if_sk.c revision 1.87 1 /* $NetBSD: if_sk.c,v 1.87 2018/06/26 06:48:01 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
30
31 /*
32 * Copyright (c) 1997, 1998, 1999, 2000
33 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by Bill Paul.
46 * 4. Neither the name of the author nor the names of any co-contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60 * THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63 */
64
65 /*
66 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
67 *
68 * Permission to use, copy, modify, and distribute this software for any
69 * purpose with or without fee is hereby granted, provided that the above
70 * copyright notice and this permission notice appear in all copies.
71 *
72 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79 */
80
81 /*
82 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83 * the SK-984x series adapters, both single port and dual port.
84 * References:
85 * The XaQti XMAC II datasheet,
86 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87 * The SysKonnect GEnesis manual, http://www.syskonnect.com
88 *
89 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91 * convenience to others until Vitesse corrects this problem:
92 *
93 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 *
95 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
96 * Department of Electrical Engineering
97 * Columbia University, New York City
98 */
99
100 /*
101 * The SysKonnect gigabit ethernet adapters consist of two main
102 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104 * components and a PHY while the GEnesis controller provides a PCI
105 * interface with DMA support. Each card may have between 512K and
106 * 2MB of SRAM on board depending on the configuration.
107 *
108 * The SysKonnect GEnesis controller can have either one or two XMAC
109 * chips connected to it, allowing single or dual port NIC configurations.
110 * SysKonnect has the distinction of being the only vendor on the market
111 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113 * XMAC registers. This driver takes advantage of these features to allow
114 * both XMACs to operate as independent interfaces.
115 */
116
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.87 2018/06/26 06:48:01 msaitoh Exp $");
119
120 #include <sys/param.h>
121 #include <sys/systm.h>
122 #include <sys/sockio.h>
123 #include <sys/mbuf.h>
124 #include <sys/malloc.h>
125 #include <sys/mutex.h>
126 #include <sys/kernel.h>
127 #include <sys/socket.h>
128 #include <sys/device.h>
129 #include <sys/queue.h>
130 #include <sys/callout.h>
131 #include <sys/sysctl.h>
132 #include <sys/endian.h>
133
134 #include <net/if.h>
135 #include <net/if_dl.h>
136 #include <net/if_types.h>
137
138 #include <net/if_media.h>
139
140 #include <net/bpf.h>
141 #include <sys/rndsource.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145 #include <dev/mii/brgphyreg.h>
146
147 #include <dev/pci/pcireg.h>
148 #include <dev/pci/pcivar.h>
149 #include <dev/pci/pcidevs.h>
150
151 /* #define SK_USEIOSPACE */
152
153 #include <dev/pci/if_skreg.h>
154 #include <dev/pci/if_skvar.h>
155
156 int skc_probe(device_t, cfdata_t, void *);
157 void skc_attach(device_t, device_t, void *aux);
158 int sk_probe(device_t, cfdata_t, void *);
159 void sk_attach(device_t, device_t, void *aux);
160 int skcprint(void *, const char *);
161 int sk_intr(void *);
162 void sk_intr_bcom(struct sk_if_softc *);
163 void sk_intr_xmac(struct sk_if_softc *);
164 void sk_intr_yukon(struct sk_if_softc *);
165 void sk_rxeof(struct sk_if_softc *);
166 void sk_txeof(struct sk_if_softc *);
167 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
168 void sk_start(struct ifnet *);
169 int sk_ioctl(struct ifnet *, u_long, void *);
170 int sk_init(struct ifnet *);
171 void sk_init_xmac(struct sk_if_softc *);
172 void sk_init_yukon(struct sk_if_softc *);
173 void sk_stop(struct ifnet *, int);
174 void sk_watchdog(struct ifnet *);
175 void sk_shutdown(void *);
176 int sk_ifmedia_upd(struct ifnet *);
177 void sk_reset(struct sk_softc *);
178 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
179 int sk_alloc_jumbo_mem(struct sk_if_softc *);
180 void sk_free_jumbo_mem(struct sk_if_softc *);
181 void *sk_jalloc(struct sk_if_softc *);
182 void sk_jfree(struct mbuf *, void *, size_t, void *);
183 int sk_init_rx_ring(struct sk_if_softc *);
184 int sk_init_tx_ring(struct sk_if_softc *);
185 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
186 void sk_vpd_read_res(struct sk_softc *,
187 struct vpd_res *, int);
188 void sk_vpd_read(struct sk_softc *);
189
190 void sk_update_int_mod(struct sk_softc *);
191
192 int sk_xmac_miibus_readreg(device_t, int, int);
193 void sk_xmac_miibus_writereg(device_t, int, int, int);
194 void sk_xmac_miibus_statchg(struct ifnet *);
195
196 int sk_marv_miibus_readreg(device_t, int, int);
197 void sk_marv_miibus_writereg(device_t, int, int, int);
198 void sk_marv_miibus_statchg(struct ifnet *);
199
200 u_int32_t sk_xmac_hash(void *);
201 u_int32_t sk_yukon_hash(void *);
202 void sk_setfilt(struct sk_if_softc *, void *, int);
203 void sk_setmulti(struct sk_if_softc *);
204 void sk_tick(void *);
205
206 static bool skc_suspend(device_t, const pmf_qual_t *);
207 static bool skc_resume(device_t, const pmf_qual_t *);
208 static bool sk_resume(device_t dv, const pmf_qual_t *);
209
210 /* #define SK_DEBUG 2 */
211 #ifdef SK_DEBUG
212 #define DPRINTF(x) if (skdebug) printf x
213 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
214 int skdebug = SK_DEBUG;
215
216 void sk_dump_txdesc(struct sk_tx_desc *, int);
217 void sk_dump_mbuf(struct mbuf *);
218 void sk_dump_bytes(const char *, int);
219 #else
220 #define DPRINTF(x)
221 #define DPRINTFN(n,x)
222 #endif
223
224 static int sk_sysctl_handler(SYSCTLFN_PROTO);
225 static int sk_root_num;
226
227 /* supported device vendors */
228 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
229 static const struct sk_product {
230 pci_vendor_id_t sk_vendor;
231 pci_product_id_t sk_product;
232 } sk_products[] = {
233 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
234 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
235 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
236 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
237 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
238 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
239 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
240 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
241 { 0, 0, }
242 };
243
244 #define SK_LINKSYS_EG1032_SUBID 0x00151737
245
246 static inline u_int32_t
247 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
248 {
249 #ifdef SK_USEIOSPACE
250 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
251 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
252 #else
253 return CSR_READ_4(sc, reg);
254 #endif
255 }
256
257 static inline u_int16_t
258 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
259 {
260 #ifdef SK_USEIOSPACE
261 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
262 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
263 #else
264 return CSR_READ_2(sc, reg);
265 #endif
266 }
267
268 static inline u_int8_t
269 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
270 {
271 #ifdef SK_USEIOSPACE
272 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
273 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
274 #else
275 return CSR_READ_1(sc, reg);
276 #endif
277 }
278
279 static inline void
280 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
281 {
282 #ifdef SK_USEIOSPACE
283 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
284 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
285 #else
286 CSR_WRITE_4(sc, reg, x);
287 #endif
288 }
289
290 static inline void
291 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
292 {
293 #ifdef SK_USEIOSPACE
294 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
295 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
296 #else
297 CSR_WRITE_2(sc, reg, x);
298 #endif
299 }
300
301 static inline void
302 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
303 {
304 #ifdef SK_USEIOSPACE
305 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
306 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
307 #else
308 CSR_WRITE_1(sc, reg, x);
309 #endif
310 }
311
312 /*
313 * The VPD EEPROM contains Vital Product Data, as suggested in
314 * the PCI 2.1 specification. The VPD data is separared into areas
315 * denoted by resource IDs. The SysKonnect VPD contains an ID string
316 * resource (the name of the adapter), a read-only area resource
317 * containing various key/data fields and a read/write area which
318 * can be used to store asset management information or log messages.
319 * We read the ID string and read-only into buffers attached to
320 * the controller softc structure for later use. At the moment,
321 * we only use the ID string during sk_attach().
322 */
323 u_int8_t
324 sk_vpd_readbyte(struct sk_softc *sc, int addr)
325 {
326 int i;
327
328 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
329 for (i = 0; i < SK_TIMEOUT; i++) {
330 DELAY(1);
331 if (sk_win_read_2(sc,
332 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
333 break;
334 }
335
336 if (i == SK_TIMEOUT)
337 return 0;
338
339 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
340 }
341
342 void
343 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
344 {
345 int i;
346 u_int8_t *ptr;
347
348 ptr = (u_int8_t *)res;
349 for (i = 0; i < sizeof(struct vpd_res); i++)
350 ptr[i] = sk_vpd_readbyte(sc, i + addr);
351 }
352
353 void
354 sk_vpd_read(struct sk_softc *sc)
355 {
356 int pos = 0, i;
357 struct vpd_res res;
358
359 if (sc->sk_vpd_prodname != NULL)
360 free(sc->sk_vpd_prodname, M_DEVBUF);
361 if (sc->sk_vpd_readonly != NULL)
362 free(sc->sk_vpd_readonly, M_DEVBUF);
363 sc->sk_vpd_prodname = NULL;
364 sc->sk_vpd_readonly = NULL;
365
366 sk_vpd_read_res(sc, &res, pos);
367
368 if (res.vr_id != VPD_RES_ID) {
369 aprint_error_dev(sc->sk_dev,
370 "bad VPD resource id: expected %x got %x\n",
371 VPD_RES_ID, res.vr_id);
372 return;
373 }
374
375 pos += sizeof(res);
376 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
377 if (sc->sk_vpd_prodname == NULL)
378 panic("sk_vpd_read");
379 for (i = 0; i < res.vr_len; i++)
380 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
381 sc->sk_vpd_prodname[i] = '\0';
382 pos += i;
383
384 sk_vpd_read_res(sc, &res, pos);
385
386 if (res.vr_id != VPD_RES_READ) {
387 aprint_error_dev(sc->sk_dev,
388 "bad VPD resource id: expected %x got %x\n",
389 VPD_RES_READ, res.vr_id);
390 return;
391 }
392
393 pos += sizeof(res);
394 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
395 if (sc->sk_vpd_readonly == NULL)
396 panic("sk_vpd_read");
397 for (i = 0; i < res.vr_len ; i++)
398 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
399 }
400
401 int
402 sk_xmac_miibus_readreg(device_t dev, int phy, int reg)
403 {
404 struct sk_if_softc *sc_if = device_private(dev);
405 int i;
406
407 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
408
409 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
410 return 0;
411
412 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
413 SK_XM_READ_2(sc_if, XM_PHY_DATA);
414 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
415 for (i = 0; i < SK_TIMEOUT; i++) {
416 DELAY(1);
417 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
418 XM_MMUCMD_PHYDATARDY)
419 break;
420 }
421
422 if (i == SK_TIMEOUT) {
423 aprint_error_dev(sc_if->sk_dev,
424 "phy failed to come ready\n");
425 return 0;
426 }
427 }
428 DELAY(1);
429 return SK_XM_READ_2(sc_if, XM_PHY_DATA);
430 }
431
432 void
433 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, int val)
434 {
435 struct sk_if_softc *sc_if = device_private(dev);
436 int i;
437
438 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
439
440 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
441 for (i = 0; i < SK_TIMEOUT; i++) {
442 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
443 break;
444 }
445
446 if (i == SK_TIMEOUT) {
447 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
448 return;
449 }
450
451 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
452 for (i = 0; i < SK_TIMEOUT; i++) {
453 DELAY(1);
454 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
455 break;
456 }
457
458 if (i == SK_TIMEOUT)
459 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
460 }
461
462 void
463 sk_xmac_miibus_statchg(struct ifnet *ifp)
464 {
465 struct sk_if_softc *sc_if = ifp->if_softc;
466 struct mii_data *mii = &sc_if->sk_mii;
467
468 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
469
470 /*
471 * If this is a GMII PHY, manually set the XMAC's
472 * duplex mode accordingly.
473 */
474 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
475 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
476 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
477 else
478 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
479 }
480 }
481
482 int
483 sk_marv_miibus_readreg(device_t dev, int phy, int reg)
484 {
485 struct sk_if_softc *sc_if = device_private(dev);
486 u_int16_t val;
487 int i;
488
489 if (phy != 0 ||
490 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
491 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
492 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
493 phy, reg));
494 return 0;
495 }
496
497 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
498 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
499
500 for (i = 0; i < SK_TIMEOUT; i++) {
501 DELAY(1);
502 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
503 if (val & YU_SMICR_READ_VALID)
504 break;
505 }
506
507 if (i == SK_TIMEOUT) {
508 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
509 return 0;
510 }
511
512 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
513 SK_TIMEOUT));
514
515 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
516
517 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
518 phy, reg, val));
519
520 return val;
521 }
522
523 void
524 sk_marv_miibus_writereg(device_t dev, int phy, int reg, int val)
525 {
526 struct sk_if_softc *sc_if = device_private(dev);
527 int i;
528
529 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
530 phy, reg, val));
531
532 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
533 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
534 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
535
536 for (i = 0; i < SK_TIMEOUT; i++) {
537 DELAY(1);
538 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
539 break;
540 }
541
542 if (i == SK_TIMEOUT)
543 printf("%s: phy write timed out\n",
544 device_xname(sc_if->sk_dev));
545 }
546
547 void
548 sk_marv_miibus_statchg(struct ifnet *ifp)
549 {
550 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
551 SK_YU_READ_2(((struct sk_if_softc *)ifp->if_softc),
552 YUKON_GPCR)));
553 }
554
555 u_int32_t
556 sk_xmac_hash(void *addr)
557 {
558 u_int32_t crc;
559
560 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
561 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
562 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
563 return crc;
564 }
565
566 u_int32_t
567 sk_yukon_hash(void *addr)
568 {
569 u_int32_t crc;
570
571 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
572 crc &= ((1 << SK_HASH_BITS) - 1);
573 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
574 return crc;
575 }
576
577 void
578 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
579 {
580 char *addr = addrv;
581 int base = XM_RXFILT_ENTRY(slot);
582
583 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
584 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
585 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
586 }
587
588 void
589 sk_setmulti(struct sk_if_softc *sc_if)
590 {
591 struct sk_softc *sc = sc_if->sk_softc;
592 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
593 u_int32_t hashes[2] = { 0, 0 };
594 int h = 0, i;
595 struct ethercom *ec = &sc_if->sk_ethercom;
596 struct ether_multi *enm;
597 struct ether_multistep step;
598 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
599
600 /* First, zot all the existing filters. */
601 switch (sc->sk_type) {
602 case SK_GENESIS:
603 for (i = 1; i < XM_RXFILT_MAX; i++)
604 sk_setfilt(sc_if, (void *)&dummy, i);
605
606 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
607 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
608 break;
609 case SK_YUKON:
610 case SK_YUKON_LITE:
611 case SK_YUKON_LP:
612 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
613 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
614 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
615 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
616 break;
617 }
618
619 /* Now program new ones. */
620 allmulti:
621 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
622 hashes[0] = 0xFFFFFFFF;
623 hashes[1] = 0xFFFFFFFF;
624 } else {
625 i = 1;
626 /* First find the tail of the list. */
627 ETHER_FIRST_MULTI(step, ec, enm);
628 while (enm != NULL) {
629 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
630 ETHER_ADDR_LEN)) {
631 ifp->if_flags |= IFF_ALLMULTI;
632 goto allmulti;
633 }
634 DPRINTFN(2,("multicast address %s\n",
635 ether_sprintf(enm->enm_addrlo)));
636 /*
637 * Program the first XM_RXFILT_MAX multicast groups
638 * into the perfect filter. For all others,
639 * use the hash table.
640 */
641 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
642 sk_setfilt(sc_if, enm->enm_addrlo, i);
643 i++;
644 }
645 else {
646 switch (sc->sk_type) {
647 case SK_GENESIS:
648 h = sk_xmac_hash(enm->enm_addrlo);
649 break;
650 case SK_YUKON:
651 case SK_YUKON_LITE:
652 case SK_YUKON_LP:
653 h = sk_yukon_hash(enm->enm_addrlo);
654 break;
655 }
656 if (h < 32)
657 hashes[0] |= (1 << h);
658 else
659 hashes[1] |= (1 << (h - 32));
660 }
661
662 ETHER_NEXT_MULTI(step, enm);
663 }
664 }
665
666 switch (sc->sk_type) {
667 case SK_GENESIS:
668 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
669 XM_MODE_RX_USE_PERFECT);
670 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
671 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
672 break;
673 case SK_YUKON:
674 case SK_YUKON_LITE:
675 case SK_YUKON_LP:
676 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
677 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
678 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
679 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
680 break;
681 }
682 }
683
684 int
685 sk_init_rx_ring(struct sk_if_softc *sc_if)
686 {
687 struct sk_chain_data *cd = &sc_if->sk_cdata;
688 struct sk_ring_data *rd = sc_if->sk_rdata;
689 int i;
690
691 memset((char *)rd->sk_rx_ring, 0,
692 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
693
694 for (i = 0; i < SK_RX_RING_CNT; i++) {
695 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
696 if (i == (SK_RX_RING_CNT - 1)) {
697 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
698 rd->sk_rx_ring[i].sk_next =
699 htole32(SK_RX_RING_ADDR(sc_if, 0));
700 } else {
701 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
702 rd->sk_rx_ring[i].sk_next =
703 htole32(SK_RX_RING_ADDR(sc_if,i+1));
704 }
705 }
706
707 for (i = 0; i < SK_RX_RING_CNT; i++) {
708 if (sk_newbuf(sc_if, i, NULL,
709 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
710 aprint_error_dev(sc_if->sk_dev,
711 "failed alloc of %dth mbuf\n", i);
712 return ENOBUFS;
713 }
714 }
715 sc_if->sk_cdata.sk_rx_prod = 0;
716 sc_if->sk_cdata.sk_rx_cons = 0;
717
718 return 0;
719 }
720
721 int
722 sk_init_tx_ring(struct sk_if_softc *sc_if)
723 {
724 struct sk_chain_data *cd = &sc_if->sk_cdata;
725 struct sk_ring_data *rd = sc_if->sk_rdata;
726 int i;
727
728 memset(sc_if->sk_rdata->sk_tx_ring, 0,
729 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
730
731 for (i = 0; i < SK_TX_RING_CNT; i++) {
732 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
733 if (i == (SK_TX_RING_CNT - 1)) {
734 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
735 rd->sk_tx_ring[i].sk_next =
736 htole32(SK_TX_RING_ADDR(sc_if, 0));
737 } else {
738 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
739 rd->sk_tx_ring[i].sk_next =
740 htole32(SK_TX_RING_ADDR(sc_if,i+1));
741 }
742 }
743
744 sc_if->sk_cdata.sk_tx_prod = 0;
745 sc_if->sk_cdata.sk_tx_cons = 0;
746 sc_if->sk_cdata.sk_tx_cnt = 0;
747
748 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
749 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
750
751 return 0;
752 }
753
754 int
755 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
756 bus_dmamap_t dmamap)
757 {
758 struct mbuf *m_new = NULL;
759 struct sk_chain *c;
760 struct sk_rx_desc *r;
761
762 if (m == NULL) {
763 void *buf = NULL;
764
765 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
766 if (m_new == NULL) {
767 aprint_error_dev(sc_if->sk_dev,
768 "no memory for rx list -- packet dropped!\n");
769 return ENOBUFS;
770 }
771
772 /* Allocate the jumbo buffer */
773 buf = sk_jalloc(sc_if);
774 if (buf == NULL) {
775 m_freem(m_new);
776 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
777 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
778 return ENOBUFS;
779 }
780
781 /* Attach the buffer to the mbuf */
782 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
783 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
784
785 } else {
786 /*
787 * We're re-using a previously allocated mbuf;
788 * be sure to re-init pointers and lengths to
789 * default values.
790 */
791 m_new = m;
792 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
793 m_new->m_data = m_new->m_ext.ext_buf;
794 }
795 m_adj(m_new, ETHER_ALIGN);
796
797 c = &sc_if->sk_cdata.sk_rx_chain[i];
798 r = c->sk_desc;
799 c->sk_mbuf = m_new;
800 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
801 (((vaddr_t)m_new->m_data
802 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
803 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
804
805 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
806
807 return 0;
808 }
809
810 /*
811 * Memory management for jumbo frames.
812 */
813
814 int
815 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
816 {
817 struct sk_softc *sc = sc_if->sk_softc;
818 char *ptr, *kva;
819 bus_dma_segment_t seg;
820 int i, rseg, state, error;
821 struct sk_jpool_entry *entry;
822
823 state = error = 0;
824
825 /* Grab a big chunk o' storage. */
826 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
827 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
828 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
829 return ENOBUFS;
830 }
831
832 state = 1;
833 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
834 BUS_DMA_NOWAIT)) {
835 aprint_error_dev(sc->sk_dev,
836 "can't map dma buffers (%d bytes)\n",
837 SK_JMEM);
838 error = ENOBUFS;
839 goto out;
840 }
841
842 state = 2;
843 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
844 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
845 aprint_error_dev(sc->sk_dev, "can't create dma map\n");
846 error = ENOBUFS;
847 goto out;
848 }
849
850 state = 3;
851 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
852 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
853 aprint_error_dev(sc->sk_dev, "can't load dma map\n");
854 error = ENOBUFS;
855 goto out;
856 }
857
858 state = 4;
859 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
860 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
861
862 LIST_INIT(&sc_if->sk_jfree_listhead);
863 LIST_INIT(&sc_if->sk_jinuse_listhead);
864 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
865
866 /*
867 * Now divide it up into 9K pieces and save the addresses
868 * in an array.
869 */
870 ptr = sc_if->sk_cdata.sk_jumbo_buf;
871 for (i = 0; i < SK_JSLOTS; i++) {
872 sc_if->sk_cdata.sk_jslots[i] = ptr;
873 ptr += SK_JLEN;
874 entry = malloc(sizeof(struct sk_jpool_entry),
875 M_DEVBUF, M_NOWAIT);
876 if (entry == NULL) {
877 aprint_error_dev(sc->sk_dev,
878 "no memory for jumbo buffer queue!\n");
879 error = ENOBUFS;
880 goto out;
881 }
882 entry->slot = i;
883 if (i)
884 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
885 entry, jpool_entries);
886 else
887 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
888 entry, jpool_entries);
889 }
890 out:
891 if (error != 0) {
892 switch (state) {
893 case 4:
894 bus_dmamap_unload(sc->sc_dmatag,
895 sc_if->sk_cdata.sk_rx_jumbo_map);
896 case 3:
897 bus_dmamap_destroy(sc->sc_dmatag,
898 sc_if->sk_cdata.sk_rx_jumbo_map);
899 case 2:
900 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
901 case 1:
902 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
903 break;
904 default:
905 break;
906 }
907 }
908
909 return error;
910 }
911
912 /*
913 * Allocate a jumbo buffer.
914 */
915 void *
916 sk_jalloc(struct sk_if_softc *sc_if)
917 {
918 struct sk_jpool_entry *entry;
919
920 mutex_enter(&sc_if->sk_jpool_mtx);
921 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
922
923 if (entry == NULL) {
924 mutex_exit(&sc_if->sk_jpool_mtx);
925 return NULL;
926 }
927
928 LIST_REMOVE(entry, jpool_entries);
929 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
930 mutex_exit(&sc_if->sk_jpool_mtx);
931 return sc_if->sk_cdata.sk_jslots[entry->slot];
932 }
933
934 /*
935 * Release a jumbo buffer.
936 */
937 void
938 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
939 {
940 struct sk_jpool_entry *entry;
941 struct sk_if_softc *sc;
942 int i;
943
944 /* Extract the softc struct pointer. */
945 sc = (struct sk_if_softc *)arg;
946
947 if (sc == NULL)
948 panic("sk_jfree: can't find softc pointer!");
949
950 /* calculate the slot this buffer belongs to */
951
952 i = ((vaddr_t)buf
953 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
954
955 if ((i < 0) || (i >= SK_JSLOTS))
956 panic("sk_jfree: asked to free buffer that we don't manage!");
957
958 mutex_enter(&sc->sk_jpool_mtx);
959 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
960 if (entry == NULL)
961 panic("sk_jfree: buffer not in use!");
962 entry->slot = i;
963 LIST_REMOVE(entry, jpool_entries);
964 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
965 mutex_exit(&sc->sk_jpool_mtx);
966
967 if (__predict_true(m != NULL))
968 pool_cache_put(mb_cache, m);
969 }
970
971 /*
972 * Set media options.
973 */
974 int
975 sk_ifmedia_upd(struct ifnet *ifp)
976 {
977 struct sk_if_softc *sc_if = ifp->if_softc;
978 int rc;
979
980 (void) sk_init(ifp);
981 if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
982 return 0;
983 return rc;
984 }
985
986 static void
987 sk_promisc(struct sk_if_softc *sc_if, int on)
988 {
989 struct sk_softc *sc = sc_if->sk_softc;
990 switch (sc->sk_type) {
991 case SK_GENESIS:
992 if (on)
993 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
994 else
995 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
996 break;
997 case SK_YUKON:
998 case SK_YUKON_LITE:
999 case SK_YUKON_LP:
1000 if (on)
1001 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1002 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1003 else
1004 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1005 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1006 break;
1007 default:
1008 aprint_error_dev(sc_if->sk_dev, "Can't set promisc for %d\n",
1009 sc->sk_type);
1010 break;
1011 }
1012 }
1013
1014 int
1015 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
1016 {
1017 struct sk_if_softc *sc_if = ifp->if_softc;
1018 int s, error = 0;
1019
1020 /* DPRINTFN(2, ("sk_ioctl\n")); */
1021
1022 s = splnet();
1023
1024 switch (command) {
1025
1026 case SIOCSIFFLAGS:
1027 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1028 if ((error = ifioctl_common(ifp, command, data)) != 0)
1029 break;
1030 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1031 case IFF_RUNNING:
1032 sk_stop(ifp, 1);
1033 break;
1034 case IFF_UP:
1035 sk_init(ifp);
1036 break;
1037 case IFF_UP | IFF_RUNNING:
1038 if ((ifp->if_flags ^ sc_if->sk_if_flags) == IFF_PROMISC) {
1039 sk_promisc(sc_if, ifp->if_flags & IFF_PROMISC);
1040 sk_setmulti(sc_if);
1041 } else
1042 sk_init(ifp);
1043 break;
1044 }
1045 sc_if->sk_if_flags = ifp->if_flags;
1046 error = 0;
1047 break;
1048
1049 default:
1050 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1051 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1052 break;
1053
1054 error = 0;
1055
1056 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1057 ;
1058 else if (ifp->if_flags & IFF_RUNNING) {
1059 sk_setmulti(sc_if);
1060 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1061 }
1062 break;
1063 }
1064
1065 splx(s);
1066 return error;
1067 }
1068
1069 void
1070 sk_update_int_mod(struct sk_softc *sc)
1071 {
1072 u_int32_t imtimer_ticks;
1073
1074 /*
1075 * Configure interrupt moderation. The moderation timer
1076 * defers interrupts specified in the interrupt moderation
1077 * timer mask based on the timeout specified in the interrupt
1078 * moderation timer init register. Each bit in the timer
1079 * register represents one tick, so to specify a timeout in
1080 * microseconds, we have to multiply by the correct number of
1081 * ticks-per-microsecond.
1082 */
1083 switch (sc->sk_type) {
1084 case SK_GENESIS:
1085 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1086 break;
1087 case SK_YUKON_EC:
1088 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1089 break;
1090 default:
1091 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1092 }
1093 aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
1094 sc->sk_int_mod);
1095 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1096 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1097 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1098 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1099 sc->sk_int_mod_pending = 0;
1100 }
1101
1102 /*
1103 * Lookup: Check the PCI vendor and device, and return a pointer to
1104 * The structure if the IDs match against our list.
1105 */
1106
1107 static const struct sk_product *
1108 sk_lookup(const struct pci_attach_args *pa)
1109 {
1110 const struct sk_product *psk;
1111
1112 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1113 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1114 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1115 return psk;
1116 }
1117 return NULL;
1118 }
1119
1120 /*
1121 * Probe for a SysKonnect GEnesis chip.
1122 */
1123
1124 int
1125 skc_probe(device_t parent, cfdata_t match, void *aux)
1126 {
1127 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1128 const struct sk_product *psk;
1129 pcireg_t subid;
1130
1131 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1132
1133 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1134 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1135 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1136 subid == SK_LINKSYS_EG1032_SUBID)
1137 return 1;
1138
1139 if ((psk = sk_lookup(pa))) {
1140 return 1;
1141 }
1142 return 0;
1143 }
1144
1145 /*
1146 * Force the GEnesis into reset, then bring it out of reset.
1147 */
1148 void sk_reset(struct sk_softc *sc)
1149 {
1150 DPRINTFN(2, ("sk_reset\n"));
1151
1152 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1153 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1154 if (SK_YUKON_FAMILY(sc->sk_type))
1155 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1156
1157 DELAY(1000);
1158 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1159 DELAY(2);
1160 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1161 if (SK_YUKON_FAMILY(sc->sk_type))
1162 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1163
1164 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1165 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1166 CSR_READ_2(sc, SK_LINK_CTRL)));
1167
1168 if (sc->sk_type == SK_GENESIS) {
1169 /* Configure packet arbiter */
1170 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1171 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1172 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1173 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1174 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1175 }
1176
1177 /* Enable RAM interface */
1178 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1179
1180 sk_update_int_mod(sc);
1181 }
1182
1183 int
1184 sk_probe(device_t parent, cfdata_t match, void *aux)
1185 {
1186 struct skc_attach_args *sa = aux;
1187
1188 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1189 return 0;
1190
1191 return 1;
1192 }
1193
1194 /*
1195 * Each XMAC chip is attached as a separate logical IP interface.
1196 * Single port cards will have only one logical interface of course.
1197 */
1198 void
1199 sk_attach(device_t parent, device_t self, void *aux)
1200 {
1201 struct sk_if_softc *sc_if = device_private(self);
1202 struct sk_softc *sc = device_private(parent);
1203 struct skc_attach_args *sa = aux;
1204 struct sk_txmap_entry *entry;
1205 struct ifnet *ifp;
1206 bus_dma_segment_t seg;
1207 bus_dmamap_t dmamap;
1208 prop_data_t data;
1209 void *kva;
1210 int i, rseg;
1211 int mii_flags = 0;
1212
1213 aprint_naive("\n");
1214
1215 sc_if->sk_dev = self;
1216 sc_if->sk_port = sa->skc_port;
1217 sc_if->sk_softc = sc;
1218 sc->sk_if[sa->skc_port] = sc_if;
1219
1220 if (sa->skc_port == SK_PORT_A)
1221 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1222 if (sa->skc_port == SK_PORT_B)
1223 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1224
1225 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1226
1227 /*
1228 * Get station address for this interface. Note that
1229 * dual port cards actually come with three station
1230 * addresses: one for each port, plus an extra. The
1231 * extra one is used by the SysKonnect driver software
1232 * as a 'virtual' station address for when both ports
1233 * are operating in failover mode. Currently we don't
1234 * use this extra address.
1235 */
1236 data = prop_dictionary_get(device_properties(self), "mac-address");
1237 if (data != NULL) {
1238 /*
1239 * Try to get the station address from device properties
1240 * first, in case the ROM is missing.
1241 */
1242 KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
1243 KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
1244 memcpy(sc_if->sk_enaddr, prop_data_data_nocopy(data),
1245 ETHER_ADDR_LEN);
1246 } else
1247 for (i = 0; i < ETHER_ADDR_LEN; i++)
1248 sc_if->sk_enaddr[i] = sk_win_read_1(sc,
1249 SK_MAC0_0 + (sa->skc_port * 8) + i);
1250
1251 aprint_normal(": Ethernet address %s\n",
1252 ether_sprintf(sc_if->sk_enaddr));
1253
1254 /*
1255 * Set up RAM buffer addresses. The NIC will have a certain
1256 * amount of SRAM on it, somewhere between 512K and 2MB. We
1257 * need to divide this up a) between the transmitter and
1258 * receiver and b) between the two XMACs, if this is a
1259 * dual port NIC. Our algorithm is to divide up the memory
1260 * evenly so that everyone gets a fair share.
1261 */
1262 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1263 u_int32_t chunk, val;
1264
1265 chunk = sc->sk_ramsize / 2;
1266 val = sc->sk_rboff / sizeof(u_int64_t);
1267 sc_if->sk_rx_ramstart = val;
1268 val += (chunk / sizeof(u_int64_t));
1269 sc_if->sk_rx_ramend = val - 1;
1270 sc_if->sk_tx_ramstart = val;
1271 val += (chunk / sizeof(u_int64_t));
1272 sc_if->sk_tx_ramend = val - 1;
1273 } else {
1274 u_int32_t chunk, val;
1275
1276 chunk = sc->sk_ramsize / 4;
1277 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1278 sizeof(u_int64_t);
1279 sc_if->sk_rx_ramstart = val;
1280 val += (chunk / sizeof(u_int64_t));
1281 sc_if->sk_rx_ramend = val - 1;
1282 sc_if->sk_tx_ramstart = val;
1283 val += (chunk / sizeof(u_int64_t));
1284 sc_if->sk_tx_ramend = val - 1;
1285 }
1286
1287 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1288 " tx_ramstart=%#x tx_ramend=%#x\n",
1289 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1290 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1291
1292 /* Read and save PHY type and set PHY address */
1293 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1294 switch (sc_if->sk_phytype) {
1295 case SK_PHYTYPE_XMAC:
1296 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1297 break;
1298 case SK_PHYTYPE_BCOM:
1299 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1300 break;
1301 case SK_PHYTYPE_MARV_COPPER:
1302 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1303 break;
1304 default:
1305 aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
1306 sc_if->sk_phytype);
1307 return;
1308 }
1309
1310 /* Allocate the descriptor queues. */
1311 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1312 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1313 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
1314 goto fail;
1315 }
1316 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1317 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1318 aprint_error_dev(sc_if->sk_dev,
1319 "can't map dma buffers (%lu bytes)\n",
1320 (u_long) sizeof(struct sk_ring_data));
1321 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1322 goto fail;
1323 }
1324 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1325 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1326 &sc_if->sk_ring_map)) {
1327 aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
1328 bus_dmamem_unmap(sc->sc_dmatag, kva,
1329 sizeof(struct sk_ring_data));
1330 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1331 goto fail;
1332 }
1333 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1334 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1335 aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
1336 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1337 bus_dmamem_unmap(sc->sc_dmatag, kva,
1338 sizeof(struct sk_ring_data));
1339 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1340 goto fail;
1341 }
1342
1343 for (i = 0; i < SK_RX_RING_CNT; i++)
1344 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1345
1346 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1347 for (i = 0; i < SK_TX_RING_CNT; i++) {
1348 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1349
1350 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1351 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1352 aprint_error_dev(sc_if->sk_dev,
1353 "Can't create TX dmamap\n");
1354 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1355 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1356 bus_dmamem_unmap(sc->sc_dmatag, kva,
1357 sizeof(struct sk_ring_data));
1358 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1359 goto fail;
1360 }
1361
1362 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1363 if (!entry) {
1364 aprint_error_dev(sc_if->sk_dev,
1365 "Can't alloc txmap entry\n");
1366 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1367 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1368 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1369 bus_dmamem_unmap(sc->sc_dmatag, kva,
1370 sizeof(struct sk_ring_data));
1371 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1372 goto fail;
1373 }
1374 entry->dmamap = dmamap;
1375 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1376 }
1377
1378 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1379 memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
1380
1381 ifp = &sc_if->sk_ethercom.ec_if;
1382 /* Try to allocate memory for jumbo buffers. */
1383 if (sk_alloc_jumbo_mem(sc_if)) {
1384 aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1385 goto fail;
1386 }
1387 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1388 | ETHERCAP_JUMBO_MTU;
1389
1390 ifp->if_softc = sc_if;
1391 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1392 ifp->if_ioctl = sk_ioctl;
1393 ifp->if_start = sk_start;
1394 ifp->if_stop = sk_stop;
1395 ifp->if_init = sk_init;
1396 ifp->if_watchdog = sk_watchdog;
1397 ifp->if_capabilities = 0;
1398 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1399 IFQ_SET_READY(&ifp->if_snd);
1400 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1401
1402 /*
1403 * Do miibus setup.
1404 */
1405 switch (sc->sk_type) {
1406 case SK_GENESIS:
1407 sk_init_xmac(sc_if);
1408 break;
1409 case SK_YUKON:
1410 case SK_YUKON_LITE:
1411 case SK_YUKON_LP:
1412 sk_init_yukon(sc_if);
1413 break;
1414 default:
1415 aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
1416 sc->sk_type);
1417 goto fail;
1418 }
1419
1420 DPRINTFN(2, ("sk_attach: 1\n"));
1421
1422 sc_if->sk_mii.mii_ifp = ifp;
1423 switch (sc->sk_type) {
1424 case SK_GENESIS:
1425 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1426 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1427 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1428 break;
1429 case SK_YUKON:
1430 case SK_YUKON_LITE:
1431 case SK_YUKON_LP:
1432 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1433 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1434 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1435 mii_flags = MIIF_DOPAUSE;
1436 break;
1437 }
1438
1439 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1440 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1441 sk_ifmedia_upd, ether_mediastatus);
1442 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1443 MII_OFFSET_ANY, mii_flags);
1444 if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
1445 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1446 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1447 0, NULL);
1448 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1449 } else
1450 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1451
1452 callout_init(&sc_if->sk_tick_ch, 0);
1453 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1454
1455 DPRINTFN(2, ("sk_attach: 1\n"));
1456
1457 /*
1458 * Call MI attach routines.
1459 */
1460 if_attach(ifp);
1461 if_deferred_start_init(ifp, NULL);
1462
1463 ether_ifattach(ifp, sc_if->sk_enaddr);
1464
1465 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1466 RND_TYPE_NET, RND_FLAG_DEFAULT);
1467
1468 if (pmf_device_register(self, NULL, sk_resume))
1469 pmf_class_network_register(self, ifp);
1470 else
1471 aprint_error_dev(self, "couldn't establish power handler\n");
1472
1473 DPRINTFN(2, ("sk_attach: end\n"));
1474
1475 return;
1476
1477 fail:
1478 sc->sk_if[sa->skc_port] = NULL;
1479 }
1480
1481 int
1482 skcprint(void *aux, const char *pnp)
1483 {
1484 struct skc_attach_args *sa = aux;
1485
1486 if (pnp)
1487 aprint_normal("sk port %c at %s",
1488 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1489 else
1490 aprint_normal(" port %c",
1491 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1492 return UNCONF;
1493 }
1494
1495 /*
1496 * Attach the interface. Allocate softc structures, do ifmedia
1497 * setup and ethernet/BPF attach.
1498 */
1499 void
1500 skc_attach(device_t parent, device_t self, void *aux)
1501 {
1502 struct sk_softc *sc = device_private(self);
1503 struct pci_attach_args *pa = aux;
1504 struct skc_attach_args skca;
1505 pci_chipset_tag_t pc = pa->pa_pc;
1506 #ifndef SK_USEIOSPACE
1507 pcireg_t memtype;
1508 #endif
1509 pci_intr_handle_t ih;
1510 const char *intrstr = NULL;
1511 bus_addr_t iobase;
1512 bus_size_t iosize;
1513 int rc, sk_nodenum;
1514 u_int32_t command;
1515 const char *revstr;
1516 const struct sysctlnode *node;
1517 char intrbuf[PCI_INTRSTR_LEN];
1518
1519 sc->sk_dev = self;
1520 aprint_naive("\n");
1521
1522 DPRINTFN(2, ("begin skc_attach\n"));
1523
1524 /*
1525 * Handle power management nonsense.
1526 */
1527 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1528
1529 if (command == 0x01) {
1530 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1531 if (command & SK_PSTATE_MASK) {
1532 u_int32_t xiobase, membase, irq;
1533
1534 /* Save important PCI config data. */
1535 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1536 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1537 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1538
1539 /* Reset the power state. */
1540 aprint_normal_dev(sc->sk_dev,
1541 "chip is in D%d power mode -- setting to D0\n",
1542 command & SK_PSTATE_MASK);
1543 command &= 0xFFFFFFFC;
1544 pci_conf_write(pc, pa->pa_tag,
1545 SK_PCI_PWRMGMTCTRL, command);
1546
1547 /* Restore PCI config data. */
1548 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1549 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1550 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1551 }
1552 }
1553
1554 /*
1555 * The firmware might have configured the interface to revert the
1556 * byte order in all descriptors. Make that undone.
1557 */
1558 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_OURREG2);
1559 if (command & SK_REG2_REV_DESC)
1560 pci_conf_write(pc, pa->pa_tag, SK_PCI_OURREG2,
1561 command & ~SK_REG2_REV_DESC);
1562
1563 /*
1564 * Map control/status registers.
1565 */
1566 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1567 command |= PCI_COMMAND_IO_ENABLE |
1568 PCI_COMMAND_MEM_ENABLE |
1569 PCI_COMMAND_MASTER_ENABLE;
1570 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1571 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1572
1573 #ifdef SK_USEIOSPACE
1574 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1575 aprint_error(": failed to enable I/O ports!\n");
1576 return;
1577 }
1578 /*
1579 * Map control/status registers.
1580 */
1581 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1582 &sc->sk_btag, &sc->sk_bhandle,
1583 &iobase, &iosize)) {
1584 aprint_error(": can't find i/o space\n");
1585 return;
1586 }
1587 #else
1588 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1589 aprint_error(": failed to enable memory mapping!\n");
1590 return;
1591 }
1592 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1593 switch (memtype) {
1594 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1595 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1596 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1597 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1598 &iobase, &iosize) == 0)
1599 break;
1600 default:
1601 aprint_error_dev(sc->sk_dev, "can't find mem space\n");
1602 return;
1603 }
1604
1605 DPRINTFN(2, ("skc_attach: iobase=%#" PRIxPADDR ", iosize=%zx\n",
1606 iobase, iosize));
1607 #endif
1608 sc->sc_dmatag = pa->pa_dmat;
1609
1610 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1611 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1612
1613 /* bail out here if chip is not recognized */
1614 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1615 aprint_error_dev(sc->sk_dev, "unknown chip type\n");
1616 goto fail;
1617 }
1618 if (SK_IS_YUKON2(sc)) {
1619 aprint_error_dev(sc->sk_dev,
1620 "Does not support Yukon2--try msk(4).\n");
1621 goto fail;
1622 }
1623 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1624
1625 /* Allocate interrupt */
1626 if (pci_intr_map(pa, &ih)) {
1627 aprint_error(": couldn't map interrupt\n");
1628 goto fail;
1629 }
1630
1631 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1632 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1633 if (sc->sk_intrhand == NULL) {
1634 aprint_error(": couldn't establish interrupt");
1635 if (intrstr != NULL)
1636 aprint_error(" at %s", intrstr);
1637 aprint_error("\n");
1638 goto fail;
1639 }
1640 aprint_normal(": %s\n", intrstr);
1641
1642 /* Reset the adapter. */
1643 sk_reset(sc);
1644
1645 /* Read and save vital product data from EEPROM. */
1646 sk_vpd_read(sc);
1647
1648 if (sc->sk_type == SK_GENESIS) {
1649 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1650 /* Read and save RAM size and RAMbuffer offset */
1651 switch (val) {
1652 case SK_RAMSIZE_512K_64:
1653 sc->sk_ramsize = 0x80000;
1654 sc->sk_rboff = SK_RBOFF_0;
1655 break;
1656 case SK_RAMSIZE_1024K_64:
1657 sc->sk_ramsize = 0x100000;
1658 sc->sk_rboff = SK_RBOFF_80000;
1659 break;
1660 case SK_RAMSIZE_1024K_128:
1661 sc->sk_ramsize = 0x100000;
1662 sc->sk_rboff = SK_RBOFF_0;
1663 break;
1664 case SK_RAMSIZE_2048K_128:
1665 sc->sk_ramsize = 0x200000;
1666 sc->sk_rboff = SK_RBOFF_0;
1667 break;
1668 default:
1669 aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
1670 val);
1671 goto fail_1;
1672 break;
1673 }
1674
1675 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1676 sc->sk_ramsize, sc->sk_ramsize / 1024,
1677 sc->sk_rboff));
1678 } else {
1679 u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1680 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1681 sc->sk_rboff = SK_RBOFF_0;
1682
1683 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1684 sc->sk_ramsize / 1024, sc->sk_ramsize,
1685 sc->sk_rboff));
1686 }
1687
1688 /* Read and save physical media type */
1689 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1690 case SK_PMD_1000BASESX:
1691 sc->sk_pmd = IFM_1000_SX;
1692 break;
1693 case SK_PMD_1000BASELX:
1694 sc->sk_pmd = IFM_1000_LX;
1695 break;
1696 case SK_PMD_1000BASECX:
1697 sc->sk_pmd = IFM_1000_CX;
1698 break;
1699 case SK_PMD_1000BASETX:
1700 case SK_PMD_1000BASETX_ALT:
1701 sc->sk_pmd = IFM_1000_T;
1702 break;
1703 default:
1704 aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
1705 sk_win_read_1(sc, SK_PMDTYPE));
1706 goto fail_1;
1707 }
1708
1709 /* determine whether to name it with vpd or just make it up */
1710 /* Marvell Yukon VPD's can freqently be bogus */
1711
1712 switch (pa->pa_id) {
1713 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1714 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1715 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1716 case PCI_PRODUCT_3COM_3C940:
1717 case PCI_PRODUCT_DLINK_DGE530T:
1718 case PCI_PRODUCT_DLINK_DGE560T:
1719 case PCI_PRODUCT_DLINK_DGE560T_2:
1720 case PCI_PRODUCT_LINKSYS_EG1032:
1721 case PCI_PRODUCT_LINKSYS_EG1064:
1722 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1723 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1724 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1725 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1726 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1727 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1728 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1729 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1730 sc->sk_name = sc->sk_vpd_prodname;
1731 break;
1732 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1733 /* whoops yukon vpd prodname bears no resemblance to reality */
1734 switch (sc->sk_type) {
1735 case SK_GENESIS:
1736 sc->sk_name = sc->sk_vpd_prodname;
1737 break;
1738 case SK_YUKON:
1739 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1740 break;
1741 case SK_YUKON_LITE:
1742 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1743 break;
1744 case SK_YUKON_LP:
1745 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1746 break;
1747 default:
1748 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1749 }
1750
1751 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1752
1753 if ( sc->sk_type == SK_YUKON ) {
1754 uint32_t flashaddr;
1755 uint8_t testbyte;
1756
1757 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1758
1759 /* test Flash-Address Register */
1760 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1761 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1762
1763 if (testbyte != 0) {
1764 /* this is yukon lite Rev. A0 */
1765 sc->sk_type = SK_YUKON_LITE;
1766 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1767 /* restore Flash-Address Register */
1768 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1769 }
1770 }
1771 break;
1772 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1773 sc->sk_name = sc->sk_vpd_prodname;
1774 break;
1775 default:
1776 sc->sk_name = "Unknown Marvell";
1777 }
1778
1779
1780 if ( sc->sk_type == SK_YUKON_LITE ) {
1781 switch (sc->sk_rev) {
1782 case SK_YUKON_LITE_REV_A0:
1783 revstr = "A0";
1784 break;
1785 case SK_YUKON_LITE_REV_A1:
1786 revstr = "A1";
1787 break;
1788 case SK_YUKON_LITE_REV_A3:
1789 revstr = "A3";
1790 break;
1791 default:
1792 revstr = "";
1793 }
1794 } else {
1795 revstr = "";
1796 }
1797
1798 /* Announce the product name. */
1799 aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
1800 sc->sk_name, revstr, sc->sk_rev);
1801
1802 skca.skc_port = SK_PORT_A;
1803 (void)config_found(sc->sk_dev, &skca, skcprint);
1804
1805 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1806 skca.skc_port = SK_PORT_B;
1807 (void)config_found(sc->sk_dev, &skca, skcprint);
1808 }
1809
1810 /* Turn on the 'driver is loaded' LED. */
1811 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1812
1813 /* skc sysctl setup */
1814
1815 sc->sk_int_mod = SK_IM_DEFAULT;
1816 sc->sk_int_mod_pending = 0;
1817
1818 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1819 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1820 SYSCTL_DESCR("skc per-controller controls"),
1821 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1822 CTL_EOL)) != 0) {
1823 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1824 goto fail_1;
1825 }
1826
1827 sk_nodenum = node->sysctl_num;
1828
1829 /* interrupt moderation time in usecs */
1830 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1831 CTLFLAG_READWRITE,
1832 CTLTYPE_INT, "int_mod",
1833 SYSCTL_DESCR("sk interrupt moderation timer"),
1834 sk_sysctl_handler, 0, (void *)sc,
1835 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1836 CTL_EOL)) != 0) {
1837 aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1838 goto fail_1;
1839 }
1840
1841 if (!pmf_device_register(self, skc_suspend, skc_resume))
1842 aprint_error_dev(self, "couldn't establish power handler\n");
1843
1844 return;
1845
1846 fail_1:
1847 pci_intr_disestablish(pc, sc->sk_intrhand);
1848 fail:
1849 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1850 }
1851
1852 int
1853 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1854 {
1855 struct sk_softc *sc = sc_if->sk_softc;
1856 struct sk_tx_desc *f = NULL;
1857 u_int32_t frag, cur, cnt = 0, sk_ctl;
1858 int i;
1859 struct sk_txmap_entry *entry;
1860 bus_dmamap_t txmap;
1861
1862 DPRINTFN(3, ("sk_encap\n"));
1863
1864 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1865 if (entry == NULL) {
1866 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1867 return ENOBUFS;
1868 }
1869 txmap = entry->dmamap;
1870
1871 cur = frag = *txidx;
1872
1873 #ifdef SK_DEBUG
1874 if (skdebug >= 3)
1875 sk_dump_mbuf(m_head);
1876 #endif
1877
1878 /*
1879 * Start packing the mbufs in this chain into
1880 * the fragment pointers. Stop when we run out
1881 * of fragments or hit the end of the mbuf chain.
1882 */
1883 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1884 BUS_DMA_NOWAIT)) {
1885 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1886 return ENOBUFS;
1887 }
1888
1889 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1890
1891 /* Sync the DMA map. */
1892 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1893 BUS_DMASYNC_PREWRITE);
1894
1895 for (i = 0; i < txmap->dm_nsegs; i++) {
1896 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1897 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1898 return ENOBUFS;
1899 }
1900 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1901 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1902 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1903 if (cnt == 0)
1904 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1905 else
1906 sk_ctl |= SK_TXCTL_OWN;
1907 f->sk_ctl = htole32(sk_ctl);
1908 cur = frag;
1909 SK_INC(frag, SK_TX_RING_CNT);
1910 cnt++;
1911 }
1912
1913 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1914 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1915
1916 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1917 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1918 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1919
1920 /* Sync descriptors before handing to chip */
1921 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1922 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1923
1924 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1925 htole32(SK_TXCTL_OWN);
1926
1927 /* Sync first descriptor to hand it off */
1928 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1929
1930 sc_if->sk_cdata.sk_tx_cnt += cnt;
1931
1932 #ifdef SK_DEBUG
1933 if (skdebug >= 3) {
1934 struct sk_tx_desc *desc;
1935 u_int32_t idx;
1936 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1937 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1938 sk_dump_txdesc(desc, idx);
1939 }
1940 }
1941 #endif
1942
1943 *txidx = frag;
1944
1945 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1946
1947 return 0;
1948 }
1949
1950 void
1951 sk_start(struct ifnet *ifp)
1952 {
1953 struct sk_if_softc *sc_if = ifp->if_softc;
1954 struct sk_softc *sc = sc_if->sk_softc;
1955 struct mbuf *m_head = NULL;
1956 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1957 int pkts = 0;
1958
1959 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1960 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1961
1962 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1963 IFQ_POLL(&ifp->if_snd, m_head);
1964 if (m_head == NULL)
1965 break;
1966
1967 /*
1968 * Pack the data into the transmit ring. If we
1969 * don't have room, set the OACTIVE flag and wait
1970 * for the NIC to drain the ring.
1971 */
1972 if (sk_encap(sc_if, m_head, &idx)) {
1973 ifp->if_flags |= IFF_OACTIVE;
1974 break;
1975 }
1976
1977 /* now we are committed to transmit the packet */
1978 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1979 pkts++;
1980
1981 /*
1982 * If there's a BPF listener, bounce a copy of this frame
1983 * to him.
1984 */
1985 bpf_mtap(ifp, m_head, BPF_D_OUT);
1986 }
1987 if (pkts == 0)
1988 return;
1989
1990 /* Transmit */
1991 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1992 sc_if->sk_cdata.sk_tx_prod = idx;
1993 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1994
1995 /* Set a timeout in case the chip goes out to lunch. */
1996 ifp->if_timer = 5;
1997 }
1998 }
1999
2000
2001 void
2002 sk_watchdog(struct ifnet *ifp)
2003 {
2004 struct sk_if_softc *sc_if = ifp->if_softc;
2005
2006 /*
2007 * Reclaim first as there is a possibility of losing Tx completion
2008 * interrupts.
2009 */
2010 sk_txeof(sc_if);
2011 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2012 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
2013
2014 ifp->if_oerrors++;
2015
2016 sk_init(ifp);
2017 }
2018 }
2019
2020 void
2021 sk_shutdown(void *v)
2022 {
2023 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
2024 struct sk_softc *sc = sc_if->sk_softc;
2025 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2026
2027 DPRINTFN(2, ("sk_shutdown\n"));
2028 sk_stop(ifp,1);
2029
2030 /* Turn off the 'driver is loaded' LED. */
2031 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2032
2033 /*
2034 * Reset the GEnesis controller. Doing this should also
2035 * assert the resets on the attached XMAC(s).
2036 */
2037 sk_reset(sc);
2038 }
2039
2040 void
2041 sk_rxeof(struct sk_if_softc *sc_if)
2042 {
2043 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2044 struct mbuf *m;
2045 struct sk_chain *cur_rx;
2046 struct sk_rx_desc *cur_desc;
2047 int i, cur, total_len = 0;
2048 u_int32_t rxstat, sk_ctl;
2049 bus_dmamap_t dmamap;
2050
2051 i = sc_if->sk_cdata.sk_rx_prod;
2052
2053 DPRINTFN(3, ("sk_rxeof %d\n", i));
2054
2055 for (;;) {
2056 cur = i;
2057
2058 /* Sync the descriptor */
2059 SK_CDRXSYNC(sc_if, cur,
2060 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2061
2062 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2063 if (sk_ctl & SK_RXCTL_OWN) {
2064 /* Invalidate the descriptor -- it's not ready yet */
2065 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2066 sc_if->sk_cdata.sk_rx_prod = i;
2067 break;
2068 }
2069
2070 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2071 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2072 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2073
2074 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2075 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2076
2077 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2078 m = cur_rx->sk_mbuf;
2079 cur_rx->sk_mbuf = NULL;
2080 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2081
2082 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2083
2084 SK_INC(i, SK_RX_RING_CNT);
2085
2086 if (rxstat & XM_RXSTAT_ERRFRAME) {
2087 ifp->if_ierrors++;
2088 sk_newbuf(sc_if, cur, m, dmamap);
2089 continue;
2090 }
2091
2092 /*
2093 * Try to allocate a new jumbo buffer. If that
2094 * fails, copy the packet to mbufs and put the
2095 * jumbo buffer back in the ring so it can be
2096 * re-used. If allocating mbufs fails, then we
2097 * have to drop the packet.
2098 */
2099 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2100 struct mbuf *m0;
2101 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2102 total_len + ETHER_ALIGN, 0, ifp, NULL);
2103 sk_newbuf(sc_if, cur, m, dmamap);
2104 if (m0 == NULL) {
2105 aprint_error_dev(sc_if->sk_dev, "no receive "
2106 "buffers available -- packet dropped!\n");
2107 ifp->if_ierrors++;
2108 continue;
2109 }
2110 m_adj(m0, ETHER_ALIGN);
2111 m = m0;
2112 } else {
2113 m_set_rcvif(m, ifp);
2114 m->m_pkthdr.len = m->m_len = total_len;
2115 }
2116
2117 /* pass it on. */
2118 if_percpuq_enqueue(ifp->if_percpuq, m);
2119 }
2120 }
2121
2122 void
2123 sk_txeof(struct sk_if_softc *sc_if)
2124 {
2125 struct sk_softc *sc = sc_if->sk_softc;
2126 struct sk_tx_desc *cur_tx;
2127 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2128 u_int32_t idx, sk_ctl;
2129 struct sk_txmap_entry *entry;
2130
2131 DPRINTFN(3, ("sk_txeof\n"));
2132
2133 /*
2134 * Go through our tx ring and free mbufs for those
2135 * frames that have been sent.
2136 */
2137 idx = sc_if->sk_cdata.sk_tx_cons;
2138 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2139 SK_CDTXSYNC(sc_if, idx, 1,
2140 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2141
2142 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2143 sk_ctl = le32toh(cur_tx->sk_ctl);
2144 #ifdef SK_DEBUG
2145 if (skdebug >= 3)
2146 sk_dump_txdesc(cur_tx, idx);
2147 #endif
2148 if (sk_ctl & SK_TXCTL_OWN) {
2149 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2150 break;
2151 }
2152 if (sk_ctl & SK_TXCTL_LASTFRAG)
2153 ifp->if_opackets++;
2154 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2155 entry = sc_if->sk_cdata.sk_tx_map[idx];
2156
2157 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2158 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2159
2160 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2161 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2162
2163 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2164 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2165 link);
2166 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2167 }
2168 sc_if->sk_cdata.sk_tx_cnt--;
2169 SK_INC(idx, SK_TX_RING_CNT);
2170 }
2171 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2172 ifp->if_timer = 0;
2173 else /* nudge chip to keep tx ring moving */
2174 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2175
2176 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2177 ifp->if_flags &= ~IFF_OACTIVE;
2178
2179 sc_if->sk_cdata.sk_tx_cons = idx;
2180 }
2181
2182 void
2183 sk_tick(void *xsc_if)
2184 {
2185 struct sk_if_softc *sc_if = xsc_if;
2186 struct mii_data *mii = &sc_if->sk_mii;
2187 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2188 int i;
2189
2190 DPRINTFN(3, ("sk_tick\n"));
2191
2192 if (!(ifp->if_flags & IFF_UP))
2193 return;
2194
2195 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2196 sk_intr_bcom(sc_if);
2197 return;
2198 }
2199
2200 /*
2201 * According to SysKonnect, the correct way to verify that
2202 * the link has come back up is to poll bit 0 of the GPIO
2203 * register three times. This pin has the signal from the
2204 * link sync pin connected to it; if we read the same link
2205 * state 3 times in a row, we know the link is up.
2206 */
2207 for (i = 0; i < 3; i++) {
2208 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2209 break;
2210 }
2211
2212 if (i != 3) {
2213 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2214 return;
2215 }
2216
2217 /* Turn the GP0 interrupt back on. */
2218 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2219 SK_XM_READ_2(sc_if, XM_ISR);
2220 mii_tick(mii);
2221 if (ifp->if_link_state != LINK_STATE_UP)
2222 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2223 else
2224 callout_stop(&sc_if->sk_tick_ch);
2225 }
2226
2227 void
2228 sk_intr_bcom(struct sk_if_softc *sc_if)
2229 {
2230 struct mii_data *mii = &sc_if->sk_mii;
2231 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2232 int status;
2233
2234
2235 DPRINTFN(3, ("sk_intr_bcom\n"));
2236
2237 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2238
2239 /*
2240 * Read the PHY interrupt register to make sure
2241 * we clear any pending interrupts.
2242 */
2243 status = sk_xmac_miibus_readreg(sc_if->sk_dev,
2244 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2245
2246 if (!(ifp->if_flags & IFF_RUNNING)) {
2247 sk_init_xmac(sc_if);
2248 return;
2249 }
2250
2251 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2252 int lstat;
2253 lstat = sk_xmac_miibus_readreg(sc_if->sk_dev,
2254 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2255
2256 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2257 (void)mii_mediachg(mii);
2258 /* Turn off the link LED. */
2259 SK_IF_WRITE_1(sc_if, 0,
2260 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2261 sc_if->sk_link = 0;
2262 } else if (status & BRGPHY_ISR_LNK_CHG) {
2263 sk_xmac_miibus_writereg(sc_if->sk_dev,
2264 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2265 mii_tick(mii);
2266 sc_if->sk_link = 1;
2267 /* Turn on the link LED. */
2268 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2269 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2270 SK_LINKLED_BLINK_OFF);
2271 mii_pollstat(mii);
2272 } else {
2273 mii_tick(mii);
2274 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2275 }
2276 }
2277
2278 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2279 }
2280
2281 void
2282 sk_intr_xmac(struct sk_if_softc *sc_if)
2283 {
2284 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2285
2286 DPRINTFN(3, ("sk_intr_xmac\n"));
2287
2288 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2289 if (status & XM_ISR_GP0_SET) {
2290 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2291 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2292 }
2293
2294 if (status & XM_ISR_AUTONEG_DONE) {
2295 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2296 }
2297 }
2298
2299 if (status & XM_IMR_TX_UNDERRUN)
2300 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2301
2302 if (status & XM_IMR_RX_OVERRUN)
2303 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2304 }
2305
2306 void
2307 sk_intr_yukon(struct sk_if_softc *sc_if)
2308 {
2309 #ifdef SK_DEBUG
2310 int status;
2311
2312 status =
2313 #endif
2314 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2315
2316 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2317 }
2318
2319 int
2320 sk_intr(void *xsc)
2321 {
2322 struct sk_softc *sc = xsc;
2323 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2324 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2325 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2326 u_int32_t status;
2327 int claimed = 0;
2328
2329 if (sc_if0 != NULL)
2330 ifp0 = &sc_if0->sk_ethercom.ec_if;
2331 if (sc_if1 != NULL)
2332 ifp1 = &sc_if1->sk_ethercom.ec_if;
2333
2334 for (;;) {
2335 status = CSR_READ_4(sc, SK_ISSR);
2336 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2337
2338 if (!(status & sc->sk_intrmask))
2339 break;
2340
2341 claimed = 1;
2342
2343 /* Handle receive interrupts first. */
2344 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2345 sk_rxeof(sc_if0);
2346 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2347 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2348 }
2349 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2350 sk_rxeof(sc_if1);
2351 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2352 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2353 }
2354
2355 /* Then transmit interrupts. */
2356 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2357 sk_txeof(sc_if0);
2358 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2359 SK_TXBMU_CLR_IRQ_EOF);
2360 }
2361 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2362 sk_txeof(sc_if1);
2363 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2364 SK_TXBMU_CLR_IRQ_EOF);
2365 }
2366
2367 /* Then MAC interrupts. */
2368 if (sc_if0 && (status & SK_ISR_MAC1) &&
2369 (ifp0->if_flags & IFF_RUNNING)) {
2370 if (sc->sk_type == SK_GENESIS)
2371 sk_intr_xmac(sc_if0);
2372 else
2373 sk_intr_yukon(sc_if0);
2374 }
2375
2376 if (sc_if1 && (status & SK_ISR_MAC2) &&
2377 (ifp1->if_flags & IFF_RUNNING)) {
2378 if (sc->sk_type == SK_GENESIS)
2379 sk_intr_xmac(sc_if1);
2380 else
2381 sk_intr_yukon(sc_if1);
2382
2383 }
2384
2385 if (status & SK_ISR_EXTERNAL_REG) {
2386 if (sc_if0 != NULL &&
2387 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2388 sk_intr_bcom(sc_if0);
2389
2390 if (sc_if1 != NULL &&
2391 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2392 sk_intr_bcom(sc_if1);
2393 }
2394 }
2395
2396 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2397
2398 if (ifp0 != NULL)
2399 if_schedule_deferred_start(ifp0);
2400 if (ifp1 != NULL)
2401 if_schedule_deferred_start(ifp1);
2402
2403 rnd_add_uint32(&sc->rnd_source, status);
2404
2405 if (sc->sk_int_mod_pending)
2406 sk_update_int_mod(sc);
2407
2408 return claimed;
2409 }
2410
2411 void
2412 sk_init_xmac(struct sk_if_softc *sc_if)
2413 {
2414 struct sk_softc *sc = sc_if->sk_softc;
2415 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2416 static const struct sk_bcom_hack bhack[] = {
2417 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2418 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2419 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2420 { 0, 0 } };
2421
2422 DPRINTFN(1, ("sk_init_xmac\n"));
2423
2424 /* Unreset the XMAC. */
2425 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2426 DELAY(1000);
2427
2428 /* Reset the XMAC's internal state. */
2429 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2430
2431 /* Save the XMAC II revision */
2432 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2433
2434 /*
2435 * Perform additional initialization for external PHYs,
2436 * namely for the 1000baseTX cards that use the XMAC's
2437 * GMII mode.
2438 */
2439 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2440 int i = 0;
2441 u_int32_t val;
2442
2443 /* Take PHY out of reset. */
2444 val = sk_win_read_4(sc, SK_GPIO);
2445 if (sc_if->sk_port == SK_PORT_A)
2446 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2447 else
2448 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2449 sk_win_write_4(sc, SK_GPIO, val);
2450
2451 /* Enable GMII mode on the XMAC. */
2452 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2453
2454 sk_xmac_miibus_writereg(sc_if->sk_dev,
2455 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2456 DELAY(10000);
2457 sk_xmac_miibus_writereg(sc_if->sk_dev,
2458 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2459
2460 /*
2461 * Early versions of the BCM5400 apparently have
2462 * a bug that requires them to have their reserved
2463 * registers initialized to some magic values. I don't
2464 * know what the numbers do, I'm just the messenger.
2465 */
2466 if (sk_xmac_miibus_readreg(sc_if->sk_dev,
2467 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2468 while (bhack[i].reg) {
2469 sk_xmac_miibus_writereg(sc_if->sk_dev,
2470 SK_PHYADDR_BCOM, bhack[i].reg,
2471 bhack[i].val);
2472 i++;
2473 }
2474 }
2475 }
2476
2477 /* Set station address */
2478 SK_XM_WRITE_2(sc_if, XM_PAR0,
2479 *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2480 SK_XM_WRITE_2(sc_if, XM_PAR1,
2481 *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2482 SK_XM_WRITE_2(sc_if, XM_PAR2,
2483 *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2484 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2485
2486 if (ifp->if_flags & IFF_PROMISC)
2487 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2488 else
2489 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2490
2491 if (ifp->if_flags & IFF_BROADCAST)
2492 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2493 else
2494 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2495
2496 /* We don't need the FCS appended to the packet. */
2497 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2498
2499 /* We want short frames padded to 60 bytes. */
2500 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2501
2502 /*
2503 * Enable the reception of all error frames. This is is
2504 * a necessary evil due to the design of the XMAC. The
2505 * XMAC's receive FIFO is only 8K in size, however jumbo
2506 * frames can be up to 9000 bytes in length. When bad
2507 * frame filtering is enabled, the XMAC's RX FIFO operates
2508 * in 'store and forward' mode. For this to work, the
2509 * entire frame has to fit into the FIFO, but that means
2510 * that jumbo frames larger than 8192 bytes will be
2511 * truncated. Disabling all bad frame filtering causes
2512 * the RX FIFO to operate in streaming mode, in which
2513 * case the XMAC will start transfering frames out of the
2514 * RX FIFO as soon as the FIFO threshold is reached.
2515 */
2516 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2517 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2518 XM_MODE_RX_INRANGELEN);
2519
2520 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2521 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2522 else
2523 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2524
2525 /*
2526 * Bump up the transmit threshold. This helps hold off transmit
2527 * underruns when we're blasting traffic from both ports at once.
2528 */
2529 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2530
2531 /* Set multicast filter */
2532 sk_setmulti(sc_if);
2533
2534 /* Clear and enable interrupts */
2535 SK_XM_READ_2(sc_if, XM_ISR);
2536 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2537 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2538 else
2539 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2540
2541 /* Configure MAC arbiter */
2542 switch (sc_if->sk_xmac_rev) {
2543 case XM_XMAC_REV_B2:
2544 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2545 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2546 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2547 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2548 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2549 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2550 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2551 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2552 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2553 break;
2554 case XM_XMAC_REV_C1:
2555 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2556 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2557 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2558 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2559 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2560 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2561 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2562 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2563 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2564 break;
2565 default:
2566 break;
2567 }
2568 sk_win_write_2(sc, SK_MACARB_CTL,
2569 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2570
2571 sc_if->sk_link = 1;
2572 }
2573
2574 void sk_init_yukon(struct sk_if_softc *sc_if)
2575 {
2576 u_int32_t /*mac, */phy;
2577 u_int16_t reg;
2578 struct sk_softc *sc;
2579 int i;
2580
2581 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2582 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2583
2584 sc = sc_if->sk_softc;
2585 if (sc->sk_type == SK_YUKON_LITE &&
2586 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2587 /* Take PHY out of reset. */
2588 sk_win_write_4(sc, SK_GPIO,
2589 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2590 }
2591
2592
2593 /* GMAC and GPHY Reset */
2594 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2595
2596 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2597
2598 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2599 DELAY(1000);
2600 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2601 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2602 DELAY(1000);
2603
2604
2605 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2606
2607 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2608 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2609
2610 switch (sc_if->sk_softc->sk_pmd) {
2611 case IFM_1000_SX:
2612 case IFM_1000_LX:
2613 phy |= SK_GPHY_FIBER;
2614 break;
2615
2616 case IFM_1000_CX:
2617 case IFM_1000_T:
2618 phy |= SK_GPHY_COPPER;
2619 break;
2620 }
2621
2622 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2623
2624 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2625 DELAY(1000);
2626 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2627 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2628 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2629
2630 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2631 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2632
2633 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2634
2635 /* unused read of the interrupt source register */
2636 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2637 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2638
2639 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2640 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2641 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2642
2643 /* MIB Counter Clear Mode set */
2644 reg |= YU_PAR_MIB_CLR;
2645 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2646 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2647 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2648
2649 /* MIB Counter Clear Mode clear */
2650 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2651 reg &= ~YU_PAR_MIB_CLR;
2652 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2653
2654 /* receive control reg */
2655 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2656 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2657 YU_RCR_CRCR);
2658
2659 /* transmit parameter register */
2660 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2661 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2662 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2663
2664 /* serial mode register */
2665 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2666 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2667 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2668 YU_SMR_IPG_DATA(0x1e));
2669
2670 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2671 /* Setup Yukon's address */
2672 for (i = 0; i < 3; i++) {
2673 /* Write Source Address 1 (unicast filter) */
2674 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2675 sc_if->sk_enaddr[i * 2] |
2676 sc_if->sk_enaddr[i * 2 + 1] << 8);
2677 }
2678
2679 for (i = 0; i < 3; i++) {
2680 reg = sk_win_read_2(sc_if->sk_softc,
2681 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2682 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2683 }
2684
2685 /* Set multicast filter */
2686 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2687 sk_setmulti(sc_if);
2688
2689 /* enable interrupt mask for counter overflows */
2690 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2691 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2692 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2693 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2694
2695 /* Configure RX MAC FIFO */
2696 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2697 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2698
2699 /* Configure TX MAC FIFO */
2700 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2701 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2702
2703 DPRINTFN(6, ("sk_init_yukon: end\n"));
2704 }
2705
2706 /*
2707 * Note that to properly initialize any part of the GEnesis chip,
2708 * you first have to take it out of reset mode.
2709 */
2710 int
2711 sk_init(struct ifnet *ifp)
2712 {
2713 struct sk_if_softc *sc_if = ifp->if_softc;
2714 struct sk_softc *sc = sc_if->sk_softc;
2715 struct mii_data *mii = &sc_if->sk_mii;
2716 int rc = 0, s;
2717 u_int32_t imr, imtimer_ticks;
2718
2719 DPRINTFN(1, ("sk_init\n"));
2720
2721 s = splnet();
2722
2723 if (ifp->if_flags & IFF_RUNNING) {
2724 splx(s);
2725 return 0;
2726 }
2727
2728 /* Cancel pending I/O and free all RX/TX buffers. */
2729 sk_stop(ifp,0);
2730
2731 if (sc->sk_type == SK_GENESIS) {
2732 /* Configure LINK_SYNC LED */
2733 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2734 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2735 SK_LINKLED_LINKSYNC_ON);
2736
2737 /* Configure RX LED */
2738 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2739 SK_RXLEDCTL_COUNTER_START);
2740
2741 /* Configure TX LED */
2742 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2743 SK_TXLEDCTL_COUNTER_START);
2744 }
2745
2746 /* Configure I2C registers */
2747
2748 /* Configure XMAC(s) */
2749 switch (sc->sk_type) {
2750 case SK_GENESIS:
2751 sk_init_xmac(sc_if);
2752 break;
2753 case SK_YUKON:
2754 case SK_YUKON_LITE:
2755 case SK_YUKON_LP:
2756 sk_init_yukon(sc_if);
2757 break;
2758 }
2759 if ((rc = mii_mediachg(mii)) == ENXIO)
2760 rc = 0;
2761 else if (rc != 0)
2762 goto out;
2763
2764 if (sc->sk_type == SK_GENESIS) {
2765 /* Configure MAC FIFOs */
2766 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2767 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2768 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2769
2770 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2771 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2772 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2773 }
2774
2775 /* Configure transmit arbiter(s) */
2776 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2777 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2778
2779 /* Configure RAMbuffers */
2780 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2781 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2782 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2783 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2784 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2785 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2786
2787 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2788 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2789 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2790 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2791 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2792 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2793 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2794
2795 /* Configure BMUs */
2796 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2797 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2798 SK_RX_RING_ADDR(sc_if, 0));
2799 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2800
2801 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2802 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2803 SK_TX_RING_ADDR(sc_if, 0));
2804 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2805
2806 /* Init descriptors */
2807 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2808 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2809 "memory for rx buffers\n");
2810 sk_stop(ifp,0);
2811 splx(s);
2812 return ENOBUFS;
2813 }
2814
2815 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2816 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2817 "memory for tx buffers\n");
2818 sk_stop(ifp,0);
2819 splx(s);
2820 return ENOBUFS;
2821 }
2822
2823 /* Set interrupt moderation if changed via sysctl. */
2824 switch (sc->sk_type) {
2825 case SK_GENESIS:
2826 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2827 break;
2828 case SK_YUKON_EC:
2829 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2830 break;
2831 default:
2832 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2833 }
2834 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2835 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2836 sk_win_write_4(sc, SK_IMTIMERINIT,
2837 SK_IM_USECS(sc->sk_int_mod));
2838 aprint_verbose_dev(sc->sk_dev,
2839 "interrupt moderation is %d us\n", sc->sk_int_mod);
2840 }
2841
2842 /* Configure interrupt handling */
2843 CSR_READ_4(sc, SK_ISSR);
2844 if (sc_if->sk_port == SK_PORT_A)
2845 sc->sk_intrmask |= SK_INTRS1;
2846 else
2847 sc->sk_intrmask |= SK_INTRS2;
2848
2849 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2850
2851 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2852
2853 /* Start BMUs. */
2854 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2855
2856 if (sc->sk_type == SK_GENESIS) {
2857 /* Enable XMACs TX and RX state machines */
2858 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2859 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2860 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2861 }
2862
2863 if (SK_YUKON_FAMILY(sc->sk_type)) {
2864 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2865 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2866 #if 0
2867 /* XXX disable 100Mbps and full duplex mode? */
2868 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2869 #endif
2870 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2871 }
2872
2873
2874 ifp->if_flags |= IFF_RUNNING;
2875 ifp->if_flags &= ~IFF_OACTIVE;
2876 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2877
2878 out:
2879 splx(s);
2880 return rc;
2881 }
2882
2883 void
2884 sk_stop(struct ifnet *ifp, int disable)
2885 {
2886 struct sk_if_softc *sc_if = ifp->if_softc;
2887 struct sk_softc *sc = sc_if->sk_softc;
2888 int i;
2889
2890 DPRINTFN(1, ("sk_stop\n"));
2891
2892 callout_stop(&sc_if->sk_tick_ch);
2893
2894 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2895 u_int32_t val;
2896
2897 /* Put PHY back into reset. */
2898 val = sk_win_read_4(sc, SK_GPIO);
2899 if (sc_if->sk_port == SK_PORT_A) {
2900 val |= SK_GPIO_DIR0;
2901 val &= ~SK_GPIO_DAT0;
2902 } else {
2903 val |= SK_GPIO_DIR2;
2904 val &= ~SK_GPIO_DAT2;
2905 }
2906 sk_win_write_4(sc, SK_GPIO, val);
2907 }
2908
2909 /* Turn off various components of this interface. */
2910 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2911 switch (sc->sk_type) {
2912 case SK_GENESIS:
2913 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2914 SK_TXMACCTL_XMAC_RESET);
2915 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2916 break;
2917 case SK_YUKON:
2918 case SK_YUKON_LITE:
2919 case SK_YUKON_LP:
2920 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2921 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2922 break;
2923 }
2924 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2925 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2926 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2927 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2928 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2929 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2930 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2931 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2932 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2933
2934 /* Disable interrupts */
2935 if (sc_if->sk_port == SK_PORT_A)
2936 sc->sk_intrmask &= ~SK_INTRS1;
2937 else
2938 sc->sk_intrmask &= ~SK_INTRS2;
2939 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2940
2941 SK_XM_READ_2(sc_if, XM_ISR);
2942 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2943
2944 /* Free RX and TX mbufs still in the queues. */
2945 for (i = 0; i < SK_RX_RING_CNT; i++) {
2946 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2947 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2948 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2949 }
2950 }
2951
2952 for (i = 0; i < SK_TX_RING_CNT; i++) {
2953 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2954 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2955 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2956 }
2957 }
2958
2959 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2960 }
2961
2962 /* Power Management Framework */
2963
2964 static bool
2965 skc_suspend(device_t dv, const pmf_qual_t *qual)
2966 {
2967 struct sk_softc *sc = device_private(dv);
2968
2969 DPRINTFN(2, ("skc_suspend\n"));
2970
2971 /* Turn off the driver is loaded LED */
2972 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2973
2974 return true;
2975 }
2976
2977 static bool
2978 skc_resume(device_t dv, const pmf_qual_t *qual)
2979 {
2980 struct sk_softc *sc = device_private(dv);
2981
2982 DPRINTFN(2, ("skc_resume\n"));
2983
2984 sk_reset(sc);
2985 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2986
2987 return true;
2988 }
2989
2990 static bool
2991 sk_resume(device_t dv, const pmf_qual_t *qual)
2992 {
2993 struct sk_if_softc *sc_if = device_private(dv);
2994
2995 sk_init_yukon(sc_if);
2996 return true;
2997 }
2998
2999 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
3000 skc_probe, skc_attach, NULL, NULL);
3001
3002 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
3003 sk_probe, sk_attach, NULL, NULL);
3004
3005 #ifdef SK_DEBUG
3006 void
3007 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
3008 {
3009 #define DESC_PRINT(X) \
3010 if (X) \
3011 printf("txdesc[%d]." #X "=%#x\n", \
3012 idx, X);
3013
3014 DESC_PRINT(le32toh(desc->sk_ctl));
3015 DESC_PRINT(le32toh(desc->sk_next));
3016 DESC_PRINT(le32toh(desc->sk_data_lo));
3017 DESC_PRINT(le32toh(desc->sk_data_hi));
3018 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
3019 DESC_PRINT(le16toh(desc->sk_rsvd0));
3020 DESC_PRINT(le16toh(desc->sk_csum_startval));
3021 DESC_PRINT(le16toh(desc->sk_csum_startpos));
3022 DESC_PRINT(le16toh(desc->sk_csum_writepos));
3023 DESC_PRINT(le16toh(desc->sk_rsvd1));
3024 #undef PRINT
3025 }
3026
3027 void
3028 sk_dump_bytes(const char *data, int len)
3029 {
3030 int c, i, j;
3031
3032 for (i = 0; i < len; i += 16) {
3033 printf("%08x ", i);
3034 c = len - i;
3035 if (c > 16) c = 16;
3036
3037 for (j = 0; j < c; j++) {
3038 printf("%02x ", data[i + j] & 0xff);
3039 if ((j & 0xf) == 7 && j > 0)
3040 printf(" ");
3041 }
3042
3043 for (; j < 16; j++)
3044 printf(" ");
3045 printf(" ");
3046
3047 for (j = 0; j < c; j++) {
3048 int ch = data[i + j] & 0xff;
3049 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
3050 }
3051
3052 printf("\n");
3053
3054 if (c < 16)
3055 break;
3056 }
3057 }
3058
3059 void
3060 sk_dump_mbuf(struct mbuf *m)
3061 {
3062 int count = m->m_pkthdr.len;
3063
3064 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3065
3066 while (count > 0 && m) {
3067 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3068 m, m->m_data, m->m_len);
3069 sk_dump_bytes(mtod(m, char *), m->m_len);
3070
3071 count -= m->m_len;
3072 m = m->m_next;
3073 }
3074 }
3075 #endif
3076
3077 static int
3078 sk_sysctl_handler(SYSCTLFN_ARGS)
3079 {
3080 int error, t;
3081 struct sysctlnode node;
3082 struct sk_softc *sc;
3083
3084 node = *rnode;
3085 sc = node.sysctl_data;
3086 t = sc->sk_int_mod;
3087 node.sysctl_data = &t;
3088 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3089 if (error || newp == NULL)
3090 return error;
3091
3092 if (t < SK_IM_MIN || t > SK_IM_MAX)
3093 return EINVAL;
3094
3095 /* update the softc with sysctl-changed value, and mark
3096 for hardware update */
3097 sc->sk_int_mod = t;
3098 sc->sk_int_mod_pending = 1;
3099 return 0;
3100 }
3101
3102 /*
3103 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3104 * set up in skc_attach()
3105 */
3106 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3107 {
3108 int rc;
3109 const struct sysctlnode *node;
3110
3111 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3112 0, CTLTYPE_NODE, "sk",
3113 SYSCTL_DESCR("sk interface controls"),
3114 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3115 goto err;
3116 }
3117
3118 sk_root_num = node->sysctl_num;
3119 return;
3120
3121 err:
3122 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3123 }
3124