Home | History | Annotate | Line # | Download | only in pci
if_sk.c revision 1.84
      1 /*	$NetBSD: if_sk.c,v 1.84 2016/12/14 22:21:13 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
     30 
     31 /*
     32  * Copyright (c) 1997, 1998, 1999, 2000
     33  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *	This product includes software developed by Bill Paul.
     46  * 4. Neither the name of the author nor the names of any co-contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     60  * THE POSSIBILITY OF SUCH DAMAGE.
     61  *
     62  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
     63  */
     64 
     65 /*
     66  * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
     67  *
     68  * Permission to use, copy, modify, and distribute this software for any
     69  * purpose with or without fee is hereby granted, provided that the above
     70  * copyright notice and this permission notice appear in all copies.
     71  *
     72  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     73  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     74  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     75  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     76  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     77  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     78  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     79  */
     80 
     81 /*
     82  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
     83  * the SK-984x series adapters, both single port and dual port.
     84  * References:
     85  * 	The XaQti XMAC II datasheet,
     86  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     87  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
     88  *
     89  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
     90  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
     91  * convenience to others until Vitesse corrects this problem:
     92  *
     93  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     94  *
     95  * Written by Bill Paul <wpaul (at) ee.columbia.edu>
     96  * Department of Electrical Engineering
     97  * Columbia University, New York City
     98  */
     99 
    100 /*
    101  * The SysKonnect gigabit ethernet adapters consist of two main
    102  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
    103  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
    104  * components and a PHY while the GEnesis controller provides a PCI
    105  * interface with DMA support. Each card may have between 512K and
    106  * 2MB of SRAM on board depending on the configuration.
    107  *
    108  * The SysKonnect GEnesis controller can have either one or two XMAC
    109  * chips connected to it, allowing single or dual port NIC configurations.
    110  * SysKonnect has the distinction of being the only vendor on the market
    111  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
    112  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
    113  * XMAC registers. This driver takes advantage of these features to allow
    114  * both XMACs to operate as independent interfaces.
    115  */
    116 
    117 #include <sys/cdefs.h>
    118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.84 2016/12/14 22:21:13 christos Exp $");
    119 
    120 #include <sys/param.h>
    121 #include <sys/systm.h>
    122 #include <sys/sockio.h>
    123 #include <sys/mbuf.h>
    124 #include <sys/malloc.h>
    125 #include <sys/mutex.h>
    126 #include <sys/kernel.h>
    127 #include <sys/socket.h>
    128 #include <sys/device.h>
    129 #include <sys/queue.h>
    130 #include <sys/callout.h>
    131 #include <sys/sysctl.h>
    132 #include <sys/endian.h>
    133 
    134 #include <net/if.h>
    135 #include <net/if_dl.h>
    136 #include <net/if_types.h>
    137 
    138 #include <net/if_media.h>
    139 
    140 #include <net/bpf.h>
    141 #include <sys/rndsource.h>
    142 
    143 #include <dev/mii/mii.h>
    144 #include <dev/mii/miivar.h>
    145 #include <dev/mii/brgphyreg.h>
    146 
    147 #include <dev/pci/pcireg.h>
    148 #include <dev/pci/pcivar.h>
    149 #include <dev/pci/pcidevs.h>
    150 
    151 /* #define SK_USEIOSPACE */
    152 
    153 #include <dev/pci/if_skreg.h>
    154 #include <dev/pci/if_skvar.h>
    155 
    156 int skc_probe(device_t, cfdata_t, void *);
    157 void skc_attach(device_t, device_t, void *aux);
    158 int sk_probe(device_t, cfdata_t, void *);
    159 void sk_attach(device_t, device_t, void *aux);
    160 int skcprint(void *, const char *);
    161 int sk_intr(void *);
    162 void sk_intr_bcom(struct sk_if_softc *);
    163 void sk_intr_xmac(struct sk_if_softc *);
    164 void sk_intr_yukon(struct sk_if_softc *);
    165 void sk_rxeof(struct sk_if_softc *);
    166 void sk_txeof(struct sk_if_softc *);
    167 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
    168 void sk_start(struct ifnet *);
    169 int sk_ioctl(struct ifnet *, u_long, void *);
    170 int sk_init(struct ifnet *);
    171 void sk_init_xmac(struct sk_if_softc *);
    172 void sk_init_yukon(struct sk_if_softc *);
    173 void sk_stop(struct ifnet *, int);
    174 void sk_watchdog(struct ifnet *);
    175 void sk_shutdown(void *);
    176 int sk_ifmedia_upd(struct ifnet *);
    177 void sk_reset(struct sk_softc *);
    178 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
    179 int sk_alloc_jumbo_mem(struct sk_if_softc *);
    180 void sk_free_jumbo_mem(struct sk_if_softc *);
    181 void *sk_jalloc(struct sk_if_softc *);
    182 void sk_jfree(struct mbuf *, void *, size_t, void *);
    183 int sk_init_rx_ring(struct sk_if_softc *);
    184 int sk_init_tx_ring(struct sk_if_softc *);
    185 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
    186 void sk_vpd_read_res(struct sk_softc *,
    187 					struct vpd_res *, int);
    188 void sk_vpd_read(struct sk_softc *);
    189 
    190 void sk_update_int_mod(struct sk_softc *);
    191 
    192 int sk_xmac_miibus_readreg(device_t, int, int);
    193 void sk_xmac_miibus_writereg(device_t, int, int, int);
    194 void sk_xmac_miibus_statchg(struct ifnet *);
    195 
    196 int sk_marv_miibus_readreg(device_t, int, int);
    197 void sk_marv_miibus_writereg(device_t, int, int, int);
    198 void sk_marv_miibus_statchg(struct ifnet *);
    199 
    200 u_int32_t sk_xmac_hash(void *);
    201 u_int32_t sk_yukon_hash(void *);
    202 void sk_setfilt(struct sk_if_softc *, void *, int);
    203 void sk_setmulti(struct sk_if_softc *);
    204 void sk_tick(void *);
    205 
    206 static bool skc_suspend(device_t, const pmf_qual_t *);
    207 static bool skc_resume(device_t, const pmf_qual_t *);
    208 static bool sk_resume(device_t dv, const pmf_qual_t *);
    209 
    210 /* #define SK_DEBUG 2 */
    211 #ifdef SK_DEBUG
    212 #define DPRINTF(x)	if (skdebug) printf x
    213 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
    214 int	skdebug = SK_DEBUG;
    215 
    216 void sk_dump_txdesc(struct sk_tx_desc *, int);
    217 void sk_dump_mbuf(struct mbuf *);
    218 void sk_dump_bytes(const char *, int);
    219 #else
    220 #define DPRINTF(x)
    221 #define DPRINTFN(n,x)
    222 #endif
    223 
    224 static int sk_sysctl_handler(SYSCTLFN_PROTO);
    225 static int sk_root_num;
    226 
    227 /* supported device vendors */
    228 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
    229 static const struct sk_product {
    230 	pci_vendor_id_t		sk_vendor;
    231 	pci_product_id_t	sk_product;
    232 } sk_products[] = {
    233 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
    234 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
    235 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
    236 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
    237 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
    238 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
    239 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
    240 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
    241 	{ 0, 0, }
    242 };
    243 
    244 #define SK_LINKSYS_EG1032_SUBID	0x00151737
    245 
    246 static inline u_int32_t
    247 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
    248 {
    249 #ifdef SK_USEIOSPACE
    250 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    251 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
    252 #else
    253 	return CSR_READ_4(sc, reg);
    254 #endif
    255 }
    256 
    257 static inline u_int16_t
    258 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
    259 {
    260 #ifdef SK_USEIOSPACE
    261 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    262 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
    263 #else
    264 	return CSR_READ_2(sc, reg);
    265 #endif
    266 }
    267 
    268 static inline u_int8_t
    269 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
    270 {
    271 #ifdef SK_USEIOSPACE
    272 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    273 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
    274 #else
    275 	return CSR_READ_1(sc, reg);
    276 #endif
    277 }
    278 
    279 static inline void
    280 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
    281 {
    282 #ifdef SK_USEIOSPACE
    283 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    284 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
    285 #else
    286 	CSR_WRITE_4(sc, reg, x);
    287 #endif
    288 }
    289 
    290 static inline void
    291 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
    292 {
    293 #ifdef SK_USEIOSPACE
    294 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    295 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
    296 #else
    297 	CSR_WRITE_2(sc, reg, x);
    298 #endif
    299 }
    300 
    301 static inline void
    302 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
    303 {
    304 #ifdef SK_USEIOSPACE
    305 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    306 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
    307 #else
    308 	CSR_WRITE_1(sc, reg, x);
    309 #endif
    310 }
    311 
    312 /*
    313  * The VPD EEPROM contains Vital Product Data, as suggested in
    314  * the PCI 2.1 specification. The VPD data is separared into areas
    315  * denoted by resource IDs. The SysKonnect VPD contains an ID string
    316  * resource (the name of the adapter), a read-only area resource
    317  * containing various key/data fields and a read/write area which
    318  * can be used to store asset management information or log messages.
    319  * We read the ID string and read-only into buffers attached to
    320  * the controller softc structure for later use. At the moment,
    321  * we only use the ID string during sk_attach().
    322  */
    323 u_int8_t
    324 sk_vpd_readbyte(struct sk_softc *sc, int addr)
    325 {
    326 	int			i;
    327 
    328 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
    329 	for (i = 0; i < SK_TIMEOUT; i++) {
    330 		DELAY(1);
    331 		if (sk_win_read_2(sc,
    332 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
    333 			break;
    334 	}
    335 
    336 	if (i == SK_TIMEOUT)
    337 		return 0;
    338 
    339 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
    340 }
    341 
    342 void
    343 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
    344 {
    345 	int			i;
    346 	u_int8_t		*ptr;
    347 
    348 	ptr = (u_int8_t *)res;
    349 	for (i = 0; i < sizeof(struct vpd_res); i++)
    350 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
    351 }
    352 
    353 void
    354 sk_vpd_read(struct sk_softc *sc)
    355 {
    356 	int			pos = 0, i;
    357 	struct vpd_res		res;
    358 
    359 	if (sc->sk_vpd_prodname != NULL)
    360 		free(sc->sk_vpd_prodname, M_DEVBUF);
    361 	if (sc->sk_vpd_readonly != NULL)
    362 		free(sc->sk_vpd_readonly, M_DEVBUF);
    363 	sc->sk_vpd_prodname = NULL;
    364 	sc->sk_vpd_readonly = NULL;
    365 
    366 	sk_vpd_read_res(sc, &res, pos);
    367 
    368 	if (res.vr_id != VPD_RES_ID) {
    369 		aprint_error_dev(sc->sk_dev,
    370 		    "bad VPD resource id: expected %x got %x\n",
    371 		    VPD_RES_ID, res.vr_id);
    372 		return;
    373 	}
    374 
    375 	pos += sizeof(res);
    376 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    377 	if (sc->sk_vpd_prodname == NULL)
    378 		panic("sk_vpd_read");
    379 	for (i = 0; i < res.vr_len; i++)
    380 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
    381 	sc->sk_vpd_prodname[i] = '\0';
    382 	pos += i;
    383 
    384 	sk_vpd_read_res(sc, &res, pos);
    385 
    386 	if (res.vr_id != VPD_RES_READ) {
    387 		aprint_error_dev(sc->sk_dev,
    388 		    "bad VPD resource id: expected %x got %x\n",
    389 		    VPD_RES_READ, res.vr_id);
    390 		return;
    391 	}
    392 
    393 	pos += sizeof(res);
    394 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    395 	if (sc->sk_vpd_readonly == NULL)
    396 		panic("sk_vpd_read");
    397 	for (i = 0; i < res.vr_len ; i++)
    398 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
    399 }
    400 
    401 int
    402 sk_xmac_miibus_readreg(device_t dev, int phy, int reg)
    403 {
    404 	struct sk_if_softc *sc_if = device_private(dev);
    405 	int i;
    406 
    407 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
    408 
    409 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
    410 		return 0;
    411 
    412 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    413 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
    414 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    415 		for (i = 0; i < SK_TIMEOUT; i++) {
    416 			DELAY(1);
    417 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
    418 			    XM_MMUCMD_PHYDATARDY)
    419 				break;
    420 		}
    421 
    422 		if (i == SK_TIMEOUT) {
    423 			aprint_error_dev(sc_if->sk_dev,
    424 			    "phy failed to come ready\n");
    425 			return 0;
    426 		}
    427 	}
    428 	DELAY(1);
    429 	return SK_XM_READ_2(sc_if, XM_PHY_DATA);
    430 }
    431 
    432 void
    433 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, int val)
    434 {
    435 	struct sk_if_softc *sc_if = device_private(dev);
    436 	int i;
    437 
    438 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
    439 
    440 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    441 	for (i = 0; i < SK_TIMEOUT; i++) {
    442 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    443 			break;
    444 	}
    445 
    446 	if (i == SK_TIMEOUT) {
    447 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
    448 		return;
    449 	}
    450 
    451 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
    452 	for (i = 0; i < SK_TIMEOUT; i++) {
    453 		DELAY(1);
    454 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    455 			break;
    456 	}
    457 
    458 	if (i == SK_TIMEOUT)
    459 		aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
    460 }
    461 
    462 void
    463 sk_xmac_miibus_statchg(struct ifnet *ifp)
    464 {
    465 	struct sk_if_softc *sc_if = ifp->if_softc;
    466 	struct mii_data *mii = &sc_if->sk_mii;
    467 
    468 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
    469 
    470 	/*
    471 	 * If this is a GMII PHY, manually set the XMAC's
    472 	 * duplex mode accordingly.
    473 	 */
    474 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    475 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
    476 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    477 		else
    478 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    479 	}
    480 }
    481 
    482 int
    483 sk_marv_miibus_readreg(device_t dev, int phy, int reg)
    484 {
    485 	struct sk_if_softc *sc_if = device_private(dev);
    486 	u_int16_t val;
    487 	int i;
    488 
    489 	if (phy != 0 ||
    490 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
    491 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
    492 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
    493 			     phy, reg));
    494 		return 0;
    495 	}
    496 
    497         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    498 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
    499 
    500 	for (i = 0; i < SK_TIMEOUT; i++) {
    501 		DELAY(1);
    502 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
    503 		if (val & YU_SMICR_READ_VALID)
    504 			break;
    505 	}
    506 
    507 	if (i == SK_TIMEOUT) {
    508 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
    509 		return 0;
    510 	}
    511 
    512  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
    513 		     SK_TIMEOUT));
    514 
    515         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
    516 
    517 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
    518 		     phy, reg, val));
    519 
    520 	return val;
    521 }
    522 
    523 void
    524 sk_marv_miibus_writereg(device_t dev, int phy, int reg, int val)
    525 {
    526 	struct sk_if_softc *sc_if = device_private(dev);
    527 	int i;
    528 
    529 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
    530 		     phy, reg, val));
    531 
    532 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
    533 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    534 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
    535 
    536 	for (i = 0; i < SK_TIMEOUT; i++) {
    537 		DELAY(1);
    538 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
    539 			break;
    540 	}
    541 
    542 	if (i == SK_TIMEOUT)
    543 		printf("%s: phy write timed out\n",
    544 		    device_xname(sc_if->sk_dev));
    545 }
    546 
    547 void
    548 sk_marv_miibus_statchg(struct ifnet *ifp)
    549 {
    550 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
    551 		     SK_YU_READ_2(((struct sk_if_softc *)ifp->if_softc),
    552 		     YUKON_GPCR)));
    553 }
    554 
    555 #define SK_HASH_BITS		6
    556 
    557 u_int32_t
    558 sk_xmac_hash(void *addr)
    559 {
    560 	u_int32_t		crc;
    561 
    562 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
    563 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
    564 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    565 	return crc;
    566 }
    567 
    568 u_int32_t
    569 sk_yukon_hash(void *addr)
    570 {
    571 	u_int32_t		crc;
    572 
    573 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
    574 	crc &= ((1 << SK_HASH_BITS) - 1);
    575 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    576 	return crc;
    577 }
    578 
    579 void
    580 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
    581 {
    582 	char *addr = addrv;
    583 	int base = XM_RXFILT_ENTRY(slot);
    584 
    585 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
    586 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
    587 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
    588 }
    589 
    590 void
    591 sk_setmulti(struct sk_if_softc *sc_if)
    592 {
    593 	struct sk_softc *sc = sc_if->sk_softc;
    594 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
    595 	u_int32_t hashes[2] = { 0, 0 };
    596 	int h = 0, i;
    597 	struct ethercom *ec = &sc_if->sk_ethercom;
    598 	struct ether_multi *enm;
    599 	struct ether_multistep step;
    600 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
    601 
    602 	/* First, zot all the existing filters. */
    603 	switch (sc->sk_type) {
    604 	case SK_GENESIS:
    605 		for (i = 1; i < XM_RXFILT_MAX; i++)
    606 			sk_setfilt(sc_if, (void *)&dummy, i);
    607 
    608 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
    609 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
    610 		break;
    611 	case SK_YUKON:
    612 	case SK_YUKON_LITE:
    613 	case SK_YUKON_LP:
    614 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
    615 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
    616 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
    617 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
    618 		break;
    619 	}
    620 
    621 	/* Now program new ones. */
    622 allmulti:
    623 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    624 		hashes[0] = 0xFFFFFFFF;
    625 		hashes[1] = 0xFFFFFFFF;
    626 	} else {
    627 		i = 1;
    628 		/* First find the tail of the list. */
    629 		ETHER_FIRST_MULTI(step, ec, enm);
    630 		while (enm != NULL) {
    631 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    632 				 ETHER_ADDR_LEN)) {
    633 				ifp->if_flags |= IFF_ALLMULTI;
    634 				goto allmulti;
    635 			}
    636 			DPRINTFN(2,("multicast address %s\n",
    637 	    			ether_sprintf(enm->enm_addrlo)));
    638 			/*
    639 			 * Program the first XM_RXFILT_MAX multicast groups
    640 			 * into the perfect filter. For all others,
    641 			 * use the hash table.
    642 			 */
    643 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
    644 				sk_setfilt(sc_if, enm->enm_addrlo, i);
    645 				i++;
    646 			}
    647 			else {
    648 				switch (sc->sk_type) {
    649 				case SK_GENESIS:
    650 					h = sk_xmac_hash(enm->enm_addrlo);
    651 					break;
    652 				case SK_YUKON:
    653 				case SK_YUKON_LITE:
    654 				case SK_YUKON_LP:
    655 					h = sk_yukon_hash(enm->enm_addrlo);
    656 					break;
    657 				}
    658 				if (h < 32)
    659 					hashes[0] |= (1 << h);
    660 				else
    661 					hashes[1] |= (1 << (h - 32));
    662 			}
    663 
    664 			ETHER_NEXT_MULTI(step, enm);
    665 		}
    666 	}
    667 
    668 	switch (sc->sk_type) {
    669 	case SK_GENESIS:
    670 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
    671 			       XM_MODE_RX_USE_PERFECT);
    672 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
    673 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
    674 		break;
    675 	case SK_YUKON:
    676 	case SK_YUKON_LITE:
    677 	case SK_YUKON_LP:
    678 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
    679 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
    680 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
    681 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
    682 		break;
    683 	}
    684 }
    685 
    686 int
    687 sk_init_rx_ring(struct sk_if_softc *sc_if)
    688 {
    689 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    690 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    691 	int			i;
    692 
    693 	memset((char *)rd->sk_rx_ring, 0,
    694 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
    695 
    696 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    697 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
    698 		if (i == (SK_RX_RING_CNT - 1)) {
    699 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
    700 			rd->sk_rx_ring[i].sk_next =
    701 				htole32(SK_RX_RING_ADDR(sc_if, 0));
    702 		} else {
    703 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
    704 			rd->sk_rx_ring[i].sk_next =
    705 				htole32(SK_RX_RING_ADDR(sc_if,i+1));
    706 		}
    707 	}
    708 
    709 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    710 		if (sk_newbuf(sc_if, i, NULL,
    711 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
    712 			aprint_error_dev(sc_if->sk_dev,
    713 			    "failed alloc of %dth mbuf\n", i);
    714 			return ENOBUFS;
    715 		}
    716 	}
    717 	sc_if->sk_cdata.sk_rx_prod = 0;
    718 	sc_if->sk_cdata.sk_rx_cons = 0;
    719 
    720 	return 0;
    721 }
    722 
    723 int
    724 sk_init_tx_ring(struct sk_if_softc *sc_if)
    725 {
    726 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    727 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    728 	int			i;
    729 
    730 	memset(sc_if->sk_rdata->sk_tx_ring, 0,
    731 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
    732 
    733 	for (i = 0; i < SK_TX_RING_CNT; i++) {
    734 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
    735 		if (i == (SK_TX_RING_CNT - 1)) {
    736 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
    737 			rd->sk_tx_ring[i].sk_next =
    738 				htole32(SK_TX_RING_ADDR(sc_if, 0));
    739 		} else {
    740 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
    741 			rd->sk_tx_ring[i].sk_next =
    742 				htole32(SK_TX_RING_ADDR(sc_if,i+1));
    743 		}
    744 	}
    745 
    746 	sc_if->sk_cdata.sk_tx_prod = 0;
    747 	sc_if->sk_cdata.sk_tx_cons = 0;
    748 	sc_if->sk_cdata.sk_tx_cnt = 0;
    749 
    750 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
    751 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    752 
    753 	return 0;
    754 }
    755 
    756 int
    757 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
    758 	  bus_dmamap_t dmamap)
    759 {
    760 	struct mbuf		*m_new = NULL;
    761 	struct sk_chain		*c;
    762 	struct sk_rx_desc	*r;
    763 
    764 	if (m == NULL) {
    765 		void *buf = NULL;
    766 
    767 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    768 		if (m_new == NULL) {
    769 			aprint_error_dev(sc_if->sk_dev,
    770 			    "no memory for rx list -- packet dropped!\n");
    771 			return ENOBUFS;
    772 		}
    773 
    774 		/* Allocate the jumbo buffer */
    775 		buf = sk_jalloc(sc_if);
    776 		if (buf == NULL) {
    777 			m_freem(m_new);
    778 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
    779 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
    780 			return ENOBUFS;
    781 		}
    782 
    783 		/* Attach the buffer to the mbuf */
    784 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    785 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
    786 
    787 	} else {
    788 		/*
    789 	 	 * We're re-using a previously allocated mbuf;
    790 		 * be sure to re-init pointers and lengths to
    791 		 * default values.
    792 		 */
    793 		m_new = m;
    794 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    795 		m_new->m_data = m_new->m_ext.ext_buf;
    796 	}
    797 	m_adj(m_new, ETHER_ALIGN);
    798 
    799 	c = &sc_if->sk_cdata.sk_rx_chain[i];
    800 	r = c->sk_desc;
    801 	c->sk_mbuf = m_new;
    802 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
    803 	    (((vaddr_t)m_new->m_data
    804 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
    805 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
    806 
    807 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    808 
    809 	return 0;
    810 }
    811 
    812 /*
    813  * Memory management for jumbo frames.
    814  */
    815 
    816 int
    817 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
    818 {
    819 	struct sk_softc		*sc = sc_if->sk_softc;
    820 	char *ptr, *kva;
    821 	bus_dma_segment_t	seg;
    822 	int		i, rseg, state, error;
    823 	struct sk_jpool_entry   *entry;
    824 
    825 	state = error = 0;
    826 
    827 	/* Grab a big chunk o' storage. */
    828 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
    829 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    830 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
    831 		return ENOBUFS;
    832 	}
    833 
    834 	state = 1;
    835 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
    836 			   BUS_DMA_NOWAIT)) {
    837 		aprint_error_dev(sc->sk_dev,
    838 		    "can't map dma buffers (%d bytes)\n",
    839 		    SK_JMEM);
    840 		error = ENOBUFS;
    841 		goto out;
    842 	}
    843 
    844 	state = 2;
    845 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
    846 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
    847 		aprint_error_dev(sc->sk_dev, "can't create dma map\n");
    848 		error = ENOBUFS;
    849 		goto out;
    850 	}
    851 
    852 	state = 3;
    853 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
    854 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
    855 		aprint_error_dev(sc->sk_dev, "can't load dma map\n");
    856 		error = ENOBUFS;
    857 		goto out;
    858 	}
    859 
    860 	state = 4;
    861 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
    862 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
    863 
    864 	LIST_INIT(&sc_if->sk_jfree_listhead);
    865 	LIST_INIT(&sc_if->sk_jinuse_listhead);
    866 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
    867 
    868 	/*
    869 	 * Now divide it up into 9K pieces and save the addresses
    870 	 * in an array.
    871 	 */
    872 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
    873 	for (i = 0; i < SK_JSLOTS; i++) {
    874 		sc_if->sk_cdata.sk_jslots[i] = ptr;
    875 		ptr += SK_JLEN;
    876 		entry = malloc(sizeof(struct sk_jpool_entry),
    877 		    M_DEVBUF, M_NOWAIT);
    878 		if (entry == NULL) {
    879 			aprint_error_dev(sc->sk_dev,
    880 			    "no memory for jumbo buffer queue!\n");
    881 			error = ENOBUFS;
    882 			goto out;
    883 		}
    884 		entry->slot = i;
    885 		if (i)
    886 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
    887 				 entry, jpool_entries);
    888 		else
    889 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
    890 				 entry, jpool_entries);
    891 	}
    892 out:
    893 	if (error != 0) {
    894 		switch (state) {
    895 		case 4:
    896 			bus_dmamap_unload(sc->sc_dmatag,
    897 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    898 		case 3:
    899 			bus_dmamap_destroy(sc->sc_dmatag,
    900 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    901 		case 2:
    902 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
    903 		case 1:
    904 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
    905 			break;
    906 		default:
    907 			break;
    908 		}
    909 	}
    910 
    911 	return error;
    912 }
    913 
    914 /*
    915  * Allocate a jumbo buffer.
    916  */
    917 void *
    918 sk_jalloc(struct sk_if_softc *sc_if)
    919 {
    920 	struct sk_jpool_entry   *entry;
    921 
    922 	mutex_enter(&sc_if->sk_jpool_mtx);
    923 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
    924 
    925 	if (entry == NULL) {
    926 		mutex_exit(&sc_if->sk_jpool_mtx);
    927 		return NULL;
    928 	}
    929 
    930 	LIST_REMOVE(entry, jpool_entries);
    931 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
    932 	mutex_exit(&sc_if->sk_jpool_mtx);
    933 	return sc_if->sk_cdata.sk_jslots[entry->slot];
    934 }
    935 
    936 /*
    937  * Release a jumbo buffer.
    938  */
    939 void
    940 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
    941 {
    942 	struct sk_jpool_entry *entry;
    943 	struct sk_if_softc *sc;
    944 	int i;
    945 
    946 	/* Extract the softc struct pointer. */
    947 	sc = (struct sk_if_softc *)arg;
    948 
    949 	if (sc == NULL)
    950 		panic("sk_jfree: can't find softc pointer!");
    951 
    952 	/* calculate the slot this buffer belongs to */
    953 
    954 	i = ((vaddr_t)buf
    955 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
    956 
    957 	if ((i < 0) || (i >= SK_JSLOTS))
    958 		panic("sk_jfree: asked to free buffer that we don't manage!");
    959 
    960 	mutex_enter(&sc->sk_jpool_mtx);
    961 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
    962 	if (entry == NULL)
    963 		panic("sk_jfree: buffer not in use!");
    964 	entry->slot = i;
    965 	LIST_REMOVE(entry, jpool_entries);
    966 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
    967 	mutex_exit(&sc->sk_jpool_mtx);
    968 
    969 	if (__predict_true(m != NULL))
    970 		pool_cache_put(mb_cache, m);
    971 }
    972 
    973 /*
    974  * Set media options.
    975  */
    976 int
    977 sk_ifmedia_upd(struct ifnet *ifp)
    978 {
    979 	struct sk_if_softc *sc_if = ifp->if_softc;
    980 	int rc;
    981 
    982 	(void) sk_init(ifp);
    983 	if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
    984 		return 0;
    985 	return rc;
    986 }
    987 
    988 static void
    989 sk_promisc(struct sk_if_softc *sc_if, int on)
    990 {
    991 	struct sk_softc *sc = sc_if->sk_softc;
    992 	switch (sc->sk_type) {
    993 	case SK_GENESIS:
    994 		if (on)
    995 			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
    996 		else
    997 			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
    998 		break;
    999 	case SK_YUKON:
   1000 	case SK_YUKON_LITE:
   1001 	case SK_YUKON_LP:
   1002 		if (on)
   1003 			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
   1004 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1005 		else
   1006 			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
   1007 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1008 		break;
   1009 	default:
   1010 		aprint_error_dev(sc_if->sk_dev, "Can't set promisc for %d\n",
   1011 			sc->sk_type);
   1012 		break;
   1013 	}
   1014 }
   1015 
   1016 int
   1017 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
   1018 {
   1019 	struct sk_if_softc *sc_if = ifp->if_softc;
   1020 	int s, error = 0;
   1021 
   1022 	/* DPRINTFN(2, ("sk_ioctl\n")); */
   1023 
   1024 	s = splnet();
   1025 
   1026 	switch (command) {
   1027 
   1028 	case SIOCSIFFLAGS:
   1029 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
   1030 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   1031 			break;
   1032 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
   1033 		case IFF_RUNNING:
   1034 			sk_stop(ifp, 1);
   1035 			break;
   1036 		case IFF_UP:
   1037 			sk_init(ifp);
   1038 			break;
   1039 		case IFF_UP | IFF_RUNNING:
   1040 			if ((ifp->if_flags ^ sc_if->sk_if_flags) == IFF_PROMISC)			{
   1041 				sk_promisc(sc_if, ifp->if_flags & IFF_PROMISC);
   1042 				sk_setmulti(sc_if);
   1043 			} else
   1044 				sk_init(ifp);
   1045 			break;
   1046 		}
   1047 		sc_if->sk_if_flags = ifp->if_flags;
   1048 		error = 0;
   1049 		break;
   1050 
   1051 	default:
   1052 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
   1053 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   1054 			break;
   1055 
   1056 		error = 0;
   1057 
   1058 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   1059 			;
   1060 		else if (ifp->if_flags & IFF_RUNNING) {
   1061 			sk_setmulti(sc_if);
   1062 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
   1063 		}
   1064 		break;
   1065 	}
   1066 
   1067 	splx(s);
   1068 	return error;
   1069 }
   1070 
   1071 void
   1072 sk_update_int_mod(struct sk_softc *sc)
   1073 {
   1074 	u_int32_t imtimer_ticks;
   1075 
   1076 	/*
   1077          * Configure interrupt moderation. The moderation timer
   1078 	 * defers interrupts specified in the interrupt moderation
   1079 	 * timer mask based on the timeout specified in the interrupt
   1080 	 * moderation timer init register. Each bit in the timer
   1081 	 * register represents one tick, so to specify a timeout in
   1082 	 * microseconds, we have to multiply by the correct number of
   1083 	 * ticks-per-microsecond.
   1084 	 */
   1085 	switch (sc->sk_type) {
   1086 	case SK_GENESIS:
   1087 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   1088 		break;
   1089 	case SK_YUKON_EC:
   1090 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   1091 		break;
   1092 	default:
   1093 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   1094 	}
   1095 	aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
   1096 	    sc->sk_int_mod);
   1097         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
   1098         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
   1099 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
   1100         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
   1101 	sc->sk_int_mod_pending = 0;
   1102 }
   1103 
   1104 /*
   1105  * Lookup: Check the PCI vendor and device, and return a pointer to
   1106  * The structure if the IDs match against our list.
   1107  */
   1108 
   1109 static const struct sk_product *
   1110 sk_lookup(const struct pci_attach_args *pa)
   1111 {
   1112 	const struct sk_product *psk;
   1113 
   1114 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
   1115 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
   1116 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
   1117 			return psk;
   1118 	}
   1119 	return NULL;
   1120 }
   1121 
   1122 /*
   1123  * Probe for a SysKonnect GEnesis chip.
   1124  */
   1125 
   1126 int
   1127 skc_probe(device_t parent, cfdata_t match, void *aux)
   1128 {
   1129 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1130 	const struct sk_product *psk;
   1131 	pcireg_t subid;
   1132 
   1133 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
   1134 
   1135 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
   1136 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
   1137 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
   1138 	    subid == SK_LINKSYS_EG1032_SUBID)
   1139 		return 1;
   1140 
   1141 	if ((psk = sk_lookup(pa))) {
   1142 		return 1;
   1143 	}
   1144 	return 0;
   1145 }
   1146 
   1147 /*
   1148  * Force the GEnesis into reset, then bring it out of reset.
   1149  */
   1150 void sk_reset(struct sk_softc *sc)
   1151 {
   1152 	DPRINTFN(2, ("sk_reset\n"));
   1153 
   1154 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
   1155 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
   1156 	if (SK_YUKON_FAMILY(sc->sk_type))
   1157 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
   1158 
   1159 	DELAY(1000);
   1160 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
   1161 	DELAY(2);
   1162 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
   1163 	if (SK_YUKON_FAMILY(sc->sk_type))
   1164 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
   1165 
   1166 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
   1167 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
   1168 		     CSR_READ_2(sc, SK_LINK_CTRL)));
   1169 
   1170 	if (sc->sk_type == SK_GENESIS) {
   1171 		/* Configure packet arbiter */
   1172 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
   1173 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1174 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1175 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1176 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1177 	}
   1178 
   1179 	/* Enable RAM interface */
   1180 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
   1181 
   1182 	sk_update_int_mod(sc);
   1183 }
   1184 
   1185 int
   1186 sk_probe(device_t parent, cfdata_t match, void *aux)
   1187 {
   1188 	struct skc_attach_args *sa = aux;
   1189 
   1190 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
   1191 		return 0;
   1192 
   1193 	return 1;
   1194 }
   1195 
   1196 /*
   1197  * Each XMAC chip is attached as a separate logical IP interface.
   1198  * Single port cards will have only one logical interface of course.
   1199  */
   1200 void
   1201 sk_attach(device_t parent, device_t self, void *aux)
   1202 {
   1203 	struct sk_if_softc *sc_if = device_private(self);
   1204 	struct sk_softc *sc = device_private(parent);
   1205 	struct skc_attach_args *sa = aux;
   1206 	struct sk_txmap_entry	*entry;
   1207 	struct ifnet *ifp;
   1208 	bus_dma_segment_t seg;
   1209 	bus_dmamap_t dmamap;
   1210 	prop_data_t data;
   1211 	void *kva;
   1212 	int i, rseg;
   1213 	int mii_flags = 0;
   1214 
   1215 	aprint_naive("\n");
   1216 
   1217 	sc_if->sk_dev = self;
   1218 	sc_if->sk_port = sa->skc_port;
   1219 	sc_if->sk_softc = sc;
   1220 	sc->sk_if[sa->skc_port] = sc_if;
   1221 
   1222 	if (sa->skc_port == SK_PORT_A)
   1223 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
   1224 	if (sa->skc_port == SK_PORT_B)
   1225 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
   1226 
   1227 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
   1228 
   1229 	/*
   1230 	 * Get station address for this interface. Note that
   1231 	 * dual port cards actually come with three station
   1232 	 * addresses: one for each port, plus an extra. The
   1233 	 * extra one is used by the SysKonnect driver software
   1234 	 * as a 'virtual' station address for when both ports
   1235 	 * are operating in failover mode. Currently we don't
   1236 	 * use this extra address.
   1237 	 */
   1238 	data = prop_dictionary_get(device_properties(self), "mac-address");
   1239 	if (data != NULL) {
   1240 		/*
   1241 		 * Try to get the station address from device properties
   1242 		 * first, in case the ROM is missing.
   1243 		 */
   1244 		KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
   1245 		KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
   1246 		memcpy(sc_if->sk_enaddr, prop_data_data_nocopy(data),
   1247 		    ETHER_ADDR_LEN);
   1248 	} else
   1249 		for (i = 0; i < ETHER_ADDR_LEN; i++)
   1250 			sc_if->sk_enaddr[i] = sk_win_read_1(sc,
   1251 			    SK_MAC0_0 + (sa->skc_port * 8) + i);
   1252 
   1253 	aprint_normal(": Ethernet address %s\n",
   1254 	    ether_sprintf(sc_if->sk_enaddr));
   1255 
   1256 	/*
   1257 	 * Set up RAM buffer addresses. The NIC will have a certain
   1258 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
   1259 	 * need to divide this up a) between the transmitter and
   1260  	 * receiver and b) between the two XMACs, if this is a
   1261 	 * dual port NIC. Our algorithm is to divide up the memory
   1262 	 * evenly so that everyone gets a fair share.
   1263 	 */
   1264 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
   1265 		u_int32_t		chunk, val;
   1266 
   1267 		chunk = sc->sk_ramsize / 2;
   1268 		val = sc->sk_rboff / sizeof(u_int64_t);
   1269 		sc_if->sk_rx_ramstart = val;
   1270 		val += (chunk / sizeof(u_int64_t));
   1271 		sc_if->sk_rx_ramend = val - 1;
   1272 		sc_if->sk_tx_ramstart = val;
   1273 		val += (chunk / sizeof(u_int64_t));
   1274 		sc_if->sk_tx_ramend = val - 1;
   1275 	} else {
   1276 		u_int32_t		chunk, val;
   1277 
   1278 		chunk = sc->sk_ramsize / 4;
   1279 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
   1280 		    sizeof(u_int64_t);
   1281 		sc_if->sk_rx_ramstart = val;
   1282 		val += (chunk / sizeof(u_int64_t));
   1283 		sc_if->sk_rx_ramend = val - 1;
   1284 		sc_if->sk_tx_ramstart = val;
   1285 		val += (chunk / sizeof(u_int64_t));
   1286 		sc_if->sk_tx_ramend = val - 1;
   1287 	}
   1288 
   1289 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
   1290 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
   1291 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
   1292 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
   1293 
   1294 	/* Read and save PHY type and set PHY address */
   1295 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
   1296 	switch (sc_if->sk_phytype) {
   1297 	case SK_PHYTYPE_XMAC:
   1298 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
   1299 		break;
   1300 	case SK_PHYTYPE_BCOM:
   1301 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
   1302 		break;
   1303 	case SK_PHYTYPE_MARV_COPPER:
   1304 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
   1305 		break;
   1306 	default:
   1307 		aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
   1308 		    sc_if->sk_phytype);
   1309 		return;
   1310 	}
   1311 
   1312 	/* Allocate the descriptor queues. */
   1313 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
   1314 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1315 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
   1316 		goto fail;
   1317 	}
   1318 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
   1319 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
   1320 		aprint_error_dev(sc_if->sk_dev,
   1321 		    "can't map dma buffers (%lu bytes)\n",
   1322 		    (u_long) sizeof(struct sk_ring_data));
   1323 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1324 		goto fail;
   1325 	}
   1326 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
   1327 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
   1328             &sc_if->sk_ring_map)) {
   1329 		aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
   1330 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1331 		    sizeof(struct sk_ring_data));
   1332 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1333 		goto fail;
   1334 	}
   1335 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
   1336 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
   1337 		aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
   1338 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1339 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1340 		    sizeof(struct sk_ring_data));
   1341 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1342 		goto fail;
   1343 	}
   1344 
   1345 	for (i = 0; i < SK_RX_RING_CNT; i++)
   1346 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   1347 
   1348 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
   1349 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   1350 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   1351 
   1352 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
   1353 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
   1354 			aprint_error_dev(sc_if->sk_dev,
   1355 			    "Can't create TX dmamap\n");
   1356 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1357 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1358 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1359 			    sizeof(struct sk_ring_data));
   1360 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1361 			goto fail;
   1362 		}
   1363 
   1364 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
   1365 		if (!entry) {
   1366 			aprint_error_dev(sc_if->sk_dev,
   1367 			    "Can't alloc txmap entry\n");
   1368 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
   1369 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1370 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1371 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1372 			    sizeof(struct sk_ring_data));
   1373 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1374 			goto fail;
   1375 		}
   1376 		entry->dmamap = dmamap;
   1377 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
   1378 	}
   1379 
   1380         sc_if->sk_rdata = (struct sk_ring_data *)kva;
   1381 	memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
   1382 
   1383 	ifp = &sc_if->sk_ethercom.ec_if;
   1384 	/* Try to allocate memory for jumbo buffers. */
   1385 	if (sk_alloc_jumbo_mem(sc_if)) {
   1386 		aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
   1387 		goto fail;
   1388 	}
   1389 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
   1390 		| ETHERCAP_JUMBO_MTU;
   1391 
   1392 	ifp->if_softc = sc_if;
   1393 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1394 	ifp->if_ioctl = sk_ioctl;
   1395 	ifp->if_start = sk_start;
   1396 	ifp->if_stop = sk_stop;
   1397 	ifp->if_init = sk_init;
   1398 	ifp->if_watchdog = sk_watchdog;
   1399 	ifp->if_capabilities = 0;
   1400 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
   1401 	IFQ_SET_READY(&ifp->if_snd);
   1402 	strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
   1403 
   1404 	/*
   1405 	 * Do miibus setup.
   1406 	 */
   1407 	switch (sc->sk_type) {
   1408 	case SK_GENESIS:
   1409 		sk_init_xmac(sc_if);
   1410 		break;
   1411 	case SK_YUKON:
   1412 	case SK_YUKON_LITE:
   1413 	case SK_YUKON_LP:
   1414 		sk_init_yukon(sc_if);
   1415 		break;
   1416 	default:
   1417 		aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
   1418 			sc->sk_type);
   1419 		goto fail;
   1420 	}
   1421 
   1422  	DPRINTFN(2, ("sk_attach: 1\n"));
   1423 
   1424 	sc_if->sk_mii.mii_ifp = ifp;
   1425 	switch (sc->sk_type) {
   1426 	case SK_GENESIS:
   1427 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
   1428 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
   1429 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
   1430 		break;
   1431 	case SK_YUKON:
   1432 	case SK_YUKON_LITE:
   1433 	case SK_YUKON_LP:
   1434 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
   1435 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
   1436 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
   1437 		mii_flags = MIIF_DOPAUSE;
   1438 		break;
   1439 	}
   1440 
   1441 	sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
   1442 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
   1443 	    sk_ifmedia_upd, ether_mediastatus);
   1444 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
   1445 	    MII_OFFSET_ANY, mii_flags);
   1446 	if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
   1447 		aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
   1448 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
   1449 			    0, NULL);
   1450 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
   1451 	} else
   1452 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1453 
   1454 	callout_init(&sc_if->sk_tick_ch, 0);
   1455 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
   1456 
   1457 	DPRINTFN(2, ("sk_attach: 1\n"));
   1458 
   1459 	/*
   1460 	 * Call MI attach routines.
   1461 	 */
   1462 	if_attach(ifp);
   1463 	if_deferred_start_init(ifp, NULL);
   1464 
   1465 	ether_ifattach(ifp, sc_if->sk_enaddr);
   1466 
   1467         rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
   1468             RND_TYPE_NET, RND_FLAG_DEFAULT);
   1469 
   1470 	if (pmf_device_register(self, NULL, sk_resume))
   1471 		pmf_class_network_register(self, ifp);
   1472 	else
   1473 		aprint_error_dev(self, "couldn't establish power handler\n");
   1474 
   1475 	DPRINTFN(2, ("sk_attach: end\n"));
   1476 
   1477 	return;
   1478 
   1479 fail:
   1480 	sc->sk_if[sa->skc_port] = NULL;
   1481 }
   1482 
   1483 int
   1484 skcprint(void *aux, const char *pnp)
   1485 {
   1486 	struct skc_attach_args *sa = aux;
   1487 
   1488 	if (pnp)
   1489 		aprint_normal("sk port %c at %s",
   1490 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
   1491 	else
   1492 		aprint_normal(" port %c",
   1493 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
   1494 	return UNCONF;
   1495 }
   1496 
   1497 /*
   1498  * Attach the interface. Allocate softc structures, do ifmedia
   1499  * setup and ethernet/BPF attach.
   1500  */
   1501 void
   1502 skc_attach(device_t parent, device_t self, void *aux)
   1503 {
   1504 	struct sk_softc *sc = device_private(self);
   1505 	struct pci_attach_args *pa = aux;
   1506 	struct skc_attach_args skca;
   1507 	pci_chipset_tag_t pc = pa->pa_pc;
   1508 #ifndef SK_USEIOSPACE
   1509 	pcireg_t memtype;
   1510 #endif
   1511 	pci_intr_handle_t ih;
   1512 	const char *intrstr = NULL;
   1513 	bus_addr_t iobase;
   1514 	bus_size_t iosize;
   1515 	int rc, sk_nodenum;
   1516 	u_int32_t command;
   1517 	const char *revstr;
   1518 	const struct sysctlnode *node;
   1519 	char intrbuf[PCI_INTRSTR_LEN];
   1520 
   1521 	sc->sk_dev = self;
   1522 	aprint_naive("\n");
   1523 
   1524 	DPRINTFN(2, ("begin skc_attach\n"));
   1525 
   1526 	/*
   1527 	 * Handle power management nonsense.
   1528 	 */
   1529 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
   1530 
   1531 	if (command == 0x01) {
   1532 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
   1533 		if (command & SK_PSTATE_MASK) {
   1534 			u_int32_t		xiobase, membase, irq;
   1535 
   1536 			/* Save important PCI config data. */
   1537 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
   1538 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
   1539 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
   1540 
   1541 			/* Reset the power state. */
   1542 			aprint_normal_dev(sc->sk_dev,
   1543 			    "chip is in D%d power mode -- setting to D0\n",
   1544 			    command & SK_PSTATE_MASK);
   1545 			command &= 0xFFFFFFFC;
   1546 			pci_conf_write(pc, pa->pa_tag,
   1547 			    SK_PCI_PWRMGMTCTRL, command);
   1548 
   1549 			/* Restore PCI config data. */
   1550 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
   1551 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
   1552 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
   1553 		}
   1554 	}
   1555 
   1556 	/*
   1557 	 * The firmware might have configured the interface to revert the
   1558 	 * byte order in all descriptors. Make that undone.
   1559 	 */
   1560 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_OURREG2);
   1561 	if (command & SK_REG2_REV_DESC)
   1562 		pci_conf_write(pc, pa->pa_tag, SK_PCI_OURREG2,
   1563 		    command & ~SK_REG2_REV_DESC);
   1564 
   1565 	/*
   1566 	 * Map control/status registers.
   1567 	 */
   1568 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1569 	command |= PCI_COMMAND_IO_ENABLE |
   1570 	    PCI_COMMAND_MEM_ENABLE |
   1571 	    PCI_COMMAND_MASTER_ENABLE;
   1572 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1573 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1574 
   1575 #ifdef SK_USEIOSPACE
   1576 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
   1577 		aprint_error(": failed to enable I/O ports!\n");
   1578 		return;
   1579 	}
   1580 	/*
   1581 	 * Map control/status registers.
   1582 	 */
   1583 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
   1584 			&sc->sk_btag, &sc->sk_bhandle,
   1585 			&iobase, &iosize)) {
   1586 		aprint_error(": can't find i/o space\n");
   1587 		return;
   1588 	}
   1589 #else
   1590 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1591 		aprint_error(": failed to enable memory mapping!\n");
   1592 		return;
   1593 	}
   1594 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
   1595 	switch (memtype) {
   1596         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1597         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1598                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
   1599 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
   1600 				   &iobase, &iosize) == 0)
   1601                         break;
   1602         default:
   1603                 aprint_error_dev(sc->sk_dev, "can't find mem space\n");
   1604                 return;
   1605 	}
   1606 
   1607 	DPRINTFN(2, ("skc_attach: iobase=%#" PRIxPADDR ", iosize=%zx\n",
   1608 	    iobase, iosize));
   1609 #endif
   1610 	sc->sc_dmatag = pa->pa_dmat;
   1611 
   1612 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
   1613 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
   1614 
   1615 	/* bail out here if chip is not recognized */
   1616 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
   1617 		aprint_error_dev(sc->sk_dev, "unknown chip type\n");
   1618 		goto fail;
   1619 	}
   1620 	if (SK_IS_YUKON2(sc)) {
   1621 		aprint_error_dev(sc->sk_dev,
   1622 		    "Does not support Yukon2--try msk(4).\n");
   1623 		goto fail;
   1624 	}
   1625 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
   1626 
   1627 	/* Allocate interrupt */
   1628 	if (pci_intr_map(pa, &ih)) {
   1629 		aprint_error(": couldn't map interrupt\n");
   1630 		goto fail;
   1631 	}
   1632 
   1633 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
   1634 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
   1635 	if (sc->sk_intrhand == NULL) {
   1636 		aprint_error(": couldn't establish interrupt");
   1637 		if (intrstr != NULL)
   1638 			aprint_error(" at %s", intrstr);
   1639 		aprint_error("\n");
   1640 		goto fail;
   1641 	}
   1642 	aprint_normal(": %s\n", intrstr);
   1643 
   1644 	/* Reset the adapter. */
   1645 	sk_reset(sc);
   1646 
   1647 	/* Read and save vital product data from EEPROM. */
   1648 	sk_vpd_read(sc);
   1649 
   1650 	if (sc->sk_type == SK_GENESIS) {
   1651 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1652 		/* Read and save RAM size and RAMbuffer offset */
   1653 		switch (val) {
   1654 		case SK_RAMSIZE_512K_64:
   1655 			sc->sk_ramsize = 0x80000;
   1656 			sc->sk_rboff = SK_RBOFF_0;
   1657 			break;
   1658 		case SK_RAMSIZE_1024K_64:
   1659 			sc->sk_ramsize = 0x100000;
   1660 			sc->sk_rboff = SK_RBOFF_80000;
   1661 			break;
   1662 		case SK_RAMSIZE_1024K_128:
   1663 			sc->sk_ramsize = 0x100000;
   1664 			sc->sk_rboff = SK_RBOFF_0;
   1665 			break;
   1666 		case SK_RAMSIZE_2048K_128:
   1667 			sc->sk_ramsize = 0x200000;
   1668 			sc->sk_rboff = SK_RBOFF_0;
   1669 			break;
   1670 		default:
   1671 			aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
   1672 			       val);
   1673 			goto fail_1;
   1674 			break;
   1675 		}
   1676 
   1677 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
   1678 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
   1679 			     sc->sk_rboff));
   1680 	} else {
   1681 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1682 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
   1683 		sc->sk_rboff = SK_RBOFF_0;
   1684 
   1685 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
   1686 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
   1687 			     sc->sk_rboff));
   1688 	}
   1689 
   1690 	/* Read and save physical media type */
   1691 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
   1692 	case SK_PMD_1000BASESX:
   1693 		sc->sk_pmd = IFM_1000_SX;
   1694 		break;
   1695 	case SK_PMD_1000BASELX:
   1696 		sc->sk_pmd = IFM_1000_LX;
   1697 		break;
   1698 	case SK_PMD_1000BASECX:
   1699 		sc->sk_pmd = IFM_1000_CX;
   1700 		break;
   1701 	case SK_PMD_1000BASETX:
   1702 	case SK_PMD_1000BASETX_ALT:
   1703 		sc->sk_pmd = IFM_1000_T;
   1704 		break;
   1705 	default:
   1706 		aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
   1707 		    sk_win_read_1(sc, SK_PMDTYPE));
   1708 		goto fail_1;
   1709 	}
   1710 
   1711 	/* determine whether to name it with vpd or just make it up */
   1712 	/* Marvell Yukon VPD's can freqently be bogus */
   1713 
   1714 	switch (pa->pa_id) {
   1715 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1716 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
   1717 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
   1718 	case PCI_PRODUCT_3COM_3C940:
   1719 	case PCI_PRODUCT_DLINK_DGE530T:
   1720 	case PCI_PRODUCT_DLINK_DGE560T:
   1721 	case PCI_PRODUCT_DLINK_DGE560T_2:
   1722 	case PCI_PRODUCT_LINKSYS_EG1032:
   1723 	case PCI_PRODUCT_LINKSYS_EG1064:
   1724 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1725 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
   1726 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
   1727 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
   1728 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
   1729 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
   1730 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
   1731 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
   1732  		sc->sk_name = sc->sk_vpd_prodname;
   1733  		break;
   1734 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
   1735 	/* whoops yukon vpd prodname bears no resemblance to reality */
   1736 		switch (sc->sk_type) {
   1737 		case SK_GENESIS:
   1738 			sc->sk_name = sc->sk_vpd_prodname;
   1739 			break;
   1740 		case SK_YUKON:
   1741 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
   1742 			break;
   1743 		case SK_YUKON_LITE:
   1744 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
   1745 			break;
   1746 		case SK_YUKON_LP:
   1747 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
   1748 			break;
   1749 		default:
   1750 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
   1751 		}
   1752 
   1753 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
   1754 
   1755 		if ( sc->sk_type == SK_YUKON ) {
   1756 			uint32_t flashaddr;
   1757 			uint8_t testbyte;
   1758 
   1759 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
   1760 
   1761 			/* test Flash-Address Register */
   1762 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
   1763 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
   1764 
   1765 			if (testbyte != 0) {
   1766 				/* this is yukon lite Rev. A0 */
   1767 				sc->sk_type = SK_YUKON_LITE;
   1768 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
   1769 				/* restore Flash-Address Register */
   1770 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
   1771 			}
   1772 		}
   1773 		break;
   1774 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
   1775 		sc->sk_name = sc->sk_vpd_prodname;
   1776 		break;
   1777  	default:
   1778 		sc->sk_name = "Unknown Marvell";
   1779 	}
   1780 
   1781 
   1782 	if ( sc->sk_type == SK_YUKON_LITE ) {
   1783 		switch (sc->sk_rev) {
   1784 		case SK_YUKON_LITE_REV_A0:
   1785 			revstr = "A0";
   1786 			break;
   1787 		case SK_YUKON_LITE_REV_A1:
   1788 			revstr = "A1";
   1789 			break;
   1790 		case SK_YUKON_LITE_REV_A3:
   1791 			revstr = "A3";
   1792 			break;
   1793 		default:
   1794 			revstr = "";
   1795 		}
   1796 	} else {
   1797 		revstr = "";
   1798 	}
   1799 
   1800 	/* Announce the product name. */
   1801 	aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
   1802 			      sc->sk_name, revstr, sc->sk_rev);
   1803 
   1804 	skca.skc_port = SK_PORT_A;
   1805 	(void)config_found(sc->sk_dev, &skca, skcprint);
   1806 
   1807 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
   1808 		skca.skc_port = SK_PORT_B;
   1809 		(void)config_found(sc->sk_dev, &skca, skcprint);
   1810 	}
   1811 
   1812 	/* Turn on the 'driver is loaded' LED. */
   1813 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   1814 
   1815 	/* skc sysctl setup */
   1816 
   1817 	sc->sk_int_mod = SK_IM_DEFAULT;
   1818 	sc->sk_int_mod_pending = 0;
   1819 
   1820 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1821 	    0, CTLTYPE_NODE, device_xname(sc->sk_dev),
   1822 	    SYSCTL_DESCR("skc per-controller controls"),
   1823 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
   1824 	    CTL_EOL)) != 0) {
   1825 		aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
   1826 		goto fail_1;
   1827 	}
   1828 
   1829 	sk_nodenum = node->sysctl_num;
   1830 
   1831 	/* interrupt moderation time in usecs */
   1832 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1833 	    CTLFLAG_READWRITE,
   1834 	    CTLTYPE_INT, "int_mod",
   1835 	    SYSCTL_DESCR("sk interrupt moderation timer"),
   1836 	    sk_sysctl_handler, 0, (void *)sc,
   1837 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
   1838 	    CTL_EOL)) != 0) {
   1839 		aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
   1840 		goto fail_1;
   1841 	}
   1842 
   1843 	if (!pmf_device_register(self, skc_suspend, skc_resume))
   1844 		aprint_error_dev(self, "couldn't establish power handler\n");
   1845 
   1846 	return;
   1847 
   1848 fail_1:
   1849 	pci_intr_disestablish(pc, sc->sk_intrhand);
   1850 fail:
   1851 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
   1852 }
   1853 
   1854 int
   1855 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
   1856 {
   1857 	struct sk_softc		*sc = sc_if->sk_softc;
   1858 	struct sk_tx_desc	*f = NULL;
   1859 	u_int32_t		frag, cur, cnt = 0, sk_ctl;
   1860 	int			i;
   1861 	struct sk_txmap_entry	*entry;
   1862 	bus_dmamap_t		txmap;
   1863 
   1864 	DPRINTFN(3, ("sk_encap\n"));
   1865 
   1866 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
   1867 	if (entry == NULL) {
   1868 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
   1869 		return ENOBUFS;
   1870 	}
   1871 	txmap = entry->dmamap;
   1872 
   1873 	cur = frag = *txidx;
   1874 
   1875 #ifdef SK_DEBUG
   1876 	if (skdebug >= 3)
   1877 		sk_dump_mbuf(m_head);
   1878 #endif
   1879 
   1880 	/*
   1881 	 * Start packing the mbufs in this chain into
   1882 	 * the fragment pointers. Stop when we run out
   1883 	 * of fragments or hit the end of the mbuf chain.
   1884 	 */
   1885 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
   1886 	    BUS_DMA_NOWAIT)) {
   1887 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
   1888 		return ENOBUFS;
   1889 	}
   1890 
   1891 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
   1892 
   1893 	/* Sync the DMA map. */
   1894 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
   1895 	    BUS_DMASYNC_PREWRITE);
   1896 
   1897 	for (i = 0; i < txmap->dm_nsegs; i++) {
   1898 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
   1899 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
   1900 			return ENOBUFS;
   1901 		}
   1902 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
   1903 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
   1904 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
   1905 		if (cnt == 0)
   1906 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
   1907 		else
   1908 			sk_ctl |= SK_TXCTL_OWN;
   1909 		f->sk_ctl = htole32(sk_ctl);
   1910 		cur = frag;
   1911 		SK_INC(frag, SK_TX_RING_CNT);
   1912 		cnt++;
   1913 	}
   1914 
   1915 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
   1916 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
   1917 
   1918 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
   1919 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
   1920 		htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
   1921 
   1922 	/* Sync descriptors before handing to chip */
   1923 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
   1924 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1925 
   1926 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
   1927 		htole32(SK_TXCTL_OWN);
   1928 
   1929 	/* Sync first descriptor to hand it off */
   1930 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1931 
   1932 	sc_if->sk_cdata.sk_tx_cnt += cnt;
   1933 
   1934 #ifdef SK_DEBUG
   1935 	if (skdebug >= 3) {
   1936 		struct sk_tx_desc *desc;
   1937 		u_int32_t idx;
   1938 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
   1939 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
   1940 			sk_dump_txdesc(desc, idx);
   1941 		}
   1942 	}
   1943 #endif
   1944 
   1945 	*txidx = frag;
   1946 
   1947 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
   1948 
   1949 	return 0;
   1950 }
   1951 
   1952 void
   1953 sk_start(struct ifnet *ifp)
   1954 {
   1955         struct sk_if_softc	*sc_if = ifp->if_softc;
   1956         struct sk_softc		*sc = sc_if->sk_softc;
   1957         struct mbuf		*m_head = NULL;
   1958         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
   1959 	int			pkts = 0;
   1960 
   1961 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
   1962 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
   1963 
   1964 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
   1965 		IFQ_POLL(&ifp->if_snd, m_head);
   1966 		if (m_head == NULL)
   1967 			break;
   1968 
   1969 		/*
   1970 		 * Pack the data into the transmit ring. If we
   1971 		 * don't have room, set the OACTIVE flag and wait
   1972 		 * for the NIC to drain the ring.
   1973 		 */
   1974 		if (sk_encap(sc_if, m_head, &idx)) {
   1975 			ifp->if_flags |= IFF_OACTIVE;
   1976 			break;
   1977 		}
   1978 
   1979 		/* now we are committed to transmit the packet */
   1980 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1981 		pkts++;
   1982 
   1983 		/*
   1984 		 * If there's a BPF listener, bounce a copy of this frame
   1985 		 * to him.
   1986 		 */
   1987 		bpf_mtap(ifp, m_head);
   1988 	}
   1989 	if (pkts == 0)
   1990 		return;
   1991 
   1992 	/* Transmit */
   1993 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
   1994 		sc_if->sk_cdata.sk_tx_prod = idx;
   1995 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   1996 
   1997 		/* Set a timeout in case the chip goes out to lunch. */
   1998 		ifp->if_timer = 5;
   1999 	}
   2000 }
   2001 
   2002 
   2003 void
   2004 sk_watchdog(struct ifnet *ifp)
   2005 {
   2006 	struct sk_if_softc *sc_if = ifp->if_softc;
   2007 
   2008 	/*
   2009 	 * Reclaim first as there is a possibility of losing Tx completion
   2010 	 * interrupts.
   2011 	 */
   2012 	sk_txeof(sc_if);
   2013 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
   2014 		aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
   2015 
   2016 		ifp->if_oerrors++;
   2017 
   2018 		sk_init(ifp);
   2019 	}
   2020 }
   2021 
   2022 void
   2023 sk_shutdown(void *v)
   2024 {
   2025 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
   2026 	struct sk_softc		*sc = sc_if->sk_softc;
   2027 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
   2028 
   2029 	DPRINTFN(2, ("sk_shutdown\n"));
   2030 	sk_stop(ifp,1);
   2031 
   2032 	/* Turn off the 'driver is loaded' LED. */
   2033 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   2034 
   2035 	/*
   2036 	 * Reset the GEnesis controller. Doing this should also
   2037 	 * assert the resets on the attached XMAC(s).
   2038 	 */
   2039 	sk_reset(sc);
   2040 }
   2041 
   2042 void
   2043 sk_rxeof(struct sk_if_softc *sc_if)
   2044 {
   2045 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2046 	struct mbuf		*m;
   2047 	struct sk_chain		*cur_rx;
   2048 	struct sk_rx_desc	*cur_desc;
   2049 	int			i, cur, total_len = 0;
   2050 	u_int32_t		rxstat, sk_ctl;
   2051 	bus_dmamap_t		dmamap;
   2052 
   2053 	i = sc_if->sk_cdata.sk_rx_prod;
   2054 
   2055 	DPRINTFN(3, ("sk_rxeof %d\n", i));
   2056 
   2057 	for (;;) {
   2058 		cur = i;
   2059 
   2060 		/* Sync the descriptor */
   2061 		SK_CDRXSYNC(sc_if, cur,
   2062 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2063 
   2064 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
   2065 		if (sk_ctl & SK_RXCTL_OWN) {
   2066 			/* Invalidate the descriptor -- it's not ready yet */
   2067 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
   2068 			sc_if->sk_cdata.sk_rx_prod = i;
   2069 			break;
   2070 		}
   2071 
   2072 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
   2073 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
   2074 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
   2075 
   2076 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
   2077 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2078 
   2079 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
   2080 		m = cur_rx->sk_mbuf;
   2081 		cur_rx->sk_mbuf = NULL;
   2082 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
   2083 
   2084 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
   2085 
   2086 		SK_INC(i, SK_RX_RING_CNT);
   2087 
   2088 		if (rxstat & XM_RXSTAT_ERRFRAME) {
   2089 			ifp->if_ierrors++;
   2090 			sk_newbuf(sc_if, cur, m, dmamap);
   2091 			continue;
   2092 		}
   2093 
   2094 		/*
   2095 		 * Try to allocate a new jumbo buffer. If that
   2096 		 * fails, copy the packet to mbufs and put the
   2097 		 * jumbo buffer back in the ring so it can be
   2098 		 * re-used. If allocating mbufs fails, then we
   2099 		 * have to drop the packet.
   2100 		 */
   2101 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
   2102 			struct mbuf		*m0;
   2103 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
   2104 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
   2105 			sk_newbuf(sc_if, cur, m, dmamap);
   2106 			if (m0 == NULL) {
   2107 				aprint_error_dev(sc_if->sk_dev, "no receive "
   2108 				    "buffers available -- packet dropped!\n");
   2109 				ifp->if_ierrors++;
   2110 				continue;
   2111 			}
   2112 			m_adj(m0, ETHER_ALIGN);
   2113 			m = m0;
   2114 		} else {
   2115 			m_set_rcvif(m, ifp);
   2116 			m->m_pkthdr.len = m->m_len = total_len;
   2117 		}
   2118 
   2119 		ifp->if_ipackets++;
   2120 
   2121 		bpf_mtap(ifp, m);
   2122 		/* pass it on. */
   2123 		if_percpuq_enqueue(ifp->if_percpuq, m);
   2124 	}
   2125 }
   2126 
   2127 void
   2128 sk_txeof(struct sk_if_softc *sc_if)
   2129 {
   2130 	struct sk_softc		*sc = sc_if->sk_softc;
   2131 	struct sk_tx_desc	*cur_tx;
   2132 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2133 	u_int32_t		idx, sk_ctl;
   2134 	struct sk_txmap_entry	*entry;
   2135 
   2136 	DPRINTFN(3, ("sk_txeof\n"));
   2137 
   2138 	/*
   2139 	 * Go through our tx ring and free mbufs for those
   2140 	 * frames that have been sent.
   2141 	 */
   2142 	idx = sc_if->sk_cdata.sk_tx_cons;
   2143 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
   2144 		SK_CDTXSYNC(sc_if, idx, 1,
   2145 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2146 
   2147 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
   2148 		sk_ctl = le32toh(cur_tx->sk_ctl);
   2149 #ifdef SK_DEBUG
   2150 		if (skdebug >= 3)
   2151 			sk_dump_txdesc(cur_tx, idx);
   2152 #endif
   2153 		if (sk_ctl & SK_TXCTL_OWN) {
   2154 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
   2155 			break;
   2156 		}
   2157 		if (sk_ctl & SK_TXCTL_LASTFRAG)
   2158 			ifp->if_opackets++;
   2159 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
   2160 			entry = sc_if->sk_cdata.sk_tx_map[idx];
   2161 
   2162 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
   2163 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
   2164 
   2165 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
   2166 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2167 
   2168 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
   2169 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
   2170 					  link);
   2171 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
   2172 		}
   2173 		sc_if->sk_cdata.sk_tx_cnt--;
   2174 		SK_INC(idx, SK_TX_RING_CNT);
   2175 	}
   2176 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
   2177 		ifp->if_timer = 0;
   2178 	else /* nudge chip to keep tx ring moving */
   2179 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   2180 
   2181 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
   2182 		ifp->if_flags &= ~IFF_OACTIVE;
   2183 
   2184 	sc_if->sk_cdata.sk_tx_cons = idx;
   2185 }
   2186 
   2187 void
   2188 sk_tick(void *xsc_if)
   2189 {
   2190 	struct sk_if_softc *sc_if = xsc_if;
   2191 	struct mii_data *mii = &sc_if->sk_mii;
   2192 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2193 	int i;
   2194 
   2195 	DPRINTFN(3, ("sk_tick\n"));
   2196 
   2197 	if (!(ifp->if_flags & IFF_UP))
   2198 		return;
   2199 
   2200 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2201 		sk_intr_bcom(sc_if);
   2202 		return;
   2203 	}
   2204 
   2205 	/*
   2206 	 * According to SysKonnect, the correct way to verify that
   2207 	 * the link has come back up is to poll bit 0 of the GPIO
   2208 	 * register three times. This pin has the signal from the
   2209 	 * link sync pin connected to it; if we read the same link
   2210 	 * state 3 times in a row, we know the link is up.
   2211 	 */
   2212 	for (i = 0; i < 3; i++) {
   2213 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
   2214 			break;
   2215 	}
   2216 
   2217 	if (i != 3) {
   2218 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2219 		return;
   2220 	}
   2221 
   2222 	/* Turn the GP0 interrupt back on. */
   2223 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2224 	SK_XM_READ_2(sc_if, XM_ISR);
   2225 	mii_tick(mii);
   2226 	if (ifp->if_link_state != LINK_STATE_UP)
   2227 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2228 	else
   2229 		callout_stop(&sc_if->sk_tick_ch);
   2230 }
   2231 
   2232 void
   2233 sk_intr_bcom(struct sk_if_softc *sc_if)
   2234 {
   2235 	struct mii_data *mii = &sc_if->sk_mii;
   2236 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2237 	int status;
   2238 
   2239 
   2240 	DPRINTFN(3, ("sk_intr_bcom\n"));
   2241 
   2242 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2243 
   2244 	/*
   2245 	 * Read the PHY interrupt register to make sure
   2246 	 * we clear any pending interrupts.
   2247 	 */
   2248 	status = sk_xmac_miibus_readreg(sc_if->sk_dev,
   2249 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
   2250 
   2251 	if (!(ifp->if_flags & IFF_RUNNING)) {
   2252 		sk_init_xmac(sc_if);
   2253 		return;
   2254 	}
   2255 
   2256 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
   2257 		int lstat;
   2258 		lstat = sk_xmac_miibus_readreg(sc_if->sk_dev,
   2259 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
   2260 
   2261 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
   2262 			(void)mii_mediachg(mii);
   2263 			/* Turn off the link LED. */
   2264 			SK_IF_WRITE_1(sc_if, 0,
   2265 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2266 			sc_if->sk_link = 0;
   2267 		} else if (status & BRGPHY_ISR_LNK_CHG) {
   2268 			sk_xmac_miibus_writereg(sc_if->sk_dev,
   2269 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
   2270 			mii_tick(mii);
   2271 			sc_if->sk_link = 1;
   2272 			/* Turn on the link LED. */
   2273 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2274 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
   2275 			    SK_LINKLED_BLINK_OFF);
   2276 			mii_pollstat(mii);
   2277 		} else {
   2278 			mii_tick(mii);
   2279 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
   2280 		}
   2281 	}
   2282 
   2283 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2284 }
   2285 
   2286 void
   2287 sk_intr_xmac(struct sk_if_softc	*sc_if)
   2288 {
   2289 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
   2290 
   2291 	DPRINTFN(3, ("sk_intr_xmac\n"));
   2292 
   2293 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
   2294 		if (status & XM_ISR_GP0_SET) {
   2295 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2296 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2297 		}
   2298 
   2299 		if (status & XM_ISR_AUTONEG_DONE) {
   2300 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2301 		}
   2302 	}
   2303 
   2304 	if (status & XM_IMR_TX_UNDERRUN)
   2305 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
   2306 
   2307 	if (status & XM_IMR_RX_OVERRUN)
   2308 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
   2309 }
   2310 
   2311 void
   2312 sk_intr_yukon(struct sk_if_softc *sc_if)
   2313 {
   2314 #ifdef SK_DEBUG
   2315 	int status;
   2316 
   2317 	status =
   2318 #endif
   2319 		SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2320 
   2321 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
   2322 }
   2323 
   2324 int
   2325 sk_intr(void *xsc)
   2326 {
   2327 	struct sk_softc		*sc = xsc;
   2328 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
   2329 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
   2330 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
   2331 	u_int32_t		status;
   2332 	int			claimed = 0;
   2333 
   2334 	if (sc_if0 != NULL)
   2335 		ifp0 = &sc_if0->sk_ethercom.ec_if;
   2336 	if (sc_if1 != NULL)
   2337 		ifp1 = &sc_if1->sk_ethercom.ec_if;
   2338 
   2339 	for (;;) {
   2340 		status = CSR_READ_4(sc, SK_ISSR);
   2341 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
   2342 
   2343 		if (!(status & sc->sk_intrmask))
   2344 			break;
   2345 
   2346 		claimed = 1;
   2347 
   2348 		/* Handle receive interrupts first. */
   2349 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
   2350 			sk_rxeof(sc_if0);
   2351 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
   2352 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2353 		}
   2354 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
   2355 			sk_rxeof(sc_if1);
   2356 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
   2357 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2358 		}
   2359 
   2360 		/* Then transmit interrupts. */
   2361 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
   2362 			sk_txeof(sc_if0);
   2363 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
   2364 			    SK_TXBMU_CLR_IRQ_EOF);
   2365 		}
   2366 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
   2367 			sk_txeof(sc_if1);
   2368 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
   2369 			    SK_TXBMU_CLR_IRQ_EOF);
   2370 		}
   2371 
   2372 		/* Then MAC interrupts. */
   2373 		if (sc_if0 && (status & SK_ISR_MAC1) &&
   2374 		    (ifp0->if_flags & IFF_RUNNING)) {
   2375 			if (sc->sk_type == SK_GENESIS)
   2376 				sk_intr_xmac(sc_if0);
   2377 			else
   2378 				sk_intr_yukon(sc_if0);
   2379 		}
   2380 
   2381 		if (sc_if1 && (status & SK_ISR_MAC2) &&
   2382 		    (ifp1->if_flags & IFF_RUNNING)) {
   2383 			if (sc->sk_type == SK_GENESIS)
   2384 				sk_intr_xmac(sc_if1);
   2385 			else
   2386 				sk_intr_yukon(sc_if1);
   2387 
   2388 		}
   2389 
   2390 		if (status & SK_ISR_EXTERNAL_REG) {
   2391 			if (sc_if0 != NULL &&
   2392 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
   2393 				sk_intr_bcom(sc_if0);
   2394 
   2395 			if (sc_if1 != NULL &&
   2396 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
   2397 				sk_intr_bcom(sc_if1);
   2398 		}
   2399 	}
   2400 
   2401 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2402 
   2403 	if (ifp0 != NULL)
   2404 		if_schedule_deferred_start(ifp0);
   2405 	if (ifp1 != NULL)
   2406 		if_schedule_deferred_start(ifp1);
   2407 
   2408 	rnd_add_uint32(&sc->rnd_source, status);
   2409 
   2410 	if (sc->sk_int_mod_pending)
   2411 		sk_update_int_mod(sc);
   2412 
   2413 	return claimed;
   2414 }
   2415 
   2416 void
   2417 sk_init_xmac(struct sk_if_softc	*sc_if)
   2418 {
   2419 	struct sk_softc		*sc = sc_if->sk_softc;
   2420 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2421 	static const struct sk_bcom_hack     bhack[] = {
   2422 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
   2423 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
   2424 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
   2425 	{ 0, 0 } };
   2426 
   2427 	DPRINTFN(1, ("sk_init_xmac\n"));
   2428 
   2429 	/* Unreset the XMAC. */
   2430 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
   2431 	DELAY(1000);
   2432 
   2433 	/* Reset the XMAC's internal state. */
   2434 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2435 
   2436 	/* Save the XMAC II revision */
   2437 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
   2438 
   2439 	/*
   2440 	 * Perform additional initialization for external PHYs,
   2441 	 * namely for the 1000baseTX cards that use the XMAC's
   2442 	 * GMII mode.
   2443 	 */
   2444 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2445 		int			i = 0;
   2446 		u_int32_t		val;
   2447 
   2448 		/* Take PHY out of reset. */
   2449 		val = sk_win_read_4(sc, SK_GPIO);
   2450 		if (sc_if->sk_port == SK_PORT_A)
   2451 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
   2452 		else
   2453 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
   2454 		sk_win_write_4(sc, SK_GPIO, val);
   2455 
   2456 		/* Enable GMII mode on the XMAC. */
   2457 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
   2458 
   2459 		sk_xmac_miibus_writereg(sc_if->sk_dev,
   2460 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
   2461 		DELAY(10000);
   2462 		sk_xmac_miibus_writereg(sc_if->sk_dev,
   2463 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
   2464 
   2465 		/*
   2466 		 * Early versions of the BCM5400 apparently have
   2467 		 * a bug that requires them to have their reserved
   2468 		 * registers initialized to some magic values. I don't
   2469 		 * know what the numbers do, I'm just the messenger.
   2470 		 */
   2471 		if (sk_xmac_miibus_readreg(sc_if->sk_dev,
   2472 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
   2473 			while (bhack[i].reg) {
   2474 				sk_xmac_miibus_writereg(sc_if->sk_dev,
   2475 				    SK_PHYADDR_BCOM, bhack[i].reg,
   2476 				    bhack[i].val);
   2477 				i++;
   2478 			}
   2479 		}
   2480 	}
   2481 
   2482 	/* Set station address */
   2483 	SK_XM_WRITE_2(sc_if, XM_PAR0,
   2484 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
   2485 	SK_XM_WRITE_2(sc_if, XM_PAR1,
   2486 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
   2487 	SK_XM_WRITE_2(sc_if, XM_PAR2,
   2488 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
   2489 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
   2490 
   2491 	if (ifp->if_flags & IFF_PROMISC)
   2492 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2493 	else
   2494 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2495 
   2496 	if (ifp->if_flags & IFF_BROADCAST)
   2497 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2498 	else
   2499 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2500 
   2501 	/* We don't need the FCS appended to the packet. */
   2502 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
   2503 
   2504 	/* We want short frames padded to 60 bytes. */
   2505 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
   2506 
   2507 	/*
   2508 	 * Enable the reception of all error frames. This is is
   2509 	 * a necessary evil due to the design of the XMAC. The
   2510 	 * XMAC's receive FIFO is only 8K in size, however jumbo
   2511 	 * frames can be up to 9000 bytes in length. When bad
   2512 	 * frame filtering is enabled, the XMAC's RX FIFO operates
   2513 	 * in 'store and forward' mode. For this to work, the
   2514 	 * entire frame has to fit into the FIFO, but that means
   2515 	 * that jumbo frames larger than 8192 bytes will be
   2516 	 * truncated. Disabling all bad frame filtering causes
   2517 	 * the RX FIFO to operate in streaming mode, in which
   2518 	 * case the XMAC will start transfering frames out of the
   2519 	 * RX FIFO as soon as the FIFO threshold is reached.
   2520 	 */
   2521 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
   2522 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
   2523 	    XM_MODE_RX_INRANGELEN);
   2524 
   2525 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2526 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2527 	else
   2528 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2529 
   2530 	/*
   2531 	 * Bump up the transmit threshold. This helps hold off transmit
   2532 	 * underruns when we're blasting traffic from both ports at once.
   2533 	 */
   2534 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
   2535 
   2536 	/* Set multicast filter */
   2537 	sk_setmulti(sc_if);
   2538 
   2539 	/* Clear and enable interrupts */
   2540 	SK_XM_READ_2(sc_if, XM_ISR);
   2541 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
   2542 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
   2543 	else
   2544 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2545 
   2546 	/* Configure MAC arbiter */
   2547 	switch (sc_if->sk_xmac_rev) {
   2548 	case XM_XMAC_REV_B2:
   2549 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
   2550 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
   2551 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
   2552 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
   2553 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
   2554 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
   2555 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
   2556 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
   2557 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2558 		break;
   2559 	case XM_XMAC_REV_C1:
   2560 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
   2561 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
   2562 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
   2563 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
   2564 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
   2565 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
   2566 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
   2567 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
   2568 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2569 		break;
   2570 	default:
   2571 		break;
   2572 	}
   2573 	sk_win_write_2(sc, SK_MACARB_CTL,
   2574 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
   2575 
   2576 	sc_if->sk_link = 1;
   2577 }
   2578 
   2579 void sk_init_yukon(struct sk_if_softc *sc_if)
   2580 {
   2581 	u_int32_t		/*mac, */phy;
   2582 	u_int16_t		reg;
   2583 	struct sk_softc		*sc;
   2584 	int			i;
   2585 
   2586 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
   2587 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
   2588 
   2589 	sc = sc_if->sk_softc;
   2590 	if (sc->sk_type == SK_YUKON_LITE &&
   2591 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
   2592 		/* Take PHY out of reset. */
   2593 		sk_win_write_4(sc, SK_GPIO,
   2594 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
   2595 	}
   2596 
   2597 
   2598 	/* GMAC and GPHY Reset */
   2599 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
   2600 
   2601 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
   2602 
   2603 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2604 	DELAY(1000);
   2605 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
   2606 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2607 	DELAY(1000);
   2608 
   2609 
   2610 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
   2611 
   2612 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
   2613 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
   2614 
   2615 	switch (sc_if->sk_softc->sk_pmd) {
   2616 	case IFM_1000_SX:
   2617 	case IFM_1000_LX:
   2618 		phy |= SK_GPHY_FIBER;
   2619 		break;
   2620 
   2621 	case IFM_1000_CX:
   2622 	case IFM_1000_T:
   2623 		phy |= SK_GPHY_COPPER;
   2624 		break;
   2625 	}
   2626 
   2627 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
   2628 
   2629 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
   2630 	DELAY(1000);
   2631 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
   2632 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
   2633 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
   2634 
   2635 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
   2636 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
   2637 
   2638 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
   2639 
   2640 	/* unused read of the interrupt source register */
   2641 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
   2642 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2643 
   2644 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
   2645 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
   2646 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2647 
   2648 	/* MIB Counter Clear Mode set */
   2649         reg |= YU_PAR_MIB_CLR;
   2650 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2651 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
   2652 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2653 
   2654 	/* MIB Counter Clear Mode clear */
   2655 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
   2656         reg &= ~YU_PAR_MIB_CLR;
   2657 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2658 
   2659 	/* receive control reg */
   2660 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
   2661 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
   2662 		      YU_RCR_CRCR);
   2663 
   2664 	/* transmit parameter register */
   2665 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
   2666 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
   2667 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
   2668 
   2669 	/* serial mode register */
   2670 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
   2671 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
   2672 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
   2673 		      YU_SMR_IPG_DATA(0x1e));
   2674 
   2675 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
   2676 	/* Setup Yukon's address */
   2677 	for (i = 0; i < 3; i++) {
   2678 		/* Write Source Address 1 (unicast filter) */
   2679 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
   2680 			      sc_if->sk_enaddr[i * 2] |
   2681 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
   2682 	}
   2683 
   2684 	for (i = 0; i < 3; i++) {
   2685 		reg = sk_win_read_2(sc_if->sk_softc,
   2686 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
   2687 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
   2688 	}
   2689 
   2690 	/* Set multicast filter */
   2691 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
   2692 	sk_setmulti(sc_if);
   2693 
   2694 	/* enable interrupt mask for counter overflows */
   2695 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
   2696 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
   2697 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
   2698 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
   2699 
   2700 	/* Configure RX MAC FIFO */
   2701 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
   2702 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
   2703 
   2704 	/* Configure TX MAC FIFO */
   2705 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
   2706 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
   2707 
   2708 	DPRINTFN(6, ("sk_init_yukon: end\n"));
   2709 }
   2710 
   2711 /*
   2712  * Note that to properly initialize any part of the GEnesis chip,
   2713  * you first have to take it out of reset mode.
   2714  */
   2715 int
   2716 sk_init(struct ifnet *ifp)
   2717 {
   2718 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2719 	struct sk_softc		*sc = sc_if->sk_softc;
   2720 	struct mii_data		*mii = &sc_if->sk_mii;
   2721 	int			rc = 0, s;
   2722 	u_int32_t		imr, imtimer_ticks;
   2723 
   2724 	DPRINTFN(1, ("sk_init\n"));
   2725 
   2726 	s = splnet();
   2727 
   2728 	if (ifp->if_flags & IFF_RUNNING) {
   2729 		splx(s);
   2730 		return 0;
   2731 	}
   2732 
   2733 	/* Cancel pending I/O and free all RX/TX buffers. */
   2734 	sk_stop(ifp,0);
   2735 
   2736 	if (sc->sk_type == SK_GENESIS) {
   2737 		/* Configure LINK_SYNC LED */
   2738 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
   2739 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2740 			      SK_LINKLED_LINKSYNC_ON);
   2741 
   2742 		/* Configure RX LED */
   2743 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
   2744 			      SK_RXLEDCTL_COUNTER_START);
   2745 
   2746 		/* Configure TX LED */
   2747 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
   2748 			      SK_TXLEDCTL_COUNTER_START);
   2749 	}
   2750 
   2751 	/* Configure I2C registers */
   2752 
   2753 	/* Configure XMAC(s) */
   2754 	switch (sc->sk_type) {
   2755 	case SK_GENESIS:
   2756 		sk_init_xmac(sc_if);
   2757 		break;
   2758 	case SK_YUKON:
   2759 	case SK_YUKON_LITE:
   2760 	case SK_YUKON_LP:
   2761 		sk_init_yukon(sc_if);
   2762 		break;
   2763 	}
   2764 	if ((rc = mii_mediachg(mii)) == ENXIO)
   2765 		rc = 0;
   2766 	else if (rc != 0)
   2767 		goto out;
   2768 
   2769 	if (sc->sk_type == SK_GENESIS) {
   2770 		/* Configure MAC FIFOs */
   2771 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
   2772 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
   2773 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
   2774 
   2775 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
   2776 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
   2777 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
   2778 	}
   2779 
   2780 	/* Configure transmit arbiter(s) */
   2781 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
   2782 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
   2783 
   2784 	/* Configure RAMbuffers */
   2785 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
   2786 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
   2787 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
   2788 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
   2789 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
   2790 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
   2791 
   2792 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
   2793 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
   2794 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
   2795 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
   2796 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
   2797 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
   2798 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
   2799 
   2800 	/* Configure BMUs */
   2801 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
   2802 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
   2803 	    SK_RX_RING_ADDR(sc_if, 0));
   2804 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
   2805 
   2806 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
   2807 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
   2808             SK_TX_RING_ADDR(sc_if, 0));
   2809 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
   2810 
   2811 	/* Init descriptors */
   2812 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
   2813 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
   2814 		    "memory for rx buffers\n");
   2815 		sk_stop(ifp,0);
   2816 		splx(s);
   2817 		return ENOBUFS;
   2818 	}
   2819 
   2820 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
   2821 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
   2822 		    "memory for tx buffers\n");
   2823 		sk_stop(ifp,0);
   2824 		splx(s);
   2825 		return ENOBUFS;
   2826 	}
   2827 
   2828 	/* Set interrupt moderation if changed via sysctl. */
   2829 	switch (sc->sk_type) {
   2830 	case SK_GENESIS:
   2831 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   2832 		break;
   2833 	case SK_YUKON_EC:
   2834 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   2835 		break;
   2836 	default:
   2837 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   2838 	}
   2839 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
   2840 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
   2841 		sk_win_write_4(sc, SK_IMTIMERINIT,
   2842 		    SK_IM_USECS(sc->sk_int_mod));
   2843 		aprint_verbose_dev(sc->sk_dev,
   2844 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
   2845 	}
   2846 
   2847 	/* Configure interrupt handling */
   2848 	CSR_READ_4(sc, SK_ISSR);
   2849 	if (sc_if->sk_port == SK_PORT_A)
   2850 		sc->sk_intrmask |= SK_INTRS1;
   2851 	else
   2852 		sc->sk_intrmask |= SK_INTRS2;
   2853 
   2854 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
   2855 
   2856 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2857 
   2858 	/* Start BMUs. */
   2859 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
   2860 
   2861 	if (sc->sk_type == SK_GENESIS) {
   2862 		/* Enable XMACs TX and RX state machines */
   2863 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
   2864 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
   2865 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2866 	}
   2867 
   2868 	if (SK_YUKON_FAMILY(sc->sk_type)) {
   2869 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
   2870 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
   2871 #if 0
   2872 		/* XXX disable 100Mbps and full duplex mode? */
   2873 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
   2874 #endif
   2875 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
   2876 	}
   2877 
   2878 
   2879 	ifp->if_flags |= IFF_RUNNING;
   2880 	ifp->if_flags &= ~IFF_OACTIVE;
   2881 	callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2882 
   2883 out:
   2884 	splx(s);
   2885 	return rc;
   2886 }
   2887 
   2888 void
   2889 sk_stop(struct ifnet *ifp, int disable)
   2890 {
   2891         struct sk_if_softc	*sc_if = ifp->if_softc;
   2892 	struct sk_softc		*sc = sc_if->sk_softc;
   2893 	int			i;
   2894 
   2895 	DPRINTFN(1, ("sk_stop\n"));
   2896 
   2897 	callout_stop(&sc_if->sk_tick_ch);
   2898 
   2899 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2900 		u_int32_t		val;
   2901 
   2902 		/* Put PHY back into reset. */
   2903 		val = sk_win_read_4(sc, SK_GPIO);
   2904 		if (sc_if->sk_port == SK_PORT_A) {
   2905 			val |= SK_GPIO_DIR0;
   2906 			val &= ~SK_GPIO_DAT0;
   2907 		} else {
   2908 			val |= SK_GPIO_DIR2;
   2909 			val &= ~SK_GPIO_DAT2;
   2910 		}
   2911 		sk_win_write_4(sc, SK_GPIO, val);
   2912 	}
   2913 
   2914 	/* Turn off various components of this interface. */
   2915 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2916 	switch (sc->sk_type) {
   2917 	case SK_GENESIS:
   2918 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
   2919 			      SK_TXMACCTL_XMAC_RESET);
   2920 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
   2921 		break;
   2922 	case SK_YUKON:
   2923 	case SK_YUKON_LITE:
   2924 	case SK_YUKON_LP:
   2925 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
   2926 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
   2927 		break;
   2928 	}
   2929 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
   2930 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2931 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
   2932 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2933 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
   2934 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2935 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2936 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2937 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
   2938 
   2939 	/* Disable interrupts */
   2940 	if (sc_if->sk_port == SK_PORT_A)
   2941 		sc->sk_intrmask &= ~SK_INTRS1;
   2942 	else
   2943 		sc->sk_intrmask &= ~SK_INTRS2;
   2944 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2945 
   2946 	SK_XM_READ_2(sc_if, XM_ISR);
   2947 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2948 
   2949 	/* Free RX and TX mbufs still in the queues. */
   2950 	for (i = 0; i < SK_RX_RING_CNT; i++) {
   2951 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
   2952 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
   2953 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   2954 		}
   2955 	}
   2956 
   2957 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   2958 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
   2959 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
   2960 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   2961 		}
   2962 	}
   2963 
   2964 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
   2965 }
   2966 
   2967 /* Power Management Framework */
   2968 
   2969 static bool
   2970 skc_suspend(device_t dv, const pmf_qual_t *qual)
   2971 {
   2972 	struct sk_softc *sc = device_private(dv);
   2973 
   2974 	DPRINTFN(2, ("skc_suspend\n"));
   2975 
   2976 	/* Turn off the driver is loaded LED */
   2977 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   2978 
   2979 	return true;
   2980 }
   2981 
   2982 static bool
   2983 skc_resume(device_t dv, const pmf_qual_t *qual)
   2984 {
   2985 	struct sk_softc *sc = device_private(dv);
   2986 
   2987 	DPRINTFN(2, ("skc_resume\n"));
   2988 
   2989 	sk_reset(sc);
   2990 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   2991 
   2992 	return true;
   2993 }
   2994 
   2995 static bool
   2996 sk_resume(device_t dv, const pmf_qual_t *qual)
   2997 {
   2998 	struct sk_if_softc *sc_if = device_private(dv);
   2999 
   3000 	sk_init_yukon(sc_if);
   3001 	return true;
   3002 }
   3003 
   3004 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
   3005     skc_probe, skc_attach, NULL, NULL);
   3006 
   3007 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
   3008     sk_probe, sk_attach, NULL, NULL);
   3009 
   3010 #ifdef SK_DEBUG
   3011 void
   3012 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
   3013 {
   3014 #define DESC_PRINT(X)					\
   3015 	if (X)					\
   3016 		printf("txdesc[%d]." #X "=%#x\n",	\
   3017 		       idx, X);
   3018 
   3019 	DESC_PRINT(le32toh(desc->sk_ctl));
   3020 	DESC_PRINT(le32toh(desc->sk_next));
   3021 	DESC_PRINT(le32toh(desc->sk_data_lo));
   3022 	DESC_PRINT(le32toh(desc->sk_data_hi));
   3023 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
   3024 	DESC_PRINT(le16toh(desc->sk_rsvd0));
   3025 	DESC_PRINT(le16toh(desc->sk_csum_startval));
   3026 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
   3027 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
   3028 	DESC_PRINT(le16toh(desc->sk_rsvd1));
   3029 #undef PRINT
   3030 }
   3031 
   3032 void
   3033 sk_dump_bytes(const char *data, int len)
   3034 {
   3035 	int c, i, j;
   3036 
   3037 	for (i = 0; i < len; i += 16) {
   3038 		printf("%08x  ", i);
   3039 		c = len - i;
   3040 		if (c > 16) c = 16;
   3041 
   3042 		for (j = 0; j < c; j++) {
   3043 			printf("%02x ", data[i + j] & 0xff);
   3044 			if ((j & 0xf) == 7 && j > 0)
   3045 				printf(" ");
   3046 		}
   3047 
   3048 		for (; j < 16; j++)
   3049 			printf("   ");
   3050 		printf("  ");
   3051 
   3052 		for (j = 0; j < c; j++) {
   3053 			int ch = data[i + j] & 0xff;
   3054 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
   3055 		}
   3056 
   3057 		printf("\n");
   3058 
   3059 		if (c < 16)
   3060 			break;
   3061 	}
   3062 }
   3063 
   3064 void
   3065 sk_dump_mbuf(struct mbuf *m)
   3066 {
   3067 	int count = m->m_pkthdr.len;
   3068 
   3069 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
   3070 
   3071 	while (count > 0 && m) {
   3072 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
   3073 		       m, m->m_data, m->m_len);
   3074 		sk_dump_bytes(mtod(m, char *), m->m_len);
   3075 
   3076 		count -= m->m_len;
   3077 		m = m->m_next;
   3078 	}
   3079 }
   3080 #endif
   3081 
   3082 static int
   3083 sk_sysctl_handler(SYSCTLFN_ARGS)
   3084 {
   3085 	int error, t;
   3086 	struct sysctlnode node;
   3087 	struct sk_softc *sc;
   3088 
   3089 	node = *rnode;
   3090 	sc = node.sysctl_data;
   3091 	t = sc->sk_int_mod;
   3092 	node.sysctl_data = &t;
   3093 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3094 	if (error || newp == NULL)
   3095 		return error;
   3096 
   3097 	if (t < SK_IM_MIN || t > SK_IM_MAX)
   3098 		return EINVAL;
   3099 
   3100 	/* update the softc with sysctl-changed value, and mark
   3101 	   for hardware update */
   3102 	sc->sk_int_mod = t;
   3103 	sc->sk_int_mod_pending = 1;
   3104 	return 0;
   3105 }
   3106 
   3107 /*
   3108  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
   3109  * set up in skc_attach()
   3110  */
   3111 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
   3112 {
   3113 	int rc;
   3114 	const struct sysctlnode *node;
   3115 
   3116 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   3117 	    0, CTLTYPE_NODE, "sk",
   3118 	    SYSCTL_DESCR("sk interface controls"),
   3119 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   3120 		goto err;
   3121 	}
   3122 
   3123 	sk_root_num = node->sysctl_num;
   3124 	return;
   3125 
   3126 err:
   3127 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
   3128 }
   3129