Home | History | Annotate | Line # | Download | only in pci
if_sk.c revision 1.87.2.2
      1 /*	$NetBSD: if_sk.c,v 1.87.2.2 2020/04/08 14:08:09 martin Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
     30 
     31 /*
     32  * Copyright (c) 1997, 1998, 1999, 2000
     33  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *	This product includes software developed by Bill Paul.
     46  * 4. Neither the name of the author nor the names of any co-contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     60  * THE POSSIBILITY OF SUCH DAMAGE.
     61  *
     62  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
     63  */
     64 
     65 /*
     66  * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
     67  *
     68  * Permission to use, copy, modify, and distribute this software for any
     69  * purpose with or without fee is hereby granted, provided that the above
     70  * copyright notice and this permission notice appear in all copies.
     71  *
     72  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     73  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     74  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     75  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     76  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     77  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     78  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     79  */
     80 
     81 /*
     82  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
     83  * the SK-984x series adapters, both single port and dual port.
     84  * References:
     85  *	The XaQti XMAC II datasheet,
     86  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     87  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
     88  *
     89  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
     90  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
     91  * convenience to others until Vitesse corrects this problem:
     92  *
     93  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     94  *
     95  * Written by Bill Paul <wpaul (at) ee.columbia.edu>
     96  * Department of Electrical Engineering
     97  * Columbia University, New York City
     98  */
     99 
    100 /*
    101  * The SysKonnect gigabit ethernet adapters consist of two main
    102  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
    103  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
    104  * components and a PHY while the GEnesis controller provides a PCI
    105  * interface with DMA support. Each card may have between 512K and
    106  * 2MB of SRAM on board depending on the configuration.
    107  *
    108  * The SysKonnect GEnesis controller can have either one or two XMAC
    109  * chips connected to it, allowing single or dual port NIC configurations.
    110  * SysKonnect has the distinction of being the only vendor on the market
    111  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
    112  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
    113  * XMAC registers. This driver takes advantage of these features to allow
    114  * both XMACs to operate as independent interfaces.
    115  */
    116 
    117 #include <sys/cdefs.h>
    118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.87.2.2 2020/04/08 14:08:09 martin Exp $");
    119 
    120 #include <sys/param.h>
    121 #include <sys/systm.h>
    122 #include <sys/sockio.h>
    123 #include <sys/mbuf.h>
    124 #include <sys/malloc.h>
    125 #include <sys/mutex.h>
    126 #include <sys/kernel.h>
    127 #include <sys/socket.h>
    128 #include <sys/device.h>
    129 #include <sys/queue.h>
    130 #include <sys/callout.h>
    131 #include <sys/sysctl.h>
    132 #include <sys/endian.h>
    133 
    134 #include <net/if.h>
    135 #include <net/if_dl.h>
    136 #include <net/if_types.h>
    137 
    138 #include <net/if_media.h>
    139 
    140 #include <net/bpf.h>
    141 #include <sys/rndsource.h>
    142 
    143 #include <dev/mii/mii.h>
    144 #include <dev/mii/miivar.h>
    145 #include <dev/mii/brgphyreg.h>
    146 
    147 #include <dev/pci/pcireg.h>
    148 #include <dev/pci/pcivar.h>
    149 #include <dev/pci/pcidevs.h>
    150 
    151 /* #define SK_USEIOSPACE */
    152 
    153 #include <dev/pci/if_skreg.h>
    154 #include <dev/pci/if_skvar.h>
    155 
    156 static int skc_probe(device_t, cfdata_t, void *);
    157 static void skc_attach(device_t, device_t, void *);
    158 static int sk_probe(device_t, cfdata_t, void *);
    159 static void sk_attach(device_t, device_t, void *);
    160 static int skcprint(void *, const char *);
    161 static int sk_intr(void *);
    162 static void sk_intr_bcom(struct sk_if_softc *);
    163 static void sk_intr_xmac(struct sk_if_softc *);
    164 static void sk_intr_yukon(struct sk_if_softc *);
    165 static void sk_rxeof(struct sk_if_softc *);
    166 static void sk_txeof(struct sk_if_softc *);
    167 static int sk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
    168 static void sk_start(struct ifnet *);
    169 static int sk_ioctl(struct ifnet *, u_long, void *);
    170 static int sk_init(struct ifnet *);
    171 static void sk_unreset_xmac(struct sk_if_softc *);
    172 static void sk_init_xmac(struct sk_if_softc *);
    173 static void sk_unreset_yukon(struct sk_if_softc *);
    174 static void sk_init_yukon(struct sk_if_softc *);
    175 static void sk_stop(struct ifnet *, int);
    176 static void sk_watchdog(struct ifnet *);
    177 static int sk_ifmedia_upd(struct ifnet *);
    178 static void sk_reset(struct sk_softc *);
    179 static int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
    180 static int sk_alloc_jumbo_mem(struct sk_if_softc *);
    181 static void *sk_jalloc(struct sk_if_softc *);
    182 static void sk_jfree(struct mbuf *, void *, size_t, void *);
    183 static int sk_init_rx_ring(struct sk_if_softc *);
    184 static int sk_init_tx_ring(struct sk_if_softc *);
    185 static uint8_t sk_vpd_readbyte(struct sk_softc *, int);
    186 static void sk_vpd_read_res(struct sk_softc *, struct vpd_res *, int);
    187 static void sk_vpd_read(struct sk_softc *);
    188 
    189 static void sk_update_int_mod(struct sk_softc *);
    190 
    191 static int sk_xmac_miibus_readreg(device_t, int, int, uint16_t *);
    192 static int sk_xmac_miibus_writereg(device_t, int, int, uint16_t);
    193 static void sk_xmac_miibus_statchg(struct ifnet *);
    194 
    195 static int sk_marv_miibus_readreg(device_t, int, int, uint16_t *);
    196 static int sk_marv_miibus_writereg(device_t, int, int, uint16_t);
    197 static void sk_marv_miibus_statchg(struct ifnet *);
    198 
    199 static uint32_t sk_xmac_hash(void *);
    200 static uint32_t sk_yukon_hash(void *);
    201 static void sk_setfilt(struct sk_if_softc *, void *, int);
    202 static void sk_setmulti(struct sk_if_softc *);
    203 static void sk_tick(void *);
    204 
    205 static bool skc_suspend(device_t, const pmf_qual_t *);
    206 static bool skc_resume(device_t, const pmf_qual_t *);
    207 static bool sk_resume(device_t dv, const pmf_qual_t *);
    208 
    209 /* #define SK_DEBUG 2 */
    210 #ifdef SK_DEBUG
    211 #define DPRINTF(x)	if (skdebug) printf x
    212 #define DPRINTFN(n, x)	if (skdebug >= (n)) printf x
    213 int	skdebug = SK_DEBUG;
    214 
    215 static void sk_dump_txdesc(struct sk_tx_desc *, int);
    216 static void sk_dump_mbuf(struct mbuf *);
    217 static void sk_dump_bytes(const char *, int);
    218 #else
    219 #define DPRINTF(x)
    220 #define DPRINTFN(n, x)
    221 #endif
    222 
    223 static int sk_sysctl_handler(SYSCTLFN_PROTO);
    224 static int sk_root_num;
    225 
    226 /* supported device vendors */
    227 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
    228 static const struct sk_product {
    229 	pci_vendor_id_t		sk_vendor;
    230 	pci_product_id_t	sk_product;
    231 } sk_products[] = {
    232 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
    233 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
    234 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
    235 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
    236 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
    237 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
    238 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
    239 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
    240 	{ 0, 0, }
    241 };
    242 
    243 #define SK_LINKSYS_EG1032_SUBID	0x00151737
    244 
    245 static inline uint32_t
    246 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
    247 {
    248 #ifdef SK_USEIOSPACE
    249 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    250 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
    251 #else
    252 	return CSR_READ_4(sc, reg);
    253 #endif
    254 }
    255 
    256 static inline uint16_t
    257 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
    258 {
    259 #ifdef SK_USEIOSPACE
    260 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    261 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
    262 #else
    263 	return CSR_READ_2(sc, reg);
    264 #endif
    265 }
    266 
    267 static inline uint8_t
    268 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
    269 {
    270 #ifdef SK_USEIOSPACE
    271 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    272 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
    273 #else
    274 	return CSR_READ_1(sc, reg);
    275 #endif
    276 }
    277 
    278 static inline void
    279 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
    280 {
    281 #ifdef SK_USEIOSPACE
    282 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    283 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
    284 #else
    285 	CSR_WRITE_4(sc, reg, x);
    286 #endif
    287 }
    288 
    289 static inline void
    290 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
    291 {
    292 #ifdef SK_USEIOSPACE
    293 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    294 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
    295 #else
    296 	CSR_WRITE_2(sc, reg, x);
    297 #endif
    298 }
    299 
    300 static inline void
    301 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
    302 {
    303 #ifdef SK_USEIOSPACE
    304 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    305 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
    306 #else
    307 	CSR_WRITE_1(sc, reg, x);
    308 #endif
    309 }
    310 
    311 /*
    312  * The VPD EEPROM contains Vital Product Data, as suggested in
    313  * the PCI 2.1 specification. The VPD data is separared into areas
    314  * denoted by resource IDs. The SysKonnect VPD contains an ID string
    315  * resource (the name of the adapter), a read-only area resource
    316  * containing various key/data fields and a read/write area which
    317  * can be used to store asset management information or log messages.
    318  * We read the ID string and read-only into buffers attached to
    319  * the controller softc structure for later use. At the moment,
    320  * we only use the ID string during sk_attach().
    321  */
    322 static uint8_t
    323 sk_vpd_readbyte(struct sk_softc *sc, int addr)
    324 {
    325 	int			i;
    326 
    327 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
    328 	for (i = 0; i < SK_TIMEOUT; i++) {
    329 		DELAY(1);
    330 		if (sk_win_read_2(sc,
    331 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
    332 			break;
    333 	}
    334 
    335 	if (i == SK_TIMEOUT)
    336 		return 0;
    337 
    338 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
    339 }
    340 
    341 static void
    342 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
    343 {
    344 	int			i;
    345 	uint8_t		*ptr;
    346 
    347 	ptr = (uint8_t *)res;
    348 	for (i = 0; i < sizeof(struct vpd_res); i++)
    349 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
    350 }
    351 
    352 static void
    353 sk_vpd_read(struct sk_softc *sc)
    354 {
    355 	int			pos = 0, i;
    356 	struct vpd_res		res;
    357 
    358 	if (sc->sk_vpd_prodname != NULL)
    359 		free(sc->sk_vpd_prodname, M_DEVBUF);
    360 	if (sc->sk_vpd_readonly != NULL)
    361 		free(sc->sk_vpd_readonly, M_DEVBUF);
    362 	sc->sk_vpd_prodname = NULL;
    363 	sc->sk_vpd_readonly = NULL;
    364 
    365 	sk_vpd_read_res(sc, &res, pos);
    366 
    367 	if (res.vr_id != VPD_RES_ID) {
    368 		aprint_error_dev(sc->sk_dev,
    369 		    "bad VPD resource id: expected %x got %x\n",
    370 		    VPD_RES_ID, res.vr_id);
    371 		return;
    372 	}
    373 
    374 	pos += sizeof(res);
    375 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    376 	if (sc->sk_vpd_prodname == NULL)
    377 		panic("sk_vpd_read");
    378 	for (i = 0; i < res.vr_len; i++)
    379 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
    380 	sc->sk_vpd_prodname[i] = '\0';
    381 	pos += i;
    382 
    383 	sk_vpd_read_res(sc, &res, pos);
    384 
    385 	if (res.vr_id != VPD_RES_READ) {
    386 		aprint_error_dev(sc->sk_dev,
    387 		    "bad VPD resource id: expected %x got %x\n",
    388 		    VPD_RES_READ, res.vr_id);
    389 		return;
    390 	}
    391 
    392 	pos += sizeof(res);
    393 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    394 	if (sc->sk_vpd_readonly == NULL)
    395 		panic("sk_vpd_read");
    396 	for (i = 0; i < res.vr_len ; i++)
    397 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
    398 }
    399 
    400 static int
    401 sk_xmac_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
    402 {
    403 	struct sk_if_softc *sc_if = device_private(dev);
    404 	int i;
    405 
    406 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
    407 
    408 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
    409 		return -1;
    410 
    411 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    412 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
    413 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    414 		for (i = 0; i < SK_TIMEOUT; i++) {
    415 			DELAY(1);
    416 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
    417 			    XM_MMUCMD_PHYDATARDY)
    418 				break;
    419 		}
    420 
    421 		if (i == SK_TIMEOUT) {
    422 			aprint_error_dev(sc_if->sk_dev,
    423 			    "phy failed to come ready\n");
    424 			return ETIMEDOUT;
    425 		}
    426 	}
    427 	DELAY(1);
    428 	*val = SK_XM_READ_2(sc_if, XM_PHY_DATA);
    429 	return 0;
    430 }
    431 
    432 static int
    433 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
    434 {
    435 	struct sk_if_softc *sc_if = device_private(dev);
    436 	int i;
    437 
    438 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
    439 
    440 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    441 	for (i = 0; i < SK_TIMEOUT; i++) {
    442 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    443 			break;
    444 	}
    445 
    446 	if (i == SK_TIMEOUT) {
    447 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
    448 		return ETIMEDOUT;
    449 	}
    450 
    451 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
    452 	for (i = 0; i < SK_TIMEOUT; i++) {
    453 		DELAY(1);
    454 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    455 			break;
    456 	}
    457 
    458 	if (i == SK_TIMEOUT) {
    459 		aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
    460 		return ETIMEDOUT;
    461 	}
    462 
    463 	return 0;
    464 }
    465 
    466 static void
    467 sk_xmac_miibus_statchg(struct ifnet *ifp)
    468 {
    469 	struct sk_if_softc *sc_if = ifp->if_softc;
    470 	struct mii_data *mii = &sc_if->sk_mii;
    471 
    472 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
    473 
    474 	/*
    475 	 * If this is a GMII PHY, manually set the XMAC's
    476 	 * duplex mode accordingly.
    477 	 */
    478 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    479 		if ((mii->mii_media_active & IFM_FDX) != 0)
    480 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    481 		else
    482 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    483 	}
    484 }
    485 
    486 static int
    487 sk_marv_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
    488 {
    489 	struct sk_if_softc *sc_if = device_private(dev);
    490 	uint16_t data;
    491 	int i;
    492 
    493 	if (phy != 0 ||
    494 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
    495 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
    496 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
    497 			     phy, reg));
    498 		return -1;
    499 	}
    500 
    501 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    502 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
    503 
    504 	for (i = 0; i < SK_TIMEOUT; i++) {
    505 		DELAY(1);
    506 		data = SK_YU_READ_2(sc_if, YUKON_SMICR);
    507 		if (data & YU_SMICR_READ_VALID)
    508 			break;
    509 	}
    510 
    511 	if (i == SK_TIMEOUT) {
    512 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
    513 		return ETIMEDOUT;
    514 	}
    515 
    516 	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
    517 		     SK_TIMEOUT));
    518 
    519 	*val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
    520 
    521 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
    522 		     phy, reg, *val));
    523 
    524 	return 0;
    525 }
    526 
    527 static int
    528 sk_marv_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
    529 {
    530 	struct sk_if_softc *sc_if = device_private(dev);
    531 	int i;
    532 
    533 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#hx\n",
    534 		     phy, reg, val));
    535 
    536 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
    537 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    538 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
    539 
    540 	for (i = 0; i < SK_TIMEOUT; i++) {
    541 		DELAY(1);
    542 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
    543 			break;
    544 	}
    545 
    546 	if (i == SK_TIMEOUT) {
    547 		printf("%s: phy write timed out\n",
    548 		    device_xname(sc_if->sk_dev));
    549 		return ETIMEDOUT;
    550 	}
    551 
    552 	return 0;
    553 }
    554 
    555 static void
    556 sk_marv_miibus_statchg(struct ifnet *ifp)
    557 {
    558 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
    559 		     SK_YU_READ_2(((struct sk_if_softc *)ifp->if_softc),
    560 		     YUKON_GPCR)));
    561 }
    562 
    563 static uint32_t
    564 sk_xmac_hash(void *addr)
    565 {
    566 	uint32_t		crc;
    567 
    568 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
    569 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
    570 	DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
    571 	return crc;
    572 }
    573 
    574 static uint32_t
    575 sk_yukon_hash(void *addr)
    576 {
    577 	uint32_t		crc;
    578 
    579 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
    580 	crc &= ((1 << SK_HASH_BITS) - 1);
    581 	DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
    582 	return crc;
    583 }
    584 
    585 static void
    586 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
    587 {
    588 	char *addr = addrv;
    589 	int base = XM_RXFILT_ENTRY(slot);
    590 
    591 	SK_XM_WRITE_2(sc_if, base, *(uint16_t *)(&addr[0]));
    592 	SK_XM_WRITE_2(sc_if, base + 2, *(uint16_t *)(&addr[2]));
    593 	SK_XM_WRITE_2(sc_if, base + 4, *(uint16_t *)(&addr[4]));
    594 }
    595 
    596 static void
    597 sk_setmulti(struct sk_if_softc *sc_if)
    598 {
    599 	struct sk_softc *sc = sc_if->sk_softc;
    600 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
    601 	uint32_t hashes[2] = { 0, 0 };
    602 	int h = 0, i;
    603 	struct ethercom *ec = &sc_if->sk_ethercom;
    604 	struct ether_multi *enm;
    605 	struct ether_multistep step;
    606 	uint8_t dummy[] = { 0, 0, 0, 0, 0, 0 };
    607 
    608 	/* First, zot all the existing filters. */
    609 	switch (sc->sk_type) {
    610 	case SK_GENESIS:
    611 		for (i = 1; i < XM_RXFILT_MAX; i++)
    612 			sk_setfilt(sc_if, (void *)&dummy, i);
    613 
    614 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
    615 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
    616 		break;
    617 	case SK_YUKON:
    618 	case SK_YUKON_LITE:
    619 	case SK_YUKON_LP:
    620 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
    621 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
    622 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
    623 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
    624 		break;
    625 	}
    626 
    627 	/* Now program new ones. */
    628 allmulti:
    629 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    630 		hashes[0] = 0xFFFFFFFF;
    631 		hashes[1] = 0xFFFFFFFF;
    632 	} else {
    633 		i = 1;
    634 		/* First find the tail of the list. */
    635 		ETHER_LOCK(ec);
    636 		ETHER_FIRST_MULTI(step, ec, enm);
    637 		while (enm != NULL) {
    638 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    639 				 ETHER_ADDR_LEN)) {
    640 				ifp->if_flags |= IFF_ALLMULTI;
    641 				ETHER_UNLOCK(ec);
    642 				goto allmulti;
    643 			}
    644 			DPRINTFN(2,("multicast address %s\n",
    645 				ether_sprintf(enm->enm_addrlo)));
    646 			/*
    647 			 * Program the first XM_RXFILT_MAX multicast groups
    648 			 * into the perfect filter. For all others,
    649 			 * use the hash table.
    650 			 */
    651 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
    652 				sk_setfilt(sc_if, enm->enm_addrlo, i);
    653 				i++;
    654 			}
    655 			else {
    656 				switch (sc->sk_type) {
    657 				case SK_GENESIS:
    658 					h = sk_xmac_hash(enm->enm_addrlo);
    659 					break;
    660 				case SK_YUKON:
    661 				case SK_YUKON_LITE:
    662 				case SK_YUKON_LP:
    663 					h = sk_yukon_hash(enm->enm_addrlo);
    664 					break;
    665 				}
    666 				if (h < 32)
    667 					hashes[0] |= (1 << h);
    668 				else
    669 					hashes[1] |= (1 << (h - 32));
    670 			}
    671 
    672 			ETHER_NEXT_MULTI(step, enm);
    673 		}
    674 		ETHER_UNLOCK(ec);
    675 	}
    676 
    677 	switch (sc->sk_type) {
    678 	case SK_GENESIS:
    679 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH |
    680 			       XM_MODE_RX_USE_PERFECT);
    681 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
    682 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
    683 		break;
    684 	case SK_YUKON:
    685 	case SK_YUKON_LITE:
    686 	case SK_YUKON_LP:
    687 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
    688 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
    689 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
    690 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
    691 		break;
    692 	}
    693 }
    694 
    695 static int
    696 sk_init_rx_ring(struct sk_if_softc *sc_if)
    697 {
    698 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    699 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    700 	int			i;
    701 
    702 	memset((char *)rd->sk_rx_ring, 0,
    703 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
    704 
    705 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    706 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
    707 		if (i == (SK_RX_RING_CNT - 1)) {
    708 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
    709 			rd->sk_rx_ring[i].sk_next =
    710 				htole32(SK_RX_RING_ADDR(sc_if, 0));
    711 		} else {
    712 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
    713 			rd->sk_rx_ring[i].sk_next =
    714 				htole32(SK_RX_RING_ADDR(sc_if, i+1));
    715 		}
    716 	}
    717 
    718 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    719 		if (sk_newbuf(sc_if, i, NULL,
    720 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
    721 			aprint_error_dev(sc_if->sk_dev,
    722 			    "failed alloc of %dth mbuf\n", i);
    723 			return ENOBUFS;
    724 		}
    725 	}
    726 	sc_if->sk_cdata.sk_rx_prod = 0;
    727 	sc_if->sk_cdata.sk_rx_cons = 0;
    728 
    729 	return 0;
    730 }
    731 
    732 static int
    733 sk_init_tx_ring(struct sk_if_softc *sc_if)
    734 {
    735 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    736 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    737 	int			i;
    738 
    739 	memset(sc_if->sk_rdata->sk_tx_ring, 0,
    740 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
    741 
    742 	for (i = 0; i < SK_TX_RING_CNT; i++) {
    743 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
    744 		if (i == (SK_TX_RING_CNT - 1)) {
    745 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
    746 			rd->sk_tx_ring[i].sk_next =
    747 				htole32(SK_TX_RING_ADDR(sc_if, 0));
    748 		} else {
    749 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
    750 			rd->sk_tx_ring[i].sk_next =
    751 				htole32(SK_TX_RING_ADDR(sc_if, i+1));
    752 		}
    753 	}
    754 
    755 	sc_if->sk_cdata.sk_tx_prod = 0;
    756 	sc_if->sk_cdata.sk_tx_cons = 0;
    757 	sc_if->sk_cdata.sk_tx_cnt = 0;
    758 
    759 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
    760 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    761 
    762 	return 0;
    763 }
    764 
    765 static int
    766 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
    767 	  bus_dmamap_t dmamap)
    768 {
    769 	struct mbuf		*m_new = NULL;
    770 	struct sk_chain		*c;
    771 	struct sk_rx_desc	*r;
    772 
    773 	if (m == NULL) {
    774 		void *buf = NULL;
    775 
    776 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    777 		if (m_new == NULL) {
    778 			aprint_error_dev(sc_if->sk_dev,
    779 			    "no memory for rx list -- packet dropped!\n");
    780 			return ENOBUFS;
    781 		}
    782 
    783 		/* Allocate the jumbo buffer */
    784 		buf = sk_jalloc(sc_if);
    785 		if (buf == NULL) {
    786 			m_freem(m_new);
    787 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
    788 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
    789 			return ENOBUFS;
    790 		}
    791 
    792 		/* Attach the buffer to the mbuf */
    793 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    794 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
    795 
    796 	} else {
    797 		/*
    798 		 * We're re-using a previously allocated mbuf;
    799 		 * be sure to re-init pointers and lengths to
    800 		 * default values.
    801 		 */
    802 		m_new = m;
    803 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    804 		m_new->m_data = m_new->m_ext.ext_buf;
    805 	}
    806 	m_adj(m_new, ETHER_ALIGN);
    807 
    808 	c = &sc_if->sk_cdata.sk_rx_chain[i];
    809 	r = c->sk_desc;
    810 	c->sk_mbuf = m_new;
    811 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
    812 	    (((vaddr_t)m_new->m_data
    813 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
    814 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
    815 
    816 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
    817 
    818 	return 0;
    819 }
    820 
    821 /*
    822  * Memory management for jumbo frames.
    823  */
    824 
    825 static int
    826 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
    827 {
    828 	struct sk_softc		*sc = sc_if->sk_softc;
    829 	char *ptr, *kva;
    830 	bus_dma_segment_t	seg;
    831 	int		i, rseg, state, error;
    832 	struct sk_jpool_entry	*entry;
    833 
    834 	state = error = 0;
    835 
    836 	/* Grab a big chunk o' storage. */
    837 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
    838 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    839 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
    840 		return ENOBUFS;
    841 	}
    842 
    843 	state = 1;
    844 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
    845 			   BUS_DMA_NOWAIT)) {
    846 		aprint_error_dev(sc->sk_dev,
    847 		    "can't map dma buffers (%d bytes)\n",
    848 		    SK_JMEM);
    849 		error = ENOBUFS;
    850 		goto out;
    851 	}
    852 
    853 	state = 2;
    854 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
    855 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
    856 		aprint_error_dev(sc->sk_dev, "can't create dma map\n");
    857 		error = ENOBUFS;
    858 		goto out;
    859 	}
    860 
    861 	state = 3;
    862 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
    863 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
    864 		aprint_error_dev(sc->sk_dev, "can't load dma map\n");
    865 		error = ENOBUFS;
    866 		goto out;
    867 	}
    868 
    869 	state = 4;
    870 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
    871 	DPRINTFN(1,("sk_jumbo_buf = %p\n", sc_if->sk_cdata.sk_jumbo_buf));
    872 
    873 	LIST_INIT(&sc_if->sk_jfree_listhead);
    874 	LIST_INIT(&sc_if->sk_jinuse_listhead);
    875 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
    876 
    877 	/*
    878 	 * Now divide it up into 9K pieces and save the addresses
    879 	 * in an array.
    880 	 */
    881 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
    882 	for (i = 0; i < SK_JSLOTS; i++) {
    883 		sc_if->sk_cdata.sk_jslots[i] = ptr;
    884 		ptr += SK_JLEN;
    885 		entry = malloc(sizeof(struct sk_jpool_entry),
    886 		    M_DEVBUF, M_NOWAIT);
    887 		if (entry == NULL) {
    888 			aprint_error_dev(sc->sk_dev,
    889 			    "no memory for jumbo buffer queue!\n");
    890 			error = ENOBUFS;
    891 			goto out;
    892 		}
    893 		entry->slot = i;
    894 		if (i)
    895 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
    896 				 entry, jpool_entries);
    897 		else
    898 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
    899 				 entry, jpool_entries);
    900 	}
    901 out:
    902 	if (error != 0) {
    903 		switch (state) {
    904 		case 4:
    905 			bus_dmamap_unload(sc->sc_dmatag,
    906 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    907 			/* FALLTHROUGH */
    908 		case 3:
    909 			bus_dmamap_destroy(sc->sc_dmatag,
    910 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    911 			/* FALLTHROUGH */
    912 		case 2:
    913 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
    914 			/* FALLTHROUGH */
    915 		case 1:
    916 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
    917 			break;
    918 		default:
    919 			break;
    920 		}
    921 	}
    922 
    923 	return error;
    924 }
    925 
    926 /*
    927  * Allocate a jumbo buffer.
    928  */
    929 static void *
    930 sk_jalloc(struct sk_if_softc *sc_if)
    931 {
    932 	struct sk_jpool_entry	*entry;
    933 
    934 	mutex_enter(&sc_if->sk_jpool_mtx);
    935 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
    936 
    937 	if (entry == NULL) {
    938 		mutex_exit(&sc_if->sk_jpool_mtx);
    939 		return NULL;
    940 	}
    941 
    942 	LIST_REMOVE(entry, jpool_entries);
    943 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
    944 	mutex_exit(&sc_if->sk_jpool_mtx);
    945 	return sc_if->sk_cdata.sk_jslots[entry->slot];
    946 }
    947 
    948 /*
    949  * Release a jumbo buffer.
    950  */
    951 static void
    952 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
    953 {
    954 	struct sk_jpool_entry *entry;
    955 	struct sk_if_softc *sc;
    956 	int i;
    957 
    958 	/* Extract the softc struct pointer. */
    959 	sc = (struct sk_if_softc *)arg;
    960 
    961 	if (sc == NULL)
    962 		panic("sk_jfree: can't find softc pointer!");
    963 
    964 	/* calculate the slot this buffer belongs to */
    965 
    966 	i = ((vaddr_t)buf
    967 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
    968 
    969 	if ((i < 0) || (i >= SK_JSLOTS))
    970 		panic("sk_jfree: asked to free buffer that we don't manage!");
    971 
    972 	mutex_enter(&sc->sk_jpool_mtx);
    973 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
    974 	if (entry == NULL)
    975 		panic("sk_jfree: buffer not in use!");
    976 	entry->slot = i;
    977 	LIST_REMOVE(entry, jpool_entries);
    978 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
    979 	mutex_exit(&sc->sk_jpool_mtx);
    980 
    981 	if (__predict_true(m != NULL))
    982 		pool_cache_put(mb_cache, m);
    983 }
    984 
    985 /*
    986  * Set media options.
    987  */
    988 static int
    989 sk_ifmedia_upd(struct ifnet *ifp)
    990 {
    991 	struct sk_if_softc *sc_if = ifp->if_softc;
    992 	int rc;
    993 
    994 	(void) sk_init(ifp);
    995 	if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
    996 		return 0;
    997 	return rc;
    998 }
    999 
   1000 static void
   1001 sk_promisc(struct sk_if_softc *sc_if, int on)
   1002 {
   1003 	struct sk_softc *sc = sc_if->sk_softc;
   1004 	switch (sc->sk_type) {
   1005 	case SK_GENESIS:
   1006 		if (on)
   1007 			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   1008 		else
   1009 			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   1010 		break;
   1011 	case SK_YUKON:
   1012 	case SK_YUKON_LITE:
   1013 	case SK_YUKON_LP:
   1014 		if (on)
   1015 			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
   1016 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1017 		else
   1018 			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
   1019 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1020 		break;
   1021 	default:
   1022 		aprint_error_dev(sc_if->sk_dev, "Can't set promisc for %d\n",
   1023 			sc->sk_type);
   1024 		break;
   1025 	}
   1026 }
   1027 
   1028 static int
   1029 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
   1030 {
   1031 	struct sk_if_softc *sc_if = ifp->if_softc;
   1032 	int s, error = 0;
   1033 
   1034 	/* DPRINTFN(2, ("sk_ioctl\n")); */
   1035 
   1036 	s = splnet();
   1037 
   1038 	switch (command) {
   1039 
   1040 	case SIOCSIFFLAGS:
   1041 		DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
   1042 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   1043 			break;
   1044 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
   1045 		case IFF_RUNNING:
   1046 			sk_stop(ifp, 1);
   1047 			break;
   1048 		case IFF_UP:
   1049 			sk_init(ifp);
   1050 			break;
   1051 		case IFF_UP | IFF_RUNNING:
   1052 			if ((ifp->if_flags ^ sc_if->sk_if_flags) == IFF_PROMISC)			{
   1053 				sk_promisc(sc_if, ifp->if_flags & IFF_PROMISC);
   1054 				sk_setmulti(sc_if);
   1055 			} else
   1056 				sk_init(ifp);
   1057 			break;
   1058 		}
   1059 		sc_if->sk_if_flags = ifp->if_flags;
   1060 		error = 0;
   1061 		break;
   1062 
   1063 	default:
   1064 		DPRINTFN(2, ("sk_ioctl ETHER\n"));
   1065 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   1066 			break;
   1067 
   1068 		error = 0;
   1069 
   1070 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   1071 			;
   1072 		else if (ifp->if_flags & IFF_RUNNING) {
   1073 			sk_setmulti(sc_if);
   1074 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
   1075 		}
   1076 		break;
   1077 	}
   1078 
   1079 	splx(s);
   1080 	return error;
   1081 }
   1082 
   1083 static void
   1084 sk_update_int_mod(struct sk_softc *sc)
   1085 {
   1086 	uint32_t imtimer_ticks;
   1087 
   1088 	/*
   1089 	 * Configure interrupt moderation. The moderation timer
   1090 	 * defers interrupts specified in the interrupt moderation
   1091 	 * timer mask based on the timeout specified in the interrupt
   1092 	 * moderation timer init register. Each bit in the timer
   1093 	 * register represents one tick, so to specify a timeout in
   1094 	 * microseconds, we have to multiply by the correct number of
   1095 	 * ticks-per-microsecond.
   1096 	 */
   1097 	switch (sc->sk_type) {
   1098 	case SK_GENESIS:
   1099 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   1100 		break;
   1101 	case SK_YUKON_EC:
   1102 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   1103 		break;
   1104 	default:
   1105 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   1106 	}
   1107 	aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
   1108 	    sc->sk_int_mod);
   1109 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
   1110 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF | SK_ISR_TX2_S_EOF |
   1111 	    SK_ISR_RX1_EOF | SK_ISR_RX2_EOF);
   1112 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
   1113 	sc->sk_int_mod_pending = 0;
   1114 }
   1115 
   1116 /*
   1117  * Lookup: Check the PCI vendor and device, and return a pointer to
   1118  * The structure if the IDs match against our list.
   1119  */
   1120 
   1121 static const struct sk_product *
   1122 sk_lookup(const struct pci_attach_args *pa)
   1123 {
   1124 	const struct sk_product *psk;
   1125 
   1126 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
   1127 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
   1128 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
   1129 			return psk;
   1130 	}
   1131 	return NULL;
   1132 }
   1133 
   1134 /*
   1135  * Probe for a SysKonnect GEnesis chip.
   1136  */
   1137 
   1138 static int
   1139 skc_probe(device_t parent, cfdata_t match, void *aux)
   1140 {
   1141 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1142 	const struct sk_product *psk;
   1143 	pcireg_t subid;
   1144 
   1145 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
   1146 
   1147 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
   1148 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
   1149 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
   1150 	    subid == SK_LINKSYS_EG1032_SUBID)
   1151 		return 1;
   1152 
   1153 	if ((psk = sk_lookup(pa))) {
   1154 		return 1;
   1155 	}
   1156 	return 0;
   1157 }
   1158 
   1159 /*
   1160  * Force the GEnesis into reset, then bring it out of reset.
   1161  */
   1162 static void
   1163 sk_reset(struct sk_softc *sc)
   1164 {
   1165 	DPRINTFN(2, ("sk_reset\n"));
   1166 
   1167 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
   1168 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
   1169 	if (SK_YUKON_FAMILY(sc->sk_type))
   1170 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
   1171 
   1172 	DELAY(1000);
   1173 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
   1174 	DELAY(2);
   1175 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
   1176 	if (SK_YUKON_FAMILY(sc->sk_type))
   1177 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
   1178 
   1179 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
   1180 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
   1181 		     CSR_READ_2(sc, SK_LINK_CTRL)));
   1182 
   1183 	if (sc->sk_type == SK_GENESIS) {
   1184 		/* Configure packet arbiter */
   1185 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
   1186 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1187 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1188 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1189 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1190 	}
   1191 
   1192 	/* Enable RAM interface */
   1193 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
   1194 
   1195 	sk_update_int_mod(sc);
   1196 }
   1197 
   1198 static int
   1199 sk_probe(device_t parent, cfdata_t match, void *aux)
   1200 {
   1201 	struct skc_attach_args *sa = aux;
   1202 
   1203 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
   1204 		return 0;
   1205 
   1206 	return 1;
   1207 }
   1208 
   1209 /*
   1210  * Each XMAC chip is attached as a separate logical IP interface.
   1211  * Single port cards will have only one logical interface of course.
   1212  */
   1213 static void
   1214 sk_attach(device_t parent, device_t self, void *aux)
   1215 {
   1216 	struct sk_if_softc *sc_if = device_private(self);
   1217 	struct mii_data *mii = &sc_if->sk_mii;
   1218 	struct sk_softc *sc = device_private(parent);
   1219 	struct skc_attach_args *sa = aux;
   1220 	struct sk_txmap_entry	*entry;
   1221 	struct ifnet *ifp;
   1222 	bus_dma_segment_t seg;
   1223 	bus_dmamap_t dmamap;
   1224 	prop_data_t data;
   1225 	void *kva;
   1226 	int i, rseg;
   1227 	int mii_flags = 0;
   1228 
   1229 	aprint_naive("\n");
   1230 
   1231 	sc_if->sk_dev = self;
   1232 	sc_if->sk_port = sa->skc_port;
   1233 	sc_if->sk_softc = sc;
   1234 	sc->sk_if[sa->skc_port] = sc_if;
   1235 
   1236 	if (sa->skc_port == SK_PORT_A)
   1237 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
   1238 	if (sa->skc_port == SK_PORT_B)
   1239 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
   1240 
   1241 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
   1242 
   1243 	/*
   1244 	 * Get station address for this interface. Note that
   1245 	 * dual port cards actually come with three station
   1246 	 * addresses: one for each port, plus an extra. The
   1247 	 * extra one is used by the SysKonnect driver software
   1248 	 * as a 'virtual' station address for when both ports
   1249 	 * are operating in failover mode. Currently we don't
   1250 	 * use this extra address.
   1251 	 */
   1252 	data = prop_dictionary_get(device_properties(self), "mac-address");
   1253 	if (data != NULL) {
   1254 		/*
   1255 		 * Try to get the station address from device properties
   1256 		 * first, in case the ROM is missing.
   1257 		 */
   1258 		KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
   1259 		KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
   1260 		memcpy(sc_if->sk_enaddr, prop_data_data_nocopy(data),
   1261 		    ETHER_ADDR_LEN);
   1262 	} else
   1263 		for (i = 0; i < ETHER_ADDR_LEN; i++)
   1264 			sc_if->sk_enaddr[i] = sk_win_read_1(sc,
   1265 			    SK_MAC0_0 + (sa->skc_port * 8) + i);
   1266 
   1267 	aprint_normal(": Ethernet address %s\n",
   1268 	    ether_sprintf(sc_if->sk_enaddr));
   1269 
   1270 	/*
   1271 	 * Set up RAM buffer addresses. The NIC will have a certain
   1272 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
   1273 	 * need to divide this up a) between the transmitter and
   1274 	 * receiver and b) between the two XMACs, if this is a
   1275 	 * dual port NIC. Our algorithm is to divide up the memory
   1276 	 * evenly so that everyone gets a fair share.
   1277 	 */
   1278 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
   1279 		uint32_t		chunk, val;
   1280 
   1281 		chunk = sc->sk_ramsize / 2;
   1282 		val = sc->sk_rboff / sizeof(uint64_t);
   1283 		sc_if->sk_rx_ramstart = val;
   1284 		val += (chunk / sizeof(uint64_t));
   1285 		sc_if->sk_rx_ramend = val - 1;
   1286 		sc_if->sk_tx_ramstart = val;
   1287 		val += (chunk / sizeof(uint64_t));
   1288 		sc_if->sk_tx_ramend = val - 1;
   1289 	} else {
   1290 		uint32_t		chunk, val;
   1291 
   1292 		chunk = sc->sk_ramsize / 4;
   1293 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
   1294 		    sizeof(uint64_t);
   1295 		sc_if->sk_rx_ramstart = val;
   1296 		val += (chunk / sizeof(uint64_t));
   1297 		sc_if->sk_rx_ramend = val - 1;
   1298 		sc_if->sk_tx_ramstart = val;
   1299 		val += (chunk / sizeof(uint64_t));
   1300 		sc_if->sk_tx_ramend = val - 1;
   1301 	}
   1302 
   1303 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
   1304 		     "		 tx_ramstart=%#x tx_ramend=%#x\n",
   1305 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
   1306 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
   1307 
   1308 	/* Read and save PHY type and set PHY address */
   1309 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
   1310 	switch (sc_if->sk_phytype) {
   1311 	case SK_PHYTYPE_XMAC:
   1312 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
   1313 		break;
   1314 	case SK_PHYTYPE_BCOM:
   1315 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
   1316 		break;
   1317 	case SK_PHYTYPE_MARV_COPPER:
   1318 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
   1319 		break;
   1320 	default:
   1321 		aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
   1322 		    sc_if->sk_phytype);
   1323 		return;
   1324 	}
   1325 
   1326 	/* Allocate the descriptor queues. */
   1327 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
   1328 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1329 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
   1330 		goto fail;
   1331 	}
   1332 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
   1333 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
   1334 		aprint_error_dev(sc_if->sk_dev,
   1335 		    "can't map dma buffers (%lu bytes)\n",
   1336 		    (u_long) sizeof(struct sk_ring_data));
   1337 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1338 		goto fail;
   1339 	}
   1340 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
   1341 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
   1342 	    &sc_if->sk_ring_map)) {
   1343 		aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
   1344 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1345 		    sizeof(struct sk_ring_data));
   1346 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1347 		goto fail;
   1348 	}
   1349 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
   1350 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
   1351 		aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
   1352 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1353 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1354 		    sizeof(struct sk_ring_data));
   1355 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1356 		goto fail;
   1357 	}
   1358 
   1359 	for (i = 0; i < SK_RX_RING_CNT; i++)
   1360 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   1361 
   1362 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
   1363 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   1364 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   1365 
   1366 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
   1367 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
   1368 			aprint_error_dev(sc_if->sk_dev,
   1369 			    "Can't create TX dmamap\n");
   1370 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1371 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1372 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1373 			    sizeof(struct sk_ring_data));
   1374 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1375 			goto fail;
   1376 		}
   1377 
   1378 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
   1379 		if (!entry) {
   1380 			aprint_error_dev(sc_if->sk_dev,
   1381 			    "Can't alloc txmap entry\n");
   1382 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
   1383 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1384 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1385 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1386 			    sizeof(struct sk_ring_data));
   1387 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1388 			goto fail;
   1389 		}
   1390 		entry->dmamap = dmamap;
   1391 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
   1392 	}
   1393 
   1394 	sc_if->sk_rdata = (struct sk_ring_data *)kva;
   1395 	memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
   1396 
   1397 	ifp = &sc_if->sk_ethercom.ec_if;
   1398 	/* Try to allocate memory for jumbo buffers. */
   1399 	if (sk_alloc_jumbo_mem(sc_if)) {
   1400 		aprint_error("%s: jumbo buffer allocation failed\n",
   1401 		    ifp->if_xname);
   1402 		goto fail;
   1403 	}
   1404 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
   1405 		| ETHERCAP_JUMBO_MTU;
   1406 
   1407 	ifp->if_softc = sc_if;
   1408 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1409 	ifp->if_ioctl = sk_ioctl;
   1410 	ifp->if_start = sk_start;
   1411 	ifp->if_stop = sk_stop;
   1412 	ifp->if_init = sk_init;
   1413 	ifp->if_watchdog = sk_watchdog;
   1414 	ifp->if_capabilities = 0;
   1415 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
   1416 	IFQ_SET_READY(&ifp->if_snd);
   1417 	strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
   1418 
   1419 	/*
   1420 	 * Do miibus setup.
   1421 	 */
   1422 	switch (sc->sk_type) {
   1423 	case SK_GENESIS:
   1424 		sk_unreset_xmac(sc_if);
   1425 		break;
   1426 	case SK_YUKON:
   1427 	case SK_YUKON_LITE:
   1428 	case SK_YUKON_LP:
   1429 		sk_unreset_yukon(sc_if);
   1430 		break;
   1431 	default:
   1432 		aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
   1433 			sc->sk_type);
   1434 		goto fail;
   1435 	}
   1436 
   1437 	DPRINTFN(2, ("sk_attach: 1\n"));
   1438 
   1439 	mii->mii_ifp = ifp;
   1440 	switch (sc->sk_type) {
   1441 	case SK_GENESIS:
   1442 		mii->mii_readreg = sk_xmac_miibus_readreg;
   1443 		mii->mii_writereg = sk_xmac_miibus_writereg;
   1444 		mii->mii_statchg = sk_xmac_miibus_statchg;
   1445 		break;
   1446 	case SK_YUKON:
   1447 	case SK_YUKON_LITE:
   1448 	case SK_YUKON_LP:
   1449 		mii->mii_readreg = sk_marv_miibus_readreg;
   1450 		mii->mii_writereg = sk_marv_miibus_writereg;
   1451 		mii->mii_statchg = sk_marv_miibus_statchg;
   1452 		mii_flags = MIIF_DOPAUSE;
   1453 		break;
   1454 	}
   1455 
   1456 	sc_if->sk_ethercom.ec_mii = mii;
   1457 	ifmedia_init(&mii->mii_media, 0, sk_ifmedia_upd, ether_mediastatus);
   1458 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
   1459 	    MII_OFFSET_ANY, mii_flags);
   1460 	if (LIST_EMPTY(&mii->mii_phys)) {
   1461 		aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
   1462 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
   1463 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
   1464 	} else
   1465 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
   1466 
   1467 	callout_init(&sc_if->sk_tick_ch, 0);
   1468 	callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   1469 
   1470 	DPRINTFN(2, ("sk_attach: 1\n"));
   1471 
   1472 	/*
   1473 	 * Call MI attach routines.
   1474 	 */
   1475 	if_attach(ifp);
   1476 	if_deferred_start_init(ifp, NULL);
   1477 
   1478 	ether_ifattach(ifp, sc_if->sk_enaddr);
   1479 
   1480 	if (sc->rnd_attached++ == 0) {
   1481 		rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
   1482 		    RND_TYPE_NET, RND_FLAG_DEFAULT);
   1483 	}
   1484 
   1485 	if (pmf_device_register(self, NULL, sk_resume))
   1486 		pmf_class_network_register(self, ifp);
   1487 	else
   1488 		aprint_error_dev(self, "couldn't establish power handler\n");
   1489 
   1490 	DPRINTFN(2, ("sk_attach: end\n"));
   1491 
   1492 	return;
   1493 
   1494 fail:
   1495 	sc->sk_if[sa->skc_port] = NULL;
   1496 }
   1497 
   1498 static int
   1499 skcprint(void *aux, const char *pnp)
   1500 {
   1501 	struct skc_attach_args *sa = aux;
   1502 
   1503 	if (pnp)
   1504 		aprint_normal("sk port %c at %s",
   1505 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
   1506 	else
   1507 		aprint_normal(" port %c",
   1508 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
   1509 	return UNCONF;
   1510 }
   1511 
   1512 /*
   1513  * Attach the interface. Allocate softc structures, do ifmedia
   1514  * setup and ethernet/BPF attach.
   1515  */
   1516 static void
   1517 skc_attach(device_t parent, device_t self, void *aux)
   1518 {
   1519 	struct sk_softc *sc = device_private(self);
   1520 	struct pci_attach_args *pa = aux;
   1521 	struct skc_attach_args skca;
   1522 	pci_chipset_tag_t pc = pa->pa_pc;
   1523 #ifndef SK_USEIOSPACE
   1524 	pcireg_t memtype;
   1525 #endif
   1526 	pci_intr_handle_t ih;
   1527 	const char *intrstr = NULL;
   1528 	bus_addr_t iobase;
   1529 	bus_size_t iosize;
   1530 	int rc, sk_nodenum;
   1531 	uint32_t command;
   1532 	const char *revstr;
   1533 	const struct sysctlnode *node;
   1534 	char intrbuf[PCI_INTRSTR_LEN];
   1535 
   1536 	sc->sk_dev = self;
   1537 	aprint_naive("\n");
   1538 
   1539 	DPRINTFN(2, ("begin skc_attach\n"));
   1540 
   1541 	/*
   1542 	 * Handle power management nonsense.
   1543 	 */
   1544 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
   1545 
   1546 	if (command == 0x01) {
   1547 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
   1548 		if (command & SK_PSTATE_MASK) {
   1549 			uint32_t		xiobase, membase, irq;
   1550 
   1551 			/* Save important PCI config data. */
   1552 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
   1553 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
   1554 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
   1555 
   1556 			/* Reset the power state. */
   1557 			aprint_normal_dev(sc->sk_dev,
   1558 			    "chip is in D%d power mode -- setting to D0\n",
   1559 			    command & SK_PSTATE_MASK);
   1560 			command &= 0xFFFFFFFC;
   1561 			pci_conf_write(pc, pa->pa_tag,
   1562 			    SK_PCI_PWRMGMTCTRL, command);
   1563 
   1564 			/* Restore PCI config data. */
   1565 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
   1566 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
   1567 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
   1568 		}
   1569 	}
   1570 
   1571 	/*
   1572 	 * The firmware might have configured the interface to revert the
   1573 	 * byte order in all descriptors. Make that undone.
   1574 	 */
   1575 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_OURREG2);
   1576 	if (command & SK_REG2_REV_DESC)
   1577 		pci_conf_write(pc, pa->pa_tag, SK_PCI_OURREG2,
   1578 		    command & ~SK_REG2_REV_DESC);
   1579 
   1580 	/*
   1581 	 * Map control/status registers.
   1582 	 */
   1583 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1584 	command |= PCI_COMMAND_IO_ENABLE |
   1585 	    PCI_COMMAND_MEM_ENABLE |
   1586 	    PCI_COMMAND_MASTER_ENABLE;
   1587 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1588 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1589 
   1590 #ifdef SK_USEIOSPACE
   1591 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
   1592 		aprint_error(": failed to enable I/O ports!\n");
   1593 		return;
   1594 	}
   1595 	/*
   1596 	 * Map control/status registers.
   1597 	 */
   1598 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
   1599 			&sc->sk_btag, &sc->sk_bhandle,
   1600 			&iobase, &iosize)) {
   1601 		aprint_error(": can't find i/o space\n");
   1602 		return;
   1603 	}
   1604 #else
   1605 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1606 		aprint_error(": failed to enable memory mapping!\n");
   1607 		return;
   1608 	}
   1609 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
   1610 	switch (memtype) {
   1611 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1612 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1613 		if (pci_mapreg_map(pa, SK_PCI_LOMEM,
   1614 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
   1615 				   &iobase, &iosize) == 0)
   1616 			break;
   1617 		/* FALLTHROUGH */
   1618 	default:
   1619 		aprint_error_dev(sc->sk_dev, "can't find mem space\n");
   1620 		return;
   1621 	}
   1622 
   1623 	DPRINTFN(2, ("skc_attach: iobase=%#" PRIxPADDR ", iosize=%zx\n",
   1624 	    iobase, iosize));
   1625 #endif
   1626 	sc->sc_dmatag = pa->pa_dmat;
   1627 
   1628 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
   1629 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
   1630 
   1631 	/* bail out here if chip is not recognized */
   1632 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
   1633 		aprint_error_dev(sc->sk_dev, "unknown chip type\n");
   1634 		goto fail;
   1635 	}
   1636 	if (SK_IS_YUKON2(sc)) {
   1637 		aprint_error_dev(sc->sk_dev,
   1638 		    "Does not support Yukon2--try msk(4).\n");
   1639 		goto fail;
   1640 	}
   1641 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
   1642 
   1643 	/* Allocate interrupt */
   1644 	if (pci_intr_map(pa, &ih)) {
   1645 		aprint_error(": couldn't map interrupt\n");
   1646 		goto fail;
   1647 	}
   1648 
   1649 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
   1650 	sc->sk_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, sk_intr,
   1651 	    sc, device_xname(sc->sk_dev));
   1652 	if (sc->sk_intrhand == NULL) {
   1653 		aprint_error(": couldn't establish interrupt");
   1654 		if (intrstr != NULL)
   1655 			aprint_error(" at %s", intrstr);
   1656 		aprint_error("\n");
   1657 		goto fail;
   1658 	}
   1659 	aprint_normal(": %s\n", intrstr);
   1660 
   1661 	/* Reset the adapter. */
   1662 	sk_reset(sc);
   1663 
   1664 	/* Read and save vital product data from EEPROM. */
   1665 	sk_vpd_read(sc);
   1666 
   1667 	if (sc->sk_type == SK_GENESIS) {
   1668 		uint8_t val = sk_win_read_1(sc, SK_EPROM0);
   1669 		/* Read and save RAM size and RAMbuffer offset */
   1670 		switch (val) {
   1671 		case SK_RAMSIZE_512K_64:
   1672 			sc->sk_ramsize = 0x80000;
   1673 			sc->sk_rboff = SK_RBOFF_0;
   1674 			break;
   1675 		case SK_RAMSIZE_1024K_64:
   1676 			sc->sk_ramsize = 0x100000;
   1677 			sc->sk_rboff = SK_RBOFF_80000;
   1678 			break;
   1679 		case SK_RAMSIZE_1024K_128:
   1680 			sc->sk_ramsize = 0x100000;
   1681 			sc->sk_rboff = SK_RBOFF_0;
   1682 			break;
   1683 		case SK_RAMSIZE_2048K_128:
   1684 			sc->sk_ramsize = 0x200000;
   1685 			sc->sk_rboff = SK_RBOFF_0;
   1686 			break;
   1687 		default:
   1688 			aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
   1689 			       val);
   1690 			goto fail_1;
   1691 			break;
   1692 		}
   1693 
   1694 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
   1695 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
   1696 			     sc->sk_rboff));
   1697 	} else {
   1698 		uint8_t val = sk_win_read_1(sc, SK_EPROM0);
   1699 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
   1700 		sc->sk_rboff = SK_RBOFF_0;
   1701 
   1702 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
   1703 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
   1704 			     sc->sk_rboff));
   1705 	}
   1706 
   1707 	/* Read and save physical media type */
   1708 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
   1709 	case SK_PMD_1000BASESX:
   1710 		sc->sk_pmd = IFM_1000_SX;
   1711 		break;
   1712 	case SK_PMD_1000BASELX:
   1713 		sc->sk_pmd = IFM_1000_LX;
   1714 		break;
   1715 	case SK_PMD_1000BASECX:
   1716 		sc->sk_pmd = IFM_1000_CX;
   1717 		break;
   1718 	case SK_PMD_1000BASETX:
   1719 	case SK_PMD_1000BASETX_ALT:
   1720 		sc->sk_pmd = IFM_1000_T;
   1721 		break;
   1722 	default:
   1723 		aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
   1724 		    sk_win_read_1(sc, SK_PMDTYPE));
   1725 		goto fail_1;
   1726 	}
   1727 
   1728 	/* determine whether to name it with vpd or just make it up */
   1729 	/* Marvell Yukon VPD's can freqently be bogus */
   1730 
   1731 	switch (pa->pa_id) {
   1732 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1733 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
   1734 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
   1735 	case PCI_PRODUCT_3COM_3C940:
   1736 	case PCI_PRODUCT_DLINK_DGE530T:
   1737 	case PCI_PRODUCT_DLINK_DGE560T:
   1738 	case PCI_PRODUCT_DLINK_DGE560T_2:
   1739 	case PCI_PRODUCT_LINKSYS_EG1032:
   1740 	case PCI_PRODUCT_LINKSYS_EG1064:
   1741 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1742 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
   1743 	case PCI_ID_CODE(PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940):
   1744 	case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T):
   1745 	case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T):
   1746 	case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2):
   1747 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032):
   1748 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064):
   1749 		sc->sk_name = sc->sk_vpd_prodname;
   1750 		break;
   1751 	case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET):
   1752 	/* whoops yukon vpd prodname bears no resemblance to reality */
   1753 		switch (sc->sk_type) {
   1754 		case SK_GENESIS:
   1755 			sc->sk_name = sc->sk_vpd_prodname;
   1756 			break;
   1757 		case SK_YUKON:
   1758 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
   1759 			break;
   1760 		case SK_YUKON_LITE:
   1761 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
   1762 			break;
   1763 		case SK_YUKON_LP:
   1764 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
   1765 			break;
   1766 		default:
   1767 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
   1768 		}
   1769 
   1770 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
   1771 
   1772 		if ( sc->sk_type == SK_YUKON ) {
   1773 			uint32_t flashaddr;
   1774 			uint8_t testbyte;
   1775 
   1776 			flashaddr = sk_win_read_4(sc, SK_EP_ADDR);
   1777 
   1778 			/* test Flash-Address Register */
   1779 			sk_win_write_1(sc, SK_EP_ADDR+3, 0xff);
   1780 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
   1781 
   1782 			if (testbyte != 0) {
   1783 				/* this is yukon lite Rev. A0 */
   1784 				sc->sk_type = SK_YUKON_LITE;
   1785 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
   1786 				/* restore Flash-Address Register */
   1787 				sk_win_write_4(sc, SK_EP_ADDR, flashaddr);
   1788 			}
   1789 		}
   1790 		break;
   1791 	case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN):
   1792 		sc->sk_name = sc->sk_vpd_prodname;
   1793 		break;
   1794 	default:
   1795 		sc->sk_name = "Unknown Marvell";
   1796 	}
   1797 
   1798 
   1799 	if ( sc->sk_type == SK_YUKON_LITE ) {
   1800 		switch (sc->sk_rev) {
   1801 		case SK_YUKON_LITE_REV_A0:
   1802 			revstr = "A0";
   1803 			break;
   1804 		case SK_YUKON_LITE_REV_A1:
   1805 			revstr = "A1";
   1806 			break;
   1807 		case SK_YUKON_LITE_REV_A3:
   1808 			revstr = "A3";
   1809 			break;
   1810 		default:
   1811 			revstr = "";
   1812 		}
   1813 	} else {
   1814 		revstr = "";
   1815 	}
   1816 
   1817 	/* Announce the product name. */
   1818 	aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
   1819 			      sc->sk_name, revstr, sc->sk_rev);
   1820 
   1821 	skca.skc_port = SK_PORT_A;
   1822 	(void)config_found(sc->sk_dev, &skca, skcprint);
   1823 
   1824 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
   1825 		skca.skc_port = SK_PORT_B;
   1826 		(void)config_found(sc->sk_dev, &skca, skcprint);
   1827 	}
   1828 
   1829 	/* Turn on the 'driver is loaded' LED. */
   1830 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   1831 
   1832 	/* skc sysctl setup */
   1833 
   1834 	sc->sk_int_mod = SK_IM_DEFAULT;
   1835 	sc->sk_int_mod_pending = 0;
   1836 
   1837 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1838 	    0, CTLTYPE_NODE, device_xname(sc->sk_dev),
   1839 	    SYSCTL_DESCR("skc per-controller controls"),
   1840 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
   1841 	    CTL_EOL)) != 0) {
   1842 		aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
   1843 		goto fail_1;
   1844 	}
   1845 
   1846 	sk_nodenum = node->sysctl_num;
   1847 
   1848 	/* interrupt moderation time in usecs */
   1849 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1850 	    CTLFLAG_READWRITE,
   1851 	    CTLTYPE_INT, "int_mod",
   1852 	    SYSCTL_DESCR("sk interrupt moderation timer"),
   1853 	    sk_sysctl_handler, 0, (void *)sc,
   1854 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
   1855 	    CTL_EOL)) != 0) {
   1856 		aprint_normal_dev(sc->sk_dev,
   1857 		    "couldn't create int_mod sysctl node\n");
   1858 		goto fail_1;
   1859 	}
   1860 
   1861 	if (!pmf_device_register(self, skc_suspend, skc_resume))
   1862 		aprint_error_dev(self, "couldn't establish power handler\n");
   1863 
   1864 	return;
   1865 
   1866 fail_1:
   1867 	pci_intr_disestablish(pc, sc->sk_intrhand);
   1868 fail:
   1869 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
   1870 }
   1871 
   1872 static int
   1873 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
   1874 {
   1875 	struct sk_softc		*sc = sc_if->sk_softc;
   1876 	struct sk_tx_desc	*f = NULL;
   1877 	uint32_t		frag, cur, cnt = 0, sk_ctl;
   1878 	int			i;
   1879 	struct sk_txmap_entry	*entry;
   1880 	bus_dmamap_t		txmap;
   1881 
   1882 	DPRINTFN(3, ("sk_encap\n"));
   1883 
   1884 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
   1885 	if (entry == NULL) {
   1886 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
   1887 		return ENOBUFS;
   1888 	}
   1889 	txmap = entry->dmamap;
   1890 
   1891 	cur = frag = *txidx;
   1892 
   1893 #ifdef SK_DEBUG
   1894 	if (skdebug >= 3)
   1895 		sk_dump_mbuf(m_head);
   1896 #endif
   1897 
   1898 	/*
   1899 	 * Start packing the mbufs in this chain into
   1900 	 * the fragment pointers. Stop when we run out
   1901 	 * of fragments or hit the end of the mbuf chain.
   1902 	 */
   1903 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
   1904 	    BUS_DMA_NOWAIT)) {
   1905 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
   1906 		return ENOBUFS;
   1907 	}
   1908 
   1909 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
   1910 
   1911 	/* Sync the DMA map. */
   1912 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
   1913 	    BUS_DMASYNC_PREWRITE);
   1914 
   1915 	for (i = 0; i < txmap->dm_nsegs; i++) {
   1916 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
   1917 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
   1918 			return ENOBUFS;
   1919 		}
   1920 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
   1921 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
   1922 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
   1923 		if (cnt == 0)
   1924 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
   1925 		else
   1926 			sk_ctl |= SK_TXCTL_OWN;
   1927 		f->sk_ctl = htole32(sk_ctl);
   1928 		cur = frag;
   1929 		SK_INC(frag, SK_TX_RING_CNT);
   1930 		cnt++;
   1931 	}
   1932 
   1933 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
   1934 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
   1935 
   1936 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
   1937 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
   1938 		htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
   1939 
   1940 	/* Sync descriptors before handing to chip */
   1941 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
   1942 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1943 
   1944 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
   1945 		htole32(SK_TXCTL_OWN);
   1946 
   1947 	/* Sync first descriptor to hand it off */
   1948 	SK_CDTXSYNC(sc_if, *txidx, 1,
   1949 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1950 
   1951 	sc_if->sk_cdata.sk_tx_cnt += cnt;
   1952 
   1953 #ifdef SK_DEBUG
   1954 	if (skdebug >= 3) {
   1955 		struct sk_tx_desc *desc;
   1956 		uint32_t idx;
   1957 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
   1958 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
   1959 			sk_dump_txdesc(desc, idx);
   1960 		}
   1961 	}
   1962 #endif
   1963 
   1964 	*txidx = frag;
   1965 
   1966 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
   1967 
   1968 	return 0;
   1969 }
   1970 
   1971 static void
   1972 sk_start(struct ifnet *ifp)
   1973 {
   1974 	struct sk_if_softc	*sc_if = ifp->if_softc;
   1975 	struct sk_softc		*sc = sc_if->sk_softc;
   1976 	struct mbuf		*m_head = NULL;
   1977 	uint32_t		idx = sc_if->sk_cdata.sk_tx_prod;
   1978 	int			pkts = 0;
   1979 
   1980 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
   1981 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
   1982 
   1983 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
   1984 		IFQ_POLL(&ifp->if_snd, m_head);
   1985 		if (m_head == NULL)
   1986 			break;
   1987 
   1988 		/*
   1989 		 * Pack the data into the transmit ring. If we
   1990 		 * don't have room, set the OACTIVE flag and wait
   1991 		 * for the NIC to drain the ring.
   1992 		 */
   1993 		if (sk_encap(sc_if, m_head, &idx)) {
   1994 			ifp->if_flags |= IFF_OACTIVE;
   1995 			break;
   1996 		}
   1997 
   1998 		/* now we are committed to transmit the packet */
   1999 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   2000 		pkts++;
   2001 
   2002 		/*
   2003 		 * If there's a BPF listener, bounce a copy of this frame
   2004 		 * to him.
   2005 		 */
   2006 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   2007 	}
   2008 	if (pkts == 0)
   2009 		return;
   2010 
   2011 	/* Transmit */
   2012 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
   2013 		sc_if->sk_cdata.sk_tx_prod = idx;
   2014 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   2015 
   2016 		/* Set a timeout in case the chip goes out to lunch. */
   2017 		ifp->if_timer = 5;
   2018 	}
   2019 }
   2020 
   2021 
   2022 static void
   2023 sk_watchdog(struct ifnet *ifp)
   2024 {
   2025 	struct sk_if_softc *sc_if = ifp->if_softc;
   2026 
   2027 	/*
   2028 	 * Reclaim first as there is a possibility of losing Tx completion
   2029 	 * interrupts.
   2030 	 */
   2031 	sk_txeof(sc_if);
   2032 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
   2033 		aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
   2034 
   2035 		if_statinc(ifp, if_oerrors);
   2036 
   2037 		sk_init(ifp);
   2038 	}
   2039 }
   2040 
   2041 #if 0 /* XXX XXX XXX UNUSED */
   2042 static void
   2043 sk_shutdown(void *v)
   2044 {
   2045 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
   2046 	struct sk_softc		*sc = sc_if->sk_softc;
   2047 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2048 
   2049 	DPRINTFN(2, ("sk_shutdown\n"));
   2050 	sk_stop(ifp, 1);
   2051 
   2052 	/* Turn off the 'driver is loaded' LED. */
   2053 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   2054 
   2055 	/*
   2056 	 * Reset the GEnesis controller. Doing this should also
   2057 	 * assert the resets on the attached XMAC(s).
   2058 	 */
   2059 	sk_reset(sc);
   2060 }
   2061 #endif
   2062 
   2063 static void
   2064 sk_rxeof(struct sk_if_softc *sc_if)
   2065 {
   2066 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2067 	struct mbuf		*m;
   2068 	struct sk_chain		*cur_rx;
   2069 	struct sk_rx_desc	*cur_desc;
   2070 	int			i, cur, total_len = 0;
   2071 	uint32_t		rxstat, sk_ctl;
   2072 	bus_dmamap_t		dmamap;
   2073 
   2074 	i = sc_if->sk_cdata.sk_rx_prod;
   2075 
   2076 	DPRINTFN(3, ("sk_rxeof %d\n", i));
   2077 
   2078 	for (;;) {
   2079 		cur = i;
   2080 
   2081 		/* Sync the descriptor */
   2082 		SK_CDRXSYNC(sc_if, cur,
   2083 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   2084 
   2085 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
   2086 		if (sk_ctl & SK_RXCTL_OWN) {
   2087 			/* Invalidate the descriptor -- it's not ready yet */
   2088 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
   2089 			sc_if->sk_cdata.sk_rx_prod = i;
   2090 			break;
   2091 		}
   2092 
   2093 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
   2094 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
   2095 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
   2096 
   2097 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
   2098 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2099 
   2100 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
   2101 		m = cur_rx->sk_mbuf;
   2102 		cur_rx->sk_mbuf = NULL;
   2103 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
   2104 
   2105 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
   2106 
   2107 		SK_INC(i, SK_RX_RING_CNT);
   2108 
   2109 		if (rxstat & XM_RXSTAT_ERRFRAME) {
   2110 			if_statinc(ifp, if_ierrors);
   2111 			sk_newbuf(sc_if, cur, m, dmamap);
   2112 			continue;
   2113 		}
   2114 
   2115 		/*
   2116 		 * Try to allocate a new jumbo buffer. If that
   2117 		 * fails, copy the packet to mbufs and put the
   2118 		 * jumbo buffer back in the ring so it can be
   2119 		 * re-used. If allocating mbufs fails, then we
   2120 		 * have to drop the packet.
   2121 		 */
   2122 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
   2123 			struct mbuf		*m0;
   2124 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
   2125 			    total_len + ETHER_ALIGN, 0, ifp);
   2126 			sk_newbuf(sc_if, cur, m, dmamap);
   2127 			if (m0 == NULL) {
   2128 				aprint_error_dev(sc_if->sk_dev, "no receive "
   2129 				    "buffers available -- packet dropped!\n");
   2130 				if_statinc(ifp, if_ierrors);
   2131 				continue;
   2132 			}
   2133 			m_adj(m0, ETHER_ALIGN);
   2134 			m = m0;
   2135 		} else {
   2136 			m_set_rcvif(m, ifp);
   2137 			m->m_pkthdr.len = m->m_len = total_len;
   2138 		}
   2139 
   2140 		/* pass it on. */
   2141 		if_percpuq_enqueue(ifp->if_percpuq, m);
   2142 	}
   2143 }
   2144 
   2145 static void
   2146 sk_txeof(struct sk_if_softc *sc_if)
   2147 {
   2148 	struct sk_softc		*sc = sc_if->sk_softc;
   2149 	struct sk_tx_desc	*cur_tx;
   2150 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2151 	uint32_t		idx, sk_ctl;
   2152 	struct sk_txmap_entry	*entry;
   2153 
   2154 	DPRINTFN(3, ("sk_txeof\n"));
   2155 
   2156 	/*
   2157 	 * Go through our tx ring and free mbufs for those
   2158 	 * frames that have been sent.
   2159 	 */
   2160 	idx = sc_if->sk_cdata.sk_tx_cons;
   2161 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
   2162 		SK_CDTXSYNC(sc_if, idx, 1,
   2163 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   2164 
   2165 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
   2166 		sk_ctl = le32toh(cur_tx->sk_ctl);
   2167 #ifdef SK_DEBUG
   2168 		if (skdebug >= 3)
   2169 			sk_dump_txdesc(cur_tx, idx);
   2170 #endif
   2171 		if (sk_ctl & SK_TXCTL_OWN) {
   2172 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
   2173 			break;
   2174 		}
   2175 		if (sk_ctl & SK_TXCTL_LASTFRAG)
   2176 			if_statinc(ifp, if_opackets);
   2177 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
   2178 			entry = sc_if->sk_cdata.sk_tx_map[idx];
   2179 
   2180 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
   2181 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
   2182 
   2183 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
   2184 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2185 
   2186 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
   2187 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
   2188 					  link);
   2189 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
   2190 		}
   2191 		sc_if->sk_cdata.sk_tx_cnt--;
   2192 		SK_INC(idx, SK_TX_RING_CNT);
   2193 	}
   2194 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
   2195 		ifp->if_timer = 0;
   2196 	else /* nudge chip to keep tx ring moving */
   2197 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   2198 
   2199 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
   2200 		ifp->if_flags &= ~IFF_OACTIVE;
   2201 
   2202 	sc_if->sk_cdata.sk_tx_cons = idx;
   2203 }
   2204 
   2205 static void
   2206 sk_tick(void *xsc_if)
   2207 {
   2208 	struct sk_if_softc *sc_if = xsc_if;
   2209 	struct mii_data *mii = &sc_if->sk_mii;
   2210 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2211 	int i;
   2212 
   2213 	DPRINTFN(3, ("sk_tick\n"));
   2214 
   2215 	if (!(ifp->if_flags & IFF_UP))
   2216 		return;
   2217 
   2218 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2219 		sk_intr_bcom(sc_if);
   2220 		return;
   2221 	}
   2222 
   2223 	/*
   2224 	 * According to SysKonnect, the correct way to verify that
   2225 	 * the link has come back up is to poll bit 0 of the GPIO
   2226 	 * register three times. This pin has the signal from the
   2227 	 * link sync pin connected to it; if we read the same link
   2228 	 * state 3 times in a row, we know the link is up.
   2229 	 */
   2230 	for (i = 0; i < 3; i++) {
   2231 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
   2232 			break;
   2233 	}
   2234 
   2235 	if (i != 3) {
   2236 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2237 		return;
   2238 	}
   2239 
   2240 	/* Turn the GP0 interrupt back on. */
   2241 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2242 	SK_XM_READ_2(sc_if, XM_ISR);
   2243 	mii_tick(mii);
   2244 	if (ifp->if_link_state != LINK_STATE_UP)
   2245 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2246 	else
   2247 		callout_stop(&sc_if->sk_tick_ch);
   2248 }
   2249 
   2250 static void
   2251 sk_intr_bcom(struct sk_if_softc *sc_if)
   2252 {
   2253 	struct mii_data *mii = &sc_if->sk_mii;
   2254 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2255 	uint16_t status;
   2256 
   2257 
   2258 	DPRINTFN(3, ("sk_intr_bcom\n"));
   2259 
   2260 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
   2261 
   2262 	/*
   2263 	 * Read the PHY interrupt register to make sure
   2264 	 * we clear any pending interrupts.
   2265 	 */
   2266 	sk_xmac_miibus_readreg(sc_if->sk_dev,
   2267 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR, &status);
   2268 
   2269 	if (!(ifp->if_flags & IFF_RUNNING)) {
   2270 		sk_init_xmac(sc_if);
   2271 		return;
   2272 	}
   2273 
   2274 	if (status & (BRGPHY_ISR_LNK_CHG | BRGPHY_ISR_AN_PR)) {
   2275 		uint16_t lstat;
   2276 		sk_xmac_miibus_readreg(sc_if->sk_dev,
   2277 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS, &lstat);
   2278 
   2279 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
   2280 			(void)mii_mediachg(mii);
   2281 			/* Turn off the link LED. */
   2282 			SK_IF_WRITE_1(sc_if, 0,
   2283 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2284 			sc_if->sk_link = 0;
   2285 		} else if (status & BRGPHY_ISR_LNK_CHG) {
   2286 			sk_xmac_miibus_writereg(sc_if->sk_dev,
   2287 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
   2288 			mii_tick(mii);
   2289 			sc_if->sk_link = 1;
   2290 			/* Turn on the link LED. */
   2291 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2292 			    SK_LINKLED_ON | SK_LINKLED_LINKSYNC_OFF |
   2293 			    SK_LINKLED_BLINK_OFF);
   2294 			mii_pollstat(mii);
   2295 		} else {
   2296 			mii_tick(mii);
   2297 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2298 		}
   2299 	}
   2300 
   2301 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
   2302 }
   2303 
   2304 static void
   2305 sk_intr_xmac(struct sk_if_softc	*sc_if)
   2306 {
   2307 	uint16_t status = SK_XM_READ_2(sc_if, XM_ISR);
   2308 
   2309 	DPRINTFN(3, ("sk_intr_xmac\n"));
   2310 
   2311 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
   2312 		if (status & XM_ISR_GP0_SET) {
   2313 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2314 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2315 		}
   2316 
   2317 		if (status & XM_ISR_AUTONEG_DONE) {
   2318 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2319 		}
   2320 	}
   2321 
   2322 	if (status & XM_IMR_TX_UNDERRUN)
   2323 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
   2324 
   2325 	if (status & XM_IMR_RX_OVERRUN)
   2326 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
   2327 }
   2328 
   2329 static void
   2330 sk_intr_yukon(struct sk_if_softc *sc_if)
   2331 {
   2332 #ifdef SK_DEBUG
   2333 	int status;
   2334 
   2335 	status =
   2336 #endif
   2337 		SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2338 
   2339 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
   2340 }
   2341 
   2342 static int
   2343 sk_intr(void *xsc)
   2344 {
   2345 	struct sk_softc		*sc = xsc;
   2346 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
   2347 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
   2348 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
   2349 	uint32_t		status;
   2350 	int			claimed = 0;
   2351 
   2352 	if (sc_if0 != NULL)
   2353 		ifp0 = &sc_if0->sk_ethercom.ec_if;
   2354 	if (sc_if1 != NULL)
   2355 		ifp1 = &sc_if1->sk_ethercom.ec_if;
   2356 
   2357 	for (;;) {
   2358 		status = CSR_READ_4(sc, SK_ISSR);
   2359 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
   2360 
   2361 		if (!(status & sc->sk_intrmask))
   2362 			break;
   2363 
   2364 		claimed = 1;
   2365 
   2366 		/* Handle receive interrupts first. */
   2367 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
   2368 			sk_rxeof(sc_if0);
   2369 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
   2370 			    SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
   2371 		}
   2372 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
   2373 			sk_rxeof(sc_if1);
   2374 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
   2375 			    SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
   2376 		}
   2377 
   2378 		/* Then transmit interrupts. */
   2379 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
   2380 			sk_txeof(sc_if0);
   2381 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
   2382 			    SK_TXBMU_CLR_IRQ_EOF);
   2383 		}
   2384 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
   2385 			sk_txeof(sc_if1);
   2386 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
   2387 			    SK_TXBMU_CLR_IRQ_EOF);
   2388 		}
   2389 
   2390 		/* Then MAC interrupts. */
   2391 		if (sc_if0 && (status & SK_ISR_MAC1) &&
   2392 		    (ifp0->if_flags & IFF_RUNNING)) {
   2393 			if (sc->sk_type == SK_GENESIS)
   2394 				sk_intr_xmac(sc_if0);
   2395 			else
   2396 				sk_intr_yukon(sc_if0);
   2397 		}
   2398 
   2399 		if (sc_if1 && (status & SK_ISR_MAC2) &&
   2400 		    (ifp1->if_flags & IFF_RUNNING)) {
   2401 			if (sc->sk_type == SK_GENESIS)
   2402 				sk_intr_xmac(sc_if1);
   2403 			else
   2404 				sk_intr_yukon(sc_if1);
   2405 
   2406 		}
   2407 
   2408 		if (status & SK_ISR_EXTERNAL_REG) {
   2409 			if (sc_if0 != NULL &&
   2410 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
   2411 				sk_intr_bcom(sc_if0);
   2412 
   2413 			if (sc_if1 != NULL &&
   2414 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
   2415 				sk_intr_bcom(sc_if1);
   2416 		}
   2417 	}
   2418 
   2419 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2420 
   2421 	if (ifp0 != NULL)
   2422 		if_schedule_deferred_start(ifp0);
   2423 	if (ifp1 != NULL)
   2424 		if_schedule_deferred_start(ifp1);
   2425 
   2426 	KASSERT(sc->rnd_attached > 0);
   2427 	rnd_add_uint32(&sc->rnd_source, status);
   2428 
   2429 	if (sc->sk_int_mod_pending)
   2430 		sk_update_int_mod(sc);
   2431 
   2432 	return claimed;
   2433 }
   2434 
   2435 static void
   2436 sk_unreset_xmac(struct sk_if_softc *sc_if)
   2437 {
   2438 	struct sk_softc		*sc = sc_if->sk_softc;
   2439 	static const struct sk_bcom_hack     bhack[] = {
   2440 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
   2441 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
   2442 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
   2443 	{ 0, 0 } };
   2444 
   2445 	DPRINTFN(1, ("sk_unreset_xmac\n"));
   2446 
   2447 	/* Unreset the XMAC. */
   2448 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
   2449 	DELAY(1000);
   2450 
   2451 	/* Reset the XMAC's internal state. */
   2452 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2453 
   2454 	/* Save the XMAC II revision */
   2455 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
   2456 
   2457 	/*
   2458 	 * Perform additional initialization for external PHYs,
   2459 	 * namely for the 1000baseTX cards that use the XMAC's
   2460 	 * GMII mode.
   2461 	 */
   2462 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2463 		int			i = 0;
   2464 		uint32_t		val;
   2465 		uint16_t		phyval;
   2466 
   2467 		/* Take PHY out of reset. */
   2468 		val = sk_win_read_4(sc, SK_GPIO);
   2469 		if (sc_if->sk_port == SK_PORT_A)
   2470 			val |= SK_GPIO_DIR0 | SK_GPIO_DAT0;
   2471 		else
   2472 			val |= SK_GPIO_DIR2 | SK_GPIO_DAT2;
   2473 		sk_win_write_4(sc, SK_GPIO, val);
   2474 
   2475 		/* Enable GMII mode on the XMAC. */
   2476 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
   2477 
   2478 		sk_xmac_miibus_writereg(sc_if->sk_dev,
   2479 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
   2480 		DELAY(10000);
   2481 		sk_xmac_miibus_writereg(sc_if->sk_dev,
   2482 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
   2483 
   2484 		/*
   2485 		 * Early versions of the BCM5400 apparently have
   2486 		 * a bug that requires them to have their reserved
   2487 		 * registers initialized to some magic values. I don't
   2488 		 * know what the numbers do, I'm just the messenger.
   2489 		 */
   2490 		sk_xmac_miibus_readreg(sc_if->sk_dev,
   2491 		    SK_PHYADDR_BCOM, 0x03, &phyval);
   2492 		if (phyval == 0x6041) {
   2493 			while (bhack[i].reg) {
   2494 				sk_xmac_miibus_writereg(sc_if->sk_dev,
   2495 				    SK_PHYADDR_BCOM, bhack[i].reg,
   2496 				    bhack[i].val);
   2497 				i++;
   2498 			}
   2499 		}
   2500 	}
   2501 }
   2502 
   2503 static void
   2504 sk_init_xmac(struct sk_if_softc *sc_if)
   2505 {
   2506 	struct sk_softc		*sc = sc_if->sk_softc;
   2507 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2508 
   2509 	sk_unreset_xmac(sc_if);
   2510 
   2511 	/* Set station address */
   2512 	SK_XM_WRITE_2(sc_if, XM_PAR0,
   2513 		      *(uint16_t *)(&sc_if->sk_enaddr[0]));
   2514 	SK_XM_WRITE_2(sc_if, XM_PAR1,
   2515 		      *(uint16_t *)(&sc_if->sk_enaddr[2]));
   2516 	SK_XM_WRITE_2(sc_if, XM_PAR2,
   2517 		      *(uint16_t *)(&sc_if->sk_enaddr[4]));
   2518 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
   2519 
   2520 	if (ifp->if_flags & IFF_PROMISC)
   2521 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2522 	else
   2523 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2524 
   2525 	if (ifp->if_flags & IFF_BROADCAST)
   2526 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2527 	else
   2528 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2529 
   2530 	/* We don't need the FCS appended to the packet. */
   2531 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
   2532 
   2533 	/* We want short frames padded to 60 bytes. */
   2534 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
   2535 
   2536 	/*
   2537 	 * Enable the reception of all error frames. This is
   2538 	 * a necessary evil due to the design of the XMAC. The
   2539 	 * XMAC's receive FIFO is only 8K in size, however jumbo
   2540 	 * frames can be up to 9000 bytes in length. When bad
   2541 	 * frame filtering is enabled, the XMAC's RX FIFO operates
   2542 	 * in 'store and forward' mode. For this to work, the
   2543 	 * entire frame has to fit into the FIFO, but that means
   2544 	 * that jumbo frames larger than 8192 bytes will be
   2545 	 * truncated. Disabling all bad frame filtering causes
   2546 	 * the RX FIFO to operate in streaming mode, in which
   2547 	 * case the XMAC will start transfering frames out of the
   2548 	 * RX FIFO as soon as the FIFO threshold is reached.
   2549 	 */
   2550 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES |
   2551 	    XM_MODE_RX_GIANTS | XM_MODE_RX_RUNTS | XM_MODE_RX_CRCERRS |
   2552 	    XM_MODE_RX_INRANGELEN);
   2553 
   2554 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2555 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2556 	else
   2557 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2558 
   2559 	/*
   2560 	 * Bump up the transmit threshold. This helps hold off transmit
   2561 	 * underruns when we're blasting traffic from both ports at once.
   2562 	 */
   2563 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
   2564 
   2565 	/* Set multicast filter */
   2566 	sk_setmulti(sc_if);
   2567 
   2568 	/* Clear and enable interrupts */
   2569 	SK_XM_READ_2(sc_if, XM_ISR);
   2570 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
   2571 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
   2572 	else
   2573 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2574 
   2575 	/* Configure MAC arbiter */
   2576 	switch (sc_if->sk_xmac_rev) {
   2577 	case XM_XMAC_REV_B2:
   2578 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
   2579 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
   2580 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
   2581 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
   2582 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
   2583 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
   2584 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
   2585 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
   2586 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2587 		break;
   2588 	case XM_XMAC_REV_C1:
   2589 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
   2590 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
   2591 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
   2592 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
   2593 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
   2594 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
   2595 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
   2596 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
   2597 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2598 		break;
   2599 	default:
   2600 		break;
   2601 	}
   2602 	sk_win_write_2(sc, SK_MACARB_CTL,
   2603 	    SK_MACARBCTL_UNRESET | SK_MACARBCTL_FASTOE_OFF);
   2604 
   2605 	sc_if->sk_link = 1;
   2606 }
   2607 
   2608 static void
   2609 sk_unreset_yukon(struct sk_if_softc *sc_if)
   2610 {
   2611 	uint32_t		/*mac, */phy;
   2612 	struct sk_softc		*sc;
   2613 
   2614 	DPRINTFN(1, ("sk_unreset_yukon: start: sk_csr=%#x\n",
   2615 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
   2616 
   2617 	sc = sc_if->sk_softc;
   2618 	if (sc->sk_type == SK_YUKON_LITE &&
   2619 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
   2620 		/* Take PHY out of reset. */
   2621 		sk_win_write_4(sc, SK_GPIO,
   2622 		    (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9)
   2623 		    & ~SK_GPIO_DAT9);
   2624 	}
   2625 
   2626 	/* GMAC and GPHY Reset */
   2627 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
   2628 
   2629 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
   2630 
   2631 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2632 	DELAY(1000);
   2633 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
   2634 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2635 	DELAY(1000);
   2636 
   2637 
   2638 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
   2639 
   2640 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
   2641 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
   2642 
   2643 	switch (sc_if->sk_softc->sk_pmd) {
   2644 	case IFM_1000_SX:
   2645 	case IFM_1000_LX:
   2646 		phy |= SK_GPHY_FIBER;
   2647 		break;
   2648 
   2649 	case IFM_1000_CX:
   2650 	case IFM_1000_T:
   2651 		phy |= SK_GPHY_COPPER;
   2652 		break;
   2653 	}
   2654 
   2655 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
   2656 
   2657 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
   2658 	DELAY(1000);
   2659 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
   2660 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
   2661 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
   2662 
   2663 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
   2664 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
   2665 }
   2666 
   2667 static void
   2668 sk_init_yukon(struct sk_if_softc *sc_if)
   2669 {
   2670 	uint16_t		reg;
   2671 	int			i;
   2672 
   2673 	DPRINTFN(1, ("sk_init_yukon: start\n"));
   2674 	sk_unreset_yukon(sc_if);
   2675 
   2676 	/* unused read of the interrupt source register */
   2677 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
   2678 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2679 
   2680 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
   2681 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
   2682 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2683 
   2684 	/* MIB Counter Clear Mode set */
   2685 	reg |= YU_PAR_MIB_CLR;
   2686 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2687 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
   2688 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2689 
   2690 	/* MIB Counter Clear Mode clear */
   2691 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
   2692 	reg &= ~YU_PAR_MIB_CLR;
   2693 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2694 
   2695 	/* receive control reg */
   2696 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
   2697 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
   2698 		      YU_RCR_CRCR);
   2699 
   2700 	/* transmit parameter register */
   2701 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
   2702 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
   2703 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a));
   2704 
   2705 	/* serial mode register */
   2706 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
   2707 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
   2708 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
   2709 		      YU_SMR_IPG_DATA(0x1e));
   2710 
   2711 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
   2712 	/* Setup Yukon's address */
   2713 	for (i = 0; i < 3; i++) {
   2714 		/* Write Source Address 1 (unicast filter) */
   2715 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
   2716 			      sc_if->sk_enaddr[i * 2] |
   2717 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
   2718 	}
   2719 
   2720 	for (i = 0; i < 3; i++) {
   2721 		reg = sk_win_read_2(sc_if->sk_softc,
   2722 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
   2723 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
   2724 	}
   2725 
   2726 	/* Set multicast filter */
   2727 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
   2728 	sk_setmulti(sc_if);
   2729 
   2730 	/* enable interrupt mask for counter overflows */
   2731 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
   2732 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
   2733 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
   2734 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
   2735 
   2736 	/* Configure RX MAC FIFO */
   2737 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
   2738 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
   2739 
   2740 	/* Configure TX MAC FIFO */
   2741 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
   2742 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
   2743 
   2744 	DPRINTFN(6, ("sk_init_yukon: end\n"));
   2745 }
   2746 
   2747 /*
   2748  * Note that to properly initialize any part of the GEnesis chip,
   2749  * you first have to take it out of reset mode.
   2750  */
   2751 static int
   2752 sk_init(struct ifnet *ifp)
   2753 {
   2754 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2755 	struct sk_softc		*sc = sc_if->sk_softc;
   2756 	struct mii_data		*mii = &sc_if->sk_mii;
   2757 	int			rc = 0, s;
   2758 	uint32_t		imr, imtimer_ticks;
   2759 
   2760 	DPRINTFN(1, ("sk_init\n"));
   2761 
   2762 	s = splnet();
   2763 
   2764 	if (ifp->if_flags & IFF_RUNNING) {
   2765 		splx(s);
   2766 		return 0;
   2767 	}
   2768 
   2769 	/* Cancel pending I/O and free all RX/TX buffers. */
   2770 	sk_stop(ifp, 0);
   2771 
   2772 	if (sc->sk_type == SK_GENESIS) {
   2773 		/* Configure LINK_SYNC LED */
   2774 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
   2775 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2776 			      SK_LINKLED_LINKSYNC_ON);
   2777 
   2778 		/* Configure RX LED */
   2779 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
   2780 			      SK_RXLEDCTL_COUNTER_START);
   2781 
   2782 		/* Configure TX LED */
   2783 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
   2784 			      SK_TXLEDCTL_COUNTER_START);
   2785 	}
   2786 
   2787 	/* Configure I2C registers */
   2788 
   2789 	/* Configure XMAC(s) */
   2790 	switch (sc->sk_type) {
   2791 	case SK_GENESIS:
   2792 		sk_init_xmac(sc_if);
   2793 		break;
   2794 	case SK_YUKON:
   2795 	case SK_YUKON_LITE:
   2796 	case SK_YUKON_LP:
   2797 		sk_init_yukon(sc_if);
   2798 		break;
   2799 	}
   2800 	if ((rc = mii_mediachg(mii)) == ENXIO)
   2801 		rc = 0;
   2802 	else if (rc != 0)
   2803 		goto out;
   2804 
   2805 	if (sc->sk_type == SK_GENESIS) {
   2806 		/* Configure MAC FIFOs */
   2807 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
   2808 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
   2809 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
   2810 
   2811 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
   2812 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
   2813 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
   2814 	}
   2815 
   2816 	/* Configure transmit arbiter(s) */
   2817 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
   2818 	    SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON);
   2819 
   2820 	/* Configure RAMbuffers */
   2821 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
   2822 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
   2823 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
   2824 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
   2825 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
   2826 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
   2827 
   2828 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
   2829 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
   2830 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
   2831 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
   2832 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
   2833 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
   2834 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
   2835 
   2836 	/* Configure BMUs */
   2837 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
   2838 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
   2839 	    SK_RX_RING_ADDR(sc_if, 0));
   2840 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
   2841 
   2842 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
   2843 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
   2844 	    SK_TX_RING_ADDR(sc_if, 0));
   2845 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
   2846 
   2847 	/* Init descriptors */
   2848 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
   2849 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
   2850 		    "memory for rx buffers\n");
   2851 		sk_stop(ifp, 0);
   2852 		splx(s);
   2853 		return ENOBUFS;
   2854 	}
   2855 
   2856 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
   2857 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
   2858 		    "memory for tx buffers\n");
   2859 		sk_stop(ifp, 0);
   2860 		splx(s);
   2861 		return ENOBUFS;
   2862 	}
   2863 
   2864 	/* Set interrupt moderation if changed via sysctl. */
   2865 	switch (sc->sk_type) {
   2866 	case SK_GENESIS:
   2867 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   2868 		break;
   2869 	case SK_YUKON_EC:
   2870 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   2871 		break;
   2872 	default:
   2873 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   2874 	}
   2875 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
   2876 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
   2877 		sk_win_write_4(sc, SK_IMTIMERINIT,
   2878 		    SK_IM_USECS(sc->sk_int_mod));
   2879 		aprint_verbose_dev(sc->sk_dev,
   2880 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
   2881 	}
   2882 
   2883 	/* Configure interrupt handling */
   2884 	CSR_READ_4(sc, SK_ISSR);
   2885 	if (sc_if->sk_port == SK_PORT_A)
   2886 		sc->sk_intrmask |= SK_INTRS1;
   2887 	else
   2888 		sc->sk_intrmask |= SK_INTRS2;
   2889 
   2890 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
   2891 
   2892 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2893 
   2894 	/* Start BMUs. */
   2895 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
   2896 
   2897 	if (sc->sk_type == SK_GENESIS) {
   2898 		/* Enable XMACs TX and RX state machines */
   2899 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
   2900 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
   2901 			       XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
   2902 	}
   2903 
   2904 	if (SK_YUKON_FAMILY(sc->sk_type)) {
   2905 		uint16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
   2906 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
   2907 #if 0
   2908 		/* XXX disable 100Mbps and full duplex mode? */
   2909 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
   2910 #endif
   2911 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
   2912 	}
   2913 
   2914 
   2915 	ifp->if_flags |= IFF_RUNNING;
   2916 	ifp->if_flags &= ~IFF_OACTIVE;
   2917 	callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2918 
   2919 out:
   2920 	splx(s);
   2921 	return rc;
   2922 }
   2923 
   2924 static void
   2925 sk_stop(struct ifnet *ifp, int disable)
   2926 {
   2927 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2928 	struct sk_softc		*sc = sc_if->sk_softc;
   2929 	int			i;
   2930 
   2931 	DPRINTFN(1, ("sk_stop\n"));
   2932 
   2933 	callout_stop(&sc_if->sk_tick_ch);
   2934 
   2935 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2936 		uint32_t		val;
   2937 
   2938 		/* Put PHY back into reset. */
   2939 		val = sk_win_read_4(sc, SK_GPIO);
   2940 		if (sc_if->sk_port == SK_PORT_A) {
   2941 			val |= SK_GPIO_DIR0;
   2942 			val &= ~SK_GPIO_DAT0;
   2943 		} else {
   2944 			val |= SK_GPIO_DIR2;
   2945 			val &= ~SK_GPIO_DAT2;
   2946 		}
   2947 		sk_win_write_4(sc, SK_GPIO, val);
   2948 	}
   2949 
   2950 	/* Turn off various components of this interface. */
   2951 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2952 	switch (sc->sk_type) {
   2953 	case SK_GENESIS:
   2954 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
   2955 			      SK_TXMACCTL_XMAC_RESET);
   2956 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
   2957 		break;
   2958 	case SK_YUKON:
   2959 	case SK_YUKON_LITE:
   2960 	case SK_YUKON_LP:
   2961 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
   2962 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
   2963 		break;
   2964 	}
   2965 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
   2966 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET |SK_RBCTL_OFF);
   2967 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
   2968 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2969 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
   2970 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2971 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2972 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2973 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
   2974 
   2975 	/* Disable interrupts */
   2976 	if (sc_if->sk_port == SK_PORT_A)
   2977 		sc->sk_intrmask &= ~SK_INTRS1;
   2978 	else
   2979 		sc->sk_intrmask &= ~SK_INTRS2;
   2980 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2981 
   2982 	SK_XM_READ_2(sc_if, XM_ISR);
   2983 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2984 
   2985 	/* Free RX and TX mbufs still in the queues. */
   2986 	for (i = 0; i < SK_RX_RING_CNT; i++) {
   2987 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
   2988 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
   2989 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   2990 		}
   2991 	}
   2992 
   2993 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   2994 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
   2995 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
   2996 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   2997 		}
   2998 	}
   2999 
   3000 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3001 }
   3002 
   3003 /* Power Management Framework */
   3004 
   3005 static bool
   3006 skc_suspend(device_t dv, const pmf_qual_t *qual)
   3007 {
   3008 	struct sk_softc *sc = device_private(dv);
   3009 
   3010 	DPRINTFN(2, ("skc_suspend\n"));
   3011 
   3012 	/* Turn off the driver is loaded LED */
   3013 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   3014 
   3015 	return true;
   3016 }
   3017 
   3018 static bool
   3019 skc_resume(device_t dv, const pmf_qual_t *qual)
   3020 {
   3021 	struct sk_softc *sc = device_private(dv);
   3022 
   3023 	DPRINTFN(2, ("skc_resume\n"));
   3024 
   3025 	sk_reset(sc);
   3026 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   3027 
   3028 	return true;
   3029 }
   3030 
   3031 static bool
   3032 sk_resume(device_t dv, const pmf_qual_t *qual)
   3033 {
   3034 	struct sk_if_softc *sc_if = device_private(dv);
   3035 
   3036 	sk_init_yukon(sc_if);
   3037 	return true;
   3038 }
   3039 
   3040 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
   3041     skc_probe, skc_attach, NULL, NULL);
   3042 
   3043 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
   3044     sk_probe, sk_attach, NULL, NULL);
   3045 
   3046 #ifdef SK_DEBUG
   3047 static void
   3048 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
   3049 {
   3050 #define DESC_PRINT(X)					\
   3051 	if (X)						\
   3052 		printf("txdesc[%d]." #X "=%#x\n",	\
   3053 		       idx, X);
   3054 
   3055 	DESC_PRINT(le32toh(desc->sk_ctl));
   3056 	DESC_PRINT(le32toh(desc->sk_next));
   3057 	DESC_PRINT(le32toh(desc->sk_data_lo));
   3058 	DESC_PRINT(le32toh(desc->sk_data_hi));
   3059 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
   3060 	DESC_PRINT(le16toh(desc->sk_rsvd0));
   3061 	DESC_PRINT(le16toh(desc->sk_csum_startval));
   3062 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
   3063 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
   3064 	DESC_PRINT(le16toh(desc->sk_rsvd1));
   3065 #undef PRINT
   3066 }
   3067 
   3068 static void
   3069 sk_dump_bytes(const char *data, int len)
   3070 {
   3071 	int c, i, j;
   3072 
   3073 	for (i = 0; i < len; i += 16) {
   3074 		printf("%08x  ", i);
   3075 		c = len - i;
   3076 		if (c > 16) c = 16;
   3077 
   3078 		for (j = 0; j < c; j++) {
   3079 			printf("%02x ", data[i + j] & 0xff);
   3080 			if ((j & 0xf) == 7 && j > 0)
   3081 				printf(" ");
   3082 		}
   3083 
   3084 		for (; j < 16; j++)
   3085 			printf("   ");
   3086 		printf("  ");
   3087 
   3088 		for (j = 0; j < c; j++) {
   3089 			int ch = data[i + j] & 0xff;
   3090 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
   3091 		}
   3092 
   3093 		printf("\n");
   3094 
   3095 		if (c < 16)
   3096 			break;
   3097 	}
   3098 }
   3099 
   3100 static void
   3101 sk_dump_mbuf(struct mbuf *m)
   3102 {
   3103 	int count = m->m_pkthdr.len;
   3104 
   3105 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
   3106 
   3107 	while (count > 0 && m) {
   3108 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
   3109 		       m, m->m_data, m->m_len);
   3110 		sk_dump_bytes(mtod(m, char *), m->m_len);
   3111 
   3112 		count -= m->m_len;
   3113 		m = m->m_next;
   3114 	}
   3115 }
   3116 #endif
   3117 
   3118 static int
   3119 sk_sysctl_handler(SYSCTLFN_ARGS)
   3120 {
   3121 	int error, t;
   3122 	struct sysctlnode node;
   3123 	struct sk_softc *sc;
   3124 
   3125 	node = *rnode;
   3126 	sc = node.sysctl_data;
   3127 	t = sc->sk_int_mod;
   3128 	node.sysctl_data = &t;
   3129 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3130 	if (error || newp == NULL)
   3131 		return error;
   3132 
   3133 	if (t < SK_IM_MIN || t > SK_IM_MAX)
   3134 		return EINVAL;
   3135 
   3136 	/* update the softc with sysctl-changed value, and mark
   3137 	   for hardware update */
   3138 	sc->sk_int_mod = t;
   3139 	sc->sk_int_mod_pending = 1;
   3140 	return 0;
   3141 }
   3142 
   3143 /*
   3144  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
   3145  * set up in skc_attach()
   3146  */
   3147 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
   3148 {
   3149 	int rc;
   3150 	const struct sysctlnode *node;
   3151 
   3152 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   3153 	    0, CTLTYPE_NODE, "sk",
   3154 	    SYSCTL_DESCR("sk interface controls"),
   3155 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   3156 		goto err;
   3157 	}
   3158 
   3159 	sk_root_num = node->sysctl_num;
   3160 	return;
   3161 
   3162 err:
   3163 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
   3164 }
   3165