if_sk.c revision 1.84 1 /* $NetBSD: if_sk.c,v 1.84 2016/12/14 22:21:13 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
30
31 /*
32 * Copyright (c) 1997, 1998, 1999, 2000
33 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by Bill Paul.
46 * 4. Neither the name of the author nor the names of any co-contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60 * THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63 */
64
65 /*
66 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
67 *
68 * Permission to use, copy, modify, and distribute this software for any
69 * purpose with or without fee is hereby granted, provided that the above
70 * copyright notice and this permission notice appear in all copies.
71 *
72 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79 */
80
81 /*
82 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83 * the SK-984x series adapters, both single port and dual port.
84 * References:
85 * The XaQti XMAC II datasheet,
86 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87 * The SysKonnect GEnesis manual, http://www.syskonnect.com
88 *
89 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91 * convenience to others until Vitesse corrects this problem:
92 *
93 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 *
95 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
96 * Department of Electrical Engineering
97 * Columbia University, New York City
98 */
99
100 /*
101 * The SysKonnect gigabit ethernet adapters consist of two main
102 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104 * components and a PHY while the GEnesis controller provides a PCI
105 * interface with DMA support. Each card may have between 512K and
106 * 2MB of SRAM on board depending on the configuration.
107 *
108 * The SysKonnect GEnesis controller can have either one or two XMAC
109 * chips connected to it, allowing single or dual port NIC configurations.
110 * SysKonnect has the distinction of being the only vendor on the market
111 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113 * XMAC registers. This driver takes advantage of these features to allow
114 * both XMACs to operate as independent interfaces.
115 */
116
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.84 2016/12/14 22:21:13 christos Exp $");
119
120 #include <sys/param.h>
121 #include <sys/systm.h>
122 #include <sys/sockio.h>
123 #include <sys/mbuf.h>
124 #include <sys/malloc.h>
125 #include <sys/mutex.h>
126 #include <sys/kernel.h>
127 #include <sys/socket.h>
128 #include <sys/device.h>
129 #include <sys/queue.h>
130 #include <sys/callout.h>
131 #include <sys/sysctl.h>
132 #include <sys/endian.h>
133
134 #include <net/if.h>
135 #include <net/if_dl.h>
136 #include <net/if_types.h>
137
138 #include <net/if_media.h>
139
140 #include <net/bpf.h>
141 #include <sys/rndsource.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145 #include <dev/mii/brgphyreg.h>
146
147 #include <dev/pci/pcireg.h>
148 #include <dev/pci/pcivar.h>
149 #include <dev/pci/pcidevs.h>
150
151 /* #define SK_USEIOSPACE */
152
153 #include <dev/pci/if_skreg.h>
154 #include <dev/pci/if_skvar.h>
155
156 int skc_probe(device_t, cfdata_t, void *);
157 void skc_attach(device_t, device_t, void *aux);
158 int sk_probe(device_t, cfdata_t, void *);
159 void sk_attach(device_t, device_t, void *aux);
160 int skcprint(void *, const char *);
161 int sk_intr(void *);
162 void sk_intr_bcom(struct sk_if_softc *);
163 void sk_intr_xmac(struct sk_if_softc *);
164 void sk_intr_yukon(struct sk_if_softc *);
165 void sk_rxeof(struct sk_if_softc *);
166 void sk_txeof(struct sk_if_softc *);
167 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
168 void sk_start(struct ifnet *);
169 int sk_ioctl(struct ifnet *, u_long, void *);
170 int sk_init(struct ifnet *);
171 void sk_init_xmac(struct sk_if_softc *);
172 void sk_init_yukon(struct sk_if_softc *);
173 void sk_stop(struct ifnet *, int);
174 void sk_watchdog(struct ifnet *);
175 void sk_shutdown(void *);
176 int sk_ifmedia_upd(struct ifnet *);
177 void sk_reset(struct sk_softc *);
178 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
179 int sk_alloc_jumbo_mem(struct sk_if_softc *);
180 void sk_free_jumbo_mem(struct sk_if_softc *);
181 void *sk_jalloc(struct sk_if_softc *);
182 void sk_jfree(struct mbuf *, void *, size_t, void *);
183 int sk_init_rx_ring(struct sk_if_softc *);
184 int sk_init_tx_ring(struct sk_if_softc *);
185 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
186 void sk_vpd_read_res(struct sk_softc *,
187 struct vpd_res *, int);
188 void sk_vpd_read(struct sk_softc *);
189
190 void sk_update_int_mod(struct sk_softc *);
191
192 int sk_xmac_miibus_readreg(device_t, int, int);
193 void sk_xmac_miibus_writereg(device_t, int, int, int);
194 void sk_xmac_miibus_statchg(struct ifnet *);
195
196 int sk_marv_miibus_readreg(device_t, int, int);
197 void sk_marv_miibus_writereg(device_t, int, int, int);
198 void sk_marv_miibus_statchg(struct ifnet *);
199
200 u_int32_t sk_xmac_hash(void *);
201 u_int32_t sk_yukon_hash(void *);
202 void sk_setfilt(struct sk_if_softc *, void *, int);
203 void sk_setmulti(struct sk_if_softc *);
204 void sk_tick(void *);
205
206 static bool skc_suspend(device_t, const pmf_qual_t *);
207 static bool skc_resume(device_t, const pmf_qual_t *);
208 static bool sk_resume(device_t dv, const pmf_qual_t *);
209
210 /* #define SK_DEBUG 2 */
211 #ifdef SK_DEBUG
212 #define DPRINTF(x) if (skdebug) printf x
213 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
214 int skdebug = SK_DEBUG;
215
216 void sk_dump_txdesc(struct sk_tx_desc *, int);
217 void sk_dump_mbuf(struct mbuf *);
218 void sk_dump_bytes(const char *, int);
219 #else
220 #define DPRINTF(x)
221 #define DPRINTFN(n,x)
222 #endif
223
224 static int sk_sysctl_handler(SYSCTLFN_PROTO);
225 static int sk_root_num;
226
227 /* supported device vendors */
228 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
229 static const struct sk_product {
230 pci_vendor_id_t sk_vendor;
231 pci_product_id_t sk_product;
232 } sk_products[] = {
233 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
234 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
235 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
236 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
237 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
238 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
239 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
240 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
241 { 0, 0, }
242 };
243
244 #define SK_LINKSYS_EG1032_SUBID 0x00151737
245
246 static inline u_int32_t
247 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
248 {
249 #ifdef SK_USEIOSPACE
250 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
251 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
252 #else
253 return CSR_READ_4(sc, reg);
254 #endif
255 }
256
257 static inline u_int16_t
258 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
259 {
260 #ifdef SK_USEIOSPACE
261 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
262 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
263 #else
264 return CSR_READ_2(sc, reg);
265 #endif
266 }
267
268 static inline u_int8_t
269 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
270 {
271 #ifdef SK_USEIOSPACE
272 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
273 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
274 #else
275 return CSR_READ_1(sc, reg);
276 #endif
277 }
278
279 static inline void
280 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
281 {
282 #ifdef SK_USEIOSPACE
283 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
284 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
285 #else
286 CSR_WRITE_4(sc, reg, x);
287 #endif
288 }
289
290 static inline void
291 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
292 {
293 #ifdef SK_USEIOSPACE
294 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
295 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
296 #else
297 CSR_WRITE_2(sc, reg, x);
298 #endif
299 }
300
301 static inline void
302 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
303 {
304 #ifdef SK_USEIOSPACE
305 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
306 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
307 #else
308 CSR_WRITE_1(sc, reg, x);
309 #endif
310 }
311
312 /*
313 * The VPD EEPROM contains Vital Product Data, as suggested in
314 * the PCI 2.1 specification. The VPD data is separared into areas
315 * denoted by resource IDs. The SysKonnect VPD contains an ID string
316 * resource (the name of the adapter), a read-only area resource
317 * containing various key/data fields and a read/write area which
318 * can be used to store asset management information or log messages.
319 * We read the ID string and read-only into buffers attached to
320 * the controller softc structure for later use. At the moment,
321 * we only use the ID string during sk_attach().
322 */
323 u_int8_t
324 sk_vpd_readbyte(struct sk_softc *sc, int addr)
325 {
326 int i;
327
328 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
329 for (i = 0; i < SK_TIMEOUT; i++) {
330 DELAY(1);
331 if (sk_win_read_2(sc,
332 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
333 break;
334 }
335
336 if (i == SK_TIMEOUT)
337 return 0;
338
339 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
340 }
341
342 void
343 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
344 {
345 int i;
346 u_int8_t *ptr;
347
348 ptr = (u_int8_t *)res;
349 for (i = 0; i < sizeof(struct vpd_res); i++)
350 ptr[i] = sk_vpd_readbyte(sc, i + addr);
351 }
352
353 void
354 sk_vpd_read(struct sk_softc *sc)
355 {
356 int pos = 0, i;
357 struct vpd_res res;
358
359 if (sc->sk_vpd_prodname != NULL)
360 free(sc->sk_vpd_prodname, M_DEVBUF);
361 if (sc->sk_vpd_readonly != NULL)
362 free(sc->sk_vpd_readonly, M_DEVBUF);
363 sc->sk_vpd_prodname = NULL;
364 sc->sk_vpd_readonly = NULL;
365
366 sk_vpd_read_res(sc, &res, pos);
367
368 if (res.vr_id != VPD_RES_ID) {
369 aprint_error_dev(sc->sk_dev,
370 "bad VPD resource id: expected %x got %x\n",
371 VPD_RES_ID, res.vr_id);
372 return;
373 }
374
375 pos += sizeof(res);
376 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
377 if (sc->sk_vpd_prodname == NULL)
378 panic("sk_vpd_read");
379 for (i = 0; i < res.vr_len; i++)
380 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
381 sc->sk_vpd_prodname[i] = '\0';
382 pos += i;
383
384 sk_vpd_read_res(sc, &res, pos);
385
386 if (res.vr_id != VPD_RES_READ) {
387 aprint_error_dev(sc->sk_dev,
388 "bad VPD resource id: expected %x got %x\n",
389 VPD_RES_READ, res.vr_id);
390 return;
391 }
392
393 pos += sizeof(res);
394 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
395 if (sc->sk_vpd_readonly == NULL)
396 panic("sk_vpd_read");
397 for (i = 0; i < res.vr_len ; i++)
398 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
399 }
400
401 int
402 sk_xmac_miibus_readreg(device_t dev, int phy, int reg)
403 {
404 struct sk_if_softc *sc_if = device_private(dev);
405 int i;
406
407 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
408
409 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
410 return 0;
411
412 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
413 SK_XM_READ_2(sc_if, XM_PHY_DATA);
414 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
415 for (i = 0; i < SK_TIMEOUT; i++) {
416 DELAY(1);
417 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
418 XM_MMUCMD_PHYDATARDY)
419 break;
420 }
421
422 if (i == SK_TIMEOUT) {
423 aprint_error_dev(sc_if->sk_dev,
424 "phy failed to come ready\n");
425 return 0;
426 }
427 }
428 DELAY(1);
429 return SK_XM_READ_2(sc_if, XM_PHY_DATA);
430 }
431
432 void
433 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, int val)
434 {
435 struct sk_if_softc *sc_if = device_private(dev);
436 int i;
437
438 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
439
440 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
441 for (i = 0; i < SK_TIMEOUT; i++) {
442 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
443 break;
444 }
445
446 if (i == SK_TIMEOUT) {
447 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
448 return;
449 }
450
451 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
452 for (i = 0; i < SK_TIMEOUT; i++) {
453 DELAY(1);
454 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
455 break;
456 }
457
458 if (i == SK_TIMEOUT)
459 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
460 }
461
462 void
463 sk_xmac_miibus_statchg(struct ifnet *ifp)
464 {
465 struct sk_if_softc *sc_if = ifp->if_softc;
466 struct mii_data *mii = &sc_if->sk_mii;
467
468 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
469
470 /*
471 * If this is a GMII PHY, manually set the XMAC's
472 * duplex mode accordingly.
473 */
474 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
475 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
476 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
477 else
478 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
479 }
480 }
481
482 int
483 sk_marv_miibus_readreg(device_t dev, int phy, int reg)
484 {
485 struct sk_if_softc *sc_if = device_private(dev);
486 u_int16_t val;
487 int i;
488
489 if (phy != 0 ||
490 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
491 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
492 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
493 phy, reg));
494 return 0;
495 }
496
497 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
498 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
499
500 for (i = 0; i < SK_TIMEOUT; i++) {
501 DELAY(1);
502 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
503 if (val & YU_SMICR_READ_VALID)
504 break;
505 }
506
507 if (i == SK_TIMEOUT) {
508 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
509 return 0;
510 }
511
512 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
513 SK_TIMEOUT));
514
515 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
516
517 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
518 phy, reg, val));
519
520 return val;
521 }
522
523 void
524 sk_marv_miibus_writereg(device_t dev, int phy, int reg, int val)
525 {
526 struct sk_if_softc *sc_if = device_private(dev);
527 int i;
528
529 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
530 phy, reg, val));
531
532 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
533 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
534 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
535
536 for (i = 0; i < SK_TIMEOUT; i++) {
537 DELAY(1);
538 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
539 break;
540 }
541
542 if (i == SK_TIMEOUT)
543 printf("%s: phy write timed out\n",
544 device_xname(sc_if->sk_dev));
545 }
546
547 void
548 sk_marv_miibus_statchg(struct ifnet *ifp)
549 {
550 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
551 SK_YU_READ_2(((struct sk_if_softc *)ifp->if_softc),
552 YUKON_GPCR)));
553 }
554
555 #define SK_HASH_BITS 6
556
557 u_int32_t
558 sk_xmac_hash(void *addr)
559 {
560 u_int32_t crc;
561
562 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
563 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
564 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
565 return crc;
566 }
567
568 u_int32_t
569 sk_yukon_hash(void *addr)
570 {
571 u_int32_t crc;
572
573 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
574 crc &= ((1 << SK_HASH_BITS) - 1);
575 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
576 return crc;
577 }
578
579 void
580 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
581 {
582 char *addr = addrv;
583 int base = XM_RXFILT_ENTRY(slot);
584
585 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
586 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
587 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
588 }
589
590 void
591 sk_setmulti(struct sk_if_softc *sc_if)
592 {
593 struct sk_softc *sc = sc_if->sk_softc;
594 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
595 u_int32_t hashes[2] = { 0, 0 };
596 int h = 0, i;
597 struct ethercom *ec = &sc_if->sk_ethercom;
598 struct ether_multi *enm;
599 struct ether_multistep step;
600 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
601
602 /* First, zot all the existing filters. */
603 switch (sc->sk_type) {
604 case SK_GENESIS:
605 for (i = 1; i < XM_RXFILT_MAX; i++)
606 sk_setfilt(sc_if, (void *)&dummy, i);
607
608 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
609 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
610 break;
611 case SK_YUKON:
612 case SK_YUKON_LITE:
613 case SK_YUKON_LP:
614 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
615 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
616 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
617 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
618 break;
619 }
620
621 /* Now program new ones. */
622 allmulti:
623 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
624 hashes[0] = 0xFFFFFFFF;
625 hashes[1] = 0xFFFFFFFF;
626 } else {
627 i = 1;
628 /* First find the tail of the list. */
629 ETHER_FIRST_MULTI(step, ec, enm);
630 while (enm != NULL) {
631 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
632 ETHER_ADDR_LEN)) {
633 ifp->if_flags |= IFF_ALLMULTI;
634 goto allmulti;
635 }
636 DPRINTFN(2,("multicast address %s\n",
637 ether_sprintf(enm->enm_addrlo)));
638 /*
639 * Program the first XM_RXFILT_MAX multicast groups
640 * into the perfect filter. For all others,
641 * use the hash table.
642 */
643 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
644 sk_setfilt(sc_if, enm->enm_addrlo, i);
645 i++;
646 }
647 else {
648 switch (sc->sk_type) {
649 case SK_GENESIS:
650 h = sk_xmac_hash(enm->enm_addrlo);
651 break;
652 case SK_YUKON:
653 case SK_YUKON_LITE:
654 case SK_YUKON_LP:
655 h = sk_yukon_hash(enm->enm_addrlo);
656 break;
657 }
658 if (h < 32)
659 hashes[0] |= (1 << h);
660 else
661 hashes[1] |= (1 << (h - 32));
662 }
663
664 ETHER_NEXT_MULTI(step, enm);
665 }
666 }
667
668 switch (sc->sk_type) {
669 case SK_GENESIS:
670 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
671 XM_MODE_RX_USE_PERFECT);
672 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
673 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
674 break;
675 case SK_YUKON:
676 case SK_YUKON_LITE:
677 case SK_YUKON_LP:
678 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
679 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
680 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
681 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
682 break;
683 }
684 }
685
686 int
687 sk_init_rx_ring(struct sk_if_softc *sc_if)
688 {
689 struct sk_chain_data *cd = &sc_if->sk_cdata;
690 struct sk_ring_data *rd = sc_if->sk_rdata;
691 int i;
692
693 memset((char *)rd->sk_rx_ring, 0,
694 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
695
696 for (i = 0; i < SK_RX_RING_CNT; i++) {
697 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
698 if (i == (SK_RX_RING_CNT - 1)) {
699 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
700 rd->sk_rx_ring[i].sk_next =
701 htole32(SK_RX_RING_ADDR(sc_if, 0));
702 } else {
703 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
704 rd->sk_rx_ring[i].sk_next =
705 htole32(SK_RX_RING_ADDR(sc_if,i+1));
706 }
707 }
708
709 for (i = 0; i < SK_RX_RING_CNT; i++) {
710 if (sk_newbuf(sc_if, i, NULL,
711 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
712 aprint_error_dev(sc_if->sk_dev,
713 "failed alloc of %dth mbuf\n", i);
714 return ENOBUFS;
715 }
716 }
717 sc_if->sk_cdata.sk_rx_prod = 0;
718 sc_if->sk_cdata.sk_rx_cons = 0;
719
720 return 0;
721 }
722
723 int
724 sk_init_tx_ring(struct sk_if_softc *sc_if)
725 {
726 struct sk_chain_data *cd = &sc_if->sk_cdata;
727 struct sk_ring_data *rd = sc_if->sk_rdata;
728 int i;
729
730 memset(sc_if->sk_rdata->sk_tx_ring, 0,
731 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
732
733 for (i = 0; i < SK_TX_RING_CNT; i++) {
734 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
735 if (i == (SK_TX_RING_CNT - 1)) {
736 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
737 rd->sk_tx_ring[i].sk_next =
738 htole32(SK_TX_RING_ADDR(sc_if, 0));
739 } else {
740 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
741 rd->sk_tx_ring[i].sk_next =
742 htole32(SK_TX_RING_ADDR(sc_if,i+1));
743 }
744 }
745
746 sc_if->sk_cdata.sk_tx_prod = 0;
747 sc_if->sk_cdata.sk_tx_cons = 0;
748 sc_if->sk_cdata.sk_tx_cnt = 0;
749
750 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
751 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
752
753 return 0;
754 }
755
756 int
757 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
758 bus_dmamap_t dmamap)
759 {
760 struct mbuf *m_new = NULL;
761 struct sk_chain *c;
762 struct sk_rx_desc *r;
763
764 if (m == NULL) {
765 void *buf = NULL;
766
767 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
768 if (m_new == NULL) {
769 aprint_error_dev(sc_if->sk_dev,
770 "no memory for rx list -- packet dropped!\n");
771 return ENOBUFS;
772 }
773
774 /* Allocate the jumbo buffer */
775 buf = sk_jalloc(sc_if);
776 if (buf == NULL) {
777 m_freem(m_new);
778 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
779 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
780 return ENOBUFS;
781 }
782
783 /* Attach the buffer to the mbuf */
784 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
785 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
786
787 } else {
788 /*
789 * We're re-using a previously allocated mbuf;
790 * be sure to re-init pointers and lengths to
791 * default values.
792 */
793 m_new = m;
794 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
795 m_new->m_data = m_new->m_ext.ext_buf;
796 }
797 m_adj(m_new, ETHER_ALIGN);
798
799 c = &sc_if->sk_cdata.sk_rx_chain[i];
800 r = c->sk_desc;
801 c->sk_mbuf = m_new;
802 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
803 (((vaddr_t)m_new->m_data
804 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
805 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
806
807 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
808
809 return 0;
810 }
811
812 /*
813 * Memory management for jumbo frames.
814 */
815
816 int
817 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
818 {
819 struct sk_softc *sc = sc_if->sk_softc;
820 char *ptr, *kva;
821 bus_dma_segment_t seg;
822 int i, rseg, state, error;
823 struct sk_jpool_entry *entry;
824
825 state = error = 0;
826
827 /* Grab a big chunk o' storage. */
828 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
829 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
830 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
831 return ENOBUFS;
832 }
833
834 state = 1;
835 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
836 BUS_DMA_NOWAIT)) {
837 aprint_error_dev(sc->sk_dev,
838 "can't map dma buffers (%d bytes)\n",
839 SK_JMEM);
840 error = ENOBUFS;
841 goto out;
842 }
843
844 state = 2;
845 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
846 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
847 aprint_error_dev(sc->sk_dev, "can't create dma map\n");
848 error = ENOBUFS;
849 goto out;
850 }
851
852 state = 3;
853 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
854 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
855 aprint_error_dev(sc->sk_dev, "can't load dma map\n");
856 error = ENOBUFS;
857 goto out;
858 }
859
860 state = 4;
861 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
862 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
863
864 LIST_INIT(&sc_if->sk_jfree_listhead);
865 LIST_INIT(&sc_if->sk_jinuse_listhead);
866 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
867
868 /*
869 * Now divide it up into 9K pieces and save the addresses
870 * in an array.
871 */
872 ptr = sc_if->sk_cdata.sk_jumbo_buf;
873 for (i = 0; i < SK_JSLOTS; i++) {
874 sc_if->sk_cdata.sk_jslots[i] = ptr;
875 ptr += SK_JLEN;
876 entry = malloc(sizeof(struct sk_jpool_entry),
877 M_DEVBUF, M_NOWAIT);
878 if (entry == NULL) {
879 aprint_error_dev(sc->sk_dev,
880 "no memory for jumbo buffer queue!\n");
881 error = ENOBUFS;
882 goto out;
883 }
884 entry->slot = i;
885 if (i)
886 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
887 entry, jpool_entries);
888 else
889 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
890 entry, jpool_entries);
891 }
892 out:
893 if (error != 0) {
894 switch (state) {
895 case 4:
896 bus_dmamap_unload(sc->sc_dmatag,
897 sc_if->sk_cdata.sk_rx_jumbo_map);
898 case 3:
899 bus_dmamap_destroy(sc->sc_dmatag,
900 sc_if->sk_cdata.sk_rx_jumbo_map);
901 case 2:
902 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
903 case 1:
904 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
905 break;
906 default:
907 break;
908 }
909 }
910
911 return error;
912 }
913
914 /*
915 * Allocate a jumbo buffer.
916 */
917 void *
918 sk_jalloc(struct sk_if_softc *sc_if)
919 {
920 struct sk_jpool_entry *entry;
921
922 mutex_enter(&sc_if->sk_jpool_mtx);
923 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
924
925 if (entry == NULL) {
926 mutex_exit(&sc_if->sk_jpool_mtx);
927 return NULL;
928 }
929
930 LIST_REMOVE(entry, jpool_entries);
931 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
932 mutex_exit(&sc_if->sk_jpool_mtx);
933 return sc_if->sk_cdata.sk_jslots[entry->slot];
934 }
935
936 /*
937 * Release a jumbo buffer.
938 */
939 void
940 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
941 {
942 struct sk_jpool_entry *entry;
943 struct sk_if_softc *sc;
944 int i;
945
946 /* Extract the softc struct pointer. */
947 sc = (struct sk_if_softc *)arg;
948
949 if (sc == NULL)
950 panic("sk_jfree: can't find softc pointer!");
951
952 /* calculate the slot this buffer belongs to */
953
954 i = ((vaddr_t)buf
955 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
956
957 if ((i < 0) || (i >= SK_JSLOTS))
958 panic("sk_jfree: asked to free buffer that we don't manage!");
959
960 mutex_enter(&sc->sk_jpool_mtx);
961 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
962 if (entry == NULL)
963 panic("sk_jfree: buffer not in use!");
964 entry->slot = i;
965 LIST_REMOVE(entry, jpool_entries);
966 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
967 mutex_exit(&sc->sk_jpool_mtx);
968
969 if (__predict_true(m != NULL))
970 pool_cache_put(mb_cache, m);
971 }
972
973 /*
974 * Set media options.
975 */
976 int
977 sk_ifmedia_upd(struct ifnet *ifp)
978 {
979 struct sk_if_softc *sc_if = ifp->if_softc;
980 int rc;
981
982 (void) sk_init(ifp);
983 if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
984 return 0;
985 return rc;
986 }
987
988 static void
989 sk_promisc(struct sk_if_softc *sc_if, int on)
990 {
991 struct sk_softc *sc = sc_if->sk_softc;
992 switch (sc->sk_type) {
993 case SK_GENESIS:
994 if (on)
995 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
996 else
997 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
998 break;
999 case SK_YUKON:
1000 case SK_YUKON_LITE:
1001 case SK_YUKON_LP:
1002 if (on)
1003 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1004 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1005 else
1006 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1007 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1008 break;
1009 default:
1010 aprint_error_dev(sc_if->sk_dev, "Can't set promisc for %d\n",
1011 sc->sk_type);
1012 break;
1013 }
1014 }
1015
1016 int
1017 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
1018 {
1019 struct sk_if_softc *sc_if = ifp->if_softc;
1020 int s, error = 0;
1021
1022 /* DPRINTFN(2, ("sk_ioctl\n")); */
1023
1024 s = splnet();
1025
1026 switch (command) {
1027
1028 case SIOCSIFFLAGS:
1029 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1030 if ((error = ifioctl_common(ifp, command, data)) != 0)
1031 break;
1032 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1033 case IFF_RUNNING:
1034 sk_stop(ifp, 1);
1035 break;
1036 case IFF_UP:
1037 sk_init(ifp);
1038 break;
1039 case IFF_UP | IFF_RUNNING:
1040 if ((ifp->if_flags ^ sc_if->sk_if_flags) == IFF_PROMISC) {
1041 sk_promisc(sc_if, ifp->if_flags & IFF_PROMISC);
1042 sk_setmulti(sc_if);
1043 } else
1044 sk_init(ifp);
1045 break;
1046 }
1047 sc_if->sk_if_flags = ifp->if_flags;
1048 error = 0;
1049 break;
1050
1051 default:
1052 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1053 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1054 break;
1055
1056 error = 0;
1057
1058 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1059 ;
1060 else if (ifp->if_flags & IFF_RUNNING) {
1061 sk_setmulti(sc_if);
1062 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1063 }
1064 break;
1065 }
1066
1067 splx(s);
1068 return error;
1069 }
1070
1071 void
1072 sk_update_int_mod(struct sk_softc *sc)
1073 {
1074 u_int32_t imtimer_ticks;
1075
1076 /*
1077 * Configure interrupt moderation. The moderation timer
1078 * defers interrupts specified in the interrupt moderation
1079 * timer mask based on the timeout specified in the interrupt
1080 * moderation timer init register. Each bit in the timer
1081 * register represents one tick, so to specify a timeout in
1082 * microseconds, we have to multiply by the correct number of
1083 * ticks-per-microsecond.
1084 */
1085 switch (sc->sk_type) {
1086 case SK_GENESIS:
1087 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1088 break;
1089 case SK_YUKON_EC:
1090 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1091 break;
1092 default:
1093 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1094 }
1095 aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
1096 sc->sk_int_mod);
1097 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1098 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1099 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1100 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1101 sc->sk_int_mod_pending = 0;
1102 }
1103
1104 /*
1105 * Lookup: Check the PCI vendor and device, and return a pointer to
1106 * The structure if the IDs match against our list.
1107 */
1108
1109 static const struct sk_product *
1110 sk_lookup(const struct pci_attach_args *pa)
1111 {
1112 const struct sk_product *psk;
1113
1114 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1115 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1116 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1117 return psk;
1118 }
1119 return NULL;
1120 }
1121
1122 /*
1123 * Probe for a SysKonnect GEnesis chip.
1124 */
1125
1126 int
1127 skc_probe(device_t parent, cfdata_t match, void *aux)
1128 {
1129 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1130 const struct sk_product *psk;
1131 pcireg_t subid;
1132
1133 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1134
1135 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1136 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1137 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1138 subid == SK_LINKSYS_EG1032_SUBID)
1139 return 1;
1140
1141 if ((psk = sk_lookup(pa))) {
1142 return 1;
1143 }
1144 return 0;
1145 }
1146
1147 /*
1148 * Force the GEnesis into reset, then bring it out of reset.
1149 */
1150 void sk_reset(struct sk_softc *sc)
1151 {
1152 DPRINTFN(2, ("sk_reset\n"));
1153
1154 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1155 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1156 if (SK_YUKON_FAMILY(sc->sk_type))
1157 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1158
1159 DELAY(1000);
1160 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1161 DELAY(2);
1162 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1163 if (SK_YUKON_FAMILY(sc->sk_type))
1164 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1165
1166 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1167 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1168 CSR_READ_2(sc, SK_LINK_CTRL)));
1169
1170 if (sc->sk_type == SK_GENESIS) {
1171 /* Configure packet arbiter */
1172 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1173 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1174 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1175 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1176 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1177 }
1178
1179 /* Enable RAM interface */
1180 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1181
1182 sk_update_int_mod(sc);
1183 }
1184
1185 int
1186 sk_probe(device_t parent, cfdata_t match, void *aux)
1187 {
1188 struct skc_attach_args *sa = aux;
1189
1190 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1191 return 0;
1192
1193 return 1;
1194 }
1195
1196 /*
1197 * Each XMAC chip is attached as a separate logical IP interface.
1198 * Single port cards will have only one logical interface of course.
1199 */
1200 void
1201 sk_attach(device_t parent, device_t self, void *aux)
1202 {
1203 struct sk_if_softc *sc_if = device_private(self);
1204 struct sk_softc *sc = device_private(parent);
1205 struct skc_attach_args *sa = aux;
1206 struct sk_txmap_entry *entry;
1207 struct ifnet *ifp;
1208 bus_dma_segment_t seg;
1209 bus_dmamap_t dmamap;
1210 prop_data_t data;
1211 void *kva;
1212 int i, rseg;
1213 int mii_flags = 0;
1214
1215 aprint_naive("\n");
1216
1217 sc_if->sk_dev = self;
1218 sc_if->sk_port = sa->skc_port;
1219 sc_if->sk_softc = sc;
1220 sc->sk_if[sa->skc_port] = sc_if;
1221
1222 if (sa->skc_port == SK_PORT_A)
1223 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1224 if (sa->skc_port == SK_PORT_B)
1225 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1226
1227 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1228
1229 /*
1230 * Get station address for this interface. Note that
1231 * dual port cards actually come with three station
1232 * addresses: one for each port, plus an extra. The
1233 * extra one is used by the SysKonnect driver software
1234 * as a 'virtual' station address for when both ports
1235 * are operating in failover mode. Currently we don't
1236 * use this extra address.
1237 */
1238 data = prop_dictionary_get(device_properties(self), "mac-address");
1239 if (data != NULL) {
1240 /*
1241 * Try to get the station address from device properties
1242 * first, in case the ROM is missing.
1243 */
1244 KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
1245 KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
1246 memcpy(sc_if->sk_enaddr, prop_data_data_nocopy(data),
1247 ETHER_ADDR_LEN);
1248 } else
1249 for (i = 0; i < ETHER_ADDR_LEN; i++)
1250 sc_if->sk_enaddr[i] = sk_win_read_1(sc,
1251 SK_MAC0_0 + (sa->skc_port * 8) + i);
1252
1253 aprint_normal(": Ethernet address %s\n",
1254 ether_sprintf(sc_if->sk_enaddr));
1255
1256 /*
1257 * Set up RAM buffer addresses. The NIC will have a certain
1258 * amount of SRAM on it, somewhere between 512K and 2MB. We
1259 * need to divide this up a) between the transmitter and
1260 * receiver and b) between the two XMACs, if this is a
1261 * dual port NIC. Our algorithm is to divide up the memory
1262 * evenly so that everyone gets a fair share.
1263 */
1264 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1265 u_int32_t chunk, val;
1266
1267 chunk = sc->sk_ramsize / 2;
1268 val = sc->sk_rboff / sizeof(u_int64_t);
1269 sc_if->sk_rx_ramstart = val;
1270 val += (chunk / sizeof(u_int64_t));
1271 sc_if->sk_rx_ramend = val - 1;
1272 sc_if->sk_tx_ramstart = val;
1273 val += (chunk / sizeof(u_int64_t));
1274 sc_if->sk_tx_ramend = val - 1;
1275 } else {
1276 u_int32_t chunk, val;
1277
1278 chunk = sc->sk_ramsize / 4;
1279 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1280 sizeof(u_int64_t);
1281 sc_if->sk_rx_ramstart = val;
1282 val += (chunk / sizeof(u_int64_t));
1283 sc_if->sk_rx_ramend = val - 1;
1284 sc_if->sk_tx_ramstart = val;
1285 val += (chunk / sizeof(u_int64_t));
1286 sc_if->sk_tx_ramend = val - 1;
1287 }
1288
1289 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1290 " tx_ramstart=%#x tx_ramend=%#x\n",
1291 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1292 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1293
1294 /* Read and save PHY type and set PHY address */
1295 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1296 switch (sc_if->sk_phytype) {
1297 case SK_PHYTYPE_XMAC:
1298 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1299 break;
1300 case SK_PHYTYPE_BCOM:
1301 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1302 break;
1303 case SK_PHYTYPE_MARV_COPPER:
1304 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1305 break;
1306 default:
1307 aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
1308 sc_if->sk_phytype);
1309 return;
1310 }
1311
1312 /* Allocate the descriptor queues. */
1313 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1314 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1315 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
1316 goto fail;
1317 }
1318 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1319 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1320 aprint_error_dev(sc_if->sk_dev,
1321 "can't map dma buffers (%lu bytes)\n",
1322 (u_long) sizeof(struct sk_ring_data));
1323 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1324 goto fail;
1325 }
1326 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1327 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1328 &sc_if->sk_ring_map)) {
1329 aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
1330 bus_dmamem_unmap(sc->sc_dmatag, kva,
1331 sizeof(struct sk_ring_data));
1332 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1333 goto fail;
1334 }
1335 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1336 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1337 aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
1338 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1339 bus_dmamem_unmap(sc->sc_dmatag, kva,
1340 sizeof(struct sk_ring_data));
1341 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1342 goto fail;
1343 }
1344
1345 for (i = 0; i < SK_RX_RING_CNT; i++)
1346 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1347
1348 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1349 for (i = 0; i < SK_TX_RING_CNT; i++) {
1350 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1351
1352 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1353 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1354 aprint_error_dev(sc_if->sk_dev,
1355 "Can't create TX dmamap\n");
1356 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1357 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1358 bus_dmamem_unmap(sc->sc_dmatag, kva,
1359 sizeof(struct sk_ring_data));
1360 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1361 goto fail;
1362 }
1363
1364 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1365 if (!entry) {
1366 aprint_error_dev(sc_if->sk_dev,
1367 "Can't alloc txmap entry\n");
1368 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1369 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1370 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1371 bus_dmamem_unmap(sc->sc_dmatag, kva,
1372 sizeof(struct sk_ring_data));
1373 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1374 goto fail;
1375 }
1376 entry->dmamap = dmamap;
1377 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1378 }
1379
1380 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1381 memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
1382
1383 ifp = &sc_if->sk_ethercom.ec_if;
1384 /* Try to allocate memory for jumbo buffers. */
1385 if (sk_alloc_jumbo_mem(sc_if)) {
1386 aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1387 goto fail;
1388 }
1389 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1390 | ETHERCAP_JUMBO_MTU;
1391
1392 ifp->if_softc = sc_if;
1393 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1394 ifp->if_ioctl = sk_ioctl;
1395 ifp->if_start = sk_start;
1396 ifp->if_stop = sk_stop;
1397 ifp->if_init = sk_init;
1398 ifp->if_watchdog = sk_watchdog;
1399 ifp->if_capabilities = 0;
1400 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1401 IFQ_SET_READY(&ifp->if_snd);
1402 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1403
1404 /*
1405 * Do miibus setup.
1406 */
1407 switch (sc->sk_type) {
1408 case SK_GENESIS:
1409 sk_init_xmac(sc_if);
1410 break;
1411 case SK_YUKON:
1412 case SK_YUKON_LITE:
1413 case SK_YUKON_LP:
1414 sk_init_yukon(sc_if);
1415 break;
1416 default:
1417 aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
1418 sc->sk_type);
1419 goto fail;
1420 }
1421
1422 DPRINTFN(2, ("sk_attach: 1\n"));
1423
1424 sc_if->sk_mii.mii_ifp = ifp;
1425 switch (sc->sk_type) {
1426 case SK_GENESIS:
1427 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1428 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1429 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1430 break;
1431 case SK_YUKON:
1432 case SK_YUKON_LITE:
1433 case SK_YUKON_LP:
1434 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1435 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1436 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1437 mii_flags = MIIF_DOPAUSE;
1438 break;
1439 }
1440
1441 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1442 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1443 sk_ifmedia_upd, ether_mediastatus);
1444 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1445 MII_OFFSET_ANY, mii_flags);
1446 if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
1447 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1448 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1449 0, NULL);
1450 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1451 } else
1452 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1453
1454 callout_init(&sc_if->sk_tick_ch, 0);
1455 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1456
1457 DPRINTFN(2, ("sk_attach: 1\n"));
1458
1459 /*
1460 * Call MI attach routines.
1461 */
1462 if_attach(ifp);
1463 if_deferred_start_init(ifp, NULL);
1464
1465 ether_ifattach(ifp, sc_if->sk_enaddr);
1466
1467 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1468 RND_TYPE_NET, RND_FLAG_DEFAULT);
1469
1470 if (pmf_device_register(self, NULL, sk_resume))
1471 pmf_class_network_register(self, ifp);
1472 else
1473 aprint_error_dev(self, "couldn't establish power handler\n");
1474
1475 DPRINTFN(2, ("sk_attach: end\n"));
1476
1477 return;
1478
1479 fail:
1480 sc->sk_if[sa->skc_port] = NULL;
1481 }
1482
1483 int
1484 skcprint(void *aux, const char *pnp)
1485 {
1486 struct skc_attach_args *sa = aux;
1487
1488 if (pnp)
1489 aprint_normal("sk port %c at %s",
1490 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1491 else
1492 aprint_normal(" port %c",
1493 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1494 return UNCONF;
1495 }
1496
1497 /*
1498 * Attach the interface. Allocate softc structures, do ifmedia
1499 * setup and ethernet/BPF attach.
1500 */
1501 void
1502 skc_attach(device_t parent, device_t self, void *aux)
1503 {
1504 struct sk_softc *sc = device_private(self);
1505 struct pci_attach_args *pa = aux;
1506 struct skc_attach_args skca;
1507 pci_chipset_tag_t pc = pa->pa_pc;
1508 #ifndef SK_USEIOSPACE
1509 pcireg_t memtype;
1510 #endif
1511 pci_intr_handle_t ih;
1512 const char *intrstr = NULL;
1513 bus_addr_t iobase;
1514 bus_size_t iosize;
1515 int rc, sk_nodenum;
1516 u_int32_t command;
1517 const char *revstr;
1518 const struct sysctlnode *node;
1519 char intrbuf[PCI_INTRSTR_LEN];
1520
1521 sc->sk_dev = self;
1522 aprint_naive("\n");
1523
1524 DPRINTFN(2, ("begin skc_attach\n"));
1525
1526 /*
1527 * Handle power management nonsense.
1528 */
1529 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1530
1531 if (command == 0x01) {
1532 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1533 if (command & SK_PSTATE_MASK) {
1534 u_int32_t xiobase, membase, irq;
1535
1536 /* Save important PCI config data. */
1537 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1538 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1539 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1540
1541 /* Reset the power state. */
1542 aprint_normal_dev(sc->sk_dev,
1543 "chip is in D%d power mode -- setting to D0\n",
1544 command & SK_PSTATE_MASK);
1545 command &= 0xFFFFFFFC;
1546 pci_conf_write(pc, pa->pa_tag,
1547 SK_PCI_PWRMGMTCTRL, command);
1548
1549 /* Restore PCI config data. */
1550 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1551 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1552 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1553 }
1554 }
1555
1556 /*
1557 * The firmware might have configured the interface to revert the
1558 * byte order in all descriptors. Make that undone.
1559 */
1560 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_OURREG2);
1561 if (command & SK_REG2_REV_DESC)
1562 pci_conf_write(pc, pa->pa_tag, SK_PCI_OURREG2,
1563 command & ~SK_REG2_REV_DESC);
1564
1565 /*
1566 * Map control/status registers.
1567 */
1568 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1569 command |= PCI_COMMAND_IO_ENABLE |
1570 PCI_COMMAND_MEM_ENABLE |
1571 PCI_COMMAND_MASTER_ENABLE;
1572 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1573 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1574
1575 #ifdef SK_USEIOSPACE
1576 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1577 aprint_error(": failed to enable I/O ports!\n");
1578 return;
1579 }
1580 /*
1581 * Map control/status registers.
1582 */
1583 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1584 &sc->sk_btag, &sc->sk_bhandle,
1585 &iobase, &iosize)) {
1586 aprint_error(": can't find i/o space\n");
1587 return;
1588 }
1589 #else
1590 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1591 aprint_error(": failed to enable memory mapping!\n");
1592 return;
1593 }
1594 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1595 switch (memtype) {
1596 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1597 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1598 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1599 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1600 &iobase, &iosize) == 0)
1601 break;
1602 default:
1603 aprint_error_dev(sc->sk_dev, "can't find mem space\n");
1604 return;
1605 }
1606
1607 DPRINTFN(2, ("skc_attach: iobase=%#" PRIxPADDR ", iosize=%zx\n",
1608 iobase, iosize));
1609 #endif
1610 sc->sc_dmatag = pa->pa_dmat;
1611
1612 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1613 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1614
1615 /* bail out here if chip is not recognized */
1616 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1617 aprint_error_dev(sc->sk_dev, "unknown chip type\n");
1618 goto fail;
1619 }
1620 if (SK_IS_YUKON2(sc)) {
1621 aprint_error_dev(sc->sk_dev,
1622 "Does not support Yukon2--try msk(4).\n");
1623 goto fail;
1624 }
1625 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1626
1627 /* Allocate interrupt */
1628 if (pci_intr_map(pa, &ih)) {
1629 aprint_error(": couldn't map interrupt\n");
1630 goto fail;
1631 }
1632
1633 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1634 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1635 if (sc->sk_intrhand == NULL) {
1636 aprint_error(": couldn't establish interrupt");
1637 if (intrstr != NULL)
1638 aprint_error(" at %s", intrstr);
1639 aprint_error("\n");
1640 goto fail;
1641 }
1642 aprint_normal(": %s\n", intrstr);
1643
1644 /* Reset the adapter. */
1645 sk_reset(sc);
1646
1647 /* Read and save vital product data from EEPROM. */
1648 sk_vpd_read(sc);
1649
1650 if (sc->sk_type == SK_GENESIS) {
1651 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1652 /* Read and save RAM size and RAMbuffer offset */
1653 switch (val) {
1654 case SK_RAMSIZE_512K_64:
1655 sc->sk_ramsize = 0x80000;
1656 sc->sk_rboff = SK_RBOFF_0;
1657 break;
1658 case SK_RAMSIZE_1024K_64:
1659 sc->sk_ramsize = 0x100000;
1660 sc->sk_rboff = SK_RBOFF_80000;
1661 break;
1662 case SK_RAMSIZE_1024K_128:
1663 sc->sk_ramsize = 0x100000;
1664 sc->sk_rboff = SK_RBOFF_0;
1665 break;
1666 case SK_RAMSIZE_2048K_128:
1667 sc->sk_ramsize = 0x200000;
1668 sc->sk_rboff = SK_RBOFF_0;
1669 break;
1670 default:
1671 aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
1672 val);
1673 goto fail_1;
1674 break;
1675 }
1676
1677 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1678 sc->sk_ramsize, sc->sk_ramsize / 1024,
1679 sc->sk_rboff));
1680 } else {
1681 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1682 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1683 sc->sk_rboff = SK_RBOFF_0;
1684
1685 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1686 sc->sk_ramsize / 1024, sc->sk_ramsize,
1687 sc->sk_rboff));
1688 }
1689
1690 /* Read and save physical media type */
1691 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1692 case SK_PMD_1000BASESX:
1693 sc->sk_pmd = IFM_1000_SX;
1694 break;
1695 case SK_PMD_1000BASELX:
1696 sc->sk_pmd = IFM_1000_LX;
1697 break;
1698 case SK_PMD_1000BASECX:
1699 sc->sk_pmd = IFM_1000_CX;
1700 break;
1701 case SK_PMD_1000BASETX:
1702 case SK_PMD_1000BASETX_ALT:
1703 sc->sk_pmd = IFM_1000_T;
1704 break;
1705 default:
1706 aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
1707 sk_win_read_1(sc, SK_PMDTYPE));
1708 goto fail_1;
1709 }
1710
1711 /* determine whether to name it with vpd or just make it up */
1712 /* Marvell Yukon VPD's can freqently be bogus */
1713
1714 switch (pa->pa_id) {
1715 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1716 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1717 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1718 case PCI_PRODUCT_3COM_3C940:
1719 case PCI_PRODUCT_DLINK_DGE530T:
1720 case PCI_PRODUCT_DLINK_DGE560T:
1721 case PCI_PRODUCT_DLINK_DGE560T_2:
1722 case PCI_PRODUCT_LINKSYS_EG1032:
1723 case PCI_PRODUCT_LINKSYS_EG1064:
1724 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1725 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1726 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1727 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1728 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1729 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1730 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1731 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1732 sc->sk_name = sc->sk_vpd_prodname;
1733 break;
1734 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1735 /* whoops yukon vpd prodname bears no resemblance to reality */
1736 switch (sc->sk_type) {
1737 case SK_GENESIS:
1738 sc->sk_name = sc->sk_vpd_prodname;
1739 break;
1740 case SK_YUKON:
1741 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1742 break;
1743 case SK_YUKON_LITE:
1744 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1745 break;
1746 case SK_YUKON_LP:
1747 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1748 break;
1749 default:
1750 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1751 }
1752
1753 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1754
1755 if ( sc->sk_type == SK_YUKON ) {
1756 uint32_t flashaddr;
1757 uint8_t testbyte;
1758
1759 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1760
1761 /* test Flash-Address Register */
1762 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1763 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1764
1765 if (testbyte != 0) {
1766 /* this is yukon lite Rev. A0 */
1767 sc->sk_type = SK_YUKON_LITE;
1768 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1769 /* restore Flash-Address Register */
1770 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1771 }
1772 }
1773 break;
1774 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1775 sc->sk_name = sc->sk_vpd_prodname;
1776 break;
1777 default:
1778 sc->sk_name = "Unknown Marvell";
1779 }
1780
1781
1782 if ( sc->sk_type == SK_YUKON_LITE ) {
1783 switch (sc->sk_rev) {
1784 case SK_YUKON_LITE_REV_A0:
1785 revstr = "A0";
1786 break;
1787 case SK_YUKON_LITE_REV_A1:
1788 revstr = "A1";
1789 break;
1790 case SK_YUKON_LITE_REV_A3:
1791 revstr = "A3";
1792 break;
1793 default:
1794 revstr = "";
1795 }
1796 } else {
1797 revstr = "";
1798 }
1799
1800 /* Announce the product name. */
1801 aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
1802 sc->sk_name, revstr, sc->sk_rev);
1803
1804 skca.skc_port = SK_PORT_A;
1805 (void)config_found(sc->sk_dev, &skca, skcprint);
1806
1807 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1808 skca.skc_port = SK_PORT_B;
1809 (void)config_found(sc->sk_dev, &skca, skcprint);
1810 }
1811
1812 /* Turn on the 'driver is loaded' LED. */
1813 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1814
1815 /* skc sysctl setup */
1816
1817 sc->sk_int_mod = SK_IM_DEFAULT;
1818 sc->sk_int_mod_pending = 0;
1819
1820 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1821 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1822 SYSCTL_DESCR("skc per-controller controls"),
1823 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1824 CTL_EOL)) != 0) {
1825 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1826 goto fail_1;
1827 }
1828
1829 sk_nodenum = node->sysctl_num;
1830
1831 /* interrupt moderation time in usecs */
1832 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1833 CTLFLAG_READWRITE,
1834 CTLTYPE_INT, "int_mod",
1835 SYSCTL_DESCR("sk interrupt moderation timer"),
1836 sk_sysctl_handler, 0, (void *)sc,
1837 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1838 CTL_EOL)) != 0) {
1839 aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1840 goto fail_1;
1841 }
1842
1843 if (!pmf_device_register(self, skc_suspend, skc_resume))
1844 aprint_error_dev(self, "couldn't establish power handler\n");
1845
1846 return;
1847
1848 fail_1:
1849 pci_intr_disestablish(pc, sc->sk_intrhand);
1850 fail:
1851 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1852 }
1853
1854 int
1855 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1856 {
1857 struct sk_softc *sc = sc_if->sk_softc;
1858 struct sk_tx_desc *f = NULL;
1859 u_int32_t frag, cur, cnt = 0, sk_ctl;
1860 int i;
1861 struct sk_txmap_entry *entry;
1862 bus_dmamap_t txmap;
1863
1864 DPRINTFN(3, ("sk_encap\n"));
1865
1866 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1867 if (entry == NULL) {
1868 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1869 return ENOBUFS;
1870 }
1871 txmap = entry->dmamap;
1872
1873 cur = frag = *txidx;
1874
1875 #ifdef SK_DEBUG
1876 if (skdebug >= 3)
1877 sk_dump_mbuf(m_head);
1878 #endif
1879
1880 /*
1881 * Start packing the mbufs in this chain into
1882 * the fragment pointers. Stop when we run out
1883 * of fragments or hit the end of the mbuf chain.
1884 */
1885 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1886 BUS_DMA_NOWAIT)) {
1887 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1888 return ENOBUFS;
1889 }
1890
1891 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1892
1893 /* Sync the DMA map. */
1894 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1895 BUS_DMASYNC_PREWRITE);
1896
1897 for (i = 0; i < txmap->dm_nsegs; i++) {
1898 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1899 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1900 return ENOBUFS;
1901 }
1902 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1903 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1904 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1905 if (cnt == 0)
1906 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1907 else
1908 sk_ctl |= SK_TXCTL_OWN;
1909 f->sk_ctl = htole32(sk_ctl);
1910 cur = frag;
1911 SK_INC(frag, SK_TX_RING_CNT);
1912 cnt++;
1913 }
1914
1915 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1916 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1917
1918 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1919 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1920 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1921
1922 /* Sync descriptors before handing to chip */
1923 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1924 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1925
1926 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1927 htole32(SK_TXCTL_OWN);
1928
1929 /* Sync first descriptor to hand it off */
1930 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1931
1932 sc_if->sk_cdata.sk_tx_cnt += cnt;
1933
1934 #ifdef SK_DEBUG
1935 if (skdebug >= 3) {
1936 struct sk_tx_desc *desc;
1937 u_int32_t idx;
1938 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1939 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1940 sk_dump_txdesc(desc, idx);
1941 }
1942 }
1943 #endif
1944
1945 *txidx = frag;
1946
1947 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1948
1949 return 0;
1950 }
1951
1952 void
1953 sk_start(struct ifnet *ifp)
1954 {
1955 struct sk_if_softc *sc_if = ifp->if_softc;
1956 struct sk_softc *sc = sc_if->sk_softc;
1957 struct mbuf *m_head = NULL;
1958 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1959 int pkts = 0;
1960
1961 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1962 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1963
1964 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1965 IFQ_POLL(&ifp->if_snd, m_head);
1966 if (m_head == NULL)
1967 break;
1968
1969 /*
1970 * Pack the data into the transmit ring. If we
1971 * don't have room, set the OACTIVE flag and wait
1972 * for the NIC to drain the ring.
1973 */
1974 if (sk_encap(sc_if, m_head, &idx)) {
1975 ifp->if_flags |= IFF_OACTIVE;
1976 break;
1977 }
1978
1979 /* now we are committed to transmit the packet */
1980 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1981 pkts++;
1982
1983 /*
1984 * If there's a BPF listener, bounce a copy of this frame
1985 * to him.
1986 */
1987 bpf_mtap(ifp, m_head);
1988 }
1989 if (pkts == 0)
1990 return;
1991
1992 /* Transmit */
1993 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1994 sc_if->sk_cdata.sk_tx_prod = idx;
1995 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1996
1997 /* Set a timeout in case the chip goes out to lunch. */
1998 ifp->if_timer = 5;
1999 }
2000 }
2001
2002
2003 void
2004 sk_watchdog(struct ifnet *ifp)
2005 {
2006 struct sk_if_softc *sc_if = ifp->if_softc;
2007
2008 /*
2009 * Reclaim first as there is a possibility of losing Tx completion
2010 * interrupts.
2011 */
2012 sk_txeof(sc_if);
2013 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2014 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
2015
2016 ifp->if_oerrors++;
2017
2018 sk_init(ifp);
2019 }
2020 }
2021
2022 void
2023 sk_shutdown(void *v)
2024 {
2025 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
2026 struct sk_softc *sc = sc_if->sk_softc;
2027 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2028
2029 DPRINTFN(2, ("sk_shutdown\n"));
2030 sk_stop(ifp,1);
2031
2032 /* Turn off the 'driver is loaded' LED. */
2033 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2034
2035 /*
2036 * Reset the GEnesis controller. Doing this should also
2037 * assert the resets on the attached XMAC(s).
2038 */
2039 sk_reset(sc);
2040 }
2041
2042 void
2043 sk_rxeof(struct sk_if_softc *sc_if)
2044 {
2045 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2046 struct mbuf *m;
2047 struct sk_chain *cur_rx;
2048 struct sk_rx_desc *cur_desc;
2049 int i, cur, total_len = 0;
2050 u_int32_t rxstat, sk_ctl;
2051 bus_dmamap_t dmamap;
2052
2053 i = sc_if->sk_cdata.sk_rx_prod;
2054
2055 DPRINTFN(3, ("sk_rxeof %d\n", i));
2056
2057 for (;;) {
2058 cur = i;
2059
2060 /* Sync the descriptor */
2061 SK_CDRXSYNC(sc_if, cur,
2062 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2063
2064 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2065 if (sk_ctl & SK_RXCTL_OWN) {
2066 /* Invalidate the descriptor -- it's not ready yet */
2067 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2068 sc_if->sk_cdata.sk_rx_prod = i;
2069 break;
2070 }
2071
2072 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2073 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2074 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2075
2076 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2077 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2078
2079 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2080 m = cur_rx->sk_mbuf;
2081 cur_rx->sk_mbuf = NULL;
2082 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2083
2084 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2085
2086 SK_INC(i, SK_RX_RING_CNT);
2087
2088 if (rxstat & XM_RXSTAT_ERRFRAME) {
2089 ifp->if_ierrors++;
2090 sk_newbuf(sc_if, cur, m, dmamap);
2091 continue;
2092 }
2093
2094 /*
2095 * Try to allocate a new jumbo buffer. If that
2096 * fails, copy the packet to mbufs and put the
2097 * jumbo buffer back in the ring so it can be
2098 * re-used. If allocating mbufs fails, then we
2099 * have to drop the packet.
2100 */
2101 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2102 struct mbuf *m0;
2103 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2104 total_len + ETHER_ALIGN, 0, ifp, NULL);
2105 sk_newbuf(sc_if, cur, m, dmamap);
2106 if (m0 == NULL) {
2107 aprint_error_dev(sc_if->sk_dev, "no receive "
2108 "buffers available -- packet dropped!\n");
2109 ifp->if_ierrors++;
2110 continue;
2111 }
2112 m_adj(m0, ETHER_ALIGN);
2113 m = m0;
2114 } else {
2115 m_set_rcvif(m, ifp);
2116 m->m_pkthdr.len = m->m_len = total_len;
2117 }
2118
2119 ifp->if_ipackets++;
2120
2121 bpf_mtap(ifp, m);
2122 /* pass it on. */
2123 if_percpuq_enqueue(ifp->if_percpuq, m);
2124 }
2125 }
2126
2127 void
2128 sk_txeof(struct sk_if_softc *sc_if)
2129 {
2130 struct sk_softc *sc = sc_if->sk_softc;
2131 struct sk_tx_desc *cur_tx;
2132 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2133 u_int32_t idx, sk_ctl;
2134 struct sk_txmap_entry *entry;
2135
2136 DPRINTFN(3, ("sk_txeof\n"));
2137
2138 /*
2139 * Go through our tx ring and free mbufs for those
2140 * frames that have been sent.
2141 */
2142 idx = sc_if->sk_cdata.sk_tx_cons;
2143 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2144 SK_CDTXSYNC(sc_if, idx, 1,
2145 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2146
2147 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2148 sk_ctl = le32toh(cur_tx->sk_ctl);
2149 #ifdef SK_DEBUG
2150 if (skdebug >= 3)
2151 sk_dump_txdesc(cur_tx, idx);
2152 #endif
2153 if (sk_ctl & SK_TXCTL_OWN) {
2154 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2155 break;
2156 }
2157 if (sk_ctl & SK_TXCTL_LASTFRAG)
2158 ifp->if_opackets++;
2159 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2160 entry = sc_if->sk_cdata.sk_tx_map[idx];
2161
2162 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2163 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2164
2165 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2166 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2167
2168 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2169 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2170 link);
2171 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2172 }
2173 sc_if->sk_cdata.sk_tx_cnt--;
2174 SK_INC(idx, SK_TX_RING_CNT);
2175 }
2176 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2177 ifp->if_timer = 0;
2178 else /* nudge chip to keep tx ring moving */
2179 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2180
2181 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2182 ifp->if_flags &= ~IFF_OACTIVE;
2183
2184 sc_if->sk_cdata.sk_tx_cons = idx;
2185 }
2186
2187 void
2188 sk_tick(void *xsc_if)
2189 {
2190 struct sk_if_softc *sc_if = xsc_if;
2191 struct mii_data *mii = &sc_if->sk_mii;
2192 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2193 int i;
2194
2195 DPRINTFN(3, ("sk_tick\n"));
2196
2197 if (!(ifp->if_flags & IFF_UP))
2198 return;
2199
2200 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2201 sk_intr_bcom(sc_if);
2202 return;
2203 }
2204
2205 /*
2206 * According to SysKonnect, the correct way to verify that
2207 * the link has come back up is to poll bit 0 of the GPIO
2208 * register three times. This pin has the signal from the
2209 * link sync pin connected to it; if we read the same link
2210 * state 3 times in a row, we know the link is up.
2211 */
2212 for (i = 0; i < 3; i++) {
2213 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2214 break;
2215 }
2216
2217 if (i != 3) {
2218 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2219 return;
2220 }
2221
2222 /* Turn the GP0 interrupt back on. */
2223 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2224 SK_XM_READ_2(sc_if, XM_ISR);
2225 mii_tick(mii);
2226 if (ifp->if_link_state != LINK_STATE_UP)
2227 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2228 else
2229 callout_stop(&sc_if->sk_tick_ch);
2230 }
2231
2232 void
2233 sk_intr_bcom(struct sk_if_softc *sc_if)
2234 {
2235 struct mii_data *mii = &sc_if->sk_mii;
2236 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2237 int status;
2238
2239
2240 DPRINTFN(3, ("sk_intr_bcom\n"));
2241
2242 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2243
2244 /*
2245 * Read the PHY interrupt register to make sure
2246 * we clear any pending interrupts.
2247 */
2248 status = sk_xmac_miibus_readreg(sc_if->sk_dev,
2249 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2250
2251 if (!(ifp->if_flags & IFF_RUNNING)) {
2252 sk_init_xmac(sc_if);
2253 return;
2254 }
2255
2256 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2257 int lstat;
2258 lstat = sk_xmac_miibus_readreg(sc_if->sk_dev,
2259 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2260
2261 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2262 (void)mii_mediachg(mii);
2263 /* Turn off the link LED. */
2264 SK_IF_WRITE_1(sc_if, 0,
2265 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2266 sc_if->sk_link = 0;
2267 } else if (status & BRGPHY_ISR_LNK_CHG) {
2268 sk_xmac_miibus_writereg(sc_if->sk_dev,
2269 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2270 mii_tick(mii);
2271 sc_if->sk_link = 1;
2272 /* Turn on the link LED. */
2273 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2274 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2275 SK_LINKLED_BLINK_OFF);
2276 mii_pollstat(mii);
2277 } else {
2278 mii_tick(mii);
2279 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2280 }
2281 }
2282
2283 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2284 }
2285
2286 void
2287 sk_intr_xmac(struct sk_if_softc *sc_if)
2288 {
2289 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2290
2291 DPRINTFN(3, ("sk_intr_xmac\n"));
2292
2293 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2294 if (status & XM_ISR_GP0_SET) {
2295 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2296 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2297 }
2298
2299 if (status & XM_ISR_AUTONEG_DONE) {
2300 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2301 }
2302 }
2303
2304 if (status & XM_IMR_TX_UNDERRUN)
2305 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2306
2307 if (status & XM_IMR_RX_OVERRUN)
2308 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2309 }
2310
2311 void
2312 sk_intr_yukon(struct sk_if_softc *sc_if)
2313 {
2314 #ifdef SK_DEBUG
2315 int status;
2316
2317 status =
2318 #endif
2319 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2320
2321 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2322 }
2323
2324 int
2325 sk_intr(void *xsc)
2326 {
2327 struct sk_softc *sc = xsc;
2328 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2329 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2330 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2331 u_int32_t status;
2332 int claimed = 0;
2333
2334 if (sc_if0 != NULL)
2335 ifp0 = &sc_if0->sk_ethercom.ec_if;
2336 if (sc_if1 != NULL)
2337 ifp1 = &sc_if1->sk_ethercom.ec_if;
2338
2339 for (;;) {
2340 status = CSR_READ_4(sc, SK_ISSR);
2341 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2342
2343 if (!(status & sc->sk_intrmask))
2344 break;
2345
2346 claimed = 1;
2347
2348 /* Handle receive interrupts first. */
2349 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2350 sk_rxeof(sc_if0);
2351 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2352 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2353 }
2354 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2355 sk_rxeof(sc_if1);
2356 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2357 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2358 }
2359
2360 /* Then transmit interrupts. */
2361 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2362 sk_txeof(sc_if0);
2363 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2364 SK_TXBMU_CLR_IRQ_EOF);
2365 }
2366 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2367 sk_txeof(sc_if1);
2368 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2369 SK_TXBMU_CLR_IRQ_EOF);
2370 }
2371
2372 /* Then MAC interrupts. */
2373 if (sc_if0 && (status & SK_ISR_MAC1) &&
2374 (ifp0->if_flags & IFF_RUNNING)) {
2375 if (sc->sk_type == SK_GENESIS)
2376 sk_intr_xmac(sc_if0);
2377 else
2378 sk_intr_yukon(sc_if0);
2379 }
2380
2381 if (sc_if1 && (status & SK_ISR_MAC2) &&
2382 (ifp1->if_flags & IFF_RUNNING)) {
2383 if (sc->sk_type == SK_GENESIS)
2384 sk_intr_xmac(sc_if1);
2385 else
2386 sk_intr_yukon(sc_if1);
2387
2388 }
2389
2390 if (status & SK_ISR_EXTERNAL_REG) {
2391 if (sc_if0 != NULL &&
2392 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2393 sk_intr_bcom(sc_if0);
2394
2395 if (sc_if1 != NULL &&
2396 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2397 sk_intr_bcom(sc_if1);
2398 }
2399 }
2400
2401 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2402
2403 if (ifp0 != NULL)
2404 if_schedule_deferred_start(ifp0);
2405 if (ifp1 != NULL)
2406 if_schedule_deferred_start(ifp1);
2407
2408 rnd_add_uint32(&sc->rnd_source, status);
2409
2410 if (sc->sk_int_mod_pending)
2411 sk_update_int_mod(sc);
2412
2413 return claimed;
2414 }
2415
2416 void
2417 sk_init_xmac(struct sk_if_softc *sc_if)
2418 {
2419 struct sk_softc *sc = sc_if->sk_softc;
2420 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2421 static const struct sk_bcom_hack bhack[] = {
2422 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2423 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2424 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2425 { 0, 0 } };
2426
2427 DPRINTFN(1, ("sk_init_xmac\n"));
2428
2429 /* Unreset the XMAC. */
2430 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2431 DELAY(1000);
2432
2433 /* Reset the XMAC's internal state. */
2434 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2435
2436 /* Save the XMAC II revision */
2437 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2438
2439 /*
2440 * Perform additional initialization for external PHYs,
2441 * namely for the 1000baseTX cards that use the XMAC's
2442 * GMII mode.
2443 */
2444 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2445 int i = 0;
2446 u_int32_t val;
2447
2448 /* Take PHY out of reset. */
2449 val = sk_win_read_4(sc, SK_GPIO);
2450 if (sc_if->sk_port == SK_PORT_A)
2451 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2452 else
2453 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2454 sk_win_write_4(sc, SK_GPIO, val);
2455
2456 /* Enable GMII mode on the XMAC. */
2457 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2458
2459 sk_xmac_miibus_writereg(sc_if->sk_dev,
2460 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2461 DELAY(10000);
2462 sk_xmac_miibus_writereg(sc_if->sk_dev,
2463 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2464
2465 /*
2466 * Early versions of the BCM5400 apparently have
2467 * a bug that requires them to have their reserved
2468 * registers initialized to some magic values. I don't
2469 * know what the numbers do, I'm just the messenger.
2470 */
2471 if (sk_xmac_miibus_readreg(sc_if->sk_dev,
2472 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2473 while (bhack[i].reg) {
2474 sk_xmac_miibus_writereg(sc_if->sk_dev,
2475 SK_PHYADDR_BCOM, bhack[i].reg,
2476 bhack[i].val);
2477 i++;
2478 }
2479 }
2480 }
2481
2482 /* Set station address */
2483 SK_XM_WRITE_2(sc_if, XM_PAR0,
2484 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2485 SK_XM_WRITE_2(sc_if, XM_PAR1,
2486 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2487 SK_XM_WRITE_2(sc_if, XM_PAR2,
2488 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2489 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2490
2491 if (ifp->if_flags & IFF_PROMISC)
2492 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2493 else
2494 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2495
2496 if (ifp->if_flags & IFF_BROADCAST)
2497 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2498 else
2499 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2500
2501 /* We don't need the FCS appended to the packet. */
2502 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2503
2504 /* We want short frames padded to 60 bytes. */
2505 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2506
2507 /*
2508 * Enable the reception of all error frames. This is is
2509 * a necessary evil due to the design of the XMAC. The
2510 * XMAC's receive FIFO is only 8K in size, however jumbo
2511 * frames can be up to 9000 bytes in length. When bad
2512 * frame filtering is enabled, the XMAC's RX FIFO operates
2513 * in 'store and forward' mode. For this to work, the
2514 * entire frame has to fit into the FIFO, but that means
2515 * that jumbo frames larger than 8192 bytes will be
2516 * truncated. Disabling all bad frame filtering causes
2517 * the RX FIFO to operate in streaming mode, in which
2518 * case the XMAC will start transfering frames out of the
2519 * RX FIFO as soon as the FIFO threshold is reached.
2520 */
2521 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2522 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2523 XM_MODE_RX_INRANGELEN);
2524
2525 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2526 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2527 else
2528 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2529
2530 /*
2531 * Bump up the transmit threshold. This helps hold off transmit
2532 * underruns when we're blasting traffic from both ports at once.
2533 */
2534 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2535
2536 /* Set multicast filter */
2537 sk_setmulti(sc_if);
2538
2539 /* Clear and enable interrupts */
2540 SK_XM_READ_2(sc_if, XM_ISR);
2541 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2542 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2543 else
2544 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2545
2546 /* Configure MAC arbiter */
2547 switch (sc_if->sk_xmac_rev) {
2548 case XM_XMAC_REV_B2:
2549 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2550 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2551 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2552 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2553 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2554 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2555 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2556 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2557 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2558 break;
2559 case XM_XMAC_REV_C1:
2560 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2561 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2562 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2563 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2564 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2565 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2566 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2567 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2568 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2569 break;
2570 default:
2571 break;
2572 }
2573 sk_win_write_2(sc, SK_MACARB_CTL,
2574 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2575
2576 sc_if->sk_link = 1;
2577 }
2578
2579 void sk_init_yukon(struct sk_if_softc *sc_if)
2580 {
2581 u_int32_t /*mac, */phy;
2582 u_int16_t reg;
2583 struct sk_softc *sc;
2584 int i;
2585
2586 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2587 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2588
2589 sc = sc_if->sk_softc;
2590 if (sc->sk_type == SK_YUKON_LITE &&
2591 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2592 /* Take PHY out of reset. */
2593 sk_win_write_4(sc, SK_GPIO,
2594 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2595 }
2596
2597
2598 /* GMAC and GPHY Reset */
2599 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2600
2601 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2602
2603 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2604 DELAY(1000);
2605 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2606 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2607 DELAY(1000);
2608
2609
2610 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2611
2612 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2613 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2614
2615 switch (sc_if->sk_softc->sk_pmd) {
2616 case IFM_1000_SX:
2617 case IFM_1000_LX:
2618 phy |= SK_GPHY_FIBER;
2619 break;
2620
2621 case IFM_1000_CX:
2622 case IFM_1000_T:
2623 phy |= SK_GPHY_COPPER;
2624 break;
2625 }
2626
2627 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2628
2629 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2630 DELAY(1000);
2631 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2632 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2633 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2634
2635 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2636 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2637
2638 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2639
2640 /* unused read of the interrupt source register */
2641 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2642 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2643
2644 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2645 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2646 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2647
2648 /* MIB Counter Clear Mode set */
2649 reg |= YU_PAR_MIB_CLR;
2650 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2651 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2652 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2653
2654 /* MIB Counter Clear Mode clear */
2655 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2656 reg &= ~YU_PAR_MIB_CLR;
2657 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2658
2659 /* receive control reg */
2660 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2661 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2662 YU_RCR_CRCR);
2663
2664 /* transmit parameter register */
2665 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2666 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2667 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2668
2669 /* serial mode register */
2670 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2671 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2672 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2673 YU_SMR_IPG_DATA(0x1e));
2674
2675 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2676 /* Setup Yukon's address */
2677 for (i = 0; i < 3; i++) {
2678 /* Write Source Address 1 (unicast filter) */
2679 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2680 sc_if->sk_enaddr[i * 2] |
2681 sc_if->sk_enaddr[i * 2 + 1] << 8);
2682 }
2683
2684 for (i = 0; i < 3; i++) {
2685 reg = sk_win_read_2(sc_if->sk_softc,
2686 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2687 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2688 }
2689
2690 /* Set multicast filter */
2691 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2692 sk_setmulti(sc_if);
2693
2694 /* enable interrupt mask for counter overflows */
2695 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2696 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2697 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2698 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2699
2700 /* Configure RX MAC FIFO */
2701 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2702 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2703
2704 /* Configure TX MAC FIFO */
2705 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2706 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2707
2708 DPRINTFN(6, ("sk_init_yukon: end\n"));
2709 }
2710
2711 /*
2712 * Note that to properly initialize any part of the GEnesis chip,
2713 * you first have to take it out of reset mode.
2714 */
2715 int
2716 sk_init(struct ifnet *ifp)
2717 {
2718 struct sk_if_softc *sc_if = ifp->if_softc;
2719 struct sk_softc *sc = sc_if->sk_softc;
2720 struct mii_data *mii = &sc_if->sk_mii;
2721 int rc = 0, s;
2722 u_int32_t imr, imtimer_ticks;
2723
2724 DPRINTFN(1, ("sk_init\n"));
2725
2726 s = splnet();
2727
2728 if (ifp->if_flags & IFF_RUNNING) {
2729 splx(s);
2730 return 0;
2731 }
2732
2733 /* Cancel pending I/O and free all RX/TX buffers. */
2734 sk_stop(ifp,0);
2735
2736 if (sc->sk_type == SK_GENESIS) {
2737 /* Configure LINK_SYNC LED */
2738 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2739 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2740 SK_LINKLED_LINKSYNC_ON);
2741
2742 /* Configure RX LED */
2743 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2744 SK_RXLEDCTL_COUNTER_START);
2745
2746 /* Configure TX LED */
2747 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2748 SK_TXLEDCTL_COUNTER_START);
2749 }
2750
2751 /* Configure I2C registers */
2752
2753 /* Configure XMAC(s) */
2754 switch (sc->sk_type) {
2755 case SK_GENESIS:
2756 sk_init_xmac(sc_if);
2757 break;
2758 case SK_YUKON:
2759 case SK_YUKON_LITE:
2760 case SK_YUKON_LP:
2761 sk_init_yukon(sc_if);
2762 break;
2763 }
2764 if ((rc = mii_mediachg(mii)) == ENXIO)
2765 rc = 0;
2766 else if (rc != 0)
2767 goto out;
2768
2769 if (sc->sk_type == SK_GENESIS) {
2770 /* Configure MAC FIFOs */
2771 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2772 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2773 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2774
2775 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2776 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2777 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2778 }
2779
2780 /* Configure transmit arbiter(s) */
2781 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2782 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2783
2784 /* Configure RAMbuffers */
2785 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2786 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2787 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2788 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2789 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2790 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2791
2792 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2793 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2794 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2795 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2796 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2797 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2798 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2799
2800 /* Configure BMUs */
2801 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2802 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2803 SK_RX_RING_ADDR(sc_if, 0));
2804 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2805
2806 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2807 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2808 SK_TX_RING_ADDR(sc_if, 0));
2809 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2810
2811 /* Init descriptors */
2812 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2813 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2814 "memory for rx buffers\n");
2815 sk_stop(ifp,0);
2816 splx(s);
2817 return ENOBUFS;
2818 }
2819
2820 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2821 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2822 "memory for tx buffers\n");
2823 sk_stop(ifp,0);
2824 splx(s);
2825 return ENOBUFS;
2826 }
2827
2828 /* Set interrupt moderation if changed via sysctl. */
2829 switch (sc->sk_type) {
2830 case SK_GENESIS:
2831 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2832 break;
2833 case SK_YUKON_EC:
2834 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2835 break;
2836 default:
2837 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2838 }
2839 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2840 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2841 sk_win_write_4(sc, SK_IMTIMERINIT,
2842 SK_IM_USECS(sc->sk_int_mod));
2843 aprint_verbose_dev(sc->sk_dev,
2844 "interrupt moderation is %d us\n", sc->sk_int_mod);
2845 }
2846
2847 /* Configure interrupt handling */
2848 CSR_READ_4(sc, SK_ISSR);
2849 if (sc_if->sk_port == SK_PORT_A)
2850 sc->sk_intrmask |= SK_INTRS1;
2851 else
2852 sc->sk_intrmask |= SK_INTRS2;
2853
2854 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2855
2856 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2857
2858 /* Start BMUs. */
2859 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2860
2861 if (sc->sk_type == SK_GENESIS) {
2862 /* Enable XMACs TX and RX state machines */
2863 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2864 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2865 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2866 }
2867
2868 if (SK_YUKON_FAMILY(sc->sk_type)) {
2869 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2870 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2871 #if 0
2872 /* XXX disable 100Mbps and full duplex mode? */
2873 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2874 #endif
2875 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2876 }
2877
2878
2879 ifp->if_flags |= IFF_RUNNING;
2880 ifp->if_flags &= ~IFF_OACTIVE;
2881 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2882
2883 out:
2884 splx(s);
2885 return rc;
2886 }
2887
2888 void
2889 sk_stop(struct ifnet *ifp, int disable)
2890 {
2891 struct sk_if_softc *sc_if = ifp->if_softc;
2892 struct sk_softc *sc = sc_if->sk_softc;
2893 int i;
2894
2895 DPRINTFN(1, ("sk_stop\n"));
2896
2897 callout_stop(&sc_if->sk_tick_ch);
2898
2899 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2900 u_int32_t val;
2901
2902 /* Put PHY back into reset. */
2903 val = sk_win_read_4(sc, SK_GPIO);
2904 if (sc_if->sk_port == SK_PORT_A) {
2905 val |= SK_GPIO_DIR0;
2906 val &= ~SK_GPIO_DAT0;
2907 } else {
2908 val |= SK_GPIO_DIR2;
2909 val &= ~SK_GPIO_DAT2;
2910 }
2911 sk_win_write_4(sc, SK_GPIO, val);
2912 }
2913
2914 /* Turn off various components of this interface. */
2915 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2916 switch (sc->sk_type) {
2917 case SK_GENESIS:
2918 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2919 SK_TXMACCTL_XMAC_RESET);
2920 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2921 break;
2922 case SK_YUKON:
2923 case SK_YUKON_LITE:
2924 case SK_YUKON_LP:
2925 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2926 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2927 break;
2928 }
2929 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2930 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2931 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2932 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2933 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2934 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2935 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2936 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2937 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2938
2939 /* Disable interrupts */
2940 if (sc_if->sk_port == SK_PORT_A)
2941 sc->sk_intrmask &= ~SK_INTRS1;
2942 else
2943 sc->sk_intrmask &= ~SK_INTRS2;
2944 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2945
2946 SK_XM_READ_2(sc_if, XM_ISR);
2947 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2948
2949 /* Free RX and TX mbufs still in the queues. */
2950 for (i = 0; i < SK_RX_RING_CNT; i++) {
2951 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2952 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2953 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2954 }
2955 }
2956
2957 for (i = 0; i < SK_TX_RING_CNT; i++) {
2958 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2959 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2960 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2961 }
2962 }
2963
2964 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2965 }
2966
2967 /* Power Management Framework */
2968
2969 static bool
2970 skc_suspend(device_t dv, const pmf_qual_t *qual)
2971 {
2972 struct sk_softc *sc = device_private(dv);
2973
2974 DPRINTFN(2, ("skc_suspend\n"));
2975
2976 /* Turn off the driver is loaded LED */
2977 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2978
2979 return true;
2980 }
2981
2982 static bool
2983 skc_resume(device_t dv, const pmf_qual_t *qual)
2984 {
2985 struct sk_softc *sc = device_private(dv);
2986
2987 DPRINTFN(2, ("skc_resume\n"));
2988
2989 sk_reset(sc);
2990 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2991
2992 return true;
2993 }
2994
2995 static bool
2996 sk_resume(device_t dv, const pmf_qual_t *qual)
2997 {
2998 struct sk_if_softc *sc_if = device_private(dv);
2999
3000 sk_init_yukon(sc_if);
3001 return true;
3002 }
3003
3004 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
3005 skc_probe, skc_attach, NULL, NULL);
3006
3007 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
3008 sk_probe, sk_attach, NULL, NULL);
3009
3010 #ifdef SK_DEBUG
3011 void
3012 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
3013 {
3014 #define DESC_PRINT(X) \
3015 if (X) \
3016 printf("txdesc[%d]." #X "=%#x\n", \
3017 idx, X);
3018
3019 DESC_PRINT(le32toh(desc->sk_ctl));
3020 DESC_PRINT(le32toh(desc->sk_next));
3021 DESC_PRINT(le32toh(desc->sk_data_lo));
3022 DESC_PRINT(le32toh(desc->sk_data_hi));
3023 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
3024 DESC_PRINT(le16toh(desc->sk_rsvd0));
3025 DESC_PRINT(le16toh(desc->sk_csum_startval));
3026 DESC_PRINT(le16toh(desc->sk_csum_startpos));
3027 DESC_PRINT(le16toh(desc->sk_csum_writepos));
3028 DESC_PRINT(le16toh(desc->sk_rsvd1));
3029 #undef PRINT
3030 }
3031
3032 void
3033 sk_dump_bytes(const char *data, int len)
3034 {
3035 int c, i, j;
3036
3037 for (i = 0; i < len; i += 16) {
3038 printf("%08x ", i);
3039 c = len - i;
3040 if (c > 16) c = 16;
3041
3042 for (j = 0; j < c; j++) {
3043 printf("%02x ", data[i + j] & 0xff);
3044 if ((j & 0xf) == 7 && j > 0)
3045 printf(" ");
3046 }
3047
3048 for (; j < 16; j++)
3049 printf(" ");
3050 printf(" ");
3051
3052 for (j = 0; j < c; j++) {
3053 int ch = data[i + j] & 0xff;
3054 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
3055 }
3056
3057 printf("\n");
3058
3059 if (c < 16)
3060 break;
3061 }
3062 }
3063
3064 void
3065 sk_dump_mbuf(struct mbuf *m)
3066 {
3067 int count = m->m_pkthdr.len;
3068
3069 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3070
3071 while (count > 0 && m) {
3072 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3073 m, m->m_data, m->m_len);
3074 sk_dump_bytes(mtod(m, char *), m->m_len);
3075
3076 count -= m->m_len;
3077 m = m->m_next;
3078 }
3079 }
3080 #endif
3081
3082 static int
3083 sk_sysctl_handler(SYSCTLFN_ARGS)
3084 {
3085 int error, t;
3086 struct sysctlnode node;
3087 struct sk_softc *sc;
3088
3089 node = *rnode;
3090 sc = node.sysctl_data;
3091 t = sc->sk_int_mod;
3092 node.sysctl_data = &t;
3093 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3094 if (error || newp == NULL)
3095 return error;
3096
3097 if (t < SK_IM_MIN || t > SK_IM_MAX)
3098 return EINVAL;
3099
3100 /* update the softc with sysctl-changed value, and mark
3101 for hardware update */
3102 sc->sk_int_mod = t;
3103 sc->sk_int_mod_pending = 1;
3104 return 0;
3105 }
3106
3107 /*
3108 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3109 * set up in skc_attach()
3110 */
3111 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3112 {
3113 int rc;
3114 const struct sysctlnode *node;
3115
3116 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3117 0, CTLTYPE_NODE, "sk",
3118 SYSCTL_DESCR("sk interface controls"),
3119 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3120 goto err;
3121 }
3122
3123 sk_root_num = node->sysctl_num;
3124 return;
3125
3126 err:
3127 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3128 }
3129