Home | History | Annotate | Line # | Download | only in pci
if_sk.c revision 1.87
      1 /*	$NetBSD: if_sk.c,v 1.87 2018/06/26 06:48:01 msaitoh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
     30 
     31 /*
     32  * Copyright (c) 1997, 1998, 1999, 2000
     33  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *	This product includes software developed by Bill Paul.
     46  * 4. Neither the name of the author nor the names of any co-contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     60  * THE POSSIBILITY OF SUCH DAMAGE.
     61  *
     62  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
     63  */
     64 
     65 /*
     66  * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
     67  *
     68  * Permission to use, copy, modify, and distribute this software for any
     69  * purpose with or without fee is hereby granted, provided that the above
     70  * copyright notice and this permission notice appear in all copies.
     71  *
     72  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     73  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     74  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     75  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     76  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     77  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     78  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     79  */
     80 
     81 /*
     82  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
     83  * the SK-984x series adapters, both single port and dual port.
     84  * References:
     85  * 	The XaQti XMAC II datasheet,
     86  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     87  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
     88  *
     89  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
     90  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
     91  * convenience to others until Vitesse corrects this problem:
     92  *
     93  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     94  *
     95  * Written by Bill Paul <wpaul (at) ee.columbia.edu>
     96  * Department of Electrical Engineering
     97  * Columbia University, New York City
     98  */
     99 
    100 /*
    101  * The SysKonnect gigabit ethernet adapters consist of two main
    102  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
    103  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
    104  * components and a PHY while the GEnesis controller provides a PCI
    105  * interface with DMA support. Each card may have between 512K and
    106  * 2MB of SRAM on board depending on the configuration.
    107  *
    108  * The SysKonnect GEnesis controller can have either one or two XMAC
    109  * chips connected to it, allowing single or dual port NIC configurations.
    110  * SysKonnect has the distinction of being the only vendor on the market
    111  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
    112  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
    113  * XMAC registers. This driver takes advantage of these features to allow
    114  * both XMACs to operate as independent interfaces.
    115  */
    116 
    117 #include <sys/cdefs.h>
    118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.87 2018/06/26 06:48:01 msaitoh Exp $");
    119 
    120 #include <sys/param.h>
    121 #include <sys/systm.h>
    122 #include <sys/sockio.h>
    123 #include <sys/mbuf.h>
    124 #include <sys/malloc.h>
    125 #include <sys/mutex.h>
    126 #include <sys/kernel.h>
    127 #include <sys/socket.h>
    128 #include <sys/device.h>
    129 #include <sys/queue.h>
    130 #include <sys/callout.h>
    131 #include <sys/sysctl.h>
    132 #include <sys/endian.h>
    133 
    134 #include <net/if.h>
    135 #include <net/if_dl.h>
    136 #include <net/if_types.h>
    137 
    138 #include <net/if_media.h>
    139 
    140 #include <net/bpf.h>
    141 #include <sys/rndsource.h>
    142 
    143 #include <dev/mii/mii.h>
    144 #include <dev/mii/miivar.h>
    145 #include <dev/mii/brgphyreg.h>
    146 
    147 #include <dev/pci/pcireg.h>
    148 #include <dev/pci/pcivar.h>
    149 #include <dev/pci/pcidevs.h>
    150 
    151 /* #define SK_USEIOSPACE */
    152 
    153 #include <dev/pci/if_skreg.h>
    154 #include <dev/pci/if_skvar.h>
    155 
    156 int skc_probe(device_t, cfdata_t, void *);
    157 void skc_attach(device_t, device_t, void *aux);
    158 int sk_probe(device_t, cfdata_t, void *);
    159 void sk_attach(device_t, device_t, void *aux);
    160 int skcprint(void *, const char *);
    161 int sk_intr(void *);
    162 void sk_intr_bcom(struct sk_if_softc *);
    163 void sk_intr_xmac(struct sk_if_softc *);
    164 void sk_intr_yukon(struct sk_if_softc *);
    165 void sk_rxeof(struct sk_if_softc *);
    166 void sk_txeof(struct sk_if_softc *);
    167 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
    168 void sk_start(struct ifnet *);
    169 int sk_ioctl(struct ifnet *, u_long, void *);
    170 int sk_init(struct ifnet *);
    171 void sk_init_xmac(struct sk_if_softc *);
    172 void sk_init_yukon(struct sk_if_softc *);
    173 void sk_stop(struct ifnet *, int);
    174 void sk_watchdog(struct ifnet *);
    175 void sk_shutdown(void *);
    176 int sk_ifmedia_upd(struct ifnet *);
    177 void sk_reset(struct sk_softc *);
    178 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
    179 int sk_alloc_jumbo_mem(struct sk_if_softc *);
    180 void sk_free_jumbo_mem(struct sk_if_softc *);
    181 void *sk_jalloc(struct sk_if_softc *);
    182 void sk_jfree(struct mbuf *, void *, size_t, void *);
    183 int sk_init_rx_ring(struct sk_if_softc *);
    184 int sk_init_tx_ring(struct sk_if_softc *);
    185 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
    186 void sk_vpd_read_res(struct sk_softc *,
    187 					struct vpd_res *, int);
    188 void sk_vpd_read(struct sk_softc *);
    189 
    190 void sk_update_int_mod(struct sk_softc *);
    191 
    192 int sk_xmac_miibus_readreg(device_t, int, int);
    193 void sk_xmac_miibus_writereg(device_t, int, int, int);
    194 void sk_xmac_miibus_statchg(struct ifnet *);
    195 
    196 int sk_marv_miibus_readreg(device_t, int, int);
    197 void sk_marv_miibus_writereg(device_t, int, int, int);
    198 void sk_marv_miibus_statchg(struct ifnet *);
    199 
    200 u_int32_t sk_xmac_hash(void *);
    201 u_int32_t sk_yukon_hash(void *);
    202 void sk_setfilt(struct sk_if_softc *, void *, int);
    203 void sk_setmulti(struct sk_if_softc *);
    204 void sk_tick(void *);
    205 
    206 static bool skc_suspend(device_t, const pmf_qual_t *);
    207 static bool skc_resume(device_t, const pmf_qual_t *);
    208 static bool sk_resume(device_t dv, const pmf_qual_t *);
    209 
    210 /* #define SK_DEBUG 2 */
    211 #ifdef SK_DEBUG
    212 #define DPRINTF(x)	if (skdebug) printf x
    213 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
    214 int	skdebug = SK_DEBUG;
    215 
    216 void sk_dump_txdesc(struct sk_tx_desc *, int);
    217 void sk_dump_mbuf(struct mbuf *);
    218 void sk_dump_bytes(const char *, int);
    219 #else
    220 #define DPRINTF(x)
    221 #define DPRINTFN(n,x)
    222 #endif
    223 
    224 static int sk_sysctl_handler(SYSCTLFN_PROTO);
    225 static int sk_root_num;
    226 
    227 /* supported device vendors */
    228 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
    229 static const struct sk_product {
    230 	pci_vendor_id_t		sk_vendor;
    231 	pci_product_id_t	sk_product;
    232 } sk_products[] = {
    233 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
    234 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
    235 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
    236 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
    237 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
    238 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
    239 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
    240 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
    241 	{ 0, 0, }
    242 };
    243 
    244 #define SK_LINKSYS_EG1032_SUBID	0x00151737
    245 
    246 static inline u_int32_t
    247 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
    248 {
    249 #ifdef SK_USEIOSPACE
    250 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    251 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
    252 #else
    253 	return CSR_READ_4(sc, reg);
    254 #endif
    255 }
    256 
    257 static inline u_int16_t
    258 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
    259 {
    260 #ifdef SK_USEIOSPACE
    261 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    262 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
    263 #else
    264 	return CSR_READ_2(sc, reg);
    265 #endif
    266 }
    267 
    268 static inline u_int8_t
    269 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
    270 {
    271 #ifdef SK_USEIOSPACE
    272 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    273 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
    274 #else
    275 	return CSR_READ_1(sc, reg);
    276 #endif
    277 }
    278 
    279 static inline void
    280 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
    281 {
    282 #ifdef SK_USEIOSPACE
    283 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    284 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
    285 #else
    286 	CSR_WRITE_4(sc, reg, x);
    287 #endif
    288 }
    289 
    290 static inline void
    291 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
    292 {
    293 #ifdef SK_USEIOSPACE
    294 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    295 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
    296 #else
    297 	CSR_WRITE_2(sc, reg, x);
    298 #endif
    299 }
    300 
    301 static inline void
    302 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
    303 {
    304 #ifdef SK_USEIOSPACE
    305 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    306 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
    307 #else
    308 	CSR_WRITE_1(sc, reg, x);
    309 #endif
    310 }
    311 
    312 /*
    313  * The VPD EEPROM contains Vital Product Data, as suggested in
    314  * the PCI 2.1 specification. The VPD data is separared into areas
    315  * denoted by resource IDs. The SysKonnect VPD contains an ID string
    316  * resource (the name of the adapter), a read-only area resource
    317  * containing various key/data fields and a read/write area which
    318  * can be used to store asset management information or log messages.
    319  * We read the ID string and read-only into buffers attached to
    320  * the controller softc structure for later use. At the moment,
    321  * we only use the ID string during sk_attach().
    322  */
    323 u_int8_t
    324 sk_vpd_readbyte(struct sk_softc *sc, int addr)
    325 {
    326 	int			i;
    327 
    328 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
    329 	for (i = 0; i < SK_TIMEOUT; i++) {
    330 		DELAY(1);
    331 		if (sk_win_read_2(sc,
    332 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
    333 			break;
    334 	}
    335 
    336 	if (i == SK_TIMEOUT)
    337 		return 0;
    338 
    339 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
    340 }
    341 
    342 void
    343 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
    344 {
    345 	int			i;
    346 	u_int8_t		*ptr;
    347 
    348 	ptr = (u_int8_t *)res;
    349 	for (i = 0; i < sizeof(struct vpd_res); i++)
    350 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
    351 }
    352 
    353 void
    354 sk_vpd_read(struct sk_softc *sc)
    355 {
    356 	int			pos = 0, i;
    357 	struct vpd_res		res;
    358 
    359 	if (sc->sk_vpd_prodname != NULL)
    360 		free(sc->sk_vpd_prodname, M_DEVBUF);
    361 	if (sc->sk_vpd_readonly != NULL)
    362 		free(sc->sk_vpd_readonly, M_DEVBUF);
    363 	sc->sk_vpd_prodname = NULL;
    364 	sc->sk_vpd_readonly = NULL;
    365 
    366 	sk_vpd_read_res(sc, &res, pos);
    367 
    368 	if (res.vr_id != VPD_RES_ID) {
    369 		aprint_error_dev(sc->sk_dev,
    370 		    "bad VPD resource id: expected %x got %x\n",
    371 		    VPD_RES_ID, res.vr_id);
    372 		return;
    373 	}
    374 
    375 	pos += sizeof(res);
    376 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    377 	if (sc->sk_vpd_prodname == NULL)
    378 		panic("sk_vpd_read");
    379 	for (i = 0; i < res.vr_len; i++)
    380 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
    381 	sc->sk_vpd_prodname[i] = '\0';
    382 	pos += i;
    383 
    384 	sk_vpd_read_res(sc, &res, pos);
    385 
    386 	if (res.vr_id != VPD_RES_READ) {
    387 		aprint_error_dev(sc->sk_dev,
    388 		    "bad VPD resource id: expected %x got %x\n",
    389 		    VPD_RES_READ, res.vr_id);
    390 		return;
    391 	}
    392 
    393 	pos += sizeof(res);
    394 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    395 	if (sc->sk_vpd_readonly == NULL)
    396 		panic("sk_vpd_read");
    397 	for (i = 0; i < res.vr_len ; i++)
    398 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
    399 }
    400 
    401 int
    402 sk_xmac_miibus_readreg(device_t dev, int phy, int reg)
    403 {
    404 	struct sk_if_softc *sc_if = device_private(dev);
    405 	int i;
    406 
    407 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
    408 
    409 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
    410 		return 0;
    411 
    412 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    413 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
    414 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    415 		for (i = 0; i < SK_TIMEOUT; i++) {
    416 			DELAY(1);
    417 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
    418 			    XM_MMUCMD_PHYDATARDY)
    419 				break;
    420 		}
    421 
    422 		if (i == SK_TIMEOUT) {
    423 			aprint_error_dev(sc_if->sk_dev,
    424 			    "phy failed to come ready\n");
    425 			return 0;
    426 		}
    427 	}
    428 	DELAY(1);
    429 	return SK_XM_READ_2(sc_if, XM_PHY_DATA);
    430 }
    431 
    432 void
    433 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, int val)
    434 {
    435 	struct sk_if_softc *sc_if = device_private(dev);
    436 	int i;
    437 
    438 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
    439 
    440 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    441 	for (i = 0; i < SK_TIMEOUT; i++) {
    442 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    443 			break;
    444 	}
    445 
    446 	if (i == SK_TIMEOUT) {
    447 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
    448 		return;
    449 	}
    450 
    451 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
    452 	for (i = 0; i < SK_TIMEOUT; i++) {
    453 		DELAY(1);
    454 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    455 			break;
    456 	}
    457 
    458 	if (i == SK_TIMEOUT)
    459 		aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
    460 }
    461 
    462 void
    463 sk_xmac_miibus_statchg(struct ifnet *ifp)
    464 {
    465 	struct sk_if_softc *sc_if = ifp->if_softc;
    466 	struct mii_data *mii = &sc_if->sk_mii;
    467 
    468 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
    469 
    470 	/*
    471 	 * If this is a GMII PHY, manually set the XMAC's
    472 	 * duplex mode accordingly.
    473 	 */
    474 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    475 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
    476 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    477 		else
    478 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    479 	}
    480 }
    481 
    482 int
    483 sk_marv_miibus_readreg(device_t dev, int phy, int reg)
    484 {
    485 	struct sk_if_softc *sc_if = device_private(dev);
    486 	u_int16_t val;
    487 	int i;
    488 
    489 	if (phy != 0 ||
    490 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
    491 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
    492 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
    493 			     phy, reg));
    494 		return 0;
    495 	}
    496 
    497         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    498 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
    499 
    500 	for (i = 0; i < SK_TIMEOUT; i++) {
    501 		DELAY(1);
    502 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
    503 		if (val & YU_SMICR_READ_VALID)
    504 			break;
    505 	}
    506 
    507 	if (i == SK_TIMEOUT) {
    508 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
    509 		return 0;
    510 	}
    511 
    512  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
    513 		     SK_TIMEOUT));
    514 
    515         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
    516 
    517 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
    518 		     phy, reg, val));
    519 
    520 	return val;
    521 }
    522 
    523 void
    524 sk_marv_miibus_writereg(device_t dev, int phy, int reg, int val)
    525 {
    526 	struct sk_if_softc *sc_if = device_private(dev);
    527 	int i;
    528 
    529 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
    530 		     phy, reg, val));
    531 
    532 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
    533 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    534 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
    535 
    536 	for (i = 0; i < SK_TIMEOUT; i++) {
    537 		DELAY(1);
    538 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
    539 			break;
    540 	}
    541 
    542 	if (i == SK_TIMEOUT)
    543 		printf("%s: phy write timed out\n",
    544 		    device_xname(sc_if->sk_dev));
    545 }
    546 
    547 void
    548 sk_marv_miibus_statchg(struct ifnet *ifp)
    549 {
    550 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
    551 		     SK_YU_READ_2(((struct sk_if_softc *)ifp->if_softc),
    552 		     YUKON_GPCR)));
    553 }
    554 
    555 u_int32_t
    556 sk_xmac_hash(void *addr)
    557 {
    558 	u_int32_t		crc;
    559 
    560 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
    561 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
    562 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    563 	return crc;
    564 }
    565 
    566 u_int32_t
    567 sk_yukon_hash(void *addr)
    568 {
    569 	u_int32_t		crc;
    570 
    571 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
    572 	crc &= ((1 << SK_HASH_BITS) - 1);
    573 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    574 	return crc;
    575 }
    576 
    577 void
    578 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
    579 {
    580 	char *addr = addrv;
    581 	int base = XM_RXFILT_ENTRY(slot);
    582 
    583 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
    584 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
    585 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
    586 }
    587 
    588 void
    589 sk_setmulti(struct sk_if_softc *sc_if)
    590 {
    591 	struct sk_softc *sc = sc_if->sk_softc;
    592 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
    593 	u_int32_t hashes[2] = { 0, 0 };
    594 	int h = 0, i;
    595 	struct ethercom *ec = &sc_if->sk_ethercom;
    596 	struct ether_multi *enm;
    597 	struct ether_multistep step;
    598 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
    599 
    600 	/* First, zot all the existing filters. */
    601 	switch (sc->sk_type) {
    602 	case SK_GENESIS:
    603 		for (i = 1; i < XM_RXFILT_MAX; i++)
    604 			sk_setfilt(sc_if, (void *)&dummy, i);
    605 
    606 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
    607 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
    608 		break;
    609 	case SK_YUKON:
    610 	case SK_YUKON_LITE:
    611 	case SK_YUKON_LP:
    612 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
    613 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
    614 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
    615 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
    616 		break;
    617 	}
    618 
    619 	/* Now program new ones. */
    620 allmulti:
    621 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    622 		hashes[0] = 0xFFFFFFFF;
    623 		hashes[1] = 0xFFFFFFFF;
    624 	} else {
    625 		i = 1;
    626 		/* First find the tail of the list. */
    627 		ETHER_FIRST_MULTI(step, ec, enm);
    628 		while (enm != NULL) {
    629 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    630 				 ETHER_ADDR_LEN)) {
    631 				ifp->if_flags |= IFF_ALLMULTI;
    632 				goto allmulti;
    633 			}
    634 			DPRINTFN(2,("multicast address %s\n",
    635 	    			ether_sprintf(enm->enm_addrlo)));
    636 			/*
    637 			 * Program the first XM_RXFILT_MAX multicast groups
    638 			 * into the perfect filter. For all others,
    639 			 * use the hash table.
    640 			 */
    641 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
    642 				sk_setfilt(sc_if, enm->enm_addrlo, i);
    643 				i++;
    644 			}
    645 			else {
    646 				switch (sc->sk_type) {
    647 				case SK_GENESIS:
    648 					h = sk_xmac_hash(enm->enm_addrlo);
    649 					break;
    650 				case SK_YUKON:
    651 				case SK_YUKON_LITE:
    652 				case SK_YUKON_LP:
    653 					h = sk_yukon_hash(enm->enm_addrlo);
    654 					break;
    655 				}
    656 				if (h < 32)
    657 					hashes[0] |= (1 << h);
    658 				else
    659 					hashes[1] |= (1 << (h - 32));
    660 			}
    661 
    662 			ETHER_NEXT_MULTI(step, enm);
    663 		}
    664 	}
    665 
    666 	switch (sc->sk_type) {
    667 	case SK_GENESIS:
    668 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
    669 			       XM_MODE_RX_USE_PERFECT);
    670 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
    671 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
    672 		break;
    673 	case SK_YUKON:
    674 	case SK_YUKON_LITE:
    675 	case SK_YUKON_LP:
    676 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
    677 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
    678 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
    679 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
    680 		break;
    681 	}
    682 }
    683 
    684 int
    685 sk_init_rx_ring(struct sk_if_softc *sc_if)
    686 {
    687 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    688 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    689 	int			i;
    690 
    691 	memset((char *)rd->sk_rx_ring, 0,
    692 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
    693 
    694 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    695 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
    696 		if (i == (SK_RX_RING_CNT - 1)) {
    697 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
    698 			rd->sk_rx_ring[i].sk_next =
    699 				htole32(SK_RX_RING_ADDR(sc_if, 0));
    700 		} else {
    701 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
    702 			rd->sk_rx_ring[i].sk_next =
    703 				htole32(SK_RX_RING_ADDR(sc_if,i+1));
    704 		}
    705 	}
    706 
    707 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    708 		if (sk_newbuf(sc_if, i, NULL,
    709 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
    710 			aprint_error_dev(sc_if->sk_dev,
    711 			    "failed alloc of %dth mbuf\n", i);
    712 			return ENOBUFS;
    713 		}
    714 	}
    715 	sc_if->sk_cdata.sk_rx_prod = 0;
    716 	sc_if->sk_cdata.sk_rx_cons = 0;
    717 
    718 	return 0;
    719 }
    720 
    721 int
    722 sk_init_tx_ring(struct sk_if_softc *sc_if)
    723 {
    724 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    725 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    726 	int			i;
    727 
    728 	memset(sc_if->sk_rdata->sk_tx_ring, 0,
    729 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
    730 
    731 	for (i = 0; i < SK_TX_RING_CNT; i++) {
    732 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
    733 		if (i == (SK_TX_RING_CNT - 1)) {
    734 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
    735 			rd->sk_tx_ring[i].sk_next =
    736 				htole32(SK_TX_RING_ADDR(sc_if, 0));
    737 		} else {
    738 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
    739 			rd->sk_tx_ring[i].sk_next =
    740 				htole32(SK_TX_RING_ADDR(sc_if,i+1));
    741 		}
    742 	}
    743 
    744 	sc_if->sk_cdata.sk_tx_prod = 0;
    745 	sc_if->sk_cdata.sk_tx_cons = 0;
    746 	sc_if->sk_cdata.sk_tx_cnt = 0;
    747 
    748 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
    749 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    750 
    751 	return 0;
    752 }
    753 
    754 int
    755 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
    756 	  bus_dmamap_t dmamap)
    757 {
    758 	struct mbuf		*m_new = NULL;
    759 	struct sk_chain		*c;
    760 	struct sk_rx_desc	*r;
    761 
    762 	if (m == NULL) {
    763 		void *buf = NULL;
    764 
    765 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    766 		if (m_new == NULL) {
    767 			aprint_error_dev(sc_if->sk_dev,
    768 			    "no memory for rx list -- packet dropped!\n");
    769 			return ENOBUFS;
    770 		}
    771 
    772 		/* Allocate the jumbo buffer */
    773 		buf = sk_jalloc(sc_if);
    774 		if (buf == NULL) {
    775 			m_freem(m_new);
    776 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
    777 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
    778 			return ENOBUFS;
    779 		}
    780 
    781 		/* Attach the buffer to the mbuf */
    782 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    783 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
    784 
    785 	} else {
    786 		/*
    787 	 	 * We're re-using a previously allocated mbuf;
    788 		 * be sure to re-init pointers and lengths to
    789 		 * default values.
    790 		 */
    791 		m_new = m;
    792 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    793 		m_new->m_data = m_new->m_ext.ext_buf;
    794 	}
    795 	m_adj(m_new, ETHER_ALIGN);
    796 
    797 	c = &sc_if->sk_cdata.sk_rx_chain[i];
    798 	r = c->sk_desc;
    799 	c->sk_mbuf = m_new;
    800 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
    801 	    (((vaddr_t)m_new->m_data
    802 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
    803 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
    804 
    805 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    806 
    807 	return 0;
    808 }
    809 
    810 /*
    811  * Memory management for jumbo frames.
    812  */
    813 
    814 int
    815 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
    816 {
    817 	struct sk_softc		*sc = sc_if->sk_softc;
    818 	char *ptr, *kva;
    819 	bus_dma_segment_t	seg;
    820 	int		i, rseg, state, error;
    821 	struct sk_jpool_entry   *entry;
    822 
    823 	state = error = 0;
    824 
    825 	/* Grab a big chunk o' storage. */
    826 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
    827 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    828 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
    829 		return ENOBUFS;
    830 	}
    831 
    832 	state = 1;
    833 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
    834 			   BUS_DMA_NOWAIT)) {
    835 		aprint_error_dev(sc->sk_dev,
    836 		    "can't map dma buffers (%d bytes)\n",
    837 		    SK_JMEM);
    838 		error = ENOBUFS;
    839 		goto out;
    840 	}
    841 
    842 	state = 2;
    843 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
    844 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
    845 		aprint_error_dev(sc->sk_dev, "can't create dma map\n");
    846 		error = ENOBUFS;
    847 		goto out;
    848 	}
    849 
    850 	state = 3;
    851 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
    852 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
    853 		aprint_error_dev(sc->sk_dev, "can't load dma map\n");
    854 		error = ENOBUFS;
    855 		goto out;
    856 	}
    857 
    858 	state = 4;
    859 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
    860 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
    861 
    862 	LIST_INIT(&sc_if->sk_jfree_listhead);
    863 	LIST_INIT(&sc_if->sk_jinuse_listhead);
    864 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
    865 
    866 	/*
    867 	 * Now divide it up into 9K pieces and save the addresses
    868 	 * in an array.
    869 	 */
    870 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
    871 	for (i = 0; i < SK_JSLOTS; i++) {
    872 		sc_if->sk_cdata.sk_jslots[i] = ptr;
    873 		ptr += SK_JLEN;
    874 		entry = malloc(sizeof(struct sk_jpool_entry),
    875 		    M_DEVBUF, M_NOWAIT);
    876 		if (entry == NULL) {
    877 			aprint_error_dev(sc->sk_dev,
    878 			    "no memory for jumbo buffer queue!\n");
    879 			error = ENOBUFS;
    880 			goto out;
    881 		}
    882 		entry->slot = i;
    883 		if (i)
    884 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
    885 				 entry, jpool_entries);
    886 		else
    887 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
    888 				 entry, jpool_entries);
    889 	}
    890 out:
    891 	if (error != 0) {
    892 		switch (state) {
    893 		case 4:
    894 			bus_dmamap_unload(sc->sc_dmatag,
    895 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    896 		case 3:
    897 			bus_dmamap_destroy(sc->sc_dmatag,
    898 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    899 		case 2:
    900 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
    901 		case 1:
    902 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
    903 			break;
    904 		default:
    905 			break;
    906 		}
    907 	}
    908 
    909 	return error;
    910 }
    911 
    912 /*
    913  * Allocate a jumbo buffer.
    914  */
    915 void *
    916 sk_jalloc(struct sk_if_softc *sc_if)
    917 {
    918 	struct sk_jpool_entry   *entry;
    919 
    920 	mutex_enter(&sc_if->sk_jpool_mtx);
    921 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
    922 
    923 	if (entry == NULL) {
    924 		mutex_exit(&sc_if->sk_jpool_mtx);
    925 		return NULL;
    926 	}
    927 
    928 	LIST_REMOVE(entry, jpool_entries);
    929 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
    930 	mutex_exit(&sc_if->sk_jpool_mtx);
    931 	return sc_if->sk_cdata.sk_jslots[entry->slot];
    932 }
    933 
    934 /*
    935  * Release a jumbo buffer.
    936  */
    937 void
    938 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
    939 {
    940 	struct sk_jpool_entry *entry;
    941 	struct sk_if_softc *sc;
    942 	int i;
    943 
    944 	/* Extract the softc struct pointer. */
    945 	sc = (struct sk_if_softc *)arg;
    946 
    947 	if (sc == NULL)
    948 		panic("sk_jfree: can't find softc pointer!");
    949 
    950 	/* calculate the slot this buffer belongs to */
    951 
    952 	i = ((vaddr_t)buf
    953 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
    954 
    955 	if ((i < 0) || (i >= SK_JSLOTS))
    956 		panic("sk_jfree: asked to free buffer that we don't manage!");
    957 
    958 	mutex_enter(&sc->sk_jpool_mtx);
    959 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
    960 	if (entry == NULL)
    961 		panic("sk_jfree: buffer not in use!");
    962 	entry->slot = i;
    963 	LIST_REMOVE(entry, jpool_entries);
    964 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
    965 	mutex_exit(&sc->sk_jpool_mtx);
    966 
    967 	if (__predict_true(m != NULL))
    968 		pool_cache_put(mb_cache, m);
    969 }
    970 
    971 /*
    972  * Set media options.
    973  */
    974 int
    975 sk_ifmedia_upd(struct ifnet *ifp)
    976 {
    977 	struct sk_if_softc *sc_if = ifp->if_softc;
    978 	int rc;
    979 
    980 	(void) sk_init(ifp);
    981 	if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
    982 		return 0;
    983 	return rc;
    984 }
    985 
    986 static void
    987 sk_promisc(struct sk_if_softc *sc_if, int on)
    988 {
    989 	struct sk_softc *sc = sc_if->sk_softc;
    990 	switch (sc->sk_type) {
    991 	case SK_GENESIS:
    992 		if (on)
    993 			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
    994 		else
    995 			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
    996 		break;
    997 	case SK_YUKON:
    998 	case SK_YUKON_LITE:
    999 	case SK_YUKON_LP:
   1000 		if (on)
   1001 			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
   1002 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1003 		else
   1004 			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
   1005 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1006 		break;
   1007 	default:
   1008 		aprint_error_dev(sc_if->sk_dev, "Can't set promisc for %d\n",
   1009 			sc->sk_type);
   1010 		break;
   1011 	}
   1012 }
   1013 
   1014 int
   1015 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
   1016 {
   1017 	struct sk_if_softc *sc_if = ifp->if_softc;
   1018 	int s, error = 0;
   1019 
   1020 	/* DPRINTFN(2, ("sk_ioctl\n")); */
   1021 
   1022 	s = splnet();
   1023 
   1024 	switch (command) {
   1025 
   1026 	case SIOCSIFFLAGS:
   1027 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
   1028 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   1029 			break;
   1030 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
   1031 		case IFF_RUNNING:
   1032 			sk_stop(ifp, 1);
   1033 			break;
   1034 		case IFF_UP:
   1035 			sk_init(ifp);
   1036 			break;
   1037 		case IFF_UP | IFF_RUNNING:
   1038 			if ((ifp->if_flags ^ sc_if->sk_if_flags) == IFF_PROMISC)			{
   1039 				sk_promisc(sc_if, ifp->if_flags & IFF_PROMISC);
   1040 				sk_setmulti(sc_if);
   1041 			} else
   1042 				sk_init(ifp);
   1043 			break;
   1044 		}
   1045 		sc_if->sk_if_flags = ifp->if_flags;
   1046 		error = 0;
   1047 		break;
   1048 
   1049 	default:
   1050 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
   1051 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   1052 			break;
   1053 
   1054 		error = 0;
   1055 
   1056 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   1057 			;
   1058 		else if (ifp->if_flags & IFF_RUNNING) {
   1059 			sk_setmulti(sc_if);
   1060 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
   1061 		}
   1062 		break;
   1063 	}
   1064 
   1065 	splx(s);
   1066 	return error;
   1067 }
   1068 
   1069 void
   1070 sk_update_int_mod(struct sk_softc *sc)
   1071 {
   1072 	u_int32_t imtimer_ticks;
   1073 
   1074 	/*
   1075          * Configure interrupt moderation. The moderation timer
   1076 	 * defers interrupts specified in the interrupt moderation
   1077 	 * timer mask based on the timeout specified in the interrupt
   1078 	 * moderation timer init register. Each bit in the timer
   1079 	 * register represents one tick, so to specify a timeout in
   1080 	 * microseconds, we have to multiply by the correct number of
   1081 	 * ticks-per-microsecond.
   1082 	 */
   1083 	switch (sc->sk_type) {
   1084 	case SK_GENESIS:
   1085 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   1086 		break;
   1087 	case SK_YUKON_EC:
   1088 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   1089 		break;
   1090 	default:
   1091 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   1092 	}
   1093 	aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
   1094 	    sc->sk_int_mod);
   1095         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
   1096         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
   1097 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
   1098         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
   1099 	sc->sk_int_mod_pending = 0;
   1100 }
   1101 
   1102 /*
   1103  * Lookup: Check the PCI vendor and device, and return a pointer to
   1104  * The structure if the IDs match against our list.
   1105  */
   1106 
   1107 static const struct sk_product *
   1108 sk_lookup(const struct pci_attach_args *pa)
   1109 {
   1110 	const struct sk_product *psk;
   1111 
   1112 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
   1113 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
   1114 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
   1115 			return psk;
   1116 	}
   1117 	return NULL;
   1118 }
   1119 
   1120 /*
   1121  * Probe for a SysKonnect GEnesis chip.
   1122  */
   1123 
   1124 int
   1125 skc_probe(device_t parent, cfdata_t match, void *aux)
   1126 {
   1127 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1128 	const struct sk_product *psk;
   1129 	pcireg_t subid;
   1130 
   1131 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
   1132 
   1133 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
   1134 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
   1135 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
   1136 	    subid == SK_LINKSYS_EG1032_SUBID)
   1137 		return 1;
   1138 
   1139 	if ((psk = sk_lookup(pa))) {
   1140 		return 1;
   1141 	}
   1142 	return 0;
   1143 }
   1144 
   1145 /*
   1146  * Force the GEnesis into reset, then bring it out of reset.
   1147  */
   1148 void sk_reset(struct sk_softc *sc)
   1149 {
   1150 	DPRINTFN(2, ("sk_reset\n"));
   1151 
   1152 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
   1153 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
   1154 	if (SK_YUKON_FAMILY(sc->sk_type))
   1155 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
   1156 
   1157 	DELAY(1000);
   1158 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
   1159 	DELAY(2);
   1160 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
   1161 	if (SK_YUKON_FAMILY(sc->sk_type))
   1162 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
   1163 
   1164 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
   1165 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
   1166 		     CSR_READ_2(sc, SK_LINK_CTRL)));
   1167 
   1168 	if (sc->sk_type == SK_GENESIS) {
   1169 		/* Configure packet arbiter */
   1170 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
   1171 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1172 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1173 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1174 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1175 	}
   1176 
   1177 	/* Enable RAM interface */
   1178 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
   1179 
   1180 	sk_update_int_mod(sc);
   1181 }
   1182 
   1183 int
   1184 sk_probe(device_t parent, cfdata_t match, void *aux)
   1185 {
   1186 	struct skc_attach_args *sa = aux;
   1187 
   1188 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
   1189 		return 0;
   1190 
   1191 	return 1;
   1192 }
   1193 
   1194 /*
   1195  * Each XMAC chip is attached as a separate logical IP interface.
   1196  * Single port cards will have only one logical interface of course.
   1197  */
   1198 void
   1199 sk_attach(device_t parent, device_t self, void *aux)
   1200 {
   1201 	struct sk_if_softc *sc_if = device_private(self);
   1202 	struct sk_softc *sc = device_private(parent);
   1203 	struct skc_attach_args *sa = aux;
   1204 	struct sk_txmap_entry	*entry;
   1205 	struct ifnet *ifp;
   1206 	bus_dma_segment_t seg;
   1207 	bus_dmamap_t dmamap;
   1208 	prop_data_t data;
   1209 	void *kva;
   1210 	int i, rseg;
   1211 	int mii_flags = 0;
   1212 
   1213 	aprint_naive("\n");
   1214 
   1215 	sc_if->sk_dev = self;
   1216 	sc_if->sk_port = sa->skc_port;
   1217 	sc_if->sk_softc = sc;
   1218 	sc->sk_if[sa->skc_port] = sc_if;
   1219 
   1220 	if (sa->skc_port == SK_PORT_A)
   1221 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
   1222 	if (sa->skc_port == SK_PORT_B)
   1223 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
   1224 
   1225 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
   1226 
   1227 	/*
   1228 	 * Get station address for this interface. Note that
   1229 	 * dual port cards actually come with three station
   1230 	 * addresses: one for each port, plus an extra. The
   1231 	 * extra one is used by the SysKonnect driver software
   1232 	 * as a 'virtual' station address for when both ports
   1233 	 * are operating in failover mode. Currently we don't
   1234 	 * use this extra address.
   1235 	 */
   1236 	data = prop_dictionary_get(device_properties(self), "mac-address");
   1237 	if (data != NULL) {
   1238 		/*
   1239 		 * Try to get the station address from device properties
   1240 		 * first, in case the ROM is missing.
   1241 		 */
   1242 		KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
   1243 		KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
   1244 		memcpy(sc_if->sk_enaddr, prop_data_data_nocopy(data),
   1245 		    ETHER_ADDR_LEN);
   1246 	} else
   1247 		for (i = 0; i < ETHER_ADDR_LEN; i++)
   1248 			sc_if->sk_enaddr[i] = sk_win_read_1(sc,
   1249 			    SK_MAC0_0 + (sa->skc_port * 8) + i);
   1250 
   1251 	aprint_normal(": Ethernet address %s\n",
   1252 	    ether_sprintf(sc_if->sk_enaddr));
   1253 
   1254 	/*
   1255 	 * Set up RAM buffer addresses. The NIC will have a certain
   1256 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
   1257 	 * need to divide this up a) between the transmitter and
   1258  	 * receiver and b) between the two XMACs, if this is a
   1259 	 * dual port NIC. Our algorithm is to divide up the memory
   1260 	 * evenly so that everyone gets a fair share.
   1261 	 */
   1262 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
   1263 		u_int32_t		chunk, val;
   1264 
   1265 		chunk = sc->sk_ramsize / 2;
   1266 		val = sc->sk_rboff / sizeof(u_int64_t);
   1267 		sc_if->sk_rx_ramstart = val;
   1268 		val += (chunk / sizeof(u_int64_t));
   1269 		sc_if->sk_rx_ramend = val - 1;
   1270 		sc_if->sk_tx_ramstart = val;
   1271 		val += (chunk / sizeof(u_int64_t));
   1272 		sc_if->sk_tx_ramend = val - 1;
   1273 	} else {
   1274 		u_int32_t		chunk, val;
   1275 
   1276 		chunk = sc->sk_ramsize / 4;
   1277 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
   1278 		    sizeof(u_int64_t);
   1279 		sc_if->sk_rx_ramstart = val;
   1280 		val += (chunk / sizeof(u_int64_t));
   1281 		sc_if->sk_rx_ramend = val - 1;
   1282 		sc_if->sk_tx_ramstart = val;
   1283 		val += (chunk / sizeof(u_int64_t));
   1284 		sc_if->sk_tx_ramend = val - 1;
   1285 	}
   1286 
   1287 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
   1288 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
   1289 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
   1290 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
   1291 
   1292 	/* Read and save PHY type and set PHY address */
   1293 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
   1294 	switch (sc_if->sk_phytype) {
   1295 	case SK_PHYTYPE_XMAC:
   1296 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
   1297 		break;
   1298 	case SK_PHYTYPE_BCOM:
   1299 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
   1300 		break;
   1301 	case SK_PHYTYPE_MARV_COPPER:
   1302 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
   1303 		break;
   1304 	default:
   1305 		aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
   1306 		    sc_if->sk_phytype);
   1307 		return;
   1308 	}
   1309 
   1310 	/* Allocate the descriptor queues. */
   1311 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
   1312 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1313 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
   1314 		goto fail;
   1315 	}
   1316 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
   1317 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
   1318 		aprint_error_dev(sc_if->sk_dev,
   1319 		    "can't map dma buffers (%lu bytes)\n",
   1320 		    (u_long) sizeof(struct sk_ring_data));
   1321 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1322 		goto fail;
   1323 	}
   1324 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
   1325 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
   1326             &sc_if->sk_ring_map)) {
   1327 		aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
   1328 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1329 		    sizeof(struct sk_ring_data));
   1330 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1331 		goto fail;
   1332 	}
   1333 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
   1334 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
   1335 		aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
   1336 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1337 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1338 		    sizeof(struct sk_ring_data));
   1339 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1340 		goto fail;
   1341 	}
   1342 
   1343 	for (i = 0; i < SK_RX_RING_CNT; i++)
   1344 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   1345 
   1346 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
   1347 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   1348 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   1349 
   1350 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
   1351 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
   1352 			aprint_error_dev(sc_if->sk_dev,
   1353 			    "Can't create TX dmamap\n");
   1354 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1355 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1356 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1357 			    sizeof(struct sk_ring_data));
   1358 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1359 			goto fail;
   1360 		}
   1361 
   1362 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
   1363 		if (!entry) {
   1364 			aprint_error_dev(sc_if->sk_dev,
   1365 			    "Can't alloc txmap entry\n");
   1366 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
   1367 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1368 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1369 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1370 			    sizeof(struct sk_ring_data));
   1371 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1372 			goto fail;
   1373 		}
   1374 		entry->dmamap = dmamap;
   1375 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
   1376 	}
   1377 
   1378         sc_if->sk_rdata = (struct sk_ring_data *)kva;
   1379 	memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
   1380 
   1381 	ifp = &sc_if->sk_ethercom.ec_if;
   1382 	/* Try to allocate memory for jumbo buffers. */
   1383 	if (sk_alloc_jumbo_mem(sc_if)) {
   1384 		aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
   1385 		goto fail;
   1386 	}
   1387 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
   1388 		| ETHERCAP_JUMBO_MTU;
   1389 
   1390 	ifp->if_softc = sc_if;
   1391 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1392 	ifp->if_ioctl = sk_ioctl;
   1393 	ifp->if_start = sk_start;
   1394 	ifp->if_stop = sk_stop;
   1395 	ifp->if_init = sk_init;
   1396 	ifp->if_watchdog = sk_watchdog;
   1397 	ifp->if_capabilities = 0;
   1398 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
   1399 	IFQ_SET_READY(&ifp->if_snd);
   1400 	strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
   1401 
   1402 	/*
   1403 	 * Do miibus setup.
   1404 	 */
   1405 	switch (sc->sk_type) {
   1406 	case SK_GENESIS:
   1407 		sk_init_xmac(sc_if);
   1408 		break;
   1409 	case SK_YUKON:
   1410 	case SK_YUKON_LITE:
   1411 	case SK_YUKON_LP:
   1412 		sk_init_yukon(sc_if);
   1413 		break;
   1414 	default:
   1415 		aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
   1416 			sc->sk_type);
   1417 		goto fail;
   1418 	}
   1419 
   1420  	DPRINTFN(2, ("sk_attach: 1\n"));
   1421 
   1422 	sc_if->sk_mii.mii_ifp = ifp;
   1423 	switch (sc->sk_type) {
   1424 	case SK_GENESIS:
   1425 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
   1426 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
   1427 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
   1428 		break;
   1429 	case SK_YUKON:
   1430 	case SK_YUKON_LITE:
   1431 	case SK_YUKON_LP:
   1432 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
   1433 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
   1434 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
   1435 		mii_flags = MIIF_DOPAUSE;
   1436 		break;
   1437 	}
   1438 
   1439 	sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
   1440 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
   1441 	    sk_ifmedia_upd, ether_mediastatus);
   1442 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
   1443 	    MII_OFFSET_ANY, mii_flags);
   1444 	if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
   1445 		aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
   1446 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
   1447 			    0, NULL);
   1448 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
   1449 	} else
   1450 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1451 
   1452 	callout_init(&sc_if->sk_tick_ch, 0);
   1453 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
   1454 
   1455 	DPRINTFN(2, ("sk_attach: 1\n"));
   1456 
   1457 	/*
   1458 	 * Call MI attach routines.
   1459 	 */
   1460 	if_attach(ifp);
   1461 	if_deferred_start_init(ifp, NULL);
   1462 
   1463 	ether_ifattach(ifp, sc_if->sk_enaddr);
   1464 
   1465         rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
   1466             RND_TYPE_NET, RND_FLAG_DEFAULT);
   1467 
   1468 	if (pmf_device_register(self, NULL, sk_resume))
   1469 		pmf_class_network_register(self, ifp);
   1470 	else
   1471 		aprint_error_dev(self, "couldn't establish power handler\n");
   1472 
   1473 	DPRINTFN(2, ("sk_attach: end\n"));
   1474 
   1475 	return;
   1476 
   1477 fail:
   1478 	sc->sk_if[sa->skc_port] = NULL;
   1479 }
   1480 
   1481 int
   1482 skcprint(void *aux, const char *pnp)
   1483 {
   1484 	struct skc_attach_args *sa = aux;
   1485 
   1486 	if (pnp)
   1487 		aprint_normal("sk port %c at %s",
   1488 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
   1489 	else
   1490 		aprint_normal(" port %c",
   1491 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
   1492 	return UNCONF;
   1493 }
   1494 
   1495 /*
   1496  * Attach the interface. Allocate softc structures, do ifmedia
   1497  * setup and ethernet/BPF attach.
   1498  */
   1499 void
   1500 skc_attach(device_t parent, device_t self, void *aux)
   1501 {
   1502 	struct sk_softc *sc = device_private(self);
   1503 	struct pci_attach_args *pa = aux;
   1504 	struct skc_attach_args skca;
   1505 	pci_chipset_tag_t pc = pa->pa_pc;
   1506 #ifndef SK_USEIOSPACE
   1507 	pcireg_t memtype;
   1508 #endif
   1509 	pci_intr_handle_t ih;
   1510 	const char *intrstr = NULL;
   1511 	bus_addr_t iobase;
   1512 	bus_size_t iosize;
   1513 	int rc, sk_nodenum;
   1514 	u_int32_t command;
   1515 	const char *revstr;
   1516 	const struct sysctlnode *node;
   1517 	char intrbuf[PCI_INTRSTR_LEN];
   1518 
   1519 	sc->sk_dev = self;
   1520 	aprint_naive("\n");
   1521 
   1522 	DPRINTFN(2, ("begin skc_attach\n"));
   1523 
   1524 	/*
   1525 	 * Handle power management nonsense.
   1526 	 */
   1527 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
   1528 
   1529 	if (command == 0x01) {
   1530 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
   1531 		if (command & SK_PSTATE_MASK) {
   1532 			u_int32_t		xiobase, membase, irq;
   1533 
   1534 			/* Save important PCI config data. */
   1535 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
   1536 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
   1537 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
   1538 
   1539 			/* Reset the power state. */
   1540 			aprint_normal_dev(sc->sk_dev,
   1541 			    "chip is in D%d power mode -- setting to D0\n",
   1542 			    command & SK_PSTATE_MASK);
   1543 			command &= 0xFFFFFFFC;
   1544 			pci_conf_write(pc, pa->pa_tag,
   1545 			    SK_PCI_PWRMGMTCTRL, command);
   1546 
   1547 			/* Restore PCI config data. */
   1548 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
   1549 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
   1550 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
   1551 		}
   1552 	}
   1553 
   1554 	/*
   1555 	 * The firmware might have configured the interface to revert the
   1556 	 * byte order in all descriptors. Make that undone.
   1557 	 */
   1558 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_OURREG2);
   1559 	if (command & SK_REG2_REV_DESC)
   1560 		pci_conf_write(pc, pa->pa_tag, SK_PCI_OURREG2,
   1561 		    command & ~SK_REG2_REV_DESC);
   1562 
   1563 	/*
   1564 	 * Map control/status registers.
   1565 	 */
   1566 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1567 	command |= PCI_COMMAND_IO_ENABLE |
   1568 	    PCI_COMMAND_MEM_ENABLE |
   1569 	    PCI_COMMAND_MASTER_ENABLE;
   1570 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1571 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1572 
   1573 #ifdef SK_USEIOSPACE
   1574 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
   1575 		aprint_error(": failed to enable I/O ports!\n");
   1576 		return;
   1577 	}
   1578 	/*
   1579 	 * Map control/status registers.
   1580 	 */
   1581 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
   1582 			&sc->sk_btag, &sc->sk_bhandle,
   1583 			&iobase, &iosize)) {
   1584 		aprint_error(": can't find i/o space\n");
   1585 		return;
   1586 	}
   1587 #else
   1588 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1589 		aprint_error(": failed to enable memory mapping!\n");
   1590 		return;
   1591 	}
   1592 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
   1593 	switch (memtype) {
   1594         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1595         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1596                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
   1597 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
   1598 				   &iobase, &iosize) == 0)
   1599                         break;
   1600         default:
   1601                 aprint_error_dev(sc->sk_dev, "can't find mem space\n");
   1602                 return;
   1603 	}
   1604 
   1605 	DPRINTFN(2, ("skc_attach: iobase=%#" PRIxPADDR ", iosize=%zx\n",
   1606 	    iobase, iosize));
   1607 #endif
   1608 	sc->sc_dmatag = pa->pa_dmat;
   1609 
   1610 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
   1611 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
   1612 
   1613 	/* bail out here if chip is not recognized */
   1614 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
   1615 		aprint_error_dev(sc->sk_dev, "unknown chip type\n");
   1616 		goto fail;
   1617 	}
   1618 	if (SK_IS_YUKON2(sc)) {
   1619 		aprint_error_dev(sc->sk_dev,
   1620 		    "Does not support Yukon2--try msk(4).\n");
   1621 		goto fail;
   1622 	}
   1623 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
   1624 
   1625 	/* Allocate interrupt */
   1626 	if (pci_intr_map(pa, &ih)) {
   1627 		aprint_error(": couldn't map interrupt\n");
   1628 		goto fail;
   1629 	}
   1630 
   1631 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
   1632 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
   1633 	if (sc->sk_intrhand == NULL) {
   1634 		aprint_error(": couldn't establish interrupt");
   1635 		if (intrstr != NULL)
   1636 			aprint_error(" at %s", intrstr);
   1637 		aprint_error("\n");
   1638 		goto fail;
   1639 	}
   1640 	aprint_normal(": %s\n", intrstr);
   1641 
   1642 	/* Reset the adapter. */
   1643 	sk_reset(sc);
   1644 
   1645 	/* Read and save vital product data from EEPROM. */
   1646 	sk_vpd_read(sc);
   1647 
   1648 	if (sc->sk_type == SK_GENESIS) {
   1649 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1650 		/* Read and save RAM size and RAMbuffer offset */
   1651 		switch (val) {
   1652 		case SK_RAMSIZE_512K_64:
   1653 			sc->sk_ramsize = 0x80000;
   1654 			sc->sk_rboff = SK_RBOFF_0;
   1655 			break;
   1656 		case SK_RAMSIZE_1024K_64:
   1657 			sc->sk_ramsize = 0x100000;
   1658 			sc->sk_rboff = SK_RBOFF_80000;
   1659 			break;
   1660 		case SK_RAMSIZE_1024K_128:
   1661 			sc->sk_ramsize = 0x100000;
   1662 			sc->sk_rboff = SK_RBOFF_0;
   1663 			break;
   1664 		case SK_RAMSIZE_2048K_128:
   1665 			sc->sk_ramsize = 0x200000;
   1666 			sc->sk_rboff = SK_RBOFF_0;
   1667 			break;
   1668 		default:
   1669 			aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
   1670 			       val);
   1671 			goto fail_1;
   1672 			break;
   1673 		}
   1674 
   1675 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
   1676 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
   1677 			     sc->sk_rboff));
   1678 	} else {
   1679 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
   1680 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
   1681 		sc->sk_rboff = SK_RBOFF_0;
   1682 
   1683 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
   1684 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
   1685 			     sc->sk_rboff));
   1686 	}
   1687 
   1688 	/* Read and save physical media type */
   1689 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
   1690 	case SK_PMD_1000BASESX:
   1691 		sc->sk_pmd = IFM_1000_SX;
   1692 		break;
   1693 	case SK_PMD_1000BASELX:
   1694 		sc->sk_pmd = IFM_1000_LX;
   1695 		break;
   1696 	case SK_PMD_1000BASECX:
   1697 		sc->sk_pmd = IFM_1000_CX;
   1698 		break;
   1699 	case SK_PMD_1000BASETX:
   1700 	case SK_PMD_1000BASETX_ALT:
   1701 		sc->sk_pmd = IFM_1000_T;
   1702 		break;
   1703 	default:
   1704 		aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
   1705 		    sk_win_read_1(sc, SK_PMDTYPE));
   1706 		goto fail_1;
   1707 	}
   1708 
   1709 	/* determine whether to name it with vpd or just make it up */
   1710 	/* Marvell Yukon VPD's can freqently be bogus */
   1711 
   1712 	switch (pa->pa_id) {
   1713 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1714 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
   1715 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
   1716 	case PCI_PRODUCT_3COM_3C940:
   1717 	case PCI_PRODUCT_DLINK_DGE530T:
   1718 	case PCI_PRODUCT_DLINK_DGE560T:
   1719 	case PCI_PRODUCT_DLINK_DGE560T_2:
   1720 	case PCI_PRODUCT_LINKSYS_EG1032:
   1721 	case PCI_PRODUCT_LINKSYS_EG1064:
   1722 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1723 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
   1724 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
   1725 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
   1726 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
   1727 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
   1728 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
   1729 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
   1730  		sc->sk_name = sc->sk_vpd_prodname;
   1731  		break;
   1732 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
   1733 	/* whoops yukon vpd prodname bears no resemblance to reality */
   1734 		switch (sc->sk_type) {
   1735 		case SK_GENESIS:
   1736 			sc->sk_name = sc->sk_vpd_prodname;
   1737 			break;
   1738 		case SK_YUKON:
   1739 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
   1740 			break;
   1741 		case SK_YUKON_LITE:
   1742 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
   1743 			break;
   1744 		case SK_YUKON_LP:
   1745 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
   1746 			break;
   1747 		default:
   1748 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
   1749 		}
   1750 
   1751 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
   1752 
   1753 		if ( sc->sk_type == SK_YUKON ) {
   1754 			uint32_t flashaddr;
   1755 			uint8_t testbyte;
   1756 
   1757 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
   1758 
   1759 			/* test Flash-Address Register */
   1760 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
   1761 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
   1762 
   1763 			if (testbyte != 0) {
   1764 				/* this is yukon lite Rev. A0 */
   1765 				sc->sk_type = SK_YUKON_LITE;
   1766 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
   1767 				/* restore Flash-Address Register */
   1768 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
   1769 			}
   1770 		}
   1771 		break;
   1772 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
   1773 		sc->sk_name = sc->sk_vpd_prodname;
   1774 		break;
   1775  	default:
   1776 		sc->sk_name = "Unknown Marvell";
   1777 	}
   1778 
   1779 
   1780 	if ( sc->sk_type == SK_YUKON_LITE ) {
   1781 		switch (sc->sk_rev) {
   1782 		case SK_YUKON_LITE_REV_A0:
   1783 			revstr = "A0";
   1784 			break;
   1785 		case SK_YUKON_LITE_REV_A1:
   1786 			revstr = "A1";
   1787 			break;
   1788 		case SK_YUKON_LITE_REV_A3:
   1789 			revstr = "A3";
   1790 			break;
   1791 		default:
   1792 			revstr = "";
   1793 		}
   1794 	} else {
   1795 		revstr = "";
   1796 	}
   1797 
   1798 	/* Announce the product name. */
   1799 	aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
   1800 			      sc->sk_name, revstr, sc->sk_rev);
   1801 
   1802 	skca.skc_port = SK_PORT_A;
   1803 	(void)config_found(sc->sk_dev, &skca, skcprint);
   1804 
   1805 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
   1806 		skca.skc_port = SK_PORT_B;
   1807 		(void)config_found(sc->sk_dev, &skca, skcprint);
   1808 	}
   1809 
   1810 	/* Turn on the 'driver is loaded' LED. */
   1811 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   1812 
   1813 	/* skc sysctl setup */
   1814 
   1815 	sc->sk_int_mod = SK_IM_DEFAULT;
   1816 	sc->sk_int_mod_pending = 0;
   1817 
   1818 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1819 	    0, CTLTYPE_NODE, device_xname(sc->sk_dev),
   1820 	    SYSCTL_DESCR("skc per-controller controls"),
   1821 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
   1822 	    CTL_EOL)) != 0) {
   1823 		aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
   1824 		goto fail_1;
   1825 	}
   1826 
   1827 	sk_nodenum = node->sysctl_num;
   1828 
   1829 	/* interrupt moderation time in usecs */
   1830 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1831 	    CTLFLAG_READWRITE,
   1832 	    CTLTYPE_INT, "int_mod",
   1833 	    SYSCTL_DESCR("sk interrupt moderation timer"),
   1834 	    sk_sysctl_handler, 0, (void *)sc,
   1835 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
   1836 	    CTL_EOL)) != 0) {
   1837 		aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
   1838 		goto fail_1;
   1839 	}
   1840 
   1841 	if (!pmf_device_register(self, skc_suspend, skc_resume))
   1842 		aprint_error_dev(self, "couldn't establish power handler\n");
   1843 
   1844 	return;
   1845 
   1846 fail_1:
   1847 	pci_intr_disestablish(pc, sc->sk_intrhand);
   1848 fail:
   1849 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
   1850 }
   1851 
   1852 int
   1853 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
   1854 {
   1855 	struct sk_softc		*sc = sc_if->sk_softc;
   1856 	struct sk_tx_desc	*f = NULL;
   1857 	u_int32_t		frag, cur, cnt = 0, sk_ctl;
   1858 	int			i;
   1859 	struct sk_txmap_entry	*entry;
   1860 	bus_dmamap_t		txmap;
   1861 
   1862 	DPRINTFN(3, ("sk_encap\n"));
   1863 
   1864 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
   1865 	if (entry == NULL) {
   1866 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
   1867 		return ENOBUFS;
   1868 	}
   1869 	txmap = entry->dmamap;
   1870 
   1871 	cur = frag = *txidx;
   1872 
   1873 #ifdef SK_DEBUG
   1874 	if (skdebug >= 3)
   1875 		sk_dump_mbuf(m_head);
   1876 #endif
   1877 
   1878 	/*
   1879 	 * Start packing the mbufs in this chain into
   1880 	 * the fragment pointers. Stop when we run out
   1881 	 * of fragments or hit the end of the mbuf chain.
   1882 	 */
   1883 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
   1884 	    BUS_DMA_NOWAIT)) {
   1885 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
   1886 		return ENOBUFS;
   1887 	}
   1888 
   1889 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
   1890 
   1891 	/* Sync the DMA map. */
   1892 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
   1893 	    BUS_DMASYNC_PREWRITE);
   1894 
   1895 	for (i = 0; i < txmap->dm_nsegs; i++) {
   1896 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
   1897 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
   1898 			return ENOBUFS;
   1899 		}
   1900 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
   1901 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
   1902 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
   1903 		if (cnt == 0)
   1904 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
   1905 		else
   1906 			sk_ctl |= SK_TXCTL_OWN;
   1907 		f->sk_ctl = htole32(sk_ctl);
   1908 		cur = frag;
   1909 		SK_INC(frag, SK_TX_RING_CNT);
   1910 		cnt++;
   1911 	}
   1912 
   1913 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
   1914 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
   1915 
   1916 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
   1917 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
   1918 		htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
   1919 
   1920 	/* Sync descriptors before handing to chip */
   1921 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
   1922 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1923 
   1924 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
   1925 		htole32(SK_TXCTL_OWN);
   1926 
   1927 	/* Sync first descriptor to hand it off */
   1928 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1929 
   1930 	sc_if->sk_cdata.sk_tx_cnt += cnt;
   1931 
   1932 #ifdef SK_DEBUG
   1933 	if (skdebug >= 3) {
   1934 		struct sk_tx_desc *desc;
   1935 		u_int32_t idx;
   1936 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
   1937 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
   1938 			sk_dump_txdesc(desc, idx);
   1939 		}
   1940 	}
   1941 #endif
   1942 
   1943 	*txidx = frag;
   1944 
   1945 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
   1946 
   1947 	return 0;
   1948 }
   1949 
   1950 void
   1951 sk_start(struct ifnet *ifp)
   1952 {
   1953         struct sk_if_softc	*sc_if = ifp->if_softc;
   1954         struct sk_softc		*sc = sc_if->sk_softc;
   1955         struct mbuf		*m_head = NULL;
   1956         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
   1957 	int			pkts = 0;
   1958 
   1959 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
   1960 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
   1961 
   1962 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
   1963 		IFQ_POLL(&ifp->if_snd, m_head);
   1964 		if (m_head == NULL)
   1965 			break;
   1966 
   1967 		/*
   1968 		 * Pack the data into the transmit ring. If we
   1969 		 * don't have room, set the OACTIVE flag and wait
   1970 		 * for the NIC to drain the ring.
   1971 		 */
   1972 		if (sk_encap(sc_if, m_head, &idx)) {
   1973 			ifp->if_flags |= IFF_OACTIVE;
   1974 			break;
   1975 		}
   1976 
   1977 		/* now we are committed to transmit the packet */
   1978 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1979 		pkts++;
   1980 
   1981 		/*
   1982 		 * If there's a BPF listener, bounce a copy of this frame
   1983 		 * to him.
   1984 		 */
   1985 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   1986 	}
   1987 	if (pkts == 0)
   1988 		return;
   1989 
   1990 	/* Transmit */
   1991 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
   1992 		sc_if->sk_cdata.sk_tx_prod = idx;
   1993 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   1994 
   1995 		/* Set a timeout in case the chip goes out to lunch. */
   1996 		ifp->if_timer = 5;
   1997 	}
   1998 }
   1999 
   2000 
   2001 void
   2002 sk_watchdog(struct ifnet *ifp)
   2003 {
   2004 	struct sk_if_softc *sc_if = ifp->if_softc;
   2005 
   2006 	/*
   2007 	 * Reclaim first as there is a possibility of losing Tx completion
   2008 	 * interrupts.
   2009 	 */
   2010 	sk_txeof(sc_if);
   2011 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
   2012 		aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
   2013 
   2014 		ifp->if_oerrors++;
   2015 
   2016 		sk_init(ifp);
   2017 	}
   2018 }
   2019 
   2020 void
   2021 sk_shutdown(void *v)
   2022 {
   2023 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
   2024 	struct sk_softc		*sc = sc_if->sk_softc;
   2025 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
   2026 
   2027 	DPRINTFN(2, ("sk_shutdown\n"));
   2028 	sk_stop(ifp,1);
   2029 
   2030 	/* Turn off the 'driver is loaded' LED. */
   2031 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   2032 
   2033 	/*
   2034 	 * Reset the GEnesis controller. Doing this should also
   2035 	 * assert the resets on the attached XMAC(s).
   2036 	 */
   2037 	sk_reset(sc);
   2038 }
   2039 
   2040 void
   2041 sk_rxeof(struct sk_if_softc *sc_if)
   2042 {
   2043 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2044 	struct mbuf		*m;
   2045 	struct sk_chain		*cur_rx;
   2046 	struct sk_rx_desc	*cur_desc;
   2047 	int			i, cur, total_len = 0;
   2048 	u_int32_t		rxstat, sk_ctl;
   2049 	bus_dmamap_t		dmamap;
   2050 
   2051 	i = sc_if->sk_cdata.sk_rx_prod;
   2052 
   2053 	DPRINTFN(3, ("sk_rxeof %d\n", i));
   2054 
   2055 	for (;;) {
   2056 		cur = i;
   2057 
   2058 		/* Sync the descriptor */
   2059 		SK_CDRXSYNC(sc_if, cur,
   2060 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2061 
   2062 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
   2063 		if (sk_ctl & SK_RXCTL_OWN) {
   2064 			/* Invalidate the descriptor -- it's not ready yet */
   2065 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
   2066 			sc_if->sk_cdata.sk_rx_prod = i;
   2067 			break;
   2068 		}
   2069 
   2070 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
   2071 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
   2072 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
   2073 
   2074 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
   2075 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2076 
   2077 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
   2078 		m = cur_rx->sk_mbuf;
   2079 		cur_rx->sk_mbuf = NULL;
   2080 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
   2081 
   2082 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
   2083 
   2084 		SK_INC(i, SK_RX_RING_CNT);
   2085 
   2086 		if (rxstat & XM_RXSTAT_ERRFRAME) {
   2087 			ifp->if_ierrors++;
   2088 			sk_newbuf(sc_if, cur, m, dmamap);
   2089 			continue;
   2090 		}
   2091 
   2092 		/*
   2093 		 * Try to allocate a new jumbo buffer. If that
   2094 		 * fails, copy the packet to mbufs and put the
   2095 		 * jumbo buffer back in the ring so it can be
   2096 		 * re-used. If allocating mbufs fails, then we
   2097 		 * have to drop the packet.
   2098 		 */
   2099 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
   2100 			struct mbuf		*m0;
   2101 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
   2102 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
   2103 			sk_newbuf(sc_if, cur, m, dmamap);
   2104 			if (m0 == NULL) {
   2105 				aprint_error_dev(sc_if->sk_dev, "no receive "
   2106 				    "buffers available -- packet dropped!\n");
   2107 				ifp->if_ierrors++;
   2108 				continue;
   2109 			}
   2110 			m_adj(m0, ETHER_ALIGN);
   2111 			m = m0;
   2112 		} else {
   2113 			m_set_rcvif(m, ifp);
   2114 			m->m_pkthdr.len = m->m_len = total_len;
   2115 		}
   2116 
   2117 		/* pass it on. */
   2118 		if_percpuq_enqueue(ifp->if_percpuq, m);
   2119 	}
   2120 }
   2121 
   2122 void
   2123 sk_txeof(struct sk_if_softc *sc_if)
   2124 {
   2125 	struct sk_softc		*sc = sc_if->sk_softc;
   2126 	struct sk_tx_desc	*cur_tx;
   2127 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2128 	u_int32_t		idx, sk_ctl;
   2129 	struct sk_txmap_entry	*entry;
   2130 
   2131 	DPRINTFN(3, ("sk_txeof\n"));
   2132 
   2133 	/*
   2134 	 * Go through our tx ring and free mbufs for those
   2135 	 * frames that have been sent.
   2136 	 */
   2137 	idx = sc_if->sk_cdata.sk_tx_cons;
   2138 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
   2139 		SK_CDTXSYNC(sc_if, idx, 1,
   2140 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2141 
   2142 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
   2143 		sk_ctl = le32toh(cur_tx->sk_ctl);
   2144 #ifdef SK_DEBUG
   2145 		if (skdebug >= 3)
   2146 			sk_dump_txdesc(cur_tx, idx);
   2147 #endif
   2148 		if (sk_ctl & SK_TXCTL_OWN) {
   2149 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
   2150 			break;
   2151 		}
   2152 		if (sk_ctl & SK_TXCTL_LASTFRAG)
   2153 			ifp->if_opackets++;
   2154 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
   2155 			entry = sc_if->sk_cdata.sk_tx_map[idx];
   2156 
   2157 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
   2158 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
   2159 
   2160 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
   2161 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2162 
   2163 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
   2164 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
   2165 					  link);
   2166 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
   2167 		}
   2168 		sc_if->sk_cdata.sk_tx_cnt--;
   2169 		SK_INC(idx, SK_TX_RING_CNT);
   2170 	}
   2171 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
   2172 		ifp->if_timer = 0;
   2173 	else /* nudge chip to keep tx ring moving */
   2174 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   2175 
   2176 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
   2177 		ifp->if_flags &= ~IFF_OACTIVE;
   2178 
   2179 	sc_if->sk_cdata.sk_tx_cons = idx;
   2180 }
   2181 
   2182 void
   2183 sk_tick(void *xsc_if)
   2184 {
   2185 	struct sk_if_softc *sc_if = xsc_if;
   2186 	struct mii_data *mii = &sc_if->sk_mii;
   2187 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2188 	int i;
   2189 
   2190 	DPRINTFN(3, ("sk_tick\n"));
   2191 
   2192 	if (!(ifp->if_flags & IFF_UP))
   2193 		return;
   2194 
   2195 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2196 		sk_intr_bcom(sc_if);
   2197 		return;
   2198 	}
   2199 
   2200 	/*
   2201 	 * According to SysKonnect, the correct way to verify that
   2202 	 * the link has come back up is to poll bit 0 of the GPIO
   2203 	 * register three times. This pin has the signal from the
   2204 	 * link sync pin connected to it; if we read the same link
   2205 	 * state 3 times in a row, we know the link is up.
   2206 	 */
   2207 	for (i = 0; i < 3; i++) {
   2208 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
   2209 			break;
   2210 	}
   2211 
   2212 	if (i != 3) {
   2213 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2214 		return;
   2215 	}
   2216 
   2217 	/* Turn the GP0 interrupt back on. */
   2218 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2219 	SK_XM_READ_2(sc_if, XM_ISR);
   2220 	mii_tick(mii);
   2221 	if (ifp->if_link_state != LINK_STATE_UP)
   2222 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2223 	else
   2224 		callout_stop(&sc_if->sk_tick_ch);
   2225 }
   2226 
   2227 void
   2228 sk_intr_bcom(struct sk_if_softc *sc_if)
   2229 {
   2230 	struct mii_data *mii = &sc_if->sk_mii;
   2231 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2232 	int status;
   2233 
   2234 
   2235 	DPRINTFN(3, ("sk_intr_bcom\n"));
   2236 
   2237 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2238 
   2239 	/*
   2240 	 * Read the PHY interrupt register to make sure
   2241 	 * we clear any pending interrupts.
   2242 	 */
   2243 	status = sk_xmac_miibus_readreg(sc_if->sk_dev,
   2244 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
   2245 
   2246 	if (!(ifp->if_flags & IFF_RUNNING)) {
   2247 		sk_init_xmac(sc_if);
   2248 		return;
   2249 	}
   2250 
   2251 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
   2252 		int lstat;
   2253 		lstat = sk_xmac_miibus_readreg(sc_if->sk_dev,
   2254 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
   2255 
   2256 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
   2257 			(void)mii_mediachg(mii);
   2258 			/* Turn off the link LED. */
   2259 			SK_IF_WRITE_1(sc_if, 0,
   2260 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2261 			sc_if->sk_link = 0;
   2262 		} else if (status & BRGPHY_ISR_LNK_CHG) {
   2263 			sk_xmac_miibus_writereg(sc_if->sk_dev,
   2264 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
   2265 			mii_tick(mii);
   2266 			sc_if->sk_link = 1;
   2267 			/* Turn on the link LED. */
   2268 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2269 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
   2270 			    SK_LINKLED_BLINK_OFF);
   2271 			mii_pollstat(mii);
   2272 		} else {
   2273 			mii_tick(mii);
   2274 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
   2275 		}
   2276 	}
   2277 
   2278 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2279 }
   2280 
   2281 void
   2282 sk_intr_xmac(struct sk_if_softc	*sc_if)
   2283 {
   2284 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
   2285 
   2286 	DPRINTFN(3, ("sk_intr_xmac\n"));
   2287 
   2288 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
   2289 		if (status & XM_ISR_GP0_SET) {
   2290 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2291 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2292 		}
   2293 
   2294 		if (status & XM_ISR_AUTONEG_DONE) {
   2295 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2296 		}
   2297 	}
   2298 
   2299 	if (status & XM_IMR_TX_UNDERRUN)
   2300 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
   2301 
   2302 	if (status & XM_IMR_RX_OVERRUN)
   2303 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
   2304 }
   2305 
   2306 void
   2307 sk_intr_yukon(struct sk_if_softc *sc_if)
   2308 {
   2309 #ifdef SK_DEBUG
   2310 	int status;
   2311 
   2312 	status =
   2313 #endif
   2314 		SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2315 
   2316 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
   2317 }
   2318 
   2319 int
   2320 sk_intr(void *xsc)
   2321 {
   2322 	struct sk_softc		*sc = xsc;
   2323 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
   2324 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
   2325 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
   2326 	u_int32_t		status;
   2327 	int			claimed = 0;
   2328 
   2329 	if (sc_if0 != NULL)
   2330 		ifp0 = &sc_if0->sk_ethercom.ec_if;
   2331 	if (sc_if1 != NULL)
   2332 		ifp1 = &sc_if1->sk_ethercom.ec_if;
   2333 
   2334 	for (;;) {
   2335 		status = CSR_READ_4(sc, SK_ISSR);
   2336 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
   2337 
   2338 		if (!(status & sc->sk_intrmask))
   2339 			break;
   2340 
   2341 		claimed = 1;
   2342 
   2343 		/* Handle receive interrupts first. */
   2344 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
   2345 			sk_rxeof(sc_if0);
   2346 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
   2347 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2348 		}
   2349 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
   2350 			sk_rxeof(sc_if1);
   2351 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
   2352 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2353 		}
   2354 
   2355 		/* Then transmit interrupts. */
   2356 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
   2357 			sk_txeof(sc_if0);
   2358 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
   2359 			    SK_TXBMU_CLR_IRQ_EOF);
   2360 		}
   2361 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
   2362 			sk_txeof(sc_if1);
   2363 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
   2364 			    SK_TXBMU_CLR_IRQ_EOF);
   2365 		}
   2366 
   2367 		/* Then MAC interrupts. */
   2368 		if (sc_if0 && (status & SK_ISR_MAC1) &&
   2369 		    (ifp0->if_flags & IFF_RUNNING)) {
   2370 			if (sc->sk_type == SK_GENESIS)
   2371 				sk_intr_xmac(sc_if0);
   2372 			else
   2373 				sk_intr_yukon(sc_if0);
   2374 		}
   2375 
   2376 		if (sc_if1 && (status & SK_ISR_MAC2) &&
   2377 		    (ifp1->if_flags & IFF_RUNNING)) {
   2378 			if (sc->sk_type == SK_GENESIS)
   2379 				sk_intr_xmac(sc_if1);
   2380 			else
   2381 				sk_intr_yukon(sc_if1);
   2382 
   2383 		}
   2384 
   2385 		if (status & SK_ISR_EXTERNAL_REG) {
   2386 			if (sc_if0 != NULL &&
   2387 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
   2388 				sk_intr_bcom(sc_if0);
   2389 
   2390 			if (sc_if1 != NULL &&
   2391 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
   2392 				sk_intr_bcom(sc_if1);
   2393 		}
   2394 	}
   2395 
   2396 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2397 
   2398 	if (ifp0 != NULL)
   2399 		if_schedule_deferred_start(ifp0);
   2400 	if (ifp1 != NULL)
   2401 		if_schedule_deferred_start(ifp1);
   2402 
   2403 	rnd_add_uint32(&sc->rnd_source, status);
   2404 
   2405 	if (sc->sk_int_mod_pending)
   2406 		sk_update_int_mod(sc);
   2407 
   2408 	return claimed;
   2409 }
   2410 
   2411 void
   2412 sk_init_xmac(struct sk_if_softc	*sc_if)
   2413 {
   2414 	struct sk_softc		*sc = sc_if->sk_softc;
   2415 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2416 	static const struct sk_bcom_hack     bhack[] = {
   2417 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
   2418 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
   2419 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
   2420 	{ 0, 0 } };
   2421 
   2422 	DPRINTFN(1, ("sk_init_xmac\n"));
   2423 
   2424 	/* Unreset the XMAC. */
   2425 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
   2426 	DELAY(1000);
   2427 
   2428 	/* Reset the XMAC's internal state. */
   2429 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2430 
   2431 	/* Save the XMAC II revision */
   2432 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
   2433 
   2434 	/*
   2435 	 * Perform additional initialization for external PHYs,
   2436 	 * namely for the 1000baseTX cards that use the XMAC's
   2437 	 * GMII mode.
   2438 	 */
   2439 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2440 		int			i = 0;
   2441 		u_int32_t		val;
   2442 
   2443 		/* Take PHY out of reset. */
   2444 		val = sk_win_read_4(sc, SK_GPIO);
   2445 		if (sc_if->sk_port == SK_PORT_A)
   2446 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
   2447 		else
   2448 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
   2449 		sk_win_write_4(sc, SK_GPIO, val);
   2450 
   2451 		/* Enable GMII mode on the XMAC. */
   2452 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
   2453 
   2454 		sk_xmac_miibus_writereg(sc_if->sk_dev,
   2455 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
   2456 		DELAY(10000);
   2457 		sk_xmac_miibus_writereg(sc_if->sk_dev,
   2458 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
   2459 
   2460 		/*
   2461 		 * Early versions of the BCM5400 apparently have
   2462 		 * a bug that requires them to have their reserved
   2463 		 * registers initialized to some magic values. I don't
   2464 		 * know what the numbers do, I'm just the messenger.
   2465 		 */
   2466 		if (sk_xmac_miibus_readreg(sc_if->sk_dev,
   2467 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
   2468 			while (bhack[i].reg) {
   2469 				sk_xmac_miibus_writereg(sc_if->sk_dev,
   2470 				    SK_PHYADDR_BCOM, bhack[i].reg,
   2471 				    bhack[i].val);
   2472 				i++;
   2473 			}
   2474 		}
   2475 	}
   2476 
   2477 	/* Set station address */
   2478 	SK_XM_WRITE_2(sc_if, XM_PAR0,
   2479 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
   2480 	SK_XM_WRITE_2(sc_if, XM_PAR1,
   2481 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
   2482 	SK_XM_WRITE_2(sc_if, XM_PAR2,
   2483 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
   2484 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
   2485 
   2486 	if (ifp->if_flags & IFF_PROMISC)
   2487 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2488 	else
   2489 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2490 
   2491 	if (ifp->if_flags & IFF_BROADCAST)
   2492 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2493 	else
   2494 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2495 
   2496 	/* We don't need the FCS appended to the packet. */
   2497 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
   2498 
   2499 	/* We want short frames padded to 60 bytes. */
   2500 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
   2501 
   2502 	/*
   2503 	 * Enable the reception of all error frames. This is is
   2504 	 * a necessary evil due to the design of the XMAC. The
   2505 	 * XMAC's receive FIFO is only 8K in size, however jumbo
   2506 	 * frames can be up to 9000 bytes in length. When bad
   2507 	 * frame filtering is enabled, the XMAC's RX FIFO operates
   2508 	 * in 'store and forward' mode. For this to work, the
   2509 	 * entire frame has to fit into the FIFO, but that means
   2510 	 * that jumbo frames larger than 8192 bytes will be
   2511 	 * truncated. Disabling all bad frame filtering causes
   2512 	 * the RX FIFO to operate in streaming mode, in which
   2513 	 * case the XMAC will start transfering frames out of the
   2514 	 * RX FIFO as soon as the FIFO threshold is reached.
   2515 	 */
   2516 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
   2517 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
   2518 	    XM_MODE_RX_INRANGELEN);
   2519 
   2520 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2521 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2522 	else
   2523 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2524 
   2525 	/*
   2526 	 * Bump up the transmit threshold. This helps hold off transmit
   2527 	 * underruns when we're blasting traffic from both ports at once.
   2528 	 */
   2529 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
   2530 
   2531 	/* Set multicast filter */
   2532 	sk_setmulti(sc_if);
   2533 
   2534 	/* Clear and enable interrupts */
   2535 	SK_XM_READ_2(sc_if, XM_ISR);
   2536 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
   2537 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
   2538 	else
   2539 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2540 
   2541 	/* Configure MAC arbiter */
   2542 	switch (sc_if->sk_xmac_rev) {
   2543 	case XM_XMAC_REV_B2:
   2544 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
   2545 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
   2546 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
   2547 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
   2548 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
   2549 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
   2550 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
   2551 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
   2552 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2553 		break;
   2554 	case XM_XMAC_REV_C1:
   2555 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
   2556 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
   2557 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
   2558 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
   2559 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
   2560 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
   2561 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
   2562 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
   2563 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2564 		break;
   2565 	default:
   2566 		break;
   2567 	}
   2568 	sk_win_write_2(sc, SK_MACARB_CTL,
   2569 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
   2570 
   2571 	sc_if->sk_link = 1;
   2572 }
   2573 
   2574 void sk_init_yukon(struct sk_if_softc *sc_if)
   2575 {
   2576 	u_int32_t		/*mac, */phy;
   2577 	u_int16_t		reg;
   2578 	struct sk_softc		*sc;
   2579 	int			i;
   2580 
   2581 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
   2582 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
   2583 
   2584 	sc = sc_if->sk_softc;
   2585 	if (sc->sk_type == SK_YUKON_LITE &&
   2586 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
   2587 		/* Take PHY out of reset. */
   2588 		sk_win_write_4(sc, SK_GPIO,
   2589 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
   2590 	}
   2591 
   2592 
   2593 	/* GMAC and GPHY Reset */
   2594 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
   2595 
   2596 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
   2597 
   2598 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2599 	DELAY(1000);
   2600 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
   2601 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2602 	DELAY(1000);
   2603 
   2604 
   2605 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
   2606 
   2607 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
   2608 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
   2609 
   2610 	switch (sc_if->sk_softc->sk_pmd) {
   2611 	case IFM_1000_SX:
   2612 	case IFM_1000_LX:
   2613 		phy |= SK_GPHY_FIBER;
   2614 		break;
   2615 
   2616 	case IFM_1000_CX:
   2617 	case IFM_1000_T:
   2618 		phy |= SK_GPHY_COPPER;
   2619 		break;
   2620 	}
   2621 
   2622 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
   2623 
   2624 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
   2625 	DELAY(1000);
   2626 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
   2627 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
   2628 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
   2629 
   2630 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
   2631 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
   2632 
   2633 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
   2634 
   2635 	/* unused read of the interrupt source register */
   2636 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
   2637 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2638 
   2639 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
   2640 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
   2641 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2642 
   2643 	/* MIB Counter Clear Mode set */
   2644         reg |= YU_PAR_MIB_CLR;
   2645 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2646 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
   2647 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2648 
   2649 	/* MIB Counter Clear Mode clear */
   2650 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
   2651         reg &= ~YU_PAR_MIB_CLR;
   2652 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2653 
   2654 	/* receive control reg */
   2655 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
   2656 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
   2657 		      YU_RCR_CRCR);
   2658 
   2659 	/* transmit parameter register */
   2660 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
   2661 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
   2662 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
   2663 
   2664 	/* serial mode register */
   2665 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
   2666 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
   2667 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
   2668 		      YU_SMR_IPG_DATA(0x1e));
   2669 
   2670 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
   2671 	/* Setup Yukon's address */
   2672 	for (i = 0; i < 3; i++) {
   2673 		/* Write Source Address 1 (unicast filter) */
   2674 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
   2675 			      sc_if->sk_enaddr[i * 2] |
   2676 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
   2677 	}
   2678 
   2679 	for (i = 0; i < 3; i++) {
   2680 		reg = sk_win_read_2(sc_if->sk_softc,
   2681 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
   2682 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
   2683 	}
   2684 
   2685 	/* Set multicast filter */
   2686 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
   2687 	sk_setmulti(sc_if);
   2688 
   2689 	/* enable interrupt mask for counter overflows */
   2690 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
   2691 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
   2692 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
   2693 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
   2694 
   2695 	/* Configure RX MAC FIFO */
   2696 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
   2697 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
   2698 
   2699 	/* Configure TX MAC FIFO */
   2700 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
   2701 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
   2702 
   2703 	DPRINTFN(6, ("sk_init_yukon: end\n"));
   2704 }
   2705 
   2706 /*
   2707  * Note that to properly initialize any part of the GEnesis chip,
   2708  * you first have to take it out of reset mode.
   2709  */
   2710 int
   2711 sk_init(struct ifnet *ifp)
   2712 {
   2713 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2714 	struct sk_softc		*sc = sc_if->sk_softc;
   2715 	struct mii_data		*mii = &sc_if->sk_mii;
   2716 	int			rc = 0, s;
   2717 	u_int32_t		imr, imtimer_ticks;
   2718 
   2719 	DPRINTFN(1, ("sk_init\n"));
   2720 
   2721 	s = splnet();
   2722 
   2723 	if (ifp->if_flags & IFF_RUNNING) {
   2724 		splx(s);
   2725 		return 0;
   2726 	}
   2727 
   2728 	/* Cancel pending I/O and free all RX/TX buffers. */
   2729 	sk_stop(ifp,0);
   2730 
   2731 	if (sc->sk_type == SK_GENESIS) {
   2732 		/* Configure LINK_SYNC LED */
   2733 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
   2734 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2735 			      SK_LINKLED_LINKSYNC_ON);
   2736 
   2737 		/* Configure RX LED */
   2738 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
   2739 			      SK_RXLEDCTL_COUNTER_START);
   2740 
   2741 		/* Configure TX LED */
   2742 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
   2743 			      SK_TXLEDCTL_COUNTER_START);
   2744 	}
   2745 
   2746 	/* Configure I2C registers */
   2747 
   2748 	/* Configure XMAC(s) */
   2749 	switch (sc->sk_type) {
   2750 	case SK_GENESIS:
   2751 		sk_init_xmac(sc_if);
   2752 		break;
   2753 	case SK_YUKON:
   2754 	case SK_YUKON_LITE:
   2755 	case SK_YUKON_LP:
   2756 		sk_init_yukon(sc_if);
   2757 		break;
   2758 	}
   2759 	if ((rc = mii_mediachg(mii)) == ENXIO)
   2760 		rc = 0;
   2761 	else if (rc != 0)
   2762 		goto out;
   2763 
   2764 	if (sc->sk_type == SK_GENESIS) {
   2765 		/* Configure MAC FIFOs */
   2766 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
   2767 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
   2768 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
   2769 
   2770 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
   2771 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
   2772 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
   2773 	}
   2774 
   2775 	/* Configure transmit arbiter(s) */
   2776 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
   2777 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
   2778 
   2779 	/* Configure RAMbuffers */
   2780 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
   2781 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
   2782 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
   2783 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
   2784 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
   2785 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
   2786 
   2787 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
   2788 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
   2789 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
   2790 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
   2791 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
   2792 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
   2793 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
   2794 
   2795 	/* Configure BMUs */
   2796 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
   2797 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
   2798 	    SK_RX_RING_ADDR(sc_if, 0));
   2799 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
   2800 
   2801 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
   2802 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
   2803             SK_TX_RING_ADDR(sc_if, 0));
   2804 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
   2805 
   2806 	/* Init descriptors */
   2807 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
   2808 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
   2809 		    "memory for rx buffers\n");
   2810 		sk_stop(ifp,0);
   2811 		splx(s);
   2812 		return ENOBUFS;
   2813 	}
   2814 
   2815 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
   2816 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
   2817 		    "memory for tx buffers\n");
   2818 		sk_stop(ifp,0);
   2819 		splx(s);
   2820 		return ENOBUFS;
   2821 	}
   2822 
   2823 	/* Set interrupt moderation if changed via sysctl. */
   2824 	switch (sc->sk_type) {
   2825 	case SK_GENESIS:
   2826 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   2827 		break;
   2828 	case SK_YUKON_EC:
   2829 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   2830 		break;
   2831 	default:
   2832 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   2833 	}
   2834 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
   2835 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
   2836 		sk_win_write_4(sc, SK_IMTIMERINIT,
   2837 		    SK_IM_USECS(sc->sk_int_mod));
   2838 		aprint_verbose_dev(sc->sk_dev,
   2839 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
   2840 	}
   2841 
   2842 	/* Configure interrupt handling */
   2843 	CSR_READ_4(sc, SK_ISSR);
   2844 	if (sc_if->sk_port == SK_PORT_A)
   2845 		sc->sk_intrmask |= SK_INTRS1;
   2846 	else
   2847 		sc->sk_intrmask |= SK_INTRS2;
   2848 
   2849 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
   2850 
   2851 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2852 
   2853 	/* Start BMUs. */
   2854 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
   2855 
   2856 	if (sc->sk_type == SK_GENESIS) {
   2857 		/* Enable XMACs TX and RX state machines */
   2858 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
   2859 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
   2860 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2861 	}
   2862 
   2863 	if (SK_YUKON_FAMILY(sc->sk_type)) {
   2864 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
   2865 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
   2866 #if 0
   2867 		/* XXX disable 100Mbps and full duplex mode? */
   2868 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
   2869 #endif
   2870 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
   2871 	}
   2872 
   2873 
   2874 	ifp->if_flags |= IFF_RUNNING;
   2875 	ifp->if_flags &= ~IFF_OACTIVE;
   2876 	callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2877 
   2878 out:
   2879 	splx(s);
   2880 	return rc;
   2881 }
   2882 
   2883 void
   2884 sk_stop(struct ifnet *ifp, int disable)
   2885 {
   2886         struct sk_if_softc	*sc_if = ifp->if_softc;
   2887 	struct sk_softc		*sc = sc_if->sk_softc;
   2888 	int			i;
   2889 
   2890 	DPRINTFN(1, ("sk_stop\n"));
   2891 
   2892 	callout_stop(&sc_if->sk_tick_ch);
   2893 
   2894 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2895 		u_int32_t		val;
   2896 
   2897 		/* Put PHY back into reset. */
   2898 		val = sk_win_read_4(sc, SK_GPIO);
   2899 		if (sc_if->sk_port == SK_PORT_A) {
   2900 			val |= SK_GPIO_DIR0;
   2901 			val &= ~SK_GPIO_DAT0;
   2902 		} else {
   2903 			val |= SK_GPIO_DIR2;
   2904 			val &= ~SK_GPIO_DAT2;
   2905 		}
   2906 		sk_win_write_4(sc, SK_GPIO, val);
   2907 	}
   2908 
   2909 	/* Turn off various components of this interface. */
   2910 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2911 	switch (sc->sk_type) {
   2912 	case SK_GENESIS:
   2913 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
   2914 			      SK_TXMACCTL_XMAC_RESET);
   2915 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
   2916 		break;
   2917 	case SK_YUKON:
   2918 	case SK_YUKON_LITE:
   2919 	case SK_YUKON_LP:
   2920 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
   2921 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
   2922 		break;
   2923 	}
   2924 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
   2925 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2926 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
   2927 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2928 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
   2929 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2930 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2931 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2932 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
   2933 
   2934 	/* Disable interrupts */
   2935 	if (sc_if->sk_port == SK_PORT_A)
   2936 		sc->sk_intrmask &= ~SK_INTRS1;
   2937 	else
   2938 		sc->sk_intrmask &= ~SK_INTRS2;
   2939 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2940 
   2941 	SK_XM_READ_2(sc_if, XM_ISR);
   2942 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2943 
   2944 	/* Free RX and TX mbufs still in the queues. */
   2945 	for (i = 0; i < SK_RX_RING_CNT; i++) {
   2946 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
   2947 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
   2948 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   2949 		}
   2950 	}
   2951 
   2952 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   2953 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
   2954 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
   2955 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   2956 		}
   2957 	}
   2958 
   2959 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
   2960 }
   2961 
   2962 /* Power Management Framework */
   2963 
   2964 static bool
   2965 skc_suspend(device_t dv, const pmf_qual_t *qual)
   2966 {
   2967 	struct sk_softc *sc = device_private(dv);
   2968 
   2969 	DPRINTFN(2, ("skc_suspend\n"));
   2970 
   2971 	/* Turn off the driver is loaded LED */
   2972 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   2973 
   2974 	return true;
   2975 }
   2976 
   2977 static bool
   2978 skc_resume(device_t dv, const pmf_qual_t *qual)
   2979 {
   2980 	struct sk_softc *sc = device_private(dv);
   2981 
   2982 	DPRINTFN(2, ("skc_resume\n"));
   2983 
   2984 	sk_reset(sc);
   2985 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   2986 
   2987 	return true;
   2988 }
   2989 
   2990 static bool
   2991 sk_resume(device_t dv, const pmf_qual_t *qual)
   2992 {
   2993 	struct sk_if_softc *sc_if = device_private(dv);
   2994 
   2995 	sk_init_yukon(sc_if);
   2996 	return true;
   2997 }
   2998 
   2999 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
   3000     skc_probe, skc_attach, NULL, NULL);
   3001 
   3002 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
   3003     sk_probe, sk_attach, NULL, NULL);
   3004 
   3005 #ifdef SK_DEBUG
   3006 void
   3007 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
   3008 {
   3009 #define DESC_PRINT(X)					\
   3010 	if (X)					\
   3011 		printf("txdesc[%d]." #X "=%#x\n",	\
   3012 		       idx, X);
   3013 
   3014 	DESC_PRINT(le32toh(desc->sk_ctl));
   3015 	DESC_PRINT(le32toh(desc->sk_next));
   3016 	DESC_PRINT(le32toh(desc->sk_data_lo));
   3017 	DESC_PRINT(le32toh(desc->sk_data_hi));
   3018 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
   3019 	DESC_PRINT(le16toh(desc->sk_rsvd0));
   3020 	DESC_PRINT(le16toh(desc->sk_csum_startval));
   3021 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
   3022 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
   3023 	DESC_PRINT(le16toh(desc->sk_rsvd1));
   3024 #undef PRINT
   3025 }
   3026 
   3027 void
   3028 sk_dump_bytes(const char *data, int len)
   3029 {
   3030 	int c, i, j;
   3031 
   3032 	for (i = 0; i < len; i += 16) {
   3033 		printf("%08x  ", i);
   3034 		c = len - i;
   3035 		if (c > 16) c = 16;
   3036 
   3037 		for (j = 0; j < c; j++) {
   3038 			printf("%02x ", data[i + j] & 0xff);
   3039 			if ((j & 0xf) == 7 && j > 0)
   3040 				printf(" ");
   3041 		}
   3042 
   3043 		for (; j < 16; j++)
   3044 			printf("   ");
   3045 		printf("  ");
   3046 
   3047 		for (j = 0; j < c; j++) {
   3048 			int ch = data[i + j] & 0xff;
   3049 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
   3050 		}
   3051 
   3052 		printf("\n");
   3053 
   3054 		if (c < 16)
   3055 			break;
   3056 	}
   3057 }
   3058 
   3059 void
   3060 sk_dump_mbuf(struct mbuf *m)
   3061 {
   3062 	int count = m->m_pkthdr.len;
   3063 
   3064 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
   3065 
   3066 	while (count > 0 && m) {
   3067 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
   3068 		       m, m->m_data, m->m_len);
   3069 		sk_dump_bytes(mtod(m, char *), m->m_len);
   3070 
   3071 		count -= m->m_len;
   3072 		m = m->m_next;
   3073 	}
   3074 }
   3075 #endif
   3076 
   3077 static int
   3078 sk_sysctl_handler(SYSCTLFN_ARGS)
   3079 {
   3080 	int error, t;
   3081 	struct sysctlnode node;
   3082 	struct sk_softc *sc;
   3083 
   3084 	node = *rnode;
   3085 	sc = node.sysctl_data;
   3086 	t = sc->sk_int_mod;
   3087 	node.sysctl_data = &t;
   3088 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3089 	if (error || newp == NULL)
   3090 		return error;
   3091 
   3092 	if (t < SK_IM_MIN || t > SK_IM_MAX)
   3093 		return EINVAL;
   3094 
   3095 	/* update the softc with sysctl-changed value, and mark
   3096 	   for hardware update */
   3097 	sc->sk_int_mod = t;
   3098 	sc->sk_int_mod_pending = 1;
   3099 	return 0;
   3100 }
   3101 
   3102 /*
   3103  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
   3104  * set up in skc_attach()
   3105  */
   3106 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
   3107 {
   3108 	int rc;
   3109 	const struct sysctlnode *node;
   3110 
   3111 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   3112 	    0, CTLTYPE_NODE, "sk",
   3113 	    SYSCTL_DESCR("sk interface controls"),
   3114 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   3115 		goto err;
   3116 	}
   3117 
   3118 	sk_root_num = node->sysctl_num;
   3119 	return;
   3120 
   3121 err:
   3122 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
   3123 }
   3124