAM on board depending on the configuration.
107 *
108 * The SysKonnect GEnesis controller can have either one or two XMAC
109 * chips connected to it, allowing single or dual port NIC configurations.
110 * SysKonnect has the distinction of being the only vendor on the market
111 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113 * XMAC registers. This driver takes advantage of these features to allow
114 * both XMACs to operate as independent interfaces.
115 */
116
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.72 2012/07/22 14:33:03 matt Exp $");
119
120 #include <sys/param.h>
121 #include <sys/systm.h>
122 #include <sys/sockio.h>
123 #include <sys/mbuf.h>
124 #include <sys/malloc.h>
125 #include <sys/mutex.h>
126 #include <sys/kernel.h>
127 #include <sys/socket.h>
128 #include <sys/device.h>
129 #include <sys/queue.h>
130 #include <sys/callout.h>
131 #include <sys/sysctl.h>
132 #include <sys/endian.h>
133
134 #include <net/if.h>
135 #include <net/if_dl.h>
136 #include <net/if_types.h>
137
138 #include <net/if_media.h>
139
140 #include <net/bpf.h>
141 #include <sys/rnd.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145 #include <dev/mii/brgphyreg.h>
146
147 #include <dev/pci/pcireg.h>
148 #include <dev/pci/pcivar.h>
149 #include <dev/pci/pcidevs.h>
150
151 /* #define SK_USEIOSPACE */
152
153 #include <dev/pci/if_skreg.h>
154 #include <dev/pci/if_skvar.h>
155
156 int skc_probe(device_t, cfdata_t, void *);
157 void skc_attach(device_t, device_t, void *aux);
158 int sk_probe(device_t, cfdata_t, void *);
159 void sk_attach(device_t, device_t, void *aux);
160 int skcprint(void *, const char *);
161 int sk_intr(void *);
162 void sk_intr_bcom(struct sk_if_softc *);
163 void sk_intr_xmac(struct sk_if_softc *);
164 void sk_intr_yukon(struct sk_if_softc *);
165 void sk_rxeof(struct sk_if_softc *);
166 void sk_txeof(struct sk_if_softc *);
167 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
168 void sk_start(struct ifnet *);
169 int sk_ioctl(struct ifnet *, u_long, void *);
170 int sk_init(struct ifnet *);
171 void sk_init_xmac(struct sk_if_softc *);
172 void sk_init_yukon(struct sk_if_softc *);
173 void sk_stop(struct ifnet *, int);
174 void sk_watchdog(struct ifnet *);
175 void sk_shutdown(void *);
176 int sk_ifmedia_upd(struct ifnet *);
177 void sk_reset(struct sk_softc *);
178 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
179 int sk_alloc_jumbo_mem(struct sk_if_softc *);
180 void sk_free_jumbo_mem(struct sk_if_softc *);
181 void *sk_jalloc(struct sk_if_softc *);
182 void sk_jfree(struct mbuf *, void *, size_t, void *);
183 int sk_init_rx_ring(struct sk_if_softc *);
184 int sk_init_tx_ring(struct sk_if_softc *);
185 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
186 void sk_vpd_read_res(struct sk_softc *,
187 struct vpd_res *, int);
188 void sk_vpd_read(struct sk_softc *);
189
190 void sk_update_int_mod(struct sk_softc *);
191
192 int sk_xmac_miibus_readreg(device_t, int, int);
193 void sk_xmac_miibus_writereg(device_t, int, int, int);
194 void sk_xmac_miibus_statchg(struct ifnet *);
195
196 int sk_marv_miibus_readreg(device_t, int, int);
197 void sk_marv_miibus_writereg(device_t, int, int, int);
198 void sk_marv_miibus_statchg(struct ifnet *);
199
200 u_int32_t sk_xmac_hash(void *);
201 u_int32_t sk_yukon_hash(void *);
202 void sk_setfilt(struct sk_if_softc *, void *, int);
203 void sk_setmulti(struct sk_if_softc *);
204 void sk_tick(void *);
205
206 static bool skc_suspend(device_t, const pmf_qual_t *);
207 static bool skc_resume(device_t, const pmf_qual_t *);
208 static bool sk_resume(device_t dv, const pmf_qual_t *);
209
210 /* #define SK_DEBUG 2 */
211 #ifdef SK_DEBUG
212 #define DPRINTF(x) if (skdebug) printf x
213 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
214 int skdebug = SK_DEBUG;
215
216 void sk_dump_txdesc(struct sk_tx_desc *, int);
217 void sk_dump_mbuf(struct mbuf *);
218 void sk_dump_bytes(const char *, int);
219 #else
220 #define DPRINTF(x)
221 #define DPRINTFN(n,x)
222 #endif
223
224 static int sk_sysctl_handler(SYSCTLFN_PROTO);
225 static int sk_root_num;
226
227 /* supported device vendors */
228 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
229 static const struct sk_product {
230 pci_vendor_id_t sk_vendor;
231 pci_product_id_t sk_product;
232 } sk_products[] = {
233 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
234 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
235 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
236 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
237 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
238 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
239 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
240 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
241 { 0, 0, }
242 };
243
244 #define SK_LINKSYS_EG1032_SUBID 0x00151737
245
246 static inline u_int32_t
247 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
248 {
249 #ifdef SK_USEIOSPACE
250 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
251 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
252 #else
253 return CSR_READ_4(sc, reg);
254 #endif
255 }
256
257 static inline u_int16_t
258 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
259 {
260 #ifdef SK_USEIOSPACE
261 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
262 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
263 #else
264 return CSR_READ_2(sc, reg);
265 #endif
266 }
267
268 static inline u_int8_t
269 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
270 {
271 #ifdef SK_USEIOSPACE
272 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
273 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
274 #else
275 return CSR_READ_1(sc, reg);
276 #endif
277 }
278
279 static inline void
280 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
281 {
282 #ifdef SK_USEIOSPACE
283 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
284 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
285 #else
286 CSR_WRITE_4(sc, reg, x);
287 #endif
288 }
289
290 static inline void
291 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
292 {
293 #ifdef SK_USEIOSPACE
294 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
295 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
296 #else
297 CSR_WRITE_2(sc, reg, x);
298 #endif
299 }
300
301 static inline void
302 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
303 {
304 #ifdef SK_USEIOSPACE
305 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
306 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
307 #else
308 CSR_WRITE_1(sc, reg, x);
309 #endif
310 }
311
312 /*
313 * The VPD EEPROM contains Vital Product Data, as suggested in
314 * the PCI 2.1 specification. The VPD data is separared into areas
315 * denoted by resource IDs. The SysKonnect VPD contains an ID string
316 * resource (the name of the adapter), a read-only area resource
317 * containing various key/data fields and a read/write area which
318 * can be used to store asset management information or log messages.
319 * We read the ID string and read-only into buffers attached to
320 * the controller softc structure for later use. At the moment,
321 * we only use the ID string during sk_attach().
322 */
323 u_int8_t
324 sk_vpd_readbyte(struct sk_softc *sc, int addr)
325 {
326 int i;
327
328 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
329 for (i = 0; i < SK_TIMEOUT; i++) {
330 DELAY(1);
331 if (sk_win_read_2(sc,
332 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
333 break;
334 }
335
336 if (i == SK_TIMEOUT)
337 return 0;
338
339 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
340 }
341
342 void
343 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
344 {
345 int i;
346 u_int8_t *ptr;
347
348 ptr = (u_int8_t *)res;
349 for (i = 0; i < sizeof(struct vpd_res); i++)
350 ptr[i] = sk_vpd_readbyte(sc, i + addr);
351 }
352
353 void
354 sk_vpd_read(struct sk_softc *sc)
355 {
356 int pos = 0, i;
357 struct vpd_res res;
358
359 if (sc->sk_vpd_prodname != NULL)
360 free(sc->sk_vpd_prodname, M_DEVBUF);
361 if (sc->sk_vpd_readonly != NULL)
362 free(sc->sk_vpd_readonly, M_DEVBUF);
363 sc->sk_vpd_prodname = NULL;
364 sc->sk_vpd_readonly = NULL;
365
366 sk_vpd_read_res(sc, &res, pos);
367
368 if (res.vr_id != VPD_RES_ID) {
369 aprint_error_dev(sc->sk_dev,
370 "bad VPD resource id: expected %x got %x\n",
371 VPD_RES_ID, res.vr_id);
372 return;
373 }
374
375 pos += sizeof(res);
376 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
377 if (sc->sk_vpd_prodname == NULL)
378 panic("sk_vpd_read");
379 for (i = 0; i < res.vr_len; i++)
380 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
381 sc->sk_vpd_prodname[i] = '\0';
382 pos += i;
383
384 sk_vpd_read_res(sc, &res, pos);
385
386 if (res.vr_id != VPD_RES_READ) {
387 aprint_error_dev(sc->sk_dev,
388 "bad VPD resource id: expected %x got %x\n",
389 VPD_RES_READ, res.vr_id);
390 return;
391 }
392
393 pos += sizeof(res);
394 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
395 if (sc->sk_vpd_readonly == NULL)
396 panic("sk_vpd_read");
397 for (i = 0; i < res.vr_len ; i++)
398 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
399 }
400
401 int
402 sk_xmac_miibus_readreg(device_t dev, int phy, int reg)
403 {
404 struct sk_if_softc *sc_if = device_private(dev);
405 int i;
406
407 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
408
409 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
410 return 0;
411
412 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
413 SK_XM_READ_2(sc_if, XM_PHY_DATA);
414 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
415 for (i = 0; i < SK_TIMEOUT; i++) {
416 DELAY(1);
417 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
418 XM_MMUCMD_PHYDATARDY)
419 break;
420 }
421
422 if (i == SK_TIMEOUT) {
423 aprint_error_dev(sc_if->sk_dev,
424 "phy failed to come ready\n");
425 return 0;
426 }
427 }
428 DELAY(1);
429 return SK_XM_READ_2(sc_if, XM_PHY_DATA);
430 }
431
432 void
433 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, int val)
434 {
435 struct sk_if_softc *sc_if = device_private(dev);
436 int i;
437
438 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
439
440 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
441 for (i = 0; i < SK_TIMEOUT; i++) {
442 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
443 break;
444 }
445
446 if (i == SK_TIMEOUT) {
447 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
448 return;
449 }
450
451 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
452 for (i = 0; i < SK_TIMEOUT; i++) {
453 DELAY(1);
454 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
455 break;
456 }
457
458 if (i == SK_TIMEOUT)
459 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
460 }
461
462 void
463 sk_xmac_miibus_statchg(struct ifnet *ifp)
464 {
465 struct sk_if_softc *sc_if = ifp->if_softc;
466 struct mii_data *mii = &sc_if->sk_mii;
467
468 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
469
470 /*
471 * If this is a GMII PHY, manually set the XMAC's
472 * duplex mode accordingly.
473 */
474 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
475 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
476 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
477 else
478 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
479 }
480 }
481
482 int
483 sk_marv_miibus_readreg(device_t dev, int phy, int reg)
484 {
485 struct sk_if_softc *sc_if = device_private(dev);
486 u_int16_t val;
487 int i;
488
489 if (phy != 0 ||
490 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
491 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
492 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
493 phy, reg));
494 return 0;
495 }
496
497 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
498 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
499
500 for (i = 0; i < SK_TIMEOUT; i++) {
501 DELAY(1);
502 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
503 if (val & YU_SMICR_READ_VALID)
504 break;
505 }
506
507 if (i == SK_TIMEOUT) {
508 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
509 return 0;
510 }
511
512 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
513 SK_TIMEOUT));
514
515 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
516
517 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
518 phy, reg, val));
519
520 return val;
521 }
522
523 void
524 sk_marv_miibus_writereg(device_t dev, int phy, int reg, int val)
525 {
526 struct sk_if_softc *sc_if = device_private(dev);
527 int i;
528
529 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
530 phy, reg, val));
531
532 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
533 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
534 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
535
536 for (i = 0; i < SK_TIMEOUT; i++) {
537 DELAY(1);
538 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
539 break;
540 }
541
542 if (i == SK_TIMEOUT)
543 printf("%s: phy write timed out\n",
544 device_xname(sc_if->sk_dev));
545 }
546
547 void
548 sk_marv_miibus_statchg(struct ifnet *ifp)
549 {
550 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
551 SK_YU_READ_2(((struct sk_if_softc *)ifp->if_softc),
552 YUKON_GPCR)));
553 }
554
555 #define SK_HASH_BITS 6
556
557 u_int32_t
558 sk_xmac_hash(void *addr)
559 {
560 u_int32_t crc;
561
562 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
563 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
564 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
565 return crc;
566 }
567
568 u_int32_t
569 sk_yukon_hash(void *addr)
570 {
571 u_int32_t crc;
572
573 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
574 crc &= ((1 << SK_HASH_BITS) - 1);
575 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
576 return crc;
577 }
578
579 void
580 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
581 {
582 char *addr = addrv;
583 int base = XM_RXFILT_ENTRY(slot);
584
585 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
586 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
587 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
588 }
589
590 void
591 sk_setmulti(struct sk_if_softc *sc_if)
592 {
593 struct sk_softc *sc = sc_if->sk_softc;
594 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
595 u_int32_t hashes[2] = { 0, 0 };
596 int h = 0, i;
597 struct ethercom *ec = &sc_if->sk_ethercom;
598 struct ether_multi *enm;
599 struct ether_multistep step;
600 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
601
602 /* First, zot all the existing filters. */
603 switch (sc->sk_type) {
604 case SK_GENESIS:
605 for (i = 1; i < XM_RXFILT_MAX; i++)
606 sk_setfilt(sc_if, (void *)&dummy, i);
607
608 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
609 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
610 break;
611 case SK_YUKON:
612 case SK_YUKON_LITE:
613 case SK_YUKON_LP:
614 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
615 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
616 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
617 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
618 break;
619 }
620
621 /* Now program new ones. */
622 allmulti:
623 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
624 hashes[0] = 0xFFFFFFFF;
625 hashes[1] = 0xFFFFFFFF;
626 } else {
627 i = 1;
628 /* First find the tail of the list. */
629 ETHER_FIRST_MULTI(step, ec, enm);
630 while (enm != NULL) {
631 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
632 ETHER_ADDR_LEN)) {
633 ifp->if_flags |= IFF_ALLMULTI;
634 goto allmulti;
635 }
636 DPRINTFN(2,("multicast address %s\n",
637 ether_sprintf(enm->enm_addrlo)));
638 /*
639 * Program the first XM_RXFILT_MAX multicast groups
640 * into the perfect filter. For all others,
641 * use the hash table.
642 */
643 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
644 sk_setfilt(sc_if, enm->enm_addrlo, i);
645 i++;
646 }
647 else {
648 switch (sc->sk_type) {
649 case SK_GENESIS:
650 h = sk_xmac_hash(enm->enm_addrlo);
651 break;
652 case SK_YUKON:
653 case SK_YUKON_LITE:
654 case SK_YUKON_LP:
655 h = sk_yukon_hash(enm->enm_addrlo);
656 break;
657 }
658 if (h < 32)
659 hashes[0] |= (1 << h);
660 else
661 hashes[1] |= (1 << (h - 32));
662 }
663
664 ETHER_NEXT_MULTI(step, enm);
665 }
666 }
667
668 switch (sc->sk_type) {
669 case SK_GENESIS:
670 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
671 XM_MODE_RX_USE_PERFECT);
672 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
673 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
674 break;
675 case SK_YUKON:
676 case SK_YUKON_LITE:
677 case SK_YUKON_LP:
678 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
679 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
680 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
681 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
682 break;
683 }
684 }
685
686 int
687 sk_init_rx_ring(struct sk_if_softc *sc_if)
688 {
689 struct sk_chain_data *cd = &sc_if->sk_cdata;
690 struct sk_ring_data *rd = sc_if->sk_rdata;
691 int i;
692
693 memset((char *)rd->sk_rx_ring, 0,
694 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
695
696 for (i = 0; i < SK_RX_RING_CNT; i++) {
697 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
698 if (i == (SK_RX_RING_CNT - 1)) {
699 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
700 rd->sk_rx_ring[i].sk_next =
701 htole32(SK_RX_RING_ADDR(sc_if, 0));
702 } else {
703 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
704 rd->sk_rx_ring[i].sk_next =
705 htole32(SK_RX_RING_ADDR(sc_if,i+1));
706 }
707 }
708
709 for (i = 0; i < SK_RX_RING_CNT; i++) {
710 if (sk_newbuf(sc_if, i, NULL,
711 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
712 aprint_error_dev(sc_if->sk_dev,
713 "failed alloc of %dth mbuf\n", i);
714 return ENOBUFS;
715 }
716 }
717 sc_if->sk_cdata.sk_rx_prod = 0;
718 sc_if->sk_cdata.sk_rx_cons = 0;
719
720 return 0;
721 }
722
723 int
724 sk_init_tx_ring(struct sk_if_softc *sc_if)
725 {
726 struct sk_chain_data *cd = &sc_if->sk_cdata;
727 struct sk_ring_data *rd = sc_if->sk_rdata;
728 int i;
729
730 memset(sc_if->sk_rdata->sk_tx_ring, 0,
731 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
732
733 for (i = 0; i < SK_TX_RING_CNT; i++) {
734 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
735 if (i == (SK_TX_RING_CNT - 1)) {
736 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
737 rd->sk_tx_ring[i].sk_next =
738 htole32(SK_TX_RING_ADDR(sc_if, 0));
739 } else {
740 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
741 rd->sk_tx_ring[i].sk_next =
742 htole32(SK_TX_RING_ADDR(sc_if,i+1));
743 }
744 }
745
746 sc_if->sk_cdata.sk_tx_prod = 0;
747 sc_if->sk_cdata.sk_tx_cons = 0;
748 sc_if->sk_cdata.sk_tx_cnt = 0;
749
750 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
751 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
752
753 return 0;
754 }
755
756 int
757 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
758 bus_dmamap_t dmamap)
759 {
760 struct mbuf *m_new = NULL;
761 struct sk_chain *c;
762 struct sk_rx_desc *r;
763
764 if (m == NULL) {
765 void *buf = NULL;
766
767 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
768 if (m_new == NULL) {
769 aprint_error_dev(sc_if->sk_dev,
770 "no memory for rx list -- packet dropped!\n");
771 return ENOBUFS;
772 }
773
774 /* Allocate the jumbo buffer */
775 buf = sk_jalloc(sc_if);
776 if (buf == NULL) {
777 m_freem(m_new);
778 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
779 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
780 return ENOBUFS;
781 }
782
783 /* Attach the buffer to the mbuf */
784 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
785 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
786
787 } else {
788 /*
789 * We're re-using a previously allocated mbuf;
790 * be sure to re-init pointers and lengths to
791 * default values.
792 */
793 m_new = m;
794 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
795 m_new->m_data = m_new->m_ext.ext_buf;
796 }
797 m_adj(m_new, ETHER_ALIGN);
798
799 c = &sc_if->sk_cdata.sk_rx_chain[i];
800 r = c->sk_desc;
801 c->sk_mbuf = m_new;
802 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
803 (((vaddr_t)m_new->m_data
804 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
805 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
806
807 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
808
809 return 0;
810 }
811
812 /*
813 * Memory management for jumbo frames.
814 */
815
816 int
817 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
818 {
819 struct sk_softc *sc = sc_if->sk_softc;
820 char *ptr, *kva;
821 bus_dma_segment_t seg;
822 int i, rseg, state, error;
823 struct sk_jpool_entry *entry;
824
825 state = error = 0;
826
827 /* Grab a big chunk o' storage. */
828 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
829 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
830 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
831 return ENOBUFS;
832 }
833
834 state = 1;
835 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
836 BUS_DMA_NOWAIT)) {
837 aprint_error_dev(sc->sk_dev,
838 "can't map dma buffers (%d bytes)\n",
839 SK_JMEM);
840 error = ENOBUFS;
841 goto out;
842 }
843
844 state = 2;
845 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
846 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
847 aprint_error_dev(sc->sk_dev, "can't create dma map\n");
848 error = ENOBUFS;
849 goto out;
850 }
851
852 state = 3;
853 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
854 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
855 aprint_error_dev(sc->sk_dev, "can't load dma map\n");
856 error = ENOBUFS;
857 goto out;
858 }
859
860 state = 4;
861 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
862 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
863
864 LIST_INIT(&sc_if->sk_jfree_listhead);
865 LIST_INIT(&sc_if->sk_jinuse_listhead);
866 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
867
868 /*
869 * Now divide it up into 9K pieces and save the addresses
870 * in an array.
871 */
872 ptr = sc_if->sk_cdata.sk_jumbo_buf;
873 for (i = 0; i < SK_JSLOTS; i++) {
874 sc_if->sk_cdata.sk_jslots[i] = ptr;
875 ptr += SK_JLEN;
876 entry = malloc(sizeof(struct sk_jpool_entry),
877 M_DEVBUF, M_NOWAIT);
878 if (entry == NULL) {
879 aprint_error_dev(sc->sk_dev,
880 "no memory for jumbo buffer queue!\n");
881 error = ENOBUFS;
882 goto out;
883 }
884 entry->slot = i;
885 if (i)
886 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
887 entry, jpool_entries);
888 else
889 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
890 entry, jpool_entries);
891 }
892 out:
893 if (error != 0) {
894 switch (state) {
895 case 4:
896 bus_dmamap_unload(sc->sc_dmatag,
897 sc_if->sk_cdata.sk_rx_jumbo_map);
898 case 3:
899 bus_dmamap_destroy(sc->sc_dmatag,
900 sc_if->sk_cdata.sk_rx_jumbo_map);
901 case 2:
902 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
903 case 1:
904 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
905 break;
906 default:
907 break;
908 }
909 }
910
911 return error;
912 }
913
914 /*
915 * Allocate a jumbo buffer.
916 */
917 void *
918 sk_jalloc(struct sk_if_softc *sc_if)
919 {
920 struct sk_jpool_entry *entry;
921
922 mutex_enter(&sc_if->sk_jpool_mtx);
923 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
924
925 if (entry == NULL) {
926 mutex_exit(&sc_if->sk_jpool_mtx);
927 return NULL;
928 }
929
930 LIST_REMOVE(entry, jpool_entries);
931 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
932 mutex_exit(&sc_if->sk_jpool_mtx);
933 return sc_if->sk_cdata.sk_jslots[entry->slot];
934 }
935
936 /*
937 * Release a jumbo buffer.
938 */
939 void
940 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
941 {
942 struct sk_jpool_entry *entry;
943 struct sk_if_softc *sc;
944 int i;
945
946 /* Extract the softc struct pointer. */
947 sc = (struct sk_if_softc *)arg;
948
949 if (sc == NULL)
950 panic("sk_jfree: can't find softc pointer!");
951
952 /* calculate the slot this buffer belongs to */
953
954 i = ((vaddr_t)buf
955 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
956
957 if ((i < 0) || (i >= SK_JSLOTS))
958 panic("sk_jfree: asked to free buffer that we don't manage!");
959
960 mutex_enter(&sc->sk_jpool_mtx);
961 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
962 if (entry == NULL)
963 panic("sk_jfree: buffer not in use!");
964 entry->slot = i;
965 LIST_REMOVE(entry, jpool_entries);
966 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
967 mutex_exit(&sc->sk_jpool_mtx);
968
969 if (__predict_true(m != NULL))
970 pool_cache_put(mb_cache, m);
971 }
972
973 /*
974 * Set media options.
975 */
976 int
977 sk_ifmedia_upd(struct ifnet *ifp)
978 {
979 struct sk_if_softc *sc_if = ifp->if_softc;
980 int rc;
981
982 (void) sk_init(ifp);
983 if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
984 return 0;
985 return rc;
986 }
987
988 int
989 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
990 {
991 struct sk_if_softc *sc_if = ifp->if_softc;
992 struct sk_softc *sc = sc_if->sk_softc;
993 int s, error = 0;
994
995 /* DPRINTFN(2, ("sk_ioctl\n")); */
996
997 s = splnet();
998
999 switch (command) {
1000
1001 case SIOCSIFFLAGS:
1002 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1003 if ((error = ifioctl_common(ifp, command, data)) != 0)
1004 break;
1005 if (ifp->if_flags & IFF_UP) {
1006 if (ifp->if_flags & IFF_RUNNING &&
1007 ifp->if_flags & IFF_PROMISC &&
1008 !(sc_if->sk_if_flags & IFF_PROMISC)) {
1009 switch (sc->sk_type) {
1010 case SK_GENESIS:
1011 SK_XM_SETBIT_4(sc_if, XM_MODE,
1012 XM_MODE_RX_PROMISC);
1013 break;
1014 case SK_YUKON:
1015 case SK_YUKON_LITE:
1016 case SK_YUKON_LP:
1017 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1018 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1019 break;
1020 }
1021 sk_setmulti(sc_if);
1022 } else if (ifp->if_flags & IFF_RUNNING &&
1023 !(ifp->if_flags & IFF_PROMISC) &&
1024 sc_if->sk_if_flags & IFF_PROMISC) {
1025 switch (sc->sk_type) {
1026 case SK_GENESIS:
1027 SK_XM_CLRBIT_4(sc_if, XM_MODE,
1028 XM_MODE_RX_PROMISC);
1029 break;
1030 case SK_YUKON:
1031 case SK_YUKON_LITE:
1032 case SK_YUKON_LP:
1033 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1034 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1035 break;
1036 }
1037
1038 sk_setmulti(sc_if);
1039 } else
1040 (void) sk_init(ifp);
1041 } else {
1042 if (ifp->if_flags & IFF_RUNNING)
1043 sk_stop(ifp,0);
1044 }
1045 sc_if->sk_if_flags = ifp->if_flags;
1046 error = 0;
1047 break;
1048
1049 default:
1050 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1051 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1052 break;
1053
1054 error = 0;
1055
1056 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1057 ;
1058 else if (ifp->if_flags & IFF_RUNNING) {
1059 sk_setmulti(sc_if);
1060 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1061 }
1062 break;
1063 }
1064
1065 splx(s);
1066 return error;
1067 }
1068
1069 void
1070 sk_update_int_mod(struct sk_softc *sc)
1071 {
1072 u_int32_t imtimer_ticks;
1073
1074 /*
1075 * Configure interrupt moderation. The moderation timer
1076 * defers interrupts specified in the interrupt moderation
1077 * timer mask based on the timeout specified in the interrupt
1078 * moderation timer init register. Each bit in the timer
1079 * register represents one tick, so to specify a timeout in
1080 * microseconds, we have to multiply by the correct number of
1081 * ticks-per-microsecond.
1082 */
1083 switch (sc->sk_type) {
1084 case SK_GENESIS:
1085 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1086 break;
1087 case SK_YUKON_EC:
1088 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1089 break;
1090 default:
1091 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1092 }
1093 aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
1094 sc->sk_int_mod);
1095 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1096 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1097 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1098 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1099 sc->sk_int_mod_pending = 0;
1100 }
1101
1102 /*
1103 * Lookup: Check the PCI vendor and device, and return a pointer to
1104 * The structure if the IDs match against our list.
1105 */
1106
1107 static const struct sk_product *
1108 sk_lookup(const struct pci_attach_args *pa)
1109 {
1110 const struct sk_product *psk;
1111
1112 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1113 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1114 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1115 return psk;
1116 }
1117 return NULL;
1118 }
1119
1120 /*
1121 * Probe for a SysKonnect GEnesis chip.
1122 */
1123
1124 int
1125 skc_probe(device_t parent, cfdata_t match, void *aux)
1126 {
1127 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1128 const struct sk_product *psk;
1129 pcireg_t subid;
1130
1131 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1132
1133 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1134 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1135 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1136 subid == SK_LINKSYS_EG1032_SUBID)
1137 return 1;
1138
1139 if ((psk = sk_lookup(pa))) {
1140 return 1;
1141 }
1142 return 0;
1143 }
1144
1145 /*
1146 * Force the GEnesis into reset, then bring it out of reset.
1147 */
1148 void sk_reset(struct sk_softc *sc)
1149 {
1150 DPRINTFN(2, ("sk_reset\n"));
1151
1152 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1153 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1154 if (SK_YUKON_FAMILY(sc->sk_type))
1155 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1156
1157 DELAY(1000);
1158 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1159 DELAY(2);
1160 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1161 if (SK_YUKON_FAMILY(sc->sk_type))
1162 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1163
1164 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1165 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1166 CSR_READ_2(sc, SK_LINK_CTRL)));
1167
1168 if (sc->sk_type == SK_GENESIS) {
1169 /* Configure packet arbiter */
1170 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1171 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1172 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1173 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1174 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1175 }
1176
1177 /* Enable RAM interface */
1178 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1179
1180 sk_update_int_mod(sc);
1181 }
1182
1183 int
1184 sk_probe(device_t parent, cfdata_t match, void *aux)
1185 {
1186 struct skc_attach_args *sa = aux;
1187
1188 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1189 return 0;
1190
1191 return 1;
1192 }
1193
1194 /*
1195 * Each XMAC chip is attached as a separate logical IP interface.
1196 * Single port cards will have only one logical interface of course.
1197 */
1198 void
1199 sk_attach(device_t parent, device_t self, void *aux)
1200 {
1201 struct sk_if_softc *sc_if = device_private(self);
1202 struct sk_softc *sc = device_private(parent);
1203 struct skc_attach_args *sa = aux;
1204 struct sk_txmap_entry *entry;
1205 struct ifnet *ifp;
1206 bus_dma_segment_t seg;
1207 bus_dmamap_t dmamap;
1208 prop_data_t data;
1209 void *kva;
1210 int i, rseg;
1211 int mii_flags = 0;
1212
1213 aprint_naive("\n");
1214
1215 sc_if->sk_dev = self;
1216 sc_if->sk_port = sa->skc_port;
1217 sc_if->sk_softc = sc;
1218 sc->sk_if[sa->skc_port] = sc_if;
1219
1220 if (sa->skc_port == SK_PORT_A)
1221 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1222 if (sa->skc_port == SK_PORT_B)
1223 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1224
1225 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1226
1227 /*
1228 * Get station address for this interface. Note that
1229 * dual port cards actually come with three station
1230 * addresses: one for each port, plus an extra. The
1231 * extra one is used by the SysKonnect driver software
1232 * as a 'virtual' station address for when both ports
1233 * are operating in failover mode. Currently we don't
1234 * use this extra address.
1235 */
1236 data = prop_dictionary_get(device_properties(self), "mac-address");
1237 if (data != NULL) {
1238 /*
1239 * Try to get the station address from device properties
1240 * first, in case the ROM is missing.
1241 */
1242 KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
1243 KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
1244 memcpy(sc_if->sk_enaddr, prop_data_data_nocopy(data),
1245 ETHER_ADDR_LEN);
1246 } else
1247 for (i = 0; i < ETHER_ADDR_LEN; i++)
1248 sc_if->sk_enaddr[i] = sk_win_read_1(sc,
1249 SK_MAC0_0 + (sa->skc_port * 8) + i);
1250
1251 aprint_normal(": Ethernet address %s\n",
1252 ether_sprintf(sc_if->sk_enaddr));
1253
1254 /*
1255 * Set up RAM buffer addresses. The NIC will have a certain
1256 * amount of SRAM on it, somewhere between 512K and 2MB. We
1257 * need to divide this up a) between the transmitter and
1258 * receiver and b) between the two XMACs, if this is a
1259 * dual port NIC. Our algorithm is to divide up the memory
1260 * evenly so that everyone gets a fair share.
1261 */
1262 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1263 u_int32_t chunk, val;
1264
1265 chunk = sc->sk_ramsize / 2;
1266 val = sc->sk_rboff / sizeof(u_int64_t);
1267 sc_if->sk_rx_ramstart = val;
1268 val += (chunk / sizeof(u_int64_t));
1269 sc_if->sk_rx_ramend = val - 1;
1270 sc_if->sk_tx_ramstart = val;
1271 val += (chunk / sizeof(u_int64_t));
1272 sc_if->sk_tx_ramend = val - 1;
1273 } else {
1274 u_int32_t chunk, val;
1275
1276 chunk = sc->sk_ramsize / 4;
1277 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1278 sizeof(u_int64_t);
1279 sc_if->sk_rx_ramstart = val;
1280 val += (chunk / sizeof(u_int64_t));
1281 sc_if->sk_rx_ramend = val - 1;
1282 sc_if->sk_tx_ramstart = val;
1283 val += (chunk / sizeof(u_int64_t));
1284 sc_if->sk_tx_ramend = val - 1;
1285 }
1286
1287 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1288 " tx_ramstart=%#x tx_ramend=%#x\n",
1289 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1290 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1291
1292 /* Read and save PHY type and set PHY address */
1293 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1294 switch (sc_if->sk_phytype) {
1295 case SK_PHYTYPE_XMAC:
1296 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1297 break;
1298 case SK_PHYTYPE_BCOM:
1299 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1300 break;
1301 case SK_PHYTYPE_MARV_COPPER:
1302 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1303 break;
1304 default:
1305 aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
1306 sc_if->sk_phytype);
1307 return;
1308 }
1309
1310 /* Allocate the descriptor queues. */
1311 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1312 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1313 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
1314 goto fail;
1315 }
1316 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1317 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1318 aprint_error_dev(sc_if->sk_dev,
1319 "can't map dma buffers (%lu bytes)\n",
1320 (u_long) sizeof(struct sk_ring_data));
1321 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1322 goto fail;
1323 }
1324 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1325 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1326 &sc_if->sk_ring_map)) {
1327 aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
1328 bus_dmamem_unmap(sc->sc_dmatag, kva,
1329 sizeof(struct sk_ring_data));
1330 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1331 goto fail;
1332 }
1333 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1334 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1335 aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
1336 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1337 bus_dmamem_unmap(sc->sc_dmatag, kva,
1338 sizeof(struct sk_ring_data));
1339 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1340 goto fail;
1341 }
1342
1343 for (i = 0; i < SK_RX_RING_CNT; i++)
1344 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1345
1346 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1347 for (i = 0; i < SK_TX_RING_CNT; i++) {
1348 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1349
1350 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1351 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1352 aprint_error_dev(sc_if->sk_dev,
1353 "Can't create TX dmamap\n");
1354 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1355 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1356 bus_dmamem_unmap(sc->sc_dmatag, kva,
1357 sizeof(struct sk_ring_data));
1358 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1359 goto fail;
1360 }
1361
1362 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1363 if (!entry) {
1364 aprint_error_dev(sc_if->sk_dev,
1365 "Can't alloc txmap entry\n");
1366 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1367 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1368 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1369 bus_dmamem_unmap(sc->sc_dmatag, kva,
1370 sizeof(struct sk_ring_data));
1371 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1372 goto fail;
1373 }
1374 entry->dmamap = dmamap;
1375 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1376 }
1377
1378 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1379 memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
1380
1381 ifp = &sc_if->sk_ethercom.ec_if;
1382 /* Try to allocate memory for jumbo buffers. */
1383 if (sk_alloc_jumbo_mem(sc_if)) {
1384 aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1385 goto fail;
1386 }
1387 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1388 | ETHERCAP_JUMBO_MTU;
1389
1390 ifp->if_softc = sc_if;
1391 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1392 ifp->if_ioctl = sk_ioctl;
1393 ifp->if_start = sk_start;
1394 ifp->if_stop = sk_stop;
1395 ifp->if_init = sk_init;
1396 ifp->if_watchdog = sk_watchdog;
1397 ifp->if_capabilities = 0;
1398 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1399 IFQ_SET_READY(&ifp->if_snd);
1400 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1401
1402 /*
1403 * Do miibus setup.
1404 */
1405 switch (sc->sk_type) {
1406 case SK_GENESIS:
1407 sk_init_xmac(sc_if);
1408 break;
1409 case SK_YUKON:
1410 case SK_YUKON_LITE:
1411 case SK_YUKON_LP:
1412 sk_init_yukon(sc_if);
1413 break;
1414 default:
1415 aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
1416 sc->sk_type);
1417 goto fail;
1418 }
1419
1420 DPRINTFN(2, ("sk_attach: 1\n"));
1421
1422 sc_if->sk_mii.mii_ifp = ifp;
1423 switch (sc->sk_type) {
1424 case SK_GENESIS:
1425 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1426 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1427 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1428 break;
1429 case SK_YUKON:
1430 case SK_YUKON_LITE:
1431 case SK_YUKON_LP:
1432 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1433 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1434 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1435 mii_flags = MIIF_DOPAUSE;
1436 break;
1437 }
1438
1439 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1440 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1441 sk_ifmedia_upd, ether_mediastatus);
1442 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1443 MII_OFFSET_ANY, mii_flags);
1444 if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
1445 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1446 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1447 0, NULL);
1448 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1449 } else
1450 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1451
1452 callout_init(&sc_if->sk_tick_ch, 0);
1453 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1454
1455 DPRINTFN(2, ("sk_attach: 1\n"));
1456
1457 /*
1458 * Call MI attach routines.
1459 */
1460 if_attach(ifp);
1461
1462 ether_ifattach(ifp, sc_if->sk_enaddr);
1463
1464 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1465 RND_TYPE_NET, 0);
1466
1467 if (pmf_device_register(self, NULL, sk_resume))
1468 pmf_class_network_register(self, ifp);
1469 else
1470 aprint_error_dev(self, "couldn't establish power handler\n");
1471
1472 DPRINTFN(2, ("sk_attach: end\n"));
1473
1474 return;
1475
1476 fail:
1477 sc->sk_if[sa->skc_port] = NULL;
1478 }
1479
1480 int
1481 skcprint(void *aux, const char *pnp)
1482 {
1483 struct skc_attach_args *sa = aux;
1484
1485 if (pnp)
1486 aprint_normal("sk port %c at %s",
1487 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1488 else
1489 aprint_normal(" port %c",
1490 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1491 return UNCONF;
1492 }
1493
1494 /*
1495 * Attach the interface. Allocate softc structures, do ifmedia
1496 * setup and ethernet/BPF attach.
1497 */
1498 void
1499 skc_attach(device_t parent, device_t self, void *aux)
1500 {
1501 struct sk_softc *sc = device_private(self);
1502 struct pci_attach_args *pa = aux;
1503 struct skc_attach_args skca;
1504 pci_chipset_tag_t pc = pa->pa_pc;
1505 #ifndef SK_USEIOSPACE
1506 pcireg_t memtype;
1507 #endif
1508 pci_intr_handle_t ih;
1509 const char *intrstr = NULL;
1510 bus_addr_t iobase;
1511 bus_size_t iosize;
1512 int rc, sk_nodenum;
1513 u_int32_t command;
1514 const char *revstr;
1515 const struct sysctlnode *node;
1516
1517 sc->sk_dev = self;
1518 aprint_naive("\n");
1519
1520 DPRINTFN(2, ("begin skc_attach\n"));
1521
1522 /*
1523 * Handle power management nonsense.
1524 */
1525 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1526
1527 if (command == 0x01) {
1528 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1529 if (command & SK_PSTATE_MASK) {
1530 u_int32_t xiobase, membase, irq;
1531
1532 /* Save important PCI config data. */
1533 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1534 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1535 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1536
1537 /* Reset the power state. */
1538 aprint_normal_dev(sc->sk_dev,
1539 "chip is in D%d power mode -- setting to D0\n",
1540 command & SK_PSTATE_MASK);
1541 command &= 0xFFFFFFFC;
1542 pci_conf_write(pc, pa->pa_tag,
1543 SK_PCI_PWRMGMTCTRL, command);
1544
1545 /* Restore PCI config data. */
1546 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1547 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1548 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1549 }
1550 }
1551
1552 /*
1553 * The firmware might have configured the interface to revert the
1554 * byte order in all descriptors. Make that undone.
1555 */
1556 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_OURREG2);
1557 if (command & SK_REG2_REV_DESC)
1558 pci_conf_write(pc, pa->pa_tag, SK_PCI_OURREG2,
1559 command & ~SK_REG2_REV_DESC);
1560
1561 /*
1562 * Map control/status registers.
1563 */
1564 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1565 command |= PCI_COMMAND_IO_ENABLE |
1566 PCI_COMMAND_MEM_ENABLE |
1567 PCI_COMMAND_MASTER_ENABLE;
1568 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1569 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1570
1571 #ifdef SK_USEIOSPACE
1572 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1573 aprint_error(": failed to enable I/O ports!\n");
1574 return;
1575 }
1576 /*
1577 * Map control/status registers.
1578 */
1579 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1580 &sc->sk_btag, &sc->sk_bhandle,
1581 &iobase, &iosize)) {
1582 aprint_error(": can't find i/o space\n");
1583 return;
1584 }
1585 #else
1586 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1587 aprint_error(": failed to enable memory mapping!\n");
1588 return;
1589 }
1590 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1591 switch (memtype) {
1592 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1593 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1594 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1595 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1596 &iobase, &iosize) == 0)
1597 break;
1598 default:
1599 aprint_error_dev(sc->sk_dev, "can't find mem space\n");
1600 return;
1601 }
1602
1603 DPRINTFN(2, ("skc_attach: iobase=%#" PRIxPADDR ", iosize=%zx\n",
1604 iobase, iosize));
1605 #endif
1606 sc->sc_dmatag = pa->pa_dmat;
1607
1608 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1609 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1610
1611 /* bail out here if chip is not recognized */
1612 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1613 aprint_error_dev(sc->sk_dev, "unknown chip type\n");
1614 goto fail;
1615 }
1616 if (SK_IS_YUKON2(sc)) {
1617 aprint_error_dev(sc->sk_dev,
1618 "Does not support Yukon2--try msk(4).\n");
1619 goto fail;
1620 }
1621 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1622
1623 /* Allocate interrupt */
1624 if (pci_intr_map(pa, &ih)) {
1625 aprint_error(": couldn't map interrupt\n");
1626 goto fail;
1627 }
1628
1629 intrstr = pci_intr_string(pc, ih);
1630 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1631 if (sc->sk_intrhand == NULL) {
1632 aprint_error(": couldn't establish interrupt");
1633 if (intrstr != NULL)
1634 aprint_error(" at %s", intrstr);
1635 aprint_error("\n");
1636 goto fail;
1637 }
1638 aprint_normal(": %s\n", intrstr);
1639
1640 /* Reset the adapter. */
1641 sk_reset(sc);
1642
1643 /* Read and save vital product data from EEPROM. */
1644 sk_vpd_read(sc);
1645
1646 if (sc->sk_type == SK_GENESIS) {
1647 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1648 /* Read and save RAM size and RAMbuffer offset */
1649 switch (val) {
1650 case SK_RAMSIZE_512K_64:
1651 sc->sk_ramsize = 0x80000;
1652 sc->sk_rboff = SK_RBOFF_0;
1653 break;
1654 case SK_RAMSIZE_1024K_64:
1655 sc->sk_ramsize = 0x100000;
1656 sc->sk_rboff = SK_RBOFF_80000;
1657 break;
1658 case SK_RAMSIZE_1024K_128:
1659 sc->sk_ramsize = 0x100000;
1660 sc->sk_rboff = SK_RBOFF_0;
1661 break;
1662 case SK_RAMSIZE_2048K_128:
1663 sc->sk_ramsize = 0x200000;
1664 sc->sk_rboff = SK_RBOFF_0;
1665 break;
1666 default:
1667 aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
1668 val);
1669 goto fail_1;
1670 break;
1671 }
1672
1673 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1674 sc->sk_ramsize, sc->sk_ramsize / 1024,
1675 sc->sk_rboff));
1676 } else {
1677 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1678 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1679 sc->sk_rboff = SK_RBOFF_0;
1680
1681 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1682 sc->sk_ramsize / 1024, sc->sk_ramsize,
1683 sc->sk_rboff));
1684 }
1685
1686 /* Read and save physical media type */
1687 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1688 case SK_PMD_1000BASESX:
1689 sc->sk_pmd = IFM_1000_SX;
1690 break;
1691 case SK_PMD_1000BASELX:
1692 sc->sk_pmd = IFM_1000_LX;
1693 break;
1694 case SK_PMD_1000BASECX:
1695 sc->sk_pmd = IFM_1000_CX;
1696 break;
1697 case SK_PMD_1000BASETX:
1698 case SK_PMD_1000BASETX_ALT:
1699 sc->sk_pmd = IFM_1000_T;
1700 break;
1701 default:
1702 aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
1703 sk_win_read_1(sc, SK_PMDTYPE));
1704 goto fail_1;
1705 }
1706
1707 /* determine whether to name it with vpd or just make it up */
1708 /* Marvell Yukon VPD's can freqently be bogus */
1709
1710 switch (pa->pa_id) {
1711 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1712 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1713 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1714 case PCI_PRODUCT_3COM_3C940:
1715 case PCI_PRODUCT_DLINK_DGE530T:
1716 case PCI_PRODUCT_DLINK_DGE560T:
1717 case PCI_PRODUCT_DLINK_DGE560T_2:
1718 case PCI_PRODUCT_LINKSYS_EG1032:
1719 case PCI_PRODUCT_LINKSYS_EG1064:
1720 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1721 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1722 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1723 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1724 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1725 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1726 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1727 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1728 sc->sk_name = sc->sk_vpd_prodname;
1729 break;
1730 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1731 /* whoops yukon vpd prodname bears no resemblance to reality */
1732 switch (sc->sk_type) {
1733 case SK_GENESIS:
1734 sc->sk_name = sc->sk_vpd_prodname;
1735 break;
1736 case SK_YUKON:
1737 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1738 break;
1739 case SK_YUKON_LITE:
1740 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1741 break;
1742 case SK_YUKON_LP:
1743 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1744 break;
1745 default:
1746 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1747 }
1748
1749 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1750
1751 if ( sc->sk_type == SK_YUKON ) {
1752 uint32_t flashaddr;
1753 uint8_t testbyte;
1754
1755 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1756
1757 /* test Flash-Address Register */
1758 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1759 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1760
1761 if (testbyte != 0) {
1762 /* this is yukon lite Rev. A0 */
1763 sc->sk_type = SK_YUKON_LITE;
1764 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1765 /* restore Flash-Address Register */
1766 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1767 }
1768 }
1769 break;
1770 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1771 sc->sk_name = sc->sk_vpd_prodname;
1772 break;
1773 default:
1774 sc->sk_name = "Unknown Marvell";
1775 }
1776
1777
1778 if ( sc->sk_type == SK_YUKON_LITE ) {
1779 switch (sc->sk_rev) {
1780 case SK_YUKON_LITE_REV_A0:
1781 revstr = "A0";
1782 break;
1783 case SK_YUKON_LITE_REV_A1:
1784 revstr = "A1";
1785 break;
1786 case SK_YUKON_LITE_REV_A3:
1787 revstr = "A3";
1788 break;
1789 default:
1790 revstr = "";
1791 }
1792 } else {
1793 revstr = "";
1794 }
1795
1796 /* Announce the product name. */
1797 aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
1798 sc->sk_name, revstr, sc->sk_rev);
1799
1800 skca.skc_port = SK_PORT_A;
1801 (void)config_found(sc->sk_dev, &skca, skcprint);
1802
1803 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1804 skca.skc_port = SK_PORT_B;
1805 (void)config_found(sc->sk_dev, &skca, skcprint);
1806 }
1807
1808 /* Turn on the 'driver is loaded' LED. */
1809 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1810
1811 /* skc sysctl setup */
1812
1813 sc->sk_int_mod = SK_IM_DEFAULT;
1814 sc->sk_int_mod_pending = 0;
1815
1816 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1817 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1818 SYSCTL_DESCR("skc per-controller controls"),
1819 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1820 CTL_EOL)) != 0) {
1821 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1822 goto fail_1;
1823 }
1824
1825 sk_nodenum = node->sysctl_num;
1826
1827 /* interrupt moderation time in usecs */
1828 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1829 CTLFLAG_READWRITE,
1830 CTLTYPE_INT, "int_mod",
1831 SYSCTL_DESCR("sk interrupt moderation timer"),
1832 sk_sysctl_handler, 0, (void *)sc,
1833 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1834 CTL_EOL)) != 0) {
1835 aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1836 goto fail_1;
1837 }
1838
1839 if (!pmf_device_register(self, skc_suspend, skc_resume))
1840 aprint_error_dev(self, "couldn't establish power handler\n");
1841
1842 return;
1843
1844 fail_1:
1845 pci_intr_disestablish(pc, sc->sk_intrhand);
1846 fail:
1847 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1848 }
1849
1850 int
1851 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1852 {
1853 struct sk_softc *sc = sc_if->sk_softc;
1854 struct sk_tx_desc *f = NULL;
1855 u_int32_t frag, cur, cnt = 0, sk_ctl;
1856 int i;
1857 struct sk_txmap_entry *entry;
1858 bus_dmamap_t txmap;
1859
1860 DPRINTFN(3, ("sk_encap\n"));
1861
1862 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1863 if (entry == NULL) {
1864 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1865 return ENOBUFS;
1866 }
1867 txmap = entry->dmamap;
1868
1869 cur = frag = *txidx;
1870
1871 #ifdef SK_DEBUG
1872 if (skdebug >= 3)
1873 sk_dump_mbuf(m_head);
1874 #endif
1875
1876 /*
1877 * Start packing the mbufs in this chain into
1878 * the fragment pointers. Stop when we run out
1879 * of fragments or hit the end of the mbuf chain.
1880 */
1881 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1882 BUS_DMA_NOWAIT)) {
1883 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1884 return ENOBUFS;
1885 }
1886
1887 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1888
1889 /* Sync the DMA map. */
1890 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1891 BUS_DMASYNC_PREWRITE);
1892
1893 for (i = 0; i < txmap->dm_nsegs; i++) {
1894 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1895 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1896 return ENOBUFS;
1897 }
1898 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1899 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1900 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1901 if (cnt == 0)
1902 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1903 else
1904 sk_ctl |= SK_TXCTL_OWN;
1905 f->sk_ctl = htole32(sk_ctl);
1906 cur = frag;
1907 SK_INC(frag, SK_TX_RING_CNT);
1908 cnt++;
1909 }
1910
1911 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1912 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1913
1914 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1915 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1916 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1917
1918 /* Sync descriptors before handing to chip */
1919 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1920 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1921
1922 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1923 htole32(SK_TXCTL_OWN);
1924
1925 /* Sync first descriptor to hand it off */
1926 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1927
1928 sc_if->sk_cdata.sk_tx_cnt += cnt;
1929
1930 #ifdef SK_DEBUG
1931 if (skdebug >= 3) {
1932 struct sk_tx_desc *desc;
1933 u_int32_t idx;
1934 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1935 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1936 sk_dump_txdesc(desc, idx);
1937 }
1938 }
1939 #endif
1940
1941 *txidx = frag;
1942
1943 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1944
1945 return 0;
1946 }
1947
1948 void
1949 sk_start(struct ifnet *ifp)
1950 {
1951 struct sk_if_softc *sc_if = ifp->if_softc;
1952 struct sk_softc *sc = sc_if->sk_softc;
1953 struct mbuf *m_head = NULL;
1954 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1955 int pkts = 0;
1956
1957 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1958 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1959
1960 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1961 IFQ_POLL(&ifp->if_snd, m_head);
1962 if (m_head == NULL)
1963 break;
1964
1965 /*
1966 * Pack the data into the transmit ring. If we
1967 * don't have room, set the OACTIVE flag and wait
1968 * for the NIC to drain the ring.
1969 */
1970 if (sk_encap(sc_if, m_head, &idx)) {
1971 ifp->if_flags |= IFF_OACTIVE;
1972 break;
1973 }
1974
1975 /* now we are committed to transmit the packet */
1976 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1977 pkts++;
1978
1979 /*
1980 * If there's a BPF listener, bounce a copy of this frame
1981 * to him.
1982 */
1983 bpf_mtap(ifp, m_head);
1984 }
1985 if (pkts == 0)
1986 return;
1987
1988 /* Transmit */
1989 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1990 sc_if->sk_cdata.sk_tx_prod = idx;
1991 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1992
1993 /* Set a timeout in case the chip goes out to lunch. */
1994 ifp->if_timer = 5;
1995 }
1996 }
1997
1998
1999 void
2000 sk_watchdog(struct ifnet *ifp)
2001 {
2002 struct sk_if_softc *sc_if = ifp->if_softc;
2003
2004 /*
2005 * Reclaim first as there is a possibility of losing Tx completion
2006 * interrupts.
2007 */
2008 sk_txeof(sc_if);
2009 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2010 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
2011
2012 ifp->if_oerrors++;
2013
2014 sk_init(ifp);
2015 }
2016 }
2017
2018 void
2019 sk_shutdown(void *v)
2020 {
2021 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
2022 struct sk_softc *sc = sc_if->sk_softc;
2023 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2024
2025 DPRINTFN(2, ("sk_shutdown\n"));
2026 sk_stop(ifp,1);
2027
2028 /* Turn off the 'driver is loaded' LED. */
2029 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2030
2031 /*
2032 * Reset the GEnesis controller. Doing this should also
2033 * assert the resets on the attached XMAC(s).
2034 */
2035 sk_reset(sc);
2036 }
2037
2038 void
2039 sk_rxeof(struct sk_if_softc *sc_if)
2040 {
2041 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2042 struct mbuf *m;
2043 struct sk_chain *cur_rx;
2044 struct sk_rx_desc *cur_desc;
2045 int i, cur, total_len = 0;
2046 u_int32_t rxstat, sk_ctl;
2047 bus_dmamap_t dmamap;
2048
2049 i = sc_if->sk_cdata.sk_rx_prod;
2050
2051 DPRINTFN(3, ("sk_rxeof %d\n", i));
2052
2053 for (;;) {
2054 cur = i;
2055
2056 /* Sync the descriptor */
2057 SK_CDRXSYNC(sc_if, cur,
2058 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2059
2060 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2061 if (sk_ctl & SK_RXCTL_OWN) {
2062 /* Invalidate the descriptor -- it's not ready yet */
2063 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2064 sc_if->sk_cdata.sk_rx_prod = i;
2065 break;
2066 }
2067
2068 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2069 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2070 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2071
2072 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2073 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2074
2075 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2076 m = cur_rx->sk_mbuf;
2077 cur_rx->sk_mbuf = NULL;
2078 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2079
2080 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2081
2082 SK_INC(i, SK_RX_RING_CNT);
2083
2084 if (rxstat & XM_RXSTAT_ERRFRAME) {
2085 ifp->if_ierrors++;
2086 sk_newbuf(sc_if, cur, m, dmamap);
2087 continue;
2088 }
2089
2090 /*
2091 * Try to allocate a new jumbo buffer. If that
2092 * fails, copy the packet to mbufs and put the
2093 * jumbo buffer back in the ring so it can be
2094 * re-used. If allocating mbufs fails, then we
2095 * have to drop the packet.
2096 */
2097 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2098 struct mbuf *m0;
2099 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2100 total_len + ETHER_ALIGN, 0, ifp, NULL);
2101 sk_newbuf(sc_if, cur, m, dmamap);
2102 if (m0 == NULL) {
2103 aprint_error_dev(sc_if->sk_dev, "no receive "
2104 "buffers available -- packet dropped!\n");
2105 ifp->if_ierrors++;
2106 continue;
2107 }
2108 m_adj(m0, ETHER_ALIGN);
2109 m = m0;
2110 } else {
2111 m->m_pkthdr.rcvif = ifp;
2112 m->m_pkthdr.len = m->m_len = total_len;
2113 }
2114
2115 ifp->if_ipackets++;
2116
2117 bpf_mtap(ifp, m);
2118 /* pass it on. */
2119 (*ifp->if_input)(ifp, m);
2120 }
2121 }
2122
2123 void
2124 sk_txeof(struct sk_if_softc *sc_if)
2125 {
2126 struct sk_softc *sc = sc_if->sk_softc;
2127 struct sk_tx_desc *cur_tx;
2128 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2129 u_int32_t idx, sk_ctl;
2130 struct sk_txmap_entry *entry;
2131
2132 DPRINTFN(3, ("sk_txeof\n"));
2133
2134 /*
2135 * Go through our tx ring and free mbufs for those
2136 * frames that have been sent.
2137 */
2138 idx = sc_if->sk_cdata.sk_tx_cons;
2139 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2140 SK_CDTXSYNC(sc_if, idx, 1,
2141 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2142
2143 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2144 sk_ctl = le32toh(cur_tx->sk_ctl);
2145 #ifdef SK_DEBUG
2146 if (skdebug >= 3)
2147 sk_dump_txdesc(cur_tx, idx);
2148 #endif
2149 if (sk_ctl & SK_TXCTL_OWN) {
2150 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2151 break;
2152 }
2153 if (sk_ctl & SK_TXCTL_LASTFRAG)
2154 ifp->if_opackets++;
2155 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2156 entry = sc_if->sk_cdata.sk_tx_map[idx];
2157
2158 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2159 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2160
2161 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2162 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2163
2164 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2165 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2166 link);
2167 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2168 }
2169 sc_if->sk_cdata.sk_tx_cnt--;
2170 SK_INC(idx, SK_TX_RING_CNT);
2171 }
2172 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2173 ifp->if_timer = 0;
2174 else /* nudge chip to keep tx ring moving */
2175 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2176
2177 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2178 ifp->if_flags &= ~IFF_OACTIVE;
2179
2180 sc_if->sk_cdata.sk_tx_cons = idx;
2181 }
2182
2183 void
2184 sk_tick(void *xsc_if)
2185 {
2186 struct sk_if_softc *sc_if = xsc_if;
2187 struct mii_data *mii = &sc_if->sk_mii;
2188 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2189 int i;
2190
2191 DPRINTFN(3, ("sk_tick\n"));
2192
2193 if (!(ifp->if_flags & IFF_UP))
2194 return;
2195
2196 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2197 sk_intr_bcom(sc_if);
2198 return;
2199 }
2200
2201 /*
2202 * According to SysKonnect, the correct way to verify that
2203 * the link has come back up is to poll bit 0 of the GPIO
2204 * register three times. This pin has the signal from the
2205 * link sync pin connected to it; if we read the same link
2206 * state 3 times in a row, we know the link is up.
2207 */
2208 for (i = 0; i < 3; i++) {
2209 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2210 break;
2211 }
2212
2213 if (i != 3) {
2214 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2215 return;
2216 }
2217
2218 /* Turn the GP0 interrupt back on. */
2219 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2220 SK_XM_READ_2(sc_if, XM_ISR);
2221 mii_tick(mii);
2222 mii_pollstat(mii);
2223 callout_stop(&sc_if->sk_tick_ch);
2224 }
2225
2226 void
2227 sk_intr_bcom(struct sk_if_softc *sc_if)
2228 {
2229 struct mii_data *mii = &sc_if->sk_mii;
2230 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2231 int status;
2232
2233
2234 DPRINTFN(3, ("sk_intr_bcom\n"));
2235
2236 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2237
2238 /*
2239 * Read the PHY interrupt register to make sure
2240 * we clear any pending interrupts.
2241 */
2242 status = sk_xmac_miibus_readreg(sc_if->sk_dev,
2243 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2244
2245 if (!(ifp->if_flags & IFF_RUNNING)) {
2246 sk_init_xmac(sc_if);
2247 return;
2248 }
2249
2250 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2251 int lstat;
2252 lstat = sk_xmac_miibus_readreg(sc_if->sk_dev,
2253 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2254
2255 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2256 (void)mii_mediachg(mii);
2257 /* Turn off the link LED. */
2258 SK_IF_WRITE_1(sc_if, 0,
2259 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2260 sc_if->sk_link = 0;
2261 } else if (status & BRGPHY_ISR_LNK_CHG) {
2262 sk_xmac_miibus_writereg(sc_if->sk_dev,
2263 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2264 mii_tick(mii);
2265 sc_if->sk_link = 1;
2266 /* Turn on the link LED. */
2267 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2268 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2269 SK_LINKLED_BLINK_OFF);
2270 mii_pollstat(mii);
2271 } else {
2272 mii_tick(mii);
2273 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2274 }
2275 }
2276
2277 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2278 }
2279
2280 void
2281 sk_intr_xmac(struct sk_if_softc *sc_if)
2282 {
2283 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2284
2285 DPRINTFN(3, ("sk_intr_xmac\n"));
2286
2287 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2288 if (status & XM_ISR_GP0_SET) {
2289 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2290 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2291 }
2292
2293 if (status & XM_ISR_AUTONEG_DONE) {
2294 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2295 }
2296 }
2297
2298 if (status & XM_IMR_TX_UNDERRUN)
2299 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2300
2301 if (status & XM_IMR_RX_OVERRUN)
2302 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2303 }
2304
2305 void
2306 sk_intr_yukon(struct sk_if_softc *sc_if)
2307 {
2308 int status;
2309
2310 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2311
2312 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2313 }
2314
2315 int
2316 sk_intr(void *xsc)
2317 {
2318 struct sk_softc *sc = xsc;
2319 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2320 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2321 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2322 u_int32_t status;
2323 int claimed = 0;
2324
2325 if (sc_if0 != NULL)
2326 ifp0 = &sc_if0->sk_ethercom.ec_if;
2327 if (sc_if1 != NULL)
2328 ifp1 = &sc_if1->sk_ethercom.ec_if;
2329
2330 for (;;) {
2331 status = CSR_READ_4(sc, SK_ISSR);
2332 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2333
2334 if (!(status & sc->sk_intrmask))
2335 break;
2336
2337 claimed = 1;
2338
2339 /* Handle receive interrupts first. */
2340 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2341 sk_rxeof(sc_if0);
2342 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2343 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2344 }
2345 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2346 sk_rxeof(sc_if1);
2347 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2348 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2349 }
2350
2351 /* Then transmit interrupts. */
2352 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2353 sk_txeof(sc_if0);
2354 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2355 SK_TXBMU_CLR_IRQ_EOF);
2356 }
2357 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2358 sk_txeof(sc_if1);
2359 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2360 SK_TXBMU_CLR_IRQ_EOF);
2361 }
2362
2363 /* Then MAC interrupts. */
2364 if (sc_if0 && (status & SK_ISR_MAC1) &&
2365 (ifp0->if_flags & IFF_RUNNING)) {
2366 if (sc->sk_type == SK_GENESIS)
2367 sk_intr_xmac(sc_if0);
2368 else
2369 sk_intr_yukon(sc_if0);
2370 }
2371
2372 if (sc_if1 && (status & SK_ISR_MAC2) &&
2373 (ifp1->if_flags & IFF_RUNNING)) {
2374 if (sc->sk_type == SK_GENESIS)
2375 sk_intr_xmac(sc_if1);
2376 else
2377 sk_intr_yukon(sc_if1);
2378
2379 }
2380
2381 if (status & SK_ISR_EXTERNAL_REG) {
2382 if (sc_if0 != NULL &&
2383 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2384 sk_intr_bcom(sc_if0);
2385
2386 if (sc_if1 != NULL &&
2387 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2388 sk_intr_bcom(sc_if1);
2389 }
2390 }
2391
2392 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2393
2394 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2395 sk_start(ifp0);
2396 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2397 sk_start(ifp1);
2398
2399 rnd_add_uint32(&sc->rnd_source, status);
2400
2401 if (sc->sk_int_mod_pending)
2402 sk_update_int_mod(sc);
2403
2404 return claimed;
2405 }
2406
2407 void
2408 sk_init_xmac(struct sk_if_softc *sc_if)
2409 {
2410 struct sk_softc *sc = sc_if->sk_softc;
2411 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2412 static const struct sk_bcom_hack bhack[] = {
2413 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2414 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2415 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2416 { 0, 0 } };
2417
2418 DPRINTFN(1, ("sk_init_xmac\n"));
2419
2420 /* Unreset the XMAC. */
2421 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2422 DELAY(1000);
2423
2424 /* Reset the XMAC's internal state. */
2425 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2426
2427 /* Save the XMAC II revision */
2428 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2429
2430 /*
2431 * Perform additional initialization for external PHYs,
2432 * namely for the 1000baseTX cards that use the XMAC's
2433 * GMII mode.
2434 */
2435 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2436 int i = 0;
2437 u_int32_t val;
2438
2439 /* Take PHY out of reset. */
2440 val = sk_win_read_4(sc, SK_GPIO);
2441 if (sc_if->sk_port == SK_PORT_A)
2442 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2443 else
2444 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2445 sk_win_write_4(sc, SK_GPIO, val);
2446
2447 /* Enable GMII mode on the XMAC. */
2448 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2449
2450 sk_xmac_miibus_writereg(sc_if->sk_dev,
2451 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2452 DELAY(10000);
2453 sk_xmac_miibus_writereg(sc_if->sk_dev,
2454 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2455
2456 /*
2457 * Early versions of the BCM5400 apparently have
2458 * a bug that requires them to have their reserved
2459 * registers initialized to some magic values. I don't
2460 * know what the numbers do, I'm just the messenger.
2461 */
2462 if (sk_xmac_miibus_readreg(sc_if->sk_dev,
2463 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2464 while (bhack[i].reg) {
2465 sk_xmac_miibus_writereg(sc_if->sk_dev,
2466 SK_PHYADDR_BCOM, bhack[i].reg,
2467 bhack[i].val);
2468 i++;
2469 }
2470 }
2471 }
2472
2473 /* Set station address */
2474 SK_XM_WRITE_2(sc_if, XM_PAR0,
2475 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2476 SK_XM_WRITE_2(sc_if, XM_PAR1,
2477 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2478 SK_XM_WRITE_2(sc_if, XM_PAR2,
2479 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2480 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2481
2482 if (ifp->if_flags & IFF_PROMISC)
2483 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2484 else
2485 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2486
2487 if (ifp->if_flags & IFF_BROADCAST)
2488 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2489 else
2490 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2491
2492 /* We don't need the FCS appended to the packet. */
2493 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2494
2495 /* We want short frames padded to 60 bytes. */
2496 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2497
2498 /*
2499 * Enable the reception of all error frames. This is is
2500 * a necessary evil due to the design of the XMAC. The
2501 * XMAC's receive FIFO is only 8K in size, however jumbo
2502 * frames can be up to 9000 bytes in length. When bad
2503 * frame filtering is enabled, the XMAC's RX FIFO operates
2504 * in 'store and forward' mode. For this to work, the
2505 * entire frame has to fit into the FIFO, but that means
2506 * that jumbo frames larger than 8192 bytes will be
2507 * truncated. Disabling all bad frame filtering causes
2508 * the RX FIFO to operate in streaming mode, in which
2509 * case the XMAC will start transfering frames out of the
2510 * RX FIFO as soon as the FIFO threshold is reached.
2511 */
2512 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2513 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2514 XM_MODE_RX_INRANGELEN);
2515
2516 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2517 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2518 else
2519 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2520
2521 /*
2522 * Bump up the transmit threshold. This helps hold off transmit
2523 * underruns when we're blasting traffic from both ports at once.
2524 */
2525 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2526
2527 /* Set multicast filter */
2528 sk_setmulti(sc_if);
2529
2530 /* Clear and enable interrupts */
2531 SK_XM_READ_2(sc_if, XM_ISR);
2532 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2533 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2534 else
2535 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2536
2537 /* Configure MAC arbiter */
2538 switch (sc_if->sk_xmac_rev) {
2539 case XM_XMAC_REV_B2:
2540 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2541 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2542 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2543 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2544 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2545 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2546 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2547 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2548 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2549 break;
2550 case XM_XMAC_REV_C1:
2551 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2552 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2553 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2554 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2555 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2556 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2557 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2558 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2559 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2560 break;
2561 default:
2562 break;
2563 }
2564 sk_win_write_2(sc, SK_MACARB_CTL,
2565 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2566
2567 sc_if->sk_link = 1;
2568 }
2569
2570 void sk_init_yukon(struct sk_if_softc *sc_if)
2571 {
2572 u_int32_t /*mac, */phy;
2573 u_int16_t reg;
2574 struct sk_softc *sc;
2575 int i;
2576
2577 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2578 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2579
2580 sc = sc_if->sk_softc;
2581 if (sc->sk_type == SK_YUKON_LITE &&
2582 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2583 /* Take PHY out of reset. */
2584 sk_win_write_4(sc, SK_GPIO,
2585 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2586 }
2587
2588
2589 /* GMAC and GPHY Reset */
2590 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2591
2592 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2593
2594 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2595 DELAY(1000);
2596 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2597 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2598 DELAY(1000);
2599
2600
2601 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2602
2603 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2604 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2605
2606 switch (sc_if->sk_softc->sk_pmd) {
2607 case IFM_1000_SX:
2608 case IFM_1000_LX:
2609 phy |= SK_GPHY_FIBER;
2610 break;
2611
2612 case IFM_1000_CX:
2613 case IFM_1000_T:
2614 phy |= SK_GPHY_COPPER;
2615 break;
2616 }
2617
2618 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2619
2620 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2621 DELAY(1000);
2622 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2623 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2624 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2625
2626 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2627 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2628
2629 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2630
2631 /* unused read of the interrupt source register */
2632 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2633 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2634
2635 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2636 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2637 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2638
2639 /* MIB Counter Clear Mode set */
2640 reg |= YU_PAR_MIB_CLR;
2641 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2642 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2643 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2644
2645 /* MIB Counter Clear Mode clear */
2646 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2647 reg &= ~YU_PAR_MIB_CLR;
2648 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2649
2650 /* receive control reg */
2651 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2652 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2653 YU_RCR_CRCR);
2654
2655 /* transmit parameter register */
2656 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2657 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2658 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2659
2660 /* serial mode register */
2661 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2662 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2663 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2664 YU_SMR_IPG_DATA(0x1e));
2665
2666 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2667 /* Setup Yukon's address */
2668 for (i = 0; i < 3; i++) {
2669 /* Write Source Address 1 (unicast filter) */
2670 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2671 sc_if->sk_enaddr[i * 2] |
2672 sc_if->sk_enaddr[i * 2 + 1] << 8);
2673 }
2674
2675 for (i = 0; i < 3; i++) {
2676 reg = sk_win_read_2(sc_if->sk_softc,
2677 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2678 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2679 }
2680
2681 /* Set multicast filter */
2682 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2683 sk_setmulti(sc_if);
2684
2685 /* enable interrupt mask for counter overflows */
2686 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2687 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2688 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2689 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2690
2691 /* Configure RX MAC FIFO */
2692 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2693 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2694
2695 /* Configure TX MAC FIFO */
2696 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2697 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2698
2699 DPRINTFN(6, ("sk_init_yukon: end\n"));
2700 }
2701
2702 /*
2703 * Note that to properly initialize any part of the GEnesis chip,
2704 * you first have to take it out of reset mode.
2705 */
2706 int
2707 sk_init(struct ifnet *ifp)
2708 {
2709 struct sk_if_softc *sc_if = ifp->if_softc;
2710 struct sk_softc *sc = sc_if->sk_softc;
2711 struct mii_data *mii = &sc_if->sk_mii;
2712 int rc = 0, s;
2713 u_int32_t imr, imtimer_ticks;
2714
2715 DPRINTFN(1, ("sk_init\n"));
2716
2717 s = splnet();
2718
2719 if (ifp->if_flags & IFF_RUNNING) {
2720 splx(s);
2721 return 0;
2722 }
2723
2724 /* Cancel pending I/O and free all RX/TX buffers. */
2725 sk_stop(ifp,0);
2726
2727 if (sc->sk_type == SK_GENESIS) {
2728 /* Configure LINK_SYNC LED */
2729 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2730 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2731 SK_LINKLED_LINKSYNC_ON);
2732
2733 /* Configure RX LED */
2734 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2735 SK_RXLEDCTL_COUNTER_START);
2736
2737 /* Configure TX LED */
2738 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2739 SK_TXLEDCTL_COUNTER_START);
2740 }
2741
2742 /* Configure I2C registers */
2743
2744 /* Configure XMAC(s) */
2745 switch (sc->sk_type) {
2746 case SK_GENESIS:
2747 sk_init_xmac(sc_if);
2748 break;
2749 case SK_YUKON:
2750 case SK_YUKON_LITE:
2751 case SK_YUKON_LP:
2752 sk_init_yukon(sc_if);
2753 break;
2754 }
2755 if ((rc = mii_mediachg(mii)) == ENXIO)
2756 rc = 0;
2757 else if (rc != 0)
2758 goto out;
2759
2760 if (sc->sk_type == SK_GENESIS) {
2761 /* Configure MAC FIFOs */
2762 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2763 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2764 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2765
2766 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2767 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2768 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2769 }
2770
2771 /* Configure transmit arbiter(s) */
2772 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2773 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2774
2775 /* Configure RAMbuffers */
2776 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2777 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2778 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2779 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2780 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2781 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2782
2783 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2784 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2785 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2786 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2787 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2788 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2789 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2790
2791 /* Configure BMUs */
2792 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2793 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2794 SK_RX_RING_ADDR(sc_if, 0));
2795 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2796
2797 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2798 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2799 SK_TX_RING_ADDR(sc_if, 0));
2800 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2801
2802 /* Init descriptors */
2803 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2804 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2805 "memory for rx buffers\n");
2806 sk_stop(ifp,0);
2807 splx(s);
2808 return ENOBUFS;
2809 }
2810
2811 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2812 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2813 "memory for tx buffers\n");
2814 sk_stop(ifp,0);
2815 splx(s);
2816 return ENOBUFS;
2817 }
2818
2819 /* Set interrupt moderation if changed via sysctl. */
2820 switch (sc->sk_type) {
2821 case SK_GENESIS:
2822 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2823 break;
2824 case SK_YUKON_EC:
2825 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2826 break;
2827 default:
2828 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2829 }
2830 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2831 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2832 sk_win_write_4(sc, SK_IMTIMERINIT,
2833 SK_IM_USECS(sc->sk_int_mod));
2834 aprint_verbose_dev(sc->sk_dev,
2835 "interrupt moderation is %d us\n", sc->sk_int_mod);
2836 }
2837
2838 /* Configure interrupt handling */
2839 CSR_READ_4(sc, SK_ISSR);
2840 if (sc_if->sk_port == SK_PORT_A)
2841 sc->sk_intrmask |= SK_INTRS1;
2842 else
2843 sc->sk_intrmask |= SK_INTRS2;
2844
2845 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2846
2847 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2848
2849 /* Start BMUs. */
2850 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2851
2852 if (sc->sk_type == SK_GENESIS) {
2853 /* Enable XMACs TX and RX state machines */
2854 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2855 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2856 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2857 }
2858
2859 if (SK_YUKON_FAMILY(sc->sk_type)) {
2860 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2861 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2862 #if 0
2863 /* XXX disable 100Mbps and full duplex mode? */
2864 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2865 #endif
2866 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2867 }
2868
2869
2870 ifp->if_flags |= IFF_RUNNING;
2871 ifp->if_flags &= ~IFF_OACTIVE;
2872
2873 out:
2874 splx(s);
2875 return rc;
2876 }
2877
2878 void
2879 sk_stop(struct ifnet *ifp, int disable)
2880 {
2881 struct sk_if_softc *sc_if = ifp->if_softc;
2882 struct sk_softc *sc = sc_if->sk_softc;
2883 int i;
2884
2885 DPRINTFN(1, ("sk_stop\n"));
2886
2887 callout_stop(&sc_if->sk_tick_ch);
2888
2889 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2890 u_int32_t val;
2891
2892 /* Put PHY back into reset. */
2893 val = sk_win_read_4(sc, SK_GPIO);
2894 if (sc_if->sk_port == SK_PORT_A) {
2895 val |= SK_GPIO_DIR0;
2896 val &= ~SK_GPIO_DAT0;
2897 } else {
2898 val |= SK_GPIO_DIR2;
2899 val &= ~SK_GPIO_DAT2;
2900 }
2901 sk_win_write_4(sc, SK_GPIO, val);
2902 }
2903
2904 /* Turn off various components of this interface. */
2905 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2906 switch (sc->sk_type) {
2907 case SK_GENESIS:
2908 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2909 SK_TXMACCTL_XMAC_RESET);
2910 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2911 break;
2912 case SK_YUKON:
2913 case SK_YUKON_LITE:
2914 case SK_YUKON_LP:
2915 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2916 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2917 break;
2918 }
2919 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2920 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2921 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2922 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2923 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2924 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2925 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2926 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2927 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2928
2929 /* Disable interrupts */
2930 if (sc_if->sk_port == SK_PORT_A)
2931 sc->sk_intrmask &= ~SK_INTRS1;
2932 else
2933 sc->sk_intrmask &= ~SK_INTRS2;
2934 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2935
2936 SK_XM_READ_2(sc_if, XM_ISR);
2937 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2938
2939 /* Free RX and TX mbufs still in the queues. */
2940 for (i = 0; i < SK_RX_RING_CNT; i++) {
2941 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2942 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2943 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2944 }
2945 }
2946
2947 for (i = 0; i < SK_TX_RING_CNT; i++) {
2948 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2949 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2950 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2951 }
2952 }
2953
2954 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2955 }
2956
2957 /* Power Management Framework */
2958
2959 static bool
2960 skc_suspend(device_t dv, const pmf_qual_t *qual)
2961 {
2962 struct sk_softc *sc = device_private(dv);
2963
2964 DPRINTFN(2, ("skc_suspend\n"));
2965
2966 /* Turn off the driver is loaded LED */
2967 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2968
2969 return true;
2970 }
2971
2972 static bool
2973 skc_resume(device_t dv, const pmf_qual_t *qual)
2974 {
2975 struct sk_softc *sc = device_private(dv);
2976
2977 DPRINTFN(2, ("skc_resume\n"));
2978
2979 sk_reset(sc);
2980 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2981
2982 return true;
2983 }
2984
2985 static bool
2986 sk_resume(device_t dv, const pmf_qual_t *qual)
2987 {
2988 struct sk_if_softc *sc_if = device_private(dv);
2989
2990 sk_init_yukon(sc_if);
2991 return true;
2992 }
2993
2994 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
2995 skc_probe, skc_attach, NULL, NULL);
2996
2997 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
2998 sk_probe, sk_attach, NULL, NULL);
2999
3000 #ifdef SK_DEBUG
3001 void
3002 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
3003 {
3004 #define DESC_PRINT(X) \
3005 if (X) \
3006 printf("txdesc[%d]." #X "=%#x\n", \
3007 idx, X);
3008
3009 DESC_PRINT(le32toh(desc->sk_ctl));
3010 DESC_PRINT(le32toh(desc->sk_next));
3011 DESC_PRINT(le32toh(desc->sk_data_lo));
3012 DESC_PRINT(le32toh(desc->sk_data_hi));
3013 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
3014 DESC_PRINT(le16toh(desc->sk_rsvd0));
3015 DESC_PRINT(le16toh(desc->sk_csum_startval));
3016 DESC_PRINT(le16toh(desc->sk_csum_startpos));
3017 DESC_PRINT(le16toh(desc->sk_csum_writepos));
3018 DESC_PRINT(le16toh(desc->sk_rsvd1));
3019 #undef PRINT
3020 }
3021
3022 void
3023 sk_dump_bytes(const char *data, int len)
3024 {
3025 int c, i, j;
3026
3027 for (i = 0; i < len; i += 16) {
3028 printf("%08x ", i);
3029 c = len - i;
3030 if (c > 16) c = 16;
3031
3032 for (j = 0; j < c; j++) {
3033 printf("%02x ", data[i + j] & 0xff);
3034 if ((j & 0xf) == 7 && j > 0)
3035 printf(" ");
3036 }
3037
3038 for (; j < 16; j++)
3039 printf(" ");
3040 printf(" ");
3041
3042 for (j = 0; j < c; j++) {
3043 int ch = data[i + j] & 0xff;
3044 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
3045 }
3046
3047 printf("\n");
3048
3049 if (c < 16)
3050 break;
3051 }
3052 }
3053
3054 void
3055 sk_dump_mbuf(struct mbuf *m)
3056 {
3057 int count = m->m_pkthdr.len;
3058
3059 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3060
3061 while (count > 0 && m) {
3062 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3063 m, m->m_data, m->m_len);
3064 sk_dump_bytes(mtod(m, char *), m->m_len);
3065
3066 count -= m->m_len;
3067 m = m->m_next;
3068 }
3069 }
3070 #endif
3071
3072 static int
3073 sk_sysctl_handler(SYSCTLFN_ARGS)
3074 {
3075 int error, t;
3076 struct sysctlnode node;
3077 struct sk_softc *sc;
3078
3079 node = *rnode;
3080 sc = node.sysctl_data;
3081 t = sc->sk_int_mod;
3082 node.sysctl_data = &t;
3083 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3084 if (error || newp == NULL)
3085 return error;
3086
3087 if (t < SK_IM_MIN || t > SK_IM_MAX)
3088 return EINVAL;
3089
3090 /* update the softc with sysctl-changed value, and mark
3091 for hardware update */
3092 sc->sk_int_mod = t;
3093 sc->sk_int_mod_pending = 1;
3094 return 0;
3095 }
3096
3097 /*
3098 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3099 * set up in skc_attach()
3100 */
3101 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3102 {
3103 int rc;
3104 const struct sysctlnode *node;
3105
3106 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3107 0, CTLTYPE_NODE, "hw", NULL,
3108 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3109 goto err;
3110 }
3111
3112 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3113 0, CTLTYPE_NODE, "sk",
3114 SYSCTL_DESCR("sk interface controls"),
3115 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3116 goto err;
3117 }
3118
3119 sk_root_num = node->sysctl_num;
3120 return;
3121
3122 err:
3123 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3124 }
3125