if_sk.c revision 1.92 1 /* $NetBSD: if_sk.c,v 1.92 2019/01/08 04:18:50 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
30
31 /*
32 * Copyright (c) 1997, 1998, 1999, 2000
33 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by Bill Paul.
46 * 4. Neither the name of the author nor the names of any co-contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60 * THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63 */
64
65 /*
66 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
67 *
68 * Permission to use, copy, modify, and distribute this software for any
69 * purpose with or without fee is hereby granted, provided that the above
70 * copyright notice and this permission notice appear in all copies.
71 *
72 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79 */
80
81 /*
82 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83 * the SK-984x series adapters, both single port and dual port.
84 * References:
85 * The XaQti XMAC II datasheet,
86 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87 * The SysKonnect GEnesis manual, http://www.syskonnect.com
88 *
89 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91 * convenience to others until Vitesse corrects this problem:
92 *
93 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 *
95 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
96 * Department of Electrical Engineering
97 * Columbia University, New York City
98 */
99
100 /*
101 * The SysKonnect gigabit ethernet adapters consist of two main
102 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104 * components and a PHY while the GEnesis controller provides a PCI
105 * interface with DMA support. Each card may have between 512K and
106 * 2MB of SRAM on board depending on the configuration.
107 *
108 * The SysKonnect GEnesis controller can have either one or two XMAC
109 * chips connected to it, allowing single or dual port NIC configurations.
110 * SysKonnect has the distinction of being the only vendor on the market
111 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113 * XMAC registers. This driver takes advantage of these features to allow
114 * both XMACs to operate as independent interfaces.
115 */
116
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.92 2019/01/08 04:18:50 msaitoh Exp $");
119
120 #include <sys/param.h>
121 #include <sys/systm.h>
122 #include <sys/sockio.h>
123 #include <sys/mbuf.h>
124 #include <sys/malloc.h>
125 #include <sys/mutex.h>
126 #include <sys/kernel.h>
127 #include <sys/socket.h>
128 #include <sys/device.h>
129 #include <sys/queue.h>
130 #include <sys/callout.h>
131 #include <sys/sysctl.h>
132 #include <sys/endian.h>
133
134 #include <net/if.h>
135 #include <net/if_dl.h>
136 #include <net/if_types.h>
137
138 #include <net/if_media.h>
139
140 #include <net/bpf.h>
141 #include <sys/rndsource.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145 #include <dev/mii/brgphyreg.h>
146
147 #include <dev/pci/pcireg.h>
148 #include <dev/pci/pcivar.h>
149 #include <dev/pci/pcidevs.h>
150
151 /* #define SK_USEIOSPACE */
152
153 #include <dev/pci/if_skreg.h>
154 #include <dev/pci/if_skvar.h>
155
156 int skc_probe(device_t, cfdata_t, void *);
157 void skc_attach(device_t, device_t, void *aux);
158 int sk_probe(device_t, cfdata_t, void *);
159 void sk_attach(device_t, device_t, void *aux);
160 int skcprint(void *, const char *);
161 int sk_intr(void *);
162 void sk_intr_bcom(struct sk_if_softc *);
163 void sk_intr_xmac(struct sk_if_softc *);
164 void sk_intr_yukon(struct sk_if_softc *);
165 void sk_rxeof(struct sk_if_softc *);
166 void sk_txeof(struct sk_if_softc *);
167 int sk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
168 void sk_start(struct ifnet *);
169 int sk_ioctl(struct ifnet *, u_long, void *);
170 int sk_init(struct ifnet *);
171 void sk_init_xmac(struct sk_if_softc *);
172 void sk_init_yukon(struct sk_if_softc *);
173 void sk_stop(struct ifnet *, int);
174 void sk_watchdog(struct ifnet *);
175 void sk_shutdown(void *);
176 int sk_ifmedia_upd(struct ifnet *);
177 void sk_reset(struct sk_softc *);
178 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
179 int sk_alloc_jumbo_mem(struct sk_if_softc *);
180 void sk_free_jumbo_mem(struct sk_if_softc *);
181 void *sk_jalloc(struct sk_if_softc *);
182 void sk_jfree(struct mbuf *, void *, size_t, void *);
183 int sk_init_rx_ring(struct sk_if_softc *);
184 int sk_init_tx_ring(struct sk_if_softc *);
185 uint8_t sk_vpd_readbyte(struct sk_softc *, int);
186 void sk_vpd_read_res(struct sk_softc *,
187 struct vpd_res *, int);
188 void sk_vpd_read(struct sk_softc *);
189
190 void sk_update_int_mod(struct sk_softc *);
191
192 int sk_xmac_miibus_readreg(device_t, int, int);
193 void sk_xmac_miibus_writereg(device_t, int, int, int);
194 void sk_xmac_miibus_statchg(struct ifnet *);
195
196 int sk_marv_miibus_readreg(device_t, int, int);
197 void sk_marv_miibus_writereg(device_t, int, int, int);
198 void sk_marv_miibus_statchg(struct ifnet *);
199
200 uint32_t sk_xmac_hash(void *);
201 uint32_t sk_yukon_hash(void *);
202 void sk_setfilt(struct sk_if_softc *, void *, int);
203 void sk_setmulti(struct sk_if_softc *);
204 void sk_tick(void *);
205
206 static bool skc_suspend(device_t, const pmf_qual_t *);
207 static bool skc_resume(device_t, const pmf_qual_t *);
208 static bool sk_resume(device_t dv, const pmf_qual_t *);
209
210 /* #define SK_DEBUG 2 */
211 #ifdef SK_DEBUG
212 #define DPRINTF(x) if (skdebug) printf x
213 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
214 int skdebug = SK_DEBUG;
215
216 void sk_dump_txdesc(struct sk_tx_desc *, int);
217 void sk_dump_mbuf(struct mbuf *);
218 void sk_dump_bytes(const char *, int);
219 #else
220 #define DPRINTF(x)
221 #define DPRINTFN(n,x)
222 #endif
223
224 static int sk_sysctl_handler(SYSCTLFN_PROTO);
225 static int sk_root_num;
226
227 /* supported device vendors */
228 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
229 static const struct sk_product {
230 pci_vendor_id_t sk_vendor;
231 pci_product_id_t sk_product;
232 } sk_products[] = {
233 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
234 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
235 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
236 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
237 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
238 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
239 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
240 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
241 { 0, 0, }
242 };
243
244 #define SK_LINKSYS_EG1032_SUBID 0x00151737
245
246 static inline uint32_t
247 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
248 {
249 #ifdef SK_USEIOSPACE
250 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
251 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
252 #else
253 return CSR_READ_4(sc, reg);
254 #endif
255 }
256
257 static inline uint16_t
258 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
259 {
260 #ifdef SK_USEIOSPACE
261 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
262 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
263 #else
264 return CSR_READ_2(sc, reg);
265 #endif
266 }
267
268 static inline uint8_t
269 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
270 {
271 #ifdef SK_USEIOSPACE
272 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
273 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
274 #else
275 return CSR_READ_1(sc, reg);
276 #endif
277 }
278
279 static inline void
280 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
281 {
282 #ifdef SK_USEIOSPACE
283 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
284 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
285 #else
286 CSR_WRITE_4(sc, reg, x);
287 #endif
288 }
289
290 static inline void
291 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
292 {
293 #ifdef SK_USEIOSPACE
294 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
295 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
296 #else
297 CSR_WRITE_2(sc, reg, x);
298 #endif
299 }
300
301 static inline void
302 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
303 {
304 #ifdef SK_USEIOSPACE
305 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
306 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
307 #else
308 CSR_WRITE_1(sc, reg, x);
309 #endif
310 }
311
312 /*
313 * The VPD EEPROM contains Vital Product Data, as suggested in
314 * the PCI 2.1 specification. The VPD data is separared into areas
315 * denoted by resource IDs. The SysKonnect VPD contains an ID string
316 * resource (the name of the adapter), a read-only area resource
317 * containing various key/data fields and a read/write area which
318 * can be used to store asset management information or log messages.
319 * We read the ID string and read-only into buffers attached to
320 * the controller softc structure for later use. At the moment,
321 * we only use the ID string during sk_attach().
322 */
323 uint8_t
324 sk_vpd_readbyte(struct sk_softc *sc, int addr)
325 {
326 int i;
327
328 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
329 for (i = 0; i < SK_TIMEOUT; i++) {
330 DELAY(1);
331 if (sk_win_read_2(sc,
332 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
333 break;
334 }
335
336 if (i == SK_TIMEOUT)
337 return 0;
338
339 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
340 }
341
342 void
343 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
344 {
345 int i;
346 uint8_t *ptr;
347
348 ptr = (uint8_t *)res;
349 for (i = 0; i < sizeof(struct vpd_res); i++)
350 ptr[i] = sk_vpd_readbyte(sc, i + addr);
351 }
352
353 void
354 sk_vpd_read(struct sk_softc *sc)
355 {
356 int pos = 0, i;
357 struct vpd_res res;
358
359 if (sc->sk_vpd_prodname != NULL)
360 free(sc->sk_vpd_prodname, M_DEVBUF);
361 if (sc->sk_vpd_readonly != NULL)
362 free(sc->sk_vpd_readonly, M_DEVBUF);
363 sc->sk_vpd_prodname = NULL;
364 sc->sk_vpd_readonly = NULL;
365
366 sk_vpd_read_res(sc, &res, pos);
367
368 if (res.vr_id != VPD_RES_ID) {
369 aprint_error_dev(sc->sk_dev,
370 "bad VPD resource id: expected %x got %x\n",
371 VPD_RES_ID, res.vr_id);
372 return;
373 }
374
375 pos += sizeof(res);
376 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
377 if (sc->sk_vpd_prodname == NULL)
378 panic("sk_vpd_read");
379 for (i = 0; i < res.vr_len; i++)
380 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
381 sc->sk_vpd_prodname[i] = '\0';
382 pos += i;
383
384 sk_vpd_read_res(sc, &res, pos);
385
386 if (res.vr_id != VPD_RES_READ) {
387 aprint_error_dev(sc->sk_dev,
388 "bad VPD resource id: expected %x got %x\n",
389 VPD_RES_READ, res.vr_id);
390 return;
391 }
392
393 pos += sizeof(res);
394 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
395 if (sc->sk_vpd_readonly == NULL)
396 panic("sk_vpd_read");
397 for (i = 0; i < res.vr_len ; i++)
398 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
399 }
400
401 int
402 sk_xmac_miibus_readreg(device_t dev, int phy, int reg)
403 {
404 struct sk_if_softc *sc_if = device_private(dev);
405 int i;
406
407 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
408
409 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
410 return 0;
411
412 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
413 SK_XM_READ_2(sc_if, XM_PHY_DATA);
414 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
415 for (i = 0; i < SK_TIMEOUT; i++) {
416 DELAY(1);
417 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
418 XM_MMUCMD_PHYDATARDY)
419 break;
420 }
421
422 if (i == SK_TIMEOUT) {
423 aprint_error_dev(sc_if->sk_dev,
424 "phy failed to come ready\n");
425 return 0;
426 }
427 }
428 DELAY(1);
429 return SK_XM_READ_2(sc_if, XM_PHY_DATA);
430 }
431
432 void
433 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, int val)
434 {
435 struct sk_if_softc *sc_if = device_private(dev);
436 int i;
437
438 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
439
440 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
441 for (i = 0; i < SK_TIMEOUT; i++) {
442 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
443 break;
444 }
445
446 if (i == SK_TIMEOUT) {
447 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
448 return;
449 }
450
451 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
452 for (i = 0; i < SK_TIMEOUT; i++) {
453 DELAY(1);
454 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
455 break;
456 }
457
458 if (i == SK_TIMEOUT)
459 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
460 }
461
462 void
463 sk_xmac_miibus_statchg(struct ifnet *ifp)
464 {
465 struct sk_if_softc *sc_if = ifp->if_softc;
466 struct mii_data *mii = &sc_if->sk_mii;
467
468 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
469
470 /*
471 * If this is a GMII PHY, manually set the XMAC's
472 * duplex mode accordingly.
473 */
474 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
475 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
476 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
477 else
478 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
479 }
480 }
481
482 int
483 sk_marv_miibus_readreg(device_t dev, int phy, int reg)
484 {
485 struct sk_if_softc *sc_if = device_private(dev);
486 uint16_t val;
487 int i;
488
489 if (phy != 0 ||
490 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
491 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
492 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
493 phy, reg));
494 return 0;
495 }
496
497 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
498 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
499
500 for (i = 0; i < SK_TIMEOUT; i++) {
501 DELAY(1);
502 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
503 if (val & YU_SMICR_READ_VALID)
504 break;
505 }
506
507 if (i == SK_TIMEOUT) {
508 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
509 return 0;
510 }
511
512 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
513 SK_TIMEOUT));
514
515 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
516
517 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
518 phy, reg, val));
519
520 return val;
521 }
522
523 void
524 sk_marv_miibus_writereg(device_t dev, int phy, int reg, int val)
525 {
526 struct sk_if_softc *sc_if = device_private(dev);
527 int i;
528
529 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
530 phy, reg, val));
531
532 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
533 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
534 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
535
536 for (i = 0; i < SK_TIMEOUT; i++) {
537 DELAY(1);
538 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
539 break;
540 }
541
542 if (i == SK_TIMEOUT)
543 printf("%s: phy write timed out\n",
544 device_xname(sc_if->sk_dev));
545 }
546
547 void
548 sk_marv_miibus_statchg(struct ifnet *ifp)
549 {
550 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
551 SK_YU_READ_2(((struct sk_if_softc *)ifp->if_softc),
552 YUKON_GPCR)));
553 }
554
555 uint32_t
556 sk_xmac_hash(void *addr)
557 {
558 uint32_t crc;
559
560 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
561 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
562 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
563 return crc;
564 }
565
566 uint32_t
567 sk_yukon_hash(void *addr)
568 {
569 uint32_t crc;
570
571 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
572 crc &= ((1 << SK_HASH_BITS) - 1);
573 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
574 return crc;
575 }
576
577 void
578 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
579 {
580 char *addr = addrv;
581 int base = XM_RXFILT_ENTRY(slot);
582
583 SK_XM_WRITE_2(sc_if, base, *(uint16_t *)(&addr[0]));
584 SK_XM_WRITE_2(sc_if, base + 2, *(uint16_t *)(&addr[2]));
585 SK_XM_WRITE_2(sc_if, base + 4, *(uint16_t *)(&addr[4]));
586 }
587
588 void
589 sk_setmulti(struct sk_if_softc *sc_if)
590 {
591 struct sk_softc *sc = sc_if->sk_softc;
592 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
593 uint32_t hashes[2] = { 0, 0 };
594 int h = 0, i;
595 struct ethercom *ec = &sc_if->sk_ethercom;
596 struct ether_multi *enm;
597 struct ether_multistep step;
598 uint8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
599
600 /* First, zot all the existing filters. */
601 switch (sc->sk_type) {
602 case SK_GENESIS:
603 for (i = 1; i < XM_RXFILT_MAX; i++)
604 sk_setfilt(sc_if, (void *)&dummy, i);
605
606 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
607 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
608 break;
609 case SK_YUKON:
610 case SK_YUKON_LITE:
611 case SK_YUKON_LP:
612 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
613 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
614 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
615 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
616 break;
617 }
618
619 /* Now program new ones. */
620 allmulti:
621 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
622 hashes[0] = 0xFFFFFFFF;
623 hashes[1] = 0xFFFFFFFF;
624 } else {
625 i = 1;
626 /* First find the tail of the list. */
627 ETHER_FIRST_MULTI(step, ec, enm);
628 while (enm != NULL) {
629 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
630 ETHER_ADDR_LEN)) {
631 ifp->if_flags |= IFF_ALLMULTI;
632 goto allmulti;
633 }
634 DPRINTFN(2,("multicast address %s\n",
635 ether_sprintf(enm->enm_addrlo)));
636 /*
637 * Program the first XM_RXFILT_MAX multicast groups
638 * into the perfect filter. For all others,
639 * use the hash table.
640 */
641 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
642 sk_setfilt(sc_if, enm->enm_addrlo, i);
643 i++;
644 }
645 else {
646 switch (sc->sk_type) {
647 case SK_GENESIS:
648 h = sk_xmac_hash(enm->enm_addrlo);
649 break;
650 case SK_YUKON:
651 case SK_YUKON_LITE:
652 case SK_YUKON_LP:
653 h = sk_yukon_hash(enm->enm_addrlo);
654 break;
655 }
656 if (h < 32)
657 hashes[0] |= (1 << h);
658 else
659 hashes[1] |= (1 << (h - 32));
660 }
661
662 ETHER_NEXT_MULTI(step, enm);
663 }
664 }
665
666 switch (sc->sk_type) {
667 case SK_GENESIS:
668 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
669 XM_MODE_RX_USE_PERFECT);
670 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
671 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
672 break;
673 case SK_YUKON:
674 case SK_YUKON_LITE:
675 case SK_YUKON_LP:
676 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
677 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
678 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
679 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
680 break;
681 }
682 }
683
684 int
685 sk_init_rx_ring(struct sk_if_softc *sc_if)
686 {
687 struct sk_chain_data *cd = &sc_if->sk_cdata;
688 struct sk_ring_data *rd = sc_if->sk_rdata;
689 int i;
690
691 memset((char *)rd->sk_rx_ring, 0,
692 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
693
694 for (i = 0; i < SK_RX_RING_CNT; i++) {
695 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
696 if (i == (SK_RX_RING_CNT - 1)) {
697 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
698 rd->sk_rx_ring[i].sk_next =
699 htole32(SK_RX_RING_ADDR(sc_if, 0));
700 } else {
701 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
702 rd->sk_rx_ring[i].sk_next =
703 htole32(SK_RX_RING_ADDR(sc_if,i+1));
704 }
705 }
706
707 for (i = 0; i < SK_RX_RING_CNT; i++) {
708 if (sk_newbuf(sc_if, i, NULL,
709 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
710 aprint_error_dev(sc_if->sk_dev,
711 "failed alloc of %dth mbuf\n", i);
712 return ENOBUFS;
713 }
714 }
715 sc_if->sk_cdata.sk_rx_prod = 0;
716 sc_if->sk_cdata.sk_rx_cons = 0;
717
718 return 0;
719 }
720
721 int
722 sk_init_tx_ring(struct sk_if_softc *sc_if)
723 {
724 struct sk_chain_data *cd = &sc_if->sk_cdata;
725 struct sk_ring_data *rd = sc_if->sk_rdata;
726 int i;
727
728 memset(sc_if->sk_rdata->sk_tx_ring, 0,
729 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
730
731 for (i = 0; i < SK_TX_RING_CNT; i++) {
732 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
733 if (i == (SK_TX_RING_CNT - 1)) {
734 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
735 rd->sk_tx_ring[i].sk_next =
736 htole32(SK_TX_RING_ADDR(sc_if, 0));
737 } else {
738 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
739 rd->sk_tx_ring[i].sk_next =
740 htole32(SK_TX_RING_ADDR(sc_if,i+1));
741 }
742 }
743
744 sc_if->sk_cdata.sk_tx_prod = 0;
745 sc_if->sk_cdata.sk_tx_cons = 0;
746 sc_if->sk_cdata.sk_tx_cnt = 0;
747
748 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
749 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
750
751 return 0;
752 }
753
754 int
755 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
756 bus_dmamap_t dmamap)
757 {
758 struct mbuf *m_new = NULL;
759 struct sk_chain *c;
760 struct sk_rx_desc *r;
761
762 if (m == NULL) {
763 void *buf = NULL;
764
765 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
766 if (m_new == NULL) {
767 aprint_error_dev(sc_if->sk_dev,
768 "no memory for rx list -- packet dropped!\n");
769 return ENOBUFS;
770 }
771
772 /* Allocate the jumbo buffer */
773 buf = sk_jalloc(sc_if);
774 if (buf == NULL) {
775 m_freem(m_new);
776 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
777 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
778 return ENOBUFS;
779 }
780
781 /* Attach the buffer to the mbuf */
782 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
783 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
784
785 } else {
786 /*
787 * We're re-using a previously allocated mbuf;
788 * be sure to re-init pointers and lengths to
789 * default values.
790 */
791 m_new = m;
792 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
793 m_new->m_data = m_new->m_ext.ext_buf;
794 }
795 m_adj(m_new, ETHER_ALIGN);
796
797 c = &sc_if->sk_cdata.sk_rx_chain[i];
798 r = c->sk_desc;
799 c->sk_mbuf = m_new;
800 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
801 (((vaddr_t)m_new->m_data
802 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
803 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
804
805 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
806
807 return 0;
808 }
809
810 /*
811 * Memory management for jumbo frames.
812 */
813
814 int
815 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
816 {
817 struct sk_softc *sc = sc_if->sk_softc;
818 char *ptr, *kva;
819 bus_dma_segment_t seg;
820 int i, rseg, state, error;
821 struct sk_jpool_entry *entry;
822
823 state = error = 0;
824
825 /* Grab a big chunk o' storage. */
826 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
827 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
828 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
829 return ENOBUFS;
830 }
831
832 state = 1;
833 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
834 BUS_DMA_NOWAIT)) {
835 aprint_error_dev(sc->sk_dev,
836 "can't map dma buffers (%d bytes)\n",
837 SK_JMEM);
838 error = ENOBUFS;
839 goto out;
840 }
841
842 state = 2;
843 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
844 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
845 aprint_error_dev(sc->sk_dev, "can't create dma map\n");
846 error = ENOBUFS;
847 goto out;
848 }
849
850 state = 3;
851 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
852 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
853 aprint_error_dev(sc->sk_dev, "can't load dma map\n");
854 error = ENOBUFS;
855 goto out;
856 }
857
858 state = 4;
859 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
860 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
861
862 LIST_INIT(&sc_if->sk_jfree_listhead);
863 LIST_INIT(&sc_if->sk_jinuse_listhead);
864 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
865
866 /*
867 * Now divide it up into 9K pieces and save the addresses
868 * in an array.
869 */
870 ptr = sc_if->sk_cdata.sk_jumbo_buf;
871 for (i = 0; i < SK_JSLOTS; i++) {
872 sc_if->sk_cdata.sk_jslots[i] = ptr;
873 ptr += SK_JLEN;
874 entry = malloc(sizeof(struct sk_jpool_entry),
875 M_DEVBUF, M_NOWAIT);
876 if (entry == NULL) {
877 aprint_error_dev(sc->sk_dev,
878 "no memory for jumbo buffer queue!\n");
879 error = ENOBUFS;
880 goto out;
881 }
882 entry->slot = i;
883 if (i)
884 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
885 entry, jpool_entries);
886 else
887 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
888 entry, jpool_entries);
889 }
890 out:
891 if (error != 0) {
892 switch (state) {
893 case 4:
894 bus_dmamap_unload(sc->sc_dmatag,
895 sc_if->sk_cdata.sk_rx_jumbo_map);
896 case 3:
897 bus_dmamap_destroy(sc->sc_dmatag,
898 sc_if->sk_cdata.sk_rx_jumbo_map);
899 case 2:
900 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
901 case 1:
902 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
903 break;
904 default:
905 break;
906 }
907 }
908
909 return error;
910 }
911
912 /*
913 * Allocate a jumbo buffer.
914 */
915 void *
916 sk_jalloc(struct sk_if_softc *sc_if)
917 {
918 struct sk_jpool_entry *entry;
919
920 mutex_enter(&sc_if->sk_jpool_mtx);
921 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
922
923 if (entry == NULL) {
924 mutex_exit(&sc_if->sk_jpool_mtx);
925 return NULL;
926 }
927
928 LIST_REMOVE(entry, jpool_entries);
929 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
930 mutex_exit(&sc_if->sk_jpool_mtx);
931 return sc_if->sk_cdata.sk_jslots[entry->slot];
932 }
933
934 /*
935 * Release a jumbo buffer.
936 */
937 void
938 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
939 {
940 struct sk_jpool_entry *entry;
941 struct sk_if_softc *sc;
942 int i;
943
944 /* Extract the softc struct pointer. */
945 sc = (struct sk_if_softc *)arg;
946
947 if (sc == NULL)
948 panic("sk_jfree: can't find softc pointer!");
949
950 /* calculate the slot this buffer belongs to */
951
952 i = ((vaddr_t)buf
953 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
954
955 if ((i < 0) || (i >= SK_JSLOTS))
956 panic("sk_jfree: asked to free buffer that we don't manage!");
957
958 mutex_enter(&sc->sk_jpool_mtx);
959 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
960 if (entry == NULL)
961 panic("sk_jfree: buffer not in use!");
962 entry->slot = i;
963 LIST_REMOVE(entry, jpool_entries);
964 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
965 mutex_exit(&sc->sk_jpool_mtx);
966
967 if (__predict_true(m != NULL))
968 pool_cache_put(mb_cache, m);
969 }
970
971 /*
972 * Set media options.
973 */
974 int
975 sk_ifmedia_upd(struct ifnet *ifp)
976 {
977 struct sk_if_softc *sc_if = ifp->if_softc;
978 int rc;
979
980 (void) sk_init(ifp);
981 if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
982 return 0;
983 return rc;
984 }
985
986 static void
987 sk_promisc(struct sk_if_softc *sc_if, int on)
988 {
989 struct sk_softc *sc = sc_if->sk_softc;
990 switch (sc->sk_type) {
991 case SK_GENESIS:
992 if (on)
993 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
994 else
995 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
996 break;
997 case SK_YUKON:
998 case SK_YUKON_LITE:
999 case SK_YUKON_LP:
1000 if (on)
1001 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1002 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1003 else
1004 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1005 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1006 break;
1007 default:
1008 aprint_error_dev(sc_if->sk_dev, "Can't set promisc for %d\n",
1009 sc->sk_type);
1010 break;
1011 }
1012 }
1013
1014 int
1015 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
1016 {
1017 struct sk_if_softc *sc_if = ifp->if_softc;
1018 int s, error = 0;
1019
1020 /* DPRINTFN(2, ("sk_ioctl\n")); */
1021
1022 s = splnet();
1023
1024 switch (command) {
1025
1026 case SIOCSIFFLAGS:
1027 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1028 if ((error = ifioctl_common(ifp, command, data)) != 0)
1029 break;
1030 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1031 case IFF_RUNNING:
1032 sk_stop(ifp, 1);
1033 break;
1034 case IFF_UP:
1035 sk_init(ifp);
1036 break;
1037 case IFF_UP | IFF_RUNNING:
1038 if ((ifp->if_flags ^ sc_if->sk_if_flags) == IFF_PROMISC) {
1039 sk_promisc(sc_if, ifp->if_flags & IFF_PROMISC);
1040 sk_setmulti(sc_if);
1041 } else
1042 sk_init(ifp);
1043 break;
1044 }
1045 sc_if->sk_if_flags = ifp->if_flags;
1046 error = 0;
1047 break;
1048
1049 default:
1050 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1051 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1052 break;
1053
1054 error = 0;
1055
1056 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1057 ;
1058 else if (ifp->if_flags & IFF_RUNNING) {
1059 sk_setmulti(sc_if);
1060 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1061 }
1062 break;
1063 }
1064
1065 splx(s);
1066 return error;
1067 }
1068
1069 void
1070 sk_update_int_mod(struct sk_softc *sc)
1071 {
1072 uint32_t imtimer_ticks;
1073
1074 /*
1075 * Configure interrupt moderation. The moderation timer
1076 * defers interrupts specified in the interrupt moderation
1077 * timer mask based on the timeout specified in the interrupt
1078 * moderation timer init register. Each bit in the timer
1079 * register represents one tick, so to specify a timeout in
1080 * microseconds, we have to multiply by the correct number of
1081 * ticks-per-microsecond.
1082 */
1083 switch (sc->sk_type) {
1084 case SK_GENESIS:
1085 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1086 break;
1087 case SK_YUKON_EC:
1088 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1089 break;
1090 default:
1091 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1092 }
1093 aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
1094 sc->sk_int_mod);
1095 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1096 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1097 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1098 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1099 sc->sk_int_mod_pending = 0;
1100 }
1101
1102 /*
1103 * Lookup: Check the PCI vendor and device, and return a pointer to
1104 * The structure if the IDs match against our list.
1105 */
1106
1107 static const struct sk_product *
1108 sk_lookup(const struct pci_attach_args *pa)
1109 {
1110 const struct sk_product *psk;
1111
1112 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1113 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1114 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1115 return psk;
1116 }
1117 return NULL;
1118 }
1119
1120 /*
1121 * Probe for a SysKonnect GEnesis chip.
1122 */
1123
1124 int
1125 skc_probe(device_t parent, cfdata_t match, void *aux)
1126 {
1127 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1128 const struct sk_product *psk;
1129 pcireg_t subid;
1130
1131 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1132
1133 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1134 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1135 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1136 subid == SK_LINKSYS_EG1032_SUBID)
1137 return 1;
1138
1139 if ((psk = sk_lookup(pa))) {
1140 return 1;
1141 }
1142 return 0;
1143 }
1144
1145 /*
1146 * Force the GEnesis into reset, then bring it out of reset.
1147 */
1148 void sk_reset(struct sk_softc *sc)
1149 {
1150 DPRINTFN(2, ("sk_reset\n"));
1151
1152 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1153 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1154 if (SK_YUKON_FAMILY(sc->sk_type))
1155 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1156
1157 DELAY(1000);
1158 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1159 DELAY(2);
1160 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1161 if (SK_YUKON_FAMILY(sc->sk_type))
1162 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1163
1164 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1165 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1166 CSR_READ_2(sc, SK_LINK_CTRL)));
1167
1168 if (sc->sk_type == SK_GENESIS) {
1169 /* Configure packet arbiter */
1170 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1171 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1172 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1173 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1174 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1175 }
1176
1177 /* Enable RAM interface */
1178 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1179
1180 sk_update_int_mod(sc);
1181 }
1182
1183 int
1184 sk_probe(device_t parent, cfdata_t match, void *aux)
1185 {
1186 struct skc_attach_args *sa = aux;
1187
1188 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1189 return 0;
1190
1191 return 1;
1192 }
1193
1194 /*
1195 * Each XMAC chip is attached as a separate logical IP interface.
1196 * Single port cards will have only one logical interface of course.
1197 */
1198 void
1199 sk_attach(device_t parent, device_t self, void *aux)
1200 {
1201 struct sk_if_softc *sc_if = device_private(self);
1202 struct sk_softc *sc = device_private(parent);
1203 struct skc_attach_args *sa = aux;
1204 struct sk_txmap_entry *entry;
1205 struct ifnet *ifp;
1206 bus_dma_segment_t seg;
1207 bus_dmamap_t dmamap;
1208 prop_data_t data;
1209 void *kva;
1210 int i, rseg;
1211 int mii_flags = 0;
1212
1213 aprint_naive("\n");
1214
1215 sc_if->sk_dev = self;
1216 sc_if->sk_port = sa->skc_port;
1217 sc_if->sk_softc = sc;
1218 sc->sk_if[sa->skc_port] = sc_if;
1219
1220 if (sa->skc_port == SK_PORT_A)
1221 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1222 if (sa->skc_port == SK_PORT_B)
1223 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1224
1225 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1226
1227 /*
1228 * Get station address for this interface. Note that
1229 * dual port cards actually come with three station
1230 * addresses: one for each port, plus an extra. The
1231 * extra one is used by the SysKonnect driver software
1232 * as a 'virtual' station address for when both ports
1233 * are operating in failover mode. Currently we don't
1234 * use this extra address.
1235 */
1236 data = prop_dictionary_get(device_properties(self), "mac-address");
1237 if (data != NULL) {
1238 /*
1239 * Try to get the station address from device properties
1240 * first, in case the ROM is missing.
1241 */
1242 KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
1243 KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
1244 memcpy(sc_if->sk_enaddr, prop_data_data_nocopy(data),
1245 ETHER_ADDR_LEN);
1246 } else
1247 for (i = 0; i < ETHER_ADDR_LEN; i++)
1248 sc_if->sk_enaddr[i] = sk_win_read_1(sc,
1249 SK_MAC0_0 + (sa->skc_port * 8) + i);
1250
1251 aprint_normal(": Ethernet address %s\n",
1252 ether_sprintf(sc_if->sk_enaddr));
1253
1254 /*
1255 * Set up RAM buffer addresses. The NIC will have a certain
1256 * amount of SRAM on it, somewhere between 512K and 2MB. We
1257 * need to divide this up a) between the transmitter and
1258 * receiver and b) between the two XMACs, if this is a
1259 * dual port NIC. Our algorithm is to divide up the memory
1260 * evenly so that everyone gets a fair share.
1261 */
1262 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1263 uint32_t chunk, val;
1264
1265 chunk = sc->sk_ramsize / 2;
1266 val = sc->sk_rboff / sizeof(uint64_t);
1267 sc_if->sk_rx_ramstart = val;
1268 val += (chunk / sizeof(uint64_t));
1269 sc_if->sk_rx_ramend = val - 1;
1270 sc_if->sk_tx_ramstart = val;
1271 val += (chunk / sizeof(uint64_t));
1272 sc_if->sk_tx_ramend = val - 1;
1273 } else {
1274 uint32_t chunk, val;
1275
1276 chunk = sc->sk_ramsize / 4;
1277 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1278 sizeof(uint64_t);
1279 sc_if->sk_rx_ramstart = val;
1280 val += (chunk / sizeof(uint64_t));
1281 sc_if->sk_rx_ramend = val - 1;
1282 sc_if->sk_tx_ramstart = val;
1283 val += (chunk / sizeof(uint64_t));
1284 sc_if->sk_tx_ramend = val - 1;
1285 }
1286
1287 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1288 " tx_ramstart=%#x tx_ramend=%#x\n",
1289 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1290 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1291
1292 /* Read and save PHY type and set PHY address */
1293 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1294 switch (sc_if->sk_phytype) {
1295 case SK_PHYTYPE_XMAC:
1296 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1297 break;
1298 case SK_PHYTYPE_BCOM:
1299 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1300 break;
1301 case SK_PHYTYPE_MARV_COPPER:
1302 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1303 break;
1304 default:
1305 aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
1306 sc_if->sk_phytype);
1307 return;
1308 }
1309
1310 /* Allocate the descriptor queues. */
1311 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1312 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1313 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
1314 goto fail;
1315 }
1316 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1317 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1318 aprint_error_dev(sc_if->sk_dev,
1319 "can't map dma buffers (%lu bytes)\n",
1320 (u_long) sizeof(struct sk_ring_data));
1321 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1322 goto fail;
1323 }
1324 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1325 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1326 &sc_if->sk_ring_map)) {
1327 aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
1328 bus_dmamem_unmap(sc->sc_dmatag, kva,
1329 sizeof(struct sk_ring_data));
1330 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1331 goto fail;
1332 }
1333 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1334 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1335 aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
1336 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1337 bus_dmamem_unmap(sc->sc_dmatag, kva,
1338 sizeof(struct sk_ring_data));
1339 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1340 goto fail;
1341 }
1342
1343 for (i = 0; i < SK_RX_RING_CNT; i++)
1344 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1345
1346 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1347 for (i = 0; i < SK_TX_RING_CNT; i++) {
1348 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1349
1350 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1351 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1352 aprint_error_dev(sc_if->sk_dev,
1353 "Can't create TX dmamap\n");
1354 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1355 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1356 bus_dmamem_unmap(sc->sc_dmatag, kva,
1357 sizeof(struct sk_ring_data));
1358 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1359 goto fail;
1360 }
1361
1362 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1363 if (!entry) {
1364 aprint_error_dev(sc_if->sk_dev,
1365 "Can't alloc txmap entry\n");
1366 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1367 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1368 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1369 bus_dmamem_unmap(sc->sc_dmatag, kva,
1370 sizeof(struct sk_ring_data));
1371 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1372 goto fail;
1373 }
1374 entry->dmamap = dmamap;
1375 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1376 }
1377
1378 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1379 memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
1380
1381 ifp = &sc_if->sk_ethercom.ec_if;
1382 /* Try to allocate memory for jumbo buffers. */
1383 if (sk_alloc_jumbo_mem(sc_if)) {
1384 aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1385 goto fail;
1386 }
1387 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1388 | ETHERCAP_JUMBO_MTU;
1389
1390 ifp->if_softc = sc_if;
1391 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1392 ifp->if_ioctl = sk_ioctl;
1393 ifp->if_start = sk_start;
1394 ifp->if_stop = sk_stop;
1395 ifp->if_init = sk_init;
1396 ifp->if_watchdog = sk_watchdog;
1397 ifp->if_capabilities = 0;
1398 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1399 IFQ_SET_READY(&ifp->if_snd);
1400 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1401
1402 /*
1403 * Do miibus setup.
1404 */
1405 switch (sc->sk_type) {
1406 case SK_GENESIS:
1407 sk_init_xmac(sc_if);
1408 break;
1409 case SK_YUKON:
1410 case SK_YUKON_LITE:
1411 case SK_YUKON_LP:
1412 sk_init_yukon(sc_if);
1413 break;
1414 default:
1415 aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
1416 sc->sk_type);
1417 goto fail;
1418 }
1419
1420 DPRINTFN(2, ("sk_attach: 1\n"));
1421
1422 sc_if->sk_mii.mii_ifp = ifp;
1423 switch (sc->sk_type) {
1424 case SK_GENESIS:
1425 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1426 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1427 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1428 break;
1429 case SK_YUKON:
1430 case SK_YUKON_LITE:
1431 case SK_YUKON_LP:
1432 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1433 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1434 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1435 mii_flags = MIIF_DOPAUSE;
1436 break;
1437 }
1438
1439 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1440 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1441 sk_ifmedia_upd, ether_mediastatus);
1442 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1443 MII_OFFSET_ANY, mii_flags);
1444 if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
1445 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1446 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1447 0, NULL);
1448 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1449 } else
1450 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1451
1452 callout_init(&sc_if->sk_tick_ch, 0);
1453 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1454
1455 DPRINTFN(2, ("sk_attach: 1\n"));
1456
1457 /*
1458 * Call MI attach routines.
1459 */
1460 if_attach(ifp);
1461 if_deferred_start_init(ifp, NULL);
1462
1463 ether_ifattach(ifp, sc_if->sk_enaddr);
1464
1465 if (sc->rnd_attached++ == 0) {
1466 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1467 RND_TYPE_NET, RND_FLAG_DEFAULT);
1468 }
1469
1470 if (pmf_device_register(self, NULL, sk_resume))
1471 pmf_class_network_register(self, ifp);
1472 else
1473 aprint_error_dev(self, "couldn't establish power handler\n");
1474
1475 DPRINTFN(2, ("sk_attach: end\n"));
1476
1477 return;
1478
1479 fail:
1480 sc->sk_if[sa->skc_port] = NULL;
1481 }
1482
1483 int
1484 skcprint(void *aux, const char *pnp)
1485 {
1486 struct skc_attach_args *sa = aux;
1487
1488 if (pnp)
1489 aprint_normal("sk port %c at %s",
1490 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1491 else
1492 aprint_normal(" port %c",
1493 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1494 return UNCONF;
1495 }
1496
1497 /*
1498 * Attach the interface. Allocate softc structures, do ifmedia
1499 * setup and ethernet/BPF attach.
1500 */
1501 void
1502 skc_attach(device_t parent, device_t self, void *aux)
1503 {
1504 struct sk_softc *sc = device_private(self);
1505 struct pci_attach_args *pa = aux;
1506 struct skc_attach_args skca;
1507 pci_chipset_tag_t pc = pa->pa_pc;
1508 #ifndef SK_USEIOSPACE
1509 pcireg_t memtype;
1510 #endif
1511 pci_intr_handle_t ih;
1512 const char *intrstr = NULL;
1513 bus_addr_t iobase;
1514 bus_size_t iosize;
1515 int rc, sk_nodenum;
1516 uint32_t command;
1517 const char *revstr;
1518 const struct sysctlnode *node;
1519 char intrbuf[PCI_INTRSTR_LEN];
1520
1521 sc->sk_dev = self;
1522 aprint_naive("\n");
1523
1524 DPRINTFN(2, ("begin skc_attach\n"));
1525
1526 /*
1527 * Handle power management nonsense.
1528 */
1529 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1530
1531 if (command == 0x01) {
1532 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1533 if (command & SK_PSTATE_MASK) {
1534 uint32_t xiobase, membase, irq;
1535
1536 /* Save important PCI config data. */
1537 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1538 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1539 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1540
1541 /* Reset the power state. */
1542 aprint_normal_dev(sc->sk_dev,
1543 "chip is in D%d power mode -- setting to D0\n",
1544 command & SK_PSTATE_MASK);
1545 command &= 0xFFFFFFFC;
1546 pci_conf_write(pc, pa->pa_tag,
1547 SK_PCI_PWRMGMTCTRL, command);
1548
1549 /* Restore PCI config data. */
1550 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1551 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1552 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1553 }
1554 }
1555
1556 /*
1557 * The firmware might have configured the interface to revert the
1558 * byte order in all descriptors. Make that undone.
1559 */
1560 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_OURREG2);
1561 if (command & SK_REG2_REV_DESC)
1562 pci_conf_write(pc, pa->pa_tag, SK_PCI_OURREG2,
1563 command & ~SK_REG2_REV_DESC);
1564
1565 /*
1566 * Map control/status registers.
1567 */
1568 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1569 command |= PCI_COMMAND_IO_ENABLE |
1570 PCI_COMMAND_MEM_ENABLE |
1571 PCI_COMMAND_MASTER_ENABLE;
1572 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1573 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1574
1575 #ifdef SK_USEIOSPACE
1576 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1577 aprint_error(": failed to enable I/O ports!\n");
1578 return;
1579 }
1580 /*
1581 * Map control/status registers.
1582 */
1583 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1584 &sc->sk_btag, &sc->sk_bhandle,
1585 &iobase, &iosize)) {
1586 aprint_error(": can't find i/o space\n");
1587 return;
1588 }
1589 #else
1590 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1591 aprint_error(": failed to enable memory mapping!\n");
1592 return;
1593 }
1594 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1595 switch (memtype) {
1596 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1597 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1598 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1599 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1600 &iobase, &iosize) == 0)
1601 break;
1602 default:
1603 aprint_error_dev(sc->sk_dev, "can't find mem space\n");
1604 return;
1605 }
1606
1607 DPRINTFN(2, ("skc_attach: iobase=%#" PRIxPADDR ", iosize=%zx\n",
1608 iobase, iosize));
1609 #endif
1610 sc->sc_dmatag = pa->pa_dmat;
1611
1612 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1613 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1614
1615 /* bail out here if chip is not recognized */
1616 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1617 aprint_error_dev(sc->sk_dev, "unknown chip type\n");
1618 goto fail;
1619 }
1620 if (SK_IS_YUKON2(sc)) {
1621 aprint_error_dev(sc->sk_dev,
1622 "Does not support Yukon2--try msk(4).\n");
1623 goto fail;
1624 }
1625 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1626
1627 /* Allocate interrupt */
1628 if (pci_intr_map(pa, &ih)) {
1629 aprint_error(": couldn't map interrupt\n");
1630 goto fail;
1631 }
1632
1633 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1634 sc->sk_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, sk_intr, sc,
1635 device_xname(sc->sk_dev));
1636 if (sc->sk_intrhand == NULL) {
1637 aprint_error(": couldn't establish interrupt");
1638 if (intrstr != NULL)
1639 aprint_error(" at %s", intrstr);
1640 aprint_error("\n");
1641 goto fail;
1642 }
1643 aprint_normal(": %s\n", intrstr);
1644
1645 /* Reset the adapter. */
1646 sk_reset(sc);
1647
1648 /* Read and save vital product data from EEPROM. */
1649 sk_vpd_read(sc);
1650
1651 if (sc->sk_type == SK_GENESIS) {
1652 uint8_t val = sk_win_read_1(sc, SK_EPROM0);
1653 /* Read and save RAM size and RAMbuffer offset */
1654 switch (val) {
1655 case SK_RAMSIZE_512K_64:
1656 sc->sk_ramsize = 0x80000;
1657 sc->sk_rboff = SK_RBOFF_0;
1658 break;
1659 case SK_RAMSIZE_1024K_64:
1660 sc->sk_ramsize = 0x100000;
1661 sc->sk_rboff = SK_RBOFF_80000;
1662 break;
1663 case SK_RAMSIZE_1024K_128:
1664 sc->sk_ramsize = 0x100000;
1665 sc->sk_rboff = SK_RBOFF_0;
1666 break;
1667 case SK_RAMSIZE_2048K_128:
1668 sc->sk_ramsize = 0x200000;
1669 sc->sk_rboff = SK_RBOFF_0;
1670 break;
1671 default:
1672 aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
1673 val);
1674 goto fail_1;
1675 break;
1676 }
1677
1678 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1679 sc->sk_ramsize, sc->sk_ramsize / 1024,
1680 sc->sk_rboff));
1681 } else {
1682 uint8_t val = sk_win_read_1(sc, SK_EPROM0);
1683 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1684 sc->sk_rboff = SK_RBOFF_0;
1685
1686 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1687 sc->sk_ramsize / 1024, sc->sk_ramsize,
1688 sc->sk_rboff));
1689 }
1690
1691 /* Read and save physical media type */
1692 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1693 case SK_PMD_1000BASESX:
1694 sc->sk_pmd = IFM_1000_SX;
1695 break;
1696 case SK_PMD_1000BASELX:
1697 sc->sk_pmd = IFM_1000_LX;
1698 break;
1699 case SK_PMD_1000BASECX:
1700 sc->sk_pmd = IFM_1000_CX;
1701 break;
1702 case SK_PMD_1000BASETX:
1703 case SK_PMD_1000BASETX_ALT:
1704 sc->sk_pmd = IFM_1000_T;
1705 break;
1706 default:
1707 aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
1708 sk_win_read_1(sc, SK_PMDTYPE));
1709 goto fail_1;
1710 }
1711
1712 /* determine whether to name it with vpd or just make it up */
1713 /* Marvell Yukon VPD's can freqently be bogus */
1714
1715 switch (pa->pa_id) {
1716 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1717 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1718 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1719 case PCI_PRODUCT_3COM_3C940:
1720 case PCI_PRODUCT_DLINK_DGE530T:
1721 case PCI_PRODUCT_DLINK_DGE560T:
1722 case PCI_PRODUCT_DLINK_DGE560T_2:
1723 case PCI_PRODUCT_LINKSYS_EG1032:
1724 case PCI_PRODUCT_LINKSYS_EG1064:
1725 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1726 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1727 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1728 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1729 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1730 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1731 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1732 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1733 sc->sk_name = sc->sk_vpd_prodname;
1734 break;
1735 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1736 /* whoops yukon vpd prodname bears no resemblance to reality */
1737 switch (sc->sk_type) {
1738 case SK_GENESIS:
1739 sc->sk_name = sc->sk_vpd_prodname;
1740 break;
1741 case SK_YUKON:
1742 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1743 break;
1744 case SK_YUKON_LITE:
1745 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1746 break;
1747 case SK_YUKON_LP:
1748 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1749 break;
1750 default:
1751 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1752 }
1753
1754 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1755
1756 if ( sc->sk_type == SK_YUKON ) {
1757 uint32_t flashaddr;
1758 uint8_t testbyte;
1759
1760 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1761
1762 /* test Flash-Address Register */
1763 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1764 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1765
1766 if (testbyte != 0) {
1767 /* this is yukon lite Rev. A0 */
1768 sc->sk_type = SK_YUKON_LITE;
1769 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1770 /* restore Flash-Address Register */
1771 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1772 }
1773 }
1774 break;
1775 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1776 sc->sk_name = sc->sk_vpd_prodname;
1777 break;
1778 default:
1779 sc->sk_name = "Unknown Marvell";
1780 }
1781
1782
1783 if ( sc->sk_type == SK_YUKON_LITE ) {
1784 switch (sc->sk_rev) {
1785 case SK_YUKON_LITE_REV_A0:
1786 revstr = "A0";
1787 break;
1788 case SK_YUKON_LITE_REV_A1:
1789 revstr = "A1";
1790 break;
1791 case SK_YUKON_LITE_REV_A3:
1792 revstr = "A3";
1793 break;
1794 default:
1795 revstr = "";
1796 }
1797 } else {
1798 revstr = "";
1799 }
1800
1801 /* Announce the product name. */
1802 aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
1803 sc->sk_name, revstr, sc->sk_rev);
1804
1805 skca.skc_port = SK_PORT_A;
1806 (void)config_found(sc->sk_dev, &skca, skcprint);
1807
1808 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1809 skca.skc_port = SK_PORT_B;
1810 (void)config_found(sc->sk_dev, &skca, skcprint);
1811 }
1812
1813 /* Turn on the 'driver is loaded' LED. */
1814 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1815
1816 /* skc sysctl setup */
1817
1818 sc->sk_int_mod = SK_IM_DEFAULT;
1819 sc->sk_int_mod_pending = 0;
1820
1821 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1822 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1823 SYSCTL_DESCR("skc per-controller controls"),
1824 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1825 CTL_EOL)) != 0) {
1826 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1827 goto fail_1;
1828 }
1829
1830 sk_nodenum = node->sysctl_num;
1831
1832 /* interrupt moderation time in usecs */
1833 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1834 CTLFLAG_READWRITE,
1835 CTLTYPE_INT, "int_mod",
1836 SYSCTL_DESCR("sk interrupt moderation timer"),
1837 sk_sysctl_handler, 0, (void *)sc,
1838 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1839 CTL_EOL)) != 0) {
1840 aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1841 goto fail_1;
1842 }
1843
1844 if (!pmf_device_register(self, skc_suspend, skc_resume))
1845 aprint_error_dev(self, "couldn't establish power handler\n");
1846
1847 return;
1848
1849 fail_1:
1850 pci_intr_disestablish(pc, sc->sk_intrhand);
1851 fail:
1852 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1853 }
1854
1855 int
1856 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1857 {
1858 struct sk_softc *sc = sc_if->sk_softc;
1859 struct sk_tx_desc *f = NULL;
1860 uint32_t frag, cur, cnt = 0, sk_ctl;
1861 int i;
1862 struct sk_txmap_entry *entry;
1863 bus_dmamap_t txmap;
1864
1865 DPRINTFN(3, ("sk_encap\n"));
1866
1867 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1868 if (entry == NULL) {
1869 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1870 return ENOBUFS;
1871 }
1872 txmap = entry->dmamap;
1873
1874 cur = frag = *txidx;
1875
1876 #ifdef SK_DEBUG
1877 if (skdebug >= 3)
1878 sk_dump_mbuf(m_head);
1879 #endif
1880
1881 /*
1882 * Start packing the mbufs in this chain into
1883 * the fragment pointers. Stop when we run out
1884 * of fragments or hit the end of the mbuf chain.
1885 */
1886 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1887 BUS_DMA_NOWAIT)) {
1888 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1889 return ENOBUFS;
1890 }
1891
1892 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1893
1894 /* Sync the DMA map. */
1895 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1896 BUS_DMASYNC_PREWRITE);
1897
1898 for (i = 0; i < txmap->dm_nsegs; i++) {
1899 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1900 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1901 return ENOBUFS;
1902 }
1903 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1904 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1905 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1906 if (cnt == 0)
1907 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1908 else
1909 sk_ctl |= SK_TXCTL_OWN;
1910 f->sk_ctl = htole32(sk_ctl);
1911 cur = frag;
1912 SK_INC(frag, SK_TX_RING_CNT);
1913 cnt++;
1914 }
1915
1916 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1917 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1918
1919 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1920 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1921 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1922
1923 /* Sync descriptors before handing to chip */
1924 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1925 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1926
1927 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1928 htole32(SK_TXCTL_OWN);
1929
1930 /* Sync first descriptor to hand it off */
1931 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1932
1933 sc_if->sk_cdata.sk_tx_cnt += cnt;
1934
1935 #ifdef SK_DEBUG
1936 if (skdebug >= 3) {
1937 struct sk_tx_desc *desc;
1938 uint32_t idx;
1939 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1940 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1941 sk_dump_txdesc(desc, idx);
1942 }
1943 }
1944 #endif
1945
1946 *txidx = frag;
1947
1948 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1949
1950 return 0;
1951 }
1952
1953 void
1954 sk_start(struct ifnet *ifp)
1955 {
1956 struct sk_if_softc *sc_if = ifp->if_softc;
1957 struct sk_softc *sc = sc_if->sk_softc;
1958 struct mbuf *m_head = NULL;
1959 uint32_t idx = sc_if->sk_cdata.sk_tx_prod;
1960 int pkts = 0;
1961
1962 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1963 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1964
1965 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1966 IFQ_POLL(&ifp->if_snd, m_head);
1967 if (m_head == NULL)
1968 break;
1969
1970 /*
1971 * Pack the data into the transmit ring. If we
1972 * don't have room, set the OACTIVE flag and wait
1973 * for the NIC to drain the ring.
1974 */
1975 if (sk_encap(sc_if, m_head, &idx)) {
1976 ifp->if_flags |= IFF_OACTIVE;
1977 break;
1978 }
1979
1980 /* now we are committed to transmit the packet */
1981 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1982 pkts++;
1983
1984 /*
1985 * If there's a BPF listener, bounce a copy of this frame
1986 * to him.
1987 */
1988 bpf_mtap(ifp, m_head, BPF_D_OUT);
1989 }
1990 if (pkts == 0)
1991 return;
1992
1993 /* Transmit */
1994 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1995 sc_if->sk_cdata.sk_tx_prod = idx;
1996 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1997
1998 /* Set a timeout in case the chip goes out to lunch. */
1999 ifp->if_timer = 5;
2000 }
2001 }
2002
2003
2004 void
2005 sk_watchdog(struct ifnet *ifp)
2006 {
2007 struct sk_if_softc *sc_if = ifp->if_softc;
2008
2009 /*
2010 * Reclaim first as there is a possibility of losing Tx completion
2011 * interrupts.
2012 */
2013 sk_txeof(sc_if);
2014 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2015 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
2016
2017 ifp->if_oerrors++;
2018
2019 sk_init(ifp);
2020 }
2021 }
2022
2023 void
2024 sk_shutdown(void *v)
2025 {
2026 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
2027 struct sk_softc *sc = sc_if->sk_softc;
2028 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2029
2030 DPRINTFN(2, ("sk_shutdown\n"));
2031 sk_stop(ifp,1);
2032
2033 /* Turn off the 'driver is loaded' LED. */
2034 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2035
2036 /*
2037 * Reset the GEnesis controller. Doing this should also
2038 * assert the resets on the attached XMAC(s).
2039 */
2040 sk_reset(sc);
2041 }
2042
2043 void
2044 sk_rxeof(struct sk_if_softc *sc_if)
2045 {
2046 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2047 struct mbuf *m;
2048 struct sk_chain *cur_rx;
2049 struct sk_rx_desc *cur_desc;
2050 int i, cur, total_len = 0;
2051 uint32_t rxstat, sk_ctl;
2052 bus_dmamap_t dmamap;
2053
2054 i = sc_if->sk_cdata.sk_rx_prod;
2055
2056 DPRINTFN(3, ("sk_rxeof %d\n", i));
2057
2058 for (;;) {
2059 cur = i;
2060
2061 /* Sync the descriptor */
2062 SK_CDRXSYNC(sc_if, cur,
2063 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2064
2065 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2066 if (sk_ctl & SK_RXCTL_OWN) {
2067 /* Invalidate the descriptor -- it's not ready yet */
2068 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2069 sc_if->sk_cdata.sk_rx_prod = i;
2070 break;
2071 }
2072
2073 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2074 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2075 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2076
2077 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2078 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2079
2080 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2081 m = cur_rx->sk_mbuf;
2082 cur_rx->sk_mbuf = NULL;
2083 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2084
2085 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2086
2087 SK_INC(i, SK_RX_RING_CNT);
2088
2089 if (rxstat & XM_RXSTAT_ERRFRAME) {
2090 ifp->if_ierrors++;
2091 sk_newbuf(sc_if, cur, m, dmamap);
2092 continue;
2093 }
2094
2095 /*
2096 * Try to allocate a new jumbo buffer. If that
2097 * fails, copy the packet to mbufs and put the
2098 * jumbo buffer back in the ring so it can be
2099 * re-used. If allocating mbufs fails, then we
2100 * have to drop the packet.
2101 */
2102 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2103 struct mbuf *m0;
2104 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2105 total_len + ETHER_ALIGN, 0, ifp);
2106 sk_newbuf(sc_if, cur, m, dmamap);
2107 if (m0 == NULL) {
2108 aprint_error_dev(sc_if->sk_dev, "no receive "
2109 "buffers available -- packet dropped!\n");
2110 ifp->if_ierrors++;
2111 continue;
2112 }
2113 m_adj(m0, ETHER_ALIGN);
2114 m = m0;
2115 } else {
2116 m_set_rcvif(m, ifp);
2117 m->m_pkthdr.len = m->m_len = total_len;
2118 }
2119
2120 /* pass it on. */
2121 if_percpuq_enqueue(ifp->if_percpuq, m);
2122 }
2123 }
2124
2125 void
2126 sk_txeof(struct sk_if_softc *sc_if)
2127 {
2128 struct sk_softc *sc = sc_if->sk_softc;
2129 struct sk_tx_desc *cur_tx;
2130 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2131 uint32_t idx, sk_ctl;
2132 struct sk_txmap_entry *entry;
2133
2134 DPRINTFN(3, ("sk_txeof\n"));
2135
2136 /*
2137 * Go through our tx ring and free mbufs for those
2138 * frames that have been sent.
2139 */
2140 idx = sc_if->sk_cdata.sk_tx_cons;
2141 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2142 SK_CDTXSYNC(sc_if, idx, 1,
2143 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2144
2145 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2146 sk_ctl = le32toh(cur_tx->sk_ctl);
2147 #ifdef SK_DEBUG
2148 if (skdebug >= 3)
2149 sk_dump_txdesc(cur_tx, idx);
2150 #endif
2151 if (sk_ctl & SK_TXCTL_OWN) {
2152 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2153 break;
2154 }
2155 if (sk_ctl & SK_TXCTL_LASTFRAG)
2156 ifp->if_opackets++;
2157 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2158 entry = sc_if->sk_cdata.sk_tx_map[idx];
2159
2160 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2161 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2162
2163 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2164 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2165
2166 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2167 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2168 link);
2169 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2170 }
2171 sc_if->sk_cdata.sk_tx_cnt--;
2172 SK_INC(idx, SK_TX_RING_CNT);
2173 }
2174 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2175 ifp->if_timer = 0;
2176 else /* nudge chip to keep tx ring moving */
2177 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2178
2179 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2180 ifp->if_flags &= ~IFF_OACTIVE;
2181
2182 sc_if->sk_cdata.sk_tx_cons = idx;
2183 }
2184
2185 void
2186 sk_tick(void *xsc_if)
2187 {
2188 struct sk_if_softc *sc_if = xsc_if;
2189 struct mii_data *mii = &sc_if->sk_mii;
2190 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2191 int i;
2192
2193 DPRINTFN(3, ("sk_tick\n"));
2194
2195 if (!(ifp->if_flags & IFF_UP))
2196 return;
2197
2198 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2199 sk_intr_bcom(sc_if);
2200 return;
2201 }
2202
2203 /*
2204 * According to SysKonnect, the correct way to verify that
2205 * the link has come back up is to poll bit 0 of the GPIO
2206 * register three times. This pin has the signal from the
2207 * link sync pin connected to it; if we read the same link
2208 * state 3 times in a row, we know the link is up.
2209 */
2210 for (i = 0; i < 3; i++) {
2211 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2212 break;
2213 }
2214
2215 if (i != 3) {
2216 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2217 return;
2218 }
2219
2220 /* Turn the GP0 interrupt back on. */
2221 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2222 SK_XM_READ_2(sc_if, XM_ISR);
2223 mii_tick(mii);
2224 if (ifp->if_link_state != LINK_STATE_UP)
2225 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2226 else
2227 callout_stop(&sc_if->sk_tick_ch);
2228 }
2229
2230 void
2231 sk_intr_bcom(struct sk_if_softc *sc_if)
2232 {
2233 struct mii_data *mii = &sc_if->sk_mii;
2234 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2235 int status;
2236
2237
2238 DPRINTFN(3, ("sk_intr_bcom\n"));
2239
2240 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2241
2242 /*
2243 * Read the PHY interrupt register to make sure
2244 * we clear any pending interrupts.
2245 */
2246 status = sk_xmac_miibus_readreg(sc_if->sk_dev,
2247 SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2248
2249 if (!(ifp->if_flags & IFF_RUNNING)) {
2250 sk_init_xmac(sc_if);
2251 return;
2252 }
2253
2254 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2255 int lstat;
2256 lstat = sk_xmac_miibus_readreg(sc_if->sk_dev,
2257 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2258
2259 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2260 (void)mii_mediachg(mii);
2261 /* Turn off the link LED. */
2262 SK_IF_WRITE_1(sc_if, 0,
2263 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2264 sc_if->sk_link = 0;
2265 } else if (status & BRGPHY_ISR_LNK_CHG) {
2266 sk_xmac_miibus_writereg(sc_if->sk_dev,
2267 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2268 mii_tick(mii);
2269 sc_if->sk_link = 1;
2270 /* Turn on the link LED. */
2271 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2272 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2273 SK_LINKLED_BLINK_OFF);
2274 mii_pollstat(mii);
2275 } else {
2276 mii_tick(mii);
2277 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2278 }
2279 }
2280
2281 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2282 }
2283
2284 void
2285 sk_intr_xmac(struct sk_if_softc *sc_if)
2286 {
2287 uint16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2288
2289 DPRINTFN(3, ("sk_intr_xmac\n"));
2290
2291 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2292 if (status & XM_ISR_GP0_SET) {
2293 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2294 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2295 }
2296
2297 if (status & XM_ISR_AUTONEG_DONE) {
2298 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2299 }
2300 }
2301
2302 if (status & XM_IMR_TX_UNDERRUN)
2303 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2304
2305 if (status & XM_IMR_RX_OVERRUN)
2306 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2307 }
2308
2309 void
2310 sk_intr_yukon(struct sk_if_softc *sc_if)
2311 {
2312 #ifdef SK_DEBUG
2313 int status;
2314
2315 status =
2316 #endif
2317 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2318
2319 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2320 }
2321
2322 int
2323 sk_intr(void *xsc)
2324 {
2325 struct sk_softc *sc = xsc;
2326 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2327 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2328 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2329 uint32_t status;
2330 int claimed = 0;
2331
2332 if (sc_if0 != NULL)
2333 ifp0 = &sc_if0->sk_ethercom.ec_if;
2334 if (sc_if1 != NULL)
2335 ifp1 = &sc_if1->sk_ethercom.ec_if;
2336
2337 for (;;) {
2338 status = CSR_READ_4(sc, SK_ISSR);
2339 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2340
2341 if (!(status & sc->sk_intrmask))
2342 break;
2343
2344 claimed = 1;
2345
2346 /* Handle receive interrupts first. */
2347 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2348 sk_rxeof(sc_if0);
2349 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2350 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2351 }
2352 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2353 sk_rxeof(sc_if1);
2354 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2355 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2356 }
2357
2358 /* Then transmit interrupts. */
2359 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2360 sk_txeof(sc_if0);
2361 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2362 SK_TXBMU_CLR_IRQ_EOF);
2363 }
2364 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2365 sk_txeof(sc_if1);
2366 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2367 SK_TXBMU_CLR_IRQ_EOF);
2368 }
2369
2370 /* Then MAC interrupts. */
2371 if (sc_if0 && (status & SK_ISR_MAC1) &&
2372 (ifp0->if_flags & IFF_RUNNING)) {
2373 if (sc->sk_type == SK_GENESIS)
2374 sk_intr_xmac(sc_if0);
2375 else
2376 sk_intr_yukon(sc_if0);
2377 }
2378
2379 if (sc_if1 && (status & SK_ISR_MAC2) &&
2380 (ifp1->if_flags & IFF_RUNNING)) {
2381 if (sc->sk_type == SK_GENESIS)
2382 sk_intr_xmac(sc_if1);
2383 else
2384 sk_intr_yukon(sc_if1);
2385
2386 }
2387
2388 if (status & SK_ISR_EXTERNAL_REG) {
2389 if (sc_if0 != NULL &&
2390 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2391 sk_intr_bcom(sc_if0);
2392
2393 if (sc_if1 != NULL &&
2394 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2395 sk_intr_bcom(sc_if1);
2396 }
2397 }
2398
2399 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2400
2401 if (ifp0 != NULL)
2402 if_schedule_deferred_start(ifp0);
2403 if (ifp1 != NULL)
2404 if_schedule_deferred_start(ifp1);
2405
2406 KASSERT(sc->rnd_attached > 0);
2407 rnd_add_uint32(&sc->rnd_source, status);
2408
2409 if (sc->sk_int_mod_pending)
2410 sk_update_int_mod(sc);
2411
2412 return claimed;
2413 }
2414
2415 void
2416 sk_init_xmac(struct sk_if_softc *sc_if)
2417 {
2418 struct sk_softc *sc = sc_if->sk_softc;
2419 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2420 static const struct sk_bcom_hack bhack[] = {
2421 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2422 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2423 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2424 { 0, 0 } };
2425
2426 DPRINTFN(1, ("sk_init_xmac\n"));
2427
2428 /* Unreset the XMAC. */
2429 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2430 DELAY(1000);
2431
2432 /* Reset the XMAC's internal state. */
2433 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2434
2435 /* Save the XMAC II revision */
2436 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2437
2438 /*
2439 * Perform additional initialization for external PHYs,
2440 * namely for the 1000baseTX cards that use the XMAC's
2441 * GMII mode.
2442 */
2443 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2444 int i = 0;
2445 uint32_t val;
2446
2447 /* Take PHY out of reset. */
2448 val = sk_win_read_4(sc, SK_GPIO);
2449 if (sc_if->sk_port == SK_PORT_A)
2450 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2451 else
2452 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2453 sk_win_write_4(sc, SK_GPIO, val);
2454
2455 /* Enable GMII mode on the XMAC. */
2456 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2457
2458 sk_xmac_miibus_writereg(sc_if->sk_dev,
2459 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2460 DELAY(10000);
2461 sk_xmac_miibus_writereg(sc_if->sk_dev,
2462 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2463
2464 /*
2465 * Early versions of the BCM5400 apparently have
2466 * a bug that requires them to have their reserved
2467 * registers initialized to some magic values. I don't
2468 * know what the numbers do, I'm just the messenger.
2469 */
2470 if (sk_xmac_miibus_readreg(sc_if->sk_dev,
2471 SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2472 while (bhack[i].reg) {
2473 sk_xmac_miibus_writereg(sc_if->sk_dev,
2474 SK_PHYADDR_BCOM, bhack[i].reg,
2475 bhack[i].val);
2476 i++;
2477 }
2478 }
2479 }
2480
2481 /* Set station address */
2482 SK_XM_WRITE_2(sc_if, XM_PAR0,
2483 *(uint16_t *)(&sc_if->sk_enaddr[0]));
2484 SK_XM_WRITE_2(sc_if, XM_PAR1,
2485 *(uint16_t *)(&sc_if->sk_enaddr[2]));
2486 SK_XM_WRITE_2(sc_if, XM_PAR2,
2487 *(uint16_t *)(&sc_if->sk_enaddr[4]));
2488 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2489
2490 if (ifp->if_flags & IFF_PROMISC)
2491 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2492 else
2493 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2494
2495 if (ifp->if_flags & IFF_BROADCAST)
2496 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2497 else
2498 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2499
2500 /* We don't need the FCS appended to the packet. */
2501 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2502
2503 /* We want short frames padded to 60 bytes. */
2504 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2505
2506 /*
2507 * Enable the reception of all error frames. This is is
2508 * a necessary evil due to the design of the XMAC. The
2509 * XMAC's receive FIFO is only 8K in size, however jumbo
2510 * frames can be up to 9000 bytes in length. When bad
2511 * frame filtering is enabled, the XMAC's RX FIFO operates
2512 * in 'store and forward' mode. For this to work, the
2513 * entire frame has to fit into the FIFO, but that means
2514 * that jumbo frames larger than 8192 bytes will be
2515 * truncated. Disabling all bad frame filtering causes
2516 * the RX FIFO to operate in streaming mode, in which
2517 * case the XMAC will start transfering frames out of the
2518 * RX FIFO as soon as the FIFO threshold is reached.
2519 */
2520 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2521 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2522 XM_MODE_RX_INRANGELEN);
2523
2524 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2525 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2526 else
2527 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2528
2529 /*
2530 * Bump up the transmit threshold. This helps hold off transmit
2531 * underruns when we're blasting traffic from both ports at once.
2532 */
2533 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2534
2535 /* Set multicast filter */
2536 sk_setmulti(sc_if);
2537
2538 /* Clear and enable interrupts */
2539 SK_XM_READ_2(sc_if, XM_ISR);
2540 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2541 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2542 else
2543 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2544
2545 /* Configure MAC arbiter */
2546 switch (sc_if->sk_xmac_rev) {
2547 case XM_XMAC_REV_B2:
2548 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2549 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2550 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2551 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2552 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2553 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2554 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2555 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2556 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2557 break;
2558 case XM_XMAC_REV_C1:
2559 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2560 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2561 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2562 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2563 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2564 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2565 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2566 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2567 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2568 break;
2569 default:
2570 break;
2571 }
2572 sk_win_write_2(sc, SK_MACARB_CTL,
2573 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2574
2575 sc_if->sk_link = 1;
2576 }
2577
2578 void sk_init_yukon(struct sk_if_softc *sc_if)
2579 {
2580 uint32_t /*mac, */phy;
2581 uint16_t reg;
2582 struct sk_softc *sc;
2583 int i;
2584
2585 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2586 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2587
2588 sc = sc_if->sk_softc;
2589 if (sc->sk_type == SK_YUKON_LITE &&
2590 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2591 /* Take PHY out of reset. */
2592 sk_win_write_4(sc, SK_GPIO,
2593 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2594 }
2595
2596
2597 /* GMAC and GPHY Reset */
2598 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2599
2600 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2601
2602 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2603 DELAY(1000);
2604 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2605 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2606 DELAY(1000);
2607
2608
2609 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2610
2611 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2612 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2613
2614 switch (sc_if->sk_softc->sk_pmd) {
2615 case IFM_1000_SX:
2616 case IFM_1000_LX:
2617 phy |= SK_GPHY_FIBER;
2618 break;
2619
2620 case IFM_1000_CX:
2621 case IFM_1000_T:
2622 phy |= SK_GPHY_COPPER;
2623 break;
2624 }
2625
2626 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2627
2628 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2629 DELAY(1000);
2630 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2631 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2632 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2633
2634 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2635 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2636
2637 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2638
2639 /* unused read of the interrupt source register */
2640 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2641 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2642
2643 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2644 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2645 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2646
2647 /* MIB Counter Clear Mode set */
2648 reg |= YU_PAR_MIB_CLR;
2649 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2650 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2651 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2652
2653 /* MIB Counter Clear Mode clear */
2654 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2655 reg &= ~YU_PAR_MIB_CLR;
2656 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2657
2658 /* receive control reg */
2659 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2660 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2661 YU_RCR_CRCR);
2662
2663 /* transmit parameter register */
2664 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2665 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2666 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2667
2668 /* serial mode register */
2669 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2670 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2671 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2672 YU_SMR_IPG_DATA(0x1e));
2673
2674 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2675 /* Setup Yukon's address */
2676 for (i = 0; i < 3; i++) {
2677 /* Write Source Address 1 (unicast filter) */
2678 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2679 sc_if->sk_enaddr[i * 2] |
2680 sc_if->sk_enaddr[i * 2 + 1] << 8);
2681 }
2682
2683 for (i = 0; i < 3; i++) {
2684 reg = sk_win_read_2(sc_if->sk_softc,
2685 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2686 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2687 }
2688
2689 /* Set multicast filter */
2690 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2691 sk_setmulti(sc_if);
2692
2693 /* enable interrupt mask for counter overflows */
2694 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2695 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2696 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2697 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2698
2699 /* Configure RX MAC FIFO */
2700 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2701 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2702
2703 /* Configure TX MAC FIFO */
2704 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2705 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2706
2707 DPRINTFN(6, ("sk_init_yukon: end\n"));
2708 }
2709
2710 /*
2711 * Note that to properly initialize any part of the GEnesis chip,
2712 * you first have to take it out of reset mode.
2713 */
2714 int
2715 sk_init(struct ifnet *ifp)
2716 {
2717 struct sk_if_softc *sc_if = ifp->if_softc;
2718 struct sk_softc *sc = sc_if->sk_softc;
2719 struct mii_data *mii = &sc_if->sk_mii;
2720 int rc = 0, s;
2721 uint32_t imr, imtimer_ticks;
2722
2723 DPRINTFN(1, ("sk_init\n"));
2724
2725 s = splnet();
2726
2727 if (ifp->if_flags & IFF_RUNNING) {
2728 splx(s);
2729 return 0;
2730 }
2731
2732 /* Cancel pending I/O and free all RX/TX buffers. */
2733 sk_stop(ifp,0);
2734
2735 if (sc->sk_type == SK_GENESIS) {
2736 /* Configure LINK_SYNC LED */
2737 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2738 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2739 SK_LINKLED_LINKSYNC_ON);
2740
2741 /* Configure RX LED */
2742 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2743 SK_RXLEDCTL_COUNTER_START);
2744
2745 /* Configure TX LED */
2746 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2747 SK_TXLEDCTL_COUNTER_START);
2748 }
2749
2750 /* Configure I2C registers */
2751
2752 /* Configure XMAC(s) */
2753 switch (sc->sk_type) {
2754 case SK_GENESIS:
2755 sk_init_xmac(sc_if);
2756 break;
2757 case SK_YUKON:
2758 case SK_YUKON_LITE:
2759 case SK_YUKON_LP:
2760 sk_init_yukon(sc_if);
2761 break;
2762 }
2763 if ((rc = mii_mediachg(mii)) == ENXIO)
2764 rc = 0;
2765 else if (rc != 0)
2766 goto out;
2767
2768 if (sc->sk_type == SK_GENESIS) {
2769 /* Configure MAC FIFOs */
2770 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2771 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2772 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2773
2774 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2775 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2776 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2777 }
2778
2779 /* Configure transmit arbiter(s) */
2780 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2781 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2782
2783 /* Configure RAMbuffers */
2784 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2785 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2786 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2787 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2788 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2789 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2790
2791 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2792 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2793 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2794 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2795 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2796 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2797 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2798
2799 /* Configure BMUs */
2800 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2801 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2802 SK_RX_RING_ADDR(sc_if, 0));
2803 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2804
2805 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2806 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2807 SK_TX_RING_ADDR(sc_if, 0));
2808 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2809
2810 /* Init descriptors */
2811 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2812 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2813 "memory for rx buffers\n");
2814 sk_stop(ifp,0);
2815 splx(s);
2816 return ENOBUFS;
2817 }
2818
2819 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2820 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2821 "memory for tx buffers\n");
2822 sk_stop(ifp,0);
2823 splx(s);
2824 return ENOBUFS;
2825 }
2826
2827 /* Set interrupt moderation if changed via sysctl. */
2828 switch (sc->sk_type) {
2829 case SK_GENESIS:
2830 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2831 break;
2832 case SK_YUKON_EC:
2833 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2834 break;
2835 default:
2836 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2837 }
2838 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2839 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2840 sk_win_write_4(sc, SK_IMTIMERINIT,
2841 SK_IM_USECS(sc->sk_int_mod));
2842 aprint_verbose_dev(sc->sk_dev,
2843 "interrupt moderation is %d us\n", sc->sk_int_mod);
2844 }
2845
2846 /* Configure interrupt handling */
2847 CSR_READ_4(sc, SK_ISSR);
2848 if (sc_if->sk_port == SK_PORT_A)
2849 sc->sk_intrmask |= SK_INTRS1;
2850 else
2851 sc->sk_intrmask |= SK_INTRS2;
2852
2853 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2854
2855 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2856
2857 /* Start BMUs. */
2858 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2859
2860 if (sc->sk_type == SK_GENESIS) {
2861 /* Enable XMACs TX and RX state machines */
2862 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2863 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2864 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2865 }
2866
2867 if (SK_YUKON_FAMILY(sc->sk_type)) {
2868 uint16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2869 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2870 #if 0
2871 /* XXX disable 100Mbps and full duplex mode? */
2872 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2873 #endif
2874 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2875 }
2876
2877
2878 ifp->if_flags |= IFF_RUNNING;
2879 ifp->if_flags &= ~IFF_OACTIVE;
2880 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2881
2882 out:
2883 splx(s);
2884 return rc;
2885 }
2886
2887 void
2888 sk_stop(struct ifnet *ifp, int disable)
2889 {
2890 struct sk_if_softc *sc_if = ifp->if_softc;
2891 struct sk_softc *sc = sc_if->sk_softc;
2892 int i;
2893
2894 DPRINTFN(1, ("sk_stop\n"));
2895
2896 callout_stop(&sc_if->sk_tick_ch);
2897
2898 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2899 uint32_t val;
2900
2901 /* Put PHY back into reset. */
2902 val = sk_win_read_4(sc, SK_GPIO);
2903 if (sc_if->sk_port == SK_PORT_A) {
2904 val |= SK_GPIO_DIR0;
2905 val &= ~SK_GPIO_DAT0;
2906 } else {
2907 val |= SK_GPIO_DIR2;
2908 val &= ~SK_GPIO_DAT2;
2909 }
2910 sk_win_write_4(sc, SK_GPIO, val);
2911 }
2912
2913 /* Turn off various components of this interface. */
2914 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2915 switch (sc->sk_type) {
2916 case SK_GENESIS:
2917 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2918 SK_TXMACCTL_XMAC_RESET);
2919 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2920 break;
2921 case SK_YUKON:
2922 case SK_YUKON_LITE:
2923 case SK_YUKON_LP:
2924 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2925 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2926 break;
2927 }
2928 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2929 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2930 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2931 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2932 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2933 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2934 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2935 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2936 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2937
2938 /* Disable interrupts */
2939 if (sc_if->sk_port == SK_PORT_A)
2940 sc->sk_intrmask &= ~SK_INTRS1;
2941 else
2942 sc->sk_intrmask &= ~SK_INTRS2;
2943 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2944
2945 SK_XM_READ_2(sc_if, XM_ISR);
2946 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2947
2948 /* Free RX and TX mbufs still in the queues. */
2949 for (i = 0; i < SK_RX_RING_CNT; i++) {
2950 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2951 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2952 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2953 }
2954 }
2955
2956 for (i = 0; i < SK_TX_RING_CNT; i++) {
2957 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2958 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2959 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2960 }
2961 }
2962
2963 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2964 }
2965
2966 /* Power Management Framework */
2967
2968 static bool
2969 skc_suspend(device_t dv, const pmf_qual_t *qual)
2970 {
2971 struct sk_softc *sc = device_private(dv);
2972
2973 DPRINTFN(2, ("skc_suspend\n"));
2974
2975 /* Turn off the driver is loaded LED */
2976 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2977
2978 return true;
2979 }
2980
2981 static bool
2982 skc_resume(device_t dv, const pmf_qual_t *qual)
2983 {
2984 struct sk_softc *sc = device_private(dv);
2985
2986 DPRINTFN(2, ("skc_resume\n"));
2987
2988 sk_reset(sc);
2989 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2990
2991 return true;
2992 }
2993
2994 static bool
2995 sk_resume(device_t dv, const pmf_qual_t *qual)
2996 {
2997 struct sk_if_softc *sc_if = device_private(dv);
2998
2999 sk_init_yukon(sc_if);
3000 return true;
3001 }
3002
3003 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
3004 skc_probe, skc_attach, NULL, NULL);
3005
3006 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
3007 sk_probe, sk_attach, NULL, NULL);
3008
3009 #ifdef SK_DEBUG
3010 void
3011 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
3012 {
3013 #define DESC_PRINT(X) \
3014 if (X) \
3015 printf("txdesc[%d]." #X "=%#x\n", \
3016 idx, X);
3017
3018 DESC_PRINT(le32toh(desc->sk_ctl));
3019 DESC_PRINT(le32toh(desc->sk_next));
3020 DESC_PRINT(le32toh(desc->sk_data_lo));
3021 DESC_PRINT(le32toh(desc->sk_data_hi));
3022 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
3023 DESC_PRINT(le16toh(desc->sk_rsvd0));
3024 DESC_PRINT(le16toh(desc->sk_csum_startval));
3025 DESC_PRINT(le16toh(desc->sk_csum_startpos));
3026 DESC_PRINT(le16toh(desc->sk_csum_writepos));
3027 DESC_PRINT(le16toh(desc->sk_rsvd1));
3028 #undef PRINT
3029 }
3030
3031 void
3032 sk_dump_bytes(const char *data, int len)
3033 {
3034 int c, i, j;
3035
3036 for (i = 0; i < len; i += 16) {
3037 printf("%08x ", i);
3038 c = len - i;
3039 if (c > 16) c = 16;
3040
3041 for (j = 0; j < c; j++) {
3042 printf("%02x ", data[i + j] & 0xff);
3043 if ((j & 0xf) == 7 && j > 0)
3044 printf(" ");
3045 }
3046
3047 for (; j < 16; j++)
3048 printf(" ");
3049 printf(" ");
3050
3051 for (j = 0; j < c; j++) {
3052 int ch = data[i + j] & 0xff;
3053 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
3054 }
3055
3056 printf("\n");
3057
3058 if (c < 16)
3059 break;
3060 }
3061 }
3062
3063 void
3064 sk_dump_mbuf(struct mbuf *m)
3065 {
3066 int count = m->m_pkthdr.len;
3067
3068 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3069
3070 while (count > 0 && m) {
3071 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3072 m, m->m_data, m->m_len);
3073 sk_dump_bytes(mtod(m, char *), m->m_len);
3074
3075 count -= m->m_len;
3076 m = m->m_next;
3077 }
3078 }
3079 #endif
3080
3081 static int
3082 sk_sysctl_handler(SYSCTLFN_ARGS)
3083 {
3084 int error, t;
3085 struct sysctlnode node;
3086 struct sk_softc *sc;
3087
3088 node = *rnode;
3089 sc = node.sysctl_data;
3090 t = sc->sk_int_mod;
3091 node.sysctl_data = &t;
3092 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3093 if (error || newp == NULL)
3094 return error;
3095
3096 if (t < SK_IM_MIN || t > SK_IM_MAX)
3097 return EINVAL;
3098
3099 /* update the softc with sysctl-changed value, and mark
3100 for hardware update */
3101 sc->sk_int_mod = t;
3102 sc->sk_int_mod_pending = 1;
3103 return 0;
3104 }
3105
3106 /*
3107 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3108 * set up in skc_attach()
3109 */
3110 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3111 {
3112 int rc;
3113 const struct sysctlnode *node;
3114
3115 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3116 0, CTLTYPE_NODE, "sk",
3117 SYSCTL_DESCR("sk interface controls"),
3118 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3119 goto err;
3120 }
3121
3122 sk_root_num = node->sysctl_num;
3123 return;
3124
3125 err:
3126 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3127 }
3128